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14.8: Introduction to Multiple Regression

Learning Objectives

o State the regression equation

o Define "regression coefficient"

o Define "beta weight"

o Explain what R is and how it is related to r

o Explain why a regression weight is called a "partial slope"”

o Explain why the sum of squares explained in a multiple regression model is usually less than the sum of the sums of
squares in simple regression

e Define R? in terms of proportion explained

o Test R? for significance

o Test the difference between a complete and reduced model for significance

o State the assumptions of multiple regression and specify which aspects of the analysis require assumptions

In simple linear regression, a criterion variable is predicted from one predictor variable. In multiple regression, the criterion is
predicted by two or more variables. For example, in the SAT case study, you might want to predict a student's university grade
point average on the basis of their High-School GPA (HSGP A) and their total SAT score (verbal + math). The basic idea is to find
a linear combination of HSGP A and SAT that best predicts University GPA (UGPA). That is, the problem is to find the values
of b; and b, in the equation shown below that give the best predictions of UGPA. As in the case of simple linear regression, we
define the best predictions as the predictions that minimize the squared errors of prediction.

UGPA' =b)HSGPA+b,SAT + A (14.8.1)

where UGP A’ is the predicted value of University GPA and A is a constant. For these data, the best prediction equation is shown
below:

UGPA' =0.541 x HSGPA +0.008 x SAT +0.540 (14.8.2)

In other words, to compute the prediction of a student's University GPA, you add up their High-School GPA multiplied by 0.541,
their SAT multiplied by 0.008, and 0.540. Table 14.8.1shows the data and predictions for the first five students in the dataset.

Table 14.8.1: Data and Predictions

HSGPA SAT UGPA'
3.45 1232 3.38
2.78 1070 2.89
2.52 1086 2.76
3.67 1287 3.55
3.24 1130 3.19

The values of b (b; and by) are sometimes called "regression coefficients" and sometimes called "regression weights." These two
terms are synonymous.

The multiple correlation (R) is equal to the correlation between the predicted scores and the actual scores. In this example, it is the
correlation between UGP A’ and UGP A, which turns out to be 0.79. That is, R = 0.79. Note that R will never be negative since
if there are negative correlations between the predictor variables and the criterion, the regression weights will be negative so that
the correlation between the predicted and actual scores will be positive.
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Interpretation of Regression Coefficients

A regression coefficient in multiple regression is the slope of the linear relationship between the criterion variable and the part of a
predictor variable that is independent of all other predictor variables. In this example, the regression coefficient for HSGPA can
be computed by first predicting HSGPA from SAT and saving the errors of prediction (the differences between HSGPA and
HSGPA"). These errors of prediction are called "residuals" since they are what is left over in HSGP A after the predictions from
SAT are subtracted, and represent the part of HSGPA that is independent of SAT. These residuals are referred to as
HSGPA.SAT, which means they are the residuals in HSGP A after having been predicted by SAT'. The correlation between
HSGPA.SAT and SAT is necessarily 0.

The final step in computing the regression coefficient is to find the slope of the relationship between these residuals and UGPA.
This slope is the regression coefficient for HSGP A. The following equation is used to predict HSGP A from SAT':

HSGPA' = —-1.314+0.0036 x SAT (14.8.3)
The residuals are then computed as:
HSGPA—-HSGPA (14.8.4)
The linear regression equation for the prediction of UGP A by the residuals is
UGPA' =0.541 x HSGPA. SAT +3.173 (14.8.5)

Notice that the slope (0.541) is the same value given previously for b; in the multiple regression equation.

This means that the regression coefficient for HSGP A is the slope of the relationship between the criterion variable and the part
of HSGPA that is independent of (uncorrelated with) the other predictor variables. It represents the change in the criterion
variable associated with a change of one in the predictor variable when all other predictor variables are held constant. Since the
regression coefficient for HSGP A is 0.54, this means that, holding SAT constant, a change of one in HSGPA is associated
with a change of 0.54 in UGPA'. If two students had the same SAT and differed in HSGP A by 2, then you would predict they
would differ in UGPA by (2)(0.54) =1.08. Similarly, if they differed by 0.5, then you would predict they would differ by
(0.50)(0.54) = 0.27

The slope of the relationship between the part of a predictor variable independent of other predictor variables and the criterion is its
partial slope. Thus the regression coefficient of 0.541 for HSGP A and the regression coefficient of 0.008 for SAT' are partial
slopes. Each partial slope represents the relationship between the predictor variable and the criterion holding constant all of the
other predictor variables.

It is difficult to compare the coefficients for different variables directly because they are measured on different scales. A difference
of 1in HSGPA is a fairly large difference, whereas a difference of 1 on the SAT is negligible. Therefore, it can be advantageous
to transform the variables so that they are on the same scale. The most straightforward approach is to standardize the variables so
that they each have a standard deviation of 1. A regression weight for standardized variables is called a "beta weight" and is
designated by the Greek letter . For these data, the beta weights are 0.625 and 0.198. These values represent the change in the
criterion (in standard deviations) associated with a change of one standard deviation on a predictor [holding constant the value(s)
on the other predictor(s)]. Clearly, a change of one standard deviation on HSGP A is associated with a larger difference than a
change of one standard deviation of SAT'. In practical terms, this means that if you know a student's HSGP A, knowing the
student's SAT does not aid the prediction of UGP A much. However, if you do not know the student's HSGP A, his or her SAT
can aid in the prediction since the 8 weight in the simple regression predicting UGPA from SAT is 0.68. For comparison
purposes, the 8 weight in the simple regression predicting UGPA from HSGPA is 0.78. As is typically the case, the partial
slopes are smaller than the slopes in simple regression.

Partitioning the Sums of Squares

Just as in the case of simple linear regression, the sum of squares for the criterion (UGPA in this example) can be partitioned into
the sum of squares predicted and the sum of squares error. That is,

SSY = SSY' +SSE (14.8.6)
which for these data:

20.798 = 12.961 + 7.837 (14.8.7)
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The sum of squares predicted is also referred to as the "sum of squares explained." Again, as in the case of simple regression,
Proportion Explained = SSY'/SSY (14.8.8)

In simple regression, the proportion of variance explained is equal to r2; in multiple regression, the proportion of variance
explained is equal to R?.

In multiple regression, it is often informative to partition the sum of squares explained among the predictor variables. For example,
the sum of squares explained for these data is 12.96. How is this value divided between HSGPA and SAT'? One approach that,
as will be seen, does not work is to predict UGP A in separate simple regressions for HSGP A and SAT'. As can be seen in Table
14.8.2 the sum of squares in these separate simple regressions is 12.64 for HSGP A and 9.75 for SAT'. If we add these two sums
of squares we get 22.39, a value much larger than the sum of squares explained of 12.96 in the multiple regression analysis. The
explanation is that HSGPA and SAT are highly correlated (r =0.78) and therefore much of the variance in UGPA is
confounded between HSGPA and SAT. That is, it could be explained by either HSGPA or SAT and is counted twice if the
sums of squares for HSGP A and SAT are simply added.

Table 14.8.2: Sums of Squares for Various Predictors

Predictors Sum of Squares
HSGPA 12.64
SAT 9.75

HSGPA and SAT 12.96

Table 14.8.3 shows the partitioning of the sum of squares into the sum of squares uniquely explained by each predictor variable,
the sum of squares confounded between the two predictor variables, and the sum of squares error. It is clear from this table that
most of the sum of squares explained is confounded between HSGP A and SAT'. Note that the sum of squares uniquely explained
by a predictor variable is analogous to the partial slope of the variable in that both involve the relationship between the variable and
the criterion with the other variable(s) controlled.

Table 14.8.3: Partitioning the Sum of Squares

Source Sum of Squares Proportion
HSGPA (unique) 3.21 0.15
SAT (unique) 0.32 0.02
HSGPA and SAT (Confounded) 9.43 0.45
Error 7.84 0.38
Total 20.80 1.00

The sum of squares uniquely attributable to a variable is computed by comparing two regression models: the complete model and a
reduced model. The complete model is the multiple regression with all the predictor variables included (HSGPA and SAT in this
example). A reduced model is a model that leaves out one of the predictor variables. The sum of squares uniquely attributable to a
variable is the sum of squares for the complete model minus the sum of squares for the reduced model in which the variable of
interest is omitted. As shown in Table 14.8.2 the sum of squares for the complete model (HSGPA and SAT) is 12.96. The sum
of squares for the reduced model in which HSGPA is omitted is simply the sum of squares explained using SAT as the predictor
variable and is 9.75. Therefore, the sum of squares uniquely attributable to HSGPA is 12.96 —9.75 = 3.21 Similarly, the sum
of squares uniquely attributable to SAT is 12.96 — 12.64 = 0.32 The confounded sum of squares in this example is computed by
subtracting the sum of squares uniquely attributable to the predictor variables from the sum of squares for the complete model:

14.8.3 https://stats.libretexts.org/@go/page/2648
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12.96 —3.21 — 0.32 = 9.43. The computation of the confounded sums of squares in analysis with more than two predictors is
more complex and beyond the scope of this text.

Since the variance is simply the sum of squares divided by the degrees of freedom, it is possible to refer to the proportion of
variance explained in the same way as the proportion of the sum of squares explained. It is slightly more common to refer to the
proportion of variance explained than the proportion of the sum of squares explained and, therefore, that terminology will be
adopted frequently here.

When variables are highly correlated, the variance explained uniquely by the individual variables can be small even though the
variance explained by the variables taken together is large. For example, although the proportions of variance explained uniquely
by HSGPA and SAT are only 0.15 and 0.02 respectively, together these two variables explain 0.62 of the variance. Therefore,
you could easily underestimate the importance of variables if only the variance explained uniquely by each variable is considered.
Consequently, it is often useful to consider a set of related variables. For example, assume you were interested in predicting job
performance from a large number of variables some of which reflect cognitive ability. It is likely that these measures of cognitive
ability would be highly correlated among themselves and therefore no one of them would explain much of the variance
independently of the other variables. However, you could avoid this problem by determining the proportion of variance explained
by all of the cognitive ability variables considered together as a set. The variance explained by the set would include all the
variance explained uniquely by the variables in the set as well as all the variance confounded among variables in the set. It would
not include variance confounded with variables outside the set. In short, you would be computing the variance explained by the set
of variables that is independent of the variables not in the set.

Inferential Statistics

We begin by presenting the formula for testing the significance of the contribution of a set of variables. We will then show how
special cases of this formula can be used to test the significance of R? as well as to test the significance of the unique contribution
of individual variables.

The first step is to compute two regression analyses:

1. an analysis in which all the predictor variables are included and
2. an analysis in which the variables in the set of variables being tested are excluded.

The former regression model is called the "complete model" and the latter is called the "reduced model." The basic idea is that if
the reduced model explains much less than the complete model, then the set of variables excluded from the reduced model is
important.

The formula for testing the contribution of a group of variables is:

55Qc —SSQr
- MSez aine
___ Pe7PR plained (14.8.9)
SSQT - SSQC MSe'rror
N —pPc — 1

where:

SSQ¢ is the sum of squares for the complete model,

SSQr is the sum of squares for the reduced model,

pc is the number of predictors in the complete model,

pr is the number of predictors in the reduced model,

SSQr is the sum of squares total (the sum of squared deviations of the criterion variable from its mean), and
N is the total number of observations

The degrees of freedom for the numerator is pc — pr and the degrees of freedom for the denominator is NV —po — 1 . If the F' is
significant, then it can be concluded that the variables excluded in the reduced set contribute to the prediction of the criterion
variable independently of the other variables.

14.8.4 https://stats.libretexts.org/@go/page/2648
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This formula can be used to test the significance of R? by defining the reduced model as having no predictor variables. In this
application, SSQg and pr = 0. The formula is then simplified as follows:

55Qc¢
MSez aine
_ po - plained (14.8.10)
S5Qr —SSQc MSerror
N —Pc — 1
which for this example becomes:
12.96
2 6.48
= = =84.35 (14.8.11)
20.80-12.96 0.08
105-2-1

The degrees of freedom are 2 and 102. The F' distribution calculator shows that p < 0.001.

F Calculator

The reduced model used to test the variance explained uniquely by a single predictor consists of all the variables except the
predictor variable in question. For example, the reduced model for a test of the unique contribution of HSGP A contains only the
variable SAT'. Therefore, the sum of squares for the reduced model is the sum of squares when UGPA is predicted by SAT'. This
sum of squares is 9.75. The calculations for F' are shown below:

12.96 —9.75
2-1 3.212
= = —41.80 (14.8.12)
20.80—12.96  0.077
105—-2—1

The degrees of freedom are 1 and 102. The F' distribution calculator shows that p < 0.001.

Similarly, the reduced model in the test for the unique contribution of SAT" consists of HSGPA.

12.96 —12.64
2-1 0.322
- = —=4.19 (14.8.13)
20.80 —12.96  0.077
105—-2—1

The degrees of freedom are 1 and 102. The F' distribution calculator shows that p = 0.0432.

The significance test of the variance explained uniquely by a variable is identical to a significance test of the regression coefficient
for that variable. A regression coefficient and the variance explained uniquely by a variable both reflect the relationship between a
variable and the criterion independent of the other variables. If the variance explained uniquely by a variable is not zero, then the
regression coefficient cannot be zero. Clearly, a variable with a regression coefficient of zero would explain no variance.

Other inferential statistics associated with multiple regression are beyond the scope of this text. Two of particular importance are:

1. confidence intervals on regression slopes and
2. confidence intervals on predictions for specific observations.

These inferential statistics can be computed by standard statistical analysis packages such as R, SPSS, STATA, SAS, and
JMP.

SPSS Output JMP Output

Assumptions

No assumptions are necessary for computing the regression coefficients or for partitioning the sum of squares. However, there are
several assumptions made when interpreting inferential statistics. Moderate violations of Assumptions 1 —3 do not pose a serious
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problem for testing the significance of predictor variables. However, even small violations of these assumptions pose problems for
confidence intervals on predictions for specific observations.

1. Residuals are normally distributed:

As in the case of simple linear regression, the residuals are the errors of prediction. Specifically, they are the differences
between the actual scores on the criterion and the predicted scores. A @ — @ plot for the residuals for the example data is
shown below. This plot reveals that the actual data values at the lower end of the distribution do not increase as much as
would be expected for a normal distribution. It also reveals that the highest value in the data is higher than would be expected
for the highest value in a sample of this size from a normal distribution. Nonetheless, the distribution does not deviate greatly
from normality.

Normal Q-Q Plot

0.5

Sample Quantiles
0.0

0.5

T T T T T
-2 -1 0 1 2
Theoretical Quantiles

Figure 14.8.1: A @Q — @ plot for the residuals for the example data

2. Homoscedasticity:

It is assumed that the variances of the errors of prediction are the same for all predicted values. As can be seen below, this
assumption is violated in the example data because the errors of prediction are much larger for observations with low-to-
medium predicted scores than for observations with high predicted scores. Clearly, a confidence interval on a low predicted
UGP A would underestimate the uncertainty.

1

0.5

Residual UGPA
"

-0.5

T T T T T T
2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
Predicted UGPA

Figure 14.8.2: Low predicted UGP A
3. Linearity:

It is assumed that the relationship between each predictor variable and the criterion variable is linear. If this assumption is not
met, then the predictions may systematically overestimate the actual values for one range of values on a predictor variable
and underestimate them for another.

This page titled 14.8: Introduction to Multiple Regression is shared under a Public Domain license and was authored, remixed, and/or curated by
David Lane via source content that was edited to the style and standards of the LibreTexts platform.
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