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1.4: Basic Concepts of Hypothesis Testing

One of the main goals of statistical hypothesis testing is to estimate the  value, which is the probability of obtaining the
observed results, or something more extreme, if the null hypothesis were true. If the observed results are unlikely under the
null hypothesis, reject the null hypothesis.
Alternatives to this "frequentist" approach to statistics include Bayesian statistics and estimation of effect sizes and
confidence intervals.

Introduction
There are different ways of doing statistics. The technique used by the vast majority of biologists, and the technique that most of
this handbook describes, is sometimes called "frequentist" or "classical" statistics. It involves testing a null hypothesis by
comparing the data you observe in your experiment with the predictions of a null hypothesis. You estimate what the probability
would be of obtaining the observed results, or something more extreme, if the null hypothesis were true. If this estimated
probability (the  value) is small enough (below the significance value), then you conclude that it is unlikely that the null
hypothesis is true; you reject the null hypothesis and accept an alternative hypothesis.

Many statisticians harshly criticize frequentist statistics, but their criticisms haven't had much effect on the way most biologists do
statistics. Here I will outline some of the key concepts used in frequentist statistics, then briefly describe some of the alternatives.

Null Hypothesis

The null hypothesis is a statement that you want to test. In general, the null hypothesis is that things are the same as each other, or
the same as a theoretical expectation. For example, if you measure the size of the feet of male and female chickens, the null
hypothesis could be that the average foot size in male chickens is the same as the average foot size in female chickens. If you count
the number of male and female chickens born to a set of hens, the null hypothesis could be that the ratio of males to females is
equal to a theoretical expectation of a  ratio.

The alternative hypothesis is that things are different from each other, or different from a theoretical expectation.

Fig. 1.4.1 A giant concrete chicken in Vietnam.

For example, one alternative hypothesis would be that male chickens have a different average foot size than female chickens;
another would be that the sex ratio is different from .

Usually, the null hypothesis is boring and the alternative hypothesis is interesting. For example, let's say you feed chocolate to a
bunch of chickens, then look at the sex ratio in their offspring. If you get more females than males, it would be a tremendously
exciting discovery: it would be a fundamental discovery about the mechanism of sex determination, female chickens are more
valuable than male chickens in egg-laying breeds, and you'd be able to publish your result in Science or Nature. Lots of people
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have spent a lot of time and money trying to change the sex ratio in chickens, and if you're successful, you'll be rich and famous.
But if the chocolate doesn't change the sex ratio, it would be an extremely boring result, and you'd have a hard time getting it
published in the Eastern Delaware Journal of Chickenology. It's therefore tempting to look for patterns in your data that support
the exciting alternative hypothesis. For example, you might look at  offspring of chocolate-fed chickens and see  females and
only  males. This looks promising, but before you get all happy and start buying formal wear for the Nobel Prize ceremony, you
need to ask "What's the probability of getting a deviation from the null expectation that large, just by chance, if the boring null
hypothesis is really true?" Only when that probability is low can you reject the null hypothesis. The goal of statistical hypothesis
testing is to estimate the probability of getting your observed results under the null hypothesis.

Biological vs. Statistical Null Hypotheses
It is important to distinguish between biological null and alternative hypotheses and statistical null and alternative hypotheses.
"Sexual selection by females has caused male chickens to evolve bigger feet than females" is a biological alternative hypothesis; it
says something about biological processes, in this case sexual selection. "Male chickens have a different average foot size than
females" is a statistical alternative hypothesis; it says something about the numbers, but nothing about what caused those numbers
to be different. The biological null and alternative hypotheses are the first that you should think of, as they describe something
interesting about biology; they are two possible answers to the biological question you are interested in ("What affects foot size in
chickens?"). The statistical null and alternative hypotheses are statements about the data that should follow from the biological
hypotheses: if sexual selection favors bigger feet in male chickens (a biological hypothesis), then the average foot size in male
chickens should be larger than the average in females (a statistical hypothesis). If you reject the statistical null hypothesis, you then
have to decide whether that's enough evidence that you can reject your biological null hypothesis. For example, if you don't find a
significant difference in foot size between male and female chickens, you could conclude "There is no significant evidence that
sexual selection has caused male chickens to have bigger feet." If you do find a statistically significant difference in foot size, that
might not be enough for you to conclude that sexual selection caused the bigger feet; it might be that males eat more, or that the
bigger feet are a developmental byproduct of the roosters' combs, or that males run around more and the exercise makes their feet
bigger. When there are multiple biological interpretations of a statistical result, you need to think of additional experiments to test
the different possibilities.

Testing the Null Hypothesis

The primary goal of a statistical test is to determine whether an observed data set is so different from what you would expect under
the null hypothesis that you should reject the null hypothesis. For example, let's say you are studying sex determination in chickens.
For breeds of chickens that are bred to lay lots of eggs, female chicks are more valuable than male chicks, so if you could figure out
a way to manipulate the sex ratio, you could make a lot of chicken farmers very happy. You've fed chocolate to a bunch of female
chickens (in birds, unlike mammals, the female parent determines the sex of the offspring), and you get  female chicks and 
male chicks. Anyone would look at those numbers and see that they could easily result from chance; there would be no reason to
reject the null hypothesis of a  ratio of females to males. If you got  females and  male, most people would look at those
numbers and see that they would be extremely unlikely to happen due to luck, if the null hypothesis were true; you would reject the
null hypothesis and conclude that chocolate really changed the sex ratio. However, what if you had  females and  males?
That's definitely more females than males, but is it really so unlikely to occur due to chance that you can reject the null hypothesis?
To answer that, you need more than common sense, you need to calculate the probability of getting a deviation that large due to
chance.

P values

Fig. 1.4.2 Probability of getting different numbers of males out of 48, if the parametric proportion of males is 0.5.

In the figure above, I used the BINOMDIST function of Excel to calculate the probability of getting each possible number of
males, from  to , under the null hypothesis that  are male. As you can see, the probability of getting  males out of  total
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chickens is about . That seems like a pretty small probability, doesn't it? However, that's the probability of getting exactly 
males. What you want to know is the probability of getting  or fewer males. If you were going to accept  males as evidence
that the sex ratio was biased, you would also have accepted , or , or ,… males as evidence for a biased sex ratio. You
therefore need to add together the probabilities of all these outcomes. The probability of getting  or fewer males out of , under
the null hypothesis, is . That means that if you had an infinite number of chickens, half males and half females, and you took
a bunch of random samples of  chickens,  of the samples would have  or fewer males.

This number, , is the  value. It is defined as the probability of getting the observed result, or a more extreme result, if the
null hypothesis is true. So " " is a shorthand way of saying "The probability of getting  or fewer male chickens out of 

 total chickens, IF the null hypothesis is true that  of chickens are male, is ."

False Positives vs. False Negatives

After you do a statistical test, you are either going to reject or accept the null hypothesis. Rejecting the null hypothesis means that
you conclude that the null hypothesis is not true; in our chicken sex example, you would conclude that the true proportion of male
chicks, if you gave chocolate to an infinite number of chicken mothers, would be less than .

When you reject a null hypothesis, there's a chance that you're making a mistake. The null hypothesis might really be true, and it
may be that your experimental results deviate from the null hypothesis purely as a result of chance. In a sample of  chickens, it's
possible to get  male chickens purely by chance; it's even possible (although extremely unlikely) to get  male and  female
chickens purely by chance, even though the true proportion is  males. This is why we never say we "prove" something in
science; there's always a chance, however miniscule, that our data are fooling us and deviate from the null hypothesis purely due to
chance. When your data fool you into rejecting the null hypothesis even though it's true, it's called a "false positive," or a "Type I
error." So another way of defining the  value is the probability of getting a false positive like the one you've observed, if the null
hypothesis is true.

Another way your data can fool you is when you don't reject the null hypothesis, even though it's not true. If the true proportion of
female chicks is , the null hypothesis of a  proportion is not true, but you're unlikely to get a significant difference from
the null hypothesis unless you have a huge sample size. Failing to reject the null hypothesis, even though it's not true, is a "false
negative" or "Type II error." This is why we never say that our data shows the null hypothesis to be true; all we can say is that we
haven't rejected the null hypothesis.

Significance Levels
Does a probability of  mean that you should reject the null hypothesis, and conclude that chocolate really caused a change in
the sex ratio? The convention in most biological research is to use a significance level of . This means that if the  value is
less than , you reject the null hypothesis; if  is greater than or equal to , you don't reject the null hypothesis. There is
nothing mathematically magic about , it was chosen rather arbitrarily during the early days of statistics; people could have
agreed upon , or , or  as the conventional significance level.

The significance level (also known as the "critical value" or "alpha") you should use depends on the costs of different kinds of
errors. With a significance level of , you have a  chance of rejecting the null hypothesis, even if it is true. If you try 
different treatments on your chickens, and none of them really change the sex ratio,  of your experiments will give you data that
are significantly different from a  sex ratio, just by chance. In other words,  of your experiments will give you a false
positive. If you use a higher significance level than the conventional , such as , you will increase your chance of a false
positive to  (therefore increasing your chance of an embarrassingly wrong conclusion), but you will also decrease your chance
of a false negative (increasing your chance of detecting a subtle effect). If you use a lower significance level than the conventional 

, such as , you decrease your chance of an embarrassing false positive, but you also make it less likely that you'll detect a
real deviation from the null hypothesis if there is one.

The relative costs of false positives and false negatives, and thus the best  value to use, will be different for different experiments.
If you are screening a bunch of potential sex-ratio-changing treatments and get a false positive, it wouldn't be a big deal; you'd just
run a few more tests on that treatment until you were convinced the initial result was a false positive. The cost of a false negative,
however, would be that you would miss out on a tremendously valuable discovery. You might therefore set your significance value
to  or more for your initial tests. On the other hand, once your sex-ratio-changing treatment is undergoing final trials before
being sold to farmers, a false positive could be very expensive; you'd want to be very confident that it really worked. Otherwise, if
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you sell the chicken farmers a sex-ratio treatment that turns out to not really work (it was a false positive), they'll sue the pants off
of you. Therefore, you might want to set your significance level to , or even lower, for your final tests.

The significance level you choose should also depend on how likely you think it is that your alternative hypothesis will be true, a
prediction that you make before you do the experiment. This is the foundation of Bayesian statistics, as explained below.

You must choose your significance level before you collect the data, of course. If you choose to use a different significance level
than the conventional , people will be skeptical; you must be able to justify your choice. Throughout this handbook, I will
always use  as the significance level. If you are doing an experiment where the cost of a false positive is a lot greater or
smaller than the cost of a false negative, or an experiment where you think it is unlikely that the alternative hypothesis will be true,
you should consider using a different significance level.

One-tailed vs. Two-tailed Probabilities
The probability that was calculated above, , is the probability of getting  or fewer males out of . It would be significant,
using the conventional criterion. However, what about the probability of getting  or fewer females? If your null
hypothesis is "The proportion of males is  or more" and your alternative hypothesis is "The proportion of males is less than ,"
then you would use the  value found by adding the probabilities of getting  or fewer males. This is called a one-tailed
probability, because you are adding the probabilities in only one tail of the distribution shown in the figure. However, if your null
hypothesis is "The proportion of males is ", then your alternative hypothesis is "The proportion of males is different from ."
In that case, you should add the probability of getting  or fewer females to the probability of getting  or fewer males. This is
called a two-tailed probability. If you do that with the chicken result, you get , which is not quite significant.

You should decide whether to use the one-tailed or two-tailed probability before you collect your data, of course. A one-tailed
probability is more powerful, in the sense of having a lower chance of false negatives, but you should only use a one-tailed
probability if you really, truly have a firm prediction about which direction of deviation you would consider interesting. In the
chicken example, you might be tempted to use a one-tailed probability, because you're only looking for treatments that decrease the
proportion of worthless male chickens. But if you accidentally found a treatment that produced  male chickens, would you
really publish the result as "The treatment did not cause a significant decrease in the proportion of male chickens"? I hope not.
You'd realize that this unexpected result, even though it wasn't what you and your farmer friends wanted, would be very interesting
to other people; by leading to discoveries about the fundamental biology of sex-determination in chickens, in might even help you
produce more female chickens someday. Any time a deviation in either direction would be interesting, you should use the two-
tailed probability. In addition, people are skeptical of one-tailed probabilities, especially if a one-tailed probability is significant and
a two-tailed probability would not be significant (as in our chocolate-eating chicken example). Unless you provide a very
convincing explanation, people may think you decided to use the one-tailed probability after you saw that the two-tailed probability
wasn't quite significant, which would be cheating. It may be easier to always use two-tailed probabilities. For this handbook, I
will always use two-tailed probabilities, unless I make it very clear that only one direction of deviation from the null
hypothesis would be interesting.

Reporting your results
In the olden days, when people looked up  values in printed tables, they would report the results of a statistical test as "

", " ", " ", etc. Nowadays, almost all computer statistics programs give the exact  value resulting
from a statistical test, such as , and that's what you should report in your publications. You will conclude that the results
are either significant or they're not significant; they either reject the null hypothesis (if  is below your pre-determined significance
level) or don't reject the null hypothesis (if  is above your significance level). But other people will want to know if your results
are "strongly" significant (  much less than ), which will give them more confidence in your results than if they were "barely"
significant ( , for example). In addition, other researchers will need the exact  value if they want to combine your
results with others into a meta-analysis.

Computer statistics programs can give somewhat inaccurate  values when they are very small. Once your  values get very
small, you can just say " " or some other impressively small number. You should also give either your raw data, or the
test statistic and degrees of freedom, in case anyone wants to calculate your exact  value.

0.01

0.05

P < 0.05

0.030 17 48

P < 0.05 17

17 0.5

P = 0.03 17

0.5 0.5

17 17

P = 0.06

87%

P

P < 0.05 P < 0.01 P > 0.10 P

P = 0.029

P

P

P 0.05

P = 0.043 P

P P

P < 0.00001

P

https://libretexts.org/
https://stats.libretexts.org/@go/page/1715?pdf


1.4.5 https://stats.libretexts.org/@go/page/1715

Effect Sizes and Confidence Intervals
A fairly common criticism of the hypothesis-testing approach to statistics is that the null hypothesis will always be false, if you
have a big enough sample size. In the chicken-feet example, critics would argue that if you had an infinite sample size, it is
impossible that male chickens would have exactly the same average foot size as female chickens. Therefore, since you know before
doing the experiment that the null hypothesis is false, there's no point in testing it.

This criticism only applies to two-tailed tests, where the null hypothesis is "Things are exactly the same" and the alternative is
"Things are different." Presumably these critics think it would be okay to do a one-tailed test with a null hypothesis like "Foot
length of male chickens is the same as, or less than, that of females," because the null hypothesis that male chickens have smaller
feet than females could be true. So if you're worried about this issue, you could think of a two-tailed test, where the null hypothesis
is that things are the same, as shorthand for doing two one-tailed tests. A significant rejection of the null hypothesis in a two-tailed
test would then be the equivalent of rejecting one of the two one-tailed null hypotheses.

A related criticism is that a significant rejection of a null hypothesis might not be biologically meaningful, if the difference is too
small to matter. For example, in the chicken-sex experiment, having a treatment that produced  male chicks might be
significantly different from , but it wouldn't be enough to make farmers want to buy your treatment. These critics say you
should estimate the effect size and put a confidence interval on it, not estimate a  value. So the goal of your chicken-sex
experiment should not be to say "Chocolate gives a proportion of males that is significantly less than  (( )" but to say
"Chocolate produced  males with a  confidence interval of  to ." For the chicken-feet experiment, you
would say something like "The difference between males and females in mean foot size is , with a confidence interval on
the difference of ."

Estimating effect sizes and confidence intervals is a useful way to summarize your results, and it should usually be part of your
data analysis; you'll often want to include confidence intervals in a graph. However, there are a lot of experiments where the goal is
to decide a yes/no question, not estimate a number. In the initial tests of chocolate on chicken sex ratio, the goal would be to decide
between "It changed the sex ratio" and "It didn't seem to change the sex ratio." Any change in sex ratio that is large enough that you
could detect it would be interesting and worth follow-up experiments. While it's true that the difference between  and 
might not be worth pursuing, you wouldn't do an experiment on enough chickens to detect a difference that small.

Often, the people who claim to avoid hypothesis testing will say something like "the  confidence interval of  to 
does not include , so we conclude that the plant extract significantly changed the sex ratio." This is a clumsy and roundabout
form of hypothesis testing, and they might as well admit it and report the  value.

Bayesian statistics
Another alternative to frequentist statistics is Bayesian statistics. A key difference is that Bayesian statistics requires specifying
your best guess of the probability of each possible value of the parameter to be estimated, before the experiment is done. This is
known as the "prior probability." So for your chicken-sex experiment, you're trying to estimate the "true" proportion of male
chickens that would be born, if you had an infinite number of chickens. You would have to specify how likely you thought it was
that the true proportion of male chickens was , or , or , or , etc. You would then look at the results of your
experiment and use the information to calculate new probabilities that the true proportion of male chickens was , or , or 

, or , etc. (the posterior distribution).

I'll confess that I don't really understand Bayesian statistics, and I apologize for not explaining it well. In particular, I don't
understand how people are supposed to come up with a prior distribution for the kinds of experiments that most biologists do. With
the exception of systematics, where Bayesian estimation of phylogenies is quite popular and seems to make sense, I haven't seen
many research biologists using Bayesian statistics for routine data analysis of simple laboratory experiments. This means that even
if the cult-like adherents of Bayesian statistics convinced you that they were right, you would have a difficult time explaining your
results to your biologist peers. Statistics is a method of conveying information, and if you're speaking a different language than the
people you're talking to, you won't convey much information. So I'll stick with traditional frequentist statistics for this handbook.

Having said that, there's one key concept from Bayesian statistics that is important for all users of statistics to understand. To
illustrate it, imagine that you are testing extracts from  different tropical plants, trying to find something that will kill beetle
larvae. The reality (which you don't know) is that  of the extracts kill beetle larvae, and  don't. You do the  experiments
and do the  frequentist statistical tests, and you use the traditional significance level of . The  plant extracts that
really work all give you ; these are the true positives. Of the  extracts that don't work,  of them give you 
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by chance (this is the meaning of the  value, after all), so you have  false positives. So you end up with  plant extracts that
gave you a  value less than . You'll have to do further experiments to figure out which are the  false positives and which
are the  true positives, but that's not so bad, since you know that most of them will turn out to be true positives.

Now imagine that you are testing those extracts from  different tropical plants to try to find one that will make hair grow. The
reality (which you don't know) is that one of the extracts makes hair grow, and the other  don't. You do the  experiments
and do the  frequentist statistical tests, and you use the traditional significance level of . The one plant extract that
really works gives you P<0.05; this is the true positive. But of the  extracts that don't work,  of them give you  by
chance, so you have about  false positives. You end up with   values less than , but almost all of them are false
positives.

Now instead of testing  plant extracts, imagine that you are testing just one. If you are testing it to see if it kills beetle larvae,
you know (based on everything you know about plant and beetle biology) there's a pretty good chance it will work, so you can be
pretty sure that a  value less than  is a true positive. But if you are testing that one plant extract to see if it grows hair, which
you know is very unlikely (based on everything you know about plants and hair), a  value less than  is almost certainly a
false positive. In other words, if you expect that the null hypothesis is probably true, a statistically significant result is probably a
false positive. This is sad; the most exciting, amazing, unexpected results in your experiments are probably just your data trying to
make you jump to ridiculous conclusions. You should require a much lower  value to reject a null hypothesis that you think is
probably true.

A Bayesian would insist that you put in numbers just how likely you think the null hypothesis and various values of the alternative
hypothesis are, before you do the experiment, and I'm not sure how that is supposed to work in practice for most experimental
biology. But the general concept is a valuable one: as Carl Sagan summarized it, "Extraordinary claims require extraordinary
evidence."

Recommendations

Here are three experiments to illustrate when the different approaches to statistics are appropriate. In the first experiment, you are
testing a plant extract on rabbits to see if it will lower their blood pressure. You already know that the plant extract is a diuretic
(makes the rabbits pee more) and you already know that diuretics tend to lower blood pressure, so you think there's a good chance
it will work. If it does work, you'll do more low-cost animal tests on it before you do expensive, potentially risky human trials.
Your prior expectation is that the null hypothesis (that the plant extract has no effect) has a good chance of being false, and the cost
of a false positive is fairly low. So you should do frequentist hypothesis testing, with a significance level of .

In the second experiment, you are going to put human volunteers with high blood pressure on a strict low-salt diet and see how
much their blood pressure goes down. Everyone will be confined to a hospital for a month and fed either a normal diet, or the same
foods with half as much salt. For this experiment, you wouldn't be very interested in the  value, as based on prior research in
animals and humans, you are already quite certain that reducing salt intake will lower blood pressure; you're pretty sure that the
null hypothesis that "Salt intake has no effect on blood pressure" is false. Instead, you are very interested to know how much the
blood pressure goes down. Reducing salt intake in half is a big deal, and if it only reduces blood pressure by  Hg, the tiny
gain in life expectancy wouldn't be worth a lifetime of bland food and obsessive label-reading. If it reduces blood pressure by 

 with a confidence interval of , it might be worth it. So you should estimate the effect size (the difference in blood
pressure between the diets) and the confidence interval on the difference.

Fig. 1.4.3 Two guinea pigs wearing hats.

In the third experiment, you are going to put magnetic hats on guinea pigs and see if their blood pressure goes down (relative to
guinea pigs wearing the kind of non-magnetic hats that guinea pigs usually wear). This is a really goofy experiment, and you know
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that it is very unlikely that the magnets will have any effect (it's not impossible—magnets affect the sense of direction of homing
pigeons, and maybe guinea pigs have something similar in their brains and maybe it will somehow affect their blood pressure—it
just seems really unlikely). You might analyze your results using Bayesian statistics, which will require specifying in numerical
terms just how unlikely you think it is that the magnetic hats will work. Or you might use frequentist statistics, but require a 
value much, much lower than  to convince yourself that the effect is real.

Reference
1. Picture of giant concrete chicken from Sue and Tony's Photo Site.
2. Picture of guinea pigs wearing hats from all over the internet; if you know the original photographer, please let me know.

This page titled 1.4: Basic Concepts of Hypothesis Testing is shared under a not declared license and was authored, remixed, and/or curated by
John H. McDonald via source content that was edited to the style and standards of the LibreTexts platform.

P

0.05

https://libretexts.org/
https://stats.libretexts.org/@go/page/1715?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Biological_Statistics_(McDonald)/01%3A_Basics/1.04%3A_Basic_Concepts_of_Hypothesis_Testing
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Biological_Statistics_(McDonald)/01%3A_Basics/1.04%3A_Basic_Concepts_of_Hypothesis_Testing?no-cache
http://udel.edu/~mcdonald/
http://www.biostathandbook.com/

