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6.1: Functions of Normal Random Variables

In addition to considering the probability distributions of random variables simultaneously using joint distribution functions, there
is also occasion to consider the probability distribution of functions applied to random variables. In this section we consider the
special case of applying functions to normally distributed random variables, which will be very important in the following section.
We begin by deriving the probability distribution of the square of a standard normal random variable.

Before we jump into the example, note that one approach to finding the probability distribution of a function of a random variable
relies on the relationship between the pdf and cdf for a continuous random variable:

di; [F(z)] = f(x) derivative of cdf = pdf”’

It is often easier to find the cdf of a function of a continuous random variable, and then use the above relationship to derive the pdf.
Example 6.1.1
Let Z be a standard normal random variable, i.e., Z ~ N(0,1). We find the pdf of Y = Z2.

Let & denote the cdf of Z, i.e., ®(2) = P(Z < 2) = Fz(2) . We first find the cdf of X = Z? in terms of & (recall that there is no
closed form expression for ®):

Note that if y < 0, then Fy(y) =0, since it is not possible for Y = Z2 to be negative. In other words, the possible values of
Y =2% arey > 0.

Next, we take the derivative of the cdf of Y to find its pdf. Before doing so, we note that if & is the cdf for Z, then its derivative is
the pdf for Z, which is denoted (. Since Z is a standard normal random variable, we know that

o(2) = fz(2) = Le_z2/2, for ze R.
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Using this, we now find the pdf of Y
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In summary, if Y = Z2, where Z ~ N(0, 1), then the pdf for Y is given by
~1/2
_Yy —y/2
= e V7, fory >0.
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Note that the pdf for Y is a gamma pdf with o =\ = % . This is also referred to as the chi-square distribution, denoted x2. See
below for a video walkthrough of this example.
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There is another approach to finding the probability distribution of functions of random variables, which involves moment-
generating functions, which we now define.

Definition 6.1.1

The moment-generating function (mgf) of a random variable X is given by

Mx(t) = E[e"X], forteR.

The mgf of a random variable has many theoretical properties that are very useful in the study of probability theory. One of those
properties is the fact that when the derivative of the mgf is evaluated for ¢t =0, the result is equal to the expected value of the
random variable:

%[Mx(t)]tzo =E[X]

This result can be extended to higher order derivatives producing higher order moments, which we will not go into. Instead, we
state the following properties that are useful in the context of determining the distribution of a function of random variables. The
first result below indicates that mgf's are unique in the sense that if two random variables have the same mgf, then they necessarily
have the same probability distribution. The next two properties provide ways of manipulating mgf's in order to find the mgf of a
function of a random variable.

p

Theorem 6.1.1

The mgf Mx(t) of random variable X uniquely determines the probability distribution of X. In other words, if random
variables X and Y have the same mgf, Mx (t) = My (t), then X and Y have the same probability distribution.

-~

Theorem 6.1.2

Let X be a random variable with mgf Mx (¢), and let a, b be constants. If random variable Y = aX + b, then the mgf of Y is
given by

My (t) = ethX(at).

-

Theorem 6.1.3

If Xy,...,X, are independent random variables with mgf's Mx, (¢),..., Mx,(t), respectively, then the mgf of random
variable Y = X +- .. 4+ X,, is given by

My (t) = Mx, (t)--- Mx, (t).

Theorem 6.1.1 states that mgf's are unique, and Theorems 6.1.2 & 6.1.3 combined provide a process for finding the mgf of a linear
combination of random variables. All three theorems provide a Moment-Generating-Function technique for finding the probability
distribution of a function of random variable(s), which we demonstrate with the following examples involving the normal
distribution.

Example 6.1.2
Suppose that X ~ N(u, o). It can be shown that the mgf of X is given by

Mx(t) = M #/2) | fort e R.
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Using this mgf formula, we can show that Z = i

o
1. Note that if Z ~ N (0, 1), then the mgf is Mz (t) = e®+(1°#/2) = ¢*/2

X — 1 -
2. Also note that B (—) X+ (_,u) , s0 by Theorem 6.1.2,
o o o

has the standard normal distribution.

t
M%X_é (t) = 67% Mx (;) = etz/z.

_K have the same mgf, which by Theorem 6.1.1, says that they have the same distribution.

Thus, we have shown that Z and

Now suppose X1, ..., X, are each independent normally distributed with means u1, ..., 4, and sd's o1, . . . , oy, respectively.

Let's find the probability distribution of the sumY =a; X; 4---- 4+a,X,, (a1,...,a, constants) using the mgf technique:

By Theorem 6.1.2, we have
M,.x,(t) = Mx, (a;it) = it (@l E/2 g =1,
and then by Theorem 6.1.3 we get the following:
My (t) = Ma,x, () - Mayx, (t) - - - Ma,x,, (t)

_ eu1a1t+afaft2/2eu2a2t+a§a§t2/2 . att+olalt?/2
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- My(t) _ epyt+a§t2/2

Thus, by Theorem 6.1.1, Y ~ Ny, 0y) .

The second part of Example 6.1.2 proved the following result, which we will use in the next section.

~

Sums of Independent Normal Random Variables

If X1,...,X, are mutually independent normal random variables with means y;, ..., i, and standard deviations o7, . .., oy,
respectively, then the linear combination

n
Y:a1X1+-"+Can :ZaiXi7

i=1

is normally distributed with the following mean and variance:

n n
_ _ 2 _ 2.2 2 _ 2 2
Hy =aipiy +---+apy, = a; [ oy =aj0] +---+apop, = E a;o;
i=1 =1

Video: Functions of Normal Random Variables
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