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CHAPTER OVERVIEW

1: What is Probability?
1.1: Sample Spaces and Events
1.2: Probability Measures
1.3: Equally Likely Outcomes and Counting Techniques (Combinatorics)
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1.1: Sample Spaces and Events

Introduction

We begin with a definition.

Definition 

Probability theory provides a mathematical model for chance (or random) phenomena.

While this is not a very informative definition, it does indicate the overall goal of this course, which is to develop a formal,
mathematical structure for the fairly intuitive concept of probability. While most everyone is familiar with the notion of "chance" -
- we informally talk about the chance of it raining tomorrow, or the chance of getting what you want for your birthday -- when it
comes to quantifying the chance of something happening, we need to develop a mathematical model to make things precise and
calculable.

Sample Spaces and Events
Before we can formally define what the mathematical model is that we will use to make probability precise, we first establish the
structure on which the model operates: sample spaces and events.

Definition 

The sample space for a probability experiment (i.e., an experiment with random outcomes) is the set of all possible outcomes.

The sample space is denoted .
An outcome is an element of , generally denoted .

Example 

Suppose we toss a coin twice and record the sequence of heads ( ) and tails ( ). A possible outcome of this experiment is then
given by

 
and the sample space is

Example 

Suppose we record the time ( ), in minutes, that a car spends waiting for a green light at a particular intersection. A possible
outcome of this experiment is then given by

indicating that a particular car waited one and a half minutes for the light to turn green. The sample space consists of all non-
negative numbers, since a measurement of time cannot be negative and, in theory, there is no limit on how a long a car could wait
for a green light. We can then write the sample space as follows: 

Definition 

An event is a particular subset of the sample space.

Example 

Continuing in the context of Example 1.1.1, define  to be the event that at least one heads is recorded. We can write event  as
the following subset of the sample space:

1.1.1

1.1.2

Ω

Ω ω ∈ Ω

1.1.1

h t

ω= ht

Ω = {hh,ht, th, tt}. (1.1.1)

1.1.2

t

t = 1.5,

Ω = {t ∈ R | t ≥ 0} = [0,∞). (1.1.2)

1.1.3

1.1.3

A A
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Note that  is a subset of  given in Equation .

Example 

Continuing in the context of Example 1.1.2, define  to be the event that a car waits at most 2 minutes for the light to turn green.
We can write the event  as the following interval, i.e., a subset of the sample space  given in Equation : 

Set Theory: A Brief Review
As we see from the above definitions of sample spaces and events, sets play the primary role in the structure of probability
experiments. So, in this section, we review some of the basic definitions and notation from set theory. We do this in the context of
sample spaces, outcomes, and events.

Definition 
1. The union of two events  and , denoted , is the set of all outcomes in  or  (or both).
2. The intersection of two events  and , denoted , is the set of all outcomes in both  and .
3. The complement of an event , denoted , is the set of all outcomes in the sample space that are not in . This may also

be written as follows:

4. The empty set, denoted , is the set containing no outcomes.
5. Two events  and  are disjoint (or mutually exclusive) if their intersection is the empty set, i.e., .

Example 

Continuing in the context of both Examples 1.1.1 & 1.1.3, define  to be the event that exactly one heads is recorded:

Now we can apply the set operations just defined to the events  and :

Note the relationship between events  and : every outcome in  is an outcome in . In this case, we say that  is a subset of 
, and write

Note also that events  and  are not disjoint, since their intersection is not the empty set. However, if we let  be the event that
no heads are recorded, then

and

Thus, events  and  are disjoint, and events  and  are disjoint.

A= {hh,ht, th}.

A Ω 1.1.1

1.1.4

B

B Ω 1.1.2

B= [0, 2] = {t ∈ R | 0 ≤ t ≤ 2}.

1.1.4

A B A∪B A B

A B A∩B A B

A A

c

A

= {ω ∈ Ω | s ∉ A}.A

c

∅

A B A∩B=∅

1.1.5

B

B= {ht, th}.

A B

A∪B= {hh,ht, th} =A

A∩B= {ht, th} =B

= {tt}A

c

= {hh, tt}B

c

A B B A B

A

B⊆A.

A B C

C = {tt},

A∩C =∅

B∩C =∅.

A C B C
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1.2: Probability Measures
Now we are ready to formally define probability.

Definition 

A probability measure on the sample space  is a function, denoted , from subsets of  to the real numbers , such that the
following hold:

1. 
2. If  is any event in , then .
3. If events  and  are disjoint, then . 

More generally, if  is a sequence of pairwise disjoint events, i.e., , for every , then

So essentially, we are defining probability to be an operation on the events of a sample space, which assigns numbers to events in
such a way that the three properties stated in Definition 1.2.1 are satisfied.

 
Definition 1.2.1 is often referred to as the axiomatic definition of probability, where the three properties give the three axioms of
probability. These three axioms are all we need to assume about the operation of probability in order for many other desirable
properties of probability to hold, which we now state.

Properties of Probability Measures

Let  be a sample space with probability measure . Also, let  and  be any events in . Then the following hold.

1. 
2. 
3. If , then .
4. 
5. Addition Law: 

Exercise 

Can you prove the five properties of probability measures stated above using only the three axioms of probability
measures stated in Definition 1.2.1?

Answer

(1) For the first property, note that by definition of the complement of an event  we have

In other words, given any event , we can represent the sample space  as a disjoint union of  with its
complement.  Thus, by the first and third axioms, we derive the first property:

(2) For the second property, note that we can write , and that this is a disjoint union, since anything
intersected with the empty set will necessarily be empty.  So, using the first and third axioms, we derive the second
property:

1.2.1

Ω P Ω R

P (Ω) = 1

A Ω P (A) ≥ 0

A

1

A

2

P ( ∪ ) = P ( )+P ( )A

1

A

2

A

1

A

2

, ,… , ,…A

1

A

2

A

n

∩ =∅A

i

A

j

i ≠ j

P ( ∪ ∪⋯∪ ∪⋯)= P ( )+P ( )+⋯+P ( )+⋯ .A

1

A

2

A

n

A

1

A

2

A

n

Ω P A B Ω

P ( ) = 1−P (A)A

c

P (∅) = 0

A⊆B P (A) ≤ P (B)

P (A) ≤ 1

P (A∪B) = P (A)+P (B)−P (A∩B)

1.2.1

A

A∪ =Ω and A∩ =∅.A

c

A

c

A Ω A

1 = P (Ω) = P (A∪ ) = P (A)+P ( )A

c

A

c

⇒ P ( ) = 1−P (A)A

c

Ω =Ω∪∅

1 = P (Ω) = P (Ω∪∅) = P (Ω)+P (∅) = 1+P (∅)

⇒ P (∅) = 0
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(3) For the third property, note that we can write , and that this is a disjoint union, since  and 
are disjoint. By the third axiom, we have

By the second axiom, we know that .  Thus, if we remove it from the right-hand side of Equation 
, we are left with something smaller, which proves the third property:

(4) For the fourth property, we will use the third property that we just proved.  By definition, any event  is a subset
of the sample space , i.e., .  Thus, by the third property and the first axiom, we derive the fourth property:

(5) For the fifth property, note that we can write the union of events  and  as the union of the following
two disjoint events:

in other words, the union of  and  is given by the union of all the outcomes in  with all the outcomes in  that
are not in . Furthermore, note that event  can be written as the union the following two disjoint events:

in other words,  is written as the disjoint union of all the outcomes in  that are also in  with the outcomes in 
that are not in .  We can use this expression for  to find an expression for  to substitute in the
expression for  in order to derive the fifth property:

 

 
 

Note that the axiomatic definition (Definition 1.2.1) does not tell us how to compute probabilities. It simply defines a formal,
mathematical behavior of probability. In other words, the axiomatic definition describes how probability should
theoretically behave when applied to events. To compute probabilities, we use the properties stated above, as the next example
demonstrates.

Example 

Continuing in the context of Example 1.1.5, let's define a probability measure on . Assuming that the coin we toss is fair, then the
outcomes in  are equally likely, meaning that each outcome has the same probability of occurring. Since there are four outcomes,
and we know that probability of the sample space must be 1 (first axiom of probability in Definition 1.2.1), it follows that the
probability of each outcome is .

So, we can write

The reader can verify this defines a probability measure satisfying the three axioms.

With this probability measure on the outcomes we can now compute the probability of any event in  by simply counting the
number of outcomes in the event. Thus, we find the probability of events  and  previously defined:

B=A∪ (B∩ )A

c

A A

c

P (B) = P (A∪ (B∩ )) = P (A)+P (B∩ ).A

c

A

c

(1.2.1)

P (B∩ ) ≥ 0A

c

1.2.1

P (B) = P (A)+P (B∩ ) ≥ P (A) ⇒ P (B) ≥ P (A)A

c

A

Ω A⊆Ω

P (A) ≤ P (Ω) = 1 ⇒ P (A) ≤ 1

A B

A∪B=A∪ ( ∩B),A

c

A B A B

B B

B= (A∩B)∪ ( ∩B),A

c

B B A B

A B P ( ∩B)A

c

A∪B
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We consider the case of equally likely outcomes further in the next section: Section 1.3.

There is another, more empirical, approach to defining probability, given by using relative frequencies and a version of the Law of
Large Numbers.

Relative Frequency Approximation

To estimate the probability of an event , repeat the random experiment several times (each repetition is called a trial) and
count the number of times  occurred, i.e., the number of times the resulting outcome is in . Then, we approximate the
probability of  using relative frequency: 

Law of Large Numbers

As the number of trials increases, the relative frequency approximation approaches the theoretical value of .

This approach to defining probability is sometimes referred to as the frequentist definition of probability. Under this definition,
probability represents a long-run average. The two approaches to defining probability are equivalent. It can be shown that using
relative frequencies to define a probability measure satisfies the axiomatic definition.

This page titled 1.2: Probability Measures is shared under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.
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1.3: Equally Likely Outcomes and Counting Techniques (Combinatorics)
In this section, we consider the problem of assigning specific probabilities to outcomes in a sample space. As we saw in Section
1.2, the axiomatic definition of probability (Definition 1.2.1) does not tell us how to compute probabilities. So in this section we
consider the commonly encountered scenario referred to as equally likely outcomes and develop methods for computing
probabilities in this special case.

Finite Sample Spaces
Before focusing on equally likely outcomes, we consider the more general case of finite sample spaces. In other words, suppose
that a sample space  has a finite number of outcomes, which we can denote as . In this case, we can represent the outcomes in 

 as follows:

Suppose further that we denote the probability assigned to each outcome in  as , for . Then the
probability of any event  in  is given by adding the probabilities corresponding to the outcomes contained in  and we can
write

This follows from the third axiom of probability (Definition 1.2.1), since we can write any event as a disjoint union of the
outcomes contained in the event. For example, if event  contains three outcomes, then we can write 

. So the probability of  is given by simply summing up the probabilities assigned to 
. This fact will be useful in the special case of equally likely outcomes, which we consider next.

Equally Likely Outcomes
First, let's state a formal definition of what it means for the outcomes in a sample space to be equally likely.

Definition 

The outcomes in a sample space  are equally likely if each outcome has the same probability of occurring.

In general, if outcomes in a sample space  are equally likely, then computing the probability of a single outcome or an event is
very straightforward, as the following exercise demonstrates.  You are encouraged to first try to answer the questions for yourself,
and then click "Answer" to see the solution.

Exercise 

Suppose that there are  outcomes in the sample space  and that the outcomes are equally likely.

a. What is the probability of a single outcome in ?
b. What is the probability of an event  in ?

Answer

First, note that we can represent the outcomes in  as follows:

For each outcome in , note that we can denote its probability as 

where  is some constant.  This follows from the fact that the outcomes of  are equally likely and so have the same
probability of occurring.  With this set-up and using the axioms of probability (Definition 1.2.1), we have the following:
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Thus, the probability of a single outcome is given by  divided by the number of outcomes in .

Now, for an event  in , suppose it has  outcomes, where  is an integer such that .  We can represent the
outcomes in  as follows:

Using Equation , we compute the probability of  as follows:

Thus, the probability of an event in  is equal to the number of outcomes in the event divided by the total number of
outcomes in .

We have already seen an example of a sample space with equally likely outcomes in Example 1.2.1. You are encouraged to revisit
that example and connect it to the results of Exercise 1.3.1.

In general, Exercise 1.3.1 shows that if a sample space  has equally likely outcomes, then the probability of an event  in the
sample space is given by

From this result, we see that in the context of equally likely outcomes calculating probabilities of events reduces to simply counting
the number of outcomes in the event and the sample space.  So, we take a break from our discussion of probability, and briefly
introduce some counting techniques.

Counting Techniques
First, let's consider the general context of performing multi-step experiments.  The following tells us how to count the number of
outcomes in such scenarios.

Multiplication Principle

If one probability experiment has  outcomes and another has  outcomes, then there are  total outcomes for the two
experiments.

More generally, if there are  many probability experiments with the first experiment having  outcomes, the second with ,
etc., then there are  total outcomes for the  experiments.

Example 

To demonstrate the Multiplication Principle, consider again the example of tossing a coin twice (see Example 1.2.1). Each toss is a
probability experiment and on each toss, there are two possible outcomes:  or . Thus, for two tosses, there are  total
outcomes.

1 = P (Ω)

⇒ c

= P ({ } ∪ ⋯ ∪ { })ω

1

ω

N

= P ( ) +⋯ +P ( )ω

1

ω

N

= c+⋯ +c

=N ×c

= .

1

N

1 Ω

A Ω n n 0 ≤ n ≤N

A

A = { , … , }.a

1

a

n

1.3.1 A

P (A) = P ( ) =∑

i=1

n

a

i

∑

i=1

n

1

N

= +⋯ +

1

N

1

N

= n( )

1

N

= .

n

N

Ω

Ω

Ω A

P (A) = .

number of outcomes in A

number of outcomes in Ω

(1.3.2)

m n m×n

k n

1

n

2

× ×⋯ ×n

1

n

2

n

k

k

1.3.1

h t 2 ×2 = 4

https://libretexts.org/
https://stats.libretexts.org/@go/page/12757?pdf
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/DSCI_500B_Essential_Probability_Theory_for_Data_Science_(Kuter)/01%3A_What_is_Probability/1.02%3A_Probability_Measures#Example_.5C(.5CPageIndex.7B1.7D.5C)
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/DSCI_500B_Essential_Probability_Theory_for_Data_Science_(Kuter)/01%3A_What_is_Probability/1.02%3A_Probability_Measures#Example_.5C(.5CPageIndex.7B1.7D.5C)


1.3.3 https://stats.libretexts.org/@go/page/12757

If we toss the coin a third time, there are  total outcomes.

Next we define two commonly encountered situations, permutations and combinations, and consider how to count the number of
ways in which they can occur.

Definition 

A permutation is an ordered arrangement of objects. For example, "MATH'' is a permutation of four letters from the alphabet.

A combination is an unordered collection of  objects from  total objects. For example, a group of three students chosen from
a class of 10 students.

In order to count the number of possible permutations in a given setting, the Multiplication Principle is applied. For example, if we
want to know the number of possible permutations of the four letters in "MATH'', we compute 

 
since there are four letters to select for the first position, three letters for the second, two for the third, leaving only one letter for the
last. In other words, we treat each letter selection as an experiment in a multi-step process.

Counting Permutations

The number of permutations of  distinct objects is given by the following:

Counting combinations is a little more complicated, since we are not interested in the order in which objects are selected and so the
Multiplication Principle does not directly apply. Consider the example that a group of three students are chosen from a class of 10.
The group is the same regardless of the order in which the three students are selected. This implies that if we want to count the
number of possible combinations, we need to be careful not to include permutations, i.e., rearrangements, of a certain selection.
This leads to the following result that the number of possible combinations of size  selected from a total of  objects is given by
binomial coefficients.

Counting Combinations

The number of combinations of  objects selected without replacement from  distinct objects is given by 

 
Note that , read as "  choose ", is also referred to as a binomial coefficient, since it appears in the Binomial Theorem.

Using the above, we can compute the number of possible ways to select three students from a class of 10:

Example 

Consider the example of tossing a coin three times. Note that an outcome is a sequence of heads and tails. Suppose that we are
interested in the number of outcomes with exactly two heads, not in the actual sequence. To find the number of outcomes with
exactly two heads, we need to determine the number of ways to select positions in the sequence for the heads, then the remaining
position will be a tails. If we toss the coin three times, there are three positions to select from, and we want to select two. Since the
order that we make the selection of placements does not matter, we are counting the number of combinations of 2 positions from a
total of 3 positions, i.e., 
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Of course, this example is small enough that we could have arrived at the answer of 3 using brute force by just listing the
possibilities. However, if we toss the coin a higher number of times, say 50, then the brute force approach becomes infeasible and
we need to make use of binomial coefficients.
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2.1: Conditional Probability and Bayes' Rule
In many situations, additional information about the result of a probability experiment is known (or at least assumed to be known)
and given that information the probability of some other event is desired. For this scenario, we compute what is referred to
as conditional probability.

Definition 

For events  and , with , the conditional probability of  given , denoted , is given by 

In computing a conditional probability we assume that we know the outcome of the experiment is in event  and then, given that
additional information, we calculate the probability that the outcome is also in event . This is useful in practice given that partial
information about the outcome of an experiment is often known, as the next example demonstrates.

Example 

Continuing in the context of Example 1.2.1, where we considered tossing a fair coin twice, define  to be the event that at least
one tails is recorded: 

 
Let's calculate the conditional probability of  given , i.e., the probability that at least one heads is recorded (event ) assuming
that at least one tails is recorded (event ). Recalling that outcomes in this sample space are equally likely, we apply the definition
of conditional probability (Definition 2.1.1) and find 

 
Note that in Example 1.2.1 we found the un-conditional probability of  to be . So, knowing that at least one tails
was recorded, i.e., assuming event  occurred, the conditional probability of  given  decreased. This is because, if event 
occurs, then the outcome  in  cannot occur, thereby decreasing the chances that event  occurs.

Exercise 

Suppose we randomly draw a card from a standard deck of 52 playing cards. 

a. If we know that the card is a King, what is the probability that the card is a club?
b. If we instead know that the card is black, what is the probability that the card is a club?

Answer

In order to compute the necessary probabilities, first note that the sample space is given by the set of cards in a
standard deck of playing cards. So the number of outcomes in the sample space is 52. Next, note that the outcomes are
equally likely, since we are randomly drawing the card from the deck.

For part (a), we are looking for the conditional probability that the randomly selected card is club, given that it is a
King.  If we let  denote the event that the card is a club and  the event that it is a King, then we are looking to
compute

To compute these probabilities, we count the number of outcomes in the following events:
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The probabilities in Equation  are then given by dividing the counts of outcomes in each event by the total
number of outcomes in the sample space (by the boxed Equation 1.3.2 in Section 1.3):

For part (b), we are looking for the conditional probability that the randomly selected card is club, given that it is
instead black.  If we let  denote the event that the card is black, then we are looking to compute

To compute these probabilities, we count the number of outcomes in the following events:

 

 

 
 

The probabilities in Equation  are then given by dividing the counts of outcomes in each event by the total
number of outcomes in the sample space:

Remark: Exercise 2.1.1 demonstrates the following fact. For sample spaces with equally likely outcomes, conditional probabilities
are calculated using

In other words, if we know that the outcome of the probability experiment is in the event , then we restrict our focus to the
outcomes in that event that are also in .  We can think of this as event  taking the place of the sample space, since we know the
outcome must lie in that event.

Properties of Conditional Probability
As with unconditional probability, we also have some useful properties for conditional probabilities.  The first property below,
referred to as the Multiplication Law, is simply a rearrangement of the probabilities used to define conditional probability.  The
Multiplication Law provides a way for computing the probability of an intersection of events when the conditional probabilities are
known.

# of outcomes in C = # of clubs in standard deck  = 13

# of outcomes in K = # of Kings in standard deck  = 4

# of outcomes in C ∩K = # of King of clubs in standard deck  = 1
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Multiplication Law

The next two properties are useful when a partition of the sample space exists, where a partition is a way of dividing up the
outcomes in the sample space into non-overlapping sets.  A partition is formally defined in the Law of Total Probability below. In
many cases, when a partition exists, it is easy to compute the conditional probability of an event in the sample space given an event
in the partition. The Law of Total Probability then provides a way of using those conditional probabilities of an event, given the
partition to compute the unconditional probability of the event. Following the Law of Total Probability, we state Bayes' Rule, which
is really just an application of the Multiplication Law. Bayes' Rule is used to calculate what are informally referred to as "reverse
conditional probabilities", which are the conditional probabilities of an event in a partition of the sample space, given any other
event.

Law of Total Probability

Suppose events  satisfy the following:

1. 
2. , for every 
3. , for 

We say that the events  partition the sample space . Then for any event , we can write 

Bayes' Rule

Let  partition the sample space  and let  be an event with . Then, for , we have 

A common application of the Law of Total Probability and Bayes' Rule is in the context of medical diagnostic testing.

Example 

Consider a test that can diagnose kidney cancer. The test correctly detects when a patient has cancer 90% of the time. Also, if a
person does not have cancer, the test correctly indicates so 99.9% of the time. Finally, suppose it is known that 1 in every 10,000
individuals has kidney cancer. We find the probability that a patient has kidney cancer, given that the test indicates she does.

First, note that we are finding a conditional probability. If we let  denote the event that the patient tests positive for cancer, and
we let  denote the event that the patient actually has cancer, then we want 

 
If we let , then we have a partition of all patients (which is the sample space) given by  and .

In the first paragraph of this example, we are given the following probabilities:
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Since we have a partition of the sample space, we apply the Law of Total Probability to find : 

 
Next, we apply Bayes' Rule to find the desired conditional probability: 

 
This implies that only about 8% of patients that test positive under this particular test actually have kidney cancer, which is not very
good.

This page titled 2.1: Conditional Probability and Bayes' Rule is shared under a not declared license and was authored, remixed, and/or curated by
Kristin Kuter.

P (A)

P (A) = P (A |  )P ( )+P (A |  )P ( ) = (0.9)(0.0001)+(0.001)(0.9999) = 0.0010899B
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2.2: Independent Events
In this section we consider a property of events that relates to conditional probability, namely independence. First, we define what
it means for a pair of events to be independent, and then we consider collections of more than two events. 

Independence for Pairs of Events
The following definition provides an intuitive definition of the concept of independence for two events, and then we look at an
example that provides a computational way for determining when events are independent.

Definition 

Events  and  are independent if knowing that one occurs does not affect the probability that the other occurs, i.e., 

Using the definition of conditional probability (Definition 2.2.1), we can derive an alternate way to the Equations 
 for determining when two events are independent, as the following example demonstrates.

Example 

Suppose that events  and  are independent. We rewrite Equations  using the definition of conditional probability:

 

 

 

 
 

In each of the expressions on the right-hand side above we isolate :

 

 

 

 
 

Both expressions result in . Thus, we have shown that if events  and  are independent, then the
probability of their intersection is equal to the product of their individual probabilities. We state this fact in the next definition.

2.2.1

A B

P (A | B) = P (A) and P (B | A) = P (B). (2.2.1)

2.2.1

2.2.1

A B 2.2.1

P (A | B) = P (A) ⇒ = P (A)

P (A∩B)

P (B)

and

P (B | A) = P (B) ⇒ = P (B)

P (A∩B)

P (A)

P (A∩B)

= P (A) ⇒ P (A∩B) = P (A)P (B)

P (A∩B)

P (B)

and

= P (B) ⇒ P (A∩B) = P (A)P (B)

P (A∩B)

P (A)

P (A∩B) = P (A)P (B) A B
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Definition 

Events  and  are independent if

 

Generally speaking, Definition 2.3.2 tends to be an easier condition than Definition 2.3.1 to verify when checking whether two
events are independent.

Example 

Consider the context of Exercise 2.2.1, where we randomly draw a card from a standard deck of 52 and  denotes the event of
drawing a club,  the event of drawing a King, and  the event of drawing a black card.

Are  and  independent events? Recall that , and note that  and . Thus, we
have 

 
indicating that  and  are independent.

Are  and  independent events? Recall that , and note that . Thus, we have 

 
indicating that  and  are not independent.

Let's think about the results of this example intuitively.  To say that  and  are independent means that knowing that one of the
events occurs does not affect the probability of the other event occurring.  In other words, knowing that the card drawn is a King
does not influence the probability of the card being a club.  The proportion of clubs in the entire deck of 52 is the same as the
proportion of clubs in just the collection of Kings: .  On the other hand,  and  are not independent (AKA dependent)
because knowing that the card drawn is club indicates that the card must be black, i.e., the probability that the card is black is 1. 
Alternately, knowing that the card drawn is black increases the probability that the card is a club, since the proportion of clubs in
the entire deck is , but the proportion of clubs in the collection of black cards is .

Independence for 3 or More Events
For collections of 3 or more events, there are two different types of independence.

Definition 

Let , where , be a collection of events.

1. The events are pairwise independent if every pair of events in the collection is independent.
2. The events are mutually independent if every sub-collection of events, say , satisfy the following:

Mutually independent is a stronger type of independence, since it implies pairwise independent. But pairwise independence does
NOT imply mutual independence, as the following example will demonstrate.

 

Example 

Consider again the context of Example 1.1.1, i.e., tossing a fair coin twice, and define the following events:

 

2.2.2

A B

P (A∩B) = P (A)P (B).

2.2.2
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We show that this collection of events -  - is pairwise independent, but NOT mutually independent. First, we note that the
individual probabilities of each event are :

 

 

 

 
 

Next, we look at the probabilities of all pairwise intersections to establish pairwise independence:

 

 

 

 
 

However, note that the three events do not have any outcomes in common, i.e., . Thus, we have 

 
and so the events are not mutually independent.

This page titled 2.2: Independent Events is shared under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.

A = first toss is heads

B= second toss is heads

C = exactly one head is recorded

A,B,C

0.5

P (A) = P ({hh,ht}) = 0.5

P (B) = P ({hh, th}) = 0.5

P (C) = P ({ht, th}) = 0.5

P (A∩B) = P (hh) = 0.25 = P (A)P (B)

P (A∩C) = P (ht) = 0.25 = P (A)P (C)

P (B∩C) = P (th) = 0.25 = P (B)P (C)

A∩B∩C =∅

P (A∩B∩C) = 0 ≠ P (A)P (B)P (C),
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3.1: Introduction to Random Variables
Now that we have formally defined probability and the underlying structure, we add another layer: random variables. Random
variables allow characterization of outcomes, so that we do not need to focus on each outcome specifically. We begin with the
formal definition.

Definition 

A random variable is a function from a sample space  to the real numbers . We denote random variables with capital letters,
e.g.,

Informally, a random variable assigns numbers to outcomes in the sample space. So, instead of focusing on the outcomes
themselves, we highlight a specific characteristic of the outcomes.

Example 

Consider again the context of Example 1.1.1, where we recorded the sequence of heads and tails in two tosses of a fair coin. The
sample space for this random experiment is given by 

 
Suppose we are only interested in tosses that result in heads. We can define a random variable  that tracks the number of heads
obtained in an outcome. So, if outcome  is obtained, then  will equal 2. Formally, we denote this as follows:

Since there are only four outcomes in , we can list the value of  for each outcome individually:

We can also write the above as follows:

The advantage to defining the random variable  in this context is that the two outcomes  and  are both assigned a value of ,
meaning we are not focused on the actual sequence of heads and tails that resulted in obtaining one heads.

In Example 3.1.1, note that the random variable we defined only equals one of three possible values: . This is an example of
what we call a discrete random variable. We will also encounter another type of random variable: continuous. The next definitions
make precise what we mean by these two types.

Definition 

A discrete random variable is a random variable that has only a finite or countably infinite (think integers or whole numbers)
number of possible values.

Definition 

A continuous random variable is a random variable with infinitely many possible values (think an interval of real numbers,
e.g., ).

3.1.1

Ω R

X : Ω →R.

3.1.1

Ω = {hh,ht, th, tt}.

X

hh X

X : Ω

ω

→R

↦  number of h's in ω

Ω X

inputs: Ω 

hh

th

ht

tt

 outputs: R⟶

function: X

2↦

X

1↦

X

1↦

X

0↦

X

X(hh) = 2, X(ht) =X(th) = 1, X(tt) = 0.

X ht th 1

0, 1, 2

3.1.2

3.1.3

[0, 1]
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In this chapter, we take a closer look at discrete random variables, then in Chapter 4 we consider continuous random variables.

This page titled 3.1: Introduction to Random Variables is shared under a not declared license and was authored, remixed, and/or curated by Kristin
Kuter.
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3.2: Probability Mass Functions (PMFs) and Cumulative Distribution Functions
(CDFs) for Discrete Random Variables
Since random variables simply assign values to outcomes in a sample space and we have defined probability measures on sample
spaces, we can also talk about probabilities for random variables. Specifically, we can compute the probability that a discrete
random variable equals a specific value (probability mass function) and the probability that a random variable is less than or equal
to a specific value (cumulative distribution function).

Probability Mass Functions (PMFs)
In the following example, we compute the probability that a discrete random variable equals a specific value.

Example 

Continuing in the context of Example 3.1.1, we compute the probability that the random variable  equals . There are two
outcomes that lead to  taking the value 1, namely  and . So, the probability that  is given by the probability of the
event , which is :

In Example 3.2.1, the probability that the random variable  equals 1, , is referred to as the probability mass function of 
 evaluated at 1. In other words, the specific value 1 of the random variable  is associated with the probability that  equals that

value, which we found to be 0.5. The process of assigning probabilities to specific values of a discrete random variable is what the
probability mass function is and the following definition formalizes this.

Definition 

The probability mass function (pmf) (or frequency function) of a discrete random variable  assigns probabilities to the
possible values of the random variable. More specifically, if  denote the possible values of a random variable , then
the probability mass function is denoted as  and we write 

Note that, in Equation ,  is shorthand for , which represents the probability of the event that the random
variable  equals .

As we can see in Definition 3.2.1, the probability mass function of a random variable  depends on the probability measure of the
underlying sample space . Thus, pmf's inherit some properties from the axioms of probability (Definition 1.2.1). In fact, in order
for a function to be a valid pmf it must satisfy the following properties.

Properties of Probability Mass Functions

Let  be a discrete random variable with possible values denoted . The probability mass function of ,
denoted , must satisfy the following:

1. 

2. , for all 

Furthermore, if  is a subset of the possible values of , then the probability that  takes a value in  is given by

Note that the first property of pmf's stated above follows from the first axiom of probability, namely that the probability of the
sample space equals : . The second property of pmf's follows from the second axiom of probability, which states that all
probabilities are non-negative.

3.2.1

X 1

X ht th X = 1

ht, th 0.5

P (X = 1) = P ({ht, th}) = = = 0.5
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{ω ∈ Ω | X(s) = }x

i

  

set of outcomes resulting in X=x

i

(3.2.1)

3.2.1 p( )x

i

P (X = )x

i

X x

i

X

Ω

X , , … , , …x

1

x

2

x

i

X

p

p( ) = p( ) +p( ) +⋯ = 1∑

x

i

x

i

x

1

x

2

p( ) ≥ 0x

i

x

i

A X X A

P (X ∈ A) = p( ).∑

∈Ax

i

x

i

(3.2.2)
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We now apply the formal definition of a pmf and verify the properties in a specific context.

Example 

Returning to Example 3.2.1, now using the notation of Definition 3.2.1, we found that the pmf for  at  is given by 

 
Similarly, we find the pmf for  at the other possible values of the random variable: 

 
Note that all the values of  are positive (second property of pmf's) and  (first property of pmf's). Also, we
can demonstrate the third property of pmf's (Equation ) by computing the probability that there is at least one heads, i.e., 

, which we could represent by setting  so that we want the probability that  takes a value in :

We can represent probability mass functions numerically with a table, graphically with a histogram, or analytically with a
formula. The following example demonstrates the numerical and graphical representations. In the next three sections, we will see
examples of pmf's defined analytically with a formula.

Example 

We represent the pmf we found in Example 3.2.2 in two ways below, numerically with a table on the left and graphically with a
histogram on the right.

In the histogram in Figure 1, note that we represent probabilities as areas of rectangles. More specifically, each rectangle in the
histogram has width  and height equal to the probability of the value of the random variable  that the rectangle is centered over.
For example, the leftmost rectangle in the histogram is centered at  and has height equal to , which is also the area of
the rectangle since the width is equal to . In this way, histograms provides a visualization of the distribution of the probabilities
assigned to the possible values of the random variable . This helps to explain where the common terminology of "probability
distribution" comes from when talking about random variables.

Cumulative Distribution Functions (CDFs)
There is one more important function related to random variables that we define next. This function is again related to the
probabilities of the random variable equaling specific values. It provides a shortcut for calculating many probabilities at once.

Definition 

The cumulative distribution function (cdf) of a random variable  is a function on the real numbers that is denoted as  and is
given by 

Before looking at an example of a cdf, we note a few things about the definition.

3.2.2

X 1

p(1) = P (X = 1) = P ({ht, th}) = 0.5.

X

p(0)

p(2)

= P (X = 0) = P ({tt}) = 0.25

= P (X = 2) = P ({hh}) = 0.25

p p(0) +p(1) +p(2) = 1

3.2.2

X ≥ 1 A = {1, 2} X A

P (X ≥ 1) = P (X ∈ A) = p( ) = p(1) +p(2) = 0.5 +0.25 = 0.75∑

∈Ax

i

x

i

3.2.3

1 X

0 p(0) = 0.25

1

X

3.2.2

X F

F (x) = P (X ≤ x), for any x ∈ R. (3.2.3)
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First of all, note that we did not specify the random variable  to be discrete. CDFs are also defined for continuous random
variables (see Chapter 4) in exactly the same way.

Second, the cdf of a random variable is defined for all real numbers, unlike the pmf of a discrete random variable, which we only
define for the possible values of the random variable. Implicit in the definition of a pmf is the assumption that it equals 0 for all real
numbers that are not possible values of the discrete random variable, which should make sense since the random variable will never
equal that value. However, cdf's, for both discrete and continuous random variables, are defined for all real numbers. In looking
more closely at Equation , we see that a cdf  considers an upper bound, , on the random variable , and assigns that
value  to the probability that the random variable  is less than or equal to that upper bound . This type of probability is referred
to as a cumulative probability, since it could be thought of as the probability accumulated by the random variable up to the
specified upper bound. With this interpretation, we can represent Equation  as follows:

In the case that  is a discrete random variable, with possible values denoted , the cdf of  can be calculated
using the third property of pmf's (Equation ), since, for a fixed , if we let the set  contain the possible values of  that
are less than or equal to , i.e., , then the cdf of  evaluated at  is given by

 

Example 

Continuing with Examples 3.2.2 and 3.2.3, we find the cdf for . First, we find  for the possible values of the random
variable, : 

 
Now, if , then the cdf , since the random variable  will never be negative.

If , then the cdf , since the only value of the random variable  that is less than or equal to such a value 
is . For example, consider . The probability that  is less than or equal to  is the same as the probability that ,
since  is the only possible value of  less than :

Similarly, we have the following: 

Exercise 

For this random variable , compute the following values of the cdf:

a. 
b. 
c. 
d. 
e. 
f. 

Answer
a. 

X

3.2.3 F x ∈ R X

x X x
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i

x
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X x

F (x) = P (X ≤ x) = P (X ∈ A) = p( ).∑

≤xx

i

x

i

3.2.4

X F (x)

x = 0, 1, 2

F (0)

F (1)

F (2)

= P (X ≤ 0) = P (X = 0) = 0.25

= P (X ≤ 1) = P (X = 0 or 1) = p(0) +p(1) = 0.75

= P (X ≤ 2) = P (X = 0 or 1 or 2) = p(0) +p(1) +p(2) = 1

x < 0 F (x) = 0 X

0 < x < 1 F (x) = 0.25 X x

0 x = 0.5 X 0.5 X = 0

0 X 0.5

F (0.5) = P (X ≤ 0.5) = P (X = 0) = 0.25.

F (x)

F (x)

= F (1) = 0.75, for 1 < x < 2

= F (2) = 1, for x > 2

3.2.1

X

F (−3)

F (0.1)

F (0.9)

F (1.4)

F (2.3)

F (18)

F (−3) = P (X ≤ −3) = 0
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b. 
c. 
d. 

e. 

f. 

To summarize Example 3.2.4, we write the cdf  as a piecewise function and Figure 2 below gives its graph: 

Figure 2: Graph of cdf in Example 3.2.4

Note that the cdf we found in Example 3.2.4 is a "step function", since its graph resembles a series of steps. This is the case for all
discrete random variables. Additionally, the value of the cdf for a discrete random variable will always "jump" at the possible
values of the random variable, and the size of the "jump" is given by the value of the pmf at that possible value of the random
variable. For example, the graph in Figure 2 "jumps" from  to  at , so the size of the "jump" is 
and note that . The pmf for any discrete random variable can be obtained from the cdf in this manner.

We end this section with a statement of the properties of cdf's.  The reader is encouraged to verify these properties hold for the cdf
derived in Example 3.2.4 and to provide an intuitive explanation (or formal explanation using the axioms of probability and the
properties of pmf's) for why these properties hold for cdf's in general.

Properties of Cumulative Distribution Functions

Let  be a random variable with cdf . Then  satisfies the following:

1.  is non-decreasing, i.e.,  may be constant, but otherwise it is increasing.
2.  and 

This page titled 3.2: Probability Mass Functions (PMFs) and Cumulative Distribution Functions (CDFs) for Discrete Random Variables is shared
under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.

F (0.1) = P (X ≤ 0.1) = P (X = 0) = 0.25

F (0.9) = P (X ≤ 0.9) = P (X = 0) = 0.25

F (1.4) = P (X ≤ 1.4) = p( ) = p(0)+p(1) = 0.25+0.5 = 0.75∑

≤1.4x

i

x

i

F (2.3) = P (X ≤ 2.3) = p( ) = p(0)+p(1)+p(2) = 0.25+0.5+0.25 = 1∑

≤2.3x
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x
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F (18) = P (X ≤ 18) = P (X ≤ 2) = 1
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3.3: Bernoulli and Binomial Distributions
In this section, we introduce two families of common discrete probability distributions, i.e., probability distributions for discrete
random variables. We refer to these as "families" of distributions because in each case we will define a probability mass function
by specifying an explicit formula, and that formula will incorporate a constant (or set of constants) that are referred to
as parameters. By specifying values for the parameter(s) in the pmf, we define a specific probability distribution for a specific
random variable. For each family of distributions introduced, we will list a set of defining characteristics that will help determine
when to use a certain distribution in a given context.

Bernoulli Distribution
Consider the following example.

Example 

Let  be an event in a sample space . Suppose we are only interested in whether or not the outcome of the underlying probability
experiment is in the specified event . To track this we can define an indicator random variable, denoted , given by 

In other words, the random variable  will equal 1 if the resulting outcome is in event , and  equals 0 if the outcome is not in 
. Thus,  is a discrete random variable. We can state the probability mass function of  in terms of the probability that the

resulting outcome is in event , i.e., the probability that event  occurs, : 

In Example 3.3.1, the random variable  is a Bernoulli random variable because its pmf has the form of the Bernoulli probability
distribution, which we define next.

Definition 

A random variable  has a Bernoulli distribution with parameter , where , if it has only two possible values,
typically denoted  and . The probability mass function (pmf) of  is given by 

The cumulative distribution function (cdf) of  is given by 

In Definition 3.3.1, note that the defining characteristic of the Bernoulli distribution is that it models random variables that have
only two possible values. As noted in the definition, the two possible values of a Bernoulli random variable are usually 0 and 1. In
the typical application of the Bernoulli distribution, a value of 1 indicates a "success" and a value of 0 indicates a "failure", where
"success" refers that the event or outcome of interest. The parameter  in the Bernoulli distribution is given by the probability of a
"success". In Example 3.3.1, we were interested in tracking whether or not event  occurred, and so that is what a "success" would
be, which occurs with probability given by the probability of . Thus, the value of the parameter  for the Bernoulli distribution in
Example 3.3.1 is given by .

Exercise 

Derive the general formula for the cdf of the Bernoulli distribution given in Equation .

Hint
First find  and .
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p(0)
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Answer

Recall that the only two values of a Bernoulli random variable  are 0 and 1. So, first, we find the cdf at those two values: 

 
Now for the other values, a Bernoulli random variable will never be negative, so , for . Also, a Bernoulli
random variable will always be less than or equal to 1, so , for . Lastly, if  is in between 0 and 1, then the
cdf is given by 

Binomial Distribution
To introduce the next family of distributions, we use our continuing example of tossing a coin, adding another toss.

Example 

Suppose we toss a coin three times and record the sequence of heads ( ) and tails ( ). Supposing that the coin is fair, each toss
results in heads with probability , and tails with the same probability of . Since the three tosses are mutually independent, the
probability assigned to any outcome is . More specifically, consider the outcome . We could write the probability of this
outcome as  to emphasize the fact that two heads and one tails occurred. Note that there are two other outcomes with
two heads and one tails:  and . Recall from Example 1.3.2 in Section 1.3, that we can count the number of outcomes with
two heads and one tails by counting the number of ways to select positions for the two heads to occur in a sequence of three tosses,
which is given by . In general, note that  counts the number of possible sequences with exactly  heads, for .

We generalize the above by defining the discrete random variable  to be the number of heads in an outcome. The possible values
of  are . Using the above facts, the pmf of  is given as follows: 

In the above, the fractions in orange are found by calculating the probabilities directly using equally likely outcomes (note that the
sample space  has 8 outcomes, see Example 1.3.1). In each line, the value of  is highlighted in red so that we can see the pattern
forming. For example, when , we see in the expression on the right-hand side of Equation  that "2" appears in the
binomial coefficient , which gives the number of outcomes resulting in the random variable equaling 2, and "2" also appears in
the exponent on the first , which gives the probability of two heads occurring.

The pattern exhibited by the random variable  in Example 3.3.2 is referred to as the binomial distribution, which we formalize in
the next definition.

Definition 

Suppose that  independent trials of the same probability experiment are performed, where each trial results in either a
"success" (with probability ), or a "failure" (with probability ). If the random variable  denotes the total number of
successes in the  trials, then  has a binomial distribution with parameters  and , which we write .
The probability mass function of  is given by 

X

F (0)

F (1)

= P (X ≤ 0) = P (X = 0) = p(0) = 1−p

= P (X ≤ 1) = P (X = 0 or 1) = p(0)+p(1) = (1−p)+p = 1

F (x) = 0 x < 0

F (x) = 1 x ≥ 1 x

F (x) = P (X ≤ x) = P (X = 0) = p(0) = 1−p),  for 0 ≤ x < 1.
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In Example 3.3.2, the independent trials are the three tosses of the coin, so in this case we have parameter . Furthermore, we
were interested in counting the number of heads occurring in the three tosses, so a "success" is getting a heads on a toss, which
occurs with probability 0.5 and so parameter . Thus, the random variable  in this example has a binomial
distribution and applying the formula for the binomial pmf given in Equation  when  we get the same expression on the
right-hand side of Equation :

In general, we can connect binomial random variables to Bernoulli random variables. If  is a binomial random variable, with
parameters  and , then it can be written as the sum of  independent Bernoulli random variables, . (Note: We will
formally define independence for random variables later, in Chapter 5.) Specifically, if we define the random variable , for 

, to be 1 when the  trial is a "success", and 0 when it is a "failure", then the sum 

 
gives the total number of success in  trials. This connection between the binomial and Bernoulli distribution will be useful in a
later section.

 
One of the main applications of the binomial distribution is to model population characteristics as in the following example.

Example 

Consider a group of 100 voters. If  denotes the probability that a voter will vote for a specific candidate, and we let random
variable  denote the number of voters in the group that will vote for that candidate, then  follows a binomial distribution with
parameters  and .

This page titled 3.3: Bernoulli and Binomial Distributions is shared under a not declared license and was authored, remixed, and/or curated by
Kristin Kuter.
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3.4: Expected Value of Discrete Random Variables
In this section, and the next, we look at various numerical characteristics of discrete random variables. These give us a way of
classifying and comparing random variables.

Expected Value of Discrete Random Variables
We begin with the formal definition.

Definition 

If  is a discrete random variable with possible values , and probability mass function , then the
expected value (or mean) of  is denoted  and given by

The expected value of  may also be denoted as  or simply  if the context is clear.

The expected value of a random variable has many interpretations. First, looking at the formula in Definition 3.4.1 for computing
expected value (Equation ), note that it is essentially a weighted average. Specifically, for a discrete random variable, the
expected value is computed by "weighting'', or multiplying, each value of the random variable, , by the probability that the
random variable takes that value, , and then summing over all possible values. This interpretation of the expected value as a
weighted average explains why it is also referred to as the mean of the random variable.

The expected value of a random variable is also interpreted as the long-run value of the random variable. In other words, if we
repeat the underlying random experiment several times and take the average of the values of the random variable corresponding to
the outcomes, we would get the expected value, approximately. (Note: This interpretation of expected value is similar to the
relative frequency approximation for probability discussed in Section 1.2.) Again, we see that the expected value is related to an
average value of the random variable. Given the interpretation of the expected value as an average, either "weighted'' or "long-run'',
the expected value is often referred to as a measure of center of the random variable.

Finally, the expected value of a random variable has a graphical interpretation. The expected value gives the center of mass of the
probability mass function, which the following example demonstrates.

Example 

Consider again the context of Example 1.1.1, where we recorded the sequence of heads and tails in two tosses of a fair coin. In
Example 3.1.1 we defined the discrete random variable  to denote the number of heads obtained. In Example 3.2.2 we found the
pmf of . We now apply Equation  from Definition 3.4.1 and compute the expected value of :

 
Thus, we expect that the number of heads obtained in two tosses of a fair coin will be 1 in the long-run or on average. Figure 1
demonstrates the graphical representation of the expected value as the center of mass of the probability mass function.

Figure 1: Histogram of . The red arrow represents the center of mass, or the expected value of 
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Example 

Suppose we toss a fair coin three times and define the random variable  to be our winnings on a single play of a game where

we win $  if the first heads is on the  toss, for ,
and we lose $1 if we get no heads in all three tosses.

Then  is a discrete random variable, with possible values , and pmf given by the following table:

Applying Definition 3.4.1, we find 

 
Thus, the expected winnings for a single play of the game is $1.25. In other words, if we played the game multiple times, we expect
the average winnings to be $1.25.

For many of the common probability distributions, the expected value is given by a parameter of the distribution. The expected
value may not be exactly equal to a parameter of the probability distribution, but rather it may be a function of the parameters. The
following table gives the expected value for each of the common discrete distributions, including the Bernoulli and binomial
distributions we introduced previously.

Expected Values for Discrete
Distributions

Distribution Expected Value

Bernoulli( )

binomial( )

hypergeometric( )

geometric( )

negative binomial( )

Poisson( )

Expected Value of Functions of Random Variables
In many applications, we may not be interested in the value of a random variable itself, but rather in a function applied to the
random variable or a collection of random variables. For example, we may be interested in the value of . The following
theorems, which we state without proof, demonstrate how to calculate the expected value of functions of random variables.
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Theorem 

Let  be a random variable and let  be a real-valued function. Define the random variable .

If  is a discrete random variable with possible values , and probability mass function , then the
expected value of  is given by

To put it simply, Theorem 3.4.1 states that to find the expected value of a function of a random variable, just apply the function to
the possible values of the random variable in the definition of expected value. Before stating an important special case of Theorem
3.4.1, a word of caution regarding order of operations. Note that, in general, 

 
For example, , in general. However, as the next theorem states, there are exceptions to Equation .

Special Case of Theorem 3.4.1

Let  be a random variable. If  is a linear function, i.e., , then 

The above special case is referred to as the linearity of expected value, which implies the following properties of the expected
value.

Linearity of Expected Value

Let  be a random variable,  constants, and  real-valued functions. Then expectiation  satisfies the
following:

1. The expected value of a constant is constant:

2. Constants can be factored out of expected values:

3. The expected value of a sum is equal to the sum of expected values:

This page titled 3.4: Expected Value of Discrete Random Variables is shared under a not declared license and was authored, remixed, and/or
curated by Kristin Kuter.
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3.5: Variance of Discrete Random Variables
We now look at our second numerical characteristic associated to random variables.

Definition 

The variance of a random variable  is given by 

 
where  denotes the expected value of . The standard deviation of  is given by 

In words, the variance of a random variable is the average of the squared deviations of the random variable from its mean (expected
value). Notice that the variance of a random variable will result in a number with units squared, but the standard deviation will have
the same units as the random variable. Thus, the standard deviation is easier to interpret, which is why we make a point to define it.

The variance and standard deviation give us a measure of spread for random variables. The standard deviation is interpreted as a
measure of how "spread out'' the possible values of  are with respect to the mean of , .

Example 

Consider the two random variables  and , whose probability mass functions are given by the histograms in Figure 1 below.
Note that  and  have the same mean. However, in looking at the histograms, we see that the possible values of  are more
"spread out" from the mean, indicating that the variance (and standard deviation) of  is larger.

Figure 1: Histograms for random variables  and , both with same expected value different variance.

Theorem 3.4.1 actually tells us how to compute variance, since it is given by finding the expected value of a function applied to the
random variable. First, if  is a discrete random variable with possible values , and probability mass function 

, then the variance of  is given by 

3.5.1
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The above formula follows directly from Definition 3.5.1. However, there is an alternate formula for calculating variance, given by
the following theorem, that is often easier to use.

Theorem 

Let  be any random variable, with mean . Then the variance of  is 

Proof

By the definition of variance (Definition 3.5.1) and the linearity of expectation, we have the following: 

Example 

Continuing in the context of Example 3.4.1, we calculate the variance and standard deviation of the random variable  denoting
the number of heads obtained in two tosses of a fair coin. Using the alternate formula for variance, we need to first calculate 

, for which we use Theorem 3.4.1: 

 
In Example 3.4.1, we found that . Thus, we find 

Exercise 

Consider the context of Example 3.4.2, where we defined the random variable  to be our winnings on a single play of game
involving flipping a fair coin three times. We found that . Now find the variance and standard deviation of .

Answer

First, find : 

Now, we use the alternate formula for calculating variance: 

Given that the variance of a random variable is defined to be the expected value of squared deviations from the mean, variance is
not linear as expected value is. We do have the following useful property of variance though.
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Theorem 

Let  be a random variable, and  be constants. Then the following holds: 

Exercise 

Prove Theorem 3.5.2.

Answer

First, let  and note that by the linearity of expectation we have 

 
Now, we use the alternate formula for variance given in Theorem 3.5.1 to prove the result: 

Theorem 3.5.2 easily follows from a little algebraic modification. Note that the " '' disappears in the formula. There is an
intuitive reason for this. Namely, the " '' corresponds to a horizontal shift of the probability mass function for the random
variable. Such a transformation to this function is not going to affect the spread, i.e., the variance will not change.

As with expected values, for many of the common probability distributions, the variance is given by a parameter or a function of
the parameters for the distribution.

Variance for Discrete Distributions

Distribution Expected Value

Bernoulli( )

binomial( )

hypergeometric( )

geometric( )

negative binomial( )

Poisson( )
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4.1: Probability Density Functions (PDFs) and Cumulative Distribution Functions
(CDFs) for Continuous Random Variables

Probability Density Functions (PDFs)

Recall that continuous random variables have uncountably many possible values (think of intervals of real numbers). Just as for
discrete random variables, we can talk about probabilities for continuous random variables using density functions.

Definition 

The probability density function (pdf), denoted , of a continuous random variable  satisfies the following:

1. , for all 
2.  is piecewise continuous

3. 

4. 

The first three conditions in the definition state the properties necessary for a function to be a valid pdf for a continuous random
variable. The fourth condition tells us how to use a pdf to calculate probabilities for continuous random variables, which are given
by integrals the continuous analog to sums.

Example 

Let the random variable  denote the time a person waits for an elevator to arrive. Suppose the longest one would need to wait for
the elevator is 2 minutes, so that the possible values of  (in minutes) are given by the interval . A possible pdf for  is given
by 

 
The graph of  is given below, and we verify that  satisfies the first three conditions in Definition 4.1.1:

1. From the graph, it is clear that , for all .
2. Since there are no holes, jumps, asymptotes, we see that  is (piecewise) continuous.
3. Finally we compute: 

4.1.1

f X

f(x) ≥ 0 x ∈ R

f
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f f

f(x) ≥ 0 x ∈ R
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Figure 1: Graph of pdf for , 

So, if we wish to calculate the probability that a person waits less than 30 seconds (or 0.5 minutes) for the elevator to arrive, then
we calculate the following probability using the pdf and the fourth property in Definition 4.1.1: 

Note that, unlike discrete random variables, continuous random variables have zero point probabilities, i.e., the probability that a
continuous random variable equals a single value is always given by 0. Formally, this follows from properties of integrals: 

 
Informally, if we realize that probability for a continuous random variable is given by areas under pdf's, then, since there is no
area in a line, there is no probability assigned to a random variable taking on a single value. This does not mean that a continuous
random variable will never equal a single value, only that we do not assign any probability to single values for the random variable.
For this reason, we only talk about the probability of a continuous random variable taking a value in an INTERVAL, not at a point.
And whether or not the endpoints of the interval are included does not affect the probability. In fact, the following probabilities are
all equal: 

Cumulative Distribution Functions (CDFs)

Recall Definition 3.2.2, the definition of the cdf, which applies to both discrete and continuous random variables. For continuous
random variables we can further specify how to calculate the cdf with a formula as follows. Let  have pdf , then the cdf  is
given by 

 
In other words, the cdf for a continuous random variable is found by integrating the pdf. Note that the Fundamental Theorem of
Calculus implies that the pdf of a continuous random variable can be found by differentiating the cdf. This relationship between
the pdf and cdf for a continuous random variable is incredibly useful.

X f(x)

P (0 ≤X ≤ 0.5) = f(x)dx = x dx = 0.125∫

0

0.5

∫

0

0.5

P (X = a) = P (a≤X ≤ a) = f(x)dx = 0.∫

a

a

P (a≤X ≤ b) = P (a<X < b) = P (a≤X < b) = P (a<X ≤ b) = f(x)dx∫

a

b

X f F

F (x) = P (X ≤ x) = f(t)dt, for x ∈ R.∫

−∞

x
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Relationship between PDF and CDF for a Continuous Random Variable

Let  be a continuous random variable with pdf  and cdf .

By definition, the cdf is found by integrating the pdf: 

By the Fundamental Theorem of Calculus, the pdf can be found by differentiating the cdf: 

Example 

Continuing in the context of Example 4.1.1, we find the corresponding cdf. First, let's find the cdf at two possible values of , 
 and : 

 
Now we find  more generally, working over the intervals that  has different formulas: 

 
Putting this altogether, we write  as a piecewise function and Figure 2 gives its graph: 
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Figure 2: Graph of cdf in Example 4.1.2

Recall that the graph of the cdf for a discrete random variable is always a step function. Looking at Figure 2 above, we note that the
cdf for a continuous random variable is always a continuous function.

Percentiles of a Distribution

Definition 

The (100p)th percentile ( ) of a probability distribution with cdf  is the value  such that

To find the percentile  of a continuous random variable, which is a possible value of the random variable, we are specifying a
cumulative probability  and solving the following equation for : 

Special Cases: There are a few values of  for which the corresponding percentile has a special name.

Median or  percentile: , separates probability (area under pdf) into two equal halves
1st Quartile or  percentile: , separates  quarter (25%) of probability (area) from the rest
3rd Quartile or  percentile: , separates  quarter (75%) of probability (area) from the rest

Example 

Continuing in the context of Example 4.1.2, we find the median and quartiles.

median: find , such that  (from graph in Figure 1)
1st quartile: find , such that . For this, we use the formula and the graph of the cdf in Figure 2: 

3rd quartile: find , such that . Again, use the graph of the cdf: 

This page titled 4.1: Probability Density Functions (PDFs) and Cumulative Distribution Functions (CDFs) for Continuous Random Variables is
shared under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.
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4.2: Expected Value and Variance of Continuous Random Variables
We now consider the expected value and variance for continuous random variables. Note that the interpretation of each is the same
as in the discrete setting, but we now have a different method of calculating them in the continuous setting.

Definition 

If  is a continuous random variable with pdf , then the expected value (or mean) of  is given by

The formula for the expected value of a continuous random variable is the continuous analog of the expected value of a discrete
random variable, where instead of summing over all possible values we integrate (recall Sections 3.4 & 3.5).

For the variance of a continuous random variable, the definition is the same and we can still use the alternative formula given by
Theorem 3.5.1, only we now integrate to calculate the value: 

Example 

Consider again the context of Example 4.1.1, where we defined the continuous random variable  to denote the time a person
waits for an elevator to arrive. The pdf of  was given by 

 
Applying Definition 4.2.1, we compute the expected value of : 

 
Thus, we expect a person will wait 1 minute for the elevator on average. Figure 1 demonstrates the graphical representation of the
expected value as the center of mass of the pdf.

Figure 1: The red arrow represents the center of mass, or the expected value, of .

Now we calculate the variance and standard deviation of , by first finding the expected value of . 
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Thus, we have 

This page titled 4.2: Expected Value and Variance of Continuous Random Variables is shared under a not declared license and was authored,
remixed, and/or curated by Kristin Kuter.
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4.3: Uniform Distributions

Definition 

A random variable  has a uniform distribution on interval , write , if it has pdf given by 

The uniform distribution is also sometimes referred to as the box distribution, since the graph of its pdf looks like a box. See
Figure 1 below.

Figure 1: Graph of the pdf for a uniform distribution on interval 

Exercise 

Verify that the uniform pdf is a valid pdf, i.e., show that it satisfies the first three conditions of Definition 4.1.1.

Answer
1. In looking either at the formula in Definition 4.3.1 or the graph in Figure 1, we can see that the uniform pdf is always

non-negative, i.e., , for all .
2. Given that the uniform pdf is a piecewise constant function, it is also piecewise continuous.
3. Finally, we need to verify that the area under the uniform pdf is equal to 1. This is quickly seen from the graph in Figure

1, since we calculate the area of rectangle with width  and height . Thus, the area is 

A typical application of the uniform distribution is to model randomly generated numbers. In other words, it provides the
probability distribution for a random variable representing a randomly chosen number between numbers  and .

The uniform distribution assigns equal probabilities to intervals of equal lengths, since it is a constant function, on the interval it is
non-zero . This is the continuous analog to equally likely outcomes in the discrete setting.

We close the section by finding the expected value of the uniform distribution.

Example 

If  has a uniform distribution on the interval , then we apply Definition 4.2.1 and compute the expected value of : 

4.3.1
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f(x) ={

,

1

b−a

0,
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otherwise

[a, b]

4.3.1

f(x) ≥ 0 x ∈ R

(b−a) 1/(b−a)

(b−a)× = 1.

1

(b−a)

a b

[a, b]

4.3.1
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Thus, the expected value of the uniform  distribution is given by the average of the parameters  and , or the midpoint of the
interval . This is readily apparent when looking at a graph of the pdf in Figure 1 and remembering the interpretation of
expected value as the center of mass. Since the pdf is constant over , the center of mass is simply given by the midpoint.

This page titled 4.3: Uniform Distributions is shared under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.
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4.4: Normal Distributions

Definition 

A random variable  has a normal distribution, with parameters  and , write , if it has pdf given by 

 
where  and .

If a continuous random variable  has a normal distribution with parameters  and , then  and .
These facts can be derived using Definition 4.2.1; however, the integral calculations require many tricks. Note that the normal case
is why the notation  is often used for the expected value, and  is used for the variance. So,  gives the center of the normal pdf,
and its graph is symmetric about , while  determines how spread out the graph is. Figure 1 below shows the graph of two
different normal pdf's.

Example 

Suppose  and . So,  and  are both normally distributed random variables with the
same mean, but  has a larger standard deviation. Given our interpretation of standard deviation, this implies that the possible
values of  are more "spread out'' from the mean. This is easily seen by looking at the graphs of the pdf's corresponding to 
and  given in Figure 1.

Figure 1: Graph of normal pdf's:  in blue,  in red

The normal distribution is arguably the most important probably distribution. It is used to model the distribution of population
characteristics such as weight, height, and IQ. The pdf is terribly tricky to work with, in fact integrals involving the normal pdf
cannot be solved exactly, but rather require numerical methods to approximate. Because of this, there is no closed form for the
corresponding cdf of a normal distribution. Given the importance of the normal distribution though, many software programs have
built in normal probability calculators. There are also many useful properties of the normal distribution that make it easy to work
with. We state these properties without proof below. Note that we also include the connection to expected value and variance given
by the parameters.

Properties of the Normal Distribution
1. If , then  also follows a normal distribution with parameters  and .

2. If , then  follows the standard normal distribution, i.e., the normal distribution with parameters 

 and .

4.4.1
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The first property says that any linear transformation of a normally distributed random variable is also normally distributed. The
second property is a special case of the first, since we can re-write the transformation on  as 

 
This transformation, subtracting the mean and dividing by the standard deviation, is referred to as standardizing , since the
resulting random variable will always have the standard normal distribution with mean 0 and standard deviation 1. In this way,
standardizing a normal random variable has the effect of removing the units. Before the prevalence of calculators and computer
software capable of calculating normal probabilities, people would apply the standardizing transformation to the normal random
variable and use a table of probabilities for the standard normal distribution.

This page titled 4.4: Normal Distributions is shared under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.
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CHAPTER OVERVIEW

5: Multivariate Random Variables
5.1: Joint Distributions of Discrete Random Variables
5.2: Joint Distributions of Continuous Random Variables
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5.1: Joint Distributions of Discrete Random Variables
In this chapter we consider two or more random variables defined on the same sample space and discuss how to model the
probability distribution of the random variables jointly. We will begin with the discrete case by looking at the joint probability mass
function for two discrete random variables. In the following section, we will consider continuous random variables.

Definition 

If discrete random variables  and  are defined on the same sample space , then their joint probability mass function (joint
pmf) is given by 

 
where  is a pair of possible values for the pair of random variables , and  satisfies the following conditions:

Note that conditions #1 and #2 in Definition 5.1.1 are required for  to be a valid joint pmf, while the third condition tells us
how to use the joint pmf to find probabilities for the pair of random variables .

In the discrete case, we can obtain the joint cumulative distribution function (joint cdf) of  and  by summing the joint pmf: 

 
where  denotes possible values of  and  denotes possible values of . From the joint pmf, we can also obtain the individual
probability distributions of  and  separately as shown in the next definition.

Definition 

Suppose that discrete random variables  and  have joint pmf . Let  denote the possible values of ,
and let  denote the possible values of . The marginal probability mass functions (marginal pmf's) of 
and  are respectively given by the following: 

 

Link to Video: Overview of Definitions 5.1.1 & 5.1.2

 

Example 

Consider again the probability experiment of Example 3.3.2, where we toss a fair coin three times and record the sequence of heads
 and tails . Again, we let random variable  denote the number of heads obtained. We also let random variable  denote the

winnings earned in a single play of a game with the following rules, based on the outcomes of the probability experiment (this is
the same as Example 3.4.2):

player wins $1 if first  occurs on the first toss
player wins $2 if first  occurs on the second toss

5.1.1

X Y Ω

p(x, y) = P (X = x  and  Y = y),
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(x,y)

P ((X,Y ) ∈ A)) = p(x, y)∑∑

(x,y)∈A

p(x, y)

(X,Y )

X Y

F (x, y) = P (X ≤ x and Y ≤ y) = p( , ),∑

≤xx

i

∑

≤yy

j

x

i

y

j

x

i

X y

j

Y

X Y

5.1.2

X Y p(x, y) , , … , , …x

1

x

2

x

i

X

, , … , , …y

1

y

2

y

j

Y X

Y

(x)p

X

(y)p

Y

= p(x, ) (fix a value of X and sum over possible values of Y )∑

j

y

j

= p( , y) (fix a value of Y  and sum over possible values of X)∑

i

x

i

5.1.1

(h) (t) X Y

h

h

https://libretexts.org/
https://stats.libretexts.org/@go/page/12773?pdf
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/DSCI_500B_Essential_Probability_Theory_for_Data_Science_(Kuter)/05%3A_Multivariate_Random_Variables/5.01%3A_Joint_Distributions_of_Discrete_Random_Variables
http://sites.saintmarys.edu/~kjehring/M345/Week%2010/Week10_1/
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/DSCI_500B_Essential_Probability_Theory_for_Data_Science_(Kuter)/03%3A_Discrete_Random_Variables/3.03%3A_Bernoulli_and_Binomial_Distributions#Example_.5C(.5CPageIndex.7B2.7D.5C)
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/DSCI_500B_Essential_Probability_Theory_for_Data_Science_(Kuter)/03%3A_Discrete_Random_Variables/3.04%3A_Expected_Value_of_Discrete_Random_Variables#Example_.5C(.5CPageIndex.7B2.7D.5C)


5.1.2 https://stats.libretexts.org/@go/page/12773

player wins $3 if first  occurs on the third toss
player loses $1 if no  occur

Note that the possible values of  are , and the possible values of  are . We represent the joint
pmf using a table:

Table 1: joint pmf of  and 

0 1 2 3

-1 1/8 0 0 0

1 0 1/8 2/8 1/8

2 0 1/8 1/8 0

3 0 1/8 0 0

The values in Table 1 give the values of . For example, consider : 

 
Since the outcomes are equally likely, the values of  are found by counting the number of outcomes in the sample space 

 that result in the specified values of the random variables, and then dividing by , the total number of outcomes in . The
sample space is given below, color coded to help explain the values of : 

Given the joint pmf, we can now find the marginal pmf's. Note that the marginal pmf for  is found by computing sums of the
columns in Table 1, and the marginal pmf for  corresponds to the row sums. (Note that we found the pmf for  in Example
3.3.2 as well, it is a binomial random variable. We also found the pmf for  in Example 3.4.2.)

Table 2: marginal pmf's
for  and 

0 1/8 -1 1/8

1 3/8 1 1/2

2 3/8 2 1/4

3 1/8 3 1/8

Finally, we can find the joint cdf for  and  by summing over values of the joint frequency function. For example, consider 
: 

 
Again, we can represent the joint cdf using a table:

h

h
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X Y
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Table 3: joint cdf of  and 

0 1 2 3

-1 1/8 1/8 1/8 1/8

1 1/8 1/4 1/2 5/8

2 1/8 3/8 3/4 7/8

3 1/8 1/2 7/8 1

 

Link to Video: Walkthrough of Example 5.1.1

 

Expectations of Functions of Jointly Distributed Discrete Random Variables

We now look at taking the expectation of jointly distributed discrete random variables. Because expected values are defined for a
single quantity, we will actually define the expected value of a combination of the pair of random variables, i.e., we look at the
expected value of a function applied to .

Theorem 

Suppose that  and  are jointly distributed discrete random variables with joint pmf .

If  is a function of these two random variables, then its expected value is given by the following: 

Example 

Consider again the discrete random variables we defined in Example 5.1.1 with joint pmf given in Table 1. We will find the
expected value of three different functions applied to .

1. First, we define , and compute the expected value of : 

 
 

2. Next, we define , and compute the expected value of : 

X Y

F (x, y) X

Y
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5.1.1

X Y p(x, y)

g(X,Y )
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Recall that , and that the expected value of a binomial random variable is given by . Thus,
we can verify the expected value of  that we calculated above using Theorem 5.1.1 using this fact for binomial distributions: 

. 
 

3. Lastly, we define , and calculate the expected value of : 

 
Again, we can verify this result by reviewing the calculations done in Example 3.4.2.

Link to Video: Walkthrough of Example 5.1.2

 

Independent Random Variables
In some cases, the probability distribution of one random variable will not be affected by the distribution of another random
variable defined on the same sample space. In those cases, the joint distribution functions have a very simple form, and we refer to
the random variables as independent.

Definition 

Discrete random variables  are independent if the joint pmf factors into a product of the marginal pmf's: 

 
It is equivalent to check that this condition holds for the cumulative distribution functions.

Recall the definition of independent events (Definition 2.2.2):  and  are independent events if . This
is the basis for the definition of independent random variables because we can write the pmf's in Equation  in terms of events
as follows: 
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In the above, we use the idea that if  and  are independent, then the event that  takes on a given value  is independent of the
event that  takes the value .

Example 

Consider yet again the discrete random variables defined in Example 5.1.1. According to the definition,  and  are independent
if 

 
for all pairs . Recall that the joint pmf for  is given in Table 1 and that the marginal pmf's for  and  are given in
Table 2. Note that, for , we have the following 

 
Thus,  and  are not independent, or in other words,  and  are dependent. This should make sense given the definition of 
and . The winnings earned depend on the number of heads obtained. So the probabilities assigned to the values of  will be
affected by the values of .

We also have the following very useful theorem about the expected value of a product of independent random variables, which is
simply given by the product of the expected values for the individual random variables.

Theorem 

If  and  are independent random variables, then .

Proof

Assume  and  are independent random variables. If we let  denote the joint pmf of , then, by Definition
5.1.3, , for all pairs . Using this fact and Theorem 5.1.1, we have 

Theorem 5.1.2 can be used to show that two random variables are not independent: if , then  and 
 cannot be independent. However, beware using Theorem 5.1.2 to show that random variables are independent. Note that

Theorem 5.1.2 assumes that  and  are independent and then the property about the expected value follows. The other direction
does not hold. In other words, if , then  and  may or may not be independent.

 

Link to Video: Independent Random Variables

This page titled 5.1: Joint Distributions of Discrete Random Variables is shared under a not declared license and was authored, remixed, and/or
curated by Kristin Kuter.
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5.2: Joint Distributions of Continuous Random Variables
Having considered the discrete case, we now look at joint distributions for continuous random variables.

Definition 

If continuous random variables  and  are defined on the same sample space , then their joint probability density
function (joint pdf) is a piecewise continuous function, denoted , that satisfies the following.

1. , for all 

2. 

3. , for any 

The first two conditions in Definition 5.2.1 provide the requirements for a function to be a valid joint pdf. The third condition
indicates how to use a joint pdf to calculate probabilities. As an example of applying the third condition in Definition 5.2.1, the
joint cdf for continuous random variables  and  is obtained by integrating the joint density function over a set  of the form 

 
where  and  are constants. Specifically, if  is given as above, then the joint cdf of  and , at the point , is given by 

 
Note that probabilities for continuous jointly distributed random variables are now volumes instead of areas as in the case of a
single continuous random variable.

As in the discrete case, we can also obtain the individual, maginal pdf's of  and  from the joint pdf.

Definition 

Suppose that continuous random variables  and  have joint density function . The marginal pdf's of  and  are
respectively given by the following. 

 

Link to Video: Overview of Definitions 5.2.1 & 5.2.2

 

Example 

Suppose a radioactive particle is contained in a unit square. We can define random variables  and  to denote the - and -
coordinates of the particle's location in the unit square, with the bottom left corner placed at the origin. Radioactive particles follow
completely random behavior, meaning that the particle's location should be uniformly distributed over the unit square. This implies
that the joint density function of  and  should be constant over the unit square, which we can write as 
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where  is some unknown constant. We can find the value of  by using the first condition in Definition 5.2.1 and solving the
following: 

We can now use the joint pdf of  and  to compute probabilities that the particle is in some specific region of the unit square. For
example, consider the region 

 
which is graphed in Figure 1 below.

If we want the probability that the particle's location is in the lower right corner of the unit square that intersects with the region ,
then we integrate the joint density function over that portion of  in the unit square, which gives the following probability: 

 
 
Lastly, we apply Definition 5.2.2 to find the marginal pdf's of  and . 

 
Note that both  and  are individually uniform random variables, each over the interval . This should not be too surprising.
Given that the particle's location was uniformly distributed over the unit square, we should expect that the individual coordinates
would also be uniformly distributed over the unit intervals.
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Example 

At a particular gas station, gasoline is stocked in a bulk tank each week. Let random variable  denote the proportion of the tank's
capacity that is stocked in a given week, and let  denote the proportion of the tank's capacity that is sold in the same week. Note
that the gas station cannot sell more than what was stocked in a given week, which implies that the value of  cannot exceed the
value of . A possible joint pdf of  and  is given by 

 
Note that this function is only nonzero over the triangular region given by , which is graphed in Figure 2
below:

Figure 2: Region over which joint pdf  is nonzero.

 

Link to Video: Marginal PDFs for Example 5.2.2

 

We find the joint cdf of  and  at the point : 

 
Thus, there is a 10.65% chance that less than half the tank is stocked and less than a third of the tank is sold in a given week. Note
that in finding the above integral, we look at where the region given by  intersects the region over
which the joint pdf is nonzero, i.e., the region graphed in Figure 2. This tells us what the limits of integration are in the double
integral. Figure 3 below is a graph of the intersection made on desmos.com: 
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Figure 3: Intersection of  with the region over which joint pdf  is nonzero.

Next, we find the probability that the amount of gas sold is less than half the amount that is stocked in a given week. In other
words, we find . In order to find this probability, we need to find the region over which we will integrate the joint
pdf. To do this, look for the intersection of the region given by  with the region in Figure 2, which is graphed in
Figure 4 below:

Figure 4: Intersection of  with the region over which joint pdf  is nonzero.

The calculation is as follows: 

{(x, y) | x ≤ 1/2, y ≤ 1/3} f(x, y)
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Thus, there is a 50% chance that the amount of gas sold in a given week is less than half of the gas stocked.

Independent Random Variables
We can also define independent random variables in the continuous case, just as we did for discrete random variables.

Definition 

Continuous random variables  are independent if the joint pdf factors into a product of the marginal pdf's: 

 
It is equivalent to check that this condition holds for the cumulative distribution functions.

Example 

Consider the continuous random variables defined in Example 5.2.1, where the  and  gave the location of a radioactive particle.
We will show that  and  are independent and then verify that Theorem 5.1.2 also applies in the continuous setting.

Recall that we found the marginal pdf's to be the following: 

 
So, for  in the unit square, i.e.,  and , we have 

 
and outside the unit square, at least one of marginal pdf's will be , so 

 
We have thus shown that , for all , and so by Definition 5.2.3,  and  are independent.

Now let's look at the expected value of the product of  and : 

Note that both  and  are uniform on the interval . Therefore, their expected values are both 1/2, the midpoint of .
Putting this all together, we have 

 
which is the conclusion to Theorem 5.1.2.
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Link to Video: Independent Continuous Random Variables

This page titled 5.2: Joint Distributions of Continuous Random Variables is shared under a not declared license and was authored, remixed, and/or
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6.1: Functions of Normal Random Variables
In addition to considering the probability distributions of random variables simultaneously using joint distribution functions, there
is also occasion to consider the probability distribution of functions applied to random variables. In this section we consider the
special case of applying functions to normally distributed random variables, which will be very important in the following section.
We begin by deriving the probability distribution of the square of a standard normal random variable.

Before we jump into the example, note that one approach to finding the probability distribution of a function of a random variable
relies on the relationship between the pdf and cdf for a continuous random variable: 

 
It is often easier to find the cdf of a function of a continuous random variable, and then use the above relationship to derive the pdf.

Example 

Let  be a standard normal random variable, i.e., .  We find the pdf of .

Let  denote the cdf of , i.e., .  We first find the cdf of  in terms of  (recall that there is no
closed form expression for ): 

 
Note that if , then , since it is not possible for  to be negative. In other words, the possible values of 

 are .

Next, we take the derivative of the cdf of  to find its pdf. Before doing so, we note that if  is the cdf for , then its derivative is
the pdf for , which is denoted . Since  is a standard normal random variable, we know that 

 
Using this, we now find the pdf of : 

In summary, if , where , then the pdf for  is given by 

 
Note that the pdf for  is a gamma pdf with . This is also referred to as the chi-square distribution, denoted . See
below for a video walkthrough of this example.
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There is another approach to finding the probability distribution of functions of random variables, which involves moment-
generating functions, which we now define.

Definition 

The moment-generating function (mgf) of a random variable  is given by 

The mgf of a random variable has many theoretical properties that are very useful in the study of probability theory. One of those
properties is the fact that when the derivative of the mgf is evaluated for , the result is equal to the expected value of the
random variable: 

 
This result can be extended to higher order derivatives producing higher order moments, which we will not go into. Instead, we
state the following properties that are useful in the context of determining the distribution of a function of random variables. The
first result below indicates that mgf's are unique in the sense that if two random variables have the same mgf, then they necessarily
have the same probability distribution. The next two properties provide ways of manipulating mgf's in order to find the mgf of a
function of a random variable.

 

Theorem 

The mgf  of random variable  uniquely determines the probability distribution of . In other words, if random
variables  and  have the same mgf, , then  and  have the same probability distribution.

 

Theorem 

Let  be a random variable with mgf , and let  be constants. If random variable , then the mgf of  is
given by 

 

Theorem 

If  are independent random variables with mgf's , respectively, then the mgf of random
variable  is given by 

 

Theorem 6.1.1 states that mgf's are unique, and Theorems 6.1.2 & 6.1.3 combined provide a process for finding the mgf of a linear
combination of random variables.  All three theorems provide a Moment-Generating-Function technique for finding the probability
distribution of a function of random variable(s), which we demonstrate with the following examples involving the normal
distribution.

Example 

Suppose that .  It can be shown that the mgf of  is given by 
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Using this mgf formula, we can show that  has the standard normal distribution.

1. Note that if , then the mgf is 

2. Also note that , so by Theorem 6.1.2, 

Thus, we have shown that  and  have the same mgf, which by Theorem 6.1.1, says that they have the same distribution.

Now suppose  are each independent normally distributed with means  and sd's , respectively.

Let's find the probability distribution of the sum  (  constants) using the mgf technique: 
 
By Theorem 6.1.2, we have 

and then by Theorem 6.1.3 we get the following: 

 
Thus, by Theorem 6.1.1, .

 

The second part of Example 6.1.2 proved the following result, which we will use in the next section.

 

Sums of Independent Normal Random Variables

If  are mutually independent normal random variables with means  and standard deviations ,
respectively, then the linear combination 
   

 
is normally distributed with the following mean and variance: 
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6.2: Sample Mean
Suppose we are interested in understanding the mean of some population of values, but do not have full information about the
entire population.  One approach to solving this problem is to obtain a random sample of a subset of values from the population and
consider the mean of the sample.  The mean of the sample is referred to as the sample mean.  Since the sample is randomly
selected, the sample mean may be thought of as a function applied to a collection of random variables.

Example 

Suppose we want to know the average SAT math score for girls in Indiana.  We could randomly select seniors from high schools in
the South Bend School Corporation as a sample from all IN girls, and use the mean SAT math score for the South Bend girls as an
estimate of the overall mean for IN girls.

 
The mean of SB girls depends on which sample we randomly select, therefore the sample mean is a random variable. 
 

The probability distribution of the sample mean is referred to as the sampling distribution of the sample mean.  The following
result, which is a corollary to Sums of Independent Normal Random Variables, indicates how to find the sampling distribution when
the population of values follows a normal distribution.

Corollary 

If  represent the values of a random sample from a  population, then the sample mean 
   

 
is normally distributed with mean  and standard deviation .  In other words, we can write 
   

Proof
1. Sample observations are independent when randomly selected. Furthermore, each observation has same distribution as

population.  represent the observations in the random sample  are independent and each 

2.  is the sum of independent normally distributed random variables:

3. By Sums of Independent Normal Random Variables: , where
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So .

Example 

Suppose that SAT math scores for girls in Indiana are assumed to be .

Find and compare the sampling distributions for the sample means from a sample of size  and a sample of size . 
 

For  sample mean 

For  sample mean 

Let's find the probability that each sample mean will be within 10 points of actual population mean ( ):

Note that the "normalcdf" in the above equations refers to the built-in function on many graphing calculators used to evaluate
probabilities for the normal distribution. If you do not have a graphing calculator, do not worry! Many programming languages,
such as Python and R, offer built-in functions to evaluate normal probabilities. However, an even simpler option is to use the online
normal distribution calculator available at this link.

The following figure gives the plot of the pdf's for the sampling distributions of (blue) and (yellow). Note that the spread of the
pdf for  is larger than for . This is due to the fact that the sample size that  is based on is smaller than the sample size for .
In other words, the sd of the sample mean is inversely related to the sample size, which can be seen in the formula provided by
Corollary 6.2.1 where we see that the sample size occurs in the denominator.

 
 

The Central Limit Theorem
We saw that when "sampling'' from a normally distributed population, the sampling distribution of the sample mean is also normal. 
But what if the population does not follow a normal distribution?  What if it is skewed or uniform?

 
Example 

Suppose we are interested in the lifetime of a radioactive particle. The probability distribution of such lifetimes can be modeled
with an exponential distribution.  If , for example, then the pdf is skewed right, because there is a tail of values with very low
probabilities off to the right.
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Central Limit Theorem

Let  be a random sample from any probability distribution with mean  and sd .  Then as the sample size ,
the probability distribution of the sample mean approaches the normal distribution.  We write:

   

 
In other words, if  is sufficiently large, we can approximate the sampling distribution of the sample mean as .

Furthermore,

The  above the arrow in Equation  above stands for distribution and indicates that, as the sample size increases without
bound, the limit of the probability distribution of  is given by the  distribution. This is referred to as convergence in
distribution.

What's "sufficiently large''?

If the distribution of the  is symmetric, unimodal or continuous, then a sample size  as small as 4 or 5 yields an adequate
approximation.
If the distribution of the  is skewed, then a sample size  of at least 25 or 30 yields an adequate approximation.
If the distribution of the  is extremely skewed, then you may need an even larger .

The following website provides a simulation of sampling distributions and demonstrates the Central Limit Theorem (link
available).

Example 

Continuing in the context of Example 6.2.3, suppose we sample  such radioactive particles.  Then the sampling distribution
of the mean of the sample is approximated as follows.

Letting  denote the random sample, we have that each . By the Properties of Exponential
Distributions, we know that the mean of an exponential(3) distribution is given by  and the sd is also .
Thus, the sampling distribution of the sample mean is
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What is the use of the Central Limit Theorem if we don't know , the mean of the population?  We can use the CLT to approximate
estimation error probabilities:

 the probability that  is within  units of . By the Central Limit Theorem and Equation , we know

From this fact, we can isolate  in the inequality in Equation  as follows:

Example 

Now suppose that we do not know the rate at which the radioactive particle of interest decays, i.e., we do not know the mean
lifetime of such particles.  We can develop a method for approximating the probability that the mean of a sample of size  is
within  unit of the mean lifetime.

In other words, we want .

By the Central Limit Theorem and Equation , we know that

From this we derive a formula for the desired probability:

This page titled 6.2: Sample Mean is shared under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.
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7.1: Other Useful Distributions
In this section, we introduce three more continuous probability distributions: the chi-squared, , and  distributions. All three of
these are very useful in the study of statistics. And we will see that each are built from the normal distribution in some way.

Chi-Squared Distributions

Definition 

If , then the probability distribution of  is called the chi-squared distribution with  degree of freedom
(df) and is denoted .

This definition of the chi-squared distribution with 1 df is stated in terms of a standard normal random variable, which we can
relate to any non-standard normal random variable as follows. Let , then 

 
We can also extend the definition of a chi-squared distribution to have more than one degree of freedom by simply summing any
number of independent  distributed random variables.

Definition 

If  are independent  random variables, then the probability distribution of  is called
the chi-squared distribution with  degrees of freedom (df) and is denoted .

Note that we could have stated Definition 7.1.2 using a collection of independent, standard normal random variables 
, since by Definition 7.1.1 the square of each  is a  distributed random variable. In other words, the following

is another possible definition of the chi-squared distribution with  degrees of freedom: 

Definition 7.1.2 also leads to the following useful property of the chi-squared distribution. Namely, if  and  are
independent random variables, then . This easily follows from the definition, since every chi-squared distributed
random variable is just a sum of independent  random variables, so summing two chi-squared random variables is just one big
sum of many  random variables, where the number is given by the sum of the respective degrees of freedom.

While we will not have much reason to use it, the following theorem (stated without proof) provides the explicit formula for the pdf
of the chi-squared distribution.

Theorem 

Let the random variable  have a chi-squared distribution with  degrees of freedom. Then  has pdf given by 

where  is a function (referred to as the gamma function) given by the following integral: 
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Figure 1: Graph of pdf for  distribution.

The chi-squared distributions are a special case of the gamma distributions with , which can be used to establish the
following properties of the chi-squared distribution.

Properties of Chi-Squared Distributions

If , then  has the following properties.

1. The mean of  is , i.e., the degrees of freedom.
2. The variance of  is , i.e., twice the degrees of freedom.

Note that there is no closed form equation for the cdf of a chi-squared distribution in general. But programming languages, such as
Python and R, have a built-in function to compute chi-squared probabilities.

t Distributions

Definition 

If  and , and  and  are independent, then the probability distribution of 

 
is called the t distribution with  degrees of freedom and is denoted .

Like the chi-squared distributions, the  distributions depend on a parameter referred to as the degrees of freedom. 

The  distribution behaves in a similar manner to the standard normal distribution, with one main distinction. To see this,
consider the graph provided in Figure 2 below, which gives the pdf's for the standard normal distribution and four different 
distributions. Note that just like the standard normal distribution, all  distributions have a similarly bell-shaped pdf curve which is
centered and symmetric about 0. In fact, the expected value or mean of any random variable with a  distribution is always equal to
0. However, the  distribution does not have the same variance as the standard normal distribution, in fact all  distributions have
larger variance than the standard normal, which can be seen in the graph by looking at the "tails" of the pdf's, i.e., the extreme
regions far away from the mean. For instance, consider the regions less than  and greater than . Note that in these regions, there
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is more area under each of the  distribution pdf curves because each of these curves is above the pdf of the standard normal
distribution. Given that there is more area under the  distribution pdf curves in these extreme regions, this implies that there is a
higher probability that the value of a random variable with a  distribution would be this far away from the center compared to a
standard normal random variable, meaning that there is greater spread in the values from the mean and hence a larger variance for
the  distribution. Stated another way, the "tails" of all  distribution pdf's are thicker than the "tails" of the standard normal. We
will see in the next section that this aspect of the  distribution is what makes it so useful in the study of statistics.

Figure 2: Comparison of  distributions to  distribution.

One final aspect of the  distribution is to note that as the degrees of freedom increase, the pdf curves approach the standard normal
pdf. In Figure 2, consider the red curve, which corresponds to the pdf of a  distribution. This pdf is rather different than the
standard normal pdf curve (which is the black dashed line): the middle peak is lower and the tails are much thicker. However, if we
consider the yellow curve, which corresponds to the pdf of a  distribution, we see very little difference from the standard normal
pdf. Indeed, it is very hard to distinguish those two pdf's in Figure 2. In fact, the  distributions approach the standard normal
distribution in the limit as the degrees of freedom approach infinity: 

Again, for completeness more than practical use, we state the following theorem (without proof) which provides the explicit
formula for the pdf of the  distribution.

Theorem 

Let the random variable  have a  distribution with  degrees of freedom. Then  has pdf given by 

where  denotes the gamma function defined in Theorem 7.1.1 above.

 

F Distributions

Definition 

If  and  are independent random variables, then the probability distribution of 

 
is called the F distribution with  and  degree of freedom (df) and is denoted .
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Given that the  distribution is built from the ratio of two independent chi-squared distributions, the  distribution has two sets of
degrees of freedom. The first set, denoted  in Definition 7.1.4, is referred to as the numerator degrees of freedom, and the
second set  is referred to as the denominator degrees of freedom.

The following theorem connects the  distribution to the  distribution.

Theorem 

If , then .

Proof

By Definition 7.1.3, we know that  can be written as , for independent random variables  and 
. This gives 

 
Now notice that Definition 7.1.1 states that , and so  is equal to the ratio of two independent chi-squared random
variables, each divided by their degrees of freedom. Thus, by Definition 7.1.4,  has an  distribution with 1 numerator df
and  denominator df.

And finally, we state the explicit formula for the pdf of the  distribution for completeness.

Theorem 

Let the random variable  have a  distribution with  and  degrees of freedom. Then  has pdf given by 

where  denotes the gamma function defined in Theorem 7.1.1 above.
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7.2: Sample Variance
In Section 6.2, we introduced the sample mean  as a tool for understanding the mean of a population. In this section, we
formalize this idea and extend it to define the sample variance, a tool for understanding the variance of a population.

Estimating  and 
Up to now,  denoted the mean or expected value of a random variable. In other words, it represented a parameter of a probability
distribution. In the context of statistics, the main focus is more generally a population of objects, where the objects could be actual
individuals and we are interested in a certain characteristic of the individuals, e.g., height or IQ. Oftentimes, we can model the
distribution of values in a population using a certain probability distribution, and so it makes sense that the mean of a population is
also denoted with . However, we may not always have a specific probability distribution in mind when considering the values of a
population. Thus, we can generalize the interpretation of  as the mean of a population as provided in the following definition.
Note that the definition also provides a more general interpretation of  the variance of a population.

Definition 

Suppose that a population has  elements, denoted . Then the population mean  is given by 

 
and the  population variance   is given by 

As we saw in Section 6.2, we can collect a random sample from a population and use the sample mean to estimate the population
mean. More formally, let  be a collection of independent random variables representing a random sample of
observations drawn from a population of interest. Then the sample mean, given by 

 
can be used to estimate the value of the population mean .

Note the use of lower case letters " " in Definition 7.2.1 for the elements in the population. This is in contrast to the upper case
letters " " used to denote the elements of the random sample. Because the values in a population are fixed, though unknown in
practice, it would not be appropriate to represent them with capital letters which are reserved for random variables per convention.

We argue that the sample mean  is the "obvious" estimate of the population mean  because the population elements in Equation 
 are simply replaced by the corresponding sample elements in Equation . In addition to being the natural choice for

estimating ,  has another desirable property, which has to do with the following result, stated in Corollary 6.2.1 for normally
distributed populations.

Theorem 

For a random sample of size  from a population with mean  and variance , it follows that 

Proof

Let  denote the elements of the random sample. Then  are independent random variables each
having the same distribution as the population. In other words, we know that  and , for 
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. Given this, and using the linearity of expected value and the independence of the sample elements, we have
the following: 

Theorem 7.2.1 provides formulas for the expected value and variance of the sample mean, and we see that they both depend on the
mean and variance of the population. The fact that the expected value of the sample mean is exactly equal to the population mean
indicates that the sample mean is an unbiased estimator of the population mean. This is because on average, we expect the value of

 to equal the value of , which is precisely the value it is being used to estimate. This is a very desirable property for estimators
to have as it lends more confidence to using their values in understanding the unknown population characteristic. We will keep the
goal of using unbiased estimators as we now consider estimating the population variance.

Before we tackle the problem of estimating population variance, we again point out that the variance of the sample mean depends
on the population variance. Thus, if we are interested in using the variance of  to quantify its accuracy in estimating the
population mean, we need to know the value of , which is unlikely. (We talked about this at the end of Section 6.2 in the context
of computing error probabilities. See Example 6.2.5.) So we have a specific need for an estimate of , not just for understanding
the distribution of the population better.

Given Equation  in Definition 7.2.1, an "obvious" estimate of  is given by simply replacing the population elements by the
corresponding sample elements, as we did for estimating . This gives the following formula for  (note the "hat" ^), which is our
first attempt at estimating : 

 
The problem with this "obvious" estimate is that it is not unbiased. The following theorem (stated without proof) gives the expected
value of .

Theorem 

For a random sample of size  from a population with mean  and variance , it follows that 

As we can see in Theorem 7.2.2, the expected value of  does not equal , so it is not an unbiased estimator. Furthermore, note
that  actually underestimates the value of , on average, since its expected value is multiplied by a factor less than 1: 

. This is not good. Putting this again in the context of using the variance of the sample mean to quantify its accuracy
in estimating the population mean, if we use  to estimate , we would consistently report higher accuracy than what is actually
being obtained, since smaller variance means less spread or greater confidence in our estimate of . This would make our analysis
unreliable and misleading.

We can find an unbiased estimate of  by modifying our first attempt in . The modification is to simply multiply by the
reciprocal of the factor on  in the expected value of . In doing this, we note that expected value of the modification will equal 

, following from the linearity of expected value: 

 
We can simplify the modification of  algebraically as follows:

i = 1,… ,n

E[ ]X

¯

Var( )X

¯

= E[ ] = E[ ] = μ= (nμ) = μ

1

n

∑

i=1

n

X

i

1

n

∑

i=1

n

X

i

1

n

∑

i=1

n

1

n

=Var( ) = Var( ) = = (n ) =

1

n

∑

i=1

n

X

i

1

n

2

∑

i=1

n

X

i

1

n

2

∑

i=1

n

σ

2

1

n

2

σ

2

σ

2

n

X

¯

μ

X

¯

σ

2

σ

2

7.2.2 σ

2

μ σ̂

2

σ

2

= ( − .σ

^

2

1

n

∑

i=1

n

X

i

X

¯

)

2

σ̂

2

7.2.2

n μ σ

2

E [ ]= ( ) .σ̂

2

σ

2

n−1

n

σ̂

2

σ

2

σ̂

2

σ

2

(n−1)/n< 1

σ̂

2

σ

2

μ

σ

2

σ

^

2

σ

2

σ̂

2

σ

2

E[( ) ]=( )E [ ]=( ) ( ) =

n

n−1

σ

^

2

n

n−1

σ

^

2

n

n−1

σ

2

n−1

n

σ

2

σ̂

2

https://libretexts.org/
https://stats.libretexts.org/@go/page/13702?pdf


7.2.3 https://stats.libretexts.org/@go/page/13702

 
This leads to the following definition of the sample variance, denoted , our unbiased estimator of the population variance: 

The next theorem provides a sampling distribution for the sample variance in the case that the population is normally distributed.

Theorem 

Let  be independent  random variables. Then, it follows that 

Theorem 7.2.3 states that the distribution of the sample variance, when sampling from a normally distributed population, is chi-
squared with  degrees of freedom. Note that without knowing that the population is normally distributed, we are not able to
say anything about the distribution of the sample variance, not even approximately. There is no "CLT-like" result for the sample
variance. Further note that it is not the distribution of  alone, but rather, we multiply by one less than the sample size and divide
by the population variance to get the result. This may not seem like a very useful result, given that it is the distribution of a quantity
involving both the estimator  and the parameter it is estimating . But you will see in the study of statistics how this can be
utilized to quantify the error in using  to estimate . But we can use Theorem 2.7.3 to help us in the context of understanding
the accuracy of our estimate given by the sample mean. Before we state the result, we need two additional properties regarding the
probabilistic qualities of  and  as random variables. We state these properties without proof.

Theorem 
1.  is independent of the collection of random variables given by .
2.  and  are independent.

Note that the second property in Theorem 7.2.4 follows immediately from the first one given our definition of . Using these
properties, we can prove the following result.

Theorem 

Let  be independent  random variables. Then, it follows that 

Proof

We rewrite the quotient by dividing top and bottom by the quantity : 

 
Note that the quantity in the numerator is the standardization of a normally distributed random variable, thus it has the
standard normal distribution. For the denominator, we can further modify the expression under the square root by
multiplying top and bottom by the quantity : 
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We know from Theorem 7.2.3 that , and so the denominator in Equation  is the square root of a
chi-squared distributed random variable divided by its degrees of freedom. Also note from Theorem 7.2.4 that the numerator
and denominator in Equation  are independent random variables, since they are functions of  and , respectively.
Thus, we have shown that the quantity we started with in Equation  is equal to a random variable with a standard
normal distribution divided by the square root of an independent random variable with a chi-squared distribution divided by
its degrees of freedom. This is precisely the definition of the  distribution given in Definition 7.1.3.

Notice what the result of Theorem 7.2.5 says: when sampling from a normally distributed population, if we take the sample mean
and subtract its expected value  and divide by its standard deviation where the population variance  is estimated by the sample
variance , then the resulting random variable has a  distribution with  degrees of freedom. The distribution is no longer
the standard normal distribution because we have now estimated the population variance, which has the effect of increasing the
overall variability in the quantity given in Equation . To account for that increased variability, we need a distribution with
thicker tails, which is precisely what the  distribution provides. Notice also that the degrees of freedom of the  distribution that
models the quantity in Equation  is one less than the sample size because we lose a degree of freedom by using the sample
variance to estimate the population variance. This result provides the foundation for many statistical inference techniques.
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