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15.3: One-Factor ANOVA

State what the Mean Square Between ( ) estimates when the null hypothesis is true and when the null hypothesis is
false
Compute 
Compute  and its two degrees of freedom parameters
Explain why ANOVA is best thought of as a two-tailed test even though literally only one tail of the distribution is used
Partition the sums of squares into condition and error
Format data to be used with a computer statistics program

This section shows how ANOVA can be used to analyze a one-factor between-subjects design. We will use as our main example
the "Smiles and Leniency" case study. In this study there were four conditions with  subjects in each condition. There was one
score per subject. The null hypothesis tested by ANOVA is that the population means for all conditions are the same. This can be
expressed as follows:

where  is the null hypothesis and  is the number of conditions. In the "Smiles and Leniency" study,  and the null
hypothesis is

If the null hypothesis is rejected, then it can be concluded that at least one of the population means is different from at least one
other population mean.

Analysis of variance is a method for testing differences among means by analyzing variance. The test is based on two estimates of
the population variance ( ). One estimate is called the mean square error ( ) and is based on differences among scores
within the groups.  estimates  regardless of whether the null hypothesis is true (the population means are equal). The
second estimate is called the mean square between ( ) and is based on differences among the sample means.  only
estimates  if the population means are equal. If the population means are not equal, then  estimates a quantity larger than 

. Therefore, if the  is much larger than the , then the population means are unlikely to be equal. On the other hand, if
the  is about the same as , then the data are consistent with the null hypothesis that the population means are equal.

Before proceeding with the calculation of  and , it is important to consider the assumptions made by ANOVA:

1. The populations have the same variance. This assumption is called the assumption of .
2. The populations are normally distributed.
3. Each value is sampled independently from each other value. This assumption requires that each subject provide only one value.

If a subject provides two scores, then the values are not independent. The analysis of data with two scores per subject is shown
in the section on within-subjects ANOVA later in this chapter.

These assumptions are the same as for a t test of differences between groups except that they apply to two or more groups, not just
to two groups.

The means and variances of the four groups in the "Smiles and Leniency" case study are shown in Table . Note that there are 
 subjects in each of the four conditions (False, Felt, Miserable, and Neutral).

Table : Means and Variances from the "Smiles and Leniency" Study

Condition Mean Variance

False 5.3676 3.3380

Felt 4.9118 2.8253

Miserable 4.9118 2.1132

Neutral 4.1176 2.3191
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Sample Sizes
The first calculations in this section all assume that there is an equal number of observations in each group. Unequal sample size
calculations are shown here. We will refer to the number of observations in each group as  and the total number of observations as

. For these data there are four groups of  observations. Therefore,  and .

Computing MSE

Recall that the assumption of homogeneity of variance states that the variance within each of the populations ( ) is the same. This
variance, , is the quantity estimated by  and is computed as the mean of the sample variances. For these data, the  is
equal to .

Computing MSB
The formula for  is based on the fact that the variance of the sampling distribution of the mean is

where  is the sample size of each group. Rearranging this formula, we have

Therefore, if we knew the variance of the sampling distribution of the mean, we could compute  by multiplying it by .
Although we do not know the variance of the sampling distribution of the mean, we can estimate it with the variance of the sample
means. For the leniency data, the variance of the four sample means is . To estimate , we multiply the variance of the
sample means ( ) by  (the number of observations in each group, which is ). We find that .

To sum up these steps:

1. Compute the means.
2. Compute the variance of the means.
3. Multiply the variance of the means by .

Recap
If the population means are equal, then both  and  are estimates of  and should therefore be about the same.
Naturally, they will not be exactly the same since they are just estimates and are based on different aspects of the data: The 
is computed from the sample means and the  is computed from the sample variances.

If the population means are not equal, then  will still estimate  because differences in population means do not affect
variances. However, differences in population means affect  since differences among population means are associated with
differences among sample means. It follows that the larger the differences among sample means, the larger the .

In short,  estimates  whether or not the population means are equal, whereas  estimates  only when the
population means are equal and estimates a larger quantity when they are not equal.

Comparing MSE and MSB
The critical step in an ANOVA is comparing  and . Since  estimates a larger quantity than  only when the
population means are not equal, a finding of a larger  than an  is a sign that the population means are not equal. But
since  could be larger than  by chance even if the population means are equal,  must be much larger than 
in order to justify the conclusion that the population means differ. But how much larger must  be? For the "Smiles and
Leniency" data, the  and  are  and , respectively. Is that difference big enough? To answer, we would need
to know the probability of getting that big a difference or a bigger difference if the population means were all equal. The
mathematics necessary to answer this question were worked out by the statistician R. Fisher. Although Fisher's original formulation
took a slightly different form, the standard method for determining the probability is based on the ratio of  to . This
ratio is named after Fisher and is called the  ratio.
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For these data, the  ratio is

Therefore, the  is  times higher than . Would this have been likely to happen if all the population means were
equal? That depends on the sample size. With a small sample size, it would not be too surprising because results from small
samples are unstable. However, with a very large sample, the  and  are almost always about the same, and an  ratio
of  or larger would be very unusual. Figure  shows the sampling distribution of  for the sample size in the "Smiles
and Leniency" study. As you can see, it has a positive skew.

Figure : Distribution of 

From Figure , you can see that  ratios of  or above are unusual occurrences. The area to the right of  represents
the probability of an  that large or larger and is equal to . In other words, given the null hypothesis that all the population
means are equal, the probability value is  and therefore the null hypothesis can be rejected. The conclusion that at least one of
the population means is different from at least one of the others is justified.

The shape of the  distribution depends on the sample size. More precisely, it depends on two degrees of freedom ( ) parameters:
one for the numerator ( ) and one for the denominator ( ). Recall that the degrees of freedom for an estimate of variance
is equal to the number of observations minus one. Since the  is the variance of  means, it has  . The  is an
average of  variances, each with  . Therefore, the  for  is , where  is the total number of
observations,  is the number of observations in each group, and  is the number of groups. To summarize:

For the "Smiles and Leniency" data,

The  distribution calculator shows that .

F Calculator

One-Tailed or Two?

Is the probability value from an  ratio a one-tailed or a two-tailed probability? In the literal sense, it is a one-tailed probability
since, as you can see in Figure , the probability is the area in the right-hand tail of the distribution. However, the  ratio is
sensitive to any pattern of differences among means. It is, therefore, a test of a two-tailed hypothesis and is best considered a two-
tailed test.

Relationship to the  test
Since an ANOVA and an independent-groups  test can both test the difference between two means, you might be wondering which
one to use. Fortunately, it does not matter since the results will always be the same. When there are only two groups, the following
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relationship between  and  will always hold:

where  is the degrees of freedom for the denominator of the  test and  is the degrees of freedom for the  test.  will
always equal .

Sources of Variation
Why do scores in an experiment differ from one another? Consider the scores of two subjects in the "Smiles and Leniency" study:
one from the "False Smile" condition and one from the "Felt Smile" condition. An obvious possible reason that the scores could
differ is that the subjects were treated differently (they were in different conditions and saw different stimuli). A second reason is
that the two subjects may have differed with regard to their tendency to judge people leniently. A third is that, perhaps, one of the
subjects was in a bad mood after receiving a low grade on a test. You can imagine that there are innumerable other reasons why the
scores of the two subjects could differ. All of these reasons except the first (subjects were treated differently) are possibilities that
were not under experimental investigation and, therefore, all of the differences (variation) due to these possibilities are
unexplained. It is traditional to call unexplained variance error even though there is no implication that an error was made.
Therefore, the variation in this experiment can be thought of as being either variation due to the condition the subject was in or due
to error (the sum total of all reasons the subjects' scores could differ that were not measured).

One of the important characteristics of ANOVA is that it partitions the variation into its various sources. In ANOVA, the term sum
of squares ( ) is used to indicate variation. The total variation is defined as the sum of squared differences between each score
and the mean of all subjects. The mean of all subjects is called the grand mean and is designated as GM. (When there is an equal
number of subjects in each condition, the grand mean is the mean of the condition means.) The total sum of squares is defined as

which means to take each score, subtract the grand mean from it, square the difference, and then sum up these squared values. For
the "Smiles and Leniency" study, .

The sum of squares condition is calculated as shown below.

where  is the number of scores in each group,  is the number of groups,  is the mean for ,  is the mean for 
, and is the mean for . For the Smiles and Leniency study, the values are:

If there are unequal sample sizes, the only change is that the following formula is used for the sum of squares condition:

where  is the sample size of the  condition.  is computed the same way as shown above.

The sum of squares error is the sum of the squared deviations of each score from its group mean. This can be written as

where  is the  score in  and  is the mean for ,  is the  score in  and  is the mean for 
, etc. For the "Smiles and Leniency" study, the means are: , , , and . The  is therefore:

The sum of squares error can also be computed by subtraction:

F t
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Xi1 ith group 1 M1 group 1 Xi2 ith group 2 M2

group 2 5.368 4.912 4.912 4.118 SSQerror

SSQerror = (2.5 −5.368 +(5.5 −5.368 +. . . +(6.5 −4.118)2 )2 )2
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SS = SS −SSQerror Qtotal Qcondition (15.3.15)

SSQerror = 377.189 −27.535
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https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/2175?pdf


15.3.5 https://stats.libretexts.org/@go/page/2175

Therefore, the total sum of squares of  can be partitioned into  and .

Once the sums of squares have been computed, the mean squares (  and ) can be computed easily. The formulas are:

where  is the degrees of freedom numerator and is equal to .

which is the same value of  obtained previously (except for rounding error). Similarly,

where  is the degrees of freedom for the denominator and is equal to .

which is the same as obtained previously (except for rounding error). Note that the  is often called the  for degrees of
freedom error.

The Analysis of Variance Summary Table shown below is a convenient way to summarize the partitioning of the variance. The
rounding errors have been corrected.

Table : ANOVA Summary Table

Source df SSQ MS F p

Condition 3 27.5349 9.1783 3.465 0.0182

Error 132 349.6544 2.6489

Total 135 377.1893

The first column shows the sources of variation, the second column shows the degrees of freedom, the third shows the sums of
squares, the fourth shows the mean squares, the fifth shows the  ratio, and the last shows the probability value. Note that the
mean squares are always the sums of squares divided by degrees of freedom. The  and  are relevant only to Condition. Although
the mean square total could be computed by dividing the sum of squares by the degrees of freedom, it is generally not of much
interest and is omitted here.

Formatting Data for Computer Analysis

Most computer programs that compute ANOVAs require your data to be in a specific form. Consider the data in Table .

Table : Example Data

Group 1 Group 2 Group 3

3 2 8

4 4 5

5 6 5

Here there are three groups, each with three observations. To format these data for a computer program, you normally have to use
two variables: the first specifies the group the subject is in and the second is the score itself. The reformatted version of the data in
Table  is shown in Table .

Table : Reformatted Data
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To use Analysis Lab to do the calculations, you would copy the data and then

1. Click the "Enter/Edit Data" button. (You may be warned that for security reasons you must use the keyboard shortcut for
pasting data.)

2. Paste your data.
3. Click "Accept Data."
4. Set the Dependent Variable to .
5. Set the Grouping Variable to .
6. Click the ANOVA button.

You will find that  and .

This page titled 15.3: One-Factor ANOVA is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via
source content that was edited to the style and standards of the LibreTexts platform.
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