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7.2: Sample Variance
In Section 6.2, we introduced the sample mean  as a tool for understanding the mean of a population. In this section, we
formalize this idea and extend it to define the sample variance, a tool for understanding the variance of a population.

Estimating  and 
Up to now,  denoted the mean or expected value of a random variable. In other words, it represented a parameter of a probability
distribution. In the context of statistics, the main focus is more generally a population of objects, where the objects could be actual
individuals and we are interested in a certain characteristic of the individuals, e.g., height or IQ. Oftentimes, we can model the
distribution of values in a population using a certain probability distribution, and so it makes sense that the mean of a population is
also denoted with . However, we may not always have a specific probability distribution in mind when considering the values of a
population. Thus, we can generalize the interpretation of  as the mean of a population as provided in the following definition.
Note that the definition also provides a more general interpretation of  the variance of a population.

Definition 

Suppose that a population has  elements, denoted . Then the population mean  is given by 

 
and the  population variance   is given by 

As we saw in Section 6.2, we can collect a random sample from a population and use the sample mean to estimate the population
mean. More formally, let  be a collection of independent random variables representing a random sample of
observations drawn from a population of interest. Then the sample mean, given by 

 
can be used to estimate the value of the population mean .

Note the use of lower case letters " " in Definition 7.2.1 for the elements in the population. This is in contrast to the upper case
letters " " used to denote the elements of the random sample. Because the values in a population are fixed, though unknown in
practice, it would not be appropriate to represent them with capital letters which are reserved for random variables per convention.

We argue that the sample mean  is the "obvious" estimate of the population mean  because the population elements in Equation 
 are simply replaced by the corresponding sample elements in Equation . In addition to being the natural choice for

estimating ,  has another desirable property, which has to do with the following result, stated in Corollary 6.2.1 for normally
distributed populations.

Theorem 

For a random sample of size  from a population with mean  and variance , it follows that 

Proof

Let  denote the elements of the random sample. Then  are independent random variables each
having the same distribution as the population. In other words, we know that  and , for 
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. Given this, and using the linearity of expected value and the independence of the sample elements, we have
the following: 

Theorem 7.2.1 provides formulas for the expected value and variance of the sample mean, and we see that they both depend on the
mean and variance of the population. The fact that the expected value of the sample mean is exactly equal to the population mean
indicates that the sample mean is an unbiased estimator of the population mean. This is because on average, we expect the value of

 to equal the value of , which is precisely the value it is being used to estimate. This is a very desirable property for estimators
to have as it lends more confidence to using their values in understanding the unknown population characteristic. We will keep the
goal of using unbiased estimators as we now consider estimating the population variance.

Before we tackle the problem of estimating population variance, we again point out that the variance of the sample mean depends
on the population variance. Thus, if we are interested in using the variance of  to quantify its accuracy in estimating the
population mean, we need to know the value of , which is unlikely. (We talked about this at the end of Section 6.2 in the context
of computing error probabilities. See Example 6.2.5.) So we have a specific need for an estimate of , not just for understanding
the distribution of the population better.

Given Equation  in Definition 7.2.1, an "obvious" estimate of  is given by simply replacing the population elements by the
corresponding sample elements, as we did for estimating . This gives the following formula for  (note the "hat" ^), which is our
first attempt at estimating : 

 
The problem with this "obvious" estimate is that it is not unbiased. The following theorem (stated without proof) gives the expected
value of .

Theorem 

For a random sample of size  from a population with mean  and variance , it follows that 

As we can see in Theorem 7.2.2, the expected value of  does not equal , so it is not an unbiased estimator. Furthermore, note
that  actually underestimates the value of , on average, since its expected value is multiplied by a factor less than 1: 

. This is not good. Putting this again in the context of using the variance of the sample mean to quantify its accuracy
in estimating the population mean, if we use  to estimate , we would consistently report higher accuracy than what is actually
being obtained, since smaller variance means less spread or greater confidence in our estimate of . This would make our analysis
unreliable and misleading.

We can find an unbiased estimate of  by modifying our first attempt in . The modification is to simply multiply by the
reciprocal of the factor on  in the expected value of . In doing this, we note that expected value of the modification will equal 

, following from the linearity of expected value: 

 
We can simplify the modification of  algebraically as follows:
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This leads to the following definition of the sample variance, denoted , our unbiased estimator of the population variance: 

The next theorem provides a sampling distribution for the sample variance in the case that the population is normally distributed.

Theorem 

Let  be independent  random variables. Then, it follows that 

Theorem 7.2.3 states that the distribution of the sample variance, when sampling from a normally distributed population, is chi-
squared with  degrees of freedom. Note that without knowing that the population is normally distributed, we are not able to
say anything about the distribution of the sample variance, not even approximately. There is no "CLT-like" result for the sample
variance. Further note that it is not the distribution of  alone, but rather, we multiply by one less than the sample size and divide
by the population variance to get the result. This may not seem like a very useful result, given that it is the distribution of a quantity
involving both the estimator  and the parameter it is estimating . But you will see in the study of statistics how this can be
utilized to quantify the error in using  to estimate . But we can use Theorem 2.7.3 to help us in the context of understanding
the accuracy of our estimate given by the sample mean. Before we state the result, we need two additional properties regarding the
probabilistic qualities of  and  as random variables. We state these properties without proof.

Theorem 
1.  is independent of the collection of random variables given by .
2.  and  are independent.

Note that the second property in Theorem 7.2.4 follows immediately from the first one given our definition of . Using these
properties, we can prove the following result.

Theorem 

Let  be independent  random variables. Then, it follows that 

Proof

We rewrite the quotient by dividing top and bottom by the quantity : 

 
Note that the quantity in the numerator is the standardization of a normally distributed random variable, thus it has the
standard normal distribution. For the denominator, we can further modify the expression under the square root by
multiplying top and bottom by the quantity : 
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We know from Theorem 7.2.3 that , and so the denominator in Equation  is the square root of a
chi-squared distributed random variable divided by its degrees of freedom. Also note from Theorem 7.2.4 that the numerator
and denominator in Equation  are independent random variables, since they are functions of  and , respectively.
Thus, we have shown that the quantity we started with in Equation  is equal to a random variable with a standard
normal distribution divided by the square root of an independent random variable with a chi-squared distribution divided by
its degrees of freedom. This is precisely the definition of the  distribution given in Definition 7.1.3.

Notice what the result of Theorem 7.2.5 says: when sampling from a normally distributed population, if we take the sample mean
and subtract its expected value  and divide by its standard deviation where the population variance  is estimated by the sample
variance , then the resulting random variable has a  distribution with  degrees of freedom. The distribution is no longer
the standard normal distribution because we have now estimated the population variance, which has the effect of increasing the
overall variability in the quantity given in Equation . To account for that increased variability, we need a distribution with
thicker tails, which is precisely what the  distribution provides. Notice also that the degrees of freedom of the  distribution that
models the quantity in Equation  is one less than the sample size because we lose a degree of freedom by using the sample
variance to estimate the population variance. This result provides the foundation for many statistical inference techniques.
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