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3.4: Confidence Limits

Confidence limits tell you how accurate your estimate of the mean is likely to be.

Introduction
After you've calculated the mean of a set of observations, you should give some indication of how close your estimate is likely to
be to the parametric ("true") mean. One way to do this is with confidence limits. Confidence limits are the numbers at the upper
and lower end of a confidence interval; for example, if your mean is  with confidence limits of  and , your confidence
interval is  to . Most people use  confidence limits, although you could use other values. Setting  confidence limits
means that if you took repeated random samples from a population and calculated the mean and confidence limits for each sample,
the confidence interval for  of your samples would include the parametric mean.

To illustrate this, here are the means and confidence intervals for  samples of  observations from a population with a
parametric mean of . Of the  samples,  (shown with  for the mean and a thin line for the confidence interval) have the
parametric mean within their  confidence interval, and  (shown with circles and thick lines) have the parametric mean outside
the confidence interval.

Fig. 3.4.1 Mean and confidence intervals for 100 samples of 3 observations

With larger sample sizes, the  confidence intervals get smaller:

Fig. 3.4.2 Mean and confidence intervals for 100 samples of 20 observations

When you calculate the confidence interval for a single sample, it is tempting to say that "there is a  probability that the
confidence interval includes the parametric mean." This is technically incorrect, because it implies that if you collected samples
with the same confidence interval, sometimes they would include the parametric mean and sometimes they wouldn't. For example,
the first sample in the figure above has confidence limits of  and . It would be incorrect to say that  of the time, the
parametric mean for this population would lie between  and . If you took repeated samples from this same population and
repeatedly got confidence limits of  and , the parametric mean (which is , remember) would be in this interval  of
the time. Some statisticians don't care about this confusing, pedantic distinction, but others are very picky about it, so it's good to
know.

Confidence limits for measurement variables
To calculate the confidence limits for a measurement variable, multiply the standard error of the mean times the appropriate t-
value. The -value is determined by the probability (  for a  confidence interval) and the degrees of freedom ( ). In a
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spreadsheet, you could use =(STDEV(Ys)/SQRT(COUNT(Ys)))*TINV(0.05, COUNT(Ys)-1), where  is the range of cells
containing your data. You add this value to and subtract it from the mean to get the confidence limits. Thus if the mean is  and
the -value times the standard error is , the confidence limits would be  and . You could also report this as "
(  confidence limits)." People report both confidence limits and standard errors as the "mean  something," so always be sure
to specify which you're talking about.

All of the above applies only to normally distributed measurement variables. For measurement data from a highly non-normal
distribution, bootstrap techniques, which I won't talk about here, might yield better estimates of the confidence limits.

Confidence limits for nominal variables

There is a different, more complicated formula, based on the binomial distribution, for calculating confidence limits of proportions
(nominal data). Importantly, it yields confidence limits that are not symmetrical around the proportion, especially for proportions
near zero or one. John Pezzullo has an easy-to-use web page for confidence intervals of a proportion. To see how it works, let's say
that you've taken a sample of  men and found  colorblind and  non-colorblind. Go to the web page and enter  in the
"Numerator" box and  in the "Denominator" box," then hit "Compute." The results for this example would be a lower confidence
limit of  and an upper confidence limit of . You can't report the proportion of colorblind men as "

," instead you'd have to say "  with  confidence limits of  and ."

An alternative technique for estimating the confidence limits of a proportion assumes that the sample proportions are normally
distributed. This approximate technique yields symmetrical confidence limits, which for proportions near zero or one are obviously
incorrect. For example, if you calculate the confidence limits using the normal approximation on  with a sample size of ,
you get  and , which is ridiculous (you couldn't have less than  of men being color-blind). It would also be incorrect
to say that the confidence limits were  and , because you know the proportion of colorblind men in your population is greater
than  (your sample had two colorblind men, so you know the population has at least two colorblind men). I consider confidence
limits for proportions that are based on the normal approximation to be obsolete for most purposes; you should use the confidence
interval based on the binomial distribution, unless the sample size is so large that it is computationally impractical. Unfortunately,
more people use the confidence limits based on the normal approximation than use the correct, binomial confidence limits.

The formula for the  confidence interval using the normal approximation is , where  is the proportion and

 is the sample size. Thus, for  and , the confidence interval would be , or .

A common rule of thumb says that it is okay to use this approximation as long as  is greater than ; my rule of thumb is to only
use the normal approximation when the sample size is so large that calculating the exact binomial confidence interval makes smoke
come out of your computer.

Statistical testing with confidence intervals
This handbook mostly presents "classical" or "frequentist" statistics, in which hypotheses are tested by estimating the probability of
getting the observed results by chance, if the null is true (the  value). An alternative way of doing statistics is to put a confidence
interval on a measure of the deviation from the null hypothesis. For example, rather than comparing two means with a two-sample
t–test, some statisticians would calculate the confidence interval of the difference in the means.

This approach is valuable if a small deviation from the null hypothesis would be uninteresting, when you're more interested in the
size of the effect rather than whether it exists. For example, if you're doing final testing of a new drug that you're confident will
have some effect, you'd be mainly interested in estimating how well it worked, and how confident you were in the size of that
effect. You'd want your result to be "This drug reduced systolic blood pressure by , with a confidence interval of 
to ," not "This drug significantly reduced systolic blood pressure ( )."

Using confidence limits this way, as an alternative to frequentist statistics, has many advocates, and it can be a useful approach.
However, I often see people saying things like "The difference in mean blood pressure was , with a confidence
interval of  to ; because the confidence interval on the difference does not include , the means are significantly different."
This is just a clumsy, roundabout way of doing hypothesis testing, and they should just admit it and do a frequentist statistical test.

There is a myth that when two means have confidence intervals that overlap, the means are not significantly different (at the 
 level). Another version of this myth is that if each mean is outside the confidence interval of the other mean, the means

are significantly different. Neither of these is true (Schenker and Gentleman 2001, Payton et al. 2003); it is easy for two sets of
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numbers to have overlapping confidence intervals, yet still be significantly different by a two-sample t–test; conversely, each mean
can be outside the confidence interval of the other, yet they're still not significantly different. Don't try compare two means by
visually comparing their confidence intervals, just use the correct statistical test.

Similar statistics
Confidence limits and standard error of the mean serve the same purpose, to express the reliability of an estimate of the mean.
When you look at scientific papers, sometimes the "error bars" on graphs or the ± number after means in tables represent the
standard error of the mean, while in other papers they represent  confidence intervals. I prefer  confidence intervals. When
I see a graph with a bunch of points and error bars representing means and confidence intervals, I know that most ( ) of the
error bars include the parametric means. When the error bars are standard errors of the mean, only about two-thirds of the bars are
expected to include the parametric means; I have to mentally double the bars to get the approximate size of the  confidence
interval (because  is approximately  for all but very small values of ). Whichever statistic you decide to use, be sure to
make it clear what the error bars on your graphs represent. A surprising number of papers don't say what their error bars represent,
which means that the only information the error bars convey to the reader is that the authors are careless and sloppy.

Examples

Measurement data

The blacknose dace data from the central tendency web page has an arithmetic mean of . The lower confidence limit is  (
), and the upper confidence limit is  ( ).

Nominal data

If you work with a lot of proportions, it's good to have a rough idea of confidence limits for different sample sizes, so you have an
idea of how much data you'll need for a particular comparison. For proportions near , the confidence intervals are roughly 

, and  for  and , respectively. This is why the "margin of error" in political polls,
which typically have a sample size of around , is usually about . Of course, this rough idea is no substitute for an actual
power analysis.

n proportion=0.10 proportion=0.50

10 0.0025, 0.4450 0.1871, 0.8129

100 0.0490, 0.1762 0.3983, 0.6017

1000 0.0821, 0.1203 0.4685, 0.5315

10,000 0.0942, 0.1060 0.4902, 0.5098

How to calculate confidence limits

Spreadsheets

The descriptive statistics spreadsheet descriptive.xls calculates  confidence limits of the mean for up to  measurements.
The confidence intervals for a binomial proportion spreadsheet confidence.xls calculates  confidence limits for nominal
variables, using both the exact binomial and the normal approximation.

Web pages

This web page calculates confidence intervals of the mean for up to  measurement observations. The web page for
confidence intervals of a proportion handles nominal variables.

R

Salvatore Mangiafico's  Companion has sample R programs for confidence limits for both measurement and nominal variables.

SAS

To get confidence limits for a measurement variable, add CIBASIC to the PROC UNIVARIATE statement, like this:
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data fish; 
input location $ dacenumber; 
cards; 
Mill_Creek_1 76 
Mill_Creek_2 102 
North_Branch_Rock_Creek_1 12 
North_Branch_Rock_Creek_2 39 
Rock_Creek_1 55 
Rock_Creek_2 93 
Rock_Creek_3 98 
Rock_Creek_4 53 
Turkey_Branch 102 
; 
proc univariate data=fish cibasic; 
run;

The output will include the  confidence limits for the mean (and for the standard deviation and variance, which you would
hardly ever need):

Basic Confidence Limits Assuming Normality 
 
Parameter Estimate 95% Confidence Limits 
 
Mean 70.00000 45.33665 94.66335 
Std Deviation 32.08582 21.67259 61.46908 
Variance 1030 469.70135 3778

This shows that the blacknose dace data have a mean of , with confidence limits of  and .

You can get the confidence limits for a binomial proportion using PROC FREQ. Here's the sample program from the exact test
of goodness-of-fit page:

data gus; 
input paw $; 
cards; 
right 
left 
right 
right 
right 
right 
left 
right 
right 
right 
; 
proc freq data=gus; 
tables paw / binomial(P=0.5); 
exact binomial; 
run;

And here is part of the output:

Binomial Proportion 
for paw = left 
-------------------------------- 
Proportion 0.2000 

95%

70 45.3 94.7
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ASE 0.1265 
95% Lower Conf Limit 0.0000 
95% Upper Conf Limit 0.4479 
 
Exact Conf Limits 
95% Lower Conf Limit 0.0252 
95% Upper Conf Limit 0.5561

The first pair of confidence limits shown is based on the normal approximation; the second pair is the better one, based on the exact
binomial calculation. Note that if you have more than two values of the nominal variable, the confidence limits will only be
calculated for the value whose name is first alphabetically. For example, if the Gus data set included "left," "right," and "both" as
values, SAS would only calculate the confidence limits on the proportion of "both." One clumsy way to solve this would be to run
the program three times, changing the name of "left" to "aleft," then changing the name of "right" to "aright," to make each one first
in one run.
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