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5.1: Joint Distributions of Discrete Random Variables
In this chapter we consider two or more random variables defined on the same sample space and discuss how to model the
probability distribution of the random variables jointly. We will begin with the discrete case by looking at the joint probability mass
function for two discrete random variables. In the following section, we will consider continuous random variables.

Definition 

If discrete random variables  and  are defined on the same sample space , then their joint probability mass function (joint
pmf) is given by 

 
where  is a pair of possible values for the pair of random variables , and  satisfies the following conditions:

Note that conditions #1 and #2 in Definition 5.1.1 are required for  to be a valid joint pmf, while the third condition tells us
how to use the joint pmf to find probabilities for the pair of random variables .

In the discrete case, we can obtain the joint cumulative distribution function (joint cdf) of  and  by summing the joint pmf: 

 
where  denotes possible values of  and  denotes possible values of . From the joint pmf, we can also obtain the individual
probability distributions of  and  separately as shown in the next definition.

Definition 

Suppose that discrete random variables  and  have joint pmf . Let  denote the possible values of ,
and let  denote the possible values of . The marginal probability mass functions (marginal pmf's) of 
and  are respectively given by the following: 

 

Link to Video: Overview of Definitions 5.1.1 & 5.1.2

 

Example 

Consider again the probability experiment of Example 3.3.2, where we toss a fair coin three times and record the sequence of heads
 and tails . Again, we let random variable  denote the number of heads obtained. We also let random variable  denote the

winnings earned in a single play of a game with the following rules, based on the outcomes of the probability experiment (this is
the same as Example 3.4.2):

player wins $1 if first  occurs on the first toss
player wins $2 if first  occurs on the second toss
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player wins $3 if first  occurs on the third toss
player loses $1 if no  occur

Note that the possible values of  are , and the possible values of  are . We represent the joint
pmf using a table:

Table 1: joint pmf of  and 

0 1 2 3

-1 1/8 0 0 0

1 0 1/8 2/8 1/8

2 0 1/8 1/8 0

3 0 1/8 0 0

The values in Table 1 give the values of . For example, consider : 

 
Since the outcomes are equally likely, the values of  are found by counting the number of outcomes in the sample space 

 that result in the specified values of the random variables, and then dividing by , the total number of outcomes in . The
sample space is given below, color coded to help explain the values of : 

Given the joint pmf, we can now find the marginal pmf's. Note that the marginal pmf for  is found by computing sums of the
columns in Table 1, and the marginal pmf for  corresponds to the row sums. (Note that we found the pmf for  in Example
3.3.2 as well, it is a binomial random variable. We also found the pmf for  in Example 3.4.2.)

Table 2: marginal pmf's
for  and 

0 1/8 -1 1/8

1 3/8 1 1/2

2 3/8 2 1/4

3 1/8 3 1/8

Finally, we can find the joint cdf for  and  by summing over values of the joint frequency function. For example, consider 
: 

 
Again, we can represent the joint cdf using a table:
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Table 3: joint cdf of  and 

0 1 2 3

-1 1/8 1/8 1/8 1/8

1 1/8 1/4 1/2 5/8

2 1/8 3/8 3/4 7/8

3 1/8 1/2 7/8 1

 

Link to Video: Walkthrough of Example 5.1.1

 

Expectations of Functions of Jointly Distributed Discrete Random Variables

We now look at taking the expectation of jointly distributed discrete random variables. Because expected values are defined for a
single quantity, we will actually define the expected value of a combination of the pair of random variables, i.e., we look at the
expected value of a function applied to .

Theorem 

Suppose that  and  are jointly distributed discrete random variables with joint pmf .

If  is a function of these two random variables, then its expected value is given by the following: 

Example 

Consider again the discrete random variables we defined in Example 5.1.1 with joint pmf given in Table 1. We will find the
expected value of three different functions applied to .

1. First, we define , and compute the expected value of : 

 
 

2. Next, we define , and compute the expected value of : 
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Recall that , and that the expected value of a binomial random variable is given by . Thus,
we can verify the expected value of  that we calculated above using Theorem 5.1.1 using this fact for binomial distributions: 

. 
 

3. Lastly, we define , and calculate the expected value of : 

 
Again, we can verify this result by reviewing the calculations done in Example 3.4.2.

Link to Video: Walkthrough of Example 5.1.2

 

Independent Random Variables
In some cases, the probability distribution of one random variable will not be affected by the distribution of another random
variable defined on the same sample space. In those cases, the joint distribution functions have a very simple form, and we refer to
the random variables as independent.

Definition 

Discrete random variables  are independent if the joint pmf factors into a product of the marginal pmf's: 

 
It is equivalent to check that this condition holds for the cumulative distribution functions.

Recall the definition of independent events (Definition 2.2.2):  and  are independent events if . This
is the basis for the definition of independent random variables because we can write the pmf's in Equation  in terms of events
as follows: 
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In the above, we use the idea that if  and  are independent, then the event that  takes on a given value  is independent of the
event that  takes the value .

Example 

Consider yet again the discrete random variables defined in Example 5.1.1. According to the definition,  and  are independent
if 

 
for all pairs . Recall that the joint pmf for  is given in Table 1 and that the marginal pmf's for  and  are given in
Table 2. Note that, for , we have the following 

 
Thus,  and  are not independent, or in other words,  and  are dependent. This should make sense given the definition of 
and . The winnings earned depend on the number of heads obtained. So the probabilities assigned to the values of  will be
affected by the values of .

We also have the following very useful theorem about the expected value of a product of independent random variables, which is
simply given by the product of the expected values for the individual random variables.

Theorem 

If  and  are independent random variables, then .

Proof

Assume  and  are independent random variables. If we let  denote the joint pmf of , then, by Definition
5.1.3, , for all pairs . Using this fact and Theorem 5.1.1, we have 

Theorem 5.1.2 can be used to show that two random variables are not independent: if , then  and 
 cannot be independent. However, beware using Theorem 5.1.2 to show that random variables are independent. Note that

Theorem 5.1.2 assumes that  and  are independent and then the property about the expected value follows. The other direction
does not hold. In other words, if , then  and  may or may not be independent.

 

Link to Video: Independent Random Variables

This page titled 5.1: Joint Distributions of Discrete Random Variables is shared under a not declared license and was authored, remixed, and/or
curated by Kristin Kuter.
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