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6.1: Multiple Comparisons

When you perform a large number of statistical tests, some will have  values less than  purely by chance, even if all
your null hypotheses are really true. The Bonferroni correction is one simple way to take this into account; adjusting the
false discovery rate using the Benjamini-Hochberg procedure is a more powerful method.

The problem with multiple comparisons
Any time you reject a null hypothesis because a  value is less than your critical value, it's possible that you're wrong; the null
hypothesis might really be true, and your significant result might be due to chance. A  value of  means that there's a 
chance of getting your observed result, if the null hypothesis were true. It does not mean that there's a  chance that the null
hypothesis is true.

For example, if you do  statistical tests, and for all of them the null hypothesis is actually true, you'd expect about  of the tests
to be significant at the  level, just due to chance. In that case, you'd have about  statistically significant results, all of
which were false positives. The cost, in time, effort and perhaps money, could be quite high if you based important conclusions on
these false positives, and it would at least be embarrassing for you once other people did further research and found that you'd been
mistaken.

This problem, that when you do multiple statistical tests, some fraction will be false positives, has received increasing attention in
the last few years. This is important for such techniques as the use of microarrays, which make it possible to measure RNA
quantities for tens of thousands of genes at once; brain scanning, in which blood flow can be estimated in  or more three-
dimensional bits of brain; and evolutionary genomics, where the sequences of every gene in the genome of two or more species can
be compared. There is no universally accepted approach for dealing with the problem of multiple comparisons; it is an area of
active research, both in the mathematical details and broader epistomological questions.

Controlling the familywise error rate - Bonferroni Correction
The classic approach to the multiple comparison problem is to control the familywise error rate. Instead of setting the critical 
level for significance, or alpha, to , you use a lower critical value. If the null hypothesis is true for all of the tests, the
probability of getting one result that is significant at this new, lower critical value is . In other words, if all the null hypotheses
are true, the probability that the family of tests includes one or more false positives due to chance is .

The most common way to control the familywise error rate is with the Bonferroni correction. You find the critical value (alpha)
for an individual test by dividing the familywise error rate (usually ) by the number of tests. Thus if you are doing 
statistical tests, the critical value for an individual test would be , and you would only consider individual tests
with  to be significant. As an example, García-Arenzana et al. (2014) tested associations of  dietary variables with
mammographic density, an important risk factor for breast cancer, in Spanish women. They found the following results:

Dietary variable P value

Total calories <0.001

Olive oil 0.008

Whole milk 0.039

White meat 0.041

Proteins 0.042

Nuts 0.06

Cereals and pasta 0.074

White fish 0.205

Butter 0.212
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Dietary variable P value

Vegetables 0.216

Skimmed milk 0.222

Red meat 0.251

Fruit 0.269

Eggs 0.275

Blue fish 0.34

Legumes 0.341

Carbohydrates 0.384

Potatoes 0.569

Bread 0.594

Fats 0.696

Sweets 0.762

Dairy products 0.94

Semi-skimmed milk 0.942

Total meat 0.975

Processed meat 0.986

As you can see, five of the variables show a significant ( )  value. However, because García-Arenzana et al. (2014)
tested  dietary variables, you'd expect one or two variables to show a significant result purely by chance, even if diet had no real
effect on mammographic density. Applying the Bonferroni correction, you'd divide  by the number of tests ( ) to get the
Bonferroni critical value, so a test would have to have  to be significant. Under that criterion, only the test for total
calories is significant.

The Bonferroni correction is appropriate when a single false positive in a set of tests would be a problem. It is mainly useful when
there are a fairly small number of multiple comparisons and you're looking for one or two that might be significant. However, if
you have a large number of multiple comparisons and you're looking for many that might be significant, the Bonferroni correction
may lead to a very high rate of false negatives. For example, let's say you're comparing the expression level of  genes
between liver cancer tissue and normal liver tissue. Based on previous studies, you are hoping to find dozens or hundreds of genes
with different expression levels. If you use the Bonferroni correction, a  value would have to be less than 

 to be significant. Only genes with huge differences in expression will have a  value that low, and
could miss out on a lot of important differences just because you wanted to be sure that your results did not include a single false
negative.

An important issue with the Bonferroni correction is deciding what a "family" of statistical tests is. García-Arenzana et al. (2014)
tested  dietary variables, so are these tests one "family," making the critical  value ? But they also measured  non-
dietary variables such as age, education, and socioeconomic status; should they be included in the family of tests, making the
critical  value ? And what if in 2015, García-Arenzana et al. write another paper in which they compare  dietary
variables between breast cancer and non-breast cancer patients; should they include those in their family of tests, and go back and
reanalyze the data in their 2014 paper using a critical  value of ? There is no firm rule on this; you'll have to use your
judgment, based on just how bad a false positive would be. Obviously, you should make this decision before you look at the results,
otherwise it would be too easy to subconsciously rationalize a family size that gives you the results you want.
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Controlling the false discovery rate: Benjamini–Hochberg procedure
An alternative approach is to control the false discovery rate. This is the proportion of "discoveries" (significant results) that are
actually false positives. For example, let's say you're using microarrays to compare expression levels for  genes between
liver tumors and normal liver cells. You're going to do additional experiments on any genes that show a significant difference
between the normal and tumor cells, and you're willing to accept up to  of the genes with significant results being false
positives; you'll find out they're false positives when you do the followup experiments. In this case, you would set your false
discovery rate to .

One good technique for controlling the false discovery rate was briefly mentioned by Simes (1986) and developed in detail by
Benjamini and Hochberg (1995). Put the individual  values in order, from smallest to largest. The smallest  value has a rank of 

, then next smallest has , etc. Compare each individual  value to its Benjamini-Hochberg critical value, ,
where i is the rank,  is the total number of tests, and  is the false discovery rate you choose. The largest  value that has 

 is significant, and all of the  values smaller than it are also significant, even the ones that aren't less than their
Benjamini-Hochberg critical value.

To illustrate this, here are the data from García-Arenzana et al. (2014) again, with the Benjamini-Hochberg critical value for a false
discovery rate of .

Dietary variable P value Rank (i/m)Q

Total calories <0.001 1 0.010

Olive oil 0.008 2 0.020

Whole milk 0.039 3 0.030

White meat 0.041 4 0.040

Proteins 0.042 5 0.050

Nuts 0.060 6 0.060

Cereals and pasta 0.074 7 0.070

White fish 0.205 8 0.080

Butter 0.212 9 0.090

Vegetables 0.216 10 0.100

Skimmed milk 0.222 11 0.110

Red meat 0.251 12 0.120

Fruit 0.269 13 0.130

Eggs 0.275 14 0.140

Blue fish 0.34 15 0.150

Legumes 0.341 16 0.160

Carbohydrates 0.384 17 0.170

Potatoes 0.569 18 0.180

Bread 0.594 19 0.190

Fats 0.696 20 0.200

Sweets 0.762 21 0.210

Dairy products 0.94 22 0.220

Semi-skimmed milk 0.942 23 0.230
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Dietary variable P value Rank (i/m)Q

Total meat 0.975 24 0.240

Processed meat 0.986 25 0.250

Reading down the column of  values, the largest one with  is proteins, where the individual  value ( ) is less
than the  value of . Thus the first five tests would be significant. Note that whole milk and white meat are significant,
even though their  values are not less than their Benjamini-Hochberg critical values; they are significant because they have 
values less than that of proteins.

When you use the Benjamini-Hochberg procedure with a false discovery rate greater than , it is quite possible for individual
tests to be significant even though their  value is greater than . Imagine that all of the  values in the García-Arenzana et al.
(2014) study were between  and . Then with a false discovery rate of , all of the tests would be significant, even the
one with . This may seem wrong, but if all  null hypotheses were true, you'd expect the largest  value to be well over 

; it would be extremely unlikely that the largest  value would be less than . You would only expect the largest  value to
be less than  if most of the null hypotheses were false, and since a false discovery rate of  means you're willing to reject a
few true null hypotheses, you would reject them all.

You should carefully choose your false discovery rate before collecting your data. Usually, when you're doing a large number of
statistical tests, your experiment is just the first, exploratory step, and you're going to follow up with more experiments on the
interesting individual results. If the cost of additional experiments is low and the cost of a false negative (missing a potentially
important discovery) is high, you should probably use a fairly high false discovery rate, like  or , so that you don't miss
anything important. Sometimes people use a false discovery rate of , probably because of confusion about the difference
between false discovery rate and probability of a false positive when the null is true; a false discovery rate of  is probably too
low for many experiments.

The Benjamini-Hochberg procedure is less sensitive than the Bonferroni procedure to your decision about what is a "family" of
tests. If you increase the number of tests, and the distribution of  values is the same in the newly added tests as in the original
tests, the Benjamini-Hochberg procedure will yield the same proportion of significant results. For example, if García-Arenzana et
al. (2014) had looked at  variables instead of  and the new  tests had the same set of P values as the original , they would
have  significant results under Benjamini-Hochberg with a false discovery rate of . This doesn't mean you can completely
ignore the question of what constitutes a family; if you mix two sets of tests, one with some low  values and a second set without
low  values, you will reduce the number of significant results compared to just analyzing the first set by itself.

Sometimes you will see a "Benjamini-Hochberg adjusted  value." The adjusted  value for a test is either the raw  value times 
 or the adjusted  value for the next higher raw  value, whichever is smaller (remember that m is the number of tests and i is

the rank of each test, with  the rank of the smallest  value). If the adjusted  value is smaller than the false discovery rate, the
test is significant. For example, the adjusted  value for proteins in the example data set is ; the adjusted 

 value for white meat is the smaller of  or , so it is . In my opinion "adjusted  values" are a
little confusing, since they're not really estimates of the probability ( ) of anything. I think it's better to give the raw  values and
say which are significant using the Benjamini-Hochberg procedure with your false discovery rate, but if Benjamini-Hochberg
adjusted P values are common in the literature of your field, you might have to use them.

Assumption

The Bonferroni correction and Benjamini-Hochberg procedure assume that the individual tests are independent of each other, as
when you are comparing sample A vs. sample B, C vs. D, E vs. F, etc. If you are comparing sample A vs. sample B, A vs. C, A vs.
D, etc., the comparisons are not independent; if A is higher than B, there's a good chance that A will be higher than C as well. One
place this occurs is when you're doing unplanned comparisons of means in anova, for which a variety of other techniques have
been developed, such as the Tukey-Kramer test. Another experimental design with multiple, non-independent comparisons is when
you compare multiple variables between groups, and the variables are correlated with each other within groups. An example would
be knocking out your favorite gene in mice and comparing everything you can think of on knockout vs. control mice: length,
weight, strength, running speed, food consumption, feces production, etc. All of these variables are likely to be correlated within
groups; mice that are longer will probably also weigh more, would be stronger, run faster, eat more food, and poop more. To
analyze this kind of experiment, you can use multivariate analysis of variance, or manova, which I'm not covering in this textbook.
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Other, more complicated techniques, such as Reiner et al. (2003), have been developed for controlling false discovery rate that may
be more appropriate when there is lack of independence in the data. If you're using microarrays, in particular, you need to become
familiar with this topic.

When not to correct for multiple comparisons
The goal of multiple comparisons corrections is to reduce the number of false positives, because false positives can be
embarrassing, confusing, and cause you and other people to waste your time. An unfortunate byproduct of correcting for multiple
comparisons is that you may increase the number of false negatives, where there really is an effect but you don't detect it as
statistically significant. If false negatives are very costly, you may not want to correct for multiple comparisons at all. For example,
let's say you've gone to a lot of trouble and expense to knock out your favorite gene, mannose-6-phosphate isomerase (Mpi), in a
strain of mice that spontaneously develop lots of tumors. Hands trembling with excitement, you get the first Mpi  mice and start
measuring things: blood pressure, growth rate, maze-learning speed, bone density, coat glossiness, everything you can think of to
measure on a mouse. You measure  things on Mpi  mice and normal mice, run the approriate statistical tests, and the smallest 

 value is  for a difference in tumor size. If you use a Bonferroni correction, that  won't be close to significant; it
might not be significant with the Benjamini-Hochberg procedure, either. Should you conclude that there's no significant difference
between the Mpi  and Mpi  mice, write a boring little paper titled "Lack of anything interesting in Mpi  mice," and look for
another project? No, your paper should be "Possible effect of Mpi on cancer." You should be suitably cautious, of course, and
emphasize in the paper that there's a good chance that your result is a false positive; but the cost of a false positive—if further
experiments show that Mpi really has no effect on tumors—is just a few more experiments. The cost of a false negative, on the
other hand, could be that you've missed out on a hugely important discovery.

How to do the tests

Spreadsheet

I have written a spreadsheet to do the Benjamini-Hochberg procedure benjaminihochberg.xls on up to   values. It will tell
you which  values are significant after controlling for the false discovery rate you choose. It will also give the Benjamini-
Hochberg adjusted  values, even though I think they're kind of stupid.

I have also written a spreadsheet to do the Bonferroni correction bonferroni.xls on up to   values.

Web pages

I'm not aware of any web pages that will perform the Benjamini-Hochberg procedure.

R

Salvatore Mangiafico's  Companion has a sample R programs for the Bonferroni, Benjamini-Hochberg, and several other
methods for correcting for multiple comparisons.

SAS

There is a PROC MULTTEST that will perform the Benjamini-Hochberg procedure, as well as many other multiple-comparison
corrections. Here's an example using the diet and mammographic density data from García-Arenzana et al. (2014).

DATA mammodiet; 
INPUT food $ Raw_P; 
cards; 
Blue_fish .34 
Bread .594 
Butter .212 
Carbohydrates .384 
Cereals_and_pasta .074 
Dairy_products .94 
Eggs .275 
Fats .696 
Fruit .269 
Legumes .341 

-/-

50 -/-
P 0.013 P = 0.013

-/- +/+ -/-

1000 P

P

P

1000 P

R
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Nuts .06 
Olive_oil .008 
Potatoes .569 
Processed_meat .986 
Proteins .042 
Red_meat .251 
Semi-skimmed_milk .942 
Skimmed_milk .222 
Sweets .762 
Total_calories .001 
Total_meat .975 
Vegetables .216 
White_fish .205 
White_meat .041 
Whole_milk .039 
; 
PROC SORT DATA=mammodiet OUT=sorted_p; 
BY Raw_P; 
PROC MULTTEST INPVALUES=sorted_p FDR; 
RUN;

Note that the  value variable must be named "Raw_P". I sorted the data by "Raw_P" before doing the multiple comparisons
test, to make the final output easier to read. In the PROC MULTTEST statement, INPVALUES tells you what file contains the
Raw_P variable, and FDR tells SAS to run the Benjamini-Hochberg procedure.

The output is the original list of  values and a column labeled "False Discovery Rate." If the number in this column is less
than the false discovery rate you chose before doing the experiment, the original ("raw")  value is significant.

Test Raw False Discovery Rate 
 
1 0.0010 0.0250 
2 0.0080 0.1000 
3 0.0390 0.2100 
4 0.0410 0.2100 
5 0.0420 0.2100 
6 0.0600 0.2500 
7 0.0740 0.2643 
8 0.2050 0.4911 
9 0.2120 0.4911 
10 0.2160 0.4911 
11 0.2220 0.4911 
12 0.2510 0.4911 
13 0.2690 0.4911 
14 0.2750 0.4911 
15 0.3400 0.5328 
16 0.3410 0.5328 
17 0.3840 0.5647 
18 0.5690 0.7816 
19 0.5940 0.7816 
20 0.6960 0.8700 
21 0.7620 0.9071 
22 0.9400 0.9860 
23 0.9420 0.9860 

P

P

P
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24 0.9750 0.9860 
25 0.9860 0.9860

So if you had chosen a false discovery rate of , the first  would be significant; if you'd chosen a false discovery rate of 
, only the first two would be significant.
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