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5.2: Joint Distributions of Continuous Random Variables
Having considered the discrete case, we now look at joint distributions for continuous random variables.

Definition 

If continuous random variables  and  are defined on the same sample space , then their joint probability density
function (joint pdf) is a piecewise continuous function, denoted , that satisfies the following.

1. , for all 

2. 

3. , for any 

The first two conditions in Definition 5.2.1 provide the requirements for a function to be a valid joint pdf. The third condition
indicates how to use a joint pdf to calculate probabilities. As an example of applying the third condition in Definition 5.2.1, the
joint cdf for continuous random variables  and  is obtained by integrating the joint density function over a set  of the form 

 
where  and  are constants. Specifically, if  is given as above, then the joint cdf of  and , at the point , is given by 

 
Note that probabilities for continuous jointly distributed random variables are now volumes instead of areas as in the case of a
single continuous random variable.

As in the discrete case, we can also obtain the individual, maginal pdf's of  and  from the joint pdf.

Definition 

Suppose that continuous random variables  and  have joint density function . The marginal pdf's of  and  are
respectively given by the following. 

 

Link to Video: Overview of Definitions 5.2.1 & 5.2.2

 

Example 

Suppose a radioactive particle is contained in a unit square. We can define random variables  and  to denote the - and -
coordinates of the particle's location in the unit square, with the bottom left corner placed at the origin. Radioactive particles follow
completely random behavior, meaning that the particle's location should be uniformly distributed over the unit square. This implies
that the joint density function of  and  should be constant over the unit square, which we can write as 
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where  is some unknown constant. We can find the value of  by using the first condition in Definition 5.2.1 and solving the
following: 

We can now use the joint pdf of  and  to compute probabilities that the particle is in some specific region of the unit square. For
example, consider the region 

 
which is graphed in Figure 1 below.

If we want the probability that the particle's location is in the lower right corner of the unit square that intersects with the region ,
then we integrate the joint density function over that portion of  in the unit square, which gives the following probability: 

 
 
Lastly, we apply Definition 5.2.2 to find the marginal pdf's of  and . 

 
Note that both  and  are individually uniform random variables, each over the interval . This should not be too surprising.
Given that the particle's location was uniformly distributed over the unit square, we should expect that the individual coordinates
would also be uniformly distributed over the unit intervals.
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Example 

At a particular gas station, gasoline is stocked in a bulk tank each week. Let random variable  denote the proportion of the tank's
capacity that is stocked in a given week, and let  denote the proportion of the tank's capacity that is sold in the same week. Note
that the gas station cannot sell more than what was stocked in a given week, which implies that the value of  cannot exceed the
value of . A possible joint pdf of  and  is given by 

 
Note that this function is only nonzero over the triangular region given by , which is graphed in Figure 2
below:

Figure 2: Region over which joint pdf  is nonzero.

 

Link to Video: Marginal PDFs for Example 5.2.2

 

We find the joint cdf of  and  at the point : 

 
Thus, there is a 10.65% chance that less than half the tank is stocked and less than a third of the tank is sold in a given week. Note
that in finding the above integral, we look at where the region given by  intersects the region over
which the joint pdf is nonzero, i.e., the region graphed in Figure 2. This tells us what the limits of integration are in the double
integral. Figure 3 below is a graph of the intersection made on desmos.com: 
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Figure 3: Intersection of  with the region over which joint pdf  is nonzero.

Next, we find the probability that the amount of gas sold is less than half the amount that is stocked in a given week. In other
words, we find . In order to find this probability, we need to find the region over which we will integrate the joint
pdf. To do this, look for the intersection of the region given by  with the region in Figure 2, which is graphed in
Figure 4 below:

Figure 4: Intersection of  with the region over which joint pdf  is nonzero.

The calculation is as follows: 
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Thus, there is a 50% chance that the amount of gas sold in a given week is less than half of the gas stocked.

Independent Random Variables
We can also define independent random variables in the continuous case, just as we did for discrete random variables.

Definition 

Continuous random variables  are independent if the joint pdf factors into a product of the marginal pdf's: 

 
It is equivalent to check that this condition holds for the cumulative distribution functions.

Example 

Consider the continuous random variables defined in Example 5.2.1, where the  and  gave the location of a radioactive particle.
We will show that  and  are independent and then verify that Theorem 5.1.2 also applies in the continuous setting.

Recall that we found the marginal pdf's to be the following: 

 
So, for  in the unit square, i.e.,  and , we have 

 
and outside the unit square, at least one of marginal pdf's will be , so 

 
We have thus shown that , for all , and so by Definition 5.2.3,  and  are independent.

Now let's look at the expected value of the product of  and : 

Note that both  and  are uniform on the interval . Therefore, their expected values are both 1/2, the midpoint of .
Putting this all together, we have 

 
which is the conclusion to Theorem 5.1.2.
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Link to Video: Independent Continuous Random Variables
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