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14.8: Introduction to Multiple Regression

State the regression equation
Define "regression coefficient"
Define "beta weight"
Explain what  is and how it is related to 
Explain why a regression weight is called a "partial slope"
Explain why the sum of squares explained in a multiple regression model is usually less than the sum of the sums of
squares in simple regression
Define  in terms of proportion explained
Test  for significance
Test the difference between a complete and reduced model for significance
State the assumptions of multiple regression and specify which aspects of the analysis require assumptions

In simple linear regression, a criterion variable is predicted from one predictor variable. In multiple regression, the criterion is
predicted by two or more variables. For example, in the SAT case study, you might want to predict a student's university grade
point average on the basis of their High-School GPA ( ) and their total SAT score (verbal + math). The basic idea is to find
a linear combination of  and  that best predicts University GPA ( ). That is, the problem is to find the values
of  and  in the equation shown below that give the best predictions of . As in the case of simple linear regression, we
define the best predictions as the predictions that minimize the squared errors of prediction.

where  is the predicted value of University GPA and  is a constant. For these data, the best prediction equation is shown
below:

In other words, to compute the prediction of a student's University GPA, you add up their High-School GPA multiplied by ,
their  multiplied by , and . Table  shows the data and predictions for the first five students in the dataset.

Table : Data and Predictions

HSGPA SAT UGPA'

3.45 1232 3.38

2.78 1070 2.89

2.52 1086 2.76

3.67 1287 3.55

3.24 1130 3.19

The values of  (  and ) are sometimes called "regression coefficients" and sometimes called "regression weights." These two
terms are synonymous.

The multiple correlation ( ) is equal to the correlation between the predicted scores and the actual scores. In this example, it is the
correlation between  and , which turns out to be . That is, . Note that  will never be negative since
if there are negative correlations between the predictor variables and the criterion, the regression weights will be negative so that
the correlation between the predicted and actual scores will be positive.
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Interpretation of Regression Coefficients
A regression coefficient in multiple regression is the slope of the linear relationship between the criterion variable and the part of a
predictor variable that is independent of all other predictor variables. In this example, the regression coefficient for  can
be computed by first predicting  from  and saving the errors of prediction (the differences between  and 

). These errors of prediction are called "residuals" since they are what is left over in  after the predictions from 
 are subtracted, and represent the part of  that is independent of . These residuals are referred to as 

, which means they are the residuals in  after having been predicted by . The correlation between 
 and  is necessarily .

The final step in computing the regression coefficient is to find the slope of the relationship between these residuals and .
This slope is the regression coefficient for . The following equation is used to predict  from :

The residuals are then computed as:

The linear regression equation for the prediction of  by the residuals is

Notice that the slope ( ) is the same value given previously for  in the multiple regression equation.

This means that the regression coefficient for  is the slope of the relationship between the criterion variable and the part
of  that is independent of (uncorrelated with) the other predictor variables. It represents the change in the criterion
variable associated with a change of one in the predictor variable when all other predictor variables are held constant. Since the
regression coefficient for  is , this means that, holding  constant, a change of one in  is associated
with a change of  in . If two students had the same  and differed in  by , then you would predict they
would differ in  by . Similarly, if they differed by , then you would predict they would differ by 

.

The slope of the relationship between the part of a predictor variable independent of other predictor variables and the criterion is its
partial slope. Thus the regression coefficient of  for  and the regression coefficient of  for  are partial
slopes. Each partial slope represents the relationship between the predictor variable and the criterion holding constant all of the
other predictor variables.

It is difficult to compare the coefficients for different variables directly because they are measured on different scales. A difference
of  in  is a fairly large difference, whereas a difference of  on the  is negligible. Therefore, it can be advantageous
to transform the variables so that they are on the same scale. The most straightforward approach is to standardize the variables so
that they each have a standard deviation of . A regression weight for standardized variables is called a "beta weight" and is
designated by the Greek letter . For these data, the beta weights are  and . These values represent the change in the
criterion (in standard deviations) associated with a change of one standard deviation on a predictor [holding constant the value(s)
on the other predictor(s)]. Clearly, a change of one standard deviation on  is associated with a larger difference than a
change of one standard deviation of . In practical terms, this means that if you know a student's , knowing the
student's  does not aid the prediction of  much. However, if you do not know the student's , his or her 
can aid in the prediction since the  weight in the simple regression predicting  from  is . For comparison
purposes, the  weight in the simple regression predicting  from  is . As is typically the case, the partial
slopes are smaller than the slopes in simple regression.

Partitioning the Sums of Squares
Just as in the case of simple linear regression, the sum of squares for the criterion (  in this example) can be partitioned into
the sum of squares predicted and the sum of squares error. That is,

which for these data:
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The sum of squares predicted is also referred to as the "sum of squares explained." Again, as in the case of simple regression,

In simple regression, the proportion of variance explained is equal to ; in multiple regression, the proportion of variance
explained is equal to .

In multiple regression, it is often informative to partition the sum of squares explained among the predictor variables. For example,
the sum of squares explained for these data is . How is this value divided between  and ? One approach that,
as will be seen, does not work is to predict  in separate simple regressions for  and . As can be seen in Table

, the sum of squares in these separate simple regressions is  for  and  for . If we add these two sums
of squares we get , a value much larger than the sum of squares explained of  in the multiple regression analysis. The
explanation is that  and  are highly correlated ( ) and therefore much of the variance in  is
confounded between  and . That is, it could be explained by either  or  and is counted twice if the
sums of squares for  and  are simply added.

Table : Sums of Squares for Various Predictors

Predictors Sum of Squares

HSGPA 12.64

SAT 9.75

HSGPA and SAT 12.96

Table  shows the partitioning of the sum of squares into the sum of squares uniquely explained by each predictor variable,
the sum of squares confounded between the two predictor variables, and the sum of squares error. It is clear from this table that
most of the sum of squares explained is confounded between  and . Note that the sum of squares uniquely explained
by a predictor variable is analogous to the partial slope of the variable in that both involve the relationship between the variable and
the criterion with the other variable(s) controlled.

Table : Partitioning the Sum of Squares

Source Sum of Squares Proportion

HSGPA (unique) 3.21 0.15

SAT (unique) 0.32 0.02

HSGPA and SAT (Confounded) 9.43 0.45

Error 7.84 0.38

Total 20.80 1.00

The sum of squares uniquely attributable to a variable is computed by comparing two regression models: the complete model and a
reduced model. The complete model is the multiple regression with all the predictor variables included (  and  in this
example). A reduced model is a model that leaves out one of the predictor variables. The sum of squares uniquely attributable to a
variable is the sum of squares for the complete model minus the sum of squares for the reduced model in which the variable of
interest is omitted. As shown in Table , the sum of squares for the complete model (  and ) is . The sum
of squares for the reduced model in which  is omitted is simply the sum of squares explained using  as the predictor
variable and is . Therefore, the sum of squares uniquely attributable to  is . Similarly, the sum
of squares uniquely attributable to  is . The confounded sum of squares in this example is computed by
subtracting the sum of squares uniquely attributable to the predictor variables from the sum of squares for the complete model: 

Proportion Explained = SS /SSYY ′ (14.8.8)
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. The computation of the confounded sums of squares in analysis with more than two predictors is
more complex and beyond the scope of this text.

Since the variance is simply the sum of squares divided by the degrees of freedom, it is possible to refer to the proportion of
variance explained in the same way as the proportion of the sum of squares explained. It is slightly more common to refer to the
proportion of variance explained than the proportion of the sum of squares explained and, therefore, that terminology will be
adopted frequently here.

When variables are highly correlated, the variance explained uniquely by the individual variables can be small even though the
variance explained by the variables taken together is large. For example, although the proportions of variance explained uniquely
by  and  are only  and  respectively, together these two variables explain  of the variance. Therefore,
you could easily underestimate the importance of variables if only the variance explained uniquely by each variable is considered.
Consequently, it is often useful to consider a set of related variables. For example, assume you were interested in predicting job
performance from a large number of variables some of which reflect cognitive ability. It is likely that these measures of cognitive
ability would be highly correlated among themselves and therefore no one of them would explain much of the variance
independently of the other variables. However, you could avoid this problem by determining the proportion of variance explained
by all of the cognitive ability variables considered together as a set. The variance explained by the set would include all the
variance explained uniquely by the variables in the set as well as all the variance confounded among variables in the set. It would
not include variance confounded with variables outside the set. In short, you would be computing the variance explained by the set
of variables that is independent of the variables not in the set.

Inferential Statistics
We begin by presenting the formula for testing the significance of the contribution of a set of variables. We will then show how
special cases of this formula can be used to test the significance of  as well as to test the significance of the unique contribution
of individual variables.

The first step is to compute two regression analyses:

1. an analysis in which all the predictor variables are included and
2. an analysis in which the variables in the set of variables being tested are excluded.

The former regression model is called the "complete model" and the latter is called the "reduced model." The basic idea is that if
the reduced model explains much less than the complete model, then the set of variables excluded from the reduced model is
important.

The formula for testing the contribution of a group of variables is:

where:

 is the sum of squares for the complete model,

 is the sum of squares for the reduced model,

 is the number of predictors in the complete model,

 is the number of predictors in the reduced model,

 is the sum of squares total (the sum of squared deviations of the criterion variable from its mean), and

 is the total number of observations

The degrees of freedom for the numerator is  and the degrees of freedom for the denominator is . If the  is
significant, then it can be concluded that the variables excluded in the reduced set contribute to the prediction of the criterion
variable independently of the other variables.

12.96 −3.21 −0.32 = 9.43
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This formula can be used to test the significance of  by defining the reduced model as having no predictor variables. In this
application,  and . The formula is then simplified as follows:

which for this example becomes:

The degrees of freedom are  and . The  distribution calculator shows that .

F Calculator

The reduced model used to test the variance explained uniquely by a single predictor consists of all the variables except the
predictor variable in question. For example, the reduced model for a test of the unique contribution of  contains only the
variable . Therefore, the sum of squares for the reduced model is the sum of squares when  is predicted by . This
sum of squares is . The calculations for  are shown below:

The degrees of freedom are  and . The  distribution calculator shows that .

Similarly, the reduced model in the test for the unique contribution of  consists of .

The degrees of freedom are  and . The  distribution calculator shows that .

The significance test of the variance explained uniquely by a variable is identical to a significance test of the regression coefficient
for that variable. A regression coefficient and the variance explained uniquely by a variable both reflect the relationship between a
variable and the criterion independent of the other variables. If the variance explained uniquely by a variable is not zero, then the
regression coefficient cannot be zero. Clearly, a variable with a regression coefficient of zero would explain no variance.

Other inferential statistics associated with multiple regression are beyond the scope of this text. Two of particular importance are:

1. confidence intervals on regression slopes and
2. confidence intervals on predictions for specific observations.

These inferential statistics can be computed by standard statistical analysis packages such as , , , , and 
.

SPSS Output JMP Output

Assumptions
No assumptions are necessary for computing the regression coefficients or for partitioning the sum of squares. However, there are
several assumptions made when interpreting inferential statistics. Moderate violations of Assumptions  do not pose a serious
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problem for testing the significance of predictor variables. However, even small violations of these assumptions pose problems for
confidence intervals on predictions for specific observations.

1. Residuals are normally distributed:

As in the case of simple linear regression, the residuals are the errors of prediction. Specifically, they are the differences
between the actual scores on the criterion and the predicted scores. A  plot for the residuals for the example data is
shown below. This plot reveals that the actual data values at the lower end of the distribution do not increase as much as
would be expected for a normal distribution. It also reveals that the highest value in the data is higher than would be expected
for the highest value in a sample of this size from a normal distribution. Nonetheless, the distribution does not deviate greatly
from normality.

Figure : A  plot for the residuals for the example data

2. Homoscedasticity:

It is assumed that the variances of the errors of prediction are the same for all predicted values. As can be seen below, this
assumption is violated in the example data because the errors of prediction are much larger for observations with low-to-
medium predicted scores than for observations with high predicted scores. Clearly, a confidence interval on a low predicted 

 would underestimate the uncertainty.

Figure : Low predicted 

3. Linearity:

It is assumed that the relationship between each predictor variable and the criterion variable is linear. If this assumption is not
met, then the predictions may systematically overestimate the actual values for one range of values on a predictor variable
and underestimate them for another.

This page titled 14.8: Introduction to Multiple Regression is shared under a Public Domain license and was authored, remixed, and/or curated by
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