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16.3: Tukey Ladder of Powers

Give the Tukey ladder of transformations
Find a transformation that reveals a linear relationship
Find a transformation to approximate a normal distribution

Introduction
We assume we have a collection of bivariate data

and that we are interested in the relationship between variables  and . Plotting the data on a scatter diagram is the first step. As
an example, consider the population of the United States for the  years before the Civil War. Of course, the decennial census
began in . These data are plotted two ways in Figure . Malthus predicted that geometric growth of populations coupled
with arithmetic growth of grain production would have catastrophic results. Indeed the US population followed an exponential
curve during this period.

Figure : The US population from . The Y axis on the right panel is on a log scale

Tukey's Transformation Ladder
Tukey ( ) describes an orderly way of re-expressing variables using a power transformation. You may be familiar with
polynomial regression (a form of multiple regression) in which the simple linear model  is extended with terms such
as . Alternatively, Tukey suggests exploring simple relationships such as

or

where  is a parameter chosen to make the relationship as close to a straight line as possible. Linear relationships are special, and if
a transformation of the type  or y works as in Equation , then we should consider changing our measurement scale for the
rest of the statistical analysis.

There is no constraint on values of  that we may consider. Obviously choosing  leaves the data unchanged. Negative values
of  are also reasonable. For example, the relationship

would be represented by . The value  has no special value, since , which is just a constant. Tukey ( )
suggests that it is convenient to simply define the transformation when  to be the logarithm function rather than the constant 

. We shall revisit this convention shortly. The following table gives examples of the Tukey ladder of transformations.

Table : Tukey's Lader of transformation
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If  takes on negative values, then special care must be taken so that the transformations make sense, if possible. We generally limit
ourselves to variables where  to avoid these considerations. For some dependent variables such as the number of errors, it is
convenient to add  to  before applying the transformation.

Also, if the transformation parameter  is negative, then the transformed variable  is reversed. For example, if  is increasing,
then  is decreasing. We choose to redefine the Tukey transformation to be  if  in order to preserve the order of the
variable after transformation. Formally, the Tukey transformation is defined as

In Table  we reproduce Table  using the modified definition when .

Table : Modified Tukey's Ladder of Transformations

The Best Transformation for Linearity
The goal is to find a value of  that makes the scatter diagram as linear as possible. For the US population, the logarithmic
transformation applied to  makes the relationship almost perfectly linear. The red dashed line in the right frame of Figure 
has a slope of about ; that is, the US population grew at a rate of about  per decade.

The logarithmic transformation corresponds to the choice  by Tukey's convention. In Figure , we display the scatter
diagram of the US population data for  as well as for other choices of .

Figure : The US population from  to  for various values of 

The raw data are plotted in the bottom right frame of Figure  when . The logarithmic fit is in the upper right frame
when . Notice how the scatter diagram smoothly morphs from convex to concave as  increases. Thus intuitively there is a
unique best choice of  corresponding to the "most linear" graph.

One way to make this choice objective is to use an objective function for this purpose. One approach might be to fit a straight line
to the transformed points and try to minimize the residuals. However, an easier approach is based on the fact that the correlation
coefficient, , is a measure of the linearity of a scatter diagram. In particular, if the points fall on a straight line then their
correlation will be . (We need not worry about the case when  since we have defined the Tukey transformed variable 

 to be positively correlated with  itself.)

In Figure , we plot the correlation coefficient of the scatter diagram  as a function of . It is clear that the logarithmic
transformation ( ) is nearly optimal by this criterion.
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Figure : Graph of US population correlation coefficient as function of 

Is the US population still on the same exponential growth pattern? In Figure , we display the US population from  to 
 using the transformation and fit used in the right frame of Figure . Fortunately, the exponential growth (or at least its

rate) was not sustained into the Twentieth Century. If it had, the US population in the year  would have been over  billion (
 to be exact), larger than the population of China.

Figure : Graph of US population  with 

We can examine the decennial census population figures of individual states as well. In Figure , we display the population
data for the state of New York from  to , together with an estimate of the population in . Clearly something unusual
happened starting in . (This began the period of mass migration to the West and South as the rust belt industries began to shut
down.) Thus, we compute the best  value using the data from -  in the middle frame of Figure . The right frame
displays the transformed data, together with the linear fit for the  period. The value of  is not obvious and
one might reasonably choose to use  for practical reasons.

Figure : Graphs related to the New York state population 

If we look at one of the younger states in the West, the picture is different. Arizona has attracted many retirees and immigrants.
Figure  summarizes our findings. Indeed, the growth of population in Arizona is logarithmic, and appears to still be
logarithmic through .
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Figure : Graphs related to the Arizona state population 

Reducing Skew
Many statistical methods such as  tests and the analysis of variance assume normal distributions. Although these methods are
relatively robust to violations of normality, transforming the distributions to reduce skew can markedly increase their power.

As an example, the data in the "Stereograms" case study are very skewed. A t test of the difference between the two conditions
using the raw data results in a p value of , a value not conventionally considered significant. However, after a log
transformation ( ) that reduces the skew greatly, the  value is  which is conventionally considered significant.

The demonstration in Figure  shows distributions of the data from the Stereograms case study as transformed with various
values of . Decreasing  makes the distribution less positively skewed. Keep in mind that  is the raw data. Notice that there
is a slight positive skew for  but much less skew than found in the raw data ( ). Values of below 0 result in negative
skew.

Figure : Distribution of data from the Stereograms case study for various values of . The starting point is the raw data (
)
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