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3.4: Expected Value of Discrete Random Variables
In this section, and the next, we look at various numerical characteristics of discrete random variables. These give us a way of
classifying and comparing random variables.

Expected Value of Discrete Random Variables
We begin with the formal definition.

Definition 

If  is a discrete random variable with possible values , and probability mass function , then the
expected value (or mean) of  is denoted  and given by

The expected value of  may also be denoted as  or simply  if the context is clear.

The expected value of a random variable has many interpretations. First, looking at the formula in Definition 3.4.1 for computing
expected value (Equation ), note that it is essentially a weighted average. Specifically, for a discrete random variable, the
expected value is computed by "weighting'', or multiplying, each value of the random variable, , by the probability that the
random variable takes that value, , and then summing over all possible values. This interpretation of the expected value as a
weighted average explains why it is also referred to as the mean of the random variable.

The expected value of a random variable is also interpreted as the long-run value of the random variable. In other words, if we
repeat the underlying random experiment several times and take the average of the values of the random variable corresponding to
the outcomes, we would get the expected value, approximately. (Note: This interpretation of expected value is similar to the
relative frequency approximation for probability discussed in Section 1.2.) Again, we see that the expected value is related to an
average value of the random variable. Given the interpretation of the expected value as an average, either "weighted'' or "long-run'',
the expected value is often referred to as a measure of center of the random variable.

Finally, the expected value of a random variable has a graphical interpretation. The expected value gives the center of mass of the
probability mass function, which the following example demonstrates.

Example 

Consider again the context of Example 1.1.1, where we recorded the sequence of heads and tails in two tosses of a fair coin. In
Example 3.1.1 we defined the discrete random variable  to denote the number of heads obtained. In Example 3.2.2 we found the
pmf of . We now apply Equation  from Definition 3.4.1 and compute the expected value of :

 
Thus, we expect that the number of heads obtained in two tosses of a fair coin will be 1 in the long-run or on average. Figure 1
demonstrates the graphical representation of the expected value as the center of mass of the probability mass function.

Figure 1: Histogram of . The red arrow represents the center of mass, or the expected value of 

3.4.1

X , , … , , …x1 x2 xi p(x)

X E[X]

E[X] = ⋅ p( ).∑
i

xi xi (3.4.1)

X μX μ

3.4.1

xi

p( )xi

3.4.1

X

X 3.4.1 X

E[X] = 0 ⋅ p(0) +1 ⋅ p(1) +2 ⋅ p(2)

= 0 ⋅ (0.25) +1 ⋅ (0.5) +2 ⋅ (0.25)

= 0.5 +0.5 = 1.

X X

https://libretexts.org/
https://stats.libretexts.org/@go/page/12765?pdf
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/DSCI_500B_Essential_Probability_Theory_for_Data_Science_(Kuter)/03%3A_Discrete_Random_Variables/3.04%3A_Expected_Value_of_Discrete_Random_Variables
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/DSCI_500B_Essential_Probability_Theory_for_Data_Science_(Kuter)/01%3A_What_is_Probability/1.02%3A_Probability_Measures#Relative_Frequency_Approximation
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/DSCI_500B_Essential_Probability_Theory_for_Data_Science_(Kuter)/01%3A_What_is_Probability/1.02%3A_Probability_Measures
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/DSCI_500B_Essential_Probability_Theory_for_Data_Science_(Kuter)/01%3A_What_is_Probability/1.01%3A_Sample_Spaces_and_Events#Example_.5C(.5CPageIndex.7B1.7D.5C)
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/DSCI_500B_Essential_Probability_Theory_for_Data_Science_(Kuter)/03%3A_Discrete_Random_Variables/3.01%3A_Introduction_to_Random_Variables#Example_.5C(.5CPageIndex.7B1.7D.5C)
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/DSCI_500B_Essential_Probability_Theory_for_Data_Science_(Kuter)/03%3A_Discrete_Random_Variables/3.02%3A_Probability_Mass_Functions_(PMFs)_and_Cumulative_Distribution_Functions_(CDFs)_for_Discrete_Random_Variables#Example_.5C(.5CPageIndex.7B2.7D.5C)


3.4.2 https://stats.libretexts.org/@go/page/12765

Example 

Suppose we toss a fair coin three times and define the random variable  to be our winnings on a single play of a game where

we win $  if the first heads is on the  toss, for ,
and we lose $1 if we get no heads in all three tosses.

Then  is a discrete random variable, with possible values , and pmf given by the following table:

Applying Definition 3.4.1, we find 

 
Thus, the expected winnings for a single play of the game is $1.25. In other words, if we played the game multiple times, we expect
the average winnings to be $1.25.

For many of the common probability distributions, the expected value is given by a parameter of the distribution. The expected
value may not be exactly equal to a parameter of the probability distribution, but rather it may be a function of the parameters. The
following table gives the expected value for each of the common discrete distributions, including the Bernoulli and binomial
distributions we introduced previously.

Expected Values for Discrete
Distributions

Distribution Expected Value

Bernoulli( )

binomial( )

hypergeometric( )

geometric( )

negative binomial( )

Poisson( )

Expected Value of Functions of Random Variables
In many applications, we may not be interested in the value of a random variable itself, but rather in a function applied to the
random variable or a collection of random variables. For example, we may be interested in the value of . The following
theorems, which we state without proof, demonstrate how to calculate the expected value of functions of random variables.
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Theorem 

Let  be a random variable and let  be a real-valued function. Define the random variable .

If  is a discrete random variable with possible values , and probability mass function , then the
expected value of  is given by

To put it simply, Theorem 3.4.1 states that to find the expected value of a function of a random variable, just apply the function to
the possible values of the random variable in the definition of expected value. Before stating an important special case of Theorem
3.4.1, a word of caution regarding order of operations. Note that, in general, 

 
For example, , in general. However, as the next theorem states, there are exceptions to Equation .

Special Case of Theorem 3.4.1

Let  be a random variable. If  is a linear function, i.e., , then 

The above special case is referred to as the linearity of expected value, which implies the following properties of the expected
value.

Linearity of Expected Value

Let  be a random variable,  constants, and  real-valued functions. Then expectiation  satisfies the
following:

1. The expected value of a constant is constant:

2. Constants can be factored out of expected values:

3. The expected value of a sum is equal to the sum of expected values:
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