
6.1.1 https://stats.libretexts.org/@go/page/13635

6.1: Functions of Normal Random Variables
In addition to considering the probability distributions of random variables simultaneously using joint distribution functions, there
is also occasion to consider the probability distribution of functions applied to random variables. In this section we consider the
special case of applying functions to normally distributed random variables, which will be very important in the following section.
We begin by deriving the probability distribution of the square of a standard normal random variable.

Before we jump into the example, note that one approach to finding the probability distribution of a function of a random variable
relies on the relationship between the pdf and cdf for a continuous random variable: 

 
It is often easier to find the cdf of a function of a continuous random variable, and then use the above relationship to derive the pdf.

Example 

Let  be a standard normal random variable, i.e., .  We find the pdf of .

Let  denote the cdf of , i.e., .  We first find the cdf of  in terms of  (recall that there is no
closed form expression for ): 

 
Note that if , then , since it is not possible for  to be negative. In other words, the possible values of 

 are .

Next, we take the derivative of the cdf of  to find its pdf. Before doing so, we note that if  is the cdf for , then its derivative is
the pdf for , which is denoted . Since  is a standard normal random variable, we know that 

 
Using this, we now find the pdf of : 

In summary, if , where , then the pdf for  is given by 

 
Note that the pdf for  is a gamma pdf with . This is also referred to as the chi-square distribution, denoted . See
below for a video walkthrough of this example.
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There is another approach to finding the probability distribution of functions of random variables, which involves moment-
generating functions, which we now define.

Definition 

The moment-generating function (mgf) of a random variable  is given by 

The mgf of a random variable has many theoretical properties that are very useful in the study of probability theory. One of those
properties is the fact that when the derivative of the mgf is evaluated for , the result is equal to the expected value of the
random variable: 

 
This result can be extended to higher order derivatives producing higher order moments, which we will not go into. Instead, we
state the following properties that are useful in the context of determining the distribution of a function of random variables. The
first result below indicates that mgf's are unique in the sense that if two random variables have the same mgf, then they necessarily
have the same probability distribution. The next two properties provide ways of manipulating mgf's in order to find the mgf of a
function of a random variable.

 

Theorem 

The mgf  of random variable  uniquely determines the probability distribution of . In other words, if random
variables  and  have the same mgf, , then  and  have the same probability distribution.

 

Theorem 

Let  be a random variable with mgf , and let  be constants. If random variable , then the mgf of  is
given by 

 

Theorem 

If  are independent random variables with mgf's , respectively, then the mgf of random
variable  is given by 

 

Theorem 6.1.1 states that mgf's are unique, and Theorems 6.1.2 & 6.1.3 combined provide a process for finding the mgf of a linear
combination of random variables.  All three theorems provide a Moment-Generating-Function technique for finding the probability
distribution of a function of random variable(s), which we demonstrate with the following examples involving the normal
distribution.

Example 

Suppose that .  It can be shown that the mgf of  is given by 
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Using this mgf formula, we can show that  has the standard normal distribution.

1. Note that if , then the mgf is 

2. Also note that , so by Theorem 6.1.2, 

Thus, we have shown that  and  have the same mgf, which by Theorem 6.1.1, says that they have the same distribution.

Now suppose  are each independent normally distributed with means  and sd's , respectively.

Let's find the probability distribution of the sum  (  constants) using the mgf technique: 
 
By Theorem 6.1.2, we have 

and then by Theorem 6.1.3 we get the following: 

 
Thus, by Theorem 6.1.1, .

 

The second part of Example 6.1.2 proved the following result, which we will use in the next section.

 

Sums of Independent Normal Random Variables

If  are mutually independent normal random variables with means  and standard deviations ,
respectively, then the linear combination 
   

 
is normally distributed with the following mean and variance: 
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