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2.5: Chi-square Test of Independence

To use the chi-square test of independence when you have two nominal variables and you want to see whether the
proportions of one variable are different for different values of the other variable.
Use it when the sample size is large.

When to use it
Use the chi-square test of independence when you have two nominal variables, each with two or more possible values. You want to
know whether the proportions for one variable are different among values of the other variable. For example, Jackson et al. (2013)
wanted to know whether it is better to give the diphtheria, tetanus and pertussis (DTaP) vaccine in either the thigh or the arm, so
they collected data on severe reactions to this vaccine in children aged  to  years old. One nominal variable is severe reaction vs.
no severe reaction; the other nominal variable is thigh vs. arm.

No severe reaction Severe reaction Percent severe reaction

Thigh 4758 30 0.63%

Arm 8840 76 0.85%

There is a higher proportion of severe reactions in children vaccinated in the arm; a chi-square of independence will tell you
whether a difference this big is likely to have occurred by chance.

A data set like this is often called an "  table," where  is the number of rows and  is the number of columns. This is a 
 table. If the results were divided into "no reaction", "swelling," and "pain", it would have been a  table, or a 

table; it doesn't matter which variable is the columns and which is the rows.

It is also possible to do a chi-square test of independence with more than two nominal variables. For example, Jackson et al. (2013)
also had data for children under , so you could do an analysis of old vs. young, thigh vs. arm, and reaction vs. no reaction, all
analyzed together. That experimental design doesn't occur very often in experimental biology and is rather complicated to analyze
and interpret, so I don't cover it in this handbook (except for the special case of repeated  tables, analyzed with the Cochran-
Mantel-Haenszel test).

Fisher's exact test is more accurate than the chi-square test of independence when the expected numbers are small, so I only
recommend the chi-square test if your total sample size is greater than . See the web page on small sample sizes for further
discussion of what it means to be "small".

The chi-square test of independence is an alternative to the G–test of independence, and they will give approximately the same
results. Most of the information on this page is identical to that on the G–test page. You should read the section on "Chi-square vs.
G–test", pick either chi-square or G–test, then stick with that choice for the rest of your life.

Null hypothesis
The null hypothesis is that the relative proportions of one variable are independent of the second variable; in other words, the
proportions at one variable are the same for different values of the second variable. In the vaccination example, the null hypothesis
is that the proportion of children given thigh injections who have severe reactions is equal to the proportion of children given arm
injections who have severe reactions.

How the test works

The math of the chi-square test of independence is the same as for the chi-square test of goodness-of-fit, only the method of
calculating the expected frequencies is different. For the goodness-of-fit test, you use a theoretical relationship to calculate the
expected frequencies. For the test of independence, you use the observed frequencies to calculate the expected. For the vaccination
example, there are total children, and  of them had reactions. The null hypothesis
is therefore that  of the children given injections in the thigh would have reactions, and  of
children given injections in the arm would also have reactions. There are  children given injections in the thigh,
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so you expect  of the thigh children to have reactions, if the null hypothesis is true. You could do the
same kind of calculation for each of the cells in this  table of numbers.

Once you have each of the four expected numbers, you could compare them to the observed numbers using the chi-square test, just
like you did for the chi-square test of goodness-of-fit. The result is .

To get the  value, you also need the number of degrees of freedom. The degrees of freedom in a test of independence are equal to 
. Thus for a  table, there are  degree of freedom;

for a  table, there are  degrees of freedom. For  with  degree of freedom, the 
value is , which is not significant; you cannot conclude that -to- -year-old children given DTaP vaccinations in the thigh have
fewer reactions that those given injections in the arm. (Note that I'm just using the -to-  year olds as an example; Jackson et al.
[2013] also analyzed a much larger number of children less than 3 and found significantly fewer reactions in children given DTaP
in the thigh.)

While in principle, the chi-square test of independence is the same as the test of goodness-of-fit, in practice, the calculations for the
chi-square test of independence use shortcuts that don't require calculating the expected frequencies.

Post-hoc tests

When the chi-square test of a table larger than  is significant (and sometimes when it isn't), it is desirable to investigate the
data further. MacDonald and Gardner (2000) use simulated data to test several post-hoc tests for a test of independence, and they
found that pairwise comparisons with Bonferroni corrections of the  values work well. To illustrate this method, here is a study
(Klein et al. 2011) of men who were randomly assigned to take selenium, vitamin E, both selenium and vitamin E, or placebo, and
then followed up to see whether they developed prostate cancer:

No cancer Prostate cancer Percent cancer

Selenium 8177 575 6.6%

Vitamin E 8117 620 7.1%

Selenium and E 8147 555 6.4%

Placebo 8167 529 6.1%

The overall  table has a chi-square value of  with  degrees of freedom, giving a  value of . This is not quite
significant (by a tiny bit), but it's worthwhile to follow up to see if there's anything interesting. There are six possible pairwise
comparisons, so you can do a  chi-square test for each one and get the following  values:

P value

Selenium vs. vitamin E 0.17

Selenium vs. both 0.61

Selenium vs. placebo 0.19

Vitamin E vs. both 0.06

Vitamin E vs. placebo 0.007

Both vs. placebo 0.42

Because there are six comparisons, the Bonferroni-adjusted  value needed for significance is , or . The  value for
vitamin E vs. the placebo is less than , so you can say that there were significantly more cases of prostate cancer in men
taking vitamin E than men taking the placebo.

For this example, I tested all six possible pairwise comparisons. Klein et al. (2011) decided before doing the study that they would
only look at five pairwise comparisons (all except selenium vs. vitamin E), so their Bonferroni-adjusted  value would have been 

, or . If they had decided ahead of time to just compare each of the three treatments vs. the placebo, their Bonferroni-
adjusted  value would have been , or . The important thing is to decide before looking at the results how many
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comparisons to do, then adjust the  value accordingly. If you don't decide ahead of time to limit yourself to particular pair wise
comparisons, you need to adjust for the number of all possible pairs.

Another kind of post-hoc comparison involves testing each value of one nominal variable vs. the sum of all others. The same
principle applies: get the  value for each comparison, then apply the Bonferroni correction. For example, Latta et al. (2012)
collected birds in remnant riparian habitat (areas along rivers in California with mostly native vegetation) and restored riparian
habitat (once degraded areas that have had native vegetation re-established). They observed the following numbers (lumping
together the less common bird species as "Uncommon"):

Remnant Restored

Ruby-crowned kinglet 677 198

White-crowned sparrow 408 260

Lincoln's sparrow 270 187

Golden-crowned sparrow 300 89

Bushtit 198 91

Song Sparrow 150 50

Spotted towhee 137 32

Bewick's wren 106 48

Hermit thrush 119 24

Dark-eyed junco 34 39

Lesser goldfinch 57 15

Uncommon 457 125

The overall table yields a chi-square value of  with  degrees of freedom, which is highly significant ( ). That
tells us there's a difference in the species composition between the remnant and restored habitat, but it would be interesting to see
which species are a significantly higher proportion of the total in each habitat. To do that, do a  table for each species vs. all
others, like this:

Remnant Restored

Ruby-crowned kinglet 677 198

All others 2236 960

This gives the following  values:

P value

Ruby-crowned kinglet 0.000017

White-crowned sparrow 5.2×10

Lincoln's sparrow 3.5×10

Golden-crowned sparrow 0.011

Bushtit 0.23

Song Sparrow 0.27

Spotted towhee 0.0051

Bewick's wren 0.44
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P value

Hermit thrush 0.0017

Dark-eyed junco 1.8×10

Lesser goldfinch 0.15

Uncommon 0.00006

Because there are  comparisons, applying the Bonferroni correction means that a  value has to be less than 
to be significant at the  level, so six of the  species show a significant difference between the habitats.

When there are more than two rows and more than two columns, you may want to do all possible pairwise comparisons of rows
and all possible pairwise comparisons of columns; in that case, simply use the total number of pairwise comparisons in your
Bonferroni correction of the  value. There are also several techniques that test whether a particular cell in an  table
deviates significantly from expected; see MacDonald and Gardner (2000) for details.

Assumptions

The chi-square test of independence, like other tests of independence, assumes that the individual observations are independent.

Bambach et al. (2013) analyzed data on all bicycle accidents involving collisions with motor vehicles in New South Wales,
Australia during 2001-2009. Their very extensive multi-variable analysis includes the following numbers, which I picked out
both to use as an example of a  table and to convince you to wear your bicycle helmet:

Head injury Other injury % head injury

Wearing helmet 372 4715 7.3%

No helmet 267 1391 16.1%

The results are ,  degree of freedom, , meaning that bicyclists who were not wearing a
helmet have a higher proportion of head injuries.

Gardemann et al. (1998) surveyed genotypes at an insertion/deletion polymorphism of the apolipoprotein  signal peptide in 
 men. The nominal variables are genotype (ins/ins, ins/del, del/del) and coronary artery disease (with or without disease).

The data are:

No disease Coronary artery disease % disease

ins/ins 268 807 24.9%

ins/del 199 759 20.8%

del/del 42 184 18.6%

The biological null hypothesis is that the apolipoprotein polymorphism doesn't affect the likelihood of getting coronary artery
disease. The statistical null hypothesis is that the proportions of men with coronary artery disease are the same for each of the
three genotypes.

The result is , , . This indicates that you can reject the null hypothesis; the three genotypes
have significantly different proportions of men with coronary artery disease.
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Graphing the results
You should usually display the data used in a test of independence with a bar graph, with the values of one variable on the -axis
and the proportions of the other variable on the -axis. If the variable on the -axis only has two values, you only need to plot one
of them. In the example below, there would be no point in plotting both the percentage of men with prostate cancer and the
percentage without prostate cancer; once you know what percentage have cancer, you can figure out how many didn't have cancer.

Fig. 2.5.1 A bar graph for when the nominal variable has only two values, showing the percentage of men on different treatments
who developed prostate cancer. Error bars are 95% confidence intervals.

If the variable on the -axis has more than two values, you should plot all of them. Some people use pie charts for this, as
illustrated by the data on bird landing sites from the Fisher's exact test page:

Fig. 2.5.2 A pie chart for when the nominal variable has more than two values. The percentage of birds landing on each type of
landing site is shown for herons and egrets.

But as much as I like pie, I think pie charts make it difficult to see small differences in the proportions, and difficult to show
confidence intervals. In this situation, I prefer bar graphs:

Fig. 2.5.3 A bar graph for when the nominal variable has more than two values. The percentage of birds landing on each type of
landing site is shown for herons (gray bars) and egrets (black bars).
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Similar tests
There are several tests that use chi-square statistics. The one described here is formally known as Pearson's chi-square. It is by far
the most common chi-square test, so it is usually just called the chi-square test.

The chi-square test may be used both as a test of goodness-of-fit (comparing frequencies of one nominal variable to theoretical
expectations) and as a test of independence (comparing frequencies of one nominal variable for different values of a second
nominal variable). The underlying arithmetic of the test is the same; the only difference is the way you calculate the expected
values. However, you use goodness-of-fit tests and tests of independence for quite different experimental designs and they test
different null hypotheses, so I treat the chi-square test of goodness-of-fit and the chi-square test of independence as two distinct
statistical tests.

If the expected numbers in some classes are small, the chi-square test will give inaccurate results. In that case, you should use
Fisher's exact test. I recommend using the chi-square test only when the total sample size is greater than , and using Fisher's
exact test for everything smaller than that. See the web page on small sample sizes for further discussion.

If the samples are not independent, but instead are before-and-after observations on the same individuals, you should use
McNemar's test.

Chi-square vs. G–test

The chi-square test gives approximately the same results as the G–test. Unlike the chi-square test, -values are additive, which
means they can be used for more elaborate statistical designs. G–tests are a subclass of likelihood ratio tests, a general category of
tests that have many uses for testing the fit of data to mathematical models; the more elaborate versions of likelihood ratio tests
don't have equivalent tests using the Pearson chi-square statistic. The G–test is therefore preferred by many, even for simpler
designs. On the other hand, the chi-square test is more familiar to more people, and it's always a good idea to use statistics that your
readers are familiar with when possible. You may want to look at the literature in your field and see which is more commonly used.

How to do the test

Spreadsheet

I have set up a spreadsheet chiind.xls that performs this test for up to  columns and  rows. It is largely self-explanatory; you
just enter you observed numbers, and the spreadsheet calculates the chi-squared test statistic, the degrees of freedom, and the 
value.

Web page

There are many web pages that do chi-squared tests of independence, but most are limited to fairly small numbers of rows and
columns. Here is a page that will do up to a 10×10 table.

R

Salvatore Mangiafico's R Companion has a sample R program for the chi-square test of independence.

SAS

Here is a SAS program that uses PROC FREQ for a chi-square test. It uses the apolipoprotein  data from above.

DATA cad;
INPUT genotype $ health $ count; 
DATALINES; 
ins-ins no_disease 268 
ins-ins disease 807 
ins-del no_disease 199 
ins-del disease 759 
del-del no_disease 42 
del-del disease 184 
; 
PROC FREQ DATA=cad; 
WEIGHT count / ZEROS; 
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TABLES genotype*health / CHISQ; 
RUN;

The output includes the following:

Statistics for Table of genotype by health

Statistic DF Value Prob

Chi-Square 2 7.2594 0.0265

Likelihood Ratio Chi-Square 2 7.3008 0.0260

Mantel-Haenszel Chi-Square 1 7.0231 0.0080

Phi Coefficient  0.0567  

Contingency Coefficient  0.0566  

Cramer's V  0.0567  

The "Chi-Square" on the first line is the  value for the chi-square test; in this case, , , 
.

Power analysis
If each nominal variable has just two values (a  table), use the power analysis for Fisher's exact test. It will work even if the
sample size you end up needing is too big for a Fisher's exact test.

For a test with more than  rows or columns, use G*Power to calculate the sample size needed for a test of independence. Under
Test Family, choose chi-square tests, and under Statistical Test, choose Goodness-of-Fit Tests: Contingency Tables. Under Type of
Power Analysis, choose A Priori: Compute Required Sample Size.

You next need to calculate the effect size parameter . You can do this in G*Power if you have just two columns; if you have more
than two columns, use the chi-square spreadsheet chiind.xls. In either case, enter made-up proportions that look like what you hope
to detect. This made-up data should have proportions equal to what you expect to see, and the difference in proportions between
different categories should be the minimum size that you hope to see. G*Power or the spreadsheet will give you the value of w,
which you enter into the Effect Size w box in G*Power.

Finally, enter your alpha (usually ), your power (often  or ), and your degrees of freedom (for a test with  rows and 
columns, remember that degrees of freedom is ), then hit Calculate. This analysis assumes that your total
sample will be divided equally among the groups; if it isn't, you'll need a larger sample size than the one you estimate.

As an example, let's say you're looking for a relationship between bladder cancer and genotypes at a polymorphism in the catechol-
O-methyltransferase gene in humans. In the population you're studying, you know that the genotype frequencies in people without
bladder cancer are , , and ; you want to know how many people with bladder cancer you'll have to
genotype to get a significant result if they have  more  genotypes. Enter , , and  in the first column of the
spreadsheet, and , , and  in the second column; the effect size ( ) is . Enter this in the G*Power page, enter 

 for alpha,  for power, and  for degrees of freedom. The result is a total sample size of , so you'll need  people
with bladder cancer and  people without bladder cancer.
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