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1

CHAPTER OVERVIEW

1: Functions and Graphs
Calculus is the mathematics that describes changes in functions. In this chapter, we review all the functions necessary to study
calculus. We define polynomial, rational, trigonometric, exponential, and logarithmic functions. We review how to evaluate these
functions, and we show the properties of their graphs. We provide examples of equations with terms involving these functions and
illustrate the algebraic techniques necessary to solve them. In short, this chapter provides the foundation for the material to come. It
is essential to be familiar and comfortable with these ideas before proceeding to the formal introduction of calculus in the next
chapter.

1.1: Prelude to Functions and Graphs
1.2: Review of Functions

1.2E: Exercises for Section 1.1

1.3: Basic Classes of Functions

1.3E: Exercises for Section 1.2

1.4: Trigonometric Functions

1.4E: Exercises for Section 1.3

1.5: Inverse Functions

1.5E: Exercises for Section 1.4

1.6: Exponential and Logarithmic Functions

1.6E: Exercises for Section 1.5

1.7: Chapter 1 Review Exercises
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1.1: Prelude to Functions and Graphs
In the past few years, major earthquakes have occurred in several countries around the world. In January 2010, an earthquake of
magnitude 7.3 hit Haiti. A magnitude 9 earthquake shook northeastern Japan in March 2011. In April 2014, an 8.2-magnitude
earthquake struck off the coast of northern Chile. What do these numbers mean? In particular, how does a magnitude 9 earthquake
compare with an earthquake of magnitude 8.2? Or 7.3? Later in this chapter, we show how logarithmic functions are used to
compare the relative intensity of two earthquakes based on the magnitude of each earthquake.

 Figure : A portion of the San Andreas Fault in
California. Major faults like this are the sites of most of the strongest earthquakes ever recorded. (credit: modification of work by
Robb Hannawacker, NPS)

Calculus is the mathematics that describes changes in functions. In this chapter, we review all the functions necessary to study
calculus. We define polynomial, rational, trigonometric, exponential, and logarithmic functions. We review how to evaluate these
functions, and we show the properties of their graphs. We provide examples of equations with terms involving these functions and
illustrate the algebraic techniques necessary to solve them. In short, this chapter provides the foundation for the material to come. It
is essential to be familiar and comfortable with these ideas before proceeding to the formal introduction of calculus in the next
chapter.

This page titled 1.1: Prelude to Functions and Graphs is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

1.0: Prelude to Functions and Graphs by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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1.2: Review of Functions

Use functional notation to evaluate a function.
Determine the domain and range of a function.
Draw the graph of a function.
Find the zeros of a function.
Recognize a function from a table of values.
Make new functions from two or more given functions.
Describe the symmetry properties of a function.

In this section, we provide a formal definition of a function and examine several ways in which functions are represented—namely,
through tables, formulas, and graphs. We study formal notation and terms related to functions. We also define composition of
functions and symmetry properties. Most of this material will be a review for you, but it serves as a handy reference to remind you
of some of the algebraic techniques useful for working with functions.

Functions
Given two sets  and  a set with elements that are ordered pairs  where  is an element of  and  is an element of  is a
relation from  to . A relation from  to  defines a relationship between those two sets. A function is a special type of relation
in which each element of the first set is related to exactly one element of the second set. The element of the first set is called the
input; the element of the second set is called the output. Functions are used all the time in mathematics to describe relationships
between two sets. For any function, when we know the input, the output is determined, so we say that the output is a function of the
input. For example, the area of a square is determined by its side length, so we say that the area (the output) is a function of its side
length (the input). The velocity of a ball thrown in the air can be described as a function of the amount of time the ball is in the air.
The cost of mailing a package is a function of the weight of the package. Since functions have so many uses, it is important to have
precise definitions and terminology to study them.

 Figure : A function can be visualized as an input/output device

A function  consists of a set of inputs, a set of outputs, and a rule for assigning each input to exactly one output. The set of
inputs is called the domain of the function. The set of outputs is called the range of the function.

 Figure : A function maps every element in the domain to exactly one element in the
range. Although each input can be sent to only one output, two different inputs can be sent to the same output.

For example, consider the function , where the domain is the set of all real numbers and the rule is to square the input. Then, the
input  is assigned to the output .

Since every nonnegative real number has a real-value square root, every nonnegative number is an element of the range of this
function. Since there is no real number with a square that is negative, the negative real numbers are not elements of the range. We
conclude that the range is the set of nonnegative real numbers.

 Learning Objectives

A B (x, y) x A y B,

A B A B

1.2.1

 Definition: Functions
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For a general function  with domain , we often use  to denote the input and  to denote the output associated with . When
doing so, we refer to  as the independent variable and  as the dependent variable, because it depends on . Using function
notation, we write , and we read this equation as “  equals  of  For the squaring function described earlier, we write 

.

The concept of a function can be visualized using Figures  - .

 Figure : In this case, a graph of a function  has a domain of  and a range of 
. The independent variable is  and the dependent variable is .

We can also visualize a function by plotting points  in the coordinate plane where . The graph of a function is the set
of all these points. For example, consider the function , where the domain is the set  and the rule is .
In Figure , we plot a graph of this function.

 Figure : Here we see a graph of the function  with domain  and rule .
The graph consists of the points  for all  in the domain.

Every function has a domain. However, sometimes a function is described by an equation, as in , with no specific
domain given. In this case, the domain is taken to be the set of all real numbers  for which  is a real number. For example,
since any real number can be squared, if no other domain is specified, we consider the domain of  to be the set of all real
numbers. On the other hand, the square root function  only gives a real output if  is nonnegative. Therefore, the
domain of the function  is the set of nonnegative real numbers, sometimes called the natural domain.

For the functions  and , the domains are sets with an infinite number of elements. Clearly we cannot list all
these elements. When describing a set with an infinite number of elements, it is often helpful to use set-builder or interval notation.
When using set-builder notation to describe a subset of all real numbers, denoted , we write

We read this as the set of real numbers  such that  has some property. For example, if we were interested in the set of real
numbers that are greater than one but less than five, we could denote this set using set-builder notation by writing

A set such as this, which contains all numbers greater than  and less than  can also be denoted using the interval notation .
Therefore,

The numbers  and  are called the endpoints of this set. If we want to consider the set that includes the endpoints, we would
denote this set by writing

f D x y x

x y x

y = f(x) y f x. ”

f(x) = x

2

1.2.1 1.2.3

1.2.3 f {1, 2, 3}

{1, 2} x y

(x, y) y = f(x)

f D= {1, 2, 3} f(x) = 3−x

1.2.4

1.2.4 f {1, 2, 3} f(x) = 3−x

(x, f(x)) x

f(x) = x

2

x f(x)

f(x) = x

2

f(x) = x

−−

√

x

f(x) = x

−−

√

f(x) = x

2

f(x) = x

−−

√

R

{x | x has some property}.

x x

{x | 1 < x < 5}.

a b, (a, b)

(1, 5) = {x | 1 < x < 5}.

1 5

[1, 5] = {x | 1 ≤ x ≤ 5}.
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We can use similar notation if we want to include one of the endpoints, but not the other. To denote the set of nonnegative real
numbers, we would use the set-builder notation

The smallest number in this set is zero, but this set does not have a largest number. Using interval notation, we would use the
symbol  which refers to positive infinity, and we would write the set as

It is important to note that  is not a real number. It is used symbolically here to indicate that this set includes all real numbers
greater than or equal to zero. Similarly, if we wanted to describe the set of all nonpositive numbers, we could write

Here, the notation  refers to negative infinity, and it indicates that we are including all numbers less than or equal to zero, no
matter how small. The set

refers to the set of all real numbers. Some functions are defined using different equations for different parts of their domain. These
types of functions are known as piecewise-defined functions. For example, suppose we want to define a function  with a domain
that is the set of all real numbers such that  for  and  for . We denote this function by writing

When evaluating this function for an input , the equation to use depends on whether  or . For example, since ,
we use the fact that  for  and see that . On the other hand, for , we use the fact
that  for  and see that .

For the function , evaluate:

a. 
b. 
c. 

Solution
Substitute the given value for  in the formula for .

a. 
b. 
c. 

For , evaluate  and .

Hint

Substitute  and  for  in the formula for .

Answer

 and 

{x | x ≥ 0}.

∞,

[0,∞) = {x | x ≥ 0}.

∞

(−∞, 0] = {x | x ≤ 0}.

−∞

(−∞,∞) = {x | x is any real number}

f

f(x) = 3x+1 x ≥ 2 f(x) = x

2

x < 2

f(x) ={

3x+1,

,x

2

if x ≥ 2

if x < 2

x x ≥ 2 x < 2 5 > 2

f(x) = 3x+1 x ≥ 2 f(5) = 3(5)+1 = 16 x =−1

f(x) = x

2

x < 2 f(−1) = 1

 Example : Evaluating Functions1.2.1

f(x) = 3 +2x−1x

2

f(−2)

f( )2

–

√

f(a+h)

x f(x)

f(−2) = 3(−2 +2(−2)−1 = 12−4−1 = 7)

2

f( ) = 3( +2 −1 = 6+2 −1 = 5+22

–

√ 2

–

√ )

2

2

–

√ 2

–

√ 2

–

√

f(a+h) = 3(a+h +2(a+h)−1 = 3( +2ah+ )+2a+2h−1 = 3 +6ah+3 +2a+2h−1)

2

a

2

h

2

a

2

h

2

 Exercise 1.2.1

f(x) = −3x+5x

2

f(1) f(a+h)

1 a+h x f(x)

f(1) = 3 f(a+h) = +2ah+ −3a−3h+5a

2

h

2
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For each of the following functions, determine the i. domain and ii. range.

a. 
b. 

c. 

Solution
a. Consider 

1.Since  is a real number for any real number , the domain of  is the interval .

2. Since , we know . Therefore, the range must be a subset of  To
show that every element in this set is in the range, we need to show that for a given  in that set, there is a real number 
such that . Solving this equation for  we see that we need  such that

This equation is satisfied as long as there exists a real number  such that

Since , the square root is well-defined. We conclude that for   and therefore the range
is 

b. Consider .

1.To find the domain of , we need the expression . Solving this inequality, we conclude that the domain is 

2.To find the range of , we note that since  . Therefore, the range of  must
be a subset of the set . To show that every element in this set is in the range of , we need to show that for
all  in this set, there exists a real number  in the domain such that  Let  Then,  if and only
if

Solving this equation for  we see that  must solve the equation

Since , such an  could exist. Squaring both sides of this equation, we have 

Therefore, we need

which implies

We just need to verify that  is in the domain of . Since the domain of  consists of all real numbers greater than or
equal to , and

there does exist an  in the domain of . We conclude that the range of  is 

c. Consider 

1.Since  is defined when the denominator is nonzero, the domain is 

2.To find the range of  we need to find the values of  such that there exists a real number  in the domain with the
property that

 Example : Finding Domain and Range1.2.2

f(x) = (x−4 +5)

2

f(x) = −13x+2

− −−−−

√

f(x) =

3

x−2

f(x) = (x−4 +5.)

2

f(x) = (x−4 +5)

2

x f (−∞,∞)

(x−4 ≥ 0)

2

f(x) = (x−4 +5 ≥ 5)

2

{y | y ≥ 5}.

y x

f(x) = (x−4 +5 = y)

2

x, x

(x−4 = y−5.)

2

x

x−4 =± y−5

− −−−

√

y ≥ 5 x = 4± ,y−5

− −−−

√ f(x) = y,

{y | y ≥ 5}.

f(x) = −13x+2

− −−−−

√

f 3x+2 ≥ 0

{x | x ≥−2/3}.

f ≥ 0,3x+2

− −−−−

√ f(x) = −1 ≥−13x+2

− −−−−

√ f

{y | y ≥−1} f

y x f(x) = y. y ≥−1. f(x) = y

−1 = y.3x+2

− −−−−

√

x, x

= y+1.3x+2

− −−−−

√

y ≥−1 x 3x+2 = (y+1 .)

2

3x = (y+1 −2,)

2

x = (y+1 − .

1

3

)

2 2

3

x f f

−2

3

(y+1 − ≥− ,

1

3

)

2

2

3

2

3

x f f {y | y ≥−1}.

f(x) = .

3

x−2

3/(x−2) {x | x ≠ 2}.

f , y x
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Solving this equation for  we find that

Therefore, as long as , there exists a real number  in the domain such that . Thus, the range is 

Find the domain and range for 

Hint

Use .

Answer

Domain =  and range = 

Representing Functions

Typically, a function is represented using one or more of the following tools:

A table
A graph
A formula

We can identify a function in each form, but we can also use them together. For instance, we can plot on a graph the values from a
table or create a table from a formula.

Tables

Functions described using a table of values arise frequently in real-world applications. Consider the following simple example. We
can describe temperature on a given day as a function of time of day. Suppose we record the temperature every hour for a 24-hour
period starting at midnight. We let our input variable  be the time after midnight, measured in hours, and the output variable  be
the temperature  hours after midnight, measured in degrees Fahrenheit. We record our data in Table .

Table : Temperature as a Function of Time of Day

Hour After Midnight Temperature(°F) Hour After Midnight Temperature(°F)

0 58 12 84

1 54 13 85

2 53 14 85

3 52 15 83

4 52 16 82

5 55 17 80

6 60 18 77

7 64 19 74

8 72 20 69

9 75 21 65

10 78 22 60

= y.

3

x−2

x,

x = +2.

3

y

y ≠ 0 x f(x) = y

{y | y ≠ 0}.

 Exercise 1.2.2

f(x) = +5.4−2x

− −−−−

√

4−2x ≥ 0

{x | x ≤ 2} {y | y ≥ 5}

x y

x 1.2.1

1.2.1
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Hour After Midnight Temperature(°F) Hour After Midnight Temperature(°F)

11 80 23 58

We can see from the table that temperature is a function of time, and the temperature decreases, then increases, and then decreases
again. However, we cannot get a clear picture of the behavior of the function without graphing it.

Graphs

Given a function  described by a table, we can provide a visual picture of the function in the form of a graph. Graphing the
temperatures listed in Table  can give us a better idea of their fluctuation throughout the day. Figure  shows the plot of
the temperature function.

 Figure : The graph of the data from Table  shows temperature as a function of
time.

From the points plotted on the graph in Figure , we can visualize the general shape of the graph. It is often useful to connect
the dots in the graph, which represent the data from the table. In this example, although we cannot make any definitive conclusion
regarding what the temperature was at any time for which the temperature was not recorded, given the number of data points
collected and the pattern in these points, it is reasonable to suspect that the temperatures at other times followed a similar pattern, as
we can see in Figure .

 Figure : Connecting the dots in Figure  shows the general pattern of the data.

Algebraic Formulas

Sometimes we are not given the values of a function in table form, rather we are given the values in an explicit formula. Formulas
arise in many applications. For example, the area of a circle of radius  is given by the formula . When an object is

f

1.2.1 1.2.5

1.2.5 1.2.1

1.2.5

1.2.6

1.2.6 1.2.5

r A(r) = πr

2
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thrown upward from the ground with an initial velocity  ft/s, its height above the ground from the time it is thrown until it hits
the ground is given by the formula . When  dollars are invested in an account at an annual interest rate 
compounded continuously, the amount of money after  years is given by the formula . Algebraic formulas are
important tools to calculate function values. Often we also represent these functions visually in graph form.

Given an algebraic formula for a function , the graph of  is the set of points , where  is in the domain of  and  is
in the range. To graph a function given by a formula, it is helpful to begin by using the formula to create a table of inputs and
outputs. If the domain of  consists of an infinite number of values, we cannot list all of them, but because listing some of the
inputs and outputs can be very useful, it is often a good way to begin.

When creating a table of inputs and outputs, we typically check to determine whether zero is an output. Those values of  where 
 are called the zeros of a function. For example, the zeros of  are . The zeros determine where the

graph of  intersects the -axis, which gives us more information about the shape of the graph of the function. The graph of a
function may never intersect the -axis, or it may intersect multiple (or even infinitely many) times.

Another point of interest is the  -intercept, if it exists. The -intercept is given by .

Since a function has exactly one output for each input, the graph of a function can have, at most, one -intercept. If  is in the
domain of a function  then  has exactly one -intercept. If  is not in the domain of  then  has no -intercept. Similarly,
for any real number  if  is in the domain of , there is exactly one output  and the line  intersects the graph of 
exactly once. On the other hand, if  is not in the domain of   is not defined and the line  does not intersect the graph of

. This property is summarized in the vertical line test.

Given a function , every vertical line that may be drawn intersects the graph of  no more than once. If any vertical line
intersects a set of points more than once, the set of points does not represent a function.

We can use this test to determine whether a set of plotted points represents the graph of a function (Figure ).

 Figure : (a) The set of plotted points represents the graph of a
function because every vertical line intersects the set of points, at most, once. (b) The set of plotted points does not represent the
graph of a function because some vertical lines intersect the set of points more than once.

Consider the function 

a. Find all zeros of .
b. Find the -intercept (if any).
c. Sketch a graph of .

Solution

v

0

s(t) =−16 + tt

2

v

0

P r

t A(t) = Pe

rt

f f (x, f(x)) x f f(x)

f

x

f(x) = 0 f(x) = −4x

2

x =±2

f x

x

y y (0, f(0))

y x = 0

f , f y x = 0 f , f y

c, c f f(c), x = c f

c f , f(c) x = c

f

 Vertical Line Test

f f

1.2.7

1.2.7

 Example : Finding Zeros and -Intercepts of a Function1.2.3 y

f(x) =−4x+2.

f

y

f
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1.To find the zeros, solve . We discover that  has one zero at .

2. The -intercept is given by 

3. Given that  is a linear function of the form  that passes through the points  and , we can
sketch the graph of  (Figure ).

 Figure : The function  is a line with -intercept  and -
intercept .

Consider the function .

a. Find all zeros of .
b. Find the -intercept (if any).
c. Sketch a graph of .

Solution
1.To find the zeros, solve . This equation implies . Since  for all , this equation
has no solutions, and therefore  has no zeros.

2.The -intercept is given by .

3.To graph this function, we make a table of values. Since we need , we need to choose values of . We
choose values that make the square-root function easy to evaluate.

-3 -2 1

1 2 3

Making use of the table and knowing that, since the function is a square root, the graph of  should be similar to the graph of 
, we sketch the graph (Figure ).

 Figure : The graph of  has a -intercept but no -intercepts.

f(x) =−4x+2 = 0 f x = 1/2

y (0, f(0)) = (0, 2).

f f(x) =mx+b (1/2, 0) (0, 2)

f 1.2.8

1.2.8 f(x) =−4x+2 x (1/2, 0) y

(0, 2)

 Example : Using Zeros and -Intercepts to Sketch a Graph1.2.4 y

f(x) = +1x+3

− −−−−

√

f

y

f

+1 = 0x+3

− −−−−

√ =−1x+3

− −−−−

√ ≥ 0x+3

− −−−−

√ x

f

y (0, f(0)) = (0, +1)3

–

√

x+3 ≥ 0 x ≥−3

x

f(x)

f

y = x

−−

√

1.2.9

1.2.9 f(x) = +1x+3

− −−−−

√

y x
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Find the zeros of 

Hint

Factor the polynomial.

Answer

If a ball is dropped from a height of 100 ft, its height s at time  is given by the function , where s is
measured in feet and  is measured in seconds. The domain is restricted to the interval  where  is the time when the
ball is dropped and  is the time when the ball hits the ground.

a. Create a table showing the height s(t) when  and . Using the data from the table, determine the
domain for this function. That is, find the time  when the ball hits the ground.

b. Sketch a graph of .

Solution
0 0.5 1 1.5 2 2.5

100 96 84 64 36 0

Since the ball hits the ground when , the domain of this function is the interval .

2.

 Figure , the values of  are getting smaller as  is getting larger. A function with
this property is said to be decreasing. On the other hand, for the function  graphed in Figure , the
values of  are getting larger as the values of  are getting larger. A function with this property is said to be increasing. It is
important to note, however, that a function can be increasing on some interval or intervals and decreasing over a different
interval or intervals. For example, using our temperature function plotted above, we can see that the function is decreasing on
the interval , increasing on the interval , and then decreasing on the interval . We make the idea of a
function increasing or decreasing over a particular interval more precise in the next definition.

 Exercise 1.2.4

f(x) = −5 +6x.x

3

x

2

x = 0, 2, 3

 Example : Finding the Height of a Free-Falling Object1.2.5

t s(t) =−16 +100t

2

t [0, c], t = 0

t = c

t = 0, 0.5, 1, 1.5, 2, 2.5

c

s

t

s(t)

t = 2.5 [0, 2.5]

1.2.8 f(x) x

f(x) = +1x+3

− −−−−

√

1.2.9

f(x) x

(0, 4) (4, 14) (14, 23)
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We say that a function  is increasing on the interval  if for all 

 when 

We say  is strictly increasing on the interval  if for all 

 when 

We say that a function  is decreasing on the interval  if for all 

 if 

We say that a function  is strictly decreasing on the interval  if for all ,

 if 

For example, the function  is increasing on the interval  because  whenever . On the other
hand, the function  is decreasing on the interval  because  whenever  (Figure ).

 Figure : (a) The function  is
increasing on the interval . (b) The function  is decreasing on the interval .

Combining Functions
Now that we have reviewed the basic characteristics of functions, we can see what happens to these properties when we combine
functions in different ways, using basic mathematical operations to create new functions. For example, if the cost for a company to
manufacture  items is described by the function  and the revenue created by the sale of  items is described by the function 

, then the profit on the manufacture and sale of  items is defined as . Using the difference between
two functions, we created a new function.

Alternatively, we can create a new function by composing two functions. For example, given the functions  and 
, the composite function  is defined such that

The composite function  is defined such that

Note that these two new functions are different from each other.

 Definition: Increasing and Decreasing on an Interval

f I , ∈ I,x

1

x

2

f( ) ≤ f( )x

1

x

2

< .x

1

x

2

f I , ∈ I,x

1

x

2

f( ) < f( )x

1

x

2

< .x

1

x

2

f I , ∈ I,x

1

x

2

f( ) ≥ f( )x

1

x

2

< .x

1

x

2

f I , ∈ Ix

1

x

2

f( ) > f( )x

1

x

2

< .x

1

x

2

f(x) = 3x (−∞,∞) 3 < 3x

1

x

2

<x

1

x

2

f(x) =−x

3

(−∞,∞) − >−x

3

1

x

3

2

<x

1

x

2

1.2.10

1.2.10 f(x) = 3x

(−∞,∞) f(x) =−x

3

(−∞,∞)

x C(x) x

R(x) x P (x) =R(x)−C(x)

f(x) = x

2

g(x) = 3x+1 f ∘ g

(f ∘ g)(x) = f(g(x)) = (g(x) = (3x+1 .)

2

)

2

g∘ f

(g∘ f)(x) = g(f(x)) = 3f(x)+1 = 3 +1.x

2
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Combining Functions with Mathematical Operators
To combine functions using mathematical operators, we simply write the functions with the operator and simplify. Given two
functions  and , we can define four new functions:

Sum

Difference

Product

 for Quotient

Given the functions  and , find each of the following functions and state its domain.

a. 
b. 
c. 

d. 

Solution
1. 

The domain of this function is the interval .

2.

The domain of this function is the interval .

3. 

The domain of this function is the interval .

4. .

The domain of this function is 

For  and , find  and state its domain.

Hint

The new function  is a quotient of two functions. For what values of  is the denominator zero?

Answer

 The domain is 

Function Composition
When we compose functions, we take a function of a function. For example, suppose the temperature  on a given day is described
as a function of time  (measured in hours after midnight) as in Table . Suppose the cost , to heat or cool a building for 1
hour, can be described as a function of the temperature . Combining these two functions, we can describe the cost of heating or
cooling a building as a function of time by evaluating . We have defined a new function, denoted , which is defined
such that  for all  in the domain of . This new function is called a composite function. We note that since

f g

(f+ g)(x) = f(x)+ g(x)

(f− g)(x) = f(x)− g(x)

(f ⋅ g)(x) = f(x)g(x)

( )(x) =

f

g

f(x)

g(x)

g(x) ≠ 0

 Example : Combining Functions Using Mathematical Operations1.2.6

f(x) = 2x−3 g(x) = −1x

2

(f +g)(x)

(f −g)(x)

(f ⋅ g)(x)

( ) (x)

f

g

(f +g)(x) = (2x−3)+( −1) = +2x−4.x

2

x

2

(−∞,∞)

(f −g)(x) = (2x−3)−( −1) =− +2x−2.x

2

x

2

(−∞,∞)

(f ⋅ g)(x) = (2x−3)( −1) = 2 −3 −2x+3.x

2

x

3

x

2

(−∞,∞)

( ) (x) =

f

g

2x−3

−1x

2

{x | x ≠±1}.

 Exercise 1.2.6

f(x) = +3x

2

g(x) = 2x−5 (f/g)(x)

(f/g)(x) x

( ) (x) = .

f

g

+3x

2

2x−5

{x | x ≠ }.

5

2

T

t 1.2.1 C

T

C(T (t)) C ∘ T

(C ∘ T )(t) =C(T (t)) t T
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cost is a function of temperature and temperature is a function of time, it makes sense to define this new function . It
does not make sense to consider , because temperature is not a function of cost.

Consider the function  with domain  and range , and the function  with domain  and range . If  is a subset of ,
then the composite function  is the function with domain  such that

A composite function  can be viewed in two steps. First, the function  maps each input  in the domain of  to its output 
 in the range of . Second, since the range of  is a subset of the domain of , the output  is an element in the domain of 

, and therefore it is mapped to an output  in the range of . In Figure , we see a visual image of a composite
function.

 Figure : For the composite function , we have  
 and .

Consider the functions  and .

a. Find  and state its domain and range.
b. Evaluate  .
c. Find  and state its domain and range.
d. Evaluate  .

Solution
1. We can find the formula for  in two different ways. We could write

.

Alternatively, we could write

Since  for all real numbers  the domain of  is the set of all real numbers. Since ,
the range is, at most, the interval . To show that the range is this entire interval, we let  and solve this
equation for  to show that for all  in the interval , there exists a real number  such that . Solving this
equation for  we see that , which implies that

If  is in the interval , the expression under the radical is nonnegative, and therefore there exists a real number  such that
. We conclude that the range of  is the interval 

2. 

(C ∘ T )(t)

(T ∘C)(t)

 Definition: Composite Functions

f A B g D E B D

(g∘ f)(x) A

(g∘ f)(x) = g(f(x))

g∘ f f x f

f(x) f f g f(x)

g g(f(x)) g 1.2.11

1.2.11 g∘ f (g∘ f)(1) = 4,

(g∘ f)(2) = 5, (g∘ f)(3) = 4

 Example : Compositions of Functions Defined by Formulas1.2.7

f(x) = +1x

2

g(x) = 1/x

(g∘ f)(x)

(g∘ f)(4), (g∘ f)(−1/2)

(f ∘ g)(x)

(f ∘ g)(4), (f ∘ g)(−1/2)

(g∘ f)(x)

(g∘ f)(x) = g(f(x)) = g( +1) =x

2

1

+1x

2

(g∘ f)(x) = g(f(x)) = = .

1

f(x)

1

+1x

2

+1 ≠ 0x

2

x, (g∘ f)(x) 0 < 1/( +1) ≤ 1x

2

(0, 1] y = 1/( +1)x

2

x y (0, 1] x y = 1/( +1)x

2

x, +1 = 1/yx

2

x =± −1

1

y

− −−−−

√

y (0, 1] x

1/( +1) = yx

2

g∘ f (0, 1].

(g∘ f)(4) = g(f(4)) = g( +1) = g(17) =4

2 1

17

(g∘ f)(− ) = g(f(− )) = g((− +1) = g( ) =

1

2

1

2

1

2

)

2

5

4

4

5
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3. We can find a formula for  in two ways. First, we could write

Alternatively, we could write

The domain of  is the set of all real numbers  such that . To find the range of  we need to find all values  for
which there exists a real number  such that

Solving this equation for  we see that we need  to satisfy

which simplifies to

Finally, we obtain

Since  is a real number if and only if  the range of  is the set 

4.

In Example , we can see that . This tells us, in general terms, that the order in which we compose
functions matters.

Let . Let  Find .

Solution

Consider the functions  and  described by

-3 -2 -1 0 1 2 3 4

0 4 2 4 -2 0 -2 4

-4 -2 0 2 4

1 0 3 0 5

a. Evaluate , .
b. State the domain and range of .
c. Evaluate , .
d. State the domain and range of .

Solution:

(f ∘ g)(x)

(f ∘ g)(x) = f(g(x)) = f( ) = ( +1.

1

x

1

x

)

2

(f ∘ g)(x) = f(g(x)) = (g(x) +1 = ( +1.)

2

1

x

)

2

f ∘ g x x ≠ 0 f , y

x ≠ 0

+1 = y.( )

1

x

2

x, x

= y−1,( )

1

x

2

=±

1

x

y−1

− −−−

√

x =± .

1

y−1

− −−−

√

1/ y−1

− −−−

√ y > 1, f {y | y ≥ 1}.

(f ∘ g)(4) = f(g(4)) = f( ) = ( +1 =

1

4

1

4

)

2

17

16

(f ∘ g)(− ) = f(g(− )) = f(−2) = (−2 +1 = 5

1

2

1

2

)

2

1.2.7 (f ∘ g)(x) ≠ (g∘ f)(x)

 Exercise 1.2.7

f(x) = 2−5x g(x) = .x

−−

√

(f ∘ g)(x)

(f ∘ g)(x) = 2−5 .x

−−

√

 Example : Composition of Functions Defined by Tables1.2.8

f g

x

f(x)

x

g(x)

(g∘ f)(3) (g∘ f)(0)

(g∘ f)(x)

(f ∘ f)(3) (f ∘ f)(1)

(f ∘ f)(x)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25909?pdf


1.2.14 https://stats.libretexts.org/@go/page/25909

1. 

2.The domain of  is the set  Since the range of  is the set  the range of  is
the set 

3. 

4.The domain of  is the set  Since the range of  is the set  the range of  is
the set 

A store is advertising a sale of 20% off all merchandise. Caroline has a coupon that entitles her to an additional 15% off any
item, including sale merchandise. If Caroline decides to purchase an item with an original price of  dollars, how much will
she end up paying if she applies her coupon to the sale price? Solve this problem by using a composite function.

Solution
Since the sale price is 20% off the original price, if an item is  dollars, its sale price is given by . Since the
coupon entitles an individual to 15% off the price of any item, if an item is  dollars, the price, after applying the coupon, is
given by g(y)=0.85y. Therefore, if the price is originally  dollars, its sale price will be  and then its final price
after the coupon will be .

If items are on sale for 10% off their original price, and a customer has a coupon for an additional 30% off, what will be the
final price for an item that is originally  dollars, after applying the coupon to the sale price?

Hint
The sale price of an item with an original price of  dollars is . The coupon price for an item that is  dollars is 

.

Solution

Symmetry of Functions
The graphs of certain functions have symmetry properties that help us understand the function and the shape of its graph. For
example, consider the function  shown in Figure . If we take the part of the curve that lies to the right
of the -axis and flip it over the -axis, it lays exactly on top of the curve to the left of the -axis. In this case, we say the function
has symmetry about the -axis. On the other hand, consider the function  shown in Figure . If we take the
graph and rotate it  about the origin, the new graph will look exactly the same. In this case, we say the function has symmetry
about the origin.

(g∘ f)(3) = g(f(3)) = g(−2) = 0

(g∘ f)(0) = g(4) = 5

g∘ f {−3,−2,−1, 0, 1, 2, 3, 4}. f {−2, 0, 2, 4}, g∘ f

{0, 3, 5}.

(f ∘ f)(3) = f(f(3)) = f(−2) = 4

(f ∘ f)(1) = f(f(1)) = f(−2) = 4

f ∘ f {−3,−2,−1, 0, 1, 2, 3, 4}. f {−2, 0, 2, 4}, f ∘ f

{0, 4}.

 Example : Application Involving a Composite Function1.2.9

x

x f(x) = 0.80x

y

x f(x) = 0.80x

g(f(x)) = 0.85(0.80x) = 0.68x

 Exercise 1.2.9

x

x f(x) = 0.90x y

g(y) = 0.70y

(g∘ f)(x) = 0.63x

f(x) = −2 −3x

4

x

2

1.2.12a

y y y

y f(x) = −4xx

3

1.2.12b

180°
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 Figure : (a) A graph that is symmetric
about the -axis. (b) A graph that is symmetric about the origin.

If we are given the graph of a function, it is easy to see whether the graph has one of these symmetry properties. But without a
graph, how can we determine algebraically whether a function  has symmetry? Looking at Figure  again, we see that since

 is symmetric about the -axis, if the point  is on the graph, the point  is on the graph. In other words, 
. If a function  has this property, we say  is an even function, which has symmetry about the -axis. For example, 

 is even because

In contrast, looking at Figure  again, if a function  is symmetric about the origin, then whenever the point  is on the
graph, the point  is also on the graph. In other words, . If  has this property, we say  is an odd
function, which has symmetry about the origin. For example,  is odd because

If  for all  in the domain of , then  is an even function. An even function is symmetric about the -axis.
If  for all  in the domain of , then  is an odd function. An odd function is symmetric about the origin.

Determine whether each of the following functions is even, odd, or neither.

a. 
b. 
c. 

Solution
To determine whether a function is even or odd, we evaluate  and compare it to  and .

1.  Therefore,  is even.

2.  Now,  Furthermore, noting that 
, we see that . Therefore,  is neither even nor odd.

3.  Therefore,  is odd.

1.2.12

y

f 1.2.12a

f y (x, y) (−x, y)

f(−x) = f(x) f f y

f(x) = x

2

f(−x) = (−x = = f(x).)

2

x

2

1.2.12b f (x, y)

(−x, −y) f(−x) =−f(x) f f

f(x) = x

3

f(−x) = (−x =− =−f(x).)

3

x

3

 Definition: Even and Odd Functions

f(x) = f(−x) x f f y

f(−x) =−f(x) x f f

 Example : Even and Odd Functions1.2.10

f(x) =−5 +7 −2x

4

x

2

f(x) = 2 −4x+5x

5

f(x) =

3x

+1x

2

f(−x) f(x) −f(x)

f(−x) =−5(−x +7(−x −2 =−5 +7 −2 = f(x).)

4

)

2

x

4

x

2

f

f(−x) = 2(−x −4(−x)+5 =−2 +4x+5.)

5

x

5

f(−x) ≠ f(x).

−f(x) =−2 +4x−5x

5

f(−x) ≠−f(x) f

f(−x) = 3(−x)/((−x)2+1)=−3x/( +1) =x

2

−[3x/( +1)] =−f(x).x

2

f
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Determine whether  is even, odd, or neither.

Hint

Compare  with  and .

Answer

 is odd.

One symmetric function that arises frequently is the absolute value function, written as . The absolute value function is defined
as

Some students describe this function by stating that it “makes everything positive.” By the definition of the absolute value function,
we see that if , then  and if , then  However, for   Therefore, it is more
accurate to say that for all nonzero inputs, the output is positive, but if , the output . We conclude that the range of the
absolute value function is  In Figure , we see that the absolute value function is symmetric about the -axis and
is therefore an even function.

 Figure : The graph of  is symmetric about the -axis.

Find the domain and range of the function .

Solution
Since the absolute value function is defined for all real numbers, the domain of this function is . Since 
for all , the function . Therefore, the range is, at most, the set  To see that the range is,
in fact, this whole set, we need to show that for  there exists a real number  such that

A real number  satisfies this equation as long as

Since , we know , and thus the right-hand side of the equation is nonnegative, so it is possible that there is a
solution. Furthermore,

Therefore, we see there are two solutions:

 Exercise 1.2.10

f(x) = 4 −5xx

3

f(−x) f(x) −f(x)

f(x)

|x|

f(x) ={

−x,

x,

if x < 0

if x ≥ 0

x < 0 |x| = −x > 0, x > 0 |x| = x > 0. x = 0, |x| = 0.

x = 0 |x| = 0

{y | y ≥ 0}. 1.2.13 y

1.2.13 f(x) = |x| y

 Example : Working with the Absolute Value Function1.2.11

f(x) = 2|x−3|+4

(−∞,∞) |x−3| ≥ 0

x f(x) = 2|x−3|+4 ≥ 4 {y | y ≥ 4}.

y ≥ 4 x

2|x−3|+4 = y

x

|x−3| = (y−4)

1

2

y ≥ 4 y−4 ≥ 0

|x−3| ={

−(x−3),

x−3,

if x < 3

if x ≥ 3
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.

The range of this function is 

For the function , find the domain and range.

Hint

 for all real numbers .

Answer

Domain = , range = 

Key Concepts
A function is a mapping from a set of inputs to a set of outputs with exactly one output for each input.
If no domain is stated for a function  the domain is considered to be the set of all real numbers  for which the
function is defined.
When sketching the graph of a function  each vertical line may intersect the graph, at most, once.
A function may have any number of zeros, but it has, at most, one -intercept.
To define the composition , the range of  must be contained in the domain of .
Even functions are symmetric about the -axis whereas odd functions are symmetric about the origin.

Key Equations
Composition of two functions

Absolute value function

Glossary

absolute value function

composite function
given two functions  and , a new function, denoted , such that 

decreasing on the interval 
a function decreasing on the interval  if, for all  if 

dependent variable
the output variable for a function

domain
the set of inputs for a function

even function
a function is even if  for all  in the domain of 

function
a set of inputs, a set of outputs, and a rule for mapping each input to exactly one output

x =± (y−4)+3

1

2

{y | y ≥ 4}.

 Exercise : Domain and Range1.2.11

f(x) = |x+2|−4

|x+2| ≥ 0 x

(−∞,∞) {y | y ≥−4}.

y = f(x), x

f ,

y

g∘ f f g

y

(g∘ f)(x) = g(f(x))

f(x) ={

−x,

x,

if x < 0

if x ≥ 0

f(x) ={

−x,

x,

if x < 0

if x ≥ 0

f g g∘ f (g∘ f)(x) = g(f(x))

I

I , ∈ I, f( ) ≥ f( )x

1

x

2

x

1

x

2

<x

1

x

2

f(−x) = f(x) x f
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graph of a function
the set of points  such that  is in the domain of  and 

increasing on the interval 
a function increasing on the interval  if for all  if 

independent variable
the input variable for a function

odd function
a function is odd if  for all  in the domain of 

range
the set of outputs for a function

symmetry about the origin
the graph of a function  is symmetric about the origin if  is on the graph of  whenever  is on the graph

symmetry about the -axis
the graph of a function  is symmetric about the -axis if  is on the graph of  whenever  is on the graph

table of values
a table containing a list of inputs and their corresponding outputs

vertical line test
given the graph of a function, every vertical line intersects the graph, at most, once

zeros of a function
when a real number  is a zero of a function 

This page titled 1.2: Review of Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

1.1: Review of Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

(x, y) x f y = f(x)

I

I , ∈ I, f( ) ≤ f( )x

1

x

2

x

1

x

2

<x

1

x

2

f(−x) =−f(x) x f

f (−x, −y) f (x, y)

y

f y (−x, y) f (x, y)

x f , f(x) = 0
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1.2E: Exercises for Section 1.1
For exercises 1 - 6, (a) determine the domain and the range of each relation, and (b) state whether the relation is a function.

1)

-3 9 1 1

-2 4 2 4

-1 1 3 9

0 0   

Answer

a. Domain = { }, Range = { }

b. Yes, a function

2)

-3 -2 1 1

-2 -8 2 8

-1 -1 3 -2

0 0   

3)

1 -3 1 1

2 -2 2 2

3 -1 3 3

0 0   

Answer

a. Domain = { }, Range = { }

b. No, not a function

4)

1 1 5 1

2 1 6 1

3 1 7 1

4 1   

5)

x y x y

−3,−2,−1, 0, 1, 2, 3 0, 1, 4, 9

x y x y

x y x y

0, 1, 2, 3 −3,−2,−1, 0, 1, 2, 3

x y x y
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3 3 15 1

5 2 21 2

8 1 33 3

10 0   

Answer

a. Domain = { }, Range = { }

b. Yes, a function

6)

-7 11 1 -2

-2 5 3 4

-2 1 6 11

0 -1   

For exercises 7 - 13, find the values for each function, if they exist, then simplify.

a.  b.  c.  d.  e.  f. 

7) 

Answer
a.  b.  c.  d.  e.  f. 

8) 

9) 

Answer

a. Undefined b.  c.  d.  e.  f. 

10) 

11) 

Answer
a.  b.  c.  d.  e.  f. 

12) 

13) 

Answer
a. 9 b. 9 c. 9 d. 9 e. 9 f. 9

For exercises 14 - 21, find the domain, range, and all zeros/intercepts, if any, of the functions.

x y x y

3, 5, 8, 10, 15, 21, 33 0, 1, 2, 3

x y x y

f(0) f(1) f(3) f(−x) f(a) f(a+h)

f(x) = 5x−2

−2 3 13 −5x−2 5a−2 5a+5h−2

f(x) = 4 −3x+1x

2

f(x) =

2

x

2

2

3

−

2

x

2

a

2

a+h

f(x) = |x−7|+8

f(x) = 6x+5

− −−−−

√

5

–

√ 11

−−

√

23

−−

√ −6x+5

− −−−−−−

√ 6a+5

− −−−−

√ 6a+6h+5

− −−−−−−−−

√

f(x) =

x−2

3x+7

f(x) = 9
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14) 

15) 

Answer

; no y-intercept

16) 

17) 

Answer

18) 

19) 

Answer
; no x-intercept; 

20) 

21) 

Answer
; no intercepts

For exercises 22 - 27, set up a table to sketch the graph of each function using the following values: 

22) 

-3 10 1 2

-2 5 2 5

-1 2 3 10

0 1   

23) 

-3 -15 1 -3

-2 -12 2 0

-1 -9 3 3

0 -6   

Answer

f(x) =

x

−16x

2

g(x) = 8x−1

− −−−−

√

x ≥ ; y ≥ 0; x =

1

8

1

8

h(x) =

3

+4x

2

f(x) =−1+ x+2

− −−−−

√

x ≥−2; y ≥−1; x =−1; y =−1+ 2

–

√

f(x) = 1x− 9

–

√

g(x) =

3

x−4

x ≠ 4; y ≠ 0 y =−

3

4

f(x) = 4|x+5|

g(x) =

7

x−5

− −−−−

√

x > 5; y > 0

x =−3,−2,−1, 0, 1, 2, 3.

f(x) = +1x

2

x y x y

f(x) = 3x−6

x y x y
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24) 

-3 1

-2 0 2 2

-1 3

0 1   

25) 

-3 6 1 2

-2 4 2 4

-1 2 3 6

0 0   

Answer

26) 

-3 -9 1 -1

-2 -4 2 -4

-1 -1 3 -9

f(x) = x+1

1

2

x y x y

−

1

2

3

2

1

2

5

2

f(x) = 2|x|

x y x y

f(x) =−x

2

x y x y
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0 0   

27) 

-3 -27 1 1

-2 -8 2 8

-1 -1 3 27

0 0   

Answer

For exercises 28 - 35, use the vertical line test to determine whether each of the given graphs represents a function. Assume
that a graph continues at both ends if it extends beyond the given grid. If the graph represents a function, then determine
the following for each graph:

a. Domain and range

b.  -intercept, if any (estimate where necessary)

c. -Intercept, if any (estimate where necessary)

d. The intervals for which the function is increasing

e. The intervals for which the function is decreasing

f. The intervals for which the function is constant

x y x y

f(x) = x

3

x y x y

x

y
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g. Symmetry about any axis and/or the origin

h. Whether the function is even, odd, or neither

28)

29)

Answer
Function; 
a. Domain: all real numbers, range:  
b.  
c.  
d.  and  
e.  and  
f. Not constant 
g. -axis 
h. Even

30)

y ≥ 0

x =±1

y = 1

−1 < x < 0 1 < x <∞

−∞< x <−1 0 < x < 1

y
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31)

Answer
Function; 
a. Domain: all real numbers, range:  
b.  
c.  
d. all real numbers 
e. None 
f. Not constant 
g. Origin 
h. Odd

32)

−1.5 ≤ y ≤ 1.5

x = 0

y = 0
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33)

Answer
Function; 
a. Domain: , range:  
b.  
c.  
d.  
e. Not decreasing 
f.  and  
g. Origin 
h. Odd

34)

−∞< x <∞ −2 ≤ y ≤ 2

x = 0

y = 0

−2 < x < 2

−∞< x <−2 2 < x <∞
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35)

Answer
Function; 
a. Domain: , range:  
b. 
c.  
d. Not increasing 
e.  
f.  
g. No Symmetry 
h. Neither

For exercises 36 - 41, for each pair of functions, find a.  b.  c.  d. . Determine the domain of each of these
new functions.

36) 

37) 

Answer
a. ; all real numbers 
b. ; all real numbers 

−4 ≤ x ≤ 4 −4 ≤ y ≤ 4

x = 1.2

y = 4

0 < x < 4

−4 < x < 0

f +g f −g f ⋅ g f/g

f(x) = 3x+4, g(x) = x−2

f(x) = x−8, g(x) = 5x

2

5 +x−8x

2

−5 +x−8x

2
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c. ; all real numbers

d. 

38) 

39) 

Answer
a. ; all real numbers 
b. ; all real numbers 
c. ; all real numbers 

d. 

40) 

41) 

Answer

a. 

b. 

c. 

d. 

For exercises 42 - 48, for each pair of functions, find a.  and b.  Simplify the results. Find the domain of
each of the results.

42) 

43) 

Answer
a. ; all real numbers 
b. ; all real numbers

44) 

45) 

Answer
a. ; all real numbers 
b. ; all real numbers

46) 

47) 

Answer

a. 

b. 

48) 

5 −40x

3

x

2

; x ≠ 0

x−8

5x

2

f(x) = 3 +4x+1, g(x) = x+1x

2

f(x) = 9− , g(x) = −2x−3x

2

x

2

−2x+6

−2 +2x+12x

2

− +2 +12 −18x−27x

4

x

3

x

2

− ; x ≠−1, 3

x+3

x+1

f(x) = , g(x) = x−2x

−−

√

f(x) = 6+ , g(x) =

1

x

1

x

6+ ; x ≠ 0

2

x

6; x ≠ 0

6x+ ; x ≠ 0

1

x

2

6x+1; x ≠ 0

(f ∘ g)(x) (g∘ f)(x)

f(x) = 3x, g(x) = x+5

f(x) = x+4, g(x) = 4x−1

4x+3

4x+15

f(x) = 2x+4, g(x) = −2x

2

f(x) = +7, g(x) = −3x

2

x

2

−6 +16x

4

x

2

+14 +46x

4

x

2

f(x) = , g(x) = x+9x

−−

√

f(x) = , g(x) =

3

2x+1

2

x

; x ≠ 0,−4

3x

4+x

; x ≠−

4x+2

3

1

2

f(x) = |x+1|, g(x) = +x−4x

2
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49) The table below lists the NBA championship winners for the years 2001 to 2012.

Year Winner

2001 LA Lakers

2002 LA Lakers

2003 Sam Antonio Spurs

2004 Detroit Pistons

2005 Sam Antonio Spurs

2006 Miami Heat

2007 Sam Antonio Spurs

2008 Boston Celtics

2009 LA Lakers

2010 LA Lakers

2011 Dallas Mavericks

2012 Miami Heat

a. Consider the relation in which the domain values are the years 2001 to 2012 and the range is the corresponding winner. Is
this relation a function? Explain why or why not.

b. Consider the relation where the domain values are the winners and the range is the corresponding years. Is this relation a
function? Explain why or why not.

Answer
a. Yes, because there is only one winner for each year. 
b. No, because there are three teams that won more than once during the years 2001 to 2012.

50) [T] The area  of a square depends on the length of the side s.

a. Write a function  for the area of a square.

b. Find and interpret .

c. Find the exact and the two-significant-digit approximation to the length of the sides of a square with area 56 square units.

51) [T] The volume of a cube depends on the length of the sides 

a. Write a function  for the area of a square.

b. Find and interpret .

Answer
a.  
b. ; a cube of side length 11.8 each has a volume of approximately 1643 cubic units.

52) [T] A rental car company rents cars for a flat fee of $20 and an hourly charge of $10.25. Therefore, the total cost  to rent a car
is a function of the hours  the car is rented plus the flat fee.

a. Write the formula for the function that models this situation.

b. Find the total cost to rent a car for 2 days and 7 hours.

c. Determine how long the car was rented if the bill is $432.73.

A

A(s)

A(6.5)

s.

V (s)

V (11.8)

V (s) = s

3

V (11.8) ≈ 1643

C

t
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53) [T] A vehicle has a 20-gal tank and gets 15 mpg. The number of miles  that can be driven depends on the amount of gas  in
the tank.

a. Write a formula that models this situation.

b. Determine the number of miles the vehicle can travel on (i) a full tank of gas and (ii) 3/4 of a tank of gas.

c. Determine the domain and range of the function.

d. Determine how many times the driver had to stop for gas if she has driven a total of 578 mi.

Answer
a.  
b. i. ; therefore, the vehicle can travel 300 mi on a full tank of gas. 
ii. ; therefore, the vehicle can travel 225 mi on 3/4 of a tank of gas. 
c. Domain: ; range:  
d. The driver had to stop at least once, given that it takes approximately 39 gal of gas to drive a total of 578 mi.

54) [T] The volume  of a sphere depends on the length of its radius as . Because Earth is not a perfect sphere, we
can use the mean radius when measuring from the center to its surface. The mean radius is the average distance from the physical
center to the surface, based on a large number of samples. Find the volume of Earth with mean radius  m.

55) [T] A certain bacterium grows in culture in a circular region. The radius of the circle, measured in centimeters, is given by 

, where  is time measured in hours since a circle of a 1-cm radius of the bacterium was put into the culture.

a. Express the area of the bacteria as a function of time.

b. Find the exact and approximate area of the bacterial culture in 3 hours.

c. Express the circumference of the bacteria as a function of time.

d. Find the exact and approximate circumference of the bacteria in 3 hours.

Answer

a.  

b. Exact: ; approximately  
c.  

d. Exact: ; approximately  cm

56) [T] An American tourist visits Paris and must convert U.S. dollars to Euros, which can be done using the function 
, where  is the number of U.S. dollars and  is the equivalent number of Euros. Since conversion rates

fluctuate, when the tourist returns to the United States 2 weeks later, the conversion from Euros to U.S. dollars is ,
where  is the number of Euros and  is the equivalent number of U.S. dollars.

a. Find the composite function that converts directly from U.S. dollars to U.S. dollars via Euros. Did this tourist lose value in
the conversion process?

b. Use (a) to determine how many U.S. dollars the tourist would get back at the end of her trip if she converted an extra $200
when she arrived in Paris.

57) [T] The manager at a skateboard shop pays his workers a monthly salary  of $750 plus a commission of $8.50 for each
skateboard they sell.

a. Write a function  that models a worker’s monthly salary based on the number of skateboards  he or she sells.

b. Find the approximate monthly salary when a worker sells 25, 40, or 55 skateboards.

c. Use the INTERSECT feature on a graphing calculator to determine the number of skateboards that must be sold for a
worker to earn a monthly income of $1400. (Hint: Find the intersection of the function and the line .)

N x

N(x) = 15x

N(20) = 15(20) = 300

N(15) = 225

0 ≤ x ≤ 20 [0, 300]

V V = (4/3)πr

3

6.371×106

r(t) = 6−

5

+1t

2

t

A(t) =A(r(t)) = π ⋅ (6−

5

+1t

2

)

2

121π

4

95 cm

2

C(t) =C(r(t)) = 2π(6− )

5

+1t

2

11π 35

E(x) = 0.79x x E(x)

D(x) = 1.245x

x D(x)

S

y = S(x) x

y = 1400
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Answer
a.  b. $962.50, $1090, $1217.50 c. 77 skateboards

58) [T] Use a graphing calculator to graph the half-circle . Then, use the INTERCEPT feature to find the
value of both the - and -intercepts.

Contributors

Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is
licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

This page titled 1.2E: Exercises for Section 1.1 is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

S(x) = 8.5x+750

y = 25−(x−4)

2

− −−−−−−−−−−

√

x y
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1.3: Basic Classes of Functions

Calculate the slope of a linear function and interpret its meaning.
Recognize the degree of a polynomial.
Find the roots of a quadratic polynomial.
Describe the graphs of basic odd and even polynomial functions.
Identify a rational function.
Describe the graphs of power and root functions.
Explain the difference between algebraic and transcendental functions.
Graph a piecewise-defined function.
Sketch the graph of a function that has been shifted, stretched, or reflected from its initial graph position.

We have studied the general characteristics of functions, so now let’s examine some specific classes of functions. We begin by
reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By
combining root functions with polynomials, we can define general algebraic functions and distinguish them from the transcendental
functions we examine later in this chapter. We finish the section with examples of piecewise-defined functions and take a look at
how to sketch the graph of a function that has been shifted, stretched, or reflected from its initial form.

Linear Functions and Slope
The easiest type of function to consider is a linear function. Linear functions have the form , where  and  are
constants. In Figure , we see examples of linear functions when a is positive, negative, and zero. Note that if , the graph
of the line rises as  increases. In other words,  is increasing on . If , the graph of the line falls as 
increases. In this case,  is decreasing on . If , the line is horizontal.

 Figure : These linear functions are increasing or decreasing on  and one
function is a horizontal line.

As suggested by Figure , the graph of any linear function is a line. One of the distinguishing features of a line is its slope. The
slope is the change in  for each unit change in . The slope measures both the steepness and the direction of a line. If the slope is
positive, the line points upward when moving from left to right. If the slope is negative, the line points downward when moving
from left to right. If the slope is zero, the line is horizontal. To calculate the slope of a line, we need to determine the ratio of the

change in  versus the change in . To do so, we choose any two points  and  on the line and calculate . In

Figure , we see this ratio is independent of the points chosen.

 Learning Objectives

f(x) = ax+b a b

1.3.1 a> 0

x f(x) = ax+b (−∞,∞) a< 0 x

f(x) = ax+b (−∞,∞) a= 0

1.3.1 (∞,∞)

1.3.1

y x

y x ( , )x

1

y

1

( , )x

2

y

2

−y

2

y

1

−x

2

x

1

1.3.2
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 Figure : For any linear function, the slope  is
independent of the choice of points  and  on the line.

Consider line  passing through points  and . Let  and  denote the changes in 
and ,respectively. The slope of the line is

We now examine the relationship between slope and the formula for a linear function. Consider the linear function given by the
formula . As discussed earlier, we know the graph of a linear function is given by a line. We can use our definition
of slope to calculate the slope of this line. As shown, we can determine the slope by calculating  for any
points  and  on the line. Evaluating the function  at , we see that  is a point on this line. Evaluating this
function at , we see that  is also a point on this line. Therefore, the slope of this line is

We have shown that the coefficient  is the slope of the line. We can conclude that the formula  describes a line with
slope . Furthermore, because this line intersects the -axis at the point , we see that the -intercept for this linear function is 

. We conclude that the formula  tells us the slope, , and the -intercept, , for this line. Since we often
use the symbol  to denote the slope of a line, we can write

to denote the slope-intercept form of a linear function.

Sometimes it is convenient to express a linear function in different ways. For example, suppose the graph of a linear function
passes through the point  and the slope of the line is . Since any other point  on the graph of  must satisfy the
equation

this linear function can be expressed by writing

1.3.2 ( − )/( − )y

2

y

1

x

2

x

1

( , )x

1

y

1

( , )x

2

y

2

 Definition: Slope of a Linear Function

L ( , )x

1

y

1

( , )x

2

y

2

Δy = −y

2

y

1

Δx = −x

2

x

1

y

x

m = =

−y

2

y

1

−x

2

x

1

Δy

Δx

f(x) = ax+b

( − )/( − )y

2

y

1

x

2

x

1

( , )x

1

y

1

( , )x

2

y

2

f x = 0 (0, b)

x = 1 (1, a+b)

= a.

(a+b) −b

1 −0

a f(x) = ax+b

a y (0, b) y

(0, b) f(x) = ax+b a y (0, b)

m

f(x) =mx+b

  

slope-intercept form

( , )x

1

y

1

m (x, f(x)) f

m = ,

f(x) −y

1

x−x

1

.f(x) − =m(x− )y

1

x

1

  

point-slope equation
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We call this equation the point-slope equation for that linear function.

Since every nonvertical line is the graph of a linear function, the points on a nonvertical line can be described using the slope-
intercept or point-slope equations. However, a vertical line does not represent the graph of a function and cannot be expressed in
either of these forms. Instead, a vertical line is described by the equation  for some constant . Since neither the slope-
intercept form nor the point-slope form allows for vertical lines, we use the notation

where  are both not zero, to denote the standard form of a line.

Consider a line passing through the point  with slope . The equation

is the point-slope equation for that line.

Consider a line with slope  and -intercept  The equation

is an equation for that line in slope-intercept form.

The standard form of a line is given by the equation

where  and  are both not zero. This form is more general because it allows for a vertical line, .

Consider the line passing through the points  and , as shown in Figure .

 Figure : Finding the equation of a linear function
with a graph that is a line between two given points.
1. Find the slope of the line.
2. Find an equation for this linear function in point-slope form.
3. Find an equation for this linear function in slope-intercept form.

Solution
1. The slope of the line is

x = k k

,ax+by = c

  

standard form

a, b

 Definition: Point-Slope Equation, and the Slope-Intercept Form and Standard Form of the Equation of a Line

( , )x

1

y

1

m

y− =m(x− )y

1

x

1

m y (0, b).

y =mx+b

ax+by = c,

a b x = k

 Example : Finding the Slope and Equations of Lines1.3.1

(11, −4) (−4, 5) 1.3.3

1.3.3

m = = = − = − .

−y

2

y

1

−x

2

x

1

5 −(−4)

−4 −11

9

15

3

5
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2. To find an equation for the linear function in point-slope form, use the slope  and choose any point on the line. If
we choose the point , we get the equation

3. To find an equation for the linear function in slope-intercept form, solve the equation in part b. for . When we do this,
we get the equation

Consider the line passing through points  and .

a. Find the slope of the line.
b. Find an equation of that line in point-slope form.
c. Find an equation of that line in slope-intercept form.

Hint

The slope .

Answer a

.

Answer b

The point-slope form is .

Answer c

The slope-intercept form is .

Jessica leaves her house at 5:50 a.m. and goes for a 9-mile run. She returns to her house at 7:08 a.m. Answer the following
questions, assuming Jessica runs at a constant pace.

a. Describe the distance  (in miles) Jessica runs as a linear function of her run time  (in minutes).
b. Sketch a graph of .
c. Interpret the meaning of the slope.

Solution
a. At time , Jessica is at her house, so . At time  minutes, Jessica has finished running  mi, so 

. The slope of the linear function is

The -intercept is , so the equation for this linear function is

b. To graph , use the fact that the graph passes through the origin and has slope 

m =−3/5

(11,−4)

f(x)+4 =− (x−11).

3

5

f(x)

f(x) =− x+ .

3

5

13

5

 Exercise 1.3.1

(−3, 2) (1, 4)

m =Δy/Δx

m = 1/2

y−4 = (x−1)

1

2

y = x+

1

2

7

2

 Example :1.3.2

D t

D

t = 0 D(0) = 0 t = 78 9

D(78) = 9

m = = .

9−0

78−0

3

26

y (0, 0)

D(t) = t.

3

26

D m = 3/26.
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c. The slope  describes the distance (in miles) Jessica runs per minute, or her average velocity.

Polynomials
A linear function is a special type of a more general class of functions: polynomials. A polynomial function is any function that can
be written in the form

for some integer  and constants , where . In the case when , we allow for ; if ,
the function  is called the zero function. The value  is called the degree of the polynomial; the constant  is called the
leading coefficient. A linear function of the form  is a polynomial of degree 1 if  and degree 0 if . A
polynomial of degree 0 is also called a constant function. A polynomial function of degree 2 is called a quadratic function. In
particular, a quadratic function has the form

where . A polynomial function of degree  is called a cubic function.

Power Functions
Some polynomial functions are power functions. A power function is any function of the form , where  and  are any
real numbers. The exponent in a power function can be any real number, but here we consider the case when the exponent is a
positive integer. (We consider other cases later.) If the exponent is a positive integer, then  is a polynomial. If  is even,
then  is an even function because  if  is even. If  is odd, then  is an odd
function because  if  is odd (Figure ).

m = 3/26 ≈ 0.115

f(x) = + +…+ x+a

n

x

n

a

n−1

x

n−1

a

1

a

0

n≥ 0 , ,… ,a

n

a

n−1

a

0

≠ 0a

n

n= 0 = 0a

0

= 0a

0

f(x) = 0 n a

n

f(x) =mx+b m ≠ 0 m = 0

f(x) = a +bx+c,x

2

a≠ 0 3

f(x) = ax

b

a b

f(x) = ax

n

n

f(x) = ax

n

f(−x) = a(−x = a)

n

x

n

n n f(x) = ax

n

f(−x) = a(−x =−a)

n

x

n

n 1.3.4

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25911?pdf


1.3.6 https://stats.libretexts.org/@go/page/25911

 Figure : (a) For any even integer ,
 is an even function. (b) For any odd integer ,  is an odd function.

Behavior at Infinity

To determine the behavior of a function  as the inputs approach infinity, we look at the values  as the inputs, , become
larger. For some functions, the values of  approach a finite number. For example, for the function , the values 

 become closer and closer to zero for all values of  as they get larger and larger. For this function, we say “  approaches
two as  goes to infinity,” and we write  as . The line  is a horizontal asymptote for the function 

 because the graph of the function gets closer to the line as  gets larger.

For other functions, the values  may not approach a finite number but instead may become larger for all values of  as they get
larger. In that case, we say “  approaches infinity as  approaches infinity,” and we write  as . For example,
for the function , the outputs  become larger as the inputs  get larger. We can conclude that the function 

 approaches infinity as  approaches infinity, and we write  as . The behavior as  and the
meaning of  as  or  can be defined similarly. We can describe what happens to the values of  as 

 and as  as the end behavior of the function.

To understand the end behavior for polynomial functions, we can focus on quadratic and cubic functions. The behavior for higher-
degree polynomials can be analyzed similarly. Consider a quadratic function . If , the values 

 as . If , the values  as . Since the graph of a quadratic function is a parabola, the
parabola opens upward if .; the parabola opens downward if  (Figure ).

Now consider a cubic function . If , then  as  and  as .
If , then  as  and  as . As we can see from both of these graphs, the leading term of
the polynomial determines the end behavior (Figure ).

1.3.4 n

f(x) = ax

n

n f(x) = ax

n

f f(x) x

f(x) f(x) = 2+1/x

1/x x f(x)

x f(x) → 2 x→∞ y = 2

f(x) = 2+1/x x

f(x) x

f(x) x f(x) →∞ x→∞

f(x) = 3x

2

f(x) x

f(x) = 3x

2

x 3 →∞x

2

x→∞ x→−∞

f(x) →−∞ x→∞ x→−∞ f(x)

x→∞ x→−∞

f(x) = a +bx+cx

2

a> 0

f(x) →∞ x→±∞ a< 0 f(x) →−∞ x→±∞

a> 0 a< 0 1.3.5a

f(x) = a +b +cx+dx

3

x

2

a> 0 f(x) →∞ x→∞ f(x) →−∞ x→−∞

a< 0 f(x) →−∞ x→∞ f(x) →∞ x→−∞

1.3.5b
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 Figure : (a) For a quadratic function, if
the leading coefficient ,the parabola opens upward. If , the parabola opens downward. (b) For a cubic function , if the
leading coefficient , the values  as  and the values  as . If the leading coefficient 

, the opposite is true.

Zeros of Polynomial Functions
Another characteristic of the graph of a polynomial function is where it intersects the -axis. To determine where a function 
intersects the -axis, we need to solve the equation  for . In the case of the linear function , the -
intercept is given by solving the equation . In this case, we see that the -intercept is given by . In the case
of a quadratic function, finding the -intercept(s) requires finding the zeros of a quadratic equation: . In some
cases, it is easy to factor the polynomial  to find the zeros. If not, we make use of the quadratic formula.

Consider the quadratic equation

where . The solutions of this equation are given by the quadratic formula

If the discriminant , Equation  tells us there are two real numbers that satisfy the quadratic equation. If 
, this formula tells us there is only one solution, and it is a real number. If , no real numbers satisfy

the quadratic equation.

In the case of higher-degree polynomials, it may be more complicated to determine where the graph intersects the -axis. In some
instances, it is possible to find the -intercepts by factoring the polynomial to find its zeros. In other cases, it is impossible to
calculate the exact values of the -intercepts. However, as we see later in the text, in cases such as this, we can use analytical tools
to approximate (to a very high degree) where the -intercepts are located. Here we focus on the graphs of polynomials for which
we can calculate their zeros explicitly.

For the following functions,

a. 
b. 

i. describe the behavior of  as ,

1.3.5

a> 0 a< 0 f

a> 0 f(x) →∞ x→∞ f(x) →−∞ x→−∞

a< 0

x f

x f(x) = 0 x f(x) =mx+b x

mx+b = 0 x (−b/m, 0)

x a +bx+c = 0x

2

a +bx+cx

2

 The Quadratic Formula

a +bx+c = 0,x

2

a≠ 0

x = .

−b± −4acb

2

− −−−−−−

√

2a

(1.3.1)

−4ac > 0b

2

1.3.1

−4ac = 0b

2

−4ac < 0b

2

x

x

x

x

 Example : Graphing Polynomial Functions1.3.3

f(x) =−2 +4x−1x

2

f(x) = −3 −4xx

3

x

2

f(x) x→±∞
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ii. find all zeros of , and
iii. sketch a graph of .

Solution
1. The function  is a quadratic function.

1. Because , as 

2. To find the zeros of , use the quadratic formula. The zeros are

3. To sketch the graph of ,use the information from your previous answers and combine it with the fact that the
graph is a parabola opening downward.

2. The function  is a cubic function.

1. Because , as , . As , .

2. To find the zeros of , we need to factor the polynomial. First, when we factor  out of all the terms, we find

Then, when we factor the quadratic function , we find

Therefore, the zeros of  are .

3. Combining the results from parts i. and ii., draw a rough sketch of .

f

f

f(x) =−2 +4x−1x

2

a=−2 < 0 x→±∞, f(x) →−∞.

f

x = = = = .

−4± −4(−2)(−1)4

2

− −−−−−−−−−−−

√

2(−2)

−4± 8

–

√

−4

−4±2 2

–

√

−4

2± 2

–

√

2

f

f(x) = −3 −4xx

3

x

2

a= 1 > 0 x→∞ f(x) →∞ x→−∞ f(x) →−∞

f x

f(x) = x( −3x−4).x

2

−3x−4x

2

f(x) = x(x−4)(x+1).

f x = 0, 4,−1

f
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Consider the quadratic function  Find the zeros of . Does the parabola open upward or downward?

Hint

Use the quadratic formula.

Answer

The zeros are . The parabola opens upward.

Mathematical Models

A large variety of real-world situations can be described using mathematical models. A mathematical model is a method of
simulating real-life situations with mathematical equations. Physicists, engineers, economists, and other researchers develop
models by combining observation with quantitative data to develop equations, functions, graphs, and other mathematical tools to
describe the behavior of various systems accurately. Models are useful because they help predict future outcomes. Examples of
mathematical models include the study of population dynamics, investigations of weather patterns, and predictions of product sales.

As an example, let’s consider a mathematical model that a company could use to describe its revenue for the sale of a particular
item. The amount of revenue  a company receives for the sale of  items sold at a price of  dollars per item is described by the
equation . The company is interested in how the sales change as the price of the item changes. Suppose the data in Table 

 show the number of units a company sells as a function of the price per item.

Table : Number of Units Sold  (in Thousands) as a Function of Price per Unit  (in Dollars)

6 8 10 12 14

19.4 18.5 16.2 13.8 12.2

In Figure , we see the graph the number of units sold (in thousands) as a function of price (in dollars). We note from the shape
of the graph that the number of units sold is likely a linear function of price per item, and the data can be closely approximated by
the linear function  for , where  predicts the number of units sold in thousands. Using this linear
function, the revenue (in thousands of dollars) can be estimated by the quadratic function

 Exercise 1.3.2

f(x) = 3 −6x+2.x

2

f

x = 1± /33

–

√

R n p

R= p ⋅n

1.3.1

1.3.1 n p

p

n

1.3.6

n=−1.04p+26 0 ≤ p ≤ 25 n
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In Example , we use this quadratic function to predict the amount of revenue the company receives depending on the price the
company charges per item. Note that we cannot conclude definitively the actual number of units sold for values of , for which no
data are collected. However, given the other data values and the graph shown, it seems reasonable that the number of units sold (in
thousands) if the price charged is  dollars may be close to the values predicted by the linear function 

 Figure : The data collected for the number of items sold as
a function of price is roughly linear. We use the linear function  to estimate this function.

A company is interested in predicting the amount of revenue it will receive depending on the price it charges for a particular
item. Using the data from Table , the company arrives at the following quadratic function to model revenue  as a
function of price per item 

for .

a. Predict the revenue if the company sells the item at a price of  and .
b. Find the zeros of this function and interpret the meaning of the zeros.
c. Sketch a graph of .
d. Use the graph to determine the value of  that maximizes revenue. Find the maximum revenue.

Solution
a. Evaluating the revenue function at  and , we can conclude that

b. The zeros of this function can be found by solving the equation . When we factor the quadratic
expression, we get . The solutions to this equation are given by . For these values of , the
revenue is zero. When , the revenue is zero because the company is giving away its merchandise for free. When 

,the revenue is zero because the price is too high, and no one will buy any items.

c. Knowing the fact that the function is quadratic, we also know the graph is a parabola. Since the leading coefficient is
negative, the parabola opens downward. One property of parabolas is that they are symmetric about the axis of

R(p) = p ⋅ (−1.04p+26) = −1.04 +26p for 0 ≤ p ≤ 25.p

2

1.3.4

p

p n = −1.04p+26.

1.3.6

n = −1.04p+26

 Example : Maximizing Revenue1.3.4

1.3.1 R

p :

R(p) = p ⋅ (−1.04p+26) = −1.04 +26pp

2

0 ≤ p ≤ 25

p = $5 p = $17

R

p

p = 5 p = 17

R(5) = −1.04(5 +26(5) = 104,  so revenue = $104, 000;)

2

R(17) = −1.04(17 +26(17) = 141.44,  so revenue = $141, 440.)

2

−1.04 +26p = 0p

2

p(−1.04p+26) = 0 p = 0, 25 p

p = $0

p = $25
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symmetry, so since the zeros are at  and , the parabola must be symmetric about the line halfway between
them, or .

d. The function is a parabola with zeros at  and , and it is symmetric about the line , so the
maximum revenue occurs at a price of  per item. At that price, the revenue is 

Algebraic Functions

By allowing for quotients and fractional powers in polynomial functions, we create a larger class of functions. An algebraic
function is one that involves addition, subtraction, multiplication, division, rational powers, and roots. Two types of algebraic
functions are rational functions and root functions.

Just as rational numbers are quotients of integers, rational functions are quotients of polynomials. In particular, a rational function
is any function of the form ,where  and  are polynomials. For example,

 and 

are rational functions. A root function is a power function of the form , where  is a positive integer greater than one.
For example,  is the square-root function and  is the cube-root function. By allowing for
compositions of root functions and rational functions, we can create other algebraic functions. For example,  is an
algebraic function.

For each of the following functions, find the domain and range.

a. 

b. 

Solution
1. It is not possible to divide by zero, so the domain is the set of real numbers  such that . To find the range, we
need to find the values  for which there exists a real number  such that

p = 0 p = 25

p = 12.5

p = 0 p = 25 p = 12.5

p = $12.50

R(p) =−1.04(12.5 +26(12.5) = $162, 500.)

2

f(x) = p(x)/q(x) p(x) q(x)

f(x) =

3x−1

5x+2

g(x) =

4

+1x

2

f(x) = x

1/n

n

f(x) = =x

1/2

x

−−

√

g(x) = =x

1/3

x

−−

√

3

f(x) = 4−x

2

− −−−−

√

 Example : Finding Domain and Range for Algebraic Functions1.3.5

f(x) =

3x−1

5x+2

f(x) = 4−x

2

− −−−−

√

x x ≠−2/5

y x

y =

3x−1

5x+2
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When we multiply both sides of this equation by , we see that  must satisfy the equation

From this equation, we can see that  must satisfy

If y= , this equation has no solution. On the other hand, as long as ,

satisfies this equation. We can conclude that the range of  is .

2. To find the domain of , we need . When we factor, we write . This inequality
holds if and only if both terms are positive or both terms are negative. For both terms to be positive, we need to find  such
that

 and 

These two inequalities reduce to  and . Therefore, the set  must be part of the domain. For
both terms to be negative, we need

 and 

These two inequalities also reduce to  and . There are no values of  that satisfy both of these inequalities. Thus,
we can conclude the domain of this function is 

If , then . Therefore, , and the range of  is 

Find the domain and range for the function 

Hint

The denominator cannot be zero. Solve the equation  for  to find the range.

Answer

The domain is the set of real numbers  such that . The range is the set .

The root functions  have defining characteristics depending on whether  is odd or even. For all even integers ,
the domain of  is the interval . For all odd integers , the domain of  is the set of all real
numbers. Since  for odd integers ,  is an odd function if  is odd. See the graphs of root functions for
different values of  in Figure .

 Figure : (a) If 
 is even, the domain of  is . (b) If  is odd, the domain of  is  and the function 

 is an odd function.

5x+2 x

5xy+2y = 3x−1.

x

2y+1 = x(3−5y).

3/5 y ≠ 3/5

x =

2y+1

3−5y

f {y | y ≠ 3/5}

f 4− ≥ 0x

2

4− = (2−x)(2+x) ≥ 0x

2

x

2−x ≥ 0 2+x ≥ 0.

2 ≥ x x ≥−2 {x | −2 ≤ x ≤ 2}

2−x ≤ 0 2+x ≤ 0.

2 ≤ x x ≤−2 x

{x | −2 ≤ x ≤ 2}.

−2 ≤ x ≤ 2 0 ≤ 4− ≤ 4x

2

0 ≤ ≤ 24−x2

− −−−−

√ f {y | 0 ≤ y ≤ 2}.

 Exercise 1.3.3

f(x) = (5x+2)/(2x−1).

y = (5x+2)/(2x−1) x

x x ≠ 1/2 {y | y ≠ 5/2}

f(x) = x

1/n

n n≥ 2

f(x) = x

1/n

[0,∞) n≥ 1 f(x) = x

1/n

= (−xx

1/n

)

1/n

n f(x) = x

1/n

n

n 1.3.7

1.3.7

n f(x) = x

−−

√

n

[0,∞) n f(x) = x

−−

√

n

(−∞,∞)

f(x) = x

−−

√

n
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For each of the following functions, determine the domain of the function.

a. 

b. 

c. 
d. 

Solution
a. You cannot divide by zero, so the domain is the set of values  such that . Therefore, the domain is 

.
b. You need to determine the values of  for which the denominator is zero. Since  for all real numbers , the

denominator is never zero. Therefore, the domain is 
c. Since the square root of a negative number is not a real number, the domain is the set of values  for which .

Therefore, the domain is 
d. The cube root is defined for all real numbers, so the domain is the interval 

Find the domain for each of the following functions:  and .

Hint

Determine the values of  when the expression in the denominator of  is nonzero, and find the values of  when the
expression inside the radical of  is nonnegative.

Answer

The domain of  is . The domain of  is 

Transcendental Functions
Thus far, we have discussed algebraic functions. Some functions, however, cannot be described by basic algebraic operations.
These functions are known as transcendental functions because they are said to “transcend,” or go beyond, algebra. The most
common transcendental functions are trigonometric, exponential, and logarithmic functions. A trigonometric function relates the
ratios of two sides of a right triangle. They are  (We discuss trigonometric functions
later in the chapter.) An exponential function is a function of the form , where the base . A logarithmic
function is a function of the form  for some constant  where  if and only if . (We
also discuss exponential and logarithmic functions later in the chapter.)

Classify each of the following functions, a. through c., as algebraic or transcendental.

a. 

b. 
c. 

Solution
a. Since this function involves basic algebraic operations only, it is an algebraic function.
b. This function cannot be written as a formula that involves only basic algebraic operations, so it is transcendental. (Note that

algebraic functions can only have powers that are rational numbers.)
c. As in part b, this function cannot be written using a formula involving basic algebraic operations only; therefore, this

function is transcendental.

 Example : Finding Domains for Algebraic Functions1.3.6

f(x) =

3

−1x

2

f(x) =

2x+5

3 +4x

2

f(x) = 4−3x

− −−−−

√

f(x) = 2x−1

− −−−−

√

3

x −1 ≠ 0x

2

{x | x ≠±1}

x 3 +4 ≥ 4x

2

x

(−∞,∞).

x 4−3x ≥ 0

{x | x ≤ 4/3}.

(−∞,∞).

 Exercise 1.3.4

f(x) = (5−2x)/( +2)x

2

g(x) = 5x−1

− −−−−

√

x f x

g

f (−∞,∞) g {x | x ≥ 1/5}.

sinx, cosx, tanx, cotx, secx,  and  cscx.

f(x) = b

x

b > 0, b ≠ 1

f(x) = (x)log

b

b > 0, b ≠ 1, (x) = ylog

b

= xb

y

 Example : Classifying Algebraic and Transcendental Functions1.3.7

f(x) =

+1x

3

− −−−−

√

4x+2

f(x) = 2

x

2

f(x) = sin(2x)
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Is  an algebraic or a transcendental function?

Answer

Algebraic

Piecewise-Defined Functions
Sometimes a function is defined by different formulas on different parts of its domain. A function with this property is known as a
piecewise-defined function. The absolute value function is an example of a piecewise-defined function because the formula
changes with the sign of :

Other piecewise-defined functions may be represented by completely different formulas, depending on the part of the domain in
which a point falls. To graph a piecewise-defined function, we graph each part of the function in its respective domain, on the same
coordinate system. If the formula for a function is different for  and , we need to pay special attention to what happens
at  when we graph the function. Sometimes the graph needs to include an open or closed circle to indicate the value of the
function at . We examine this in the next example.

Sketch a graph of the following piecewise-defined function:

Solution
Graph the linear function  on the interval  and graph the quadratic function  on the interval 

. Since the value of the function at  is given by the formula , we see that . To indicate
this on the graph, we draw a closed circle at the point . The value of the function is given by  for all ,
but not at . To indicate this on the graph, we draw an open circle at .

 Figure : This piecewise-defined function is linear for  and quadratic
for 

2) Sketch a graph of the function

Solution:

 Exercise :1.3.5

f(x) = x/2

x

f(x) ={ .

−x,

x,

if x < 0

if x ≥ 0

x < a x > a

x = a

x = a

 Example : Graphing a Piecewise-Defined Function1.3.8

f(x) ={

x+3,

(x−2 ,)

2

if x < 1

if x ≥ 1

y = x+3 (−∞, 1) y = (x−2)

2

[1,∞) x = 1 f(x) = (x−2)

2

f(1) = 1

(1, 1) f(x) = x+3 x < 1

x = 1 (1, 4)

1.3.8 x < 1

x ≥ 1.

f(x) ={ .

2 −x,

x+2,

if x ≤ 2

if x > 2
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In a big city, drivers are charged variable rates for parking in a parking garage. They are charged $10 for the first hour or any
part of the first hour and an additional $2 for each hour or part thereof up to a maximum of $30 for the day. The parking garage
is open from 6 a.m. to 12 midnight.

a. Write a piecewise-defined function that describes the cost  to park in the parking garage as a function of hours parked .
b. Sketch a graph of this function 

Solution
1.Since the parking garage is open 18 hours each day, the domain for this function is . The cost to park a car
at this parking garage can be described piecewise by the function

2.The graph of the function consists of several horizontal line segments.

The cost of mailing a letter is a function of the weight of the letter. Suppose the cost of mailing a letter is  for the first ounce
and  for each additional ounce. Write a piecewise-defined function describing the cost  as a function of the weight  for 

, where  is measured in cents and  is measured in ounces.

Hint

 Example : Parking Fees Described by a Piecewise-Defined Function1.3.9

C x

C(x).

{x | 0 < x ≤ 18}

C(x) = .

⎧

⎩

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

10,

12,

14,

16,

⋮

30,

for 0 < x ≤ 1

for 1 < x ≤ 2

for 2 < x ≤ 3

for 3 < x ≤ 4

for 10 < x ≤ 18

 Exercise 1.3.6

49¢
21¢ C x

0 < x ≤ 3 C x
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The piecewise-defined function is constant on the intervals 

Answer

Transformations of Functions
We have seen several cases in which we have added, subtracted, or multiplied constants to form variations of simple functions. In
the previous example, for instance, we subtracted 2 from the argument of the function  to get the function .
This subtraction represents a shift of the function  two units to the right. A shift, horizontally or vertically, is a type of
transformation of a function. Other transformations include horizontal and vertical scalings, and reflections about the axes.

A vertical shift of a function occurs if we add or subtract the same constant to each output . For , the graph of  is a
shift of the graph of  up  units, whereas the graph of  is a shift of the graph of  down  units. For example, the
graph of the function  is the graph of  shifted up  units; the graph of the function  is the
graph of  shifted down  units (Figure ).

 Figure : (a) For , the graph of 
 is a vertical shift up  units of the graph of . (b) For , the graph of  is a vertical shift

down c units of the graph of .

A horizontal shift of a function occurs if we add or subtract the same constant to each input . For , the graph of  is a
shift of the graph of  to the left  units; the graph of  is a shift of the graph of  to the right  units. Why does the
graph shift left when adding a constant and shift right when subtracting a constant? To answer this question, let’s look at an
example.

Consider the function  and evaluate this function at . Since  and , the graph of 
 is the graph of  shifted left  units. Similarly, the graph of  is the graph of  shifted

right  units (Figure ).

(0, 1], (1, 2], … .

C(x) =

⎧

⎩

⎨

49, 0 < x ≤ 1

70, 1 < x ≤ 2

91, 2 < x ≤ 3

y = x

2

f(x) = (x−2)

2

y = x

2

y c > 0 f(x)+c

f(x) c f(x)−c f(x) c

f(x) = +4x

3

y = x

3

4 f(x) = −4x

3

y = x

3

4 1.3.9

1.3.9 c > 0

y = f(x)+c c y = f(x) c > 0 y = f(x)−c

y = f(x)

x c > 0 f(x+c)

f(x) c f(x−c) f(x) c

f(x) = |x+3| x−3 f(x−3) = |x| x−3 < x

f(x) = |x+3| y = |x| 3 f(x) = |x−3| y = |x|

3 1.3.10
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 Figure :
(a) For , the graph of  is a horizontal shift left  units of the graph of . (b) For , the graph of 

 is a horizontal shift right  units of the graph of 

A vertical scaling of a graph occurs if we multiply all outputs  of a function by the same positive constant. For , the graph of
the function  is the graph of  scaled vertically by a factor of . If , the values of the outputs for the function 
are larger than the values of the outputs for the function ; therefore, the graph has been stretched vertically. If , then
the outputs of the function  are smaller, so the graph has been compressed. For example, the graph of the function 

 is the graph of  stretched vertically by a factor of 3, whereas the graph of  is the graph of 
compressed vertically by a factor of  (Figure ).

 Figure : (a) If , the graph of  is
a vertical stretch of the graph of . (b) If , the graph of  is a vertical compression of the graph of 

.

The horizontal scaling of a function occurs if we multiply the inputs  by the same positive constant. For , the graph of the
function  is the graph of  scaled horizontally by a factor of . If , the graph of  is the graph of 
compressed horizontally. If , the graph of  is the graph of  stretched horizontally. For example, consider the
function  and evaluate  at . Since , the graph of  is the graph of  compressed
horizontally. The graph of  is a horizontal stretch of the graph of  (Figure ).

1.3.10

c > 0 y = f(x+c) c y = f(x) c > 0

y = f(x−c) c y = f(x).

y c > 0

cf(x) f(x) c c > 1 cf(x)

f(x) 0 < c < 1

cf(x)

f(x) = 3x

2

y = x

2

f(x) = /3x

2

y = x

2

3 1.3.11b

1.3.11 c > 1 y = cf(x)

y = f(x) 0 < c < 1 y = cf(x)

y = f(x)

x c > 0

f(cx) f(x) c c > 1 f(cx) f(x)

0 < c < 1 f(cx) f(x)

f(x) = 2x

−−

√

f x/2 f(x/2) = x

−−

√

f(x) = 2x

−−

√

y = x

−−

√

y = x/2

−−−

√ y = x

−−

√

1.3.12
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 Figure : (a) If , the graph of 
 is a horizontal compression of the graph of . (b) If , the graph of  is a horizontal stretch

of the graph of .

We have explored what happens to the graph of a function  when we multiply  by a constant  to get a new function .
We have also discussed what happens to the graph of a function when we multiply the independent variable  by  to get a
new function . However, we have not addressed what happens to the graph of the function if the constant  is negative. If we
have a constant , we can write  as a positive number multiplied by ; but, what kind of transformation do we get when we
multiply the function or its argument by  When we multiply all the outputs by , we get a reflection about the -axis. When
we multiply all inputs by , we get a reflection about the -axis. For example, the graph of  is the graph of 

 reflected about the -axis. The graph of  is the graph of  reflected about the -axis
(Figure ).

 Figure : (a) The graph of  is the graph of 
reflected about the -axis. (b) The graph of  is the graph of  reflected about the -axis.

If the graph of a function consists of more than one transformation of another graph, it is important to transform the graph in the
correct order. Given a function , the graph of the related function  can be obtained from the graph of 

by performing the transformations in the following order.

Horizontal shift of the graph of . If , shift left. If  shift right.
Horizontal scaling of the graph of  by a factor of . If , reflect the graph about the -axis.
Vertical scaling of the graph of  by a factor of . If , reflect the graph about the  -axis.
Vertical shift of the graph of . If , shift up. If , shift down.

We can summarize the different transformations and their related effects on the graph of a function in the following table.

Transformation of Effect of the graph of 

Vertical shift up  units

1.3.12 c > 1

y = f(cx) y = f(x) 0 < c < 1 y = f(cx)

y = f(x)

f f c > 0 cf(x)

f x c > 0

f(cx) c

c < 0 c −1

−1? −1 x

−1 y f(x) =−( +1)x

3

y = ( +1)x

3

x f(x) = (−x +1)

3

y = +1x

3

y

1.3.13

1.3.13 y =−f(x) y = f(x)

x y = f(−x) y = f(x) y

f(x) y = cf(a(x+b))+d

y = f(x)

y = f(x) b > 0 b < 0

y = f(x+b) |a| a< 0 y

y = f(a(x+b)) |c| c < 0 x

y = cf(a(x+b)) d > 0 d < 0

f(c> 0) f

f(x)+ c c
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Transformation of Effect of the graph of 

Vertical shift down  units

Shift left by  units

Shift right by  units

Vertical stretch if ;
vertical compression if 

Horizontal stretch if ;
horizontal compression if 

Reflection about the -axis

Reflection about the -axis

For each of the following functions, a. and b., sketch a graph by using a sequence of transformations of a well-known function.

a. 
b. 

Solution
1.Starting with the graph of , shift  units to the left, reflect about the -axis, and then shift down  units.

 Figure : The function  can be viewed as a sequence
of three transformations of the function .

2. Starting with the graph of  reflect about the -axis, stretch the graph vertically by a factor of 3, and move up 1 unit.

f(c> 0) f

f(x)− c c

f(x+ c) c

f(x− c) c

cf(x)

c> 1

0 < c< 1

f(cx)

0 < c< 1

c> 1

−f(x) x

f(−x) y

 Example : Transforming a Function1.3.10

f(x) =−|x+2|−3

f(x) = 3 +1−x

−−−

√

y = |x| 2 x 3

1.3.14 f(x) =−|x+2|−3

y = |x|

y = ,x

−−

√

y
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 Figure : The function can be viewed as a sequence of
three transformations of the function .

Describe how the function  can be graphed using the graph of  and a sequence of
transformations

Answer

Shift the graph  to the left 1 unit, reflect about the -axis, then shift down 4 units.

Key Concepts
The power function  is an even function if n is even and , and it is an odd function if  is odd.
The root function  has the domain  if n is even and the domain  if  is odd. If  is odd, then 

 is an odd function.
The domain of the rational function , where  and  are polynomial functions, is the set of  such that 

.
Functions that involve the basic operations of addition, subtraction, multiplication, division, and powers are algebraic functions.
All other functions are transcendental. Trigonometric, exponential, and logarithmic functions are examples of transcendental
functions.
A polynomial function  with degree  satisfies  as . The sign of the output as  depends on
the sign of the leading coefficient only and on whether  is even or odd.
Vertical and horizontal shifts, vertical and horizontal scalings, and reflections about the - and -axes are examples of
transformations of functions.

Key Equations
Point-slope equation of a line

Slope-intercept form of a line

Standard form of a line

Polynomial function

1.3.15 f(x) = 3 +1−x

−−−

√

y = x

−−

√

 Exercise 1.3.7

f(x) =−(x+1 −4)

2

y = x

2

y = x

2

x

f(x) = x

n

n≠ 0 n

f(x) = x

1/n

[0,∞) (−∞,∞) n n

f(x) = x

1/n

f(x) = p(x)/q(x) p(x) q(x) x

q(x) ≠ 0

f n≥ 1 f(x) →±∞ x→±∞ x→∞

n

x y

y− =m(x− )y

1

x

1

y =mx+b

ax+by = c

f(x) = + +⋯+ x+a

n

x

n

a

n−1

x

n−1

a

1

a

0
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Glossary

algebraic function
a function involving any combination of only the basic operations of addition, subtraction, multiplication, division, powers, and
roots applied to an input variable 

cubic function
a polynomial of degree 3; that is, a function of the form , where 

degree
for a polynomial function, the value of the largest exponent of any term

linear function
a function that can be written in the form 

logarithmic function
a function of the form  for some base  such that  if and only if 

mathematical model
A method of simulating real-life situations with mathematical equations

piecewise-defined function
a function that is defined differently on different parts of its domain

point-slope equation
equation of a linear function indicating its slope and a point on the graph of the function

polynomial function
a function of the form 

power function
a function of the form  for any positive integer 

quadratic function
a polynomial of degree 2; that is, a function of the form  where 

rational function
a function of the form , where  and  are polynomials

root function
a function of the form  for any integer 

slope
the change in  for each unit change in 

slope-intercept form
equation of a linear function indicating its slope and -intercept

transcendental function
a function that cannot be expressed by a combination of basic arithmetic operations

transformation of a function
a shift, scaling, or reflection of a function

This page titled 1.3: Basic Classes of Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

x

f(x) = a +b +cx+dx

3

x

2

a≠ 0

f(x) =mx+b

f(x) = (x)log

b

b > 0, b ≠ 1 y = (x)log

b

= xb

y

f(x) = + +…+ x+a

n

x

n

a

n−1

x

n−1

a

1

a

0

f(x) = x

n

n≥ 1

f(x) = a +bx+cx

2

a≠ 0

f(x) = p(x)/q(x) p(x) q(x)

f(x) = x

1/n

n≥ 2

y x

y
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1.3E: Exercises for Section 1.2
In exercises 1 - 8, for each pair of points,

a. find the slope of the line passing through the points and

b. indicate whether the line is increasing, decreasing, horizontal, or vertical.

1)  and 

Answer
a.  
b. Decreasing

2)  and 

3)  and 

Answer
a.  
b. Increasing

4)  and 

5)  and 

Answer
a.  
b. Increasing

6)  and 

7)  and 

Answer
a.  
b. Horizontal

8)  and 

In exercises 9 - 16, write the equation of the line satisfying the given conditions in slope-intercept form.

9) Slope = , passes through 

Answer

10) Slope = , passes through 

11) Slope = , passes through 

Answer

12) Slope = , -intercept =

13) Passing through  and 

Answer

(−2, 4) (1, 1)

m =−1

(−1, 4) (3, −1)

(3, 5) (−1, 2)

m = 3/4

(6, 4) (4, −3)

(2, 3) (5, 7)

m = 4/3

(1, 9) (−8, 5)

(2, 4) (1, 4)

m = 0

(1, 4) (1, 0)

−6 (1, 3)

y =−6x+9

3 (−3, 2)

1

3

(0, 4)

y = x+4

1

3

2

5

x 8

(2, 1) (−2,−1)

y = x

1

2
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14) Passing through  and 

15) -intercept =  and -intercept =

Answer

16) -Intercept =−  and -intercept =

In exercises 17 - 24, for each linear equation,

a. give the slope  and -intercept , if any, and

b. graph the line.

17) 

Answer

a. 

b.

18) 

19) 

Answer

a. 

b.

(−3, 7) (1, 2)

x 5 y −3

y = x−3

3

5

x 6 y 9

m y b

y = 2x−3

m = 2, b =−3

y =− x+1

1

7

f(x) =−6x

m =−6, b = 0
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20) 

21) 

Answer

a. 

b.

22) 

23) 

Answer

a. 

b.

24) 

In exercises 25 - 29, for each polynomial,

a. find the degree;

b. find the zeros, if any;

c. find the -intercept(s), if any;

d. use the leading coefficient to determine the graph’s end behavior; and

e. determine algebraically whether the polynomial is even, odd, or neither.

25) 

f(x) =−5x+4

4y+24 = 0

m = 0, b =−6

8x−4 = 0

2x+3y = 6

m =− , b = 2

2

3

6x−5y+15 = 0

y

f(x) = 2 −3x−5x

2
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Answer
a.  
b. ; 
c.  
d. Both ends rise 
e. Neither

26) 

27) 

Answer
a.  
b. ±  
c.  
d. Both ends rise 
e. Even

28) 

29) 

Answer
a.  
b.  ±  
c.  
d. Left end rises, right end falls 
e. Odd

For exercises 30 - 31, use the graph of  to graph each transformed function .

30) 

31) 

Answer

For exercises 32 - 33, use the graph of  to graph each transformed function .

32) 

33) 

2

, −1

5

2

−5

f(x) =−3 +6xx

2

f(x) = −1

1

2

x

2

2

2

–

√

−1

f(x) = +3 −x−3x

3

x

2

f(x) = 3x−x

3

3

0, 3

–

√

0

f(x) = x

2

g

g(x) = −1x

2

g(x) = (x+3 +1)

2

f(x) = x

−−

√

g

g(x) = x+2

− −−−−

√

g(x) =− −1x

−−

√
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Answer

For exercises 34 - 35, use the graph of  to graph each transformed function .

34) 

35) 

Answer

y = f(x) g

g(x) = f(x)+1

g(x) = f(x−1)+2
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In exercises 36 - 39, for each of the piecewise-defined functions,

a. evaluate at the given values of the independent variable, and

b. sketch the graph.

36) 

37) 

Answer

a. 

b.

38) 

39) 

Answer

f(x) ={ ; f(−3); f(0); f(2)

4x+3,

−x+1,

if x ≤ 0

if x > 0

f(x) ={ ; f(−4); f(0); f(2)

−3,x

2

4x−3,

if x ≤ 0

if x > 0

f(−4) = 13, f(0) =−3, f(2) = 5

h(x) ={ ; h(0); h(π); h(5)

x+1,

4,

if x ≤ 5

if x > 5

g(x) ={ ; g(0); g(−4); g(2)

,

3

x−2

4,

if x ≠ 2

if x = 2
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a. 

b.

In exercises 40 - 44, determine whether the statement is true or false. Explain why.

40)  is a transcendental function.

41)  is an odd root function.

Answer
True; 

42) A logarithmic function is an algebraic function.

43) A function of the form , where  is a real valued constant, is an exponential function.

Answer
False; , where  is a real-valued constant, is a power function

44) The domain of an even root function is all real numbers.

45) [T] A company purchases some computer equipment for $20,500. At the end of a 3-year period, the value of the equipment has
decreased linearly to $12,301.

a. Find a function  that determines the value  of the equipment at the end of  years.

b. Find and interpret the meaning of the - and -intercepts for this situation.

c. What is the value of the equipment at the end of 5 years?

d. When will the value of the equipment be $3000?

Answer
a.  
b.  means that the initial purchase price of the equipment is $20,500;  means that in  years the
computer equipment has no value. 
c. $6835 
d. In approximately  years

46) [T] Total online shopping during the Christmas holidays has increased dramatically during the past 5 years. In 2012 
,total online holiday sales were $42.3 billion, whereas in 2013 they were $48.1 billion.

a. Find a linear function  that estimates the total online holiday sales in the year 

g(0) =− , g(−4) =− , g(2) = 4

3

2

1

2

f(x) =

4x+1

7x−2

g(x) = x

−−

√

3

n= 3

f(x) = x

b

b

f(x) = x

b

b

y = V (t) V t

x y

V (t) =−2733t+20500

(0, 20, 500) (7.5, 0) 7.5

6.4

(t = 0)

S t.
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b. Interpret the slope of the graph of 

c. Use part a. to predict the year when online shopping during Christmas will reach $60 billion.

47) [T] A family bakery makes cupcakes and sells them at local outdoor festivals. For a music festival, there is a fixed cost of $125
to set up a cupcake stand. The owner estimates that it costs $0.75 to make each cupcake. The owner is interested in determining the
total cost  as a function of number of cupcakes made.

a. Find a linear function that relates cost  to  the number of cupcakes made.

b. Find the cost to bake  cupcakes.

c. If the owner sells the cupcakes for $1.50 apiece, how many cupcakes does she need to sell to start making profit? (Hint:
Use the INTERSECTION function on a calculator to find this number.)

Answer
a.  
b. $245 
c.  cupcakes

48) [T] A house purchased for $250,000 is expected to be worth twice its purchase price in 18 years.

a. Find a linear function that models the price  of the house versus the number of years  since the original purchase.

b. Interpret the slope of the graph of 

c. Find the price of the house  years from when it was originally purchased.

49) [T] A car was purchased for $26,000. The value of the car depreciates by $1500 per year.

a. Find a linear function that models the value  of the car after  years.

b. Find and interpret .

Answer
a.  
b. In  years, the value of the car is $20,000.

50) [T] A condominium in an upscale part of the city was purchased for $432,000. In  years it is worth $60,500. Find the rate of
depreciation.

51) [T] The total cost  (in thousands of dollars) to produce a certain item is modeled by the function ,
where  is the number of items produced. Determine the cost to produce  items.

Answer
$30,337,500

52) [T] A professor asks her class to report the amount of time  they spent writing two assignments. Most students report that it
takes them about  minutes to type a four-page assignment and about  hours to type a nine-page assignment.

a. Find the linear function  that models this situation, where  is the number of pages typed and  is the time in
minutes.

b. Use part a. to determine how many pages can be typed in  hours.

c. Use part a. to determine how long it takes to type a 20-page assignment.

53) [T] The output (as a percent of total capacity) of nuclear power plants in the United States can be modeled by the function 
, where  is time in years and  corresponds to the beginning of 2000. Use the model to predict the

percentage output in 2015.

Answer
96% of the total capacity

S.

C

C x,

160

C = 0.75x+125

167

P t

P .

15

V t

V (4)

V (t) =−1500t+26, 000

4

35

C C(x) = 10.50x+28, 500

x 175

t

45 1.5

y =N(t) N t

2

P (t) = 1.8576t+68.052 t t = 0
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54) [T] The admissions office at a public university estimates that 65% of the students offered admission to the class of 2019 will
actually enroll.

a. Find the linear function , where  is the number of students that actually enroll and  is the number of all
students offered admission to the class of 2019.

b. If the university wants the 2019 freshman class size to be 1350, determine how many students should be admitted.

Contributors
Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is
licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

This page titled 1.3E: Exercises for Section 1.2 is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .
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1.4: Trigonometric Functions

Convert angle measures between degrees and radians.
Recognize the triangular and circular definitions of the basic trigonometric functions.
Write the basic trigonometric identities.
Identify the graphs and periods of the trigonometric functions.
Describe the shift of a sine or cosine graph from the equation of the function.

Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical
current, and the motion of pendulums. In fact, almost any repetitive, or cyclical, motion can be modeled by some combination of
trigonometric functions. In this section, we define the six basic trigonometric functions and look at some of the main identities
involving these functions.

Radian Measure
To use trigonometric functions, we first must understand how to measure the angles. Although we can use both radians and
degrees, radians are a more natural measurement because they are related directly to the unit circle, a circle with radius 1. The
radian measure of an angle is defined as follows. Given an angle , let  be the length of the corresponding arc on the unit circle
(Figure ). We say the angle corresponding to the arc of length 1 has radian measure 1.

 Figure : The radian measure of an angle  is the arc length  of the associated arc on the
unit circle.

Since an angle of  corresponds to the circumference of a circle, or an arc of length , we conclude that an angle with a degree
measure of  has a radian measure of . Similarly, we see that  is equivalent to  radians. Table  shows the
relationship between common degree and radian values.

Table : Common Angles Expressed in Degrees and Radians

Degrees Radians Degrees Radians

0 0 120

30 135

45 150

60 180

90   

a. Express  using radians.
b. Express  rad using degrees.

Solution

Use the fact that ° is equivalent to  radians as a conversion factor (Table ):

 Learning Objectives

θ s

1.4.1

1.4.1 θ s

360° 2π

360° 2π 180° π 1.4.1

1.4.1

2π/3

π/6 3π/4

π/4 5π/6

π/3 π

π/2

 Converting between Radians and Degrees

225°

5π/3

180 π 1.4.1
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a.  rad

b.  rad = ⋅ = °

a. Express  using radians.
b. Express  rad using degrees.

Hint

 radians is equal to 180°

Answer
a. 
b. 330°

The Six Basic Trigonometric Functions

Trigonometric functions allow us to use angle measures, in radians or degrees, to find the coordinates of a point on any circle—not
only on a unit circle—or to find an angle given a point on a circle. They also define the relationship between the sides and angles of
a triangle.

To define the trigonometric functions, first consider the unit circle centered at the origin and a point  on the unit circle.
Let  be an angle with an initial side that lies along the positive -axis and with a terminal side that is the line segment . An
angle in this position is said to be in standard position (Figure ). We can then define the values of the six trigonometric
functions for  in terms of the coordinates  and .

 Figure : The angle  is in standard position. The values of the trigonometric functions for 
are defined in terms of the coordinates  and .

Let  be a point on the unit circle centered at the origin . Let  be an angle with an initial side along the positive -
axis and a terminal side given by the line segment . The trigonometric functions are then defined as

If  and  are undefined. If , then  and  are undefined.

1 = = .

π rad

180°

180°

π rad

225° = 225° ⋅( )=( )

π

180°

5π

4

5π

3

5π

3

180°

π

300

 Exercise 1.4.1

210°

11π/6

π

7π/6

P = (x, y)

θ x OP

1.4.2

θ x y

1.4.2 θ θ

x y

 Definition: Trigonometric functions

P = (x, y) O θ x

OP

sin θ = y csc θ =

1

y

cos θ = x

sec θ =

1

x

tan θ =

y

x

cot θ =

x

y

x = 0, sec θ tanθ y = 0 cotθ csc θ
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We can see that for a point  on a circle of radius  with a corresponding angle , the coordinates  and  satisfy

and

The values of the other trigonometric functions can be expressed in terms of , and  (Figure ).

 Figure : For a point  on a circle of radius , the coordinates 
 and  satisfy  and .

Table  shows the values of sine and cosine at the major angles in the first quadrant. From this table, we can determine the
values of sine and cosine at the corresponding angles in the other quadrants. The values of the other trigonometric functions are
calculated easily from the values of  and 

Table : Values of  and  at Major Angles  in the First Quadrant

0 0 1

1 0

Evaluate each of the following expressions.

a. 

b. 

c. 

Solution:

P = (x, y) r θ x y

cosθ

x

=

x

r

= r cosθ

(1.4.1)

(1.4.2)

sinθ

y

=

y

r

= r sinθ.

(1.4.3)

(1.4.4)

x, y r 1.4.3

1.4.3 P = (x, y) r

x y x = r cosθ y = r sinθ

1.4.2

sinθ cosθ.

1.4.2 sin θ cos θ θ

θ sin θ cos θ

π

6

1

2

3

–

√

2

π

4

2

–

√

2

2

–

√

2

π

3

3

–

√

2

1

2

π

2

 Example : Evaluating Trigonometric Functions1.4.2

sin( )

2π

3

cos(− )

5π

6

tan( )

15π

4
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a) On the unit circle, the angle  corresponds to the point . Therefore,

b) An angle  corresponds to a revolution in the negative direction, as shown. Therefore,

c) An angle = = + . Therefore, this angle corresponds to more than one revolution, as shown. Knowing the fact that

an angle of  corresponds to the point , we can conclude that

θ=

2π

3

(− , )

1

2

3

–

√

2

sin( ) = y =( ) .

2π

3

3

–

√

2

θ=−

5π

6

cos(− ) = x =− .

5π

6

3

–

√

2

θ

15π

4

2π

7π

4

7π

4

( , − )

2

–

√

2

2

–

√

2

tan( ) = =−1.

15π

4

y

x
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Evaluate  and .

Hint

Look at angles on the unit circle.

Answer

As mentioned earlier, the ratios of the side lengths of a right triangle can be expressed in terms of the trigonometric functions
evaluated at either of the acute angles of the triangle. Let  be one of the acute angles. Let  be the length of the adjacent leg,  be
the length of the opposite leg, and  be the length of the hypotenuse. By inscribing the triangle into a circle of radius , as shown
in Figure , we see that , and  satisfy the following relationships with :

 Figure : By inscribing a right triangle in a circle, we can express the ratios of the side
lengths in terms of the trigonometric functions evaluated at .

A wooden ramp is to be built with one end on the ground and the other end at the top of a short staircase. If the top of the
staircase is  ft from the ground and the angle between the ground and the ramp is to be °, how long does the ramp need to
be?

Solution

Let  denote the length of the ramp. In the following image, we see that  needs to satisfy the equation .
Solving this equation for , we see that ≈  ft.

 Exercise 1.4.2

cos(3π/4) sin(−π/6)

cos(3π/4) =− /22

–

√

sin(−π/6) =−1/2

θ A O

H H

1.4.4 A,H O θ

sin θ =

O

H

csc θ =

H

O

cos θ =

A

H

sec θ =

H

A

tan θ =

O

A

cot θ =

A

O

1.4.4

θ

 Example : Constructing a Wooden Ramp1.4.3

4 10

x x sin(10°) = 4/x

x x = 4/ sin(10°) 23.035
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A house painter wants to lean a -ft ladder against a house. If the angle between the base of the ladder and the ground is to be 
°, how far from the house should she place the base of the ladder?

Hint

Draw a right triangle with hypotenuse 20.

Answer

10 ft

Trigonometric Identities
A trigonometric identity is an equation involving trigonometric functions that is true for all angles  for which the functions are
defined. We can use the identities to help us solve or simplify equations. The main trigonometric identities are listed next.

Reciprocal identities

Pythagorean identities

Addition and subtraction formulas

Double-angle formulas

For each of the following equations, use a trigonometric identity to find all solutions.

a. 
b. 

 Exercise 1.4.3

20

60

θ

 Trigonometric Identities

tanθ=

sinθ

cosθ

cotθ=

cosθ

sinθ

csc θ=

1

sinθ

sec θ=

1

cosθ

θ+ θsin

2

cos

2

1+ θtan

2

1+ θcot

2

= 1

= θsec

2

= θcsc

2

(1.4.5)

(1.4.6)

(1.4.7)

sin(α±β) = sinα cosβ±cosα sinβ

cos(α±β) = cosα cosβ∓sinα sinβ

sin(2θ) = 2 sinθcosθ (1.4.8)

cos(2θ) = 2 θ−1cos

2

= 1−2 θsin

2

= θ− θcos

2

sin

2

(1.4.9)

(1.4.10)

(1.4.11)

 Example : Solving Trigonometric Equations1.4.4

1+cos(2θ) = cosθ

sin(2θ) = tanθ
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Solution
a) Using the double-angle formula for , we see that  is a solution of

if and only if

which is true if and only if

To solve this equation, it is important to note that we need to factor the left-hand side and not divide both sides of the
equation by . The problem with dividing by  is that it is possible that  is zero. In fact, if we did divide
both sides of the equation by , we would miss some of the solutions of the original equation. Factoring the left-hand
side of the equation, we see that  is a solution of this equation if and only if

Since  when

and  when

we conclude that the set of solutions to this equation is

and

b) Using the double-angle formula for  and the reciprocal identity for , the equation can be written as

To solve this equation, we multiply both sides by  to eliminate the denominator, and say that if  satisfies this
equation, then  satisfies the equation

However, we need to be a little careful here. Even if  satisfies this new equation, it may not satisfy the original equation
because, to satisfy the original equation, we would need to be able to divide both sides of the equation by .
However, if , we cannot divide both sides of the equation by . Therefore, it is possible that we may arrive
at extraneous solutions. So, at the end, it is important to check for extraneous solutions. Returning to the equation, it is
important that we factor  out of both terms on the left-hand side instead of dividing both sides of the equation by 

. Factoring the left-hand side of the equation, we can rewrite this equation as

Therefore, the solutions are given by the angles  such that  or . The solutions of the first equation
are  The solutions of the second equation are  After
checking for extraneous solutions, the set of solutions to the equation is

and

cos(2θ) θ

1+cos(2θ) = cosθ

1+2 θ−1 = cosθ,cos

2

2 θ−cosθ= 0.cos

2

cosθ cosθ cosθ

cosθ

θ

cosθ(2 cosθ−1) = 0.

cosθ= 0

θ= , ±π, ±2π,… ,

π

2

π

2

π

2

cosθ= 1/2

θ= , ±2π,…or θ=− ,− ±2π,… ,

π

3

π

3

π

3

π

3

θ= +nπ, θ= +2nπ

π

2

π

3

θ=− +2nπ, n= 0,±1,±2,… .

π

3

sin(2θ) tan(θ)

2 sinθcosθ= .

sinθ

cosθ

cosθ θ

θ

2 sinθ θ−sinθ= 0.cos

2

θ

cosθ

cosθ= 0 cosθ

sinθ

sinθ

sinθ(2 θ−1) = 0.cos

2

θ sinθ= 0 θ= 1/2cos

2

θ= 0,±π, ±2π,… . θ= π/4, (π/4)±(π/2), (π/4)±π,… .

θ= nπ
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with 

Find all solutions to the equation 

Hint

Use the double-angle formula for cosine (Equation ).

Answer

for .

Prove the trigonometric identity 

Solution:

We start with the Pythagorean identity (Equation )

Dividing both sides of this equation by  we obtain

Since  and , we conclude that

Prove the trigonometric identity 

Answer

Divide both sides of the identity  by .

Graphs and Periods of the Trigonometric Functions
We have seen that as we travel around the unit circle, the values of the trigonometric functions repeat. We can see this pattern in the
graphs of the functions. Let  be a point on the unit circle and let  be the corresponding angle . Since the angle  and 

 correspond to the same point , the values of the trigonometric functions at  and at  are the same. Consequently,
the trigonometric functions are periodic functions. The period of a function  is defined to be the smallest positive value  such
that  for all values  in the domain of . The sine, cosine, secant, and cosecant functions have a period of .
Since the tangent and cotangent functions repeat on an interval of length , their period is  (Figure ).

θ= +

π

4

nπ

2

n= 0,±1,±2,… .

 Exercise 1.4.4

cos(2θ) = sinθ.

1.4.8

θ= +2nπ, +2nπ, +2nπ

3π

2

π

6

5π

6

n= 0,±1,±2,…

 Example : Proving a Trigonometric Identity1.4.5

1+ θ= θ.tan

2

sec

2

1.4.5

θ+ θ= 1.sin

2

cos

2

θ,cos

2

+1 = .

θsin

2

θcos

2

1

θcos

2

sinθ/ cosθ= tanθ 1/ cosθ= sec θ

θ+1 = θ.tan

2

sec

2

 Exercise 1.4.5

1+ θ= θ.cot

2

csc

2

θ+ θ= 1sin

2

cos

2

θsin

2

P = (x, y) θ θ

θ+2π P θ θ+2π

f p

f(x+p) = f(x) x f 2π

π π 1.4.5
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 Figure : The six trigonometric functions
are periodic.

Just as with algebraic functions, we can apply transformations to trigonometric functions. In particular, consider the following
function:

In Figure , the constant  causes a horizontal or phase shift. The factor  changes the period. This transformed sine function
will have a period . The factor  results in a vertical stretch by a factor of . We say  is the “amplitude of .” The
constant  causes a vertical shift.

 Figure : A graph of a general sine function.

Notice in Figure  that the graph of  is the graph of  shifted to the left  units. Therefore, we can write

Similarly, we can view the graph of  as the graph of  shifted right  units, and state that 

1.4.5

f(x) =A sin(B(x−α))+C.

1.4.6 α B

2π/|B| A |A| |A| f

C

1.4.6

1.4.6 y = cosx y = sinx π/2

cosx = sin(x+π/2).

y = sinx y = cosx π/2

sinx = cos(x−π/2).
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A shifted sine curve arises naturally when graphing the number of hours of daylight in a given location as a function of the day of
the year. For example, suppose a city reports that June 21 is the longest day of the year with 15.7 hours and December 21 is the
shortest day of the year with 8.3 hours. It can be shown that the function

is a model for the number of hours of daylight  as a function of day of the year  (Figure ).

 Figure : The hours of daylight as a function of day
of the year can be modeled by a shifted sine curve.

Sketch a graph of 

Solution
This graph is a phase shift of  to the right by  units, followed by a horizontal compression by a factor of 2, a
vertical stretch by a factor of 3, and then a vertical shift by 1 unit. The period of  is .

Describe the relationship between the graph of  and the graph of .

Hint

h(t) = 3.7 sin( (x−80.5))+12

2π

365

h t 1.4.7

1.4.7

 Example : Sketching the Graph of a Transformed Sine Curve1.4.6

f(x) = 3 sin(2(x− ))+1.

π

4

y = sin(x) π/4

f π

 Exercise 1.4.6

f(x) = 3 sin(4x)−5 y = sin(x)
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The graph of  can be sketched using the graph of  and a sequence of three transformations.

Answer

To graph , the graph of  needs to be compressed horizontally by a factor of 4, then
stretched vertically by a factor of 3, then shifted down 5 units. The function  will have a period of  and an amplitude
of 3.

Key Concepts
Radian measure is defined such that the angle associated with the arc of length 1 on the unit circle has radian measure 1. An
angle with a degree measure of ° has a radian measure of  rad.
For acute angles ,the values of the trigonometric functions are defined as ratios of two sides of a right triangle in which one of
the acute angles is .
For a general angle , let  be a point on a circle of radius  corresponding to this angle . The trigonometric functions can
be written as ratios involving , , and .
The trigonometric functions are periodic. The sine, cosine, secant, and cosecant functions have period . The tangent and
cotangent functions have period .

Key Equations
Generalized sine function

Glossary

periodic function
a function is periodic if it has a repeating pattern as the values of  move from left to right

radians
for a circular arc of length  on a circle of radius 1, the radian measure of the associated angle  is 

trigonometric functions
functions of an angle defined as ratios of the lengths of the sides of a right triangle

trigonometric identity
an equation involving trigonometric functions that is true for all angles  for which the functions in the equation are defined

This page titled 1.4: Trigonometric Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

1.3: Trigonometric Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f y = sin(x)

f(x) = 3 sin(4x)−5 y = sin(x)

f π/2

180 π

θ

θ

θ (x, y) r θ

x y r

2π

π

f(x) =A sin(B(x−α))+C

x

s θ s

θ
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1.4E: Exercises for Section 1.3
In exercises 1 - 5, convert each angle in degrees to radians. Write the answer as a multiple of .

1) 

Answer
 rad

2) 

3) 

Answer
 rad

4) 

5) 

Answer
 rad

In exercises 6 - 10, convert each angle in radians to degrees.

6)  rad

7)  rad

Answer

8)  rad

9)  rad

Answer

10)  rad

In exercises 11 - 16, evaluate the functional values.

11) 

Answer

12) 

13) 

Answer

14) 

15) 

Answer

π

240°

4π

3

15°

60°

π

3

−225°

330°

11π

6

π

2

7π

6

210°

11π

2

−3π

−540°

5π

12

cos

4π

3

cos =−0.5

4π

3

tan

19π

4

sin(− )

3π

4

sin(− )=−

3π

4

2√

2

sec(− )

π

6

sin(− )

π

12
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16) 

In exercises 17 - 22, consider triangle , a right triangle with a right angle at .

a. Find the missing side of the triangle.

b. Find the six trigonometric function values for the angle at .

Where necessary, round to one decimal place.

17) 

Answer
a.  
b. 

18) 

19) 

Answer
a.  
b. 

20) 

21) 

Answer
a.  
b. 

22) 

In exercises 23 - 26,  is a point on the unit circle.

a. Find the (exact) missing coordinate value of each point and

b. find the values of the six trigonometric functions for the angle  with a terminal side that passes through point .

Rationalize denominators.

23) 

Answer

a.  
b. 

24) 

25) 

sin(− )=

π

12

−13

–

√

2 2

–

√

cos(− )

5π

12

ABC C

A

a= 4, c = 7

b = 5.7

sinA= , cosA= , tanA= , cscA= , secA= , cotA=

4

7

5.7

7

4

5.7

7

4

7

5.7

5.7

4

a= 21, c = 29

a= 85.3, b = 125.5

c = 151.7

sinA= 0.5623, cosA= 0.8273, tanA= 0.6797, cscA= 1.778, secA= 1.209, cotA= 1.471

b = 40, c = 41

a= 84, b = 13

c = 85

sinA= , cosA= , tanA= , cscA= , secA= , cotA=

84

85

13

85

84

13

85

84

85

13

13

84

b = 28, c = 35

P

θ P

P ( , y) , y > 0

7

25

y =

24

25

sinθ= , cosθ= , tanθ= , csc θ= , sec θ= , cotθ=

24

25

7

25

24

7

25

24

25

7

7

24

P (− , y) , y > 0

15

17

P (x, ) , x > 0

7√

3
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Answer

a.  

b. 

26) 

In exercises 27 - 34, simplify each expression by writing it in terms of sines and cosines, then simplify. The final answer does
not have to be in terms of sine and cosine only.

27) 

Answer

28) 

29)

Answer

30) 

31) 

Answer

32) 

33) 

Answer

34) 

In exercises 35 - 42, verify that each equation is an identity.

35) 

36) 

37) 

38) 

39) 

40) 

41) 

42)

x =−

2√

3

sinθ= , cosθ=− , tanθ=− , csc θ= , sec θ=− , cotθ=−

7√

3

2√

3

14√

2

3 7√

7

3 2√

2

14√

7

P (x, − ) , y > 0

15√

4

x+sinx cscxtan

2

xsec

2

secx sinx cotx

xtan

2

xsec

2

xsin

2

secx−cosx

(1+tanθ −2 tanθ)

2

θsec

2

(sinx)(cscx−sinx)

+

cos t

sin t

sin t

1+cos t

= csc t

1

sin t

1+ αtan

2

1+ αcot

2

= sinθ

tanθcotθ

csc θ

= sec θcsc θ

θsec

2

tanθ

+ = 1

sin t

csc t

cos t

sec t

+ = 0

sinx

cosx+1

cosx−1

sinx

cotγ+tanγ= sec γ csc γ

β+ β+ β = βsin

2

tan

2

cos

2

sec

2

+ = 2 α

1

1−sinα

1

1+sinα

sec

2

= θ− θ

tanθ−cotθ

sinθcosθ

sec

2

csc

2
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In exercises 43 - 50, solve the trigonometric equations on the interval .

43) 

Answer

44) 

45) 

Answer

46) 

47) 

Answer

48) 

49) 

Answer

50) 

In exercises 51 - 54, each graph is of the form  or , where . Write the equation of the graph.

51)

Answer

52)

0 ≤ θ< 2π

2 sinθ−1 = 0

{ , }

π

6

5π

6

1+cosθ=

1

2

2 θ= 2tan

2

{ , , , }

π

4

3π

4

5π

4

7π

4

4 θ−2 = 0sin

2

cotθ+1 = 03

–

√

{ , }

2π

3

5π

3

3 sec θ−2 = 03

–

√

2 cosθ sinθ= sinθ

{0, π, , }

π

3

5π

3

θ+2 csc θ+1 = 0csc

2

y =A sinBx y =A cosBx B> 0

y = 4 sin( x)

π

4
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53)

Answer

54)

In exercises 55 - 60, find

a. the amplitude,

b. the period, and

c. the phase shift with direction for each function.

y = cos2πx
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55) 

Answer
a.  
b.  
c.  units to the right

56) 

57) 

Answer
a.  
b.  
c. No phase shift

58) 

59) 

Answer
a.  
b.  
c.  units to the left

60) 

61) [T] The diameter of a wheel rolling on the ground is  in. If the wheel rotates through an angle of °, how many inches
does it move? Approximate to the nearest whole inch.

Answer
Approximately  in.

62) [T] Find the length of the arc intercepted by central angle  in a circle of radius . Round to the nearest hundredth.

a.  cm,  rad b.  cm,  rad c.  cm, ° d.  cm, °

63) [T] As a point  moves around a circle, the measure of the angle changes. The measure of how fast the angle is changing is
called angular speed, , and is given by , where  is in radians and  is time. Find the angular speed for the given data.
Round to the nearest thousandth.

a.  rad,  sec b.  rad,  sec c.  rad,  min d.  rad,  min

Answer
a.  rad/sec 
b.  rad/sec 
c.  rad/min 
d.  rad/min

64) [T] A total of  of land is needed to build a nuclear power plant. Suppose it is decided that the area on which the
power plant is to be built should be circular.

a)Find the radius of the circular land area.

b)If the land area is to form a ° sector of a circle instead of a whole circle, find the length of the curved side.

65) [T] The area of an isosceles triangle with equal sides of length  is ,

where  is the angle formed by the two sides. Find the area of an isosceles triangle with equal sides of length  in. and angle 
 rad.

y = sin(x− )

π

4

1

2π

π

4

y = 3 cos(2x+3)

y =− sin( x)

1

2

1

4

1

2

8π

y = 2 cos(x− )

π

3

y =−3 sin(πx+2)

3

2

2

π

y = 4 cos(2x− )

π

2

40 120

42

θ r

r= 12.8 θ=

5π

6

r= 4.378 θ=

7π

6

r= 0.964 θ= 50 r= 8.55 θ= 325

P

ω ω= θ/t θ t

θ=

7π

4

t = 10 θ=

3π

5

t = 8 θ=

2π

9

t = 1 θ= 23.76 t = 14

0.550

0.236

0.698

1.697

250, 000 m

2

45

x sinθ

1

2

x

2

θ 8

θ=

5π

12
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Answer

66) [T] A particle travels in a circular path at a constant angular speed . The angular speed is modeled by the function 
. Determine the angular speed at  sec.

67) [T] An alternating current for outlets in a home has voltage given by the function ,

where  is the voltage in volts at time  in seconds.

a) Find the period of the function and interpret its meaning.

b) Determine the number of periods that occur when  sec has passed.

Answer
a. ; the voltage repeats every  sec 
b. Approximately  periods

68) [T] The number of hours of daylight in a northeast city is modeled by the function

where  is the number of days after January 1.

a) Find the amplitude and period.

b) Determine the number of hours of daylight on the longest day of the year.

c) Determine the number of hours of daylight on the shortest day of the year.

d) Determine the number of hours of daylight 90 days after January 1.

e) Sketch the graph of the function for one period starting on January 1.

69) [T] Suppose that  is a mathematical model of the temperature (in degrees Fahrenheit) at  hours
after midnight on a certain day of the week.

a) Determine the amplitude and period.

b) Find the temperature 7 hours after midnight.

c) At what time does °?

d) Sketch the graph of  over .

Answer

a. Amplitude = ; Period=  
b. °F 
c.  hours later, or 2 p.m. 
d.

≈ 30.9 in

2

ω

ω= 9| cos(πt−π/12)| t = 9

V (t) = 150 cos368t

V t

1

π

184

π

184

59

N(t) = 12+3 sin[ (t−79)],

2π

365

t

T = 50+10 sin[ (t−8)]

π

12

t

T = 60

T 0 ≤ t ≤ 24

10 24

47.4

14
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70) [T] The function  models the height  (in feet) of the tide  hours after midnight. Assume that  is
midnight.

a) Find the amplitude and period.

b) Graph the function over one period.

c) What is the height of the tide at 4:30 a.m.?

Contributors
Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is
licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

This page titled 1.4E: Exercises for Section 1.3 is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

H(t) = 8 sin( t)

π

6

H t t = 0
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1.5: Inverse Functions

Determine the conditions for when a function has an inverse.
Use the horizontal line test to recognize when a function is one-to-one.
Find the inverse of a given function.
Draw the graph of an inverse function.
Evaluate inverse trigonometric functions.

An inverse function reverses the operation done by a particular function. In other words, whatever a function does, the inverse
function undoes it. In this section, we define an inverse function formally and state the necessary conditions for an inverse function
to exist. We examine how to find an inverse function and study the relationship between the graph of a function and the graph of its
inverse. Then we apply these ideas to define and discuss properties of the inverse trigonometric functions.

Existence of an Inverse Function
We begin with an example. Given a function  and an output , we are often interested in finding what value or values 
were mapped to  by . For example, consider the function . Since any output , we can solve this
equation for  to find that the input is . This equation defines  as a function of . Denoting this function as , and
writing , we see that for any  in the domain of . Thus, this new function,

, “undid” what the original function  did. A function with this property is called the inverse function of the original function.

Given a function  with domain  and range , its inverse function (if it exists) is the function  with domain  and range 
 such that  if and only if . In other words, for a function  and its inverse ,

for all  in  and

for all  in .

Note that  is read as “  inverse.” Here, the  is not used as an exponent so

Figure shows the relationship between the domain and range of  and the domain and range of .

 Figure : Given a function  and its inverse  if and
only if . The range of  becomes the domain of  and the domain of  becomes the range of .

Recall that a function has exactly one output for each input. Therefore, to define an inverse function, we need to map each input to
exactly one output. For example, let’s try to find the inverse function for . Solving the equation  for , we arrive
at the equation . This equation does not describe  as a function of  because there are two solutions to this equation for
every . The problem with trying to find an inverse function for  is that two inputs are sent to the same output for
each output . The function  discussed earlier did not have this problem. For that function, each input was sent
to a different output. A function that sends each input to a different output is called a one-to-one function.

 Learning Objectives

f y = f(x) x

y f f(x) = +4x

3

y = +4x

3

x x = y−4

− −−−

√

3

x y f

−1

x = (y) =f

−1

y−4

− −−−

√

3

x f , f

−1

f(x)) = ( +4) = xf

−1

x

3

f

−1

f

 Definition: Inverse Functions

f D R f

−1

R

D (y) = xf

−1

f(x) = y f f

−1

(f(x)) = xf

−1

x D

f( (y)) = yf

−1

y R

f

−1

f −1

(x) ≠ .f

−1

1

f(x)

1.5.1 f f

−1

1.5.1 f , (y) = xf

−1

f

−1

f(x) = y f f

−1

f f

−1

f(x) = x

2

y = x

2

x

x =± y

√

x y

y > 0 f(x) = x

2

y > 0 f(x) = +4x

3
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We say a function  is a one-to-one function if  when .

One way to determine whether a function is one-to-one is by looking at its graph. If a function is one-to-one, then no two inputs can
be sent to the same output. Therefore, if we draw a horizontal line anywhere in the -plane, according to the horizontal line test,
it cannot intersect the graph more than once. We note that the horizontal line test is different from the vertical line test. The vertical
line test determines whether a graph is the graph of a function. The horizontal line test determines whether a function is one-to-one
(Figure ).

A function  is one-to-one if and only if every horizontal line intersects the graph of  no more than once.

 Figure : (a) The function  is not one-to-one because it
fails the horizontal line test. (b) The function  is one-to-one because it passes the horizontal line test.

For each of the following functions, use the horizontal line test to determine whether it is one-to-one.

a)

b)

 Definition: One-to-One functions

f f( ) ≠ f( )x

1

x

2

≠x

1

x

2

xy

1.5.2

 Horizontal Line Test

f f

1.5.2 f(x) = x

2

f(x) = x

3

 Example : Determining Whether a Function Is One-to-One1.5.1
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Solution
a) Since the horizontal line  for any integer  intersects the graph more than once, this function is not one-to-one.

b) Since every horizontal line intersects the graph once (at most), this function is one-to-one.

Is the function  graphed in the following image one-to-one?

y = n n≥ 0

 Exercise 1.5.1

f
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Solution

Use the horizontal line test.

Answer

No

Finding a Function’s Inverse
We can now consider one-to-one functions and show how to find their inverses. Recall that a function maps elements in the domain
of  to elements in the range of . The inverse function maps each element from the range of  back to its corresponding element
from the domain of . Therefore, to find the inverse function of a one-to-one function , given any  in the range of , we need to
determine which  in the domain of  satisfies . Since  is one-to-one, there is exactly one such value . We can find that
value  by solving the equation  for . Doing so, we are able to write  as a function of  where the domain of this
function is the range of  and the range of this new function is the domain of . Consequently, this function is the inverse of , and
we write . Since we typically use the variable  to denote the independent variable and y to denote the dependent
variable, we often interchange the roles of  and , and write . Representing the inverse function in this way is also
helpful later when we graph a function  and its inverse  on the same axes.

1. Solve the equation  for .
2. Interchange the variables  and  and write .

Find the inverse for the function  State the domain and range of the inverse function. Verify that 

Solution
Follow the steps outlined in the strategy.

Step 1. If  then  and 

Step 2. Rewrite as  and let .Therefore, .

Since the domain of  is , the range of  is . Since the range of  is , the domain of  is 
.

You can verify that  by writing

f f f

f f y f

x f f(x) = y f x

x f(x) = y x x y

f f f

x = (y)f

−1

x

x y y = (x)f

−1

f f

−1

 Problem-Solving Strategy: Finding an Inverse Function

y = f(x) x

x y y = (x)f

−1

 Example : Finding an Inverse Function1.5.2

f(x) = 3x−4.

(f(x)) = x.f

−1

y = 3x−4, 3x = y+4 x = y+ .

1

3

4

3

y = x+

1

3

4

3

y = (x)f

−1

(x) = x+f

−1 1

3

4

3

f (−∞,∞) f

−1

(−∞,∞) f (−∞,∞) f

−1

(−∞,∞)

(f(x)) = xf

−1

(f(x)) = (3x−4) = (3x−4)+ = x− + = x.f

−1

f

−1 1

3

4

3

4

3

4

3
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Note that for  to be the inverse of , both  and  for all  in the domain of the inside
function.

Find the inverse of the function . State the domain and range of the inverse function.

Hint

Use the Problem-Solving Strategy for finding inverse functions.

Answer

. The domain of  is . The range of  is .

Graphing Inverse Functions

Let’s consider the relationship between the graph of a function  and the graph of its inverse. Consider the graph of  shown in
Figure  and a point  on the graph. Since , then . Therefore, when we graph , the point  is
on the graph. As a result, the graph of  is a reflection of the graph of  about the line .

 Figure : (a) The graph of this function 
shows point  on the graph of . (b) Since  is on the graph of , the point  is on the graph of . The graph of 

 is a reflection of the graph of  about the line .

For the graph of  in the following image, sketch a graph of  by sketching the line  and using symmetry. Identify the
domain and range of .

Solution

(x)f

−1

f(x) (f(x)) = xf

−1

f( (x)) = xf

−1

x

 Exercise 1.5.2

f(x) = 3x/(x−2)

(x) =f

−1

2x

x−3

f

−1

{x | x ≠ 3} f

−1

{y | y ≠ 2}

f f

1.5.3 (a, b) b = f(a) (b) = af

−1

f

−1

(b, a)

f

−1

f y = x

1.5.3 f

(a, b) f (a, b) f (b, a) f

−1

f

−1

f y = x

 Example : Sketching Graphs of Inverse Functions1.5.3

f f

−1

y = x

f

−1
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Reflect the graph about the line . The domain of  is . The range of  is . By using the preceding
strategy for finding inverse functions, we can verify that the inverse function is , as shown in the graph.

Sketch the graph of  and the graph of its inverse using the symmetry property of inverse functions.

Hint

The graphs are symmetric about the line 

Answer

Restricting Domains

As we have seen,  does not have an inverse function because it is not one-to-one. However, we can choose a subset of
the domain of  such that the function is one-to-one. This subset is called a restricted domain. By restricting the domain of , we
can define a new function  such that the domain of  is the restricted domain of  and  for all  in the domain of .
Then we can define an inverse function for  on that domain. For example, since  is one-to-one on the interval ,
we can define a new function  such that the domain of  is  and  for all  in its domain. Since  is a one-to-one
function, it has an inverse function, given by the formula . On the other hand, the function  is also one-to-
one on the domain . Therefore, we could also define a new function  such that the domain of  is  and 

 for all  in the domain of . Then  is a one-to-one function and must also have an inverse. Its inverse is given by the
formula  (Figure ).

y = x f

−1

[0,∞) f

−1

[−2,∞)

(x) = −2f

−1

x

2

 Exercise 1.5.3

f(x) = 2x+3

y = x

f(x) = x

2

f f

g g f g(x) = f(x) x g

g f(x) = x

2

[0,∞)

g g [0,∞) g(x) = x

2

x g

(x) =g

−1

x

−−

√

f(x) = x

2

(−∞, 0] h h (−∞, 0]

h(x) = x

2

x h h

(x) =−h

−1

x

−−

√

1.5.4
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 Figure : (a) For  restricted to , 
. (b) For  restricted to , .

Consider the function .

a. Sketch the graph of  and use the horizontal line test to show that  is not one-to-one.
b. Show that  is one-to-one on the restricted domain . Determine the domain and range for the inverse of  on this

restricted domain and find a formula for .

Solution
a) The graph of  is the graph of  shifted left  unit. Since there exists a horizontal line intersecting the graph more than
once,  is not one-to-one.

b) On the interval  is one-to-one.

1.5.4 g(x) = x

2

[0,∞)

(x) =g

−1

x

−−

√

h(x) = x

2

(−∞, 0] (x) =−h

−1

x

−−

√

 Example : Restricting the Domain1.5.4

f(x) = (x+1)

2

f f

f [−1,∞) f

f

−1

f y = x

2

1

f

[−1,∞), f
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The domain and range of  are given by the range and domain of , respectively. Therefore, the domain of  is 
and the range of  is . To find a formula for , solve the equation  for  If , then 

. Since we are restricting the domain to the interval where , we need . Therefore, 

. Interchanging  and , we write  and conclude that .

Consider  restricted to the domain . Verify that  is one-to-one on this domain. Determine the domain
and range of the inverse of  and find a formula for .

Hint

The domain and range of  is given by the range and domain of , respectively. To find , solve  for .

Answer

The domain of  is . The range of  is . The inverse function is given by the formula 
.

Inverse Trigonometric Functions
The six basic trigonometric functions are periodic, and therefore they are not one-to-one. However, if we restrict the domain of a
trigonometric function to an interval where it is one-to-one, we can define its inverse. Consider the sine function. The sine function
is one-to-one on an infinite number of intervals, but the standard convention is to restrict the domain to the interval . By
doing so, we define the inverse sine function on the domain  such that for any  in the interval , the inverse sine
function tells us which angle  in the interval  satisfies . Similarly, we can restrict the domains of the other
trigonometric functions to define inverse trigonometric functions, which are functions that tell us which angle in a certain interval
has a specified trigonometric value.

The inverse sine function, denoted  or , and the inverse cosine function, denoted  or , are defined on
the domain  as follows:

if and only if  and ;

f

−1

f f

−1

[0,∞)

f

−1

[−1,∞) f

−1

y = (x+1)

2

x. y = (x+1)

2

x =−1± y

√

x ≥−1 ± ≥ 0y

√

x =−1+ y

√

x y y =−1+ x

−−

√

(x) =−1+f

−1

x

−−

√

 Exercise 1.5.4

f(x) = 1/x

2

(−∞, 0) f

f f

−1

f

−1

f f

−1

y = 1/x

2

x

f

−1

(0,∞) f

−1

(−∞, 0)

(x) =−1/f

−1

x

−−

√

[− , ]

π

2

π

2

[−1, 1] x [−1, 1]

θ [− , ]

π

2

π

2

sinθ= x

 Definition: inverse trigonometric functions

sin

−1

arcsin cos

−1

arccos

D= {x| −1 ≤ x ≤ 1}

(x) = ysin

−1

sin(y) = x − ≤ y ≤

π

2

π

2
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if and only if  and .

The inverse tangent function, denoted  or , and inverse cotangent function, denoted  or , are defined
on the domain  as follows:

if and only if  and ;

if and only if  and .

The inverse cosecant function, denoted  or , and inverse secant function, denoted  or , are defined on
the domain  as follows:

if and only if  and ;

if and only if  and .

To graph the inverse trigonometric functions, we use the graphs of the trigonometric functions restricted to the domains defined
earlier and reflect the graphs about the line  (Figure ).

 Figure : The graph of
each of the inverse trigonometric functions is a reflection about the line  of the corresponding restricted trigonometric
function.

When evaluating an inverse trigonometric function, the output is an angle. For example, to evaluate , we need to find an
angle  such that . Clearly, many angles have this property. However, given the definition of , we need the angle 
that not only solves this equation, but also lies in the interval . We conclude that .

(x) = ycos

−1

cos(y) = x 0 ≤ y ≤ π

tan

−1

arctan cot

−1

arccot

D= {x| −∞< x <∞}

(x) = ytan

−1

tan(y) = x − < y <

π

2

π

2

(x) = ycot

−1

cot(y) = x 0 < y < π

csc

−1

arccsc sec

−1

arcsec

D= {x | |x| ≥ 1}

(x) = ycsc

−1

csc(y) = x − ≤ y ≤ , y ≠ 0

π

2

π

2

(x) = ysec

−1

sec(y) = x 0 ≤ y ≤ π, y ≠ π/2

y = x 1.5.5

1.5.5

y = x

( )cos

−1 1

2

θ cosθ=

1

2

cos

−1

θ

[0, π] ( )=cos

−1

1

2

π

3
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We now consider a composition of a trigonometric function and its inverse. For example, consider the two expressions 

 and 

For the first one, we simplify as follows:

For the second one, we have

The inverse function is supposed to “undo” the original function, so why isn’t  Recalling our definition of
inverse functions, a function  and its inverse  satisfy the conditions  for all  in the domain of  and 

 for all  in the domain of , so what happened here? The issue is that the inverse sine function, , is the
inverse of the restricted sine function defined on the domain . Therefore, for  in the interval , it is true that 

. However, for values of  outside this interval, the equation does not hold, even though  is defined
for all real numbers .

What about  Does that have a similar issue? The answer is no. Since the domain of  is the interval , we
conclude that  if  and the expression is not defined for other values of . To summarize,

 if 

and

 if 

Similarly, for the cosine function,

 if 

and

 if 

Similar properties hold for the other trigonometric functions and their inverses.

Evaluate each of the following expressions.

a. 

b. 

c. 
d. 

Solution
a. Evaluating  is equivalent to finding the angle  such that  and . The angle 

 satisfies these two conditions. Therefore, .
b. First we use the fact that  Then . Therefore, 

.
c. To evaluate ,first use the fact that . Then we need to find the angle  such that 

 and . Since  satisfies both these conditions, we have 
.

d. Since , we need to evaluate . That is, we need to find the angle  such that 
and . Since  satisfies both these conditions, we can conclude that 

sin( ( ))sin

−1

2√

2

(sin(π)).sin

−1

sin( ( )) = sin( )= .sin

−1

2

–

√

2

π

4

2

–

√

2

(sin(π)) = (0) = 0.sin

−1

sin

−1

(sin(π)) = π?sin

−1

f f

−1

f( (y)) = yf

−1

y f

−1

(f(x)) = xf

−1

x f sin

−1

[− , ]

π

2

π

2

x [− , ]

π

2

π

2

(sinx) = xsin

−1

x (sinx)sin

−1

x

sin( y)?sin

−1

sin

−1

[−1, 1]

sin( y)= ysin

−1

−1 ≤ y ≤ 1 y

sin( y) = ysin

−1

−1 ≤ y ≤ 1

(sinx) = xsin

−1

− ≤ x ≤ .

π

2

π

2

cos( y) = ycos

−1

−1 ≤ y ≤ 1

(cosx) = xcos

−1

0 ≤ x ≤ π.

 Example : Evaluating Expressions Involving Inverse Trigonometric Functions1.5.5

(− )sin

−1

3√

2

tan( (− ))tan

−1

1

3√

(cos( ))cos

−1

5π

4

(cos( ))sin

−1 2π

3

(− /2)sin

−1

3

–

√

θ sinθ=− /23

–

√

−π/2 ≤ θ≤ π/2

θ=−π/3 (− /2) =−π/3sin

−1

3

–

√

(−1/ ) =−π/6.tan

−1

3

–

√ tan(−π/6) =−1/ 3

–

√

tan( (−1/ )) =−1/tan

−1

3

–

√ 3

–

√

(cos(5π/4))cos

−1

cos(5π/4) =− /22

–

√

θ

cos(θ) =− /22

–

√ 0 ≤ θ≤ π 3π/4

(cos(5π/4)) = (− /2)) = 3π/4cos

−1

cos

−1

2

–

√

cos(2π/3) =−1/2 (−1/2)sin

−1

θ sin(θ) =−1/2

−π/2 ≤ θ≤ π/2 −π/6

(cos(2π/3)) = (−1/2) =−π/6.sin

−1

sin

−1
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In many areas of science, engineering, and mathematics, it is useful to know the maximum value a function can obtain, even if
we don’t know its exact value at a given instant. For instance, if we have a function describing the strength of a roof beam, we
would want to know the maximum weight the beam can support without breaking. If we have a function that describes the
speed of a train, we would want to know its maximum speed before it jumps off the rails. Safe design often depends on
knowing maximum values.

This project describes a simple example of a function with a maximum value that depends on two equation coefficients. We
will see that maximum values can depend on several factors other than the independent variable .

1. Consider the graph in Figure  of the function  Describe its overall shape. Is it periodic? How do you
know?

 Figure : The graph of .

Using a graphing calculator or other graphing device, estimate the - and -values of the maximum point for the graph (the
first such point where ). It may be helpful to express the -value as a multiple of 

2. Now consider other graphs of the form  for various values of  and  Sketch the graph when 
and  and find the - and -values for the maximum point. (Remember to express the -value as a multiple of , if
possible.) Has it moved?

3. Repeat for  Is there any relationship to what you found in part (2)?

4. Complete the following table, adding a few choices of your own for  and 

0 1   3 4   

1 0   4 3   

1 1   1   

1 2   1   

2 1   12 5   

2 2   5 12   

5. Try to figure out the formula for the -values.

6. The formula for the -values is a little harder. The most helpful points from the table are  (Hint:
Consider inverse trigonometric functions.)

7. If you found formulas for parts (5) and (6), show that they work together. That is, substitute the -value formula you found into 
 and simplify it to arrive at the -value formula you found.

 The Maximum Value of a Function

x

1.5.6 y = sinx+cosx.

1.5.6 y = sinx+cosx

x y

x > 0 x π.

y =A sinx+B cosx A B. A= 2

B= 1, x y x π

A= 1, B= 2.

A B :

A B x y A B x y

3

–

√

3

–

√

y

x (1, 1), (1, ), ( , 1).3

–

√ 3

–

√

x

y =A sinx+B cosx y
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Key Concepts
For a function to have an inverse, the function must be one-to-one. Given the graph of a function, we can determine whether the
function is one-to-one by using the horizontal line test.
If a function is not one-to-one, we can restrict the domain to a smaller domain where the function is one-to-one and then define
the inverse of the function on the smaller domain.
For a function  and its inverse  for all  in the domain of  and  for all  in the domain
of .
Since the trigonometric functions are periodic, we need to restrict their domains to define the inverse trigonometric functions.
The graph of a function  and its inverse  are symmetric about the line 

Key Equations
Inverse function

 for all  in  and  for all  in .

Glossary

horizontal line test
a function  is one-to-one if and only if every horizontal line intersects the graph of , at most, once

inverse function
for a function , the inverse function  satisfies  if 

inverse trigonometric functions
the inverses of the trigonometric functions are defined on restricted domains where they are one-to-one functions

one-to-one function
a function  is one-to-one if  if 

restricted domain
a subset of the domain of a function 

This page titled 1.5: Inverse Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

1.4: Inverse Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f , f( (x)) = xf

−1

f

−1

x f

−1

(f(x)) = xf

−1

x

f

f f

−1

y = x.

(f(x)) = xf

−1

x D, f( (y)) = yf

−1

y R

f f

f f

−1

(y) = xf

−1

f(x) = y

f f( ) ≠ f( )x

1

x

2

≠x

1

x

2

f

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25915?pdf
https://stats.libretexts.org/Courses/Lake_Tahoe_Community_College/Interactive_Calculus_Q1/01%3A_Functions_and_Graphs/1.05%3A_Inverse_Functions
https://creativecommons.org/licenses/by-nc-sa/
https://math.libretexts.org/@go/page/2481
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


1.5E.1 https://stats.libretexts.org/@go/page/25916

1.5E: Exercises for Section 1.4
In exercises 1 - 6, use the horizontal line test to determine whether each of the given graphs is one-to-one.

1)

Answer
Not one-to-one

2)

3)

Answer
Not one-to-one

4)
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https://creativecommons.org/licenses/by-nc-sa/4.0/
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5)

Answer
One-to-one

6)

In exercises 7 - 12,

a. find the inverse function, and

b. find the domain and range of the inverse function.

7) 

Answer
a.  
b. Domain:  Range: 

8) 

9) 

f(x) = −4, x ≥ 0x

2

(x) =f

−1

x+4

− −−−−

√

x ≥−4, y ≥ 0

f(x) = x−4

− −−−−

√

3

f(x) = +1x

3
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Answer
a.  
b. Domain: all real numbers, Range: all real numbers

10) 

11) 

Answer
a. , 
b. Domain:  Range: 

12) 

In exercises 13 - 16, use the graph of  to sketch the graph of its inverse function.

13)

Answer

14)

(x) =f

−1

x−1

− −−−−

√

3

f(x) = (x−1 , x ≤ 1)

2

f(x) = x−1

− −−−−

√

(x) = +1f

−1

x

2

x ≥ 0, y ≥ 1

f(x) =

1

x+2

f

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25916?pdf


1.5E.4 https://stats.libretexts.org/@go/page/25916

15)

Answer

16)

In exercises 17 - 24, use composition to determine which pairs of functions are inverses.
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17) 

Answer
These are inverses.

18) 

19) 

Answer
These are not inverses.

20) 

21) 

Answer
These are inverses.

22) 

23) 

Answer
These are inverses.

24) 

In exercises 25 - 33, evaluate the functions. Give the exact value.

25) 

Answer

26) 

27) 

Answer

28) 

29) 

Answer

30) 

31) 

Answer

f(x) = 8x, g(x) =

x

8

f(x) = 8x+3, g(x) =

x−3

8

f(x) = 5x−7, g(x) =

x+5

7

f(x) = x+2, g(x) = x+3

2

3

3

2

f(x) = , x ≠ 1, g(x) = +1, x ≠ 0

1

x−1

1

x

f(x) = +1, g(x) = (x−1x

3

)

1/3

f(x) = +2x+1, x ≥−1, g(x) =−1+ , x ≥ 0x

2

x

−−

√

f(x) = , 0 ≤ x ≤ 2, g(x) = , 0 ≤ x ≤ 24−x

2

− −−−−

√

4−x

2

− −−−−

√

( )tan

−1

3√

3

π

6

(− )cos

−1

2√

2

(1)cot

−1

π

4

(−1)sin

−1

( )cos

−1

3√

2

π

6

cos( ( ))tan

−1

3

–

√

sin( ( ))cos

−1

2√

2

2√

2
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32) 

33) 

Answer

34) The function  converts degrees Fahrenheit to degrees Celsius.

a) Find the inverse function 

b) What is the inverse function used for?

35) [T] The velocity  (in centimeters per second) of blood in an artery at a distance  cm from the center of the artery can be
modeled by the function  for 

a) Find 

b) Interpret what the inverse function is used for.

c) Find the distance from the center of an artery with a velocity of 15 cm/sec, 10 cm/sec, and 5 cm/sec.

Answer

a.  

b. The inverse function determines the distance from the center of the artery at which blood is flowing with velocity  
c. 0.1 cm; 0.14 cm; 0.17 cm

36) A function that converts dress sizes in the United States to those in Europe is given by 

a) Find the European dress sizes that correspond to sizes 6, 8, 10, and 12 in the United States.

b) Find the function that converts European dress sizes to U.S. dress sizes.

c) Use part b. to find the dress sizes in the United States that correspond to 46, 52, 62, and 70.

37) [T] The cost to remove a toxin from a lake is modeled by the function  where  is the cost (in thousands of

dollars) and  is the amount of toxin in a small lake (measured in parts per billion [ppb]). This model is valid only when the amount
of toxin is less than 85 ppb.

a) Find the cost to remove 25 ppb, 40 ppb, and 50 ppb of the toxin from the lake.

b) Find the inverse function.

c) Use part b. to determine how much of the toxin is removed for $50,000.

Answer
a. $31,250, $66,667, $107,143 

b.  

c. 34 ppb

38) [T] A race car is accelerating at a velocity given by 

where  is the velocity (in feet per second) at time 

a) Find the velocity of the car at 10 sec.

b) Find the inverse function.

c) Use part b. to determine how long it takes for the car to reach a speed of 150 ft/sec.

39) [T] An airplane’s Mach number  is the ratio of its speed to the speed of sound. When a plane is flying at a constant altitude,
then its Mach angle is given by 

(sin( ))sin

−1 π

3

(tan(− ))tan

−1

π

6

−

π

6

C = T (F ) = (5/9)(F −32)

F = (C)T

−1

V x

V = f(x) = 500(0.04− )x

2

0 ≤ x ≤ 0.2.

x = (V ).f

−1

x = (V ) =f

−1

0.04−

V

500

− −−−−−−−−

√

V .

D(x) = 2x+24.

C(p) = ,

75p

85−p

C

p

p =

85C

C+75

v(t) = t+54,

25

4

v t.

M

μ= 2 ( ).sin

−1 1

M
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Find the Mach angle (to the nearest degree) for the following Mach numbers.

a. 

b. 

c. 

Answer
a.  b.  c. 

40) [T] Using , find the Mach number M for the following angles.

a. 

b. 

c. 

41) [T] The temperature (in degrees Celsius) of a city in the northern United States can be modeled by the function

where  is time in months and  corresponds to January 1. Determine the month and day when the temperature is 

Answer
; so, the temperature occurs on June 21 and August 15

42) [T] The depth (in feet) of water at a dock changes with the rise and fall of tides. It is modeled by the function 
 where  is the number of hours after midnight. Determine the first time after midnight when the

depth is  ft.

43) [T] An object moving in simple harmonic motion is modeled by the function  where  is measured in

inches and  is measured in seconds. Determine the first time when the distance moved is  in.

Answer
 sec

44) [T] A local art gallery has a portrait 3 ft in height that is hung 2.5 ft above the eye level of an average person. The viewing
angle  can be modeled by the function , where  is the distance (in feet) from the portrait. Find the
viewing angle when a person is 4 ft from the portrait.

45) [T] Use a calculator to evaluate  and . Explain the results of each.

Answer
; the expression does not equal  since —in other words, it is not in the

restricted domain of . , since  is in the restricted domain of .

μ= 1.4

μ= 2.8

μ= 4.3

∼ 92° ∼ 42° ∼ 27°

μ= 2 ( )sin

−1

1

M

μ=

π

6

μ=

2π

7

μ=

3π

8

T (x) = 5+18 sin[ (x−4.6)],

π

6

x x = 1.00 21°C.

x ≈ 6.69, 8.51

D(t) = 5 sin( t− )+8,

π

6

7π

6

t

11.75

s(t) =−6 cos( ),

πt

2

s

t 4.5

∼ 1.5

θ θ= −tan

−1

5.5

x

tan

−1

2.5

x

x

(tan(2.1))tan

−1

(cos(2.1))cos

−1

(tan(2.1)) ≈−1.0416tan

−1

2.1 2.1 > 1.57 =

π

2

tanx (cos(2.1)) = 2.1cos

−1

2.1 cosx
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46) [T] Use a calculator to evaluate  and . Explain the results of each.
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1.6: Exponential and Logarithmic Functions

Identify the form of an exponential function.
Explain the difference between the graphs of  and .
Recognize the significance of the number .
Identify the form of a logarithmic function.
Explain the relationship between exponential and logarithmic functions.
Describe how to calculate a logarithm to a different base.
Identify the hyperbolic functions, their graphs, and basic identities.

In this section we examine exponential and logarithmic functions. We use the properties of these functions to solve equations
involving exponential or logarithmic terms, and we study the meaning and importance of the number . We also define hyperbolic
and inverse hyperbolic functions, which involve combinations of exponential and logarithmic functions. (Note that we present
alternative definitions of exponential and logarithmic functions in the chapter Applications of Integrations, and prove that the
functions have the same properties with either definition.)

Exponential Functions

Exponential functions arise in many applications. One common example is population growth. For example, if a population starts
with  individuals and then grows at an annual rate of , its population after 1 year is

Its population after 2 years is

In general, its population after  years is

which is an exponential function. More generally, any function of the form , where , , is an exponential
function with base  and exponent  Exponential functions have constant bases and variable exponents. Note that a function of
the form  for some constant  is not an exponential function but a power function.

To see the difference between an exponential function and a power function, we compare the functions  and . In
Table , we see that both  and  approach infinity as . Eventually, however,  becomes larger than  and grows
more rapidly as . In the opposite direction, as , , whereas . The line  is a horizontal
asymptote for .

Table 

-3 -2 -1 0 1 2 3 4 5 6

9 4 1 0 1 4 9 16 25 36

1/8 1/4 1/2 1 2 4 8 16 32 64

In Figure , we graph both  and  to show how the graphs differ.
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 Figure : Both  and  approach infinity as , but  grows more rapidly than 
. As , , whereas .

Evaluating Exponential Functions

Recall the properties of exponents: If  is a positive integer, then we define  (with  factors of ). If  is a negative
integer, then  for some positive integer , and we define . Also,  is defined to be . If  is a rational
number, then , where  and  are integers and . For example, . However,
how is  defined if  is an irrational number? For example, what do we mean by ? This is too complex a question for us to
answer fully right now; however, we can make an approximation.

Table : Values of  for a List of Rational Numbers Approximating 

1.4 1.41 1.414 1.4142 1.41421 1.414213

2.639 2.65737 2.66475 2.665119 2.665138 2.665143

In Table , we list some rational numbers approaching , and the values of  for each rational number  are presented as
well. We claim that if we choose rational numbers  getting closer and closer to , the values of  get closer and closer to some
number . We define that number  to be .

Suppose a particular population of bacteria is known to double in size every  hours. If a culture starts with  bacteria, the
number of bacteria after  hours is . The number of bacteria after  hours is . In
general, the number of bacteria after  hours is . Letting , we see that the number of bacteria
after t hours is . Find the number of bacteria after  hours,  hours, and  hours.

Solution
The number of bacteria after 6 hours is given by

The number of bacteria after  hours is given by

The number of bacteria after  hours is given by  bacteria.

1.6.1 2
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x

2

x→∞ 2

x
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→02

x

x = b ⋅ b⋯ bb
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√
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√
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2
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 Example : Bacterial Growth1.6.1

4 1000

4 n(4) = 1000 ⋅ 2 8 n(8) = n(4) ⋅ 2 = 1000 ⋅ 2

2

4m n(4m) = 1000 ⋅ 2

m

t = 4m

n(t) = 1000 ⋅ 2

t/4

6 10 24

n(6) = 1000 ⋅ ≈ 2828 bacteria.2

6/4

10

n(10) = 1000 ⋅ ≈ 5657 bacteria.2

10/4

24 n(24) = 1000 ⋅ = 64, 0002

6
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Given the exponential function , evaluate  and .

Answer

.

Graphing Exponential Functions
For any base , , the exponential function  is defined for all real numbers  and . Therefore, the domain
of  is  and the range is . To graph , we note that for ,  is increasing on  and 

 as , whereas  as . On the other hand, if ,  is decreasing on  and 
 as  whereas  as  (Figure ).

 Figure : If , then  is increasing on . If , then  is
decreasing on .

Note that exponential functions satisfy the general laws of exponents. To remind you of these laws, we state them as rules.

For any constants , , and for all  and 

1. 

2. 

3. 

4. 

5. 

Use the laws of exponents to simplify each of the following expressions.

a. 

b. 

Soution

a. We can simplify as follows:

 Exercise 1.6.1

f(x) = 100 ⋅ 3
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 Example : Using the Laws of Exponents1.6.2
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b. We can simplify as follows:

Use the laws of exponents to simplify .

Hint

Answer

The Number e
A special type of exponential function appears frequently in real-world applications. To describe it, consider the following example
of exponential growth, which arises from compounding interest in a savings account. Suppose a person invests  dollars in a
savings account with an annual interest rate , compounded annually. The amount of money after 1 year is

.

The amount of money after  years is

.

More generally, the amount after  years is

.

If the money is compounded 2 times per year, the amount of money after half a year is

.

The amount of money after  year is

After  years, the amount of money in the account is

.

More generally, if the money is compounded  times per year, the amount of money in the account after  years is given by the
function

What happens as  To answer this question, we let  and write

and examine the behavior of  as , using a table of values (Table ).

Table : Values of  as 

10 100 1000 10,000 100,000 1,000,000
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)
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2.5937 2.7048 2.71692 2.71815 2.718268 2.718280

Looking at this table, it appears that  is approaching a number between  and  as . In fact, 
does approach some number as . We call this number . To six decimal places of accuracy,

The letter  was first used to represent this number by the Swiss mathematician Leonhard Euler during the 1720s. Although
Euler did not discover the number, he showed many important connections between  and logarithmic functions. We still use
the notation  today to honor Euler’s work because it appears in many areas of mathematics and because we can use it in many
practical applications.

Returning to our savings account example, we can conclude that if a person puts  dollars in an account at an annual interest rate 
, compounded continuously, then . This function may be familiar. Since functions involving base  arise often in

applications, we call the function  the natural exponential function. Not only is this function interesting because of the
definition of the number , but also, as discussed next, its graph has an important property.

Since , we know  is increasing on . In Figure , we show a graph of  along with a tangent
line to the graph of  at . We give a precise definition of tangent line in the next chapter; but, informally, we say a tangent
line to a graph of  at  is a line that passes through the point  and has the same “slope” as  at that point . The
function  is the only exponential function  with tangent line at  that has a slope of  As we see later in the text,
having this property makes the natural exponential function the most simple exponential function to use in many instances.

 Figure : The graph of  has a tangent line with slope  at .

Suppose  is invested in an account at an annual interest rate of , compounded continuously.

a. Let  denote the number of years after the initial investment and  denote the amount of money in the account at time .
Find a formula for .

b. Find the amount of money in the account after  years and after  years.

Solution
a. If  dollars are invested in an account at an annual interest rate , compounded continuously, then . Here 

 and . Therefore, .

b. After  years, the amount of money in the account is

.

After  years, the amount of money in the account is

.

(1+ )

1

m

m

(1+1/m)

m

2.7 2.8 m→∞ (1+1/m)

m

m→∞ e

e≈ 2.718282.

 Leonhard Euler

e
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e
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f x = 0

f x = a (a, f(a)) f
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 Example : Compounding Interest1.6.3

$500 r= 5.5%

t A(t) t

A(t)

10 20

P r A(t) = Pe

rt

P = $500 r= 0.055 A(t) = 500e

0.055t

10

A(10) = 500 = 500 ≈ $866.63e

0.055⋅10

e

0.55

20

A(20) = 500 = 500 ≈ $1, 502.08e

0.055⋅20

e

1.1
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If  is invested in an account at an annual interest rate of , compounded continuously, find a formula for the amount of
money in the account after  years. Find the amount of money after  years.

Hint

Answer

. After  years, there will be approximately .

Logarithmic Functions
Using our understanding of exponential functions, we can discuss their inverses, which are the logarithmic functions. These come
in handy when we need to consider any phenomenon that varies over a wide range of values, such as the pH scale in chemistry or
decibels in sound levels.

The exponential function  is one-to-one, with domain  and range . Therefore, it has an inverse function,
called the logarithmic function with base . For any , the logarithmic function with base , denoted , has domain 

 and range ,and satisfies

if and only if .

For example,

since ,

since ,

since  for any base .

Furthermore, since  and  are inverse functions,

and

The most commonly used logarithmic function is the function . Since this function uses natural  as its base, it is called the
natural logarithm. Here we use the notation  or  to mean . For example,

Since the functions  and  are inverses of each other,

 and ,

and their graphs are symmetric about the line  (Figure ).

 Exercise 1.6.3
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 Figure : The functions  and  are inverses of each other, so their graphs
are symmetric about the line .

In general, for any base , , the function  is symmetric about the line  with the function .
Using this fact and the graphs of the exponential functions, we graph functions  for several values of  ( Figure ).

 Figure : Graphs of  are depicted for .

Before solving some equations involving exponential and logarithmic functions, let’s review the basic properties of logarithms.

If , and  is any real number, then

Product property

Quotient property

Power property

Solve each of the following equations for .

a. 
b. 

Solution
a. Applying the natural logarithm function to both sides of the equation, we have

.

Using the power property of logarithms,

1.6.4 y = e

x

y = ln(x)

y = x

b > 0 b ≠ 1 g(x) = (x)log

b

y = x f(x) = b

x

log

b

b > 1 1.6.5

1.6.5 y = (x)log

b

b = 2, e, 10

 Properties of Logarithms

a, b, c > 0, b ≠ 1 r

(ac) = (a)+ (c)log

b

log

b

log

b

(1.6.1)

( )= (a)− (c)log

b

a
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log

b

log

b
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( ) = r (a)log

b

a

r

log

b

(1.6.3)

 Example : Solving Equations Involving Exponential Functions1.6.4
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= 25
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+6 = 5e
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−x

ln = ln25

x
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Therefore,

b. Multiplying both sides of the equation by ,we arrive at the equation

.

Rewriting this equation as

,

we can then rewrite it as a quadratic equation in :

Now we can solve the quadratic equation. Factoring this equation, we obtain

Therefore, the solutions satisfy  and . Taking the natural logarithm of both sides gives us the solutions 
.

Solve

Hint

First solve the equation for 

Answer

.

Solve each of the following equations for .

a. 

b. 
c. 

Solution
a. By the definition of the natural logarithm function,

if and only if .

Therefore, the solution is .

b. Using the product (Equation ) and power (Equation ) properties of logarithmic functions, rewrite the left-hand
side of the equation as

x ln5 = ln2.

x = .

ln2

ln5

e

x
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2x
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x

−5 +6 = 0e
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 Exercise 1.6.4
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 Example : Solving Equations Involving Logarithmic Functions1.6.5

x

ln( ) = 4

1

x

+ x = 2log

10

x

−−

√

log

10

ln(2x)−3 ln( ) = 0x

2

ln( ) = 4

1

x

=e

4

1

x

x = 1/e

4

1.6.1 1.6.3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25917?pdf


1.6.9 https://stats.libretexts.org/@go/page/25917

Therefore, the equation can be rewritten as

or

.

The solution is .

c. Using the power property (Equation ) of logarithmic functions, we can rewrite the equation as .

Using the quotient property (Equation ), this becomes

Therefore, , which implies . We should then check for any extraneous solutions.

Solve .

Hint

First use the power property, then use the product property of logarithms.

Answer

When evaluating a logarithmic function with a calculator, you may have noticed that the only options are  or , called the
common logarithm, or , which is the natural logarithm. However, exponential functions and logarithm functions can be
expressed in terms of any desired base . If you need to use a calculator to evaluate an expression with a different base, you can
apply the change-of-base formulas first. Using this change of base, we typically write a given exponential or logarithmic function
in terms of the natural exponential and natural logarithmic functions.

Let , and .

1.  for any real number .

If , this equation reduces to .

2.  for any real number .

If , this equation reduces to .
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For the first change-of-base formula, we begin by making use of the power property of logarithmic functions. We know that for
any base , . Therefore,

= .

In addition, we know that  and  are inverse functions. Therefore,

.

Combining these last two equalities, we conclude that .

To prove the second property, we show that

Let , and . We will show that . By the definition of logarithmic functions, we know
that , and . From the previous equations, we see that

Therefore, . Since exponential functions are one-to-one, we can conclude that .

Use a calculating utility to evaluate  with the change-of-base formula presented earlier.

Solution

Use the second equation with  and : .

Use the change-of-base formula and a calculating utility to evaluate .

Hint

Use the change of base to rewrite this expression in terms of expressions involving the natural logarithm function.

Answer

In 1935, Charles Richter developed a scale (now known as the Richter scale) to measure the magnitude of an earthquake. The
scale is a base-10 logarithmic scale, and it can be described as follows: Consider one earthquake with magnitude  on the
Richter scale and a second earthquake with magnitude  on the Richter scale. Suppose , which means the
earthquake of magnitude  is stronger, but how much stronger is it than the other earthquake?

 Figure : (credit: modification of work by Robb Hannawacker, NPS)

A way of measuring the intensity of an earthquake is by using a seismograph to measure the amplitude of the earthquake
waves. If  is the amplitude measured for the first earthquake and  is the amplitude measured for the second earthquake,
then the amplitudes and magnitudes of the two earthquakes satisfy the following equation:

 Proof

b > 0, b ≠ 1 ( ) = x alog

b

a

x

log

b

b

( )log

b

a

x

b

x alog

b

b

x

(x)log

b

=b

( )log

b

a

x

a

x

=a

x

b

x alog

b

( a) ⋅ ( x) = x.log

b

log

a

log

b

u = a, v= xlog

b

log

a

w = xlog

b

u ⋅ v=w

= a, = xb

u

a

v

= xb

w

= ( = = x = .b

uv

b

u

)

v

a

v

b

w

=b

uv

b

w

u ⋅ v=w

□

 Example : Changing Bases1.6.6

7log

3

a= 3 b = e 7 = ≈ 1.77124log

3

ln7

ln3

 Exercise 1.6.6

6log

4

6 = ≈ 1.29248log

4

ln6

ln4

 Example : The Richter Scale for Earthquakes1.6.7

R

1

R

2

>R

1

R

2

R

1

1.6.6

A

1

A

2
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.

Consider an earthquake that measures 8 on the Richter scale and an earthquake that measures 7 on the Richter scale. Then,

.

Therefore,

,

which implies  or . Since  is 10 times the size of , we say that the first earthquake is 10 times as
intense as the second earthquake. On the other hand, if one earthquake measures 8 on the Richter scale and another measures 6,
then the relative intensity of the two earthquakes satisfies the equation

.

Therefore, .That is, the first earthquake is 100 times more intense than the second earthquake.

How can we use logarithmic functions to compare the relative severity of the magnitude 9 earthquake in Japan in 2011 with the
magnitude 7.3 earthquake in Haiti in 2010?

Solution
To compare the Japan and Haiti earthquakes, we can use an equation presented earlier:

.

Therefore, , and we conclude that the earthquake in Japan was approximately 50 times more intense than the
earthquake in Haiti.

Compare the relative severity of a magnitude  earthquake with a magnitude  earthquake.

Hint

.

Answer

The magnitude  earthquake is roughly  times as severe as the magnitude  earthquake.

Hyperbolic Functions
The hyperbolic functions are defined in terms of certain combinations of  and . These functions arise naturally in various
engineering and physics applications, including the study of water waves and vibrations of elastic membranes. Another common
use for a hyperbolic function is the representation of a hanging chain or cable, also known as a catenary (Figure ). If we
introduce a coordinate system so that the low point of the chain lies along the -axis, we can describe the height of the chain in
terms of a hyperbolic function. First, we define the hyperbolic functions.

− = ( )R

1

R

2

log

10

A1

A2

8−7 = ( )log

10

A1

A2

( ) = 1log

10

A1

A2

/ = 10A

1

A

2

= 10A

1

A

2

A

1

A

2

( ) = 8−6 = 2log

10

A1

A2

= 100A

1

A

2

9−7.3 = ( )log

10

A1

A2

/ =A

1

A

2

10

1.7

 Exercise 1.6.7

8.4 7.4

− = (A1/A2)R

1

R

2

log

10

8.4 10 7.4

e

x

e

−x

1.6.7

y
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 Figure :The shape of a strand of silk in a spider’s web can be described in
terms of a hyperbolic function. The same shape applies to a chain or cable hanging from two supports with only its own weight.
(credit: “Mtpaley”, Wikimedia Commons)

Hyperbolic cosine

Hyperbolic sine

Hyperbolic tangent

Hyperbolic cosecant

Hyperbolic secant

Hyperbolic cotangent

The name  rhymes with “gosh,” whereas the name  is pronounced “cinch.”  and  are pronounced
“tanch,” “seech,” “coseech,” and “cotanch,” respectively.

Using the definition of  and principles of physics, it can be shown that the height of a hanging chain, such as the one in
Figure , can be described by the function  for certain constants  and .

But why are these functions called hyperbolic functions? To answer this question, consider the quantity . Using
the definition of  and , we see that

This identity is the analog of the trigonometric identity . Here, given a value , the point 
 lies on the unit hyperbola  (Figure ).

1.6.7

 Definitions: hyperbolic functions

coshx =

+e

x

e

−x

2

sinhx =

−e

x

e

−x

2

tanhx = =

sinhx

coshx

−e

x

e

−x

+e

x

e

−x

cschx = =

1

sinhx

2

−e

x

e

−x

sechx = =

1

coshx

2

+e

x

e

−x

cothx = =

coshx

sinhx

+e

x

e

−x

−e

x

e

−x

cosh sinh Tanh, sech, csch, coth

cosh(x)

1.6.8 h(x) = a cosh(x/a)+c a c

t− tcosh

2

sinh

2

cosh sinh

t− t = − = 1.cosh

2

sinh

2

+2+e

2t

e

−2t

4

−2+e

2t

e

−2t

4

t+ t = 1cos

2

sin

2

t

(x, y) = (cosh t, sinh t) − = 1x

2

y

2

1.6.8
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 Figure : The unit hyperbola .

Graphs of Hyperbolic Functions

To graph  and , we make use of the fact that both functions approach  as , since  as .
As  approaches , whereas  approaches . Therefore, using the graphs of ,
and  as guides, we graph  and . To graph , we use the fact that ,  for
all ,  as , and  as . The graphs of the other three hyperbolic functions can be sketched
using the graphs of , , and  (Figure ).

 Figure : The hyperbolic functions involve combinations of
 and .

1.6.8 t− t = 1cosh

2

sinh

2

coshx sinhx (1/2)e

x

x →∞ →0e

−x

x →∞

x →−∞, coshx 1/2e

−x

sinhx −1/2e

−x

1/2 , 1/2e

x

e

−x

−1/2e

−x

coshx sinhx tanhx tanh(0) = 0 −1 < tanh(x) < 1

x tanhx →1 x →∞ tanhx →−1 x →−∞

coshx sinhx tanhx 1.6.9

1.6.9

e

x

e

−x
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Identities Involving Hyperbolic Functions

The identity , shown in Figure , is one of several identities involving the hyperbolic functions, some of
which are listed next. The first four properties follow easily from the definitions of hyperbolic sine and hyperbolic cosine. Except
for some differences in signs, most of these properties are analogous to identities for trigonometric functions.

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

a. Simplify .
b. If , find the values of the remaining five hyperbolic functions.

Solution:

a. Using the definition of the  function, we write

b. Using the identity ,we see that

Since  for all , we must have . Then, using the definitions for the other hyperbolic
functions, we conclude that , and .

Simplify .

Hint

Use the definition of the  function and the power property of logarithm functions.

Answer

Inverse Hyperbolic Functions
From the graphs of the hyperbolic functions, we see that all of them are one-to-one except  and . If we restrict the
domains of these two functions to the interval  then all the hyperbolic functions are one-to-one, and we can define the
inverse hyperbolic functions. Since the hyperbolic functions themselves involve exponential functions, the inverse hyperbolic
functions involve logarithmic functions.

t− t = 1cosh

2

sinh

2

1.6.8

 Identities Involving Hyperbolic Functions

cosh(−x) = coshx

sinh(−x) =−sinhx

coshx+sinhx = e

x

coshx−sinhx = e

−x

x− x = 1cosh

2

sinh

2

1− x = xtanh

2

sech

2

x−1 = xcoth

2

csch

2

sinh(x±y) = sinhx coshy±coshx sinhy

cosh(x±y) = coshx coshy±sinhx sinhy

 Example : Evaluating Hyperbolic Functions1.6.8

sinh(5 lnx)

sinhx = 3/4

sinh

sinh(5 lnx) = = = .

−e

5 ln x

e

−5 ln x

2

−e

ln( )x

5

e

ln( )x

−5

2

−x

5

x

−5

2

x− x = 1cosh

2

sinh

2

x = 1+ = .cosh

2

( )

3

4

2

25

16

coshx ≥ 1 x coshx = 5/4

tanhx = 3/5, cschx = 4/3, sechx = 4/5 cothx = 5/3

 Exercise 1.6.8

cosh(2 lnx)

cosh

( + )/2x

2

x

−2

coshx sechx

[0,∞),
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Let’s look at how to derive the first equation. The others follow similarly. Suppose . Then,  and, by the

definition of the hyperbolic sine function, . Therefore,

Multiplying this equation by , we obtain

.

This can be solved like a quadratic equation, with the solution

.

Since ,the only solution is the one with the positive sign. Applying the natural logarithm to both sides of the equation, we
conclude that

Evaluate each of the following expressions.

Solution:

Evaluate .

Hint

Use the definition of  and simplify.

Answer

.

Key Concepts
The exponential function  is increasing if  and decreasing if . Its domain is  and its range is 

.
The logarithmic function  is the inverse of . Its domain is  and its range is 

 Definitions: Inverse Hyperbolic Functions

x = arcsinhx = ln(x+ )sinh

−1

+1x

2

− −−−−

√

x = arctanhx = ln( )tanh

−1

1

2

1+x

1−x

x = arcsechx = ln( )sech

−1

1+ 1−x

2

− −−−−

√

x

x = arccoshx = ln(x+ )cosh

−1

−1x

2

− −−−−

√

x = arccotx = ln( )coth

−1

1

2

x+1

x−1

x = arccschx = ln( + )csch

−1

1

x

1+x

2

− −−−−

√

|x|

y = xsinh

−1

x = sinhy

x =

−e

y

e

−y

2

−2x− = 0.e

y

e

−y

e

y

−2x −1 = 0e

2y

e

y

= = x±e

y

2x± 4 +4x

2

− −−−−−

√

2

+1x

2

− −−−−

√

> 0e

y

y = ln(x+ ).+1x

2

− −−−−

√

 Example : Evaluating Inverse Hyperbolic Functions1.6.9

(2)sinh

−1

(1/4)tanh

−1

(2) = ln(2+ ) = ln(2+ ) ≈ 1.4436sinh

−1

+12

2

− −−−−

√

5

–

√

(1/4) = ln( ) = ln( ) = ln( ) ≈ 0.2554tanh

−1

1

2

1+1/4

1−1/4

1

2

5/4

3/4

1

2

5

3

 Exercise 1.6.9

(1/2)tanh

−1

xtanh

−1

ln(3) ≈ 0.5493

1

2

y = b

x

b > 1 0 < b < 1 (−∞,∞)

(0,∞)

y = (x)log

b

y = b

x

(0,∞) (−∞,∞).
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The natural exponential function is  and the natural logarithmic function is 
Given an exponential function or logarithmic function in base , we can make a change of base to convert this function to any
base ,  We typically convert to base .
The hyperbolic functions involve combinations of the exponential functions  and  As a result, the inverse hyperbolic
functions involve the natural logarithm.

Glossary

base
the number  in the exponential function  and the logarithmic function 

exponent
the value  in the expression 

hyperbolic functions
the functions denoted  and , which involve certain combinations of  and 

inverse hyperbolic functions
the inverses of the hyperbolic functions where  and  are restricted to the domain ;each of these functions can be
expressed in terms of a composition of the natural logarithm function and an algebraic function

natural exponential function
the function 

natural logarithm
the function 

number e
as  gets larger, the quantity  gets closer to some real number; we define that real number to be  the value of 
is approximately 

This page titled 1.6: Exponential and Logarithmic Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by .

1.5: Exponential and Logarithmic Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

y = e

x

y = lnx = x.log

e

a

b > 0 b ≠ 1. e

e

x

.e

−x

b f(x) = b

x

f(x) = xlog

b

x b

x

sinh, cosh, tanh, csch, sech, coth e

x

e

−x

cosh sech [0,∞)

f(x) = e

x

lnx = xlog

e

m (1+(1/m)

m

e; e

2.718282
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1.6E: Exercises for Section 1.5
In exercises 1 - 4, evaluate the given exponential functions as indicated, accurate to two significant digits after the decimal.

1) 

a. 

b. 

c. 

Answer
a.  
b.  
c. 

2) 

a. 

b. 

c. 

3) 

a. 

b. 

c. 

Answer
a.  
b.  
c. 

4) 

a. 

b. 

c. 

In exercises 5 - 10, match the exponential equation to the correct graph.

a. 

b. 

c. 

d. 

e. 

f. 

5)

f(x) = 5

x

x = 3

x =

1

2

x = 2

–

√

125

2.24

9.74

f(x) = (0.3)

x

x =−1

x = 4

x =−1.5

f(x) = 10

x

x =−2

x = 4

x =

5

3

0.01

10, 000

46.42

f(x) = e

x

x = 2

x =−3.2

x = π

y = 4

−x

y = 3

x−1

y = 2

x+1

y = +2( )

1

2

x

y =−3

−x

y = 1−5

x
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Answer
d

6)

7)
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Answer
b

8)

9)
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Answer
e

10)

In exercises 11 - 17, sketch the graph of the exponential function. Determine the domain, range, and horizontal asymptote.

11) 

Answer
Domain: all real numbers, Range: 

12) 

f(x) = +2e

x

(2,∞), y = 2

f(x) =−2

x
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13) 

Answer
Domain: all real numbers, Range: 

14) 

f(x) = 3

x+1

(0,∞), y = 0

f(x) = −14

x
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15) 

Answer
Domain: all real numbers, Range: 

16) 

17) 

f(x) = 1−2

−x

(−∞, 1), y = 1

f(x) = +25

x+1

f(x) = −1e

−x
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Answer
Domain: all real numbers, Range: 

In exercises 18 - 25, write the equation in equivalent exponential form.

18) 

19) 

Answer

20) 

21) 

Answer

22) 

23) 

Answer

24) 

25) 

Answer

In exercises 26 - 35, write the equation in equivalent logarithmic form.

26) 

27) 

Answer

(−1,∞), y =−1

81 = 4log

3

2 =log

8

1

3

= 28

1/3

1 = 0log

5

25 = 2log

5

= 255

2

log 0.1 =−1

ln( )=−3

1

e

3

=e

−3

1

e

3

3 = 0.5log

9

ln1 = 0

= 1e

0

= 82

3

=4

−2 1

16

( )=−2log

4

1

16
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28) 

29) 

Answer

30) 

31) 

Answer

32) 

33) 

Answer

34) 

35) 

Answer

In exercises 36 - 41, sketch the graph of the logarithmic function. Determine the domain, range, and vertical asymptote.

36) 

37) 

= 10010

2

= 19

0

1 = 0log

9

=( )

1

3

3

1

27

= 464

−−

√

3

4 =log

64

1

3

= ye

x

= 1509

y

150 = ylog

9

= 45b

3

= 0.1254

−3/2

0.125 =−log

4

3

2

f(x) = 3+lnx

f(x) = ln(x−1)
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Answer
Domain: , Range: 

38) 

39) 

(1,∞) (−∞,∞), x = 1

f(x) = ln(−x)

f(x) = 1−lnx
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Answer
Domain: , Range: 

40) 

41) 

Answer
Domain: , Range: , 

In exercises 42 - 47, use properties of logarithms to write the expressions as a sum, difference, and/or product of logarithms.

(0,∞) (−∞,∞), x = 0

f(x) = log x−1

f(x) = ln(x+1)

(−1,∞) (−∞,∞) x =−1
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42) 

43) 

Answer

44) 

45) 

Answer

46) 

47) 

Answer

In exercises 48 - 55, solve the exponential equation exactly.

48) 

49) 

Answer

50) 

51) 

Answer

52) 

53) 

Answer

54) 

55) 

Answer

In exercises 56 - 63, solve the logarithmic equation exactly, if possible.

56) 

57) 

Answer

log yx

4

log

3

9a

3

b

2+3 a− blog

3

log

3

lna b

√

3

log

5

125xy

3

− −−−−−

√

+ x+ y

3

2

1

2

log

5

3

2

log

5

log

4

xy

√

3

64

ln( )

6

e

3

√

− +ln6

3

2

= 1255

x

−15 = 0e

3x

ln 15

3

= 48

x

−32 = 04

x+1

3

2

=3

x/14 1

10

= 7.2110

x

log 7.21

4 ⋅ −20 = 02
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58) 

59) 

Answer

60) 

61) 

Answer

62) 

63) 

Answer

In exercises 64 - 69, use the change-of-base formula and either base  or base  to evaluate the given expressions. Answer
in exact form and in approximate form, rounding to four decimal places.

64) 

65) 

Answer

66) 

67) 

Answer

68) 

69) 

Answer

70) Rewrite the following expressions in terms of exponentials and simplify.

a.  b.  c.  d. 

71) [T] The number of bacteria  in a culture after  days can be modeled by the function . Find the number
of bacteria present after  days.

Answer

72) [T] The demand  (in millions of barrels) for oil in an oil-rich country is given by the function ,
where  is the price (in dollars) of a barrel of oil. Find the amount of oil demanded (to the nearest million barrels) when the price is
between $15 and $20.

(x+5) = 0log

4

log(2x−7) = 0

x = 4

ln = 2x+3

− −−−−

√

(x+9)+ x = 2log

6

log

6

x = 3

(x+2)− (x−1) = 0log

4

log

4

lnx+ln(x−2) = ln4

1+ 5

–

√

10 e

47log

5

82log

7

≈ 2.2646

log 82

log 7

103log

6

211log

0.5

≈−7.7211

log 211

log 0.5

πlog

2

0.452log

0.2

≈ 0.4934

log 0.452

log 0.2

2 cosh(lnx) cosh4x+sinh4x cosh2x−sinh2x ln(coshx+sinhx)+ln(coshx−sinhx)

N t N(t) = 1300 ⋅ (2)

t/4

15

∼ 17, 491

D D(p) = 150 ⋅ (2.7)
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73) [T] The amount  of a $100,000 investment paying continuously and compounded for t years is given by 
. Find the amount  accumulated in  years.

Answer
Approximately $131,653 is accumulated in 5 years.

74) [T] An investment is compounded monthly, quarterly, or yearly and is given by the function , where  is the

value of the investment at time ,  is the initial principle that was invested,  is the annual interest rate, and  is the number of
time the interest is compounded per year. Given a yearly interest rate of 3.5% and an initial principle of $100,000, find the amount 

 accumulated in 5 years for interest that is compounded a. daily, b., monthly, c. quarterly, and d. yearly.

75) [T] The concentration of hydrogen ions in a substance is denoted by , measured in moles per liter. The pH of a substance
is defined by the logarithmic function . This function is used to measure the acidity of a substance. The pH of
water is 7. A substance with a pH less than 7 is an acid, whereas one that has a pH of more than 7 is a base.

a. Find the pH of the following substances. Round answers to one digit.

b. Determine whether the substance is an acid or a base.

i. Eggs:  mol/L

ii. Beer:  mol/L

iii. Tomato Juice:  mol/L

Answer
i. a. pH = 8 b. Base 
ii. a. pH = 3 b. Acid 
iii. a. pH = 4 b. Acid

76) [T] Iodine-131 is a radioactive substance that decays according to the function , where  is the initial
quantity of a sample of the substance and  is in days. Determine how long it takes (to the nearest day) for 95% of a quantity to
decay.

77) [T] According to the World Bank, at the end of 2013  the U.S. population was 316 million and was increasing according
to the following model:

where  is measured in millions of people and  is measured in years after 2013.

a. Based on this model, what will be the population of the United States in 2020?

b. Determine when the U.S. population will be twice what it is in 2013.

Answer
a.  million 
b. 94 years from 2013, or in 2107

78) [T] The amount  accumulated after  dollars is invested for  years at an interest rate of 4% is modeled by the function 
.

a. Find the amount accumulated after  years and  years.

b. Determine how long it takes for the original investment to triple.

79) [T] A bacterial colony grown in a lab is known to double in number in  hours. Suppose, initially, there are  bacteria
present.

a. Use the exponential function  to determine the value , which is the growth rate of the bacteria. Round to four
decimal places.

b. Determine approximately how long it takes for  bacteria to grow.
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Answer
a.  
b. ≈  hours

80) [T] The rabbit population on a game reserve doubles every  months. Suppose there were  rabbits initially.

a. Use the exponential function  to determine the growth rate constant . Round to four decimal places.

b. Use the function in part a. to determine approximately how long it takes for the rabbit population to reach 3500.

81) [T] The 1906 earthquake in San Francisco had a magnitude of 8.3 on the Richter scale. At the same time, in Japan, an
earthquake with magnitude 4.9 caused only minor damage. Approximately how much more energy was released by the San
Francisco earthquake than by the Japanese earthquake?

Answer
The San Francisco earthquake had  or  times more energy than the Japan earthquake.

Contributors
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1.7: Chapter 1 Review Exercises
True or False? Justify your answer with a proof or a counterexample.

1) A function is always one-to-one.

2) , assuming  and  are functions.

Answer
False

3) A relation that passes the horizontal and vertical line tests is a one-to-one function.

4) A relation passing the horizontal line test is a function.

Answer
False

State the domain and range of the given functions:

, , 

5) h

6) g

Answer
Domain: , Range: all real numbers

7) 

8) 

Answer
Domain:  and , Range: all real numbers

Find the degree, -intercept, and zeros for the following polynomial functions.

9) 

10) 

Answer
Degree of 3, -intercept:  Zeros: 

Simplify the following trigonometric expressions.

11) 

12) 

Answer

Solve the following trigonometric equations on the interval  exactly.

13) 

14) 

Answer

f ∘ g= g∘ f f g

f = +2x−3x

2

g= ln(x−5) h =

1

x+4

x > 5

h ∘ f

g∘ f

x > 2 x <−4

y

f(x) = 2 +9x−5x

2

f(x) = +2 −2xx

3

x

2

y (0, 0), 0, −1, −1−3

–

√

3

–

√

+ x

xtan

2

xsec

2

cos

2

x− xcos

2

sin

2

cos(2x)

θ= [−2π, 2π]

6 cos2x−3 = 0

x−2 secx+1 = 0sec

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25919?pdf
https://stats.libretexts.org/Courses/Lake_Tahoe_Community_College/Interactive_Calculus_Q1/01%3A_Functions_and_Graphs/1.07%3A_Chapter_1_Review_Exercises


1.7.2 https://stats.libretexts.org/@go/page/25919

Solve the following logarithmic equations.

15) 

16) 

Answer

Are the following functions one-to-one over their domain of existence? Does the function have an inverse? If so, find the
inverse  of the function. Justify your answer.

17) 

18) 

Answer

One-to-one; yes, the function has an inverse; inverse: 

For the following problems, determine the largest domain on which the function is one-to-one and find the inverse on that
domain.

19) 

20) 

Answer

21) A car is racing along a circular track with diameter of 1 mi. A trainer standing in the center of the circle marks his progress
every 5 sec. After 5 sec, the trainer has to turn 55° to keep up with the car. How fast is the car traveling?

For the following problems, consider a restaurant owner who wants to sell T-shirts advertising his brand. He recalls that
there is a fixed cost and variable cost, although he does not remember the values. He does know that the T-shirt printing
company charges $440 for 20 shirts and $1000 for 100 shirts.

22) a. Find the equation  that describes the total cost as a function of number of shirts and

b. determine how many shirts he must sell to break even if he sells the shirts for $10 each.

Answer
a.  
b.  shirts

23) a. Find the inverse function  and describe the meaning of this function.

b. Determine how many shirts the owner can buy if he has $8000 to spend.

For the following problems, consider the population of Ocean City, New Jersey, which is cyclical by season.

24) The population can be modeled by , where  is time in months (  represents January 1)
and  is population (in thousands). During a year, in what intervals is the population less than 20,000? During what intervals is the
population more than 140,000?

Answer
The population is less than 20,000 from December 8 through January 23 and more than 140,000 from May 29 through
August 2

0,±2π
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(x+4) = 3log

2

4
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2
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1

x

(x) =f

−1

1

x

f(x) = 9−x

− −−−−

√

f(x) = +3x+4x

2

x ≥− , (x) =− +

3

2

f

−1

3

2

1

2

4x−7

− −−−−

√
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C(x) = 300+7x
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x = (C)f
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25) In reality, the overall population is most likely increasing or decreasing throughout each year. Let’s reformulate the model as 
, where t is time in months (  represents January 1) and  is population (in thousands).

When is the first time the population reaches 200,000?

For the following problems, consider radioactive dating. A human skeleton is found in an archeological dig. Carbon dating
is implemented to determine how old the skeleton is by using the equation , where  is the percentage of radiocarbon
still present in the material,  is the number of years passed, and  is the decay rate of radiocarbon.

26) If the skeleton is expected to be 2000 years old, what percentage of radiocarbon should be present?

Answer
78.51%

27) Find the inverse of the carbon-dating equation. What does it mean? If there is 25% radiocarbon, how old is the skeleton?
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CHAPTER OVERVIEW

2: Limits
The idea of a limit is central to all of calculus. We begin this chapter by examining why limits are so important. Then, we go on to
describe how to find the limit of a function at a given point. Not all functions have limits at all points, and we discuss what this
means and how we can tell if a function does or does not have a limit at a particular value. This chapter has been created in an
informal, intuitive fashion, but this is not always enough if we need to prove a mathematical statement involving limits. The last
section of this chapter presents the more precise definition of a limit and shows how to prove whether a function has a limit.

2.1: Prelude to Limits
2.2: A Preview of Calculus

2.2E: Exercises for Section 2.1

2.3: The Limit of a Function

2.3E: Exercises for Section 2.2

2.4: The Limit Laws

2.4E: Exercises for Section 2.3

2.5: Continuity

2.5E: Exercises for Section 2.4

2.6: The Precise Definition of a Limit

2.6E: Exercises for Section 2.5

2.7: Chapter 2 Review Exercises

Thumbnail: The function  has infinite limits at . (CC BY; OpenStax)
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2.1: Prelude to Limits
Science fiction writers often imagine spaceships that can travel to far-off planets in distant galaxies. However, back in 1905, Albert
Einstein showed that a limit exists to how fast any object can travel. The problem is that the faster an object moves, the more mass
it attains (in the form of energy), according to the equation

where  is the object’s mass at rest,  is its speed, and  is the speed of light. What is this speed limit? (We explore this problem
further in the chapter)

 Figure :The vision of human exploration by the National
Aeronautics and Space Administration (NASA) to distant parts of the universe illustrates the idea of space travel at high speeds.
But, is there a limit to how fast a spacecraft can go? (credit: NASA)

The idea of a limit is central to all of calculus. We begin this chapter by examining why limits are so important. Then, we go on to
describe how to find the limit of a function at a given point. Not all functions have limits at all points, and we discuss what this
means and how we can tell if a function does or does not have a limit at a particular value. This chapter has been created in an
informal, intuitive fashion, but this is not always enough if we need to prove a mathematical statement involving limits. The last
section of this chapter presents the more precise definition of a limit and shows how to prove whether a function has a limit.

This page titled 2.1: Prelude to Limits is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

2.0: Prelude to Limits by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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2.2: A Preview of Calculus

Describe the tangent problem and how it led to the idea of a derivative.
Explain how the idea of a limit is involved in solving the tangent problem.
Recognize a tangent to a curve at a point as the limit of secant lines.
Identify instantaneous velocity as the limit of average velocity over a small time interval.
Describe the area problem and how it was solved by the integral.
Explain how the idea of a limit is involved in solving the area problem.
Recognize how the ideas of limit, derivative, and integral led to the studies of infinite series and multivariable calculus.

As we embark on our study of calculus, we shall see how its development arose from common solutions to practical problems in
areas such as engineering physics—like the space travel problem posed in the chapter opener. Two key problems led to the initial
formulation of calculus: (1) the tangent problem, or how to determine the slope of a line tangent to a curve at a point; and (2) the
area problem, or how to determine the area under a curve.

The Tangent Problem and Differential Calculus
Rate of change is one of the most critical concepts in calculus. We begin our investigation of rates of change by looking at the

graphs of the three lines , and , shown in Figure .

 Figure :
The rate of change of a linear function is constant in each of these three graphs, with the constant determined by the slope.

As we move from left to right along the graph of , we see that the graph decreases at a constant rate. For every 
unit we move to the right along the -axis, the -coordinate decreases by  units. This rate of change is determined by the slope (

) of the line. Similarly, the slope of  in the function  tells us that for every change in  of  unit there is a corresponding
change in  of  unit. The function  has a slope of zero, indicating that the values of the function remain constant. We
see that the slope of each linear function indicates the rate of change of the function.

Compare the graphs of these three functions with the graph of  (Figure ). The graph of  starts from the
left by decreasing rapidly, then begins to decrease more slowly and level off, and then finally begins to increase—slowly at first,
followed by an increasing rate of increase as it moves toward the right. Unlike a linear function, no single number represents the
rate of change for this function. We quite naturally ask: How do we measure the rate of change of a nonlinear function?

 Learning Objectives

f(x) =−2x−3, g(x) = x+1

1
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2.2.1

f(x) =−2x−3 1
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 Figure : The function  does not have a constant rate of
change.

We can approximate the rate of change of a function  at a point  on its graph by taking another point  on the
graph of , drawing a line through the two points, and calculating the slope of the resulting line. Such a line is called a secant
line. Figure  shows a secant line to a function  at a point .

 Figure : The slope of a secant line through a point 
estimates the rate of change of the function at the point .

We formally define a secant line as follows:

The secant to the function  through the points  and  is the line passing through these points. Its slope is
given by

The accuracy of approximating the rate of change of the function with a secant line depends on how close  is to . As we see in
Figure , if  is closer to , the slope of the secant line is a better measure of the rate of change of  at .

2.2.2 k(x) = x

2

f(x) (a, f(a)) (x, f(x))

f(x)

2.2.3 f(x) (a, f(a))

2.2.3 (a, f(a))

(a, f(a))

 Definition: Secant Line

f(x) (a, f(a)) (x, f(x))

= .m

sec

f(x)−f(a)

x−a

(2.2.1)

x a

2.2.4 x a f(x) a

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25922?pdf


2.2.3 https://stats.libretexts.org/@go/page/25922

 Figure : As  gets closer to , the slope of the secant line becomes a
better approximation to the rate of change of the function  at .

The secant lines themselves approach a line that is called the tangent to the function  at  (Figure ). The slope of the
tangent line to the graph at  measures the rate of change of the function at . This value also represents the derivative of the
function  at , or the rate of change of the function at . This derivative is denoted by . Differential calculus is the field
of calculus concerned with the study of derivatives and their applications.

 Figure : Solving the Tangent Problem: As  approaches , the
secant lines approach the tangent line.

Example  illustrates how to find slopes of secant lines. These slopes estimate the slope of the tangent line or, equivalently, the
rate of change of the function at the point at which the slopes are calculated.

Estimate the slope of the tangent line (rate of change) to  at  by finding slopes of secant lines through 
and each of the following points on the graph of .

a. 

b. 

Solution:

Use the formula for the slope of a secant line (Equation ).

a. 

b. 

The point in part b. is closer to the point , so the slope of  is closer to the slope of the tangent line. A good estimate for
the slope of the tangent would be in the range of  to  (Figure ).

2.2.4 x a

f(x) a

f(x) a 2.2.5

a a

f(x) a a f '(a)

2.2.5 x a

2.2.1

 Example : Finding Slopes of Secant Lines2.2.1

f(x) = x

2

x = 1 (1, 1)

f(x) = x

2

(2, 4)

( , )

3

2

9

4

2.2.1

= = 3m

sec

4−1

2−1

= = = 2.5m

sec

−1

9

4

−1

3

2

5

2

(1, 1) 2.5

2 2.5 2.2.6
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 Figure : The secant lines to  at  through (a) 

 and (b)  provide successively closer approximations to the tangent line to  at .

Estimate the slope of the tangent line (rate of change) to  at  by finding slopes of secant lines through 

and the point  on the graph of .

Answer

We continue our investigation by exploring a related question. Keeping in mind that velocity may be thought of as the rate of
change of position, suppose that we have a function, , that gives the position of an object along a coordinate axis at any given
time . Can we use these same ideas to create a reasonable definition of the instantaneous velocity at a given time  We start
by approximating the instantaneous velocity with an average velocity. First, recall that the speed of an object traveling at a constant
rate is the ratio of the distance traveled to the length of time it has traveled. We define the average velocity of an object over a time
period to be the change in its position divided by the length of the time period.

Let  be the position of an object moving along a coordinate axis at time . The average velocity of the object over a time
interval  where  (or  if  is

As  is chosen closer to , the average velocity becomes closer to the instantaneous velocity. Note that finding the average velocity
of a position function over a time interval is essentially the same as finding the slope of a secant line to a function. Furthermore, to
find the slope of a tangent line at a point , we let the -values approach  in the slope of the secant line. Similarly, to find the
instantaneous velocity at time , we let the -values approach  in the average velocity. This process of letting  or  approach  in
an expression is called taking a limit. Thus, we may define the instantaneous velocity as follows.

For a position function , the instantaneous velocity at a time  is the value that the average velocities approach on
intervals of the form  and  as the values of  become closer to , provided such a value exists.

2.2.6 f(x) = x

2

(1, 1)

(2, 4) ( , )

3

2

9

4

f(x) = x

2

(1, 1)

 Exercise 2.2.1

f(x) = x

2

x = 1 (1, 1)

( , )

5

4

25

16

f(x) = x

2

2.25

s(t)

t t = a?

 Definition: Average Velocity

s(t) t

[a, t] a< t [t, a] t < a)

= .v

ave

s(t)−s(a)

t−a

(2.2.2)

t a

a x a

a t a x t a

 Definition: Instantaneous Velocity

s(t) t = a

[a, t] [t, a] t a
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Example  illustrates this concept of limits and average velocity.

A rock is dropped from a height of 64 ft. It is determined that its height (in feet) above ground t seconds later (for ) is
given by . Find the average velocity of the rock over each of the given time intervals. Use this information
to guess the instantaneous velocity of the rock at time .

a. [ ]
b. [ ]

Solution
Substitute the data into Equation  for the definition of average velocity.

a. 

b. 

The instantaneous velocity is somewhere between −15.84 and −16.16 ft/sec. A good guess might be −16 ft/sec.

An object moves along a coordinate axis so that its position at time  is given by . Estimate its instantaneous velocity
at time  by computing its average velocity over the time interval [ ].

Hint

Use Equation  with .

Answer

12.006001

The Area Problem and Integral Calculus
We now turn our attention to a classic question from calculus. Many quantities in physics—for example, quantities of work—may
be interpreted as the area under a curve. This leads us to ask the question: How can we find the area between the graph of a
function and the -axis over an interval (Figure )?

 Figure : The Area Problem: How do we find the area of the shaded region?

As in the answer to our previous questions on velocity, we first try to approximate the solution. We approximate the area by
dividing up the interval  into smaller intervals in the shape of rectangles. The approximation of the area comes from adding up
the areas of these rectangles (Figure ).

2.2.2

 Example : Finding Average Velocity2.2.2

0 ≤ t ≤ 2

s(t) =−16 +64t

2

t = 0.5

0.49, 0.5

0.5, 0.51

2.2.2

= =−15.84v

ave

s(0.49)−s(0.5)

0.49−0.5

= =−16.016v

ave

s(0.51)−s(0.5)

0.51−0.5

 Exercise 2.2.2

t s(t) = t

3

t = 2 2, 2.001

2.2.2 =v

ave

s(2.001)−s(2)

2.001−2

x 2.2.7

2.2.7

[a, b]

2.2.8
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 Figure : The area of the region under the curve is approximated by summing the areas
of thin rectangles.

As the widths of the rectangles become smaller (approach zero), the sums of the areas of the rectangles approach the area between
the graph of  and the -axis over the interval . Once again, we find ourselves taking a limit. Limits of this type serve as a
basis for the definition of the definite integral. Integral calculus is the study of integrals and their applications.

Estimate the area between the -axis and the graph of  over the interval  by using the three rectangles
shown in Figure .

Figure : The area of the region under the curve of  can be estimated
using rectangles.

Solution
The areas of the three rectangles are 1 unit , 2 unit , and 5 unit . Using these rectangles, our area estimate is 8 unit .

Estimate the area between the -axis and the graph of  over the interval  by using the three rectangles
shown in Figure .

2.2.8

f(x) x [a, b]

 Example : Estimation Using Rectangles2.2.3

x f(x) = +1x

2

[0, 3]

2.2.9

2.2.9 f(x) = +1x

2

2 2 2 2

 Exercise 2.2.3

x f(x) = +1x

2

[0, 3]

2.2.10
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Figure : The area of the region under the curve of  can be estimated
using rectangles.

Hint

Use Example  as a guide

Answer

17 

Other Aspects of Calculus
So far, we have studied functions of one variable only. Such functions can be represented visually using graphs in two dimensions;
however, there is no good reason to restrict our investigation to two dimensions. Suppose, for example, that instead of determining
the velocity of an object moving along a coordinate axis, we want to determine the velocity of a rock fired from a catapult at a
given time, or of an airplane moving in three dimensions. We might want to graph real-value functions of two variables or
determine volumes of solids of the type shown in Figure . These are only a few of the types of questions that can be asked
and answered using multivariable calculus. Informally, multivariable calculus can be characterized as the study of the calculus of
functions of two or more variables. However, before exploring these and other ideas, we must first lay a foundation for the study of
calculus in one variable by exploring the concept of a limit.

 Figure : We can use multivariable calculus to find the volume between a surface
defined by a function of two variables and a plane.

2.2.10 f(x) = +1x

2

2.2.3

unit

2

2.2.11

2.2.11
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Key Concepts
Differential calculus arose from trying to solve the problem of determining the slope of a line tangent to a curve at a point. The
slope of the tangent line indicates the rate of change of the function, also called the derivative. Calculating a derivative requires
finding a limit.
Integral calculus arose from trying to solve the problem of finding the area of a region between the graph of a function and the 

-axis. We can approximate the area by dividing it into thin rectangles and summing the areas of these rectangles. This
summation leads to the value of a function called the integral. The integral is also calculated by finding a limit and, in fact, is
related to the derivative of a function.
Multivariable calculus enables us to solve problems in three-dimensional space, including determining motion in space and
finding volumes of solids.

Key Equations
Slope of a Secant Line

Average Velocity over Interval [a,t]

Glossary

average velocity
the change in an object’s position divided by the length of a time period; the average velocity of an object over a time interval [

] (if  or [ ] if ), with a position given by , that is 

differential calculus
the field of calculus concerned with the study of derivatives and their applications

instantaneous velocity
The instantaneous velocity of an object with a position function that is given by  is the value that the average velocities on
intervals of the form [ ] and [ ] approach as the values of  move closer to , provided such a value exists

integral calculus
the study of integrals and their applications

limit
the process of letting x or t approach a in an expression; the limit of a function  as  approaches  is the value that 
approaches as  approaches 

multivariable calculus
the study of the calculus of functions of two or more variables

secant
A secant line to a function  at  is a line through the point ( ) and another point on the function; the slope of the

secant line is given by 

tangent
A tangent line to the graph of a function at a point ( ) is the line that secant lines through ( ) approach as they are
taken through points on the function with -values that approach ; the slope of the tangent line to a graph at  measures the
rate of change of the function at 

x

=m

sec

f(x)−f(a)

x−a

=v

ave

s(t)−s(a)

t−a

t, a t < a a, t t > a s(t) =v

ave

s(t)−s(a)

t−a

s(t)

t, a a, t t a

f(x) x a f(x)

x a

f(x) a a, f(a)

=m

sec

f(x)−f(a)

x−a

a, f(a) a, f(a)

x a a

a
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2.2E: Exercises for Section 2.1
For exercises 1 - 3 , points  and  are on the graph of the function .

1) [T] Complete the following table with the appropriate values: -coordinate of , the point , and the slope of the secant
line passing through points  and . Round your answer to eight significant digits.

1.1 a. e. i.

1.01 b. f. j.

1.001 c. g. k.

1.0001 d. h. l.

Answer
a. 2.2100000 
b. 2.0201000 
c. 2.0020010 
d. 2.0002000 
e. (1.1000000, 2.2100000) 
f. (1.0100000, 2.0201000) 
g. (1.0010000, 2.0020010) 
h. (1.0001000, 2.0002000) 
i. 2.1000000 
j. 2.0100000 
k. 2.0010000 
l. 2.0001000

2) Use the values in the right column of the table in the preceding exercise to guess the value of the slope of the line tangent to  at 
.

3) Use the value in the preceding exercise to find the equation of the tangent line at point . Graph  and the tangent line.

Answer

For the exercises 4-6, points  and  are on the graph of the function .

4) [T] Complete the following table with the appropriate values: -coordinate of , the point , and the slope of the secant
line passing through points  and . Round your answer to eight significant digits.

1.1 a. e. i.

1.01 b. f. j.

1.001 c. g. k.

1.0001 d. h. l.2

5) Use the values in the right column of the table in the preceding exercise to guess the value of the slope of the tangent line to  at 
.

Answer

P (1, 2) Q(x, y) f(x) = +1x

2

y Q Q(x, y)

P Q

x y Q(x, y) m

sec

f

x = 1

P f(x)

y = 2x

P (1, 1) Q(x, y) f(x) = x

3

y Q Q(x, y)

P Q

x y Q(x, y) m

sec

f

x = 1

3
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6) Use the value in the preceding exercise to find the equation of the tangent line at point . Graph  and the tangent line.

For the exercises 7 - 9, points  and  are on the graph of the function .

7) [T] Complete the following table with the appropriate values: -coordinate of , the point , and the slope of the secant
line passing through points  and . Round your answer to eight significant digits.

4.1 a. e. i.

4.01 b. f. j.

4.001 c. g. k.

4.0001 d. h. l.

Answer
a. 2.0248457 
b. 2.0024984 
c. 2.0002500 
d. 2.0000250 
e. (4.1000000,2.0248457) 
f. (4.0100000,2.0024984) 
g. (4.0010000,2.0002500) 
h. (4.00010000,2.0000250) 
i. 0.24845673 
j. 0.24984395 
k. 0.24998438 
l. 0.24999844

8) Use the values in the right column of the table in the preceding exercise to guess the value of the slope of the tangent line to  at 
.

9) Use the value in the preceding exercise to find the equation of the tangent line at point .

Answer

For exercises 10 - 12, points  and  are on the graph of the function .

10) [T] Complete the following table with the appropriate values: -coordinate of , the point , and the slope of the secant
line passing through points  and . Round your answer to eight significant digits.

1.4 a. e. i.

1.49 b. f. j.

1.499 c. g. k.

1.4999 d. h. l.

11) Use the values in the right column of the table in the preceding exercise to guess the value of the slope of the tangent line to f at
.

Answer

P f(x)

P (4, 2) Q(x, y) f(x) = x

−−

√

y Q Q(x, y)

P Q

x y Q(x, y) m

sec

f

x = 4

P

y = +1

x

4

P (1.5, 0) Q(ϕ, y) f(ϕ) = cos(πϕ)

y Q Q(ϕ, y)

P Q

x y Q(ϕ, y) m

sec

ϕ= 1.5

π
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12) Use the value in the preceding exercise to find the equation of the tangent line at point .

For exercises 13 - 15, points  and  are on the graph of the function .

13) [T] Complete the following table with the appropriate values: -coordinate of , the point , and the slope of the secant
line passing through points  and . Round your answer to eight significant digits.

-1.05 a. e. i.

-1.01 b. f. j.

-1.005 c. g. k.

-1.001 d. h. l.

Answer
a. −0.95238095 
b. −0.99009901 
c. −0.99502488 
d. −0.99900100 
e. (−1;.0500000,−0;.95238095) 
f. (−1;.0100000,−0;.9909901) 
g. (−1;.0050000,−0;.99502488) 
h. (1.0010000,−0;.99900100) 
i. −0.95238095 
j. −0.99009901 
k. −0.99502488 
l. −0.99900100

14) Use the values in the right column of the table in the preceding exercise to guess the value of the slope of the line tangent to 
at .

15) Use the value in the preceding exercise to find the equation of the tangent line at point .

Answer

For exercises 16 - 17, the position function of a ball dropped from the top of a 200-meter tall building is given by 
, where position  is measured in meters and time  is measured in seconds. Round your answer to eight

significant digits.

16) [T] Compute the average velocity of the ball over the given time intervals.

a. [4.99,5]

b. [5,5.01]

c. [4.999,5]

d. [5,5.001]

17) Use the preceding exercise to guess the instantaneous velocity of the ball at  sec.

Answer
 m/sec (velocity of the ball is 49 m/sec downward)

For exercises 18 - 19, consider a stone tossed into the air from ground level with an initial velocity of 15 m/sec. Its height in
meters at time  seconds is .

18) [T] Compute the average velocity of the stone over the given time intervals.

P

P (−1,−1) Q(x, y) f(x) =

1

x

y Q Q(x, y)

P Q

x y Q(x, y) m

sec

f

x =−1

P

y =−x−2

s(t) = 200−4.9t

2

s t

t = 5

−49

t h(t) = 15t−4.9t

2
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a. [1,1.05]

b. [1,1.01]

c. [1,1.005]

d. [1,1.001]

19) Use the preceding exercise to guess the instantaneous velocity of the stone at  sec.

Answer
 m/sec

For exercises 20 - 21, consider a rocket shot into the air that then returns to Earth. The height of the rocket in meters is
given by , where  is measured in seconds.

20) [T] Compute the average velocity of the rocket over the given time intervals.

a. [9,9.01]

b. [8.99,9]

c. [9,9.001]

d. [8.999,9]

21) Use the preceding exercise to guess the instantaneous velocity of the rocket at  sec.

Answer
 m/sec

For exercises, consider an athlete running a 40-m dash. The position of the athlete is given by , where  is the
position in meters and  is the time elapsed, measured in seconds.

22) [T] Compute the average velocity of the runner over the given time intervals.

a. [1.95,2.05]

b. [1.995,2.005]

c. [1.9995,2.0005]

d. [2,2.00001]

23) Use the preceding exercise to guess the instantaneous velocity of the runner at  sec.

Answer
 m/sec

For exercises 24 - 25, consider the function .

24) Sketch the graph of  over the interval [ ] and shade the region above the -axis.

25) Use the preceding exercise to find the exact value of the area between the -axis and the graph of  over the interval [ ]
using rectangles. For the rectangles, use the square units, and approximate both above and below the lines. Use geometry to find
the exact answer.

Answer
Under, 1 ; over: 4 . 
The exact area of the two triangles is .

For exercises 26 - 27, consider the function . (Hint: This is the upper half of a circle of radius 1 positioned
at .)

26) Sketch the graph of f over the interval [ ].

t = 1

5.2

h(t) = 600+78.4t−4.9t

2

t

t = 9

−9.8

d(t) = +4t

t

3

6

d

t

t = 2

6

f(x) = |x|

f −1, 2 x

x f −1, 2

unit

2

unit

2

(1)(1)+ (2)(2) = 2.5unit

1

2

1

2

s

2

f(x) = 1−x

2

− −−−−

√

(0, 0)

−1, 1
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27) Use the preceding exercise to find the exact area between the -axis and the graph of  over the interval [ ] using
rectangles. For the rectangles, use squares 0.4 by 0.4 units, and approximate both above and below the lines. Use geometry to find
the exact answer.

Answer
Under, ; over, ). 

The exact area of the semicircle with radius 1 is 

For exercises 28 - 29, consider the function .

28) Sketch the graph of  over the interval [ ].

29) Approximate the area of the region between the -axis and the graph of  over the interval [ ].

Answer
Approximately 

 

This page titled 2.2E: Exercises for Section 2.1 is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

2.1E: Exercises for Section 2.1 by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
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=
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2
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2.3: The Limit of a Function

Using correct notation, describe the limit of a function.
Use a table of values to estimate the limit of a function or to identify when the limit does not exist.
Use a graph to estimate the limit of a function or to identify when the limit does not exist.
Define one-sided limits and provide examples.
Explain the relationship between one-sided and two-sided limits.
Using correct notation, describe an infinite limit.
Define a vertical asymptote.

The concept of a limit or limiting process, essential to the understanding of calculus, has been around for thousands of years. In
fact, early mathematicians used a limiting process to obtain better and better approximations of areas of circles. Yet, the formal
definition of a limit—as we know and understand it today—did not appear until the late 19th century. We therefore begin our quest
to understand limits, as our mathematical ancestors did, by using an intuitive approach. At the end of this chapter, armed with a
conceptual understanding of limits, we examine the formal definition of a limit.

We begin our exploration of limits by taking a look at the graphs of the functions

,

, and

,

which are shown in Figure . In particular, let’s focus our attention on the behavior of each graph at and around .

Figure : These graphs show the behavior of three different functions around .

Each of the three functions is undefined at , but if we make this statement and no other, we give a very incomplete picture of
how each function behaves in the vicinity of . To express the behavior of each graph in the vicinity of  more completely, we
need to introduce the concept of a limit.

Intuitive Definition of a Limit

Let’s first take a closer look at how the function  behaves around  in Figure . As the values of 
 approach  from either side of , the values of  approach . Mathematically, we say that the limit of  as 

approaches  is . Symbolically, we express this limit as

.

Learning Objectives

f(x) =

−4x

2

x−2

g(x) =

|x−2|

x−2

h(x) =

1

(x−2)

2

2.3.1 x = 2

2.3.1 x = 2

x = 2

x = 2 2

f(x) = ( −4)/(x−2)x

2

x = 2 2.3.1

x 2 2 y = f(x) 4 f(x) x

2 4

f(x) = 4lim

x→2
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From this very brief informal look at one limit, let’s start to develop an intuitive definition of the limit. We can think of the limit of a
function at a number a as being the one real number  that the functional values approach as the -values approach a, provided
such a real number  exists. Stated more carefully, we have the following definition:

Let  be a function defined at all values in an open interval containing , with the possible exception of a itself, and let 
be a real number. If all values of the function  approach the real number  as the values of  approach the number a,
then we say that the limit of  as  approaches  is . (More succinct, as  gets closer to ,  gets closer and stays
close to .) Symbolically, we express this idea as

We can estimate limits by constructing tables of functional values and by looking at their graphs. This process is described in the
following Problem-Solving Strategy.

1. To evaluate , we begin by completing a table of functional values. We should choose two sets of -values—one set

of values approaching  and less than , and another set of values approaching  and greater than . Table  demonstrates
what your tables might look like.

Table 

Use additional values as necessary. Use additional values as necessary.

2. Next, let’s look at the values in each of the  columns and determine whether the values seem to be approaching a single
value as we move down each column. In our columns, we look at the sequence , , , 

, and so on, and , and so on. (Note: Although we have
chosen the -values , and so forth, and these values will probably work nearly
every time, on very rare occasions we may need to modify our choices.)

3. If both columns approach a common -value , we state . We can use the following strategy to confirm the

result obtained from the table or as an alternative method for estimating a limit.

4. Using a graphing calculator or computer software that allows us graph functions, we can plot the function , making sure
the functional values of  for -values near a are in our window. We can use the trace feature to move along the graph of
the function and watch the -value readout as the -values approach a. If the -values approach  as our -values approach 
from both directions, then . We may need to zoom in on our graph and repeat this process several times.

L x

L

Definition (Intuitive): Limit

f(x) a L

f(x) L x(≠ a)

f(x) x a L x a f(x)

L

f(x) =L.lim

x→a

(2.3.1)

Problem-Solving Strategy: Evaluating a Limit Using a Table of Functional Values

f(x)lim

x→a

x

a a a a 2.3.1

2.3.1

x f(x) x f(x)

a−0.1 f(a−0.1) a+0.1 f(a+0.1)

a−0.01 f(a−0.01) a+0.001 f(a+0.001)

a−0.001 f(a−0.001) a+0.0001 f(a+0.001)

a−0.0001 f(a−0.0001) a+0.00001 f(a+0.0001)

f(x)

f(a−0.1) f(a−0.01) f(a−0.001)

f(a−0.0001) f(a+0.1), f(a+0.01), f(a+0.001), f(a+0.0001)

x a±0.1, a±0.01, a±0.001, a±0.0001

y L f(x) =Llim

x→a

f(x)

f(x) x

y x y L x a

f(x) =Llim

x→a
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We apply this Problem-Solving Strategy to compute a limit in Examples  and .

Evaluate  using a table of functional values.

Solution

We have calculated the values of  for the values of  listed in Table .

Table 

-0.1 0.998334166468 0.1 0.998334166468

-0.01 0.999983333417 0.01 0.999983333417

-0.001 0.999999833333 0.001 0.999999833333

-0.0001 0.999999998333 0.0001 0.999999998333

Note: The values in this table were obtained using a calculator and using all the places given in the calculator output.

As we read down each  column, we see that the values in each column appear to be approaching one. Thus, it is fairly

reasonable to conclude that . A calculator-or computer-generated graph of  would be similar to

that shown in Figure , and it confirms our estimate.

Figure : The graph of  confirms the estimate from Table.

Estimating a Limit NumericallyEstimating a Limit Numerically

2.3.1A 2.3.1B

Example : Evaluating a Limit Using a Table of Functional Values2.3.1A

lim

x→0

sinx

x

f(x) =

sinx

x

x 2.3.2

2.3.2

x

sin x

x

x

sin x

x

sinx

x

= 1lim

x→0

sinx

x

f(x) =

sinx

x

2.3.2

2.3.2 f(x) = (sin x)/x
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Evaluate  using a table of functional values.

Solution

As before, we use a table—in this case, Table —to list the values of the function for the given values of .

Table 

3.9 0.251582341869 4.1 0.248456731317

3.99 0.25015644562 4.01 0.24984394501

3.999 0.250015627 4.001 0.249984377

3.9999 0.250001563 4.0001 0.249998438

3.99999 0.25000016 4.00001 0.24999984

After inspecting this table, we see that the functional values less than 4 appear to be decreasing toward 0.25 whereas the

functional values greater than 4 appear to be increasing toward 0.25. We conclude that . We confirm this

estimate using the graph of  shown in Figure .

Figure : The graph of  confirms the estimate from table

Estimate  using a table of functional values. Use a graph to confirm your estimate.

Hint

Use 0.9, 0.99, 0.999, 0.9999, 0.99999 and 1.1, 1.01, 1.001, 1.0001, 1.00001 as your table values.

Answer

At this point, we see from Examples  and  that it may be just as easy, if not easier, to estimate a limit of a function by
inspecting its graph as it is to estimate the limit by using a table of functional values. In Example , we evaluate a limit
exclusively by looking at a graph rather than by using a table of functional values.

Example : Evaluating a Limit Using a Table of Functional Values2.3.1B

lim

x→4

−2x

−−

√

x−4

2.3.3 x

2.3.3

x

−2x

√

x−4

x

−2x

√

x−4

= 0.25lim

x→4

−2x

−−

√

x−4

f(x) =

−2x

−−

√

x−4

2.3.3

2.3.3

−2x

√

x−4

Exercise 2.3.1

lim

x→1

−1

1

x

x−1

=−1lim

x→1

−1

1

x

x−1

2.3.1A 2.3.1b

2.3.2
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For  shown in Figure , evaluate .

Figure : The graph of  includes one value not on a smooth curve.

Solution:

Despite the fact that , as the -values approach  from either side, the  values approach . Therefore, 
. Note that we can determine this limit without even knowing the algebraic expression of the function.

Based on Example , we make the following observation: It is possible for the limit of a function to exist at a point, and for the
function to be defined at this point, but the limit of the function and the value of the function at the point may be different.

Use the graph of  in Figure  to evaluate , if possible.

Find a Limit Given a GraphFind a Limit Given a Graph

Example : Evaluating a Limit Using a Graph2.3.2

g(x) 2.3.4 g(x)lim

x→−1

2.3.4 g(x)

g(−1) = 4 x −1 g(x) 3

g(x) = 3lim

x→−1

2.3.2

Exercise 2.3.2

h(x) 2.3.5 h(x)lim

x→2
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Figure :

Hint

What -value does the function approach as the -values approach ?

Solution

Looking at a table of functional values or looking at the graph of a function provides us with useful insight into the value of the
limit of a function at a given point. However, these techniques rely too much on guesswork. We eventually need to develop
alternative methods of evaluating limits. These new methods are more algebraic in nature and we explore them in the next section;
however, at this point we introduce two special limits that are foundational to the techniques to come.

Let  be a real number and  be a constant.

i. 

ii. 

We can make the following observations about these two limits.

i. For the first limit, observe that as  approaches , so does , because . Consequently, .

ii. For the second limit, consider Table .

Table 

Observe that for all values of  (regardless of whether they are approaching ), the values  remain constant at . We have
no choice but to conclude .

2.3.5

y x 2

h(x) =−1.lim

x→2

Two Important Limits

a c

x = alim

x→a

c = clim

x→a

x a f(x) f(x) = x x = alim

x→a

2.3.4

2.3.4

x f(x) = c x f(x) = c

a−0.1 c a+0.1 c

a−0.01 c a+0.01 c

a−0.001 c a+0.001 c

a−0.0001 c a+0.0001 c

x a f(x) c

c = clim

x→a
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The Existence of a Limit
As we consider the limit in the next example, keep in mind that for the limit of a function to exist at a point, the functional values
must approach a single real-number value at that point. If the functional values do not approach a single value, then the limit does
not exist.

Evaluate  using a table of values.

Solution

Table  lists values for the function  for the given values of .

Table 

-0.1 0.544021110889 0.1 −0.544021110889

-0.01 0.50636564111 0.01 −0.50636564111

-0.001 −0.8268795405312 0.001 0.8268795405312

-0.0001 0.305614388888 0.0001 −0.305614388888

-0.00001 −0.035748797987 0.00001 0.035748797987

-0.000001 0.349993504187 0.000001 −0.349993504187

After examining the table of functional values, we can see that the -values do not seem to approach any one single value. It
appears the limit does not exist. Before drawing this conclusion, let’s take a more systematic approach. Take the following
sequence of -values approaching :

The corresponding -values are

At this point we can indeed conclude that  does not exist. (Mathematicians frequently abbreviate “does not exist”

as DNE. Thus, we would write  DNE.) The graph of  is shown in Figure  and it gives a

clearer picture of the behavior of  as  approaches . You can see that  oscillates ever more wildly between 
 and  as  approaches .

Figure : The graph of  oscillates rapidly between  and  as  approaches .

Example : Evaluating a Limit That Fails to Exist2.3.3

sin(1/x)lim

x→0

2.3.5 sin(1/x) x

2.3.5

x sin(1/x) x sin(1/x)

y

x 0

, , , , , , … .

2

π

2

3π

2

5π

2

7π

2

9π

2

11π

y

1, −1, 1, −1, 1, −1, . . . .

sin(1/x)lim

x→0

sin(1/x)lim

x→0

f(x) = sin(1/x) 2.3.6

sin(1/x) x 0 sin(1/x)

−1 1 x 0

2.3.6 f(x) = sin(1/x) −1 1 x 0
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Use a table of functional values to evaluate , if possible.

Hint

Use -values 1.9, 1.99, 1.999, 1.9999, 1.9999 and 2.1, 2.01, 2.001, 2.0001, 2.00001 in your table.

Answer

 does not exist.

One-Sided Limits
Sometimes indicating that the limit of a function fails to exist at a point does not provide us with enough information about the
behavior of the function at that particular point. To see this, we now revisit the function  introduced at the
beginning of the section (see Figure (b)). As we pick values of  close to ,  does not approach a single value, so the
limit as  approaches  does not exist—that is,  DNE. However, this statement alone does not give us a complete picture

of the behavior of the function around the -value . To provide a more accurate description, we introduce the idea of a one-sided
limit. For all values to the left of  (or the negative side of ), . Thus, as  approaches  from the left,  approaches 

. Mathematically, we say that the limit as  approaches  from the left is . Symbolically, we express this idea as

Similarly, as  approaches  from the right (or from the positive side),  approaches . Symbolically, we express this idea as

We can now present an informal definition of one-sided limits.

We define two types of one-sided limits.

Limit from the left:

Let  be a function defined at all values in an open interval of the form , and let  be a real number. If the values of
the function  approach the real number  as the values of  (where ) approach the number a, then we say that  is
the limit of  as  approaches a from the left. Symbolically, we express this idea as

Exercise 2.3.3

lim

x→2

−4

∣

∣

x

2

∣

∣

x−2

x

lim

x→2

−4

∣

∣

x

2

∣

∣

x−2

Finding a Limit from a Graph: Finding a Limit from a Graph: Does Not Does Not ……

g(x) = |x−2|/(x−2)

2.3.1 x 2 g(x)

x 2 g(x)lim

x→2

x 2

2 2 g(x) =−1 x 2 g(x)

−1 x 2 −1

g(x) =−1.lim

x→2

−

x 2 g(x) 1

g(x) = 1.lim

x→2

+

Definition: One-sided Limits

f(x) (z, a) L

f(x) L x x < a L

f(x) x

f(x) =L.lim

x→a

−

(2.3.2)
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Limit from the right:

Let  be a function defined at all values in an open interval of the form , and let  be a real number. If the values of
the function  approach the real number  as the values of  (where ) approach the number , then we say that  is
the limit of  as  approaches  from the right. Symbolically, we express this idea as

For the function , evaluate each of the following limits.

a. 

b. 

Solution

We can use tables of functional values again. Observe in Table  that for values of  less than , we use  and
for values of  greater than , we use 

Table 

1.9 2.9 2.1 0.41

1.99 2.99 2.01 0.0401

1.999 2.999 2.001 0.004001

1.9999 2.9999 2.0001 0.00040001

1.99999 2.99999 2.00001 0.0000400001

Based on this table, we can conclude that a.  and b. . Therefore, the (two-sided) limit of 

does not exist at . Figure  shows a graph of  and reinforces our conclusion about these limits.

f(x) (a, c) L

f(x) L x x > a a L

f(x) x a

f(x) =L.lim

x→a

+

(2.3.3)

One Sided LimitsOne Sided Limits

Example : Evaluating One-Sided Limits2.3.4

f(x) ={

x+1,

−4,x

2

if x < 2

if x ≥ 2

f(x)lim

x→2

−

f(x)lim

x→2

+

2.3.6 x 2 f(x) = x+1

x 2 f(x) = −4.x

2

2.3.6

x f(x) = x+1 x f(x) = −4x

2

f(x) = 3lim

x→2

−

f(x) = 0lim

x→2

+

f(x)

x = 2 2.3.7 f(x)
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Figure : The graph of  has a break at .

Use a table of functional values to estimate the following limits, if possible.

a. 

b. 

Hint

Use -values 1.9, 1.99, 1.999, 1.9999, 1.9999 to estimate .

Use -values 2.1, 2.01, 2.001, 2.0001, 2.00001 to estimate 

(These tables are available from a previous Checkpoint problem.)

Solution a

a. 

Solution b

Let us now consider the relationship between the limit of a function at a point and the limits from the right and left at that point. It
seems clear that if the limit from the right and the limit from the left have a common value, then that common value is the limit of
the function at that point. Similarly, if the limit from the left and the limit from the right take on different values, the limit of the
function does not exist. These conclusions are summarized in Note.

Let  be a function defined at all values in an open interval containing , with the possible exception of  itself, and let 
be a real number. Then,

2.3.7 f(x) ={

x+1,

−4,x

2

if x < 2

if x ≥ 2

x = 2

Exercise 2.3.4

lim

x→2

−

−4

∣

∣

x

2

∣

∣

x−2

lim

x→2

+

−4

∣

∣

x

2

∣

∣

x−2

x lim

x→2

−

−4

∣

∣

x

2

∣

∣

x−2

x .lim

x→2

+

−4

∣

∣

x

2

∣

∣

x−2

=−4lim

x→2

−

−4

∣

∣

x

2

∣

∣

x−2

= 4lim

x→2

+

−4

∣

∣

x

2

∣

∣

x−2

Relating One-Sided and Two-Sided Limits

f(x) a a L

f(x) =Llim

x→a

(2.3.4)
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if and only if  and .

Infinite Limits
Evaluating the limit of a function at a point or evaluating the limit of a function from the right and left at a point helps us to
characterize the behavior of a function around a given value. As we shall see, we can also describe the behavior of functions that do
not have finite limits.

We now turn our attention to , the third and final function introduced at the beginning of this section (see Figure
(c)). From its graph we see that as the values of  approach , the values of  become larger and larger and,

in fact, become infinite. Mathematically, we say that the limit of  as  approaches  is positive infinity. Symbolically, we
express this idea as

More generally, we define infinite limits as follows:

We define three types of infinite limits.

Infinite limits from the left: Let  be a function defined at all values in an open interval of the form .

i. If the values of  increase without bound as the values of  (where ) approach the number , then we say that
the limit as  approaches  from the left is positive infinity and we write

ii. If the values of  decrease without bound as the values of  (where ) approach the number , then we say
that the limit as  approaches  from the left is negative infinity and we write

Infinite limits from the right: Let  be a function defined at all values in an open interval of the form .

i. If the values of  increase without bound as the values of  (where ) approach the number , then we say that
the limit as  approaches  from the left is positive infinity and we write

ii. If the values of  decrease without bound as the values of  (where ) approach the number , then we say
that the limit as  approaches  from the left is negative infinity and we write

Two-sided infinite limit: Let  be defined for all  in an open interval containing 

i. If the values of  increase without bound as the values of  (where ) approach the number , then we say that
the limit as  approaches  is positive infinity and we write

ii. If the values of  decrease without bound as the values of  (where ) approach the number , then we say
that the limit as  approaches  is negative infinity and we write

It is important to understand that when we write statements such as  or  we are describing the

behavior of the function, as we have just defined it. We are not asserting that a limit exists. For the limit of a function  to exist

f(x) =Llim

x→a

−

f(x) =Llim

x→a

+

h(x) = 1/(x−2)

2

2.3.1 x 2 h(x) = 1/(x−2)

2

h(x) x 2

h(x) =+∞.lim

x→2

Definitions: Infinite Limits

f(x) (b, a)

f(x) x x < a a

x a

f(x) =+∞.lim

x→a

−

(2.3.5)

f(x) x x < a a

x a

f(x) =−∞.lim

x→a

−

(2.3.6)

f(x) (a, c)

f(x) x x > a a

x a

f(x) =+∞.lim

x→a

+

(2.3.7)

f(x) x x > a a

x a

f(x) =−∞.lim

x→a

+

(2.3.8)

f(x) x ≠ a a

f(x) x x ≠ a a

x a

f(x) =+∞.lim

x→a

(2.3.9)

f(x) x x ≠ a a

x a

f(x) =−∞.lim

x→a

(2.3.10)

f(x) =+∞lim

x→a

f(x) =−∞lim

x→a

f(x)
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at , it must approach a real number  as  approaches . That said, if, for example, , we always write 

 rather than  DNE.

Evaluate each of the following limits, if possible. Use a table of functional values and graph  to confirm your
conclusion.

a. 

b. 

c. 

Solution

Begin by constructing a table of functional values.

Table 

-0.1 -10 0.1 10

-0.01 -100 0.01 100

-0.001 -1000 0.001 1000

-0.0001 -10,000 0.0001 10,000

-0.00001 -100,000 0.00001 100,000

-0.000001 -1,000,000 0.000001 1,000,000

a. The values of  decrease without bound as  approaches  from the left. We conclude that

b. The values of  increase without bound as  approaches  from the right. We conclude that

c. Since  and  have different values, we conclude that

The graph of  in Figure  confirms these conclusions.

a L x a f(x) =+∞lim

x→a

f(x) =+∞lim

x→a

f(x)lim

x→a

Example : Recognizing an Infinite Limit2.3.5

f(x) = 1/x

lim

x→0

−

1

x

lim

x→0

+

1

x

lim

x→0

1

x

2.3.7

x

1

x

x

1

x

1/x x 0

=−∞.lim

x→0

−

1

x

1/x x 0

=+∞.lim

x→0

+

1

x

=−∞lim

x→0

−

1

x

=+∞lim

x→0

+

1

x

DNE.lim

x→0

1

x

f(x) = 1/x 2.3.8
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Figure : The graph of  confirms that the limit as  approaches  does not exist.

Evaluate each of the following limits, if possible. Use a table of functional values and graph  to confirm your
conclusion.

a. 

b. 

c. 

Hint

Follow the procedures from Example .

Answer

a. ;

b. ;

c. 

It is useful to point out that functions of the form , where n is a positive integer, have infinite limits as 
 approaches  from either the left or right (Figure ). These limits are summarized in the above definitions.

2.3.8 f(x) = 1/x x 0

Exercise 2.3.5

f(x) = 1/x

2

lim

x→0

−

1

x

2

lim

x→0

+

1

x

2

lim

x→0

1

x

2

2.3.4

=+∞lim

x→0

−

1

x

2

=+∞lim

x→0

+

1

x

2

=+∞lim

x→0

1

x

2

f(x) = 1/(x−a)

n

x a 2.3.9
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Figure : The function  has infinite limits at .

Infinite Limits from Positive Integers

If  is a positive even integer, then

If  is a positive odd integer, then

and

We should also point out that in the graphs of , points on the graph having -coordinates very near to a are very
close to the vertical line . That is, as  approaches , the points on the graph of  are closer to the line . The line 

 is called a vertical asymptote of the graph. We formally define a vertical asymptote as follows:

Let  be a function. If any of the following conditions hold, then the line  is a vertical asymptote of .

2.3.9 f(x) = 1/(x−a)

n

a

n

=+∞.lim

x→a

1

(x−a)

n

(2.3.11)

n

=+∞lim

x→a

+

1

(x−a)

n

(2.3.12)

=−∞.lim

x→a

−

1

(x−a)

n

(2.3.13)

f(x) = 1/(x−a)

n

x

x = a x a f(x) x = a

x = a

Definition: Vertical Asymptotes

f(x) x = a f(x)

f(x) =+∞lim

x→a

−

(2.3.14)

f(x) =−∞lim

x→a

−

(2.3.15)

f(x) =+∞lim

x→a

+

(2.3.16)

f(x) =−∞lim

x→a

+

(2.3.17)

f(x) =+∞lim

x→a

(2.3.18)

f(x) =−∞lim

x→a

(2.3.19)
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Evaluate each of the following limits using Equations , , and  above. Identify any vertical asymptotes of the
function 

a. 

b. 

c. 

Solution

We can use the above equations directly.

a. 

b. 

c. 

The function  has a vertical asymptote of .

Evaluate each of the following limits. Identify any vertical asymptotes of the function .

a. 

b. 

c. 

Answer a

Answer b

Limits with AsymptotesLimits with Asymptotes

Example : Finding a Vertical Asymptote2.3.6

2.3.11 2.3.12 2.3.13

f(x) = 1/(x+3 .)

4

lim

x→−3

−

1

(x+3)

4

lim

x→−3

+

1

(x+3)

4

lim

x→−3

1

(x+3)

4

=+∞lim

x→−3

−

1

(x+3)

4

=+∞lim

x→−3

+

1

(x+3)

4

=+∞lim

x→−3

1

(x+3)

4

f(x) = 1/(x+3)

4

x =−3

Exercise 2.3.6

f(x) =

1

(x−2)

3

lim

x→2

−

1

(x−2)

3

lim

x→2

+

1

(x−2)

3

lim

x→2

1

(x−2)

3

=−∞lim

x→2

−

1

(x−2)

3

=+∞lim

x→2

+

1

(x−2)

3
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Answer c

 DNE. The line  is the vertical asymptote of 

In the next example we put our knowledge of various types of limits to use to analyze the behavior of a function at several different
points.

Use the graph of  in Figure  to determine each of the following values:

a. ; ; 

b. ); ; 

c. ; ; 

d. ; ; 

Figure : The graph shows .

Solution

Using the definitions above and the graph for reference, we arrive at the following values:

a. ; ; 

b. ; ;  is undefined

c. ; ;  DNE; 

d. ; ; ;  is undefined

Evaluate  for  shown here:

lim

x→2

1

(x−2)

3

x = 2 f(x) = 1/(x−2 .)

3

Example : Behavior of a Function at Different Points2.3.7

f(x) 2.3.10

f(x)lim

x→−4

−

f(x)lim

x→−4

+

f(x); f(−4)lim

x→−4

f(xlim

x→−2

−

f(x)lim

x→−2

+

f(x); f(−2)lim

x→−2

f(x)lim

x→1

−

f(x)lim

x→1

+

f(x); f(1)lim

x→1

f(x)lim

x→3

−

f(x)lim

x→3

+

f(x); f(3)lim

x→3

2.3.10 f(x)

f(x) = 0lim

x→−4

−

f(x) = 0lim

x→−4

+

f(x) = 0; f(−4) = 0lim

x→−4

f(x) = 3lim

x→−2

−

f(x) = 3lim

x→−2

+

f(x) = 3; f(−2)lim

x→−2

f(x) = 6lim

x→1

−

f(x) = 3lim

x→1

+

f(x)lim

x→1

f(1) = 6

f(x) =−∞lim

x→3

−

f(x) =−∞lim

x→3

+

f(x) =−∞lim

x→3

f(3)

Exercise 2.3.7

f(x)lim

x→1

f(x)
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Figure . The graph of a piecewise function .

Hint

Compare the limit from the right with the limit from the left.

Answer

 does not exist

In the Chapter opener we mentioned briefly how Albert Einstein showed that a limit exists to how fast any object can travel.
Given Einstein’s equation for the mass of a moving object

what is the value of this bound?

Figure . (Crefit:NASA)

Solution

Our starting point is Einstein’s equation for the mass of a moving object,

where  is the object’s mass at rest,  is its speed, and  is the speed of light. To see how the mass changes at high speeds, we
can graph the ratio of masses  as a function of the ratio of speeds,  (Figure ).

2.3.11 f

f(x)lim

x→1

Example : Einstein’s Equation2.3.8

m = ,

m

0

1−

v

2

c

2

− −−−−

√

2.3.12

m = ,

m

0

1−

v

2

c

2

− −−−−

√

m

0

v c

m/m

0

v/c 2.3.13
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Figure : This graph shows the ratio of masses as a function of the ratio of speeds in Einstein’s equation for the mass of a
moving object.

We can see that as the ratio of speeds approaches 1—that is, as the speed of the object approaches the speed of light—the ratio
of masses increases without bound. In other words, the function has a vertical asymptote at . We can try a few values
of this ratio to test this idea.

Table 

0.99 0.1411 7.089

0.999 0.0447 22.37

0.9999 0.0141 70.7

Thus, according to Table :, if an object with mass 100 kg is traveling at 0.9999c, its mass becomes 7071 kg. Since no
object can have an infinite mass, we conclude that no object can travel at or more than the speed of light.

Key Concepts
A table of values or graph may be used to estimate a limit.
If the limit of a function at a point does not exist, it is still possible that the limits from the left and right at that point may exist.
If the limits of a function from the left and right exist and are equal, then the limit of the function is that common value.
We may use limits to describe infinite behavior of a function at a point.

Key Equations
Intuitive Definition of the Limit

Two Important Limits

One-Sided Limits

Infinite Limits from the Left

Infinite Limits from the Right

Two-Sided Infinite Limits

:  and 

2.3.13

v/c = 1

2.3.8

v/c 1−

v

2

c

2

− −−−−−

√

m/m

o

2.3.8

f(x) =Llim

x→a

x = a c = clim

x→a

lim

x→a

f(x) =L f(x) =Llim

x→a

−

lim

x→a

+

f(x) =+∞ f(x) =−∞lim

x→a

−

lim

x→a

−

f(x) =+∞ f(x) =−∞lim

x→a

+

lim

x→a

+

f(x) =+∞lim

x→a

f(x) =+∞lim

x→a

−

f(x) =+∞lim

x→a

+
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:  and 

Glossary

infinite limit
A function has an infinite limit at a point  if it either increases or decreases without bound as it approaches 

intuitive definition of the limit
If all values of the function  approach the real number  as the values of  approach a,  approaches L

one-sided limit
A one-sided limit of a function is a limit taken from either the left or the right

vertical asymptote
A function has a vertical asymptote at  if the limit as  approaches  from the right or left is infinite

Contributors and Attributions
Template:ContribOpenStaxCalc

This page titled 2.3: The Limit of a Function is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

2.2: The Limit of a Function by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f(x) =−∞lim

x→a

f(x) =−∞lim

x→a

−

f(x) =−∞lim

x→a

+

a a

f(x) L x(≠ a) f(x)

x = a x a
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2.3E: Exercises for Section 2.2

Intuitive Definition of Limits

For exercises 1 - 2, consider the function .

1) [T] Complete the following table for the function. Round your solutions to four decimal places.

0.9 a. 1.1 e.

0.99 b. 1.01 f.

0.999 c. 1.001 g.

0.9999 d. 1.0001 h.

2) What do your results in the preceding exercise indicate about the two-sided limit ? Explain your response.

Answer

 does not exist because .

For exercises 3 - 5, consider the function .

3) [T] Make a table showing the values of  for  and for 
. Round your solutions to five decimal places.

-0.01 a. 0.01 e.

-0.001 b. 0.001 f.

-0.0001 c. 0.0001 g.

-0.00001 d. 0.00001 h.

4) What does the table of values in the preceding exercise indicate about the function ?

Answer
.

5) To which mathematical constant do the values in the preceding exercise appear to be approaching? This is the actual limit here.

In exercises 6 - 8, use the given values to set up a table to evaluate the limits. Round your solutions to eight decimal places.

6) [T] 

-0.1 a. 0.1 e.

-0.01 b. 0.01 f.

-0.001 c. 0.001 g.

-0.0001 d. 0.0001 h.

f(x) =

−1x

2

|x−1|

x f(x) x f(x)

f(x)lim

x→1

f(x)lim

x→1

f(x) =−2 ≠ f(x) = 2lim

x→1

−

lim

x→1

+

f(x) = (1+x)

1/x

f x =−0.01, −0.001, −0.0001, −0.00001

x = 0.01, 0.001, 0.0001, 0.00001

x f(x) x f(x)

f(x) = (1+x)

1/x

(1+x ≈ 2.7183lim

x→0

)

1/x

; ±0.1, ±0.01, ±0.001, ±.0001lim

x→0

sin2x

x

x

sin 2x

x

x

sin 2x

x
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Answer
a. 1.98669331; b. 1.99986667; c. 1.99999867; d. 1.99999999; e. 1.98669331; f. 1.99986667; g. 1.99999867; h.
1.99999999; 

7) [T] 

-0.1 a. 0.1 e.

-0.01 b. 0.01 f.

-0.001 c. 0.001 g.

-0.0001 d. 0.0001 h.

8) Use the preceding two exercises to conjecture (guess) the value of the following limit:  for , a positive real value.

Answer

[T] In exercises 9 - 14, set up a table of values to find the indicated limit. Round to eight significant digits.

9) 

1.9 a. 2.1 e.

1.99 b. 2.01 f.

1.999 c. 2.001 g.

1.9999 d. 2.0001 h.

10) 

0.9 a. 1.1 e.

0.99 b. 1.01 f.

0.999 c. 1.001 g.

0.9999 d. 1.0001 h.

Answer
a. −0.80000000; b. −0.98000000; c. −0.99800000; d. −0.99980000; e. −1.2000000; f. −1.0200000; g. −1.0020000; h.
−1.0002000; 

11) 

= 2lim

x→0

sin2x

x

±0.1, ±0.01, ±0.001, ±0.0001lim

x→0

sin3x

x

x

sin 3x

x

x

sin 3x

x

lim

x→0

sinax

x

a

= alim

x→0

sinax

x

lim

x→2

−4x

2

+x−6x

2

x

−4x

2

+x−6x

2

x

−4x

2

+x−6x

2

(1−2x)lim

x→1

x 1− 2x x 1− 2x

(1−2x) =−1lim

x→1

lim

x→0

5

1−e

1/x
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-0.1 a. 0.1 e.

-0.01 b. 0.01 f.

-0.001 c. 0.001 g.

-0.0001 d. 0.0001 h.

12) 

-0.1 a. 0.1 e.

-0.01 b. 0.01 f.

-0.001 c. 0.001 g.

-0.0001 d. 0.0001 h.

Answer
a. −37.931034; b. −3377.9264; c. −333,777.93; d. −33,337,778; e. −29.032258; f. −3289.0365; g. −332,889.04; h.
−33,328,889 

13) 

0.1 a.

0.01 b.

0.001 c.

0.0001 d.

14) 

1.9 a. 2.1 e.

1.99 b. 2.01 f.

1.999 c. 2.001 g.

1.9999 d. 2.0001 h.

Answer
a. 0.13495277; b. 0.12594300; c. 0.12509381; d. 0.12500938; e. 0.11614402; f. 0.12406794; g. 0.12490631; h.
0.12499063; 

x

x

5

5

1−

1−

e

e

1/x

1/x

x

x

5

5

1−

1−

e

e

1/x

1/x

lim

z→0

z−1

(z+3)z

2

z

z−1

(z+3)z

2

z

z−1

(z+3)z

2

=−∞lim

x→0

z−1

(z+3)z

2

lim

t→0

+

cos t

t

t

cos t

t

lim

x→2

1−

2

x

−4x

2

x

1−

2

x

−4x

2

x

1−

2

x

−4x

2

∴ = 0.1250 =lim

x→2

1−

2

x

−4x

2

1

8
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[T] In exercises 15 - 16, set up a table of values and round to eight significant digits. Based on the table of values, make a
guess about what the limit is. Then, use a calculator to graph the function and determine the limit. Was the conjecture
correct? If not, why does the method of tables fail?

15) 

-0.1 a. 0.1 e.

-0.01 b. 0.01 f.

-0.001 c. 0.001 g.

-0.0001 d. 0.0001 h.

16) 

0.1 a.

0.01 b.

0.001 c.

0.0001 d.

Answer

a. 10.00000; b. 100.00000; c. 1000.0000; d. 10,000.000; 

Guess: ; 

Actual: DNE , since the graph shows the function oscillates wildly between values approaching positive infinity and
values approaching negative infinity, as the value of  approaches  from the positive side.

In exercises 17 - 20, consider the graph of the function  shown here. Which of the statements about  are
true and which are false? Explain why a statement is false.

sin( )lim

θ→0

π

θ

θ

sin( )

π

θ

θ

sin( )

π

θ

cos( )lim

α→0

+

1

α

π

α

a cos( )

1

α

π

α

cos( )=∞lim

α→0

+

1

α

π

α

α 0

y = f(x) y = f(x)
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17) 

18) 

Answer
False; 

19) 

20) 

Answer
False;  DNE since  and .

In exercises 21 - 25, use the following graph of the function  to find the values, if possible. Estimate when necessary.

f(x) = 0lim

x→10

f(x) = 3lim

x→−2

+

f(x) =+∞lim

x→−2

+

f(x) = f(−8)lim

x→−8

f(x) = 5lim

x→6

f(x)lim

x→6

f(x) = 2lim

x→6

−

f(x) = 5lim

x→6

+

y = f(x)
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21) 

22) 

Answer

23) 

24) 

Answer

25) 

In exercises 26 - 29, use the graph of the function  shown here to find the values, if possible. Estimate when
necessary.

26) 

Answer

27) 

28) 

Answer
DNE

29) 

In exercises 30 - 35, use the graph of the function  shown here to find the values, if possible. Estimate when
necessary.

f(x)lim

x→1

−

f(x)lim

x→1

+

2

f(x)lim

x→1

f(x)lim

x→2

1

f(1)

y = f(x)

f(x)lim

x→0

−

1

f(x)lim

x→0

+

f(x)lim

x→0

f(x)lim

x→2

y = f(x)
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30) 

Answer

31) 

32) 

Answer
DNE

33) 

34) 

Answer

35) 

In exercises 36 - 38, use the graph of the function  shown here to find the values, if possible. Estimate when
necessary.

f(x)lim

x→−2

−

0

f(x)lim

x→−2

+

f(x)lim

x→−2

f(x)lim

x→2

−

f(x)lim

x→2

+

2

f(x)lim

x→2

y = g(x)
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36) 

Answer

37) 

38) 

Answer
DNE

In exercises 39 - 41, use the graph of the function  shown here to find the values, if possible. Estimate when
necessary.

39) 

40) 

Answer

g(x)lim

x→0

−

3

g(x)lim

x→0

+

g(x)lim

x→0

y = h(x)

h(x)lim

x→0

−

h(x)lim

x→0

+

0
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41) 

In exercises 42 - 46, use the graph of the function  shown here to find the values, if possible. Estimate when
necessary.

42) 

Answer

43) 

44) 

Answer
DNE

45) 

46) 

Answer

Infinite Limits
In exercises 47 - 51, sketch the graph of a function with the given properties.

47)  is not defined.

48) 

Answer

Answers may vary

h(x)lim

x→0

y = f(x)

f(x)lim

x→0

−

−2

f(x)lim

x→0

+

f(x)lim

x→0

f(x)lim

x→1

f(x)lim

x→2

0

f(x) = 1, f(x) = 3, f(x) = 6, x = 4lim

x→2

lim

x→4

−

lim

x→4

+

f(x) = 0, f(x) =−∞, f(x) =∞, f(x) = f(0), f(0) = 1, f(x) =−∞lim

x→−∞

lim

x→−1

−

lim

x→−1

+

lim

x→0

lim

x→∞
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49) 

50) 

Answer

Answer may vary

51) 

52) Shock waves arise in many physical applications, ranging from supernovas to detonation waves. A graph of the density of a
shock wave with respect to distance, , is shown here. We are mainly interested in the location of the front of the shock, labeled 

 in the diagram.

f(x) = 2, f(x) =−∞, f(x) =∞, f(x) = 2, f(0) =−lim

x→−∞

lim

x→3

−

lim

x→3

+

lim

x→∞

1

3

f(x) = 2, f(x) =−∞, f(x) = 2, f(0) = 0lim

x→−∞

lim

x→−2

lim

x→∞

f(x) = 0, f(x) =∞, f(x) =−∞, f(0) =−1, f(x) =−∞, f(x) =∞,lim

x→−∞

lim

x→−1

−

lim

x→−1

+

lim

x→1

−

lim

x→1

+

f(x) = 0lim

x→∞

x

X

SF
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a. Evaluate .

b. Evaluate .

c. Evaluate . Explain the physical meanings behind your answers.

Answer
a.  b.  c. DNE unless . As you approach  from the right, you are in the high-density area of the shock.
When you approach from the left, you have not experienced the “shock” yet and are at a lower density.

53) A track coach uses a camera with a fast shutter to estimate the position of a runner with respect to time. A table of the values of
position of the athlete versus time is given here, where  is the position in meters of the runner and  is time in seconds. What is 

? What does it mean physically?

1.75 4.5

1.95 6.1

1.99 6.42

2.01 6.58

2.05 6.9

2.25 8.5

This page titled 2.3E: Exercises for Section 2.2 is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

2.2E: Exercises for Section 2.2 by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

ρ(x)lim

x→X

+

SF

ρ(x)lim

x→X

−

SF

ρ(x)lim

x→X

SF

ρ

2

ρ

1

=ρ

1

ρ

2

X

SF

x t

x(t)lim

t→2

t(sec) x(m)
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2.4: The Limit Laws
conjugate

Recognize the basic limit laws.
Use the limit laws to evaluate the limit of a function.
Evaluate the limit of a function by factoring.
Use the limit laws to evaluate the limit of a polynomial or rational function.
Evaluate the limit of a function by factoring or by using conjugates.
Evaluate the limit of a function by using the squeeze theorem.

In the previous section, we evaluated limits by looking at graphs or by constructing a table of values. In this section, we establish
laws for calculating limits and learn how to apply these laws. In the Student Project at the end of this section, you have the
opportunity to apply these limit laws to derive the formula for the area of a circle by adapting a method devised by the Greek
mathematician Archimedes. We begin by restating two useful limit results from the previous section. These two results, together
with the limit laws, serve as a foundation for calculating many limits.

Evaluating Limits with the Limit Laws

The first two limit laws were stated previosuly and we repeat them here. These basic results, together with the other limit laws,
allow us to evaluate limits of many algebraic functions.

For any real number  and any constant ,

I. 

II. 

Evaluate each of the following limits using Note.

a. 

b. 

Solution

a. The limit of  as  approaches  is a: .

b. The limit of a constant is that constant: .

We now take a look at the limit laws, the individual properties of limits. The proofs that these laws hold are omitted here.

Let  and  be defined for all  over some open interval containing . Assume that  and  are real numbers such
that  and . Let  be a constant. Then, each of the following statements holds:

Sum law for limits:

Difference law for limits:

Learning Objectives

Basic Limit Results

a c

x = alim

x→a

c = clim

x→a

Example : Evaluating a Basic Limit2.4.1

xlim

x→2

5lim

x→2

x x a x = 2lim

x→2

5 = 5lim

x→2

Limit Laws

f(x) g(x) x ≠ a a L M

f(x) =Llim

x→a

g(x) =Mlim

x→a

c

(f(x)+g(x)) = f(x)+ g(x) =L+Mlim

x→a

lim

x→a

lim

x→a

(2.4.1)

(f(x)−g(x)) = f(x)− g(x) =L−Mlim

x→a

lim

x→a

lim

x→a

(2.4.2)
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Constant multiple law for limits:

Product law for limits:

Quotient law for limits:

for .

Power law for limits:

for every positive integer .

Root law for limits:

for all  if  is odd and for  if  is even.

We now practice applying these limit laws to evaluate a limit.

Use the limit laws to evaluate

Solution

Let’s apply the limit laws one step at a time to be sure we understand how they work. We need to keep in mind the requirement
that, at each application of a limit law, the new limits must exist for the limit law to be applied.

Use the limit laws to evaluate

Solution

To find this limit, we need to apply the limit laws several times. Again, we need to keep in mind that as we rewrite the limit in
terms of other limits, each new limit must exist for the limit law to be applied.

cf(x) = c ⋅ f(x) = cLlim

x→a

lim

x→a

(2.4.3)

(f(x) ⋅ g(x)) = f(x) ⋅ g(x) =L ⋅Mlim

x→a

lim

x→a

lim

x→a

(2.4.4)

= =lim

x→a

f(x)

g(x)

f(x)lim

x→a

g(x)lim

x→a

L

M

(2.4.5)

M ≠ 0

(f(x) = ( f(x) =lim

x→a

)

n

lim

x→a

)

n

L

n

(2.4.6)

n

= =lim

x→a

f(x)

− −−−

√

n

f(x)lim

x→a

− −−−−−−

√

n

L

−−

√

n

(2.4.7)

L n L ≥ 0 n

Example : Evaluating a Limit Using Limit Laws2.4.2A

(4x+2).lim

x→−3

(4x+2)lim

x→−3

= 4x+ 2lim

x→−3

lim

x→−3

= 4 ⋅ x+ 2lim

x→−3

lim

x→−3

= 4 ⋅ (−3) +2 = −10.

Apply the sum law.

Apply the constant multiple law.

Apply the basic limit results and simplify.

Example : Using Limit Laws Repeatedly2.4.2B

.lim

x→2

2 −3x+1x

2

+4x

3
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Use the limit laws to evaluate . In each step, indicate the limit law applied.

Hint

Begin by applying the product law.

Answer

Limits of Polynomial and Rational Functions

By now you have probably noticed that, in each of the previous examples, it has been the case that . This is not

always true, but it does hold for all polynomials for any choice of  and for all rational functions at all values of  for which the
rational function is defined.

Let  and  be polynomial functions. Let  be a real number. Then,

when .

To see that this theorem holds, consider the polynomial

By applying the sum, constant multiple, and power laws, we end up with

It now follows from the quotient law that if  and  are polynomials for which ,

then

lim

x→2

2 −3x+1x

2

+4x

3

=

(2 −3x+1)lim

x→2

x

2

( +4)lim

x→2

x

3

=

2 ⋅ −3 ⋅ x+ 1lim

x→2

x

2

lim

x→2

lim

x→2

+ 4lim

x→2

x

3

lim

x→2

=

2 ⋅ −3 ⋅ x+ 1( x)lim

x→2

2

lim

x→2

lim

x→2

+ 4( x)lim

x→2

3

lim

x→2

= = .

2(4) −3(2) +1

(2 +4)

3

1

4

Apply the quotient law, make sure that (2 +4 ≠ 0.)

3

Apply the sum law and constant multiple law.

Apply the power law.

Apply the basic limit laws and simplify.

Exercise 2.4.2

(2x−1)lim

x→6

x+4

− −−−−

√

11 10

−−

√

f(x) = f(a)lim

x→a

a a

Limits of Polynomial and Rational Functions

p(x) q(x) a

p(x) = p(a)lim

x→a

(2.4.8)

=lim

x→a

p(x)

q(x)

p(a)

q(a)

(2.4.9)

q(a) ≠ 0

p(x) = + +⋯ + x+ .c

n

x

n

c

n−1

x

n−1

c

1

c

0

(2.4.10)

p(x)lim

x→a

= ( + +⋯ + x+ )lim

x→a

c

n

x

n

c

n−1

x

n−1

c

1

c

0

= + +⋯ + ( x)+c

n

( x)lim

x→a

n

c

n−1

( x)lim

x→a

n−1

c

1

lim

x→a

lim

x→a

c

0

= + +⋯ + a+c

n

a

n

c

n−1

a

n−1

c

1

c

0

= p(a)

p(x) q(x) q(a) ≠ 0
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Evaluate the .

Solution

Since 3 is in the domain of the rational function , we can calculate the limit by substituting 3 for  into

the function. Thus,

Evaluate .

Hint

Use LIMITS OF POLYNOMIAL AND RATIONAL FUNCTIONS as reference

Answer

−13

Additional Limit Evaluation Techniques

As we have seen, we may evaluate easily the limits of polynomials and limits of some (but not all) rational functions by direct
substitution. However, as we saw in the introductory section on limits, it is certainly possible for  to exist when  is

undefined. The following observation allows us to evaluate many limits of this type:

If for all  over some open interval containing , then

To understand this idea better, consider the limit .

The function

and the function  are identical for all values of . The graphs of these two functions are shown in Figure .

= .lim

x→a

p(x)

q(x)

p(a)

q(a)

(2.4.11)

Example : Evaluating a Limit of a Rational Function2.4.3

lim

x→3

2 −3x+1x

2

5x+4

f(x) =

2 −3x+1x

2

5x+4

x

= .lim

x→3

2 −3x+1x

2

5x+4

10

19

Exercise 2.4.3

(3 −2x+7)lim

x→−2

x

3

f(x)lim

x→a

f(a)

x ≠ a, f(x) = g(x) a

f(x) = g(x).lim

x→a

lim

x→a

(2.4.12)

lim

x→1

−1x

2

x−1

f(x) = =

−1x

2

x−1

(x−1)(x+1)

x−1

g(x) = x+1 x ≠ 1 2.4.1
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Figure : The graphs of  and  are identical for all . Their limits at 1 are equal.

We see that

The limit has the form , where  and . (In this case, we say that  has the

indeterminate form .) The following Problem-Solving Strategy provides a general outline for evaluating limits of this type.

1. First, we need to make sure that our function has the appropriate form and cannot be evaluated immediately using the limit
laws.

2. We then need to find a function that is equal to  for all  over some interval containing a. To do
this, we may need to try one or more of the following steps:
a. If  and  are polynomials, we should factor each function and cancel out any common factors.
b. If the numerator or denominator contains a difference involving a square root, we should try multiplying the numerator

and denominator by the conjugate of the expression involving the square root.
c. If  is a complex fraction, we begin by simplifying it.

3. Last, we apply the limit laws.

The next examples demonstrate the use of this Problem-Solving Strategy. Example  illustrates the factor-and-cancel
technique; Example  shows multiplying by a conjugate. In Example , we look at simplifying a complex fraction.

2.4.1 f(x) g(x) x ≠ 1

= = (x+1) = 2.lim

x→1

−1x

2

x−1

lim

x→1

(x−1)(x+1)

x−1

lim

x→1

f(x)g(x)lim

x→a

f(x) = 0lim

x→a

g(x) = 0lim

x→a

f(x)/g(x)

0/0

Problem-Solving Strategy: Calculating a Limit When  has the Indeterminate Form f(x)/g(x) 0/0

h(x) = f(x)/g(x) x ≠ a

f(x) g(x)

f(x)/g(x)

2.4.4

2.4.5 2.4.6

Limits and FactoringLimits and Factoring
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Evaluate .

Solution

Step 1. The function  is undefined for . In fact, if we substitute 3 into the function we get ,

which is undefined. Factoring and canceling is a good strategy:

Step 2. For all . Therefore,

Step 3. Evaluate using the limit laws:

Evaluate .

Hint

Follow the steps in the Problem-Solving Strategy

Answer

Evaluate .

Solution

Example : Evaluating a Limit by Factoring and Canceling2.4.4

lim

x→3

−3xx

2

2 −5x−3x

2

f(x) =

−3xx

2

2 −5x−3x

2

x = 3 0/0

=lim

x→3

−3xx

2

2 −5x−3x

2

lim

x→3

x(x−3)

(x−3)(2x+1)

x ≠ 3, =

−3xx

2

2 −5x−3x

2

x

2x+1

= .lim

x→3

x(x−3)

(x−3)(2x+1)

lim

x→3

x

2x+1

= .lim

x→3

x

2x+1

3

7

Exercise 2.4.4

lim

x→−3

+4x+3x

2

−9x

2

1

3

Using a Conjugate Root to Find a LimitUsing a Conjugate Root to Find a Limit

Example : Evaluating a Limit by Multiplying by a Conjugate2.4.5

lim

x→−1

−1x+2

− −−−−

√

x+1
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Step 1.  has the form  at −1. Let’s begin by multiplying by , the conjugate of , on the

numerator and denominator:

Step 2. We then multiply out the numerator. We don’t multiply out the denominator because we are hoping that the  in
the denominator cancels out in the end:

Step 3. Then we cancel:

Step 4. Last, we apply the limit laws:

Evaluate .

Hint

Follow the steps in the Problem-Solving Strategy

Answer

Evaluate .

Solution

Step 1.  has the form  at 1. We simplify the algebraic fraction by multiplying by :

Step 2. Next, we multiply through the numerators. Do not multiply the denominators because we want to be able to cancel the
factor :

Step 3. Then, we simplify the numerator:

−1x+2

− −−−−

√

x+1

0/0 +1x+2

− −−−−

√ −1x+2

− −−−−

√

= ⋅ .lim

x→−1

−1x+2

− −−−−

√

x+1

lim

x→−1

−1x+2

− −−−−

√

x+1

+1x+2

− −−−−

√

+1x+2

− −−−−

√

(x+1)

= .lim

x→−1

x+1

(x+1)( +1)x+2

− −−−−

√

= .lim

x→−1

1

+1x+2

− −−−−

√

= .lim

x→−1

1

+1x+2

− −−−−

√

1

2

Exercise 2.4.5

lim

x→5

−2x−1

− −−−−

√

x−5

1

4

Example : Evaluating a Limit by Simplifying a Complex Fraction2.4.6

lim

x→1

−

1

x+1

1

2

x−1

−

1

x+1

1

2

x−1

0/0 2(x+1)/2(x+1)

= ⋅ .lim

x→1

−

1

x+1

1

2

x−1

lim

x→1

−

1

x+1

1

2

x−1

2(x+1)

2(x+1)

(x−1)

= .lim

x→1

2−(x+1)

2(x−1)(x+1)

= .lim

x→1

−x+1

2(x−1)(x+1)
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Step 4. Now we factor out −1 from the numerator:

Step 5. Then, we cancel the common factors of :

Step 6. Last, we evaluate using the limit laws:

Evaluate .

Hint

Follow the steps in the Problem-Solving Strategy and

Answer

−1

Example does not fall neatly into any of the patterns established in the previous examples. However, with a little creativity, we can
still use these same techniques.

Evaluate .

Solution:

Both  and  fail to have a limit at zero. Since neither of the two functions has a limit at zero, we cannot apply the
sum law for limits; we must use a different strategy. In this case, we find the limit by performing addition and then applying
one of our previous strategies. Observe that

Thus,

Evaluate .

Hint

Use the same technique as Example . Don’t forget to factor  before getting a common denominator.

Answer

= .lim

x→1

−(x−1)

2(x−1)(x+1)

(x−1)

= .lim

x→1

−1

2(x+1)

=− .lim

x→1

−1

2(x+1)

1

4

Exercise 2.4.6

lim

x→−3

+1

1

x+2

x+3

Example : Evaluating a Limit When the Limit Laws Do Not Apply2.4.7

( + )lim

x→0

1

x

5

x(x−5)

1/x 5/x(x−5)

+ = = .

1

x

5

x(x−5)

x−5+5

x(x−5)

x

x(x−5)

( + ) = = =− .lim

x→0

1

x

5

x(x−5)

lim

x→0

x

x(x−5)

lim

x→0

1

x−5

1

5

Exercise 2.4.7

( − )lim

x→3

1

x−3

4

−2x−3x

2

2.4.7 −2x−3x

2
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Let’s now revisit one-sided limits. Simple modifications in the limit laws allow us to apply them to one-sided limits. For example,
to apply the limit laws to a limit of the form , we require the function  to be defined over an open interval of the

form ; for a limit of the form , we require the function  to be defined over an open interval of the form .

Example  illustrates this point.

Evaluate each of the following limits, if possible.

a. 

b. 

Solution

Figure illustrates the function  and aids in our understanding of these limits.

Figure : The graph shows the function .

a. The function  is defined over the interval . Since this function is not defined to the left of 3, we
cannot apply the limit laws to compute . In fact, since  is undefined to the left of 3, 

does not exist.

b. Since  is defined to the right of 3, the limit laws do apply to . By applying these limit laws we

obtain .

In Example  we look at one-sided limits of a piecewise-defined function and use these limits to draw a conclusion about a
two-sided limit of the same function.

For , evaluate each of the following limits:

a. 

b. 

c. 

Solution

Figure illustrates the function  and aids in our understanding of these limits.

1

4

h(x)lim

x→a

−

h(x)

(b, a) h(x)lim

x→a

+

h(x) (a, c)

2.4.8A

Example : Evaluating a One-Sided Limit Using the Limit Laws2.4.8A

lim

x→3

−

x−3

− −−−−

√

lim

x→3

+

x−3

− −−−−

√

f(x) = x−3

− −−−−

√

2.4.2 f(x) = x−3

− −−−−

√

f(x) = x−3

− −−−−

√ [3,+∞)

lim

x→3

−

x−3

− −−−−

√ f(x) = x−3

− −−−−

√ lim

x→3

−

x−3

− −−−−

√

f(x) = x−3

− −−−−

√ lim

x→3

+

x−3

− −−−−

√

= 0lim

x→3

+

x−3

− −−−−

√

2.4.8B

Example : Evaluating a Two-Sided Limit Using the Limit Laws2.4.8B

f(x) ={

4x−3,

(x−3 ,)

2

if x < 2

if x ≥ 2

f(x)lim

x→2

−

f(x)lim

x→2

+

f(x)lim

x→2

f(x)
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Figure : This graph shows a function .

a. Since  for all  in , replace  in the limit with  and apply the limit laws:

b. Since for all  in , replace  in the limit with  and apply the limit laws:

c. Since  and , we conclude that  does not exist.

Graph  and evaluate .

Hint

Use the method in Example  to evaluate the limit.

Answer

We now turn our attention to evaluating a limit of the form , where , where  and .

That is,  has the form  at a.

2.4.3 f(x)

f(x) = 4x−3 x (−∞, 2) f(x) 4x−3

f(x) = (4x−3) = 5lim

x→2

−

lim

x→2

−

f(x) = (x−3)

2

x (2, +∞) f(x) (x−3)

2

f(x) = (x−3 = 1.lim

x→2

+

lim

x→2

−

)

2

f(x) = 5lim

x→2

−

f(x) = 1lim

x→2

+

f(x)lim

x→2

Exercise 2.4.8

f(x) =

⎧

⎩

⎨

−x−2,

2,

,x

3

if x <−1

if x =−1

if x >−1

f(x)lim

x→−1

−

2.4.8B

f(x) =−1lim

x→−1

−

lim

x→a

f(x)

g(x)

f(x) =Klim

x→a

K ≠ 0 g(x) = 0lim

x→a

f(x)/g(x) K/0,K ≠ 0
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Evaluate .

Solution

Step 1. After substituting in , we see that this limit has the form . That is, as  approaches  from the left, the

numerator approaches ; and the denominator approaches . Consequently, the magnitude of  becomes infinite. To

get a better idea of what the limit is, we need to factor the denominator:

Step 2. Since  is the only part of the denominator that is zero when 2 is substituted, we then separate  from the
rest of the function:

Step 3. Using the Limit Laws, we can write:

Step 4.  and . Therefore, the product of  and  has a limit of :

Evaluate .

Solution

Use the methods from Example .

Answer

The Squeeze Theorem

The techniques we have developed thus far work very well for algebraic functions, but we are still unable to evaluate limits of very
basic trigonometric functions. The next theorem, called the squeeze theorem, proves very useful for establishing basic
trigonometric limits. This theorem allows us to calculate limits by “squeezing” a function, with a limit at a point a that is unknown,
between two functions having a common known limit at . Figure  illustrates this idea.

Example : Evaluating a Limit of the Form  Using the Limit Laws2.4.9 K/0, K≠ 0

lim

x→2

−

x−3

−2xx

2

x = 2 −1/0 x 2

−1 0

x−3

x(x−2)

=lim

x→2

−

x−3

−2xx

2

lim

x→2

−

x−3

x(x−2)

x−2 1/(x−2)

= ⋅lim

x→2

−

x−3

x

1

x−2

=( ) ⋅( ) .lim

x→2

−

x−3

x

lim

x→2

−

1

x−2

=−lim

x→2

−

x−3

x

1

2

=−∞lim

x→2

−

1

x−2

(x−3)/x 1/(x−2) +∞

=+∞.lim

x→2

−

x−3

−2xx

2

Exercise 2.4.9

lim

x→1

x+2

(x−1)

2

2.4.9

+∞

a 2.4.4
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Figure : The Squeeze Theorem applies when  and .

Let , and  be defined for all  over an open interval containing . If

for all  in an open interval containing  and

where  is a real number, then 

Apply the squeeze theorem to evaluate .

Solution

Because  for all , we have  for  and  for  (if  is negative
the direction of the inequalities changes when we multiply). Since , from the squeeze theorem, we

obtain . The graphs of , and  are shown in Figure .

Figure : The graphs of , and  are shown around the point .

2.4.4 f(x) ≤ g(x) ≤ h(x) f(x) = h(x)lim

x→a

lim

x→a

The Squeeze Theorem

f(x), g(x) h(x) x ≠ a a

f(x) ≤ g(x) ≤ h(x) (2.4.13)

x ≠ a a

f(x) =L= h(x)lim

x→a

lim

x→a

(2.4.14)

L g(x) =L.lim

x→a

Example : Applying the Squeeze Theorem2.4.10

x cosxlim

x→0

−1 ≤ cosx ≤ 1 x −x ≤ x cosx ≤ x x ≥ 0 −x ≥ x cosx ≥ x x ≤ 0 x

(−x) = 0 = xlim

x→0

lim

x→0

x cosx = 0lim

x→0

f(x) =−x, g(x) = x cosx h(x) = x 2.4.5

2.4.5 f(x), g(x) h(x) x = 0
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Use the squeeze theorem to evaluate .

Hint

Use the fact that  to help you find two functions such that  is squeezed between them.

Answer

0

We now use the squeeze theorem to tackle several very important limits. Although this discussion is somewhat lengthy, these limits
prove invaluable for the development of the material in both the next section and the next chapter. The first of these limits is 

. Consider the unit circle shown in Figure . In the figure, we see that  is the -coordinate on the unit circle and it

corresponds to the line segment shown in blue. The radian measure of angle  is the length of the arc it subtends on the unit circle.

Therefore, we see that for .

Figure : The sine function is shown as a line on the unit circle.

Because  and , by using the squeeze theorem we conclude that

To see that  as well, observe that for  and hence, . Consequently, 

. It follows that . An application of the squeeze theorem produces the desired limit. Thus, since 
 and ,

Next, using the identity  for , we see that

We now take a look at a limit that plays an important role in later chapters—namely, . To evaluate this limit, we use the

unit circle in Figure . Notice that this figure adds one additional triangle to Figure . We see that the length of the side
opposite angle  in this new triangle is . Thus, we see that for , .

Exercise 2.4.10

sinlim

x→0

x

2

1

x

− ≤ sin(1/x) ≤x

2

x

2

x

2

sin(1/x)x

2

sinθlim

θ→0

2.4.6 sinθ y

θ

0 < θ< , 0 < sinθ< θ

π

2

2.4.6

0 = 0lim

θ→0

+

θ= 0lim

x→0

+

sinθ= 0.lim

θ→0

+

sinθ= 0lim

θ→0

−

− < θ< 0, 0 <−θ<

π

2

π

2

0 < sin(−θ) <−θ

0 <−sinθ<−θ 0 > sinθ> θ

sinθ= 0lim

θ→0

+

sinθ= 0lim

θ→0

−

sinθ= 0lim

θ→0

cosθ= 1− θsin

2

− −−−−−−−

√

− < θ<

π

2

π

2

cosθ= = 1.lim

θ→0

lim

θ→0

1− θsin

2

− −−−−−−−

√

lim

θ→0

sinθ

θ

2.4.6 2.4.7

θ tanθ 0 < θ<

π

2

sinθ< θ< tanθ
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Figure : The sine and tangent functions are shown as lines on the unit circle.

By dividing by  in all parts of the inequality, we obtain

Equivalently, we have

Since , we conclude that . By applying a manipulation similar to that used in

demonstrating that , we can show that . Thus,

In Example , we use this limit to establish . This limit also proves useful in later chapters.

2.4.7

sinθ

1 < < .

θ

sinθ

1

cosθ

1 > > cosθ.

sinθ

θ

1 = 1 = cosθlim

θ→0

+

lim

θ→0

+

= 1lim

θ→0

+

sinθ

θ

sinθ= 0lim

θ→0

−

= 1lim

θ→0

−

sinθ

θ

= 1.lim

θ→0

sinθ

θ

(2.4.15)

Limits with Trigonometric FunctionsLimits with Trigonometric Functions

2.4.11 = 0lim

θ→0

1−cosθ

θ
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Evaluate .

Solution

In the first step, we multiply by the conjugate so that we can use a trigonometric identity to convert the cosine in the numerator
to a sine:

Therefore,

Evaluate .

Hint

Multiply numerator and denominator by .

Answer

0

Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the methods
of calculus. The Greek mathematician Archimedes (ca. 287−212; BCE) was particularly inventive, using polygons inscribed
within circles to approximate the area of the circle as the number of sides of the polygon increased. He never came up with the
idea of a limit, but we can use this idea to see what his geometric constructions could have predicted about the limit.

We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular polygon as
being made up of  triangles. By taking the limit as the vertex angle of these triangles goes to zero, you can obtain the area of
the circle. To see this, carry out the following steps:

1.Express the height  and the base  of the isosceles triangle in Figure  in terms of  and .

Example : Evaluating an Important Trigonometric Limit2.4.11

lim

θ→0

1−cosθ

θ

lim

θ→0

1−cosθ

θ

= ⋅lim

θ→0

1−cosθ

θ

1+cosθ

1+cosθ

= lim

θ→0

1− θcos

2

θ(1+cosθ)

= lim

θ→0

θsin

2

θ(1+cosθ)

= ⋅lim

θ→0

sinθ

θ

sinθ

1+cosθ

=( ) ⋅( )lim

θ→0

sinθ

θ

lim

θ→0

sinθ

1+cosθ

= 1 ⋅ = 0.

0

2

= 0.lim

θ→0

1−cosθ

θ

(2.4.16)

Exercise 2.4.11

lim

θ→0

1−cosθ

sinθ

1+cosθ

Deriving the Formula for the Area of a Circle

n

h b 2.4.6 θ r
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Figure 

2. Using the expressions that you obtained in step 1, express the area of the isosceles triangle in terms of  and .

(Substitute  for  in your expression.)

3. If an -sided regular polygon is inscribed in a circle of radius , find a relationship between  and . Solve this for .
Keep in mind there are  radians in a circle. (Use radians, not degrees.)

4. Find an expression for the area of the -sided polygon in terms of  and .

5. To find a formula for the area of the circle, find the limit of the expression in step 4 as  goes to zero. (Hint: 

.

The technique of estimating areas of regions by using polygons is revisited in Introduction to Integration.

Key Concepts
The limit laws allow us to evaluate limits of functions without having to go through step-by-step processes each time.
For polynomials and rational functions,

You can evaluate the limit of a function by factoring and canceling, by multiplying by a conjugate, or by simplifying a complex
fraction.
The squeeze theorem allows you to find the limit of a function if the function is always greater than one function and less than
another function with limits that are known.

Key Equations
Basic Limit Results

Important Limits

2.4.8

θ r

sinθ

1

2

sin( ) cos( )

θ

2

θ

2

n r θ n n

2π

n r θ

θ

= 1)lim

θ→0

sinθ

θ

f(x) = f(a).lim

x→a

(2.4.17)

x = a c = clim

x→a

lim

x→a

sinθ= 0lim

θ→0

cosθ= 1lim

θ→0

= 1lim

θ→0

sinθ

θ

= 0lim

θ→0

1−cosθ

θ
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Glossary

constant multiple law for limits
the limit law

difference law for limits
the limit law

limit laws
the individual properties of limits; for each of the individual laws, let  and  be defined for all  over some open
interval containing a; assume that L and M are real numbers so that  and ; let c be a
constant

power law for limits
the limit law

for every positive integer n

product law for limits
the limit law

quotient law for limits

the limit law  for M≠0

root law for limits
the limit law  for all L if n is odd and for  if n is even

squeeze theorem
states that if  for all  over an open interval containing a and 
where L is a real number, then 

sum law for limits
The limit law 
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cf(x) = c ⋅ f(x) = cLlim

x→a

lim

x→a

(f(x)−g(x)) = f(x)− g(x) =L−Mlim

x→a

lim

x→a

lim

x→a

f(x) g(x) x ≠ a

f(x) =Llim

x→a

g(x) =Mlim

x→a

(f(x) = ( f(x) =lim

x→a

)

n

lim

x→a

)

n

L

n

(f(x) ⋅ g(x)) = f(x) ⋅ g(x) =L ⋅Mlim

x→a

lim

x→a

lim

x→a

= =lim

x→a

f(x)

g(x)

f(x)lim

x→a

g(x)lim

x→a

L

M

= =lim

x→a

f(x)

− −−−

√

n

f(x)lim

x→a

− −−−−−−−−

√

n

L

−−

√

n

L≥ 0

f(x) ≤ g(x) ≤ h(x) x ≠ a f(x) =L= h(x)lim

x→a

lim

x→a

g(x) =Llim

x→a

(f(x)+g(x)) = f(x)+ g(x) =L+Mlim

x→a

lim

x→a

lim

x→a
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2.4E: Exercises for Section 2.3
In exercises 1 - 4, use the limit laws to evaluate each limit. Justify each step by indicating the appropriate limit law(s).

1) 

Answer

Use constant multiple law and difference law:

2) 

3) 

Answer

Use root law: 

4) 

In exercises 5 - 10, use direct substitution to evaluate the limit of each continuous function.

5) 

Answer

6) 

7) 

Answer

8) 

9) 

Answer

10) 

In exercises 11 - 20, use direct substitution to show that each limit leads to the indeterminate form . Then, evaluate the
limit analytically.

11) 

Answer

(4 −2x+3)lim

x→0

x

2

(4 −2x+3) = 4 −2 x+ 3 = 0+0+3 = 3lim

x→0

x

2

lim

x→0

x

2

lim

x→0

lim

x→0

lim

x→1

+3 +5x

3

x

2

4−7x

lim

x→−2

−6x+3x

2

− −−−−−−−−

√

= =lim

x→−2

−6x+3x

2

− −−−−−−−−

√

( −6x+3)lim

x→−2

x

2

− −−−−−−−−−−−−−

√

19

−−

√

(9x+1lim

x→−1

)

2

lim

x→7

x

2

= 49lim

x→7

x

2

(4 −1)lim

x→−2

x

2

lim

x→0

1

1+sinx

= 1lim

x→0

1

1+sinx

lim

x→2

e

2x−x

2

lim

x→1

2−7x

x+6

= −lim

x→1

2−7x

x+6

5

7

lnlim

x→3

e

3x

0/0

lim

x→4

−16x

2

x−4
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then, 

12) 

13) 

Answer

 

 

then, 

14) 

15) 

Answer

 

 

then, 

16) , where  is a real-valued constant

17) 

Answer

 

 

then, 

18) 

19) 

Answer

 

 

then, 

When x = 4, = = ;

−16x

2

x−4

16−16

4−4

0

0

= = (x+4) = 4+4 = 8lim

x→4

−16x

2

x−4

lim

x→4

(x+4)(x−4)

x−4

lim

x→4

lim

x→2

x−2

−2xx

2

lim

x→6

3x−18

2x−12

When x = 6, = = ;

3x−18

2x−12

18−18

12−12

0

0

= = =lim

x→6

3x−18

2x−12

lim

x→6

3(x−6)

2(x−6)

lim

x→6

3

2

3

2

lim

h→0

(1+h −1)

2

h

lim

t→9

t−9

−3t√

When t = 9, = = ;

t−9

−3t√

9−9

3−3

0

0

= = = ( +3) = +3 = 6lim

t→9

t−9

−3t√

lim

t→9

t−9

−3t√

+3t√

+3t√

lim

t→9

(t−9)( +3)t√

t−9

lim

t→9

t

√

9

–

√

lim

h→0

−

1

a+h

1

a

h

a

lim

θ→π

sinθ

tanθ

When θ= π, = = ;

sinθ

tanθ

sinπ

tanπ

0

0

= = cosθ= cosπ =−1lim

θ→π

sinθ

tanθ

lim

θ→π

sinθ

sin θ

cos θ

lim

θ→π

lim

x→1

−1x

3

−1x

2

lim

x→1/2

2 +3x−2x

2

2x−1

When x = 1/2, = = ;

2 +3x−2x

2

2x−1

+ −2

1

2

3

2

1−1

0

0

= = (x+2) = +2 =lim

x→1/2

2 +3x−2x

2

2x−1

lim

x→1/2

(2x−1)(x+2)

2x−1

lim

x→1/2

1

2

5

2
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20) 

In exercises 21 - 24, use direct substitution to obtain an undefined expression. Then, use the method used in Example 9 of
this section to simplify the function and determine the limit.

21) 

Answer

22) 

23) 

Answer

24) 

In exercises 25 - 32, assume that , and . Use these three facts and the limit laws to

evaluate each limit.

25) 

Answer

26) 

27) 

Answer

28) 

29) 

Answer

30) 

31) 

Answer

lim

x→−3

−1x+4

− −−−−

√

x+3

lim

x→−2

−

2 +7x−4x

2

+x−2x

2

−∞

lim

x→−2

+

2 +7x−4x

2

+x−2x

2

lim

x→1

−

2 +7x−4x

2

+x−2x

2

−∞

lim

x→1

+

2 +7x−4x

2

+x−2x

2

f(x) = 4, g(x) = 9lim

x→6

lim

x→6

h(x) = 6lim

x→6

2f(x)g(x)lim

x→6

2f(x)g(x) = 2( f(x))( g(x))= 2(4)(9) = 72lim

x→6

lim

x→6

lim

x→6

lim

x→6

g(x)−1

f(x)

(f(x)+ g(x))lim

x→6

1

3

(f(x)+ g(x)) = f(x)+ g(x) = 4+ (9) = 7lim

x→6

1

3

lim

x→6

1

3

lim

x→6

1

3

lim

x→6

(h(x))

3

2

lim

x→6

g(x)−f(x)

− −−−−−−−−

√

= = =lim

x→6

g(x)−f(x)

− −−−−−−−−

√ g(x)− f(x)lim

x→6

lim

x→6

− −−−−−−−−−−−−−−

√

9−4

− −−−

√ 5

–

√

x ⋅h(x)lim

x→6

[(x+1) ⋅ f(x)]lim

x→6

[(x+1)f(x)] = ( (x+1))( f(x))= 7(4) = 28lim

x→6

lim

x→6

lim

x→6
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32) 

[T] In exercises 33 - 35, use a calculator to draw the graph of each piecewise-defined function and study the graph to
evaluate the given limits.

33) 

a. 

b. 

Answer

a. ; b.

34) 

a. 

b. 

35) 

a. 

b. 

In exercises 36 - 43, use the following graphs and the limit laws to evaluate each limit.

(f(x) ⋅ g(x)−h(x))lim

x→6

f(x) ={

,x

2

x+4,

x ≤ 3

x > 3

f(x)lim

x→3

−

f(x)lim

x→3

+

9 7

g(x) ={

−1,x

3

1,

x ≤ 0

x > 0

g(x)lim

x→0

−

g(x)lim

x→0

+

h(x) ={

−2x+1,x

2

3−x,

x < 2

x ≥ 2

h(x)lim

x→2

−

h(x)lim

x→2

+
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36) 

37) 

Answer

38) 

39) 

Answer

40) 

(f(x)+g(x))lim

x→−3

+

(f(x)−3g(x))lim

x→−3

−

(f(x)−3g(x)) = f(x)−3 g(x) = 0+6 = 6lim

x→−3

−

lim

x→−3

−

lim

x→−3

−

lim

x→0

f(x)g(x)

3

lim

x→−5

2+g(x)

f(x)

= = = 1lim

x→−5

2+g(x)

f(x)

2+( g(x))lim

x→−5

f(x)lim

x→−5

2+0

2

(f(x)lim

x→1

)

2

https://libretexts.org/
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41) 

Answer

42) 

43) 

Answer

For exercises 44 - 46, evaluate the limit using the squeeze theorem. Use a calculator to graph the functions , , and 
 when possible.

44) [T] True or False? If , then .

45) [T] 

Answer

The limit is zero.

46) , where 

47) [T] In physics, the magnitude of an electric field generated by a point charge at a distance  in vacuum is governed by

Coulomb’s law: , where  represents the magnitude of the electric field,  is the charge of the particle,  is the

distance between the particle and where the strength of the field is measured, and  is Coulomb’s constant: 

.

a. Use a graphing calculator to graph  given that the charge of the particle is .

b. Evaluate . What is the physical meaning of this quantity? Is it physically relevant? Why are you evaluating from

the right?

Answer

a.

lim

x→1

f(x)−g(x)

− −−−−−−−−

√

3

= = =lim

x→1

f(x)−g(x)

− −−−−−−−−

√

3

f(x)− g(x)lim

x→1

lim

x→1

− −−−−−−−−−−−−−−

√

3

2+5

− −−−

√

3

7

–

√

3

(x ⋅ g(x))lim

x→−7

[x ⋅ f(x)+2 ⋅ g(x)]lim

x→−9

(xf(x)+2g(x)) =( x)( f(x))+2 g(x) = (−9)(6)+2(4) =−46lim

x→−9

lim

x→−9

lim

x→−9

lim

x→−9

f(x) g(x)

h(x)

2x−1 ≤ g(x) ≤ −2x+3x

2

g(x) = 0lim

x→2

cos( )lim

θ→0

θ

2

1

θ

f(x)lim

x→0

f(x) ={

0,

,x

2

x rational

x irrrational

r

E(r) =

q

4πε

0

r

2

E q r

1

4πε

0

8.988×109N ⋅ /m

2

C

2

E(r) q = 10

−10

E(r)lim

r→0

+
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b. ∞. The magnitude of the electric field as you approach the particle q becomes infinite. It does not make physical sense
to evaluate negative distance.

48) [T] The density of an object is given by its mass divided by its volume: 

a. Use a calculator to plot the volume as a function of density , assuming you are examining something of mass 
kg ( ).

b. Evaluate  and explain the physical meaning.

2.4E: Exercises for Section 2.3 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

2.3E: Exercises for Section 2.3 is licensed CC BY-NC-SA 4.0.

ρ =m/V .

(V =m/ρ) 8

m = 8

V (ρ)lim

x→0

+
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2.5: Continuity

Explain the three conditions for continuity at a point.
Describe three kinds of discontinuities.
Define continuity on an interval.
State the theorem for limits of composite functions.
Provide an example of the intermediate value theorem.

Many functions have the property that their graphs can be traced with a pencil without lifting the pencil from the page. Such functions are
called continuous. Other functions have points at which a break in the graph occurs, but satisfy this property over intervals contained in
their domains. They are continuous on these intervals and are said to have a discontinuity at a point where a break occurs.

We begin our investigation of continuity by exploring what it means for a function to have continuity at a point. Intuitively, a function is
continuous at a particular point if there is no break in its graph at that point.

Continuity at a Point

Before we look at a formal definition of what it means for a function to be continuous at a point, let’s consider various functions that fail
to meet our intuitive notion of what it means to be continuous at a point. We then create a list of conditions that prevent such failures.

Our first function of interest is shown in Figure . We see that the graph of  has a hole at . In fact,  is undefined. At the
very least, for  to be continuous at , we need the following condition:

i.  is defined

Figure : The function  is not continuous at a because  is undefined.

However, as we see in Figure , this condition alone is insufficient to guarantee continuity at the point . Although  is defined,
the function has a gap at . In this example, the gap exists because  does not exist. We must add another condition for continuity

at —namely,

ii.  exists

Figure : The function  is not continuous at a because  does not exist.

However, as we see in Figure , these two conditions by themselves do not guarantee continuity at a point. The function in this figure
satisfies both of our first two conditions, but is still not continuous at . We must add a third condition to our list:

Learning Objectives

2.5.1 f(x) a f(a)

f(x) a

f(a)

2.5.1 f(x) f(a)

2.5.2 a f(a)

a f(x)lim

x→a

a

f(x)lim

x→a

2.5.2 f(x) f(x)lim

x→a

2.5.3

a
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iii. 

Figure : The function  is not continuous at a because .

Now we put our list of conditions together and form a definition of continuity at a point.

A function  is continuous at a point  if and only if the following three conditions are satisfied:

i.  is defined
ii.  exists

iii. 

A function is discontinuous at a point  if it fails to be continuous at .

The following procedure can be used to analyze the continuity of a function at a point using this definition.

1. Check to see if  is defined. If  is undefined, we need go no further. The function is not continuous at a. If  is
defined, continue to step 2.

2. Compute . In some cases, we may need to do this by first computing  and . If  does not

exist (that is, it is not a real number), then the function is not continuous at a and the problem is solved. If  exists, then

continue to step 3.
3. Compare  and . If , then the function is not continuous at a. If , then the function

is continuous at a.

The next three examples demonstrate how to apply this definition to determine whether a function is continuous at a given point. These
examples illustrate situations in which each of the conditions for continuity in the definition succeed or fail.

f(x) = f(a)lim

x→a

2.5.3 f(x) f(x) ≠ f(a)lim

x→a

Definition: Continuous at a Point

f(x) a

f(a)

f(x)lim

x→a

f(x) = f(a)lim

x→a

a a

Piecewise Functinos and ContinuityPiecewise Functinos and Continuity

Problem-Solving Strategy: Determining Continuity at a Point

f(a) f(a) f(a)

f(x)lim

x→a

f(x)lim

x→a

−

f(x)lim

x→a

+

f(x)lim

x→a

f(x)lim

x→a

f(a) f(x)lim

x→a

f(x) ≠ f(a)lim

x→a

f(x) = f(a)lim

x→a
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Using the definition, determine whether the function  is continuous at . Justify the conclusion.

Solution

Let’s begin by trying to calculate . We can see that , which is undefined. Therefore,  is discontinuous

at 2 because  is undefined. The graph of  is shown in Figure .

Figure : The function  is discontinuous at  because  is undefined.

Using the definition, determine whether the function  is continuous at . Justify the conclusion.

Solution

Let’s begin by trying to calculate .

.

Thus,  is defined. Next, we calculate . To do this, we must compute  and :

and

.

Limits, Continuity and GraphsLimits, Continuity and Graphs

Example : Determining Continuity at a Point, Condition 12.5.1A

f(x) =

−4x

2

x−2

x = 2

f(2) f(2) = 0/0 f(x) =

−4x

2

x−2

f(2) f(x) 2.5.4

2.5.4 f(x) 2 f(2)

Example : Determining Continuity at a Point, Condition 22.5.1B

f(x) ={

− +4,x

2

4x−8,

if x ≤ 3

if x > 3

x = 3

f(3)

f(3) =−( )+4 =−53

2

f(3) f(x)lim

x→3

f(x)lim

x→3

−

f(x)lim

x→3

+

f(x) =−( )+4 =−5lim

x→3

−

3

2

f(x) = 4(3)−8 = 4lim

x→3

+
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https://www.youtube.com/watch?v=bLaFZn8VeSM
https://www.youtube.com/watch?v=bLaFZn8VeSM


2.5.4 https://stats.libretexts.org/@go/page/25928

Therefore,  does not exist. Thus,  is not continuous at 3. The graph of  is shown in Figure .

Figure : The function  is not continuous at 3 because  does not exist.

Using the definition, determine whether the function  is continuous at .

Solution

First, observe that

Next,

.

Last, compare  and . We see that

.

Since all three of the conditions in the definition of continuity are satisfied,  is continuous at .

Using the definition, determine whether the function  is continuous at . If the function is not

continuous at 1, indicate the condition for continuity at a point that fails to hold.

Hint

Check each condition of the definition.

Answer

 is not continuous at  because .

f(x)lim

x→3

f(x) f(x) 2.5.5

2.5.5 f(x) f(x)lim

x→3

Example : Determining Continuity at a Point, Condition 32.5.1C

f(x) ={

,

sin x

x

1,

if x ≠ 0

if x = 0

x = 0

f(0) = 1

f(x) = = 1lim

x→0

lim

x→0

sinx

x

f(0) f(x)lim

x→1

f(0) = 1 = f(x)lim

x→0

f(x) x = 0

Exercise 2.5.1

f(x) =

⎧

⎩

⎨

2x+1,

2,

−x+4,

if x < 1

if x = 1

if x > 1

x = 1

f 1 f(1) = 2 ≠ 3 = f(x)lim

x→1
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By applying the definition of continuity and previously established theorems concerning the evaluation of limits, we can state the
following theorem.

Polynomials and rational functions are continuous at every point in their domains.

Previously, we showed that if  and  are polynomials,  for every polynomial  and  as

long as . Therefore, polynomials and rational functions are continuous on their domains.

□

We now apply Note to determine the points at which a given rational function is continuous.

For what values of x is  continuous?

Solution

The rational function  is continuous for every value of  except .

For what values of  is  continuous?

Hint

Use the Continuity of Polynomials and Rational Functions stated above.

Answer

 is continuous at every real number.

Types of Discontinuities

As we have seen in Example and Example, discontinuities take on several different appearances. We classify the types of discontinuities
we have seen thus far as removable discontinuities, infinite discontinuities, or jump discontinuities. Intuitively, a removable
discontinuity is a discontinuity for which there is a hole in the graph, a jump discontinuity is a noninfinite discontinuity for which the
sections of the function do not meet up, and an infinite discontinuity is a discontinuity located at a vertical asymptote. Figure 
illustrates the differences in these types of discontinuities. Although these terms provide a handy way of describing three common types
of discontinuities, keep in mind that not all discontinuities fit neatly into these categories.

Figure : Discontinuities are classified as (a) removable, (b) jump, or (c) infinite.

These three discontinuities are formally defined as follows:

Continuity of Polynomials and Rational Functions

Proof

p(x) q(x) p(x) = p(a)lim

x→a

p(x) =lim

x→a

p(x)

q(x)

p(a)

q(a)

q(a) ≠ 0

Example :Continuity of a Rational Function2.5.2

f(x) =

x+1

x−5

f(x) =

x+1

x−5

x x = 5

Exercise 2.5.2

x f(x) = 3 −4x

4

x

2

f(x)

2.5.5

2.5.5
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If  is discontinuous at a, then

1.  has a removable discontinuity at a if  exists. (Note: When we state that  exists, we mean that 

, where L is a real number.)

2.  has a jump discontinuity at a if  and  both exist, but . (Note: When we

state that  and  both exist, we mean that both are real-valued and that neither take on the values .)

3.  has an infinite discontinuity at a if  or .

In Example, we showed that  is discontinuous at . Classify this discontinuity as removable, jump, or infinite.

Solution

To classify the discontinuity at 2 we must evaluate :

Since  is discontinuous at  and  exists, f has a removable discontinuity at .

In Example, we showed that  is discontinuous at . Classify this discontinuity as removable,

jump, or infinite.

Solution

Earlier, we showed that  is discontinuous at  because  does not exist. However, since  and 

both exist, we conclude that the function has a jump discontinuity at .

Definition

f(x)

f f(x)lim

x→a

f(x)lim

x→a

f(x) =Llim

x→a

f f(x)lim

x→a

−

f(x)lim

x→a

+

f(x) ≠ li f(x)lim

x→a

−

m

x→a

+

f(x)lim

x→a

−

f(x)lim

x→a

+

±∞

f f(x) =±∞lim

x→a

−

f(x) =±∞lim

x→a

+

Revmovable and Nonremovable DiscontinRevmovable and Nonremovable Discontin……

Example : Classifying a Discontinuity2.5.3

f(x) =

−4x

2

x−2

x = 2

f(x)lim

x→2

f(x)lim

x→2

= lim

x→2

−4x

2

x−2

= lim

x→2

(x−2)(x+2)

x−2

= (x+2)lim

x→2

= 4.

f 2 f(x)lim

x→2

x = 2

Example : Classifying a Discontinuity2.5.4

f(x) ={

− +4,x

2

4x−8,

if x ≤ 3

if x > 3

x = 3

f 3 f(x)lim

x→3

f(x) =−5lim

x→3

−

f(x) = 4lim

x→3

−

3
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Determine whether  is continuous at . If the function is discontinuous at , classify the discontinuity as

removable, jump, or infinite.

Solution

The function value  is undefined. Therefore, the function is not continuous at . To determine the type of discontinuity, we

must determine the limit at . We see that  and . Therefore, the function has an infinite

discontinuity at .

For , decide whether  is continuous at . If  is not continuous at , classify the discontinuity as

removable, jump, or infinite.

Hint

Consider the definitions of the various kinds of discontinuity stated above. If the function is discontinuous at , look at 

Answer

Discontinuous at ; removable

Continuity over an Interval

Now that we have explored the concept of continuity at a point, we extend that idea to continuity over an interval. As we develop this
idea for different types of intervals, it may be useful to keep in mind the intuitive idea that a function is continuous over an interval if we
can use a pencil to trace the function between any two points in the interval without lifting the pencil from the paper. In preparation for
defining continuity on an interval, we begin by looking at the definition of what it means for a function to be continuous from the right at
a point and continuous from the left at a point.

A function  is said to be continuous from the right at a if .

A function  is said to be continuous from the left at a if 

A function is continuous over an open interval if it is continuous at every point in the interval. A function  is continuous over a
closed interval of the form  if it is continuous at every point in  and is continuous from the right at a and is continuous from the
left at b. Analogously, a function  is continuous over an interval of the form  if it is continuous over  and is continuous
from the left at b. Continuity over other types of intervals are defined in a similar fashion.

Requiring that  and  ensures that we can trace the graph of the function from the point  to

the point  without lifting the pencil. If, for example, , we would need to lift our pencil to jump from  to

the graph of the rest of the function over .

State the interval(s) over which the function  is continuous.

Solution

Since  is a rational function, it is continuous at every point in its domain. The domain of  is the set 

. Thus,  is continuous over each of the intervals , and .

Example : Classifying a Discontinuity2.5.5

f(x) =

x+2

x+1

−1 −1

f(−1) −1

−1 =−∞lim

x→−1

−

x+2

x+1

=+∞lim

x→−1

+

x+2

x+1

−1

Exercise 2.5.3

f(x) ={

,x

2

3,

if x ≠ 1

if x = 1

f 1 f 1

1 f(x)lim

x→1

1

Continuity from the Right and from the Left

f(x) f(x) = f(a)lim

x→a

+

f(x) f(x) = f(a)lim

x→a

−

f(x)

[a, b] (a, b)

f(x) (a, b] (a, b)

f(x) = f(a)lim

x→a

+

f(x) = f(b)lim

x→b

−

(a, f(a))

(b, f(b)) f(x) ≠ f(a)lim

x→a

+

f(a)

(a, b]

Example : Continuity on an Interval2.5.6

f(x) =

x−1

+2xx

2

f(x) =

x−1

+2xx

2

f(x)

(−∞,−2)∪ (−2, 0)∪ (0,+∞) f(x) (−∞,−2), (−2, 0) (0, +∞)
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State the interval(s) over which the function  is continuous.

Solution

From the limit laws, we know that  for all values of a in . We also know that 

exists and  exists. Therefore,  is continuous over the interval .

State the interval(s) over which the function  is continuous.

Hint

Use Example  as a guide.

Answer

The Note allows us to expand our ability to compute limits. In particular, this theorem ultimately allows us to demonstrate that
trigonometric functions are continuous over their domains.

If  is continuous at  and , then

Before we move on to Example, recall that earlier, in the section on limit laws, we showed . Consequently, we

know that  is continuous at . In Example we see how to combine this result with the composite function theorem.

Evaluate .

Solution

The given function is a composite of  and . Since  and  is continuous at , we may apply the

composite function theorem. Thus,

Evaluate .

Hint

 is continuous at . Use Example  as a guide.

Answer

The proof of the next theorem uses the composite function theorem as well as the continuity of  and  at the
point  to show that trigonometric functions are continuous over their entire domains.

Example : Continuity over an Interval2.5.7

f(x) = 4−x

2

− −−−−

√

=lim

x→a

4−x

2

− −−−−

√

4−a

2

− −−−−

√

(−2, 2) = 0lim

x→−2

+

4−x

2

− −−−−

√

= 0lim

x→2

−

4−x

2

− −−−−

√

f(x) [−2, 2]

Exercise 2.5.4

f(x) = x+3

− −−−−

√

2.5.7

[−3,+∞)

Composite Function Theorem

f(x) L g(x) =Llim

x→a

f(g(x))= f( g(x))= f(L).lim

x→a

lim

x→a

cosx = 1 = cos(0)lim

x→0

f(x) = cosx 0

Example : Limit of a Composite Cosine Function2.5.8

cos(x− )lim

x→π/2

π

2

cosx x−

π

2

(x− )= 0lim

x→π/2

π

2

cosx 0

cos(x− )= cos( (x− )) = cos(0) = 1.lim

x→π/2

π

2

lim

x→π/2

π

2

Exercise :2.5.4

sin(x−π)lim

x→π

f(x) = sinx 0 2.5.8

0

f(x) = sinx g(x) = cosx

0
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Trigonometric functions are continuous over their entire domains.

We begin by demonstrating that  is continuous at every real number. To do this, we must show that  for all

values of .

The proof that  is continuous at every real number is analogous. Because the remaining trigonometric functions may be
expressed in terms of  and , their continuity follows from the quotient limit law.

□

As you can see, the composite function theorem is invaluable in demonstrating the continuity of trigonometric functions. As we continue
our study of calculus, we revisit this theorem many times.

The Intermediate Value Theorem
Functions that are continuous over intervals of the form , where a and b are real numbers, exhibit many useful properties.
Throughout our study of calculus, we will encounter many powerful theorems concerning such functions. The first of these theorems is
the Intermediate Value Theorem.

Let  be continuous over a closed, bounded interval . If  is any real number between  and , then there is a number c in
 satisfying  in Figure .

Figure : There is a number  that satisfies .

Show that  has at least one zero.

Solution

Since  is continuous over , it is continuous over any closed interval of the form . If you can find an
interval  such that  and  have opposite signs, you can use the Intermediate Value Theorem to conclude there must be a
real number  in  that satisfies . Note that

Continuity of Trigonometric Functions

Proof

cosx cosx = cosalim

x→a

a

cosxlim

x→a

= cos((x−a) +a)lim

x→a

= (cos(x−a) cosa−sin(x−a) sina)lim

x→a

= cos( (x−a)) cosa−sin( (x−a)) sinalim

x→a

lim

x→a

= cos(0) cosa−sin(0) sina

= 1 ⋅ cosa−0 ⋅ sina = cosa.

Rewrite x = x−a+a.

Apply the identity for the cosine of the sum of two angles.

Since  (x−a) = 0,  and  sinx and  cosx are continuous at 0.lim

x→a

Evaluate  cos(0) and  sin(0) and simplify.

sinx

sinx cosx

[a, b]

The Intermediate Value Theorem

f [a, b] z f(a) f(b)

[a, b] f(c) = z 2.5.6

2.5.6 c ∈ [a, b] f(c) = z

Example : Application of the Intermediate Value Theorem2.5.9

f(x) = x−cosx

f(x) = x−cosx (−∞, +∞) [a, b]

[a, b] f(a) f(b)

c (a, b) f(c) = 0
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and

.

Using the Intermediate Value Theorem, we can see that there must be a real number  in  that satisfies . Therefore, 
 has at least one zero.

If  is continuous over  and , can we use the Intermediate Value Theorem to conclude that  has no
zeros in the interval ? Explain.

Solution

No. The Intermediate Value Theorem only allows us to conclude that we can find a value between  and ; it doesn’t allow us
to conclude that we can’t find other values. To see this more clearly, consider the function . It satisfies 

, and .

For  and . Can we conclude that  has a zero in the interval ?

Solution

No. The function is not continuous over . The Intermediate Value Theorem does not apply here.

Show that  has a zero over the interval .

Hint

Find  and . Apply the Intermediate Value Theorem.

Answer

 is continuous over . It must have a zero on this interval.

Key Concepts
For a function to be continuous at a point, it must be defined at that point, its limit must exist at the point, and the value of the function
at that point must equal the value of the limit at that point.
Discontinuities may be classified as removable, jump, or infinite.
A function is continuous over an open interval if it is continuous at every point in the interval. It is continuous over a closed interval if
it is continuous at every point in its interior and is continuous at its endpoints.
The composite function theorem states: If  is continuous at L and , then .

The Intermediate Value Theorem guarantees that if a function is continuous over a closed interval, then the function takes on every
value between the values at its endpoints.

Glossary

continuity at a point
A function  is continuous at a point a if and only if the following three conditions are satisfied: (1)  is defined, (2) 

exists, and (3) 

continuity from the left
A function is continuous from the left at b if 

continuity from the right

f(0) = 0−cos(0) =−1 < 0

f( ) = −cos = > 0

π

2

π

2

π

2

π

2

c [0, π/2] f(c) = 0

f(x) = x−cosx

Example : When Can You Apply the Intermediate Value Theorem?2.5.10

f(x) [0, 2], f(0) > 0 f(2) > 0 f(x)

[0, 2]

f(0) f(2)

f(x) = (x−1)

2

f(0) = 1 > 0, f(2) = 1 > 0 f(1) = 0

Example : When Can You Apply the Intermediate Value Theorem?2.5.11

f(x) = 1/x, f(−1) =−1 < 0 f(1) = 1 > 0 f(x) [−1, 1]

[−1, 1]

Exercise 2.5.5

f(x) = − −3x+1x

3

x

2

[0, 1]

f(0) f(1)

f(0) = 1 > 0, f(1) =−2 < 0; f(x) [0, 1]

f(x) g(x) =Llim

x→a

f(g(x))= f( g(x))= f(L)lim

x→a

lim

x→a

f(x) f(a) f(x)lim

x→a

limx→ af(x) = f(a)

f(x) = f(b)lim

x→b

−
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A function is continuous from the right at a if 

continuity over an interval
a function that can be traced with a pencil without lifting the pencil; a function is continuous over an open interval if it is continuous at
every point in the interval; a function  is continuous over a closed interval of the form [ ] if it is continuous at every point in (

), and it is continuous from the right at  and from the left at 

discontinuity at a point
A function is discontinuous at a point or has a discontinuity at a point if it is not continuous at the point

infinite discontinuity
An infinite discontinuity occurs at a point  if  or 

Intermediate Value Theorem
Let  be continuous over a closed bounded interval [ ] if  is any real number between  and , then there is a number c in [

] satisfying 

jump discontinuity
A jump discontinuity occurs at a point  if  and  both exist, but 

removable discontinuity
A removable discontinuity occurs at a point  if  is discontinuous at , but  exists

Contributors and Attributions
Template:ContribOpenStaxCalc

This page titled 2.5: Continuity is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

2.4: Continuity by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source: https://openstax.org/details/books/calculus-
volume-1.

f(x) = f(a)lim

x→a

+

f(x) a, b

a, b a b

a f(x) =±∞lim

x→a

−

f(x) =±∞lim

x→a

+

f a, b z f(a) f(b)

a, b f(c) = z

a f(x)lim

x→a

−

f(x)lim

x→a

+

f(x) ≠ f(x)lim

x→a

−

lim

x→a

+

a f(x) a f(x)lim

x→a
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2.5E: Exercises for Section 2.4
For exercises 1 - 8, determine the point(s), if any, at which each function is discontinuous. Classify any discontinuity as
jump, removable, infinite, or other.

1) 

Answer
The function is defined for all  in the interval .

2) 

3) 

Answer
Removable discontinuity at ; infinite discontinuity at .

4) 

5) 

Answer
Infinite discontinuity at 

6) 

7) 

Answer

Infinite discontinuities at , for 

8) 

For exercises 9 - 14, decide if the function continuous at the given point. If it is discontinuous, what type of discontinuity is
it?

9)  at 

Answer
No. It is a removable discontinuity.

10)  at 

11) , at 

Answer
Yes. It is continuous.

12) , at 

f(x) =

1

x

−−

√

x (0,∞)

f(x) =

2

+1x

2

f(x) =

x

−xx

2

x = 0 x = 1

g(t) = +1t

−1

f(x) =

5

−2e

x

x = ln2

f(x) =

|x−2|

x−2

H(x) = tan2x

x =

(2k+1)π

4

k= 0, ±1, ±2, ±3, …

f(t) =

t+3

+5t+6t

2

2 −5x+3x

2

x−1

x = 1

h(θ) =

sinθ−cosθ

tanθ

θ= π

g(u) =

⎧

⎩

⎨

⎪

⎪

,

6 +u−2u

2

2u−1

,

7

2

if u ≠

1

2

if u =

1

2

u =

1

2

f(y) =

sin(πy)

tan(πy)

y = 1
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13) , at 

Answer
Yes. It is continuous.

14) , at 

In exercises 15 - 19, find the value(s) of  that makes each function continuous over the given interval.

15) 

Answer

16) 

17) 

Answer

18) 

19) 

Answer

In exercises 20 - 21, use the Intermediate Value Theorem (IVT).

20) Let  Over the interval , there is no value of  such that , although 

and . Explain why this does not contradict the IVT.

21) A particle moving along a line for time  has a position function , which is continuous. Assume  and .
Another particle moves such that its position is given by . Explain why there must be a value  for  such
that .

Answer
Since both  and  are continuous everywhere, then  is continuous everywhere and, in particular, it is
continuous over the closed interval [ ]. Also,  and . Therefore, by the IVT, there is a
value  such that .

22) [T] Use the statement “The cosine of  is equal to  cubed."

a. Write a mathematical equation of the statement.

b. Prove that the equation in part a. has at least one real solution.

c. Use a calculator to find an interval of length  that contains a solution.

23) Apply the IVT to determine whether  has a solution in one of the intervals [ ] or [ ]. Briefly
explain your response for each interval.

f(x) ={

− ,x

2

e

x

x−1,

if x < 0

if x ≥ 0

x = 0

f(x) ={

x sin(x),

x tan(x),

if x ≤ π

if x > π

x = π

k

f(x) ={

3x+2,

2x−3,

if x < k

if k≤ x ≤ 8

k=−5

f(θ) ={

sinθ,

cos(θ+k),

if 0 ≤ θ<

π

2

if  ≤ θ≤ π

π

2

f(x) =

⎧

⎩

⎨

,

+3x+2x

2

x+2

k,

if x ≠−2

if x =−2

k=−1

f(x) ={

,e

kx

x+3,

if 0 ≤ x < 4

if 4 ≤ x ≤ 8

f(x) ={

,kx

−−

√

x+1,

if 0 ≤ x ≤ 3

if 3 < x ≤ 10

k=

16

3

h(x) ={

3 −4,x

2

5+4x,

if x ≤ 2

if x > 2

[0, 4] x h(x) = 10 h(0) < 10

h(4) > 10

t s(t) s(2) = 5 s(5) = 2

h(t) = s(t)− t c 2 < c < 5

h(c) = 0

s y = t h(t) = s(t)− t

2, 5 h(2) = 3 > 0 h(5) =−3 < 0

x = c h(c) = 0

t t

0.01

=2

x

x

3

1.25, 1.375 1.375, 1.5
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Answer
The function  is continuous over the interval [ ] and has opposite signs at the endpoints.

24) Consider the graph of the function  shown in the following graph.

a. Find all values for which the function is discontinuous.

b. For each value in part a., state why the formal definition of continuity does not apply.

c. Classify each discontinuity as either jump, removable, or infinite.

25) Let .

a. Sketch the graph of .

b. Is it possible to find a value  such that , which makes  continuous for all real numbers? Briefly explain.

Answer

a.

b. It is not possible to redefine  since the discontinuity is a jump discontinuity.

26) Let  for .

a. Sketch the graph of .

b. Is it possible to find values  and  such that  and , and that makes  continuous for all real
numbers? Briefly explain.

27) Sketch the graph of the function  with properties i. through vii.

i. The domain of  is ( ).

f(x) = −2

x

x

3

1.25, 1.375

y = f(x)

f(x) ={

3x,

,x

3

if x > 1

if x < 1

f

k f(1) = k f(x)

f(1)

f(x) =

−1x

4

−1x

2

x ≠−1, 1

f

k

1

k

2

f(−1) = k f(1) = k

2

f(x)

y = f(x)

f −∞,+∞
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ii.  has an infinite discontinuity at .

iii. 

iv. 

v. 

vi.  is left continuous but not right continuous at .

vii.  and 

Answer

Answers may vary; see the following example:

28) Sketch the graph of the function  with properties i. through iv.

i. The domain of  is [ ].

ii.  and  exist and are equal.

iii.  is left continuous but not continuous at , and right continuous but not continuous at .

iv.  has a removable discontinuity at , a jump discontinuity at , and the following limits hold: 
 and .

In exercises 29 - 30, suppose  is defined for all . For each description, sketch a graph with the indicated property.

29) Discontinuous at  with  and 

Answer

Answers may vary; see the following example:

f x =−6

f(−6) = 3

f(x) = f(x) = 2lim

x→−3

−

lim

x→−3

+

f(−3) = 3

f x = 3

f(x) =−∞lim

x→−∞

f(x) =+∞lim

x→+∞

y = f(x)

f 0, 5

f(x)lim

x→1

+

f(x)lim

x→1

−

f(x) x = 2 x = 3

f(x) x = 1 x = 2

f(x) =−∞lim

x→3

−

f(x) = 2lim

x→3

+

y = f(x) x

x = 1 f(x) =−1lim

x→−1

f(x) = 4lim

x→2
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30) Discontinuous at  but continuous elsewhere with 

Determine whether each of the given statements is true. Justify your response with an explanation or counterexample.

31)  is continuous everywhere.

Answer
False. It is continuous over ( ) ∪ ( ).

32) If the left- and right-hand limits of  as  exist and are equal, then  cannot be discontinuous at .

33) If a function is not continuous at a point, then it is not defined at that point.

Answer

False. Consider .

34) According to the IVT,  has a solution over the interval [ ].

35) If  is continuous such that  and  have opposite signs, then  has exactly one solution in [ ].

Answer
False. Consider  on [ ].

36) The function  is continuous over the interval [ ].

37) If  is continuous everywhere and , then there is no root of  in the interval [ ].

Answer
False. The IVT does not work in reverse! Consider  over the interval [ ].

[T] The following problems consider the scalar form of Coulomb’s law, which describes the electrostatic force between two

point charges, such as electrons. It is given by the equation , where  is Coulomb’s constant,  are the

magnitudes of the charges of the two particles, and  is the distance between the two particles.

38) To simplify the calculation of a model with many interacting particles, after some threshold value , we approximate  as
zero.

a. Explain the physical reasoning behind this assumption.

x = 2 f(x) =lim

x→0

1

2

f(t) =

2

−e

t

e

−t

−∞, 0 0,∞

f(x) x→ a f x = a

f(x) ={

x,

4,

if x ≠ 0

if x = 0

cosx−sinx−x = 2 −1, 1

f(x) f(a) f(b) f(x) = 0 a, b

f(x) = cos(x) −π, 2π

f(x) =

−4x+3x

2

−1x

2

0, 3

f(x) f(a), f(b) > 0 f(x) a, b

(x−1)

2

−2, 2

F (r) = k

e

| |q

1

q

2

r

2

k

e

q

i

r

r=R F
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b. What is the force equation?

c. Evaluate the force  using both Coulomb’s law and our approximation, assuming two protons with a charge magnitude of 
 coulombs (C), and the Coulomb constant  are 1 m apart. Also, assume 

m. How much inaccuracy does our approximation generate? Is our approximation reasonable?

d. Is there any finite value of R for which this system remains continuous at R?

39) Instead of making the force  at , we let the force be  for . Assume two protons, which have a magnitude of
charge , and the Coulomb constant . Is there a value  that can make this system
continuous? If so, find it.

Answer
 m

Recall the discussion on spacecraft from the chapter opener. The following problems consider a rocket launch from Earth’s
surface. The force of gravity on the rocket is given by , where m is the mass of the rocket,  is the distance
of the rocket from the center of Earth, and  is a constant.

40) [T] Determine the value and units of  given that the mass of the rocket on Earth is 3 million kg. (Hint: The distance from the
center of Earth to its surface is 6378 km.)

41) [T] After a certain distance  has passed, the gravitational effect of Earth becomes quite negligible, so we can approximate the

force function by . Find the necessary condition  such that the force function remains continuous.

Answer
 km

42) As the rocket travels away from Earth’s surface, there is a distance D where the rocket sheds some of its mass, since it no

longer needs the excess fuel storage. We can write this function as . Is there a value of  such that

this function is continuous, assuming ?

In Exercises 43 - 44, prove each function is continuous everywhere.

43) 

Answer
For all values of ,  is defined,  exists, and . Therefore,  is continuous everywhere.

44) 

45) Where is  continuous?

Answer
Nowhere

2.5E: Exercises for Section 2.4 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

2.4E: Exercises for Section 2.4 is licensed CC BY-NC-SA 4.0.

F

1.6022 ×10

−19

= 8.988 × N /k

e

10

9

m

2

C

2

R < 1

0 R 10 −20 r ≥ R

1.6022 × C10

−19

= 8.988 × N /k

e

10

9

m

2

C

2

R

R = 0.0001519

F (d) = −mk/d

2

d

k

k

D

F (d) =

⎧

⎩

⎨

− ,

mk

d

2

10, 000,

if d < D

if d ≥ D

D

D = 63.78

F (d) =

⎧

⎩

⎨

⎪

⎪

⎪

⎪

− ,

km

1

d

2

− ,

km

2

d

2

if d < D

if d ≥ D

D

≠m

1

m

2

f(θ) = sinθ

a f(a) f(θ)lim

θ→a

f(θ) = f(a)lim

θ→a

f(θ)

g(x) = |x|

f(x) ={

0,

1,

if x is irrational

if x is rational
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2.6: The Precise Definition of a Limit

Describe the epsilon-delta definition of a limit.
Apply the epsilon-delta definition to find the limit of a function.
Describe the epsilon-delta definitions of one-sided limits and infinite limits.
Use the epsilon-delta definition to prove the limit laws.

By now you have progressed from the very informal definition of a limit in the introduction of this chapter to the intuitive
understanding of a limit. At this point, you should have a very strong intuitive sense of what the limit of a function means and how
you can find it. In this section, we convert this intuitive idea of a limit into a formal definition using precise mathematical language.
The formal definition of a limit is quite possibly one of the most challenging definitions you will encounter early in your study of
calculus; however, it is well worth any effort you make to reconcile it with your intuitive notion of a limit. Understanding this
definition is the key that opens the door to a better understanding of calculus.

Quantifying Closeness
Before stating the formal definition of a limit, we must introduce a few preliminary ideas. Recall that the distance between two
points  and  on a number line is given by | |.

The statement | |<ε may be interpreted as: The distance between  and  is less than .
The statement  may be interpreted as:  and the distance between  and  is less than .

It is also important to look at the following equivalences for absolute value:

The statement |  is equivalent to the statement .
The statement  is equivalent to the statement  and .

With these clarifications, we can state the formal epsilon-delta definition of the limit.

Let  be defined for all  over an open interval containing . Let  be a real number. Then

if, for every , there exists a , such that if , then .

This definition may seem rather complex from a mathematical point of view, but it becomes easier to understand if we break it
down phrase by phrase. The statement itself involves something called a universal quantifier (for every ), an existential
quantifier (there exists a ), and, last, a conditional statement (if , then . Let’s take a look at
Table , which breaks down the definition and translates each part.

Table 

Definition Translation

1. For every , 1. For every positive distance  from L,

2. there exists a , 2. There is a positive distance  from a,

3. such that 3. such that

4. if , then .
4. if  is closer than  to a and , then  is closer than ε to
L.

We can get a better handle on this definition by looking at the definition geometrically. Figure shows possible values of  for
various choices of  for a given function , a number a, and a limit L at a. Notice that as we choose smaller values of ε (the
distance between the function and the limit), we can always find a  small enough so that if we have chosen an x value within  of
a, then the value of  is within  of the limit L.

Learning Objectives

a b a−b

f(x)−L f(x) L ε

0 < |x−a| < δ x ≠ a x a δ

f(x)−L| < ε L−ε< f(x) <L+ε

0 < |x−a| < δ a−δ< x < a+δ x ≠ a

Definition: Finite Limits (Formal)

f(x) x ≠ a a L

f(x) =Llim

x→a

(2.6.1)

ε> 0 δ> 0 0 < |x−a| < δ |f(x)−L| < ε

ε> 0

δ> 0 0 < |x−a| < δ |f(x)−L| < ε)

2.6.1

2.6.1

ε > 0 ε

δ > 0 δ

0 < |x− a| < δ |f(x)−L| < ε

x δ x≠ a f(x)

δ

ε> 0 f(x)

δ δ

f(x) ε
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Figure : These graphs show possible values of , given successively smaller choices of ε.

Visit the following applet to experiment with finding values of  for selected values of :

The epsilon-delta definition of limit

Example  shows how you can use this definition to prove a statement about the limit of a specific function at a specified
value.

Prove that .

Solution

Let .

The first part of the definition begins “For every .”This means we must prove that whatever follows is true no matter
what positive value of ε is chosen. By stating “Let

,” we signal our intent to do so.

Choose .

The definition continues with “there exists a . ” The phrase “there exists” in a mathematical statement is always a signal
for a scavenger hunt. In other words, we must go and find . So, where exactly did  come from? There are two basic
approaches to tracking down . One method is purely algebraic and the other is geometric.

We begin by tackling the problem from an algebraic point of view. Since ultimately we want , we begin by
manipulating this expression:  is equivalent to , which in turn is equivalent to .

2.6.1 δ

Note

δ ε

2.6.1

Epsilon Delta De�nition of the LimitEpsilon Delta De�nition of the Limit

Example : Proving a Statement about the Limit of a Specific Function2.6.2

(2x+1) = 3lim

x→1

ε> 0

ε> 0

ε> 0

δ=

ε

2

δ> 0

δ δ= ε/2

δ

|(2x+1)−3| < ε

|(2x+1)−3| < ε |2x−2| < ε |2||x−1| < ε
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Last, this is equivalent to . Thus, it would seem that  is appropriate.

We may also find  through geometric methods. Figure demonstrates how this is done.

Figure : This graph shows how we find  geometrically.

Assume . When  has been chosen, our goal is to show that if , then . To
prove any statement of the form “If this, then that,” we begin by assuming “this” and trying to get “that.”

Thus,

 property of absolute value

 

 here’s where we use the assumption that 

 here’s where we use our choice of 

Analysis

In this part of the proof, we started with  and used our assumption  in a key part of the chain of
inequalities to get  to be less than ε. We could just as easily have manipulated the assumed inequality 

 to arrive at  as follows:

Therefore,  (Having completed the proof, we state what we have accomplished.)

After removing all the remarks, here is a final version of the proof:

Let .

Choose .

Assume .

|x−1| < ε/2 δ= ε/2

δ

2.6.2 δ

0 < |x−1| < δ δ 0 < |x−1| < δ |(2x+1)−3| < ε

|(2x+1)−3| = |2x−2|

= |2(x−1)|

= |2||x−1| |2| = 2

= 2|x−1|

< 2 ⋅ δ 0 < |x−1| < δ

= 2 ⋅ = ε

ε

2

δ= ε/2

|(2x+1)−3| 0 < |x−1| < δ

|(2x+1)−3|

0 < |x−1| < δ |(2x+1)−3| < ε

0 < |x−1| < δ⇒ |x−1| < δ

⇒−δ< x−1 < δ

⇒− < x−1 <

ε

2

ε

2

⇒−ε< 2x−2 < ε

⇒−ε< 2x−2 < ε

⇒ |2x−2| < ε

⇒ |(2x+1)−3| < ε.

(2x+1) = 3.lim

x→1

ε> 0

δ= ε/2

0 < |x−1| < δ
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Thus,

Therefore, .

The following Problem-Solving Strategy summarizes the type of proof we worked out in Example .

The following Problem-Solving Strategy summarizes the type of proof we worked out in Example.

1. Let’s begin the proof with the following statement: Let .
2. Next, we need to obtain a value for . After we have obtained this value, we make the following statement, filling in the

blank with our choice of : Choose _______.
3. The next statement in the proof should be (at this point, we fill in our given value for ): Assume .
4. Next, based on this assumption, we need to show that , where  and  are our function  and our

limit . At some point, we need to use .
5. We conclude our proof with the statement: Therefore, .

Complete the proof that  by filling in the blanks.

Let _____.

Choose _______.

Assume −_______| .

Thus, |________−________|=_____________________________________ .

Solution

We begin by filling in the blanks where the choices are specified by the definition. Thus, we have

Let .

Choose =_______.

Assume . (or equivalently, .)

Thus, _______ .

Focusing on the final line of the proof, we see that we should choose .

We now complete the final write-up of the proof:

Let .

Choose .

Assume  (or equivalently, .)

Thus, .

|(2x+1)−3| = |2x−2|

= |2(x−1)|

= |2||x−1|

= 2|x−1|

< 2 ⋅ δ

= 2 ⋅

ε

2

= ε.

(2x+1) = 3lim

x→1

2.6.2

Problem-Solving Strategy: Proving That  for a Specific Function f(x) = Llim

x→a

f(x)

ε> 0

δ

δ δ=

a 0 < |x−a| < δ

|f(x)−L| < ε f(x) L f(x)

L 0 < |x−a| < δ

f(x) =Llim

x→a

Example : Proving a Statement about a Limit2.6.3

(4x+1) =−3lim

x→−1

δ=

0 < |x < δ

ε

ε> 0

δ

0 < |x−(−1)| < δ 0 < |x+1| < δ

|(4x+1)−(−3)| = |4x+4| = |4||x+1| < 4δ ε

δ=

ε

4

ε> 0

δ=

ε

4

0 < |x−(−1)| < δ 0 < |x+1| < δ

|(4x+1)−(−3)| = |4x+4]| = |4||x+1| < 4δ= 4(ε/4) = ε
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Complete the proof that  by filling in the blanks.

Let _______.

Choose  =_______.

Assume ____ ____.

Thus,

|_______−____| ______________________________ .

Therefore, .

Hint

Follow the outline in the Problem-Solving Strategy that we worked out in full in Example .

Answer

Let ; choose ; assume .

Thus, .

Therefore, .

In Examples  and , the proofs were fairly straightforward, since the functions with which we were working were linear.
In Example , we see how to modify the proof to accommodate a nonlinear function.

Prove that .

Solution

1. Let . The first part of the definition begins “For every ,” so we must prove that whatever follows is true no
matter what positive value of  is chosen. By stating “Let ,” we signal our intent to do so.

2. Without loss of generality, assume . Two questions present themselves: Why do we want  and why is it okay to
make this assumption? In answer to the first question: Later on, in the process of solving for , we will discover that  involves
the quantity . Consequently, we need . In answer to the second question: If we can find  that “works” for 

, then it will “work” for any  as well. Keep in mind that, although it is always okay to put an upper bound on ε, it is
never okay to put a lower bound (other than zero) on .

3. Choose . Figure  shows how we made this choice of .

Figure : This graph shows how we find δ geometrically for a given ε for the proof in Example.

Exercise 2.6.1

(3x−2) = 4lim

x→2

δ

0 < |x− | <

= ε

(3x−2) = 4lim

x→2

2.6.3

ε> 0 δ=

ε

3

0 < |x−2| < δ

|(3x−2)−4| = |3x−6| = |3| ⋅ |x−2| < 3 ⋅ δ= 3 ⋅ (ε/3) = ε

(3x−2) = 4lim

x→2

2.6.1 2.6.2

2.6.4

Example : Proving a Statement about the Limit of a Specific Function (Geometric Approach)2.6.4

= 4lim

x→2

x

2

ε> 0 ε> 0

ε ε> 0

ε≤ 4 ε≤ 4

δ δ

4−ε

− −−−

√ ε≤ 4 δ> 0

ε≤ 4 ε> 4

ε

δ=min2− , −24−ε

− −−−

√ 4+ε

− −−−

√ 2.6.3 δ

2.6.3
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4. We must show: If , then , so we must begin by assuming

We don’t really need  (in other words, ) for this proof. Since , it is okay to
drop .

Hence,

Recall that { }. Thus,  and consequently . We also
use  here. We might ask at this point: Why did we substitute  for  on the left-hand side of the
inequality and  on the right-hand side of the inequality? If we look at Figure , we see that 
corresponds to the distance on the left of  on the -axis and  corresponds to the distance on the right. Thus,

We simplify the expression on the left:

.

Then, we add 2 to all parts of the inequality:

We square all parts of the inequality. It is okay to do so, since all parts of the inequality are positive:

We subtract  from all parts of the inequality:

Last,

5. Therefore,

Find δ corresponding to  for a proof that .

Hint

Draw a graph similar to the one in Example .

0 < |x−2| < δ | −4| < εx

2

0 < |x−2| < δ.

0 < |x−2| x ≠ 2 0 < |x−2| < δ⇒ |x−2| < δ

0 < |x−2|

|x−2| < δ.

−δ< x−2 < δ.

δ=min 2− , −24−ε

− −−−

√ 4+ε

− −−−

√ δ≥ 2− 4−ε

− −−−

√ −(2− ) ≤−δ4−ε

− −−−

√

δ≤ −24+ε

− −−−

√ 2− 4−ε

− −−−

√ δ

−24+ε

− −−−

√ 2.6.3 2− 4−ε

− −−−

√

2 x −24+ε

− −−−

√

−(2− ) ≤−δ< x−2 < δ≤ −2.4−ε

− −−−

√ 4+ε

− −−−

√

−2+ < x−2 < −24−ε

− −−−

√

4+ε

− −−−

√

< x < .4−ε

− −−−

√ 4+ε

− −−−

√

4−ε< < 4+ε.x

2

4

−ε< −4 < ε.x

2

| −4| < ε.x

2

= 4.lim

x→2

x

2

Given Epsilon Find Delta for a LimitGiven Epsilon Find Delta for a Limit

Exercise 2.6.2

ε> 0 = 3lim

x→9

x

−−

√

2.6.4
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Answer

Choose .

The geometric approach to proving that the limit of a function takes on a specific value works quite well for some functions. Also,
the insight into the formal definition of the limit that this method provides is invaluable. However, we may also approach limit
proofs from a purely algebraic point of view. In many cases, an algebraic approach may not only provide us with additional insight
into the definition, it may prove to be simpler as well. Furthermore, an algebraic approach is the primary tool used in proofs of
statements about limits. For Example , we take on a purely algebraic approach.

Prove that 

Solution

Let’s use our outline from the Problem-Solving Strategy:

1. Let .

2. Choose . This choice of  may appear odd at first glance, but it was obtained by taking a look at our
ultimate desired inequality: . This inequality is equivalent to . At this point, the
temptation simply to choose  is very strong. Unfortunately, our choice of  must depend on ε only and no other
variable. If we can replace  by a numerical value, our problem can be resolved. This is the place where assuming 
comes into play. The choice of  here is arbitrary. We could have just as easily used any other positive number. In some
proofs, greater care in this choice may be necessary. Now, since  and , we are able to show that 

. Consequently, . At this point we realize that we also need . Thus, we
choose .

3. Assume . Thus,

Since , we may conclude that . Thus, by subtracting  from all parts of the inequality, we obtain 
. Consequently, . This gives us

Therefore,

Complete the proof that .

Let ; choose ; assume .

Since , we may conclude that . Thus, . Hence, .

Hint

Use Example  as a guide.

Answer

δ=min{9−(3−ε , (3+ε −9})

2

)

2

2.6.5

Example :Proving a Statement about the Limit of a Specific Function (Algebraic Approach)2.6.5

( −2x+3) = 6.lim

x→−1

x

2

ε> 0

δ=min{1, ε/5} δ

( −2x+3)−6 ∣< ε

∣

∣

x

2

|x+1| ⋅ |x−3| < ε

δ=

ε

x−3

δ

|x−3| δ≤ 1

δ≤ 1

δ≤ 1 |x+1| < δ≤ 1

|x−3| < 5 |x+1| ⋅ |x−3| < |x+1| ⋅ 5 δ≤ ε/5

δ=min{1, ε/5}

0 < |x+1| < δ

|x+1| < 1 and |x+1| < .

ε

5

|x+1| < 1 −1 < x+1 < 1 4

−5 < x−3 <−1 |x−3| < 5

( −2x+3)−6 = |x+1| ⋅ |x−3| < ⋅ 5 = ε.

∣

∣

x

2

∣

∣

ε

5

( −2x+3) = 6.lim

x→−1

x

2

Exercise 2.6.3

= 1lim

x→1

x

2

ε> 0 δ=min{1, ε/3} 0 < |x−1| < δ

|x−1| < 1 −1 < x−1 < 1 1 < x+1 < 3 |x+1| < 3

2.6.5

−1 ∣= |x−1| ⋅ |x+1| < ε/3 ⋅ 3 = ε

∣

∣

x

2
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You will find that, in general, the more complex a function, the more likely it is that the algebraic approach is the easiest to apply.
The algebraic approach is also more useful in proving statements about limits.

Proving Limit Laws
We now demonstrate how to use the epsilon-delta definition of a limit to construct a rigorous proof of one of the limit laws. The
triangle inequality is used at a key point of the proof, so we first review this key property of absolute value.

The triangle inequality states that if a and b are any real numbers, then .

We prove the following limit law: If  and , then .

Let .

Choose  so that if , then .

Choose  so that if , then .

Choose .

Assume .

Thus,

 and .

Hence,

□

We now explore what it means for a limit not to exist. The limit  does not exist if there is no real number  for which 

. Thus, for all real numbers , . To understand what this means, we look at each part of the definition

of  together with its opposite. A translation of the definition is given in Table .

Table 

Definition Opposite

1. For every , 1. There exists  so that

2. there exists a , so that 2. for every ,

3. if , then .
3. There is an x satisfying  so that 

.

Translation of the Definition of  and its Opposite

Finally, we may state what it means for a limit not to exist. The limit  does not exist if for every real number , there

exists a real number  so that for all , there is an  satisfying , so that . Let’s apply this
in Example  to show that a limit does not exist.

Definition: The Triangle Inequality

|a+b| ≤ |a| + |b|

Proof

f(x) =Llim

x→a

g(x) =Mlim

x→a

(f(x)+g(x)) =L+Mlim

x→a

ε> 0

> 0δ

1

0 < |x−a| < δ

1

|f(x)−L| < ε/2

> 0δ

2

0 < |x−a| < δ

2

|g(x)−M | < ε/2

δ=min{ , }δ

1

δ

2

0 < |x−a| < δ

0 < |x−a| < δ

1

0 < |x−a| < δ

2

.

|(f(x)+g(x))−(L+M)| = |(f(x)−L)+(g(x)−M)|

≤ |f(x)−L| + |g(x)−M |

< + = ε

ε

2

ε

2

f(x)lim

x→a

L

f(x) =Llim

x→a

L f(x) ≠Llim

x→a

f(x) =Llim

x→a

2.6.2

2.6.2

ε > 0 ε > 0

δ > 0 δ > 0

0 < |x− a| < δ |f(x)−L| < ε

0 < |x− a| < δ

|f(x)−L| ≥ ε

f(x) =Llim

x→a

f(x)lim

x→a

L

ε> 0 δ> 0 x 0 < |x−a| < δ |f(x)−L| ≥ ε

2.6.6
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Show that  does not exist. The graph of  is shown here:

Solution

Suppose that  is a candidate for a limit. Choose .

Let . Either  or . If , then let .

Thus,

and

.

On the other hand, if , then let . Thus,

and

.

Thus, for any value of , 

One-Sided Limits
Just as we first gained an intuitive understanding of limits and then moved on to a more rigorous definition of a limit, we now
revisit one-sided limits. To do this, we modify the epsilon-delta definition of a limit to give formal epsilon-delta definitions for
limits from the right and left at a point. These definitions only require slight modifications from the definition of the limit. In the
definition of the limit from the right, the inequality  replaces , which ensures that we only consider
values of  that are greater than (to the right of) . Similarly, in the definition of the limit from the left, the inequality 

 replaces , which ensures that we only consider values of  that are less than (to the left of) .

Limit from the Right: Let  be defined over an open interval of the form  where . Then

if for every , there exists a , such that if , then .

Limit from the Left: Let  be defined over an open interval of the form  where . Then,

Example : Showing That a Limit Does Not Exist2.6.6

lim

x→0

|x|

x

f(x) = |x|/x

L ε= 1/2

δ> 0 L≥ 0 L< 0 L≥ 0 x =−δ/2

|x−0| =∣ − −0 ∣= < δ

δ

2

δ

2

−L = |−1−L| =L+1 ≥ 1 > = ε

∣

∣

∣

−

∣

∣

δ

2

∣

∣

−

δ

2

∣

∣

∣

1

2

L< 0 x = δ/2

|x−0| =∣ −0 ∣= < δ

δ

2

δ

2

−L = |1−L| = |L| +1 ≥ 1 > = ε

∣

∣

∣

∣

∣

δ

2

∣

∣

δ

2

∣

∣

∣

1

2

L ≠L.lim

x→0

|x|

x

0 < x−a< δ 0 < |x−a| < δ

x a

−δ< x−a< 0 0 < |x−a| < δ x a

Definition: One-Sided Limits (Formal)

f(x) (a, b) a< b

f(x) =Llim

x→a

+

(2.6.2)

ε> 0 δ> 0 0 < x−a< δ |f(x)−L| < ε

f(x) (b, c) b < c
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if for every ,there exists a  such that if , then .

Prove that

Solution

Let .

Choose . Since we ultimately want , we manipulate this inequality to get  or,
equivalently, , making  a clear choice. We may also determine  geometrically, as shown in Figure 

.

Figure : This graph shows how we find δ for the proof in Example.

Assume . Thus, . Hence, . Finally, . Therefore, 
.

Find  corresponding to  for a proof that .

Hint

Sketch the graph and use Example  as a solving guide.

Answer

Infinite Limits

We conclude the process of converting our intuitive ideas of various types of limits to rigorous formal definitions by pursuing a
formal definition of infinite limits. To have , we want the values of the function  to get larger and larger as 

approaches a. Instead of the requirement that  for arbitrarily small  when  for small enough , we
want  for arbitrarily large positive  when  for small enough . Figure  illustrates this idea by
showing the value of  for successively larger values of .

f(x) =Llim

x→c

−

(2.6.3)

ε> 0 δ> 0 −δ< x−c < 0 |f(x)−L| < ε

Example : Proving a Statement about a Limit From the Right2.6.7

= 0.lim

x→4

+

x−4

− −−−−

√

ε> 0

δ= ε

2

−0 ∣< ε

∣

∣

x−4

− −−−−

√ < εx−4

− −−−−

√

0 < x−4 < ε

2

δ= ε

2

δ

2.6.4

2.6.4

0 < x−4 < δ 0 < x−4 < ε

2

0 < < εx−4

− −−−−

√ −0 < ε

∣

∣

x−4

− −−−−

√

∣

∣

= 0lim

x→4

+

x−4

− −−−−

√

Exercise 2.6.4

δ ε = 0lim

x→1

−

1−x

− −−−−

√

2.6.7

δ= ε

2

f(x) =+∞lim

x→a

f(x) x

|f(x)−L| < ε ε 0 < |x−a| < δ δ

f(x) >M M 0 < |x−a| < δ δ 2.6.5

δ M
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Figure : These graphs plot values of  for  to show that .

Let  be defined for all  in an open interval containing . Then, we have an infinite limit

if for every , there exists  such that if , then .

Let  be defined for all  in an open interval containing . Then, we have a negative infinite limit

if for every , there exists  such that if , then .

Prove that 

Solution

We use a very similar approach to our previous Problem-Solving Strategy. We first find an appropriate . Then we write
our proof.

Step 1: First we find an appropriate .

1. Let  be any real number such that .

2. Let . Then we solve for the expression .

Multiplying both sides of the inequality by the positive quantity  and dividing both sides by the positive quantity 
gives us:

Taking the square root of both sides, we have,

Rewriting this statement gives us, . From this we choose .

2.6.5 δ M f(x) = +∞lim

x→a

Definition: Infinite Limits (Formal)

f(x) x ≠ a a

f(x) = +∞lim

x→a

(2.6.4)

M > 0 δ > 0 0 < |x−a| < δ f(x) >M

f(x) x ≠ a a

f(x) = −∞lim

x→a

(2.6.5)

M > 0 δ > 0 0 < |x−a| < δ f(x) < −M

Example : Proving a Statement about an Infinite Limit2.6.8

= ∞.lim

x→3

1

(x−3)

2

δ > 0

δ > 0

M M > 0

f(x) = >M

1

(x−3)

2

x−3

(x−3)

2

M

> (x−3

1

M

)

2

> |x−3|. (Remember that  = |x|.)

1

M

−−−

√

x

2

−−

√

0 < |x−3| <

1

M

−−−

√

δ =

1

M

−−−

√
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Step 2: Now we write a proof.

3. Let  and assume .

Thus,

Squaring both sides gives us,

Taking the reciprocal of both sides (and remembering that this will reverse the direction of the inequality),

Therefore, we have proven that

A very similar proof will be needed for a limit that is equal to .

Note that a one-sided limit approach will often need to be taken with this type of limit. For example, to prove: .

Key Concepts
The intuitive notion of a limit may be converted into a rigorous mathematical definition known as the epsilon-delta definition of
the limit.
The epsilon-delta definition may be used to prove statements about limits.
The epsilon-delta definition of a limit may be modified to define one-sided limits.
A similar definition of an infinite limit can be used to prove statements about infinite limits.

Glossary

epsilon-delta definition of the limit
 if for every , there exists a  such that if , then 

triangle inequality
If  and  are any real numbers, then 

formal definition of an infinite limit
 if for every , there exists a  such that if , then  

 if for every , there exists a  such that if , then 

Contributors and Attributions
Template:ContribOpenStaxCalc
Paul Seeburger (Monroe Community College), added Example  and entries for infinite limits under Key Concepts and the
Glossary.

This page titled 2.6: The Precise Definition of a Limit is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

2.5: The Precise Definition of a Limit by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

δ=

1

M

−−−

√

0 < |x−3| < δ=

1

M

−−−

√

|x−3| < .

1

M

−−−

√

(x−3 < .)

2

1

M

>M .

1

(x−3)

2

=∞.lim

x→3

1

(x−3)

2

−∞

=∞lim

x→0

+

1

x

f(x) =Llim

x→a

ε> 0 δ> 0 0 < |x−a| < δ |f(x)−L| < ε

a b |a+b| ≤ |a| + |b|

f(x) =∞lim

x→a

M > 0 δ> 0 0 < |x−a| < δ f(x) >M

f(x) =−∞lim

x→a

M > 0 δ> 0 0 < |x−a| < δ f(x) <−M
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2.6E: Exercises for Section 2.5
In exercises 1 - 4, write the appropriate  definition for each of the given statements.

1) 

2) 

Answer
For every , there exists a , so that if , then 

3) 

4) 

Answer
For every , there exists a , so that if , then 

The following graph of the function  satisfies . In the following exercises, determine a value of  that

satisfies each statement.

5) If , then .

6) If , then .

Answer

The following graph of the function  satisfies . In the following exercises, determine a value of  that

satisfies each statement.

ε−δ

f(x) =Nlim

x→a

g(t) =Mlim

t→b

ε> 0 δ> 0 0 < |t−b| < δ |g(t)−M | < ε

h(x) =Llim

x→c

φ(x) =Alim

x→a

ε> 0 δ> 0 0 < |x−a| < δ |φ(x)−A| < ε

f f(x) = 2lim

x→2

δ> 0

0 < |x−2| < δ |f(x)−2| < 1

0 < |x−2| < δ |f(x)−2| < 0.5

δ≤ 0.25

f f(x) =−1lim

x→3

δ> 0
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7) If , then .

8) If , then .

Answer

The following graph of the function  satisfies . In the following exercises, for each value of , find a value of 

 such that the precise definition of limit holds true.

9) 

10) 

Answer

[T] In exercises 11 - 12, use a graphing calculator to find a number  such that the statements hold true.

11) , whenever 

12) , whenever 

Answer

0 < |x−3| < δ |f(x)+1| < 1

0 < |x−3| < δ |f(x)+1| < 2

δ≤ 2

f f(x) = 2lim

x→3

ε

δ> 0

ε= 1.5

ε= 3

δ≤ 1

δ

sin(2x)− < 0.1

∣

∣

1

2

∣

∣

x− < δ

∣

∣

π

12

∣

∣

−2 < 0.1

∣

∣

x−4

− −−−−

√

∣

∣

|x−8| < δ

δ< 0.3900
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In exercises 13 - 17, use the precise definition of limit to prove the given limits.

13) 

14) 

Answer

Let . If , then .

15) 

16) 

Answer
Let . If , then .

17) 

In exercises 18 - 20, use the precise definition of limit to prove the given one-sided limits.

18) 

Answer
Let . If  we can multiply through by  to get  
Then .

19) , where .

20) , where .

Answer
Let . If  we can multiply through by  to get  
Then  since  here. 
And .

In exercises 21 - 23, use the precise definition of limit to prove the given infinite limits.

21) 

22) 

Answer

Let . If , then .

23) 

24) An engineer is using a machine to cut a flat square of Aerogel of area . If there is a maximum error tolerance in the
area of , how accurately must the engineer cut on the side, assuming all sides have the same length? How do these numbers
relate to , , , and ?

Answer

(5x+8) = 18lim

x→2

= 6lim

x→3

−9x

2

x−3

δ= ε 0 < |x−3| < ε −6 = −6 = |x+3−6| = |x−3| < ε

∣

∣

∣

−9x

2

x−3

∣

∣

∣

∣

∣

∣

(x+3)(x−3)

x−3

∣

∣

∣

= 5lim

x→2

2 −3x−2x

2

x−2

= 0lim

x→0

x

4

δ= ε

√

4

0 < |x| < ε

√

4

−0 = < ε

∣

∣

x

4

∣

∣

x

4

( +2x) = 8lim

x→2

x

2

= 0lim

x→5

−

5−x

− −−−−

√

δ= ε

2

− < x−5 < 0,ε

2

−1 0 < 5−x < .ε

2

| −0| = < = ε5−x

− −−−−

√ 5−x

− −−−−

√ ε

2

−−

√

f(x) =−2lim

x→0

+

f(x) ={

8x−3,

4x−2,

if x < 0

if x ≥ 0

f(x) = 3lim

x→1

−

f(x) ={

5x−2,

7x−1,

if x < 1

if x ≥ 1

δ= ε/5 −ε/5 < x−1 < 0, −1 0 < 1−x < ε/5.

|f(x)−3| = |5x−2−3| = |5x−5| = 5(1−x), x < 1

5(1−x) < 5(ε/5) = ε

=∞lim

x→0

1

x

2

=∞lim

x→−1

3

(x+1)

2

δ=

3

N

−−

√ 0 < |x+1| <

3

N

−−

√ f(x) = >N

3

(x+1)

2

− =−∞lim

x→2

1

(x−2)

2

144 cm

2

8 cm

2

δ ε a L
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25) Use the precise definition of limit to prove that the following limit does not exist: 

26) Using precise definitions of limits, prove that  does not exist, given that  is the ceiling function. (Hint: Try any 

.)

Answer
Answers may very.

27) Using precise definitions of limits, prove that  does not exist: . (Hint: Think about

how you can always choose a rational number , >

28) Using precise definitions of limits, determine  for . (Hint: Break into two cases, 

rational and  irrational.)

Answer

29) Using the function from the previous exercise, use the precise definition of limits to show that  does not exist for 

For exercises 30 - 32, suppose that  and  both exist. Use the precise definition of limits to prove

the following limit laws:

30) 

Answer

31)  for any real constant  (Hint: Consider two cases:  and .)

32) . (Hint: 

Answer
Answers may vary.

2.6E: Exercises for Section 2.5 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

2.5E: Exercises for Section 2.5 is licensed CC BY-NC-SA 4.0.

0.033 cm, ε = 8, δ = 0.33, a = 12, L = 144

.lim

x→1

|x−1|

x−1

f(x)lim

x→0

f(x)

δ < 1

f(x)lim

x→0

f(x) ={

1,

0,

if x is rational

if x is irrational

0 < d

f(x)lim

x→0

f(x) ={

x,

0,

if x is rational

if x is irrational

x

x

0

f(x)lim

x→a

a ≠ 0

f(x) = Llim

x→a

g(x) = Mlim

x→a

(f(x) −g(x)) = L−Mlim

x→a

f(x) −g(x) = f(x) +(−1)g(x)

[cf(x)] = cLlim

x→a

c c = 0 c ≠ 0

[f(x)g(x)] = LMlim

x→a

|f(x)g(x) −LM | = |f(x)g(x) −f(x)M +f(x)M −LM | ≤ |f(x)||g(x) −M | + |M ||f(x) −L|. )
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2.7: Chapter 2 Review Exercises
True or False. In exercises 1 - 4, justify your answer with a proof or a counterexample.

1) A function has to be continuous at  if the  exists.

2) You can use the quotient rule to evaluate .

Answer
False, since we cannot have  in the denominator.

3) If there is a vertical asymptote at  for the function , then  is undefined at the point .

4) If  does not exist, then  is undefined at the point .

Answer
False. A jump discontinuity is possible.

5) Using the graph, find each limit or explain why the limit does not exist.

a. 

b. 

c. 

d. 

In exercises 6 - 15, evaluate the limit algebraically or explain why the limit does not exist.

6) 

Answer

7) 

8) 

Answer

9) 

x = a f(x)lim

x→a

lim

x→0

sinx

x

x = 0lim

x→0

x = a f(x) f x = a

f(x)lim

x→a

f x = a

f(x)lim

x→−1

f(x)lim

x→1

f(x)lim

x→0

+

f(x)lim

x→2

lim

x→2

2 −3x−2x

2

x−2

5

3 −2x+4lim

x→0

x

2

lim

x→3

−2 −1x

3

x

2

3x−2

8/7

lim

x→π/2

cotx

cosx
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10) 

Answer
DNE

11) 

12) 

Answer

13) 

14) 

Answer

15) 

In exercises 16 - 17, use the squeeze theorem to prove the limit.

16) 

Answer
Since , then . Since , it follows that 

.

17) 

18) Determine the domain such that the function  is continuous over its domain.

Answer

In exercises 19 - 20, determine the value of  such that the function remains continuous. Draw your resulting function to
ensure it is continuous.

19) 

20) 

In exercises 21 - 22, use the precise definition of limit to prove the limit.

21) 

22) 

Answer

lim

x→−5

+25x

2

x+5

lim

x→2

3 −2x−8x

2

−4x

2

lim

x→1

−1x

2

−1x

3

2/3

lim

x→1

−1x

2

−1x

−−

√

lim

x→4

4−x

−2x

−−

√

−4

lim

x→4

1

−2x

−−

√

cos(2πx) = 0lim

x→0

x

2

−1 ≤ cos(2πx) ≤ 1 − ≤ cos(2πx) ≤x

2

x

2

x

2

= 0 = −lim

x→0

x

2

lim

x→0

x

2

cos(2πx) = 0lim

x→0

x

2

sin( )= 0lim

x→0

x

3

π

x

f(x) = +xx−2

− −−−−

√ e

x

[2,∞]

c

f(x) ={

+1,x

2

,2

x

if x > c

if x ≤ c

f(x) ={

,x+1

− −−−−

√

+c,x

2

if x >−1

if x ≤−1

(8x+16) = 24lim

x→1

= 0lim

x→0

x

3

δ= ε

√

3
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23) A ball is thrown into the air and the vertical position is given by . Use the Intermediate Value
Theorem to show that the ball must land on the ground sometime between 5 sec and 6 sec after the throw.

24) A particle moving along a line has a displacement according to the function , where  is measured in meters
and  is measured in seconds. Find the average velocity over the time period .

Answer
 m/sec

25) From the previous exercises, estimate the instantaneous velocity at  by checking the average velocity within  sec.

2.7: Chapter 2 Review Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

2.R: Chapter 2 Review Exercises is licensed CC BY-NC-SA 4.0.

x(t) =−4.9 +25t+5t

2

x(t) = −2t+4t

2

x

t t = [0, 2]

0

t = 2 t = 0.01
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CHAPTER OVERVIEW

3: Derivatives
Calculating velocity and changes in velocity are important uses of calculus, but it is far more widespread than that. Calculus is
important in all branches of mathematics, science, and engineering, and it is critical to analysis in business and health as well. In
this chapter, we explore one of the main tools of calculus, the derivative, and show convenient ways to calculate derivatives. We
apply these rules to a variety of functions in this chapter so that we can then explore applications of these techniques.

3.1: Prelude to Derivatives
3.2: Defining the Derivative

3.2E: Exercises for Section 3.1

3.3: The Derivative as a Function

3.3E: Exercises for Section 3.2

3.4: Differentiation Rules

3.4E: Exercises for Section 3.3

3.5: Derivatives as Rates of Change

3.5E: Exercises for Section 3.4

3.6: Derivatives of Trigonometric Functions

3.6E: Exercises for Section 3.5

3.7: The Chain Rule

3.7E: Exercises for Section 3.6

3.8: Derivatives of Inverse Functions

3.8E: Exercises for Section 3.7

3.9: Implicit Differentiation

3.9E: Exercises for Section 3.8

3.10: Derivatives of Exponential and Logarithmic Functions

3.10E: Exercises for Section 3.9

3.11: Chapter 3 Review Exercises
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3.1: Prelude to Derivatives
The Hennessey Venom GT is one of the fastest cars in the world. In 2014, it reached a record-setting speed of 270.49 mph. It can
go from 0 to 200 mph in 14.51 seconds. The techniques in this chapter can be used to calculate the acceleration the Venom achieves
in this feat.)

 Figure : The Hennessey Venom GT can go from 0 to
200 mph in 14.51 seconds. (credit: modification of work by Codex41, Flickr)

Calculating velocity and changes in velocity are important uses of calculus, but it is far more widespread than that. Calculus is
important in all branches of mathematics, science, and engineering, and it is critical to analysis in business and health as well. In
this chapter, we explore one of the main tools of calculus, the derivative, and show convenient ways to calculate derivatives. We
apply these rules to a variety of functions in this chapter so that we can then explore applications of these techniques.

This page titled 3.1: Prelude to Derivatives is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

3.0: Prelude to Derivatives by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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3.2: Defining the Derivative

Recognize the meaning of the tangent to a curve at a point.
Calculate the slope of a tangent line.
Identify the derivative as the limit of a difference quotient.
Calculate the derivative of a given function at a point.
Describe the velocity as a rate of change.
Explain the difference between average velocity and instantaneous velocity.
Estimate the derivative from a table of values.

Now that we have both a conceptual understanding of a limit and the practical ability to compute limits, we have established the
foundation for our study of calculus, the branch of mathematics in which we compute derivatives and integrals. Most
mathematicians and historians agree that calculus was developed independently by the Englishman Isaac Newton (1643–1727) and
the German Gottfried Leibniz (1646–1716), whose images appear in Figure . When we credit Newton and Leibniz with
developing calculus, we are really referring to the fact that Newton and Leibniz were the first to understand the relationship
between the derivative and the integral. Both mathematicians benefited from the work of predecessors, such as Barrow, Fermat, and
Cavalieri. The initial relationship between the two mathematicians appears to have been amicable; however, in later years a bitter
controversy erupted over whose work took precedence. Although it seems likely that Newton did, indeed, arrive at the ideas behind
calculus first, we are indebted to Leibniz for the notation that we commonly use today.

Figure : Newton and Leibniz are credited with developing calculus independently.

Tangent Lines

We begin our study of calculus by revisiting the notion of secant lines and tangent lines. Recall that we used the slope of a secant
line to a function at a point  to estimate the rate of change, or the rate at which one variable changes in relation to another
variable. We can obtain the slope of the secant by choosing a value of x near a and drawing a line through the points  and 

, as shown in Figure . The slope of this line is given by an equation in the form of a difference quotient:

We can also calculate the slope of a secant line to a function at a value a by using this equation and replacing  with , where 
 is a value close to a. We can then calculate the slope of the line through the points  and . In this case,

we find the secant line has a slope given by the following difference quotient with increment :

Learning Objectives

3.2.1

3.2.1

(a, f(a))

(a, f(a))

(x, f(x)) 3.2.2

=m

sec

f(x)−f(a)

x−a

x a+h

h (a, f(a)) (a+h, f(a+h))

h

= =m

sec

f(a+h)−f(a)

a+h−a

f(a+h)−f(a)

h
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Let  be a function defined on an interval  containing . If  is in , then

is a difference quotient.

Also, if  is chosen so that  is in , then

is a difference quotient with increment .

These two expressions for calculating the slope of a secant line are illustrated in Figure . We will see that each of these two
methods for finding the slope of a secant line is of value. Depending on the setting, we can choose one or the other. The primary
consideration in our choice usually depends on ease of calculation.

Figure : We can calculate the slope of a secant line in either of two ways.

In Figure  we see that, as the values of  approach , the slopes of the secant lines provide better estimates of the rate of
change of the function at . Furthermore, the secant lines themselves approach the tangent line to the function at , which
represents the limit of the secant lines. Similarly, Figure  shows that as the values of  get closer to , the secant lines also
approach the tangent line. The slope of the tangent line at  is the rate of change of the function at , as shown in Figure .

Figure : The secant lines approach the tangent line (shown in green) as the second point approaches the first.

Definition: Difference Quotient

f I a x ≠ a I

Q =

f(x)−f(a)

x−a

(3.2.1)

h ≠ 0 a+h I

Q =

f(a+h)−f(a)

h

(3.2.2)

h

3.2.2

3.2.2

3.2.3a x a

a a

3.2.3b h 0

a a 3.2.3c

3.2.3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25935?pdf


3.2.3 https://stats.libretexts.org/@go/page/25935

In Figure  we show the graph of  and its tangent line at  in a series of tighter intervals about . As the
intervals become narrower, the graph of the function and its tangent line appear to coincide, making the values on the tangent line a
good approximation to the values of the function for choices of  close to . In fact, the graph of  itself appears to be locally
linear in the immediate vicinity of .

Figure : For values of  close to , the graph of  and its tangent line appear to coincide.

Formally we may define the tangent line to the graph of a function as follows.

Let  be a function defined in an open interval containing . The tangent line to  at  is the line passing through the
point  having slope

provided this limit exists.

Equivalently, we may define the tangent line to  at  to be the line passing through the point  having slope

provided this limit exists.

Just as we have used two different expressions to define the slope of a secant line, we use two different forms to define the slope of
the tangent line. In this text we use both forms of the definition. As before, the choice of definition will depend on the setting. Now
that we have formally defined a tangent line to a function at a point, we can use this definition to find equations of tangent lines.

3.2.4 f(x) = x

−−

√

(1, 1) x = 1

x 1 f(x)

x = 1

3.2.4 x 1 f(x) = x

−−

√

Definition: Tangent Line

f(x) a f(x) a

(a, f(a))

=m

tan

lim

x→a

f(x)−f(a)

x−a

(3.2.3)

f(x) a (a, f(a))

=m

tan

lim

h→0

f(a+h)−f(a)

h

(3.2.4)
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Find the equation of the line tangent to the graph of  at 

Solution

First find the slope of the tangent line. In this example, use Equation .

Next, find a point on the tangent line. Since the line is tangent to the graph of  at , it passes through the point 
. We have , so the tangent line passes through the point .

Using the point-slope equation of the line with the slope  and the point , we obtain the line .
Simplifying, we have . The graph of  and its tangent line at  are shown in Figure .

Figure : The tangent line to  at .

Use Equation to find the slope of the line tangent to the graph of  at .

Solution

The steps are very similar to Example . See Equation  for the definition.

Fining the Tangent Line Using the Limit Fining the Tangent Line Using the Limit ……

Example : Finding a Tangent Line3.2.1

f(x) = x

2

x = 3.

3.2.4

m

tan

= lim

x→3

f(x) −f(3)

x−3

= lim

x→3

−9x

2

x−3

= = (x+3) = 6lim

x→3

(x−3)(x+3)

x−3

lim

x→3

Apply the definition.

Substitute f(x) =  and f(3) = 9x

2

Factor the numerator to evaluate the limit.

f(x) x = 3

(3, f(3)) f(3) = 9 (3, 9)

m = 6 (3, 9) y−9 = 6(x−3)

y = 6x−9 f(x) = x

2

3 3.2.5

3.2.5 f(x) x = 3

Example : The Slope of a Tangent Line Revisited3.2.2

f(x) = x

2

x = 3

3.2.2 3.2.4
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We obtained the same value for the slope of the tangent line by using the other definition, demonstrating that the formulas can
be interchanged.

Find the equation of the line tangent to the graph of  at .

Solution

We can use Equation , but as we have seen, the results are the same if we use Equation .

We now know that the slope of the tangent line is . To find the equation of the tangent line, we also need a point on the line.
We know that . Since the tangent line passes through the point  we can use the point-slope equation of a line to
find the equation of the tangent line. Thus the tangent line has the equation . The graphs of  and 

 are shown in Figure .

Figure :The line is tangent to  at .

m

tan

= lim

h→0

f(3 +h) −f(3)

h

= lim

h→0

(3 +h −9)

2

h

= lim

h→0

9 +6h+ −9h

2

h

= = (6 +h) = 6lim

h→0

h(6 +h)

h

lim

h→0

Apply the definition.

Substitute f(3 +h) = (3 +h  and f(3) = 9)

2

Expand and simplify to evaluate the limit.

Example : Finding the Equation of a Tangent Line3.2.3

f(x) = 1/x x = 2

3.2.3 3.2.4

m

tan

= lim

x→2

f(x) −f(2)

x−2

= lim

x→2

−

1

x

1

2

x−2

= ⋅lim

x→2

−

1

x

1

2

x−2

2x

2x

= lim

x→2

(2 −x)

(x−2)(2x)

= lim

x→2

−1

2x

= −

1

4

Apply the definition.

Substitute f(x) =  and f(2) =

1

x

1

2

Multiply numerator and denominator by 2x to simplify fractions.

Simplify.

Simplify using  = −1,  for x ≠ 2.

2 −x

x−2

Evaluate the limit.

−

1

4

f(2) =

1

2

(2, )

1

2

y = − x+1

1

4

f(x) =

1

x

y = − x+1

1

4

3.2.6

3.2.6 f(x) x = 2
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Find the slope of the line tangent to the graph of  at .

Hint

Use either Equation  or Equation . Multiply the numerator and the denominator by a conjugate.

Answer

The Derivative of a Function at a Point
The type of limit we compute in order to find the slope of the line tangent to a function at a point occurs in many applications
across many disciplines. These applications include velocity and acceleration in physics, marginal profit functions in business, and
growth rates in biology. This limit occurs so frequently that we give this value a special name: the derivative. The process of
finding a derivative is called differentiation.

Let  be a function defined in an open interval containing . The derivative of the function  at , denoted by , is
defined by

provided this limit exists.

Alternatively, we may also define the derivative of  at  as

For , use a table to estimate  using Equation .

Solution

Create a table using values of  just below  and just above .

2.9 5.9

2.99 5.99

2.999 5.999

3.001 6.001

6.01 6.01

3.1 6.1

After examining the table, we see that a good estimate is .

Exercise 3.2.1

f(x) = x

−−

√

x = 4

3.2.3 3.2.4

1

4

Definition: Derivative

f(x) a f(x) a f '(a)

f '(a) = lim

x→a

f(x)−f(a)

x−a

(3.2.5)

f(x) a

f '(a) = .lim

h→0

f(a+h)−f(a)

h

(3.2.6)

Example : Estimating a Derivative3.2.4

f(x) = x

2

f '(3) 3.2.5

x 3 3

x

−9x

2

x−3

f '(3) = 6
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For , use a table to estimate  using Equation .

Hint

Evaluate  at 

Answer

6

For , find  by using Equation .

Solution

Substitute the given function and value directly into the equation.

For , find  by using Equation .

Solution

Using this equation, we can substitute two values of the function into the equation, and we should get the same value as in
Example .

The results are the same whether we use Equation  or Equation .

Exercise 3.2.2

f(x) = x

2

f '(3) 3.2.5

(x+h) −x

2

h

h = −0.1, −0.01, −0.001, 0.001, 0.01, 0.1

Example : Finding a Derivative3.2.6

f(x) = 3 −4x+1x

2

f '(2) 3.2.6

f '(x) = lim

x→2

f(x) −f(2)

x−2

= lim

x→2

(3 −4x+1) −5x

2

x−2

= lim

x→2

(x−2)(3x+2)

x−2

= (3x+2)lim

x→2

= 8

Apply the definition.

Substitute f(x) = 3 −4x+1 and f(2) = 5.x

2

Simplify and factor the numerator.

Cancel the common factor.

Evaluate the limit.

Example : Revisiting the Derivative3.2.7

f(x) = 3 −4x+1x

2

f '(2) 3.2.6

3.2.6

f '(2) = lim

h→0

f(2 +h) −f(2)

h

= lim

h→0

(3(2 +h −4(2 +h) +1) −5)

2

h

= lim

h→0

3(4 +4h+ ) −8 −4h+1 −5h

2

h

= lim

h→0

12 +12h+3 −12 −4hh

2

h

= lim

h→0

3 +8hh

2

h

= lim

h→0

h(3h+8)

h

= (3h+8)lim

h→0

= 8

Apply the definition.

Substitute f(2) = 5 and f(2 +h) = 3(2 +h −4(2 +h) +1.)

2

Expand the numerator.

Distribute and begin simplifying the numerator.

Finish simplifying the numerator.

Factor the numerator.

Cancel the common factor.

Evaluate the limit.

3.2.5 3.2.6
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For , find .

Hint

Use either Equation , Equation , or try both.

Answer

Velocities and Rates of Change
Now that we can evaluate a derivative, we can use it in velocity applications. Recall that if  is the position of an object moving
along a coordinate axis, the average velocity of the object over a time interval  if  or  if  is given by the
difference quotient

As the values of  approach , the values of  approach the value we call the instantaneous velocity at . That is, instantaneous
velocity at , denoted , is given by

To better understand the relationship between average velocity and instantaneous velocity, see Figure. In this figure, the slope of
the tangent line (shown in red) is the instantaneous velocity of the object at time  whose position at time  is given by the
function . The slope of the secant line (shown in green) is the average velocity of the object over the time interval .

Figure : The slope of the secant line is the average velocity over the interval . The slope of the tangent line is the
instantaneous velocity.

Limit De�nition of the Derivative InvolviLimit De�nition of the Derivative Involvi……

Exercise 3.2.4

f(x) = +3x+2x

2

f '(1)

3.2.5 3.2.6

f '(1) = 5

s(t)

[a, t] t > a [t, a] t < a

= .v

ave

s(t)−s(a)

t−a

(3.2.7)

t a v

ave

a

a v(a)

v(a) = s'(a) = .lim

t→a

s(t)−s(a)

t−a

(3.2.8)

t = a t

s(t) [a, t]

3.2.7 [a, t]
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We can use Equation  to calculate the instantaneous velocity, or we can estimate the velocity of a moving object by using a
table of values. We can then confirm the estimate by using Equation .

A lead weight on a spring is oscillating up and down. Its position at time  with respect to a fixed horizontal line is given by 
 (Figure ). Use a table of values to estimate . Check the estimate by using Equation .

Figure : A lead weight suspended from a spring in vertical oscillatory motion.

Solution

We can estimate the instantaneous velocity at  by computing a table of average velocities using values of  approaching 
, as shown in Table .

Table : Average velocities using values of  approaching 0

−0.1 0.998334166

−0.01 0.9999833333

−0.001 0.999999833

0.001 0.999999833

0.01 0.9999833333

0.1 0.998334166

From the table we see that the average velocity over the time interval  is , the average velocity over the
time interval  is , and so forth. Using this table of values, it appears that a good estimate is .

By using Equation , we can see that

Thus, in fact, .

A rock is dropped from a height of  feet. Its height above ground at time  seconds later is given by 
. Find its instantaneous velocity  second after it is dropped, using Equation .

Hint

. Follow the earlier examples of the derivative using Equation .

Answer

−32 ft/s

As we have seen throughout this section, the slope of a tangent line to a function and instantaneous velocity are related concepts.
Each is calculated by computing a derivative and each measures the instantaneous rate of change of a function, or the rate of

3.2.5

3.2.7

Example : Estimating Velocity3.2.8

t

s(t) = sin t 3.2.8 v(0) 3.2.5

3.2.8

t = 0 t

0 3.2.2

3.2.2 t

t =

sin t−sin 0

t−0

sin t

t

[−0.1, 0] 0.998334166

[−0.01, 0] 0.9999833333 v(0) = 1

3.2.5

v(0) = s'(0) = = = 1.lim

t→0

sin t−sin0

t−0

lim

t→0

sin t

t

v(0) = 1

Exercise 3.2.5

64 t

s(t) =−16 +64, 0 ≤ t ≤ 2t

2

1 3.2.5

v(t) = s'(t) 3.2.5
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change of a function at any point along the function.

The instantaneous rate of change of a function  at a value  is its derivative .

Reaching a top speed of  mph, the Hennessey Venom GT is one of the fastest cars in the world. In tests it went from  to
 mph in  seconds, from  to  mph in  seconds, from  to  mph in  seconds, and from  to  mph in

 seconds. Use this data to draw a conclusion about the rate of change of velocity (that is, its acceleration) as it
approaches  mph. Does the rate at which the car is accelerating appear to be increasing, decreasing, or constant?

Figure : (credit: modification of work by Codex41, Flickr)

Solution: First observe that  mph =  ft/s,  mph ≈  ft/s,  mph ≈  ft/s, and  mph ≈  ft/s. We
can summarize the information in a table.

 at different values of 

0 0

3.05 88

5.88 147.67

14.51 293.33

19.96 337.19

Now compute the average acceleration of the car in feet per second on intervals of the form  as  approaches ,
as shown in the following table.

Average acceleration

0.0 16.89

3.05 14.74

5.88 13.46

14.51 8.05

The rate at which the car is accelerating is decreasing as its velocity approaches  mph (  ft/s).

A homeowner sets the thermostat so that the temperature in the house begins to drop from  at  p.m., reaches a low of 
 during the night, and rises back to  by  a.m. the next morning. Suppose that the temperature in the house is given by 

Definition: Instantaneous Rate of Change

f(x) a f '(a)

Example : Chapter Opener: Estimating Rate of Change of Velocity3.2.9

270.49 0

60 3.05 0 100 5.88 0 200 14.51 0 229.9

19.96

229.9

3.2.9

60 88 100 146.67 200 293.33 229.9 337.19

v(t) t

t v(t)

[t, 19.96] t 19.96

t

=

v(t)− v(19.96)

t−19.96

v(t)− 337.19

t−19.96

229.9 337.19

Example : Rate of Change of Temperature3.2.10

70°F 9

60° 70° 7
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 for , where  is the number of hours past  p.m. Find the instantaneous rate of change of
the temperature at midnight.

Solution

Since midnight is  hours past  p.m., we want to compute . Refer to Equation .

The instantaneous rate of change of the temperature at midnight is  per hour.

A toy company can sell  electronic gaming systems at a price of  dollars per gaming system. The cost of
manufacturing  systems is given by  dollars. Find the rate of change of profit when  games
are produced. Should the toy company increase or decrease production?

Solution

The profit  earned by producing  gaming systems is , where  is the revenue obtained from the sale of 
 games. Since the company can sell  games at  per game,

.

Consequently,

.

Therefore, evaluating the rate of change of profit gives

.

Since the rate of change of profit  and , the company should increase production.

A coffee shop determines that the daily profit on scones obtained by charging s dollars per scone is 
. The coffee shop currently charges  per scone. Find , the rate of change of profit

when the price is  and decide whether or not the coffee shop should consider raising or lowering its prices on scones.

Hint

Use Example  for a guide.

T (t) = 0.4 −4t+70t

2

0 ≤ t ≤ 10 t 9

3 9 T '(3) 3.2.5

T '(3) = lim

t→3

T (t) −T (3)

t−3

= lim

t→3

0.4 −4t+70 −61.6t

2

t−3

= lim

t→3

0.4 −4t+8.4t

2

t−3

= lim

t→3

0.4(t−3)(t−7)

t−3

= 0.4(t−7)lim

t→3

= −1.6

Apply the definition.

Substitute T (t) = 0.4 −4t+70 and T (3) = 61.6.t

2

Simplify.

Cancel.

Evaluate the limit.

−1.6°F

Example : Rate of Change of Profit3.2.11

x p = −0.01x+400

x C(x) = 100x+10, 000 10, 000

P (x) x R(x) −C(x) R(x)

x x p = −0.01x+400

R(x) = xp = x(−0.01x+400) = −0.01 +400xx

2

P (x) = −0.01 +300x−10, 000x

2

P '(10000) = lim

x→10000

P (x) −P (10000)

x−10000

= lim

x→10000

−0.01 +300x−10000 −1990000x

2

x−10000

= lim

x→10000

−0.01 +300x−2000000x

2

x−10000

= 100

P '(10, 000) > 0 P (10, 000) > 0

Exercise 3.2.6

P (s) = −20 +150s−10s

2

$3.25 P '(3.25)

$3.25

3.2.11
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Answer

; raise prices

Key Concepts
The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the
limit of the difference quotient or the difference quotient with increment .
The derivative of a function  at a value  is found using either of the definitions for the slope of the tangent line.
Velocity is the rate of change of position. As such, the velocity  at time  is the derivative of the position  at time . 
Average velocity is given by

Instantaneous velocity is given by

We may estimate a derivative by using a table of values.

Key Equations
Difference quotient

Difference quotient with increment h

Slope of tangent line

Derivative of f(x) at a

Average velocity

Instantaneous velocity

Glossary

derivative
the slope of the tangent line to a function at a point, calculated by taking the limit of the difference quotient, is the derivative

difference quotient

P '(3.25) = 20 > 0

h

f(x) a

v(t) t s(t) t

= .v

ave

s(t)−s(a)

t−a

v(a) = s'(a) = .lim

t→a

s(t)−s(a)

t−a

Q =

f(x)−f(a)

x−a

Q = =

f(a+h)−f(a)

a+h−a

f(a+h)−f(a)

h

=m

tan

lim

x→a

f(x)−f(a)

x−a

=m

tan

lim

h→0

f(a+h)−f(a)

h

f '(a) = lim

x→a

f(x)−f(a)

x−a

f '(a) = lim

h→0

f(a+h)−f(a)

h

=v

ave

s(t)−s(a)

t−a

v(a) = s'(a) = lim

t→a

s(t)−s(a)

t−a
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of a function  at  is given by

 or 

differentiation
the process of taking a derivative

instantaneous rate of change
the rate of change of a function at any point along the function , also called , or the derivative of the function at 
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f(x) a
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h
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3.2E: Exercises for Section 3.1

For exercises 1 - 10, use the equation  to find the slope of the secant line between the values  and  for each function 

.

1) 

Answer

2) 

3) 

Answer

4) 

5) 

Answer

6) 

7) 

Answer

8) 

9) 

Answer

10) 

For the functions in exercises 11 - 20,

a. use the equation  to find the slope of the tangent line , and

b. find the equation of the tangent line to  at .

11) 

Answer
a.  
b. 

12) 

13) 

Answer
a.  
b. 

14) 

15) 

Answer

=m

sec

f(x)−f(a)

x−a

x

1

x

2

y = f(x)

f(x) = 4x+7; = 2, = 5x

1

x

2

= 4m

sec

f(x) = 8x−3; =−1, = 3x

1

x

2

f(x) = +2x+1; = 3, = 3.5x

2

x

1

x

2

= 8.5m

sec

f(x) =− +x+2; = 0.5, = 1.5x

2

x

1

x

2

f(x) = ; = 1, = 3

4

3x−1

x

1

x

2

=−m

sec

3

4

f(x) = ; =−2, = 0

x−7

2x+1

x

1

x

2

f(x) = ; = 1, = 16x

−−

√

x

1

x

2

= 0.2m

sec

f(x) = ; = 10, = 13x−9

− −−−−

√ x

1

x

2

f(x) = +1; = 0, = 8x

1/3

x

1

x

2

= 0.25m

sec

f(x) = 6 +2 ; = 1, = 27x

2/3

x

1/3

x

1

x

2

=m

tan

lim

h→0

f(a+h)−f(a)

h

= f '(a)m

tan

f x = a

f(x) = 3−4x, a= 2

=−4m

tan

y =−4x+3

f(x) = +6, a=−1

x

5

f(x) = +x, a= 1x

2

= 3m

tan

y = 3x−1

f(x) = 1−x− , a= 0x

2

f(x) = , a= 3

7

x
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a.  
b. 

16) 

17) 

Answer
a.  
b. 

18) 

19) 

Answer
a.  
b. 

20) 

For the functions  in exercises 21 - 30, find  using the equation .

21) 

Answer

22) 

23) 

Answer

24) 

25) 

Answer

26) 

27) 

Answer

28) 

29) 

Answer

30) 

For the following exercises, given the function ,

a. find the slope of the secant line  for each point  with  value given in the table.

b. Use the answers from a. to estimate the value of the slope of the tangent line at .

=m

tan

−7

9

y = x+

−7

9

14

3

f(x) = , a= 1x+8

− −−−−

√

f(x) = 2−3 , a=−2x

2

= 12m

tan

y = 12x+14

f(x) = , a= 4

−3

x−1

f(x) = , a=−4

2

x+3

=−2m

tan

y =−2x−10

f(x) = , a= 3

3

x

2

y = f(x) f '(a) f '(a) = lim

x→a

f(x)−f(a)

x−a

f(x) = 5x+4, a=−1

(−1) = 5f

′

f(x) =−7x+1, a= 3

f(x) = +9x, a= 2x

2

(2) = 13f

′

f(x) = 3 −x+2, a= 1x

2

f(x) = , a= 4x

−−

√

(4) =f

′

1

4

f(x) = , a= 6x−2

− −−−−

√

f(x) = , a= 2

1

x

(2) =−f

′

1

4

f(x) = , a=−1

1

x−3

f(x) = , a= 1

1

x

3

(1) =−3f

′

f(x) = , a= 4

1

x

−−

√

y = f(x)

PQ Q(x, f(x)) x

P
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c. Use the answer from b. to find the equation of the tangent line to  at point .

31) [T]  (Round to  decimal places.)

Slope Slope 

1.1 (i) 0.9 (vii)

1.01 (ii) 0.99 (viii)

1.001 (iii) 0.999 (ix)

1.0001 (iv) 0.9999 (x)

1.00001 (v) 0.99999 (xi)

1.000001 (vi) 0.999999 (xii)

Answer

b.  
c. 

32) [T] 

Slope Slope 

0.1 (i) −0.1 (vii)

0.01 (ii) −0.01 (viii)

0.001 (iii) −0.001 (ix)

0.0001 (iv) −0.0001 (x)

0.00001 (v) −0.00001 (xi)

0.000001 (vi) −0.000001 (xii)

33) [T]  (Round to  decimal places.)

Slope 

−0.1 (i)

−0.01 (ii)

−0.001 (iii)

−0.0001 (iv)

−0.00001 (v)

−0.000001 (vi)

Answer
a.  
b.  
c. 

34) [T] 

Slope 

3.1 (i)

3.14 (ii)

3.141 (iii)

3.1415 (iv)

f P

f(x) = +3x+4, P (1, 8)x

2

6

x m

PQ

x m

PQ

a. (i)5.100000, (ii)5.010000, (iii)5.001000, (iv)5.000100, (v)5.000010, (vi)5.000001, (vii)4.900000, (viii)4.990000, (ix)4.999000,

(x)4.999900, (xi)4.999990, (x)4.999999

= 5m

tan

y = 5x+3

f(x) = , P (0, −1)

x+1

−1x

2

x m

PQ

x m

PQ

f(x) = 10 , P (0, 10)e

0.5x

4

x m

PQ

(i)4.8771, (ii)4.9875, (iii)4.9988, (iv)4.9999, (v)4.9999, (vi)4.9999

= 5m

tan

y = 5x+10

f(x) = tan(x), P (π, 0)

x m

PQ
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3.14159 (v)

3.141592 (vi)

[T] For the following position functions , an object is moving along a straight line, where  is in seconds and  is in meters. Find

a. the simplified expression for the average velocity from  to ;

b. the average velocity between  and , where , and ; and

c. use the answer from a. to estimate the instantaneous velocity at  second.

35) 

Answer
a. ; 
b.  m/s,  m/s,  m/s,  m/s; 
c.  m/s

36) 

37) 

Answer
a. ; 
b.  m/s,  m/s,  m/s,  m/s; 
c.  m/s

38) 

39) Use the following graph to evaluate a.  and b. 

Answer
a. ; b. 

40) Use the following graph to evaluate a.  and b. .

For the following exercises, use the limit definition of derivative to show that the derivative does not exist at  for each of the given
functions.

41) 

Answer

y = s(t) t s

t = 2 t = 2+h

t = 2 t = 2+h (i) h = 0.1, (ii) h = 0.01, (iii) h = 0.001 (iv) h = 0.0001

t = 2

s(t) = t+5

1

3

1

3

(i)

1

3

(ii)

1

3

(iii)

1

3

(iv)

1

3

1

3

s(t) = −2tt

2

s(t) = 2 +3t

3

2( +6h+12)h

2

(i) 25.22 (ii) 24.12 (iii) 24.01 (iv) 24

24

s(t) = −

16

t

2

4

t

f '(1) f '(6).

1.25 0.5

f '(−3) f '(1.5)

x = a

f(x) = , x = 0x

1/3
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42) 

43) 

Answer

44) 

45) [T] The position in feet of a race car along a straight track after  seconds is modeled by the function 

a. Find the average velocity of the vehicle over the following time intervals to four decimal places:

i. [ ]

ii. [ ]

iii. [ ]

iv. [ ]

b. Use a. to draw a conclusion about the instantaneous velocity of the vehicle at  seconds.

Answer
a.  
b. At  seconds the race car is traveling at a rate/velocity of  ft/s.

46) [T] The distance in feet that a ball rolls down an incline is modeled by the function ,

where t is seconds after the ball begins rolling.

a. Find the average velocity of the ball over the following time intervals:

i. [5, 5.1]

ii. [5, 5.01]

iii. [5, 5.001]

iv. [5, 5.0001]

b. Use the answers from a. to draw a conclusion about the instantaneous velocity of the ball at  seconds.

47) Two vehicles start out traveling side by side along a straight road. Their position functions, shown in the following graph, are given by  and
, where s is measured in feet and t is measured in seconds.

a. Which vehicle has traveled farther at  seconds?

b. What is the approximate velocity of each vehicle at  seconds?

c. Which vehicle is traveling faster at  seconds?

d. What is true about the positions of the vehicles at  seconds?

Answer

= =∞lim

x→0

−

−0x

1/3

x−0

lim

x→0

−

1

x

2/3

f(x) = , x = 0x

2/3

f(x) ={ , x = 1

1,

x,

if x < 1

if x ≥ 1

= 0 ≠ 1 =lim

x→1

−

1−1

x−1

lim

x→1

+

x−1

x−1

f(x) = , x = 0

|x|

x

t s(t) = 8 − .t

2 1

16

t

3

4, 4.1

4, 4.01

4, 4.001

4, 4.0001

t = 4

(i)61.7244ft/s, (ii)61.0725ft/s, (iii)61.0072ft/s, (iv)61.0007ft/s

4 61

s(t) = 14t

2

t = 5

s= f(t)

s= g(t)

t = 2

t = 3

t = 4

t = 4
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a. The vehicle represented by , because it has traveled  feet, whereas  has traveled  foot.
b. The velocity of  is constant at  ft/s, while the velocity of  is approximately  ft/s. 
c. The vehicle represented by , with a velocity of approximately  ft/s. 
d. Both have traveled  feet in  seconds.

48) [T] The total cost , in hundreds of dollars, to produce  jars of mayonnaise is given by .

a. Calculate the average cost per jar over the following intervals:

i. [100, 100.1]

ii. [100, 100.01]

iii. [100, 100.001]

iv. [100, 100.0001]

b. Use the answers from a. to estimate the average cost to produce  jars of mayonnaise.

49) [T] For the function , do the following.

a. Use a graphing calculator to graph  in an appropriate viewing window.

b. Use the ZOOM feature on the calculator to approximate the two values of  for which .

Answer

a.

b. 

50) [T] For the function , do the following.

a. Use a graphing calculator to graph  in an appropriate viewing window.

b. Use the ZOOM feature on the calculator to approximate the values of  for which .

51) Suppose that  computes the number of gallons of gas used by a vehicle traveling  miles. Suppose the vehicle gets  mpg.

a. Find a mathematical expression for .

b. What is ? Explain the physical meaning.

c. What is ? Explain the physical meaning.

Answer

a.  

b. ∼  gallons. When the vehicle travels  miles, it has used  gallons of gas. 
c. . The rate of gas consumption in gallons per mile that the vehicle is achieving after having traveled  miles.

52) [T] For the function , do the following.

a. Use a graphing calculator to graph  in an appropriate viewing window.

b. Use the  function, which numerically finds the derivative, on a graphing calculator to estimate , and 
.

53) [T] For the function , do the following.

f(t) 2 g(t) 1

f(t) 1 g(t) 2

g(t) 4

4 4

C(x) x C(x) = 0.000003 +4x+300x

3

100

f(x) = −2 −11x+12x

3

x

2

f

x = a = f '(a) = 0m

tan

a≈−1.361, 2.694

f(x) =

x

1+x

2

f

x = a = f '(a) = 0m

tan

N(x) x 30

N(x)

N(100)

N '(100)

N(x) =

x

30

3.3 100 3.3

1

30

100

f(x) = −5 +4x

4

x

2

f

nDeriv f '(−2), f '(−0.5), f '(1.7)

f '(2.718)

f(x) =

x

2

+1x

2
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a. Use a graphing calculator to graph  in an appropriate viewing window.

b. Use the  function on a graphing calculator to find , and .

Answer

a.

 
b. 

 

3.2E: Exercises for Section 3.1 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

3.1E: Exercises for Section 3.1 is licensed CC BY-NC-SA 4.0.

f
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3.3: The Derivative as a Function

Define the derivative function of a given function.
Graph a derivative function from the graph of a given function.
State the connection between derivatives and continuity.
Describe three conditions for when a function does not have a derivative.
Explain the meaning of a higher-order derivative.

As we have seen, the derivative of a function at a given point gives us the rate of change or slope of the tangent line to the function
at that point. If we differentiate a position function at a given time, we obtain the velocity at that time. It seems reasonable to
conclude that knowing the derivative of the function at every point would produce valuable information about the behavior of the
function. However, the process of finding the derivative at even a handful of values using the techniques of the preceding section
would quickly become quite tedious. In this section we define the derivative function and learn a process for finding it.

Derivative Functions
The derivative function gives the derivative of a function at each point in the domain of the original function for which the
derivative is defined. We can formally define a derivative function as follows.

Let  be a function. The derivative function, denoted by , is the function whose domain consists of those values of  such
that the following limit exists:

A function  is said to be differentiable at  if  exists. More generally, a function is said to be differentiable on  if it is
differentiable at every point in an open set , and a differentiable function is one in which  exists on its domain.

In the next few examples we use Equation  to find the derivative of a function.

Find the derivative of .

Solution
Start directly with the definition of the derivative function.

Substitute  and  into .

 

Multiply numerator and denominator by  without
distributing in the denominator.

Multiply the numerators and simplify.

Cancel the .

Evaluate the limit

 Learning Objectives

 Definition: Derivative Function

f f

′

x

(x) = .f

′

lim

h→0

f(x+h)−f(x)

h

(3.3.1)

f(x) a (a)f

′

S

S (x)f

′

3.3.1

 Example : Finding the Derivative of a Square-Root Function3.3.1

f(x) = x

−−

√

f(x+h) = x+h

− −−−−

√ f(x) = x

−−

√

(x) =f

′

lim

h→0

f(x+h)−f(x)

h

(x) =f

′

lim

h→0

−x+h

− −−−−

√ x

−−

√

h

= ⋅lim

h→0

−x+h

− −−−−

√ x

−−

√

h

+x+h

− −−−−

√ x

−−

√

+x+h

− −−−−

√ x

−−

√

+x+h

− −−−−

√ x

−−

√

= lim

h→0

h

h( + )x+h

− −−−−

√ x

−−

√

= lim

h→0

1

( + )x+h

− −−−−

√ x

−−

√

h

=

1

2 x

−−

√

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25937?pdf
https://stats.libretexts.org/Courses/Lake_Tahoe_Community_College/Interactive_Calculus_Q1/03%3A_Derivatives/3.03%3A_The_Derivative_as_a_Function


3.3.2 https://stats.libretexts.org/@go/page/25937

Find the derivative of the function .

Solution
Follow the same procedure here, but without having to multiply by the conjugate.

Substitute  and  into 

 

Expand .

Simplify

Factor out  from the numerator

Cancel the common factor of 

Evaluate the limit

Find the derivative of .

Hint

Use Equation  and follow the example.

Answer

We use a variety of different notations to express the derivative of a function. In Example  we showed that if ,
then . If we had expressed this function in the form , we could have expressed the derivative as 

 or . We could have conveyed the same information by writing . Thus, for the

function , each of the following notations represents the derivative of :

.

In place of  we may also use . Use of the  notation (called Leibniz notation) is quite common in engineering and

physics. To understand this notation better, recall that the derivative of a function at a point is the limit of the slopes of secant lines

as the secant lines approach the tangent line. The slopes of these secant lines are often expressed in the form  where  is the

difference in the  values corresponding to the difference in the  values, which are expressed as  (Figure ). Thus the
derivative, which can be thought of as the instantaneous rate of change of  with respect to , is expressed as

.

 Example : Finding the Derivative of a Quadratic Function3.3.2

f(x) = −2xx

2

f(x+h) = (x+h −2(x+h))

2

f(x) = −2xx

2

(x) = .f

′

lim

h→0

f(x+h)−f(x)

h

(x) =f

′

lim

h→0

((x+h −2(x+h))− ( − 2x))

2

x

2

h

= lim

h→0

+2xh+ −2x−2h− +2xx

2

h

2

x

2

h

(x+h −2(x+h))

2

= lim

h→0

2xh−2h+h

2

h

= lim

h→0

h(2x−2+h)

h

h

= (2x−2+h)lim

h→0

h

= 2x−2

 Exercise 3.3.1

f(x) = x

2

3.3.1

(x) = 2xf

′

3.3.2 f(x) = −2xx

2

(x) = 2x−2f

′

y = −2xx

2

y' = 2x−2 = 2x−2

dy

dx

( −2x)= 2x−2

d

dx

x

2

y = f(x) f(x)

(x), , y', (f(x))f

′

dy

dx

d

dx

(a)f

′

dy

dx

∣

∣

x=a

dy

dx

Δy

Δx

Δy

y x Δx 3.3.1

y x

=

dy

dx

lim

Δx→0

Δy

Δx
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 Figure : The derivative is expressed as .

Graphing a Derivative
We have already discussed how to graph a function, so given the equation of a function or the equation of a derivative function, we
could graph it. Given both, we would expect to see a correspondence between the graphs of these two functions, since  gives
the rate of change of a function  (or slope of the tangent line to ).

In Example , we found that for , . If we graph these functions on the same axes, as in Figure ,

we can use the graphs to understand the relationship between these two functions. First, we notice that  is increasing over its
entire domain, which means that the slopes of its tangent lines at all points are positive. Consequently, we expect  for all
values of x in its domain. Furthermore, as  increases, the slopes of the tangent lines to  are decreasing and we expect to see a
corresponding decrease in . We also observe that  is undefined and that , corresponding to a vertical

tangent to  at .

 Figure : The derivative  is positive everywhere because the
function  is increasing.

In Example , we found that for . The graphs of these functions are shown in Figure .
Observe that  is decreasing for . For these same values of , . For values of ,  is increasing and 

. Also,  has a horizontal tangent at  and .

3.3.1 =

dy

dx

lim

Δx→0

Δy

Δx

(x)f

′

f(x) f(x)

3.3.1 f(x) = x

−−

√

(x) =f

′ 1

2 x√

3.3.2

f(x)

(x) > 0f

′

x f(x)

(x)f

′

f(0) (x) =+∞lim

x→0

+

f

′

f(x) 0

3.3.2 (x)f

′

f(x)

3.3.2 f(x) = −2x, (x) = 2x−2x

2

f

′

3.3.3

f(x) x < 1 x (x) < 0f

′

x > 1 f(x)

(x) > 0f

′

f(x) x = 1 (1) = 0f

′
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 Figure : The derivative  where the function  is
decreasing and  where  is increasing. The derivative is zero where the function has a horizontal tangent

Use the following graph of  to sketch a graph of .

Solution
The solution is shown in the following graph. Observe that  is increasing and  on . Also,  is
decreasing and  on  and on . Also note that  has horizontal tangents at  and , and 

 and .

3.3.3 (x) < 0f

′

f(x)

(x) > 0f

′

f(x)

 Example : Sketching a Derivative Using a Function3.3.3

f(x) (x)f

′

f(x) (x) > 0f

′

(– 2, 3) f(x)

(x) < 0f

′

(−∞,−2) (3, +∞) f(x) – 2 3

(−2) = 0f

′

(3) = 0f

′
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Sketch the graph of . On what interval is the graph of  above the -axis?

Hint

The graph of  is positive where  is increasing.

Answer

Derivatives and Continuity
Now that we can graph a derivative, let’s examine the behavior of the graphs. First, we consider the relationship between
differentiability and continuity. We will see that if a function is differentiable at a point, it must be continuous there; however, a
function that is continuous at a point need not be differentiable at that point. In fact, a function may be continuous at a point and
fail to be differentiable at the point for one of several reasons.

Let  be a function and  be in its domain. If  is differentiable at , then  is continuous at .

If  is differentiable at , then  exists and, if we let , we have , and as , we can
see that .

Then

can be rewritten as

.

We want to show that  is continuous at  by showing that  Thus,

 Exercise 3.3.2

f(x) = −4x

2

(x)f

′

x

(x)f

′

f(x)

(0, +∞)

 Differentiability Implies Continuity

f(x) a f(x) a f a

 Proof

f(x) a (a)f

′

h = x−a x = a+h h = x−a→0

x→ a

(a) =f

′

lim

h→0

f(a+h)−f(a)

h

(a) =f

′

lim

x→a

f(x)−f(a)

x−a

f(x) a f(x) = f(a).lim

x→a
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Therefore, since  is defined and , we conclude that  is continuous at .

□

We have just proven that differentiability implies continuity, but now we consider whether continuity implies differentiability. To
determine an answer to this question, we examine the function . This function is continuous everywhere; however, 
is undefined. This observation leads us to believe that continuity does not imply differentiability. Let’s explore further. For 

,

.

This limit does not exist because

 and .

See Figure .

 Figure : The function  is continuous at  but is not
differentiable at .

Let’s consider some additional situations in which a continuous function fails to be differentiable. Consider the function 
:

.

Thus  does not exist. A quick look at the graph of  clarifies the situation. The function has a vertical tangent line
at  (Figure ).

f(x)lim

x→a

= (f(x) −f(a) +f(a))lim

x→a

= ( ⋅ (x−a) +f(a))lim

x→a

f(x) −f(a)

x−a

=( ) ⋅( (x−a))+ f(a)lim

x→a

f(x) −f(a)

x−a

lim

x→a

lim

x→a

= (a) ⋅ 0 +f(a)f

′

= f(a).

Multiply and divide (f(x) −f(a)) by x−a.

f(a) f(x) = f(a)lim

x→a

f a

f(x) = |x| (0)f

′

f(x) = |x|

(0) = = =f

′

lim

x→0

f(x) −f(0)

x−0

lim

x→0

|x| − |0|

x−0

lim

x→0

|x|

x

= −1lim

x→0

−

|x|

x

= 1lim

x→0

+

|x|

x

3.3.4

3.3.4 f(x) = |x| 0

0

f(x) = x

−−

√

3

(0) = = = +∞f

′

lim

x→0

−0x

−−

√

3

x−0

lim

x→0

1

x

2

−−

√

3

(0)f

′

f(x) = x

−−

√

3

0 3.3.5
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 Figure : The function  has a vertical tangent at . It
is continuous at  but is not differentiable at .

The function  also has a derivative that exhibits interesting behavior at .

We see that

.

This limit does not exist, essentially because the slopes of the secant lines continuously change direction as they approach zero
(Figure ).

 Figure : The function  is not

differentiable at .

In summary:

1. We observe that if a function is not continuous, it cannot be differentiable, since every differentiable function must be
continuous. However, if a function is continuous, it may still fail to be differentiable.

2. We saw that  failed to be differentiable at  because the limit of the slopes of the tangent lines on the left and right
were not the same. Visually, this resulted in a sharp corner on the graph of the function at  From this we conclude that in order
to be differentiable at a point, a function must be “smooth” at that point.

3. As we saw in the example of , a function fails to be differentiable at a point where there is a vertical tangent line.

4. As we saw with  a function may fail to be differentiable at a point in more complicated ways

as well.

A toy company wants to design a track for a toy car that starts out along a parabolic curve and then converts to a straight line

(Figure ). The function that describes the track is to have the form  where 

3.3.5 f(x) = x

−−

√

3

x = 0

0 0

f(x) ={

x sin( ),

1

x

0,

 if x ≠ 0

 if x = 0

0

(0) = = sin( )f

′

lim

x→0

x sin(1/x)−0

x−0

lim

x→0

1

x

3.3.6

3.3.6 f(x) ={

x sin( ),

1

x

0,

 if x ≠ 0

 if x = 0

0

f(x) = |x| 0

0.

f(x) = x

−−

√

3

f(x) ={

x sin( ),

1

x

0,

 if x ≠ 0

 if x = 0

 Example : A Piecewise Function that is Continuous and Differentiable3.3.4

3.3.7 f(x) ={

+bx+c,

1

10

x

2

− x+ ,

1

4

5

2

 if x <−10

 if x ≥−10

x
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and  are in inches. For the car to move smoothly along the track, the function  must be both continuous and
differentiable at . Find values of  and  that make  both continuous and differentiable.

 Figure : For the car to move smoothly along the track, the
function must be both continuous and differentiable.

Solution
For the function to be continuous at , . Thus, since

and , we must have . Equivalently, we have .

For the function to be differentiable at ,

must exist. Since  is defined using different rules on the right and the left, we must evaluate this limit from the right and
the left and then set them equal to each other:

.

We also have

.

This gives us . Thus  and .

Find values of a and b that make  both continuous and differentiable at .

Hint

f(x) f(x)

−10 b c f(x)

3.3.7

x = −10 f(x) = f(−10)lim

x→10

−

f(x) = (−10 −10b+c = 10 −10b+clim

x→−10

−

1

10

)

2

f(−10) = 5 10 −10b+c = 5 c = 10b−5

−10

(10) =f

′

lim

x→−10

f(x) −f(−10)

x+10

f(x)

lim

x→−10

−

f(x) −f(−10)

x+10

= lim

x→−10

−

+bx+c−5

1

10

x

2

x+10

= lim

x→−10

−

+bx+(10b−5) −5

1

10

x

2

x+10

= lim

x→−10

−

−100 +10bx+100bx

2

10(x+10)

= lim

x→−10

−

(x+10)(x−10 +10b)

10(x+10)

= b−2

Substitute c = 10b−5.

Factor by grouping

lim

x→−10

+

f(x) −f(−10)

x+10

= lim

x→−10

+

− x+ −5

1

4

5

2

x+10

= lim

x→−10

+

−(x+10)

4(x+10)

= −

1

4

b−2 = −

1

4

b =

7

4

c = 10( ) −5 =

7

4

25

2

 Exercise 3.3.3

f(x) ={

ax+b,

,x

2

 if x < 3

 if x ≥ 3

3
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Use Example  as a guide.

Answer

 and 

Higher-Order Derivatives
The derivative of a function is itself a function, so we can find the derivative of a derivative. For example, the derivative of a
position function is the rate of change of position, or velocity. The derivative of velocity is the rate of change of velocity, which is
acceleration. The new function obtained by differentiating the derivative is called the second derivative. Furthermore, we can
continue to take derivatives to obtain the third derivative, fourth derivative, and so on. Collectively, these are referred to as higher-
order derivatives. The notation for the higher-order derivatives of  can be expressed in any of the following forms:

It is interesting to note that the notation for  may be viewed as an attempt to express  more compactly.

Analogously, .

For , find .

Solution
First find .

Substitute  and  into 

 

Simplify the numerator.

Factor out the  in the numerator and cancel with the  in the
denominator.

Take the limit.

Next, find  by taking the derivative of 

Use  with  in place of 

Substitute  and 

Simplify.

Take the limit.

3.3.4

a= 6 b =−9

y = f(x)

(x), (x), (x), … , (x)f

′′

f

′′′

f

(4)

f

(n)

(x), (x), (x), … , (x)y

′′

y

′′′

y

(4)

y

(n)

, , , … , .

yd

2

dx

2

yd

3

dy

3

yd

4

dy

4

yd

n

dy

n

yd

2

dx

2

( )

d

dx

dy

dx

( ( )) = ( ) =

d

dx

d

dx

dy

dx

d

dx

yd

2

dx

2

yd

3

dx

3

 Example : Finding a Second Derivative3.3.5

f(x) = 2 −3x+1x

2

(x)f

′′

(x)f

′

f(x) = 2 −3x+1x

2

f(x+h) = 2(x+h −3(x+h)+1)

2

(x) = .f

′

lim

h→0

f(x+h)−f(x)

h

(x) =f

′

lim

h→0

(2(x+h −3(x+h)+ 1)− (2 − 3x+1))

2

x

2

h

= lim

h→0

4xh+2 −3hh

2

h

= (4x+2h−3)lim

h→0

h h

= 4x−3

(x)f

′′

(x) = 4x−3.f

′

(x) =f

′′

lim

h→0

(x+h)− (x)f

′

f

′

h

(x) =f

′

lim

h→0

f(x+h)− f(x)

h

f'(x)

f(x).

= lim

h→0

(4(x+h)− 3)− (4x−3)

h

(x+h) = 4(x+h)− 3f

′

(x) = 4x−3.f

′

= 4lim

h→0

= 4
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Find  for .

Hint

We found  in a previous checkpoint. Use Equation  to find the derivative of 

Answer

The position of a particle along a coordinate axis at time  (in seconds) is given by  (in meters). Find the
function that describes its acceleration at time .

Solution
Since  and , we begin by finding the derivative of :

Next,

Thus, .

For , find 

Hint

Use Example  as a guide.

Answer

Key Concepts
The derivative of a function  is the function whose value at  is .
The graph of a derivative of a function  is related to the graph of . Where  has a tangent line with positive slope, 

. Where  has a tangent line with negative slope, . Where  has a horizontal tangent line, 
If a function is differentiable at a point, then it is continuous at that point. A function is not differentiable at a point if it is not
continuous at the point, if it has a vertical tangent line at the point, or if the graph has a sharp corner or cusp.
Higher-order derivatives are derivatives of derivatives, from the second derivative to the  derivative.

 Exercise 3.3.4

(x)f

′′

f(x) = x

2

(x) = 2xf

′

3.3.1 (x)f

′

(x) = 2f

′′

 Example : Finding Acceleration3.3.6

t s(t) = 3 −4t+1t

2

t

v(t) = s'(t) a(t) = v'(t) = (t)s

′′

s(t)

s'(t) = lim

h→0

s(t+h)−s(t)

h

= lim

h→0

3(t+h −4(t+h)+1−(3 −4t+1))

2

t

2

h

= 6t−4.

(t)s

′′

= lim

h→0

s'(t+h)−s'(t)

h

= lim

h→0

6(t+h)−4−(6t−4)

h

= 6.

a= 6 m/s

2

 Exercise 3.3.5

s(t) = t

3

a(t).

3.3.6

a(t) = 6t

f(x) x (x)f

′

f(x) f(x) f(x)

(x) > 0f

′

f(x) (x) < 0f

′

f(x) (x) = 0.f

′

n

th
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Key Equations
The derivative function

Glossary

derivative function
gives the derivative of a function at each point in the domain of the original function for which the derivative is defined

differentiable at 
a function for which  exists is differentiable at 

differentiable on 
a function for which  exists for each  in the open set  is differentiable on 

differentiable function
a function for which  exists is a differentiable function

higher-order derivative
a derivative of a derivative, from the second derivative to the  derivative, is called a higher-order derivative

Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is
licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

Paul Seeburger (Monroe Community College) added explanation of the alternative definition of the derivative used in the proof
of that differentiability implies continuity.

This page titled 3.3: The Derivative as a Function is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

3.2: The Derivative as a Function by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

(x) =f

′

lim

h→0

f(x+h)−f(x)

h

a

(a)f

′

a

S

(x)f

′

x S S

(x)f

′

n

th
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3.3E: Exercises for Section 3.2
For exercises 1 - 10, use the definition of a derivative to find .

1) 

2) 

Answer

3) 

4) 

Answer

5) 

6) 

Answer

7) 

8) 

Answer

9) 

10) 

Answer

For the exercises 11 - 14, use the graph of  to sketch the graph of its derivative .

11)

f '(x)

f(x) = 6

f(x) = 2−3x

(x) =−3f

′

f(x) = +1

2x

7

f(x) = 4x

2

(x) = 8xf

′

f(x) = 5x−x

2

f(x) = 2x

−−

√

(x) =f

′

1

2x

−−

√

f(x) = x−6

− −−−−

√

f(x) =

9

x

(x) =f

′

−9

x

2

f(x) = x+

1

x

f(x) =

1

x

−−

√

(x) =f

′

−1

2x

3/2

y = f(x) f '(x)
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12)

Answer

13)
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14)

Answer

For exercises 15 - 20, the given limit represents the derivative of a function  at . Find  and .y = f(x) x = a f(x) a
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15) 

16) 

Answer

17) 

18) 

Answer

19) 

20) 

Answer

For the functions in exercises 21 - 24,

a. sketch the graph and

b. use the definition of a derivative to show that the function is not differentiable at .

21) 

22) 

Answer

a.

b. 

lim

h→0

(1+h −1)

2/3

h

lim

h→0

[3(2+h +2]−14)

2

h

f(x) = 3 +2, a= 2x

2

lim

h→0

cos(π+h)+1

h

lim

h→0

(2+h −16)

4

h

f(x) = , a= 2x

4

lim

h→0

[2(3+h −(3+h)] −15)

2

h

lim

h→0

−1e

h

h

f(x) = , a= 0e

x

x = 1

f(x) ={

2 ,x

−−

√

3x−1,

if 0 ≤ x ≤ 1

if x > 1

f(x) ={

3,

3x,

if x < 1

if x ≥ 1

≠lim

h→1

−

3−3

h

lim

h→1

+

3h

h
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23) 

24) 

Answer

a.

b. 

For the graphs in exercises 25 - 26,

a. determine for which values of  the  exists but  is not continuous at , and

b. determine for which values of  the function is continuous but not differentiable at .

25)

26)

f(x) ={

− +2,x

2

x,

if x ≤ 1

if x > 1

f(x) ={

2x,

,

2

x

if x ≤ 1

if x > 1

≠ .lim

h→1

−

2h

h

lim

h→1

+

−2x

2

x+h

h

x = a f(x)lim

x→a

f x = a

x = a x = a
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Answer
a. , 
b. 

27) Use the graph to evaluate a. , b. , c. , d. , and e.  if it exists.

For the functions in exercises 28 - 30, use  to find 

28) 

Answer

29) 

30) 

Answer

For exercises 31 - 36, use a calculator to graph . Determine the function , then use a calculator to graph .

31) [T] 

32) [T] 

Answer

x = 1

x = 2

f '(−0.5) f '(0) f '(1) f '(2) f '(3),

(x) =f

′′

lim

h→0

f '(x+h)−f '(x)

h

(x).f

′′

f(x) = 2−3x

(x) = 0f

′′

f(x) = 4x

2

f(x) = x+

1

x

(x) =f

′′

2

x

3

f(x) f '(x) f '(x)

f(x) =−

5

x

f(x) = 3 +2x+4.x

2
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33) [T] 

34) [T] 

Answer

35) [T] 

36) [T] 

Answer

For exercises 37 - 42, describe what the two expressions represent in terms of each of the given situations. Be sure to include
units.

f '(x) = 6x+2

f(x) = +3xx

−−

√

f(x) =

1

2x

−−

√

f '(x) =−

1

(2x)

3/2

f(x) = 1+x+

1

x

f(x) = +1x

3

f '(x) = 3x

2
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a. 

b. 

37)  denotes the population of a city at time  in years.

38)  denotes the total amount of money (in thousands of dollars) spent on concessions by  customers at an amusement park.

Answer

a. Average rate at which customers spent on concessions in thousands per customer.

b. Rate (in thousands per customer) at which  customers spent money on concessions in thousands per customer.

39)  denotes the total cost (in thousands of dollars) of manufacturing  clock radios

40)  denotes the grade (in percentage points) received on a test, given  hours of studying.

Answer

a. Average grade received on the test with an average study time between two values.

b. Rate (in percentage points per hour) at which the grade on the test increased or decreased for a given average study
time of  hours.

41) denotes the cost (in dollars) of a sociology textbook at university bookstores in the United States in  years since .

42)  denotes atmospheric pressure at an altitude of  feet.

Answer

a. Average change of atmospheric pressure between two different altitudes.

b. Rate (torr per foot) at which atmospheric pressure is increasing or decreasing at  feet.

43) Sketch the graph of a function  with all of the following properties:

a.  for 

b. 

c.  for 

d.  and 

e.  and 

f.  does not exist.

44) Suppose temperature  in degrees Fahrenheit at a height  in feet above the ground is given by 

a. Give a physical interpretation, with units, of 

b. If we know that  explain the physical meaning.

Answer

a. The rate (in degrees per foot) at which temperature is increasing or decreasing for a given height 

b. The rate of change of temperature as altitude changes at  feet is  degrees per foot.

45) Suppose the total profit of a company is  thousand dollars when  units of an item are sold.

a. What does  for  measure, and what are the units?

b. What does  measure, and what are the units?

c. Suppose that , what is the approximate change in profit if the number of items sold increases from  to ?

f(x+h)−f(x)

h

f '(x) = lim

h→0

f(x+h)−f(x)

h

P (x) x

C(x) x

x

R(x) x

g(x) x

x

B(x) x 1990

p(x) x

x

y = f(x)

f '(x) > 0 −2 ≤ x < 1

f '(2) = 0

f '(x) > 0 x > 2

f(2) = 2 f(0) = 1

f(x) = 0lim

x→−∞

f(x) =∞lim

x→∞

f '(1)

T x y = T (x).

T '(x).

T '(1000) =−0.1,

x.

1000 −0.1

y = P (x) x

P (b)−P (a)

b−a

0 < a< b

P '(x)

P '(30) = 5 30 31
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46) The graph in the following figure models the number of people  who have come down with the flu t weeks after its initial
outbreak in a town with a population of 50,000 citizens.

a. Describe what  represents and how it behaves as  increases.

b. What does the derivative tell us about how this town is affected by the flu outbreak?

Answer
a. The rate at which the number of people who have come down with the flu is changing  weeks after the initial outbreak. 
b. The rate is increasing sharply up to the third week, at which point it slows down and then becomes constant.

For exercises 47 - 52, use the following table, which shows the height  of the Saturn V rocket for the Apollo 11 mission 
seconds after launch.

Time (seconds) Height (meters)

0 0

1 2

2 4

3 13

4 25

5 32

47) What is the physical meaning of ? What are the units?

48) [T] Construct a table of values for  and graph both  and  on the same graph. (Hint: for interior points, estimate
both the left limit and right limit and average them.)

Answer

Time (seconds)  (m/s)

0 2

1 2

2 5.5

3 10.5

4 9.5

N(t)

N '(t) t

t

h t

h'(t)

h'(t) h(t) h'(t)

h'(t)

https://libretexts.org/
https://stats.libretexts.org/@go/page/25938?pdf


3.3E.10 https://stats.libretexts.org/@go/page/25938

5 7

49) [T] The best linear fit to the data is given by , where  is the height of the rocket (in meters) and t is
the time elapsed since takeoff. From this equation, determine . Graph  with the given data and, on a separate coordinate
plane, graph 

50) [T] The best quadratic fit to the data is given by  where  is the height of the rocket (in
meters) and  is the time elapsed since takeoff. From this equation, determine . Graph  with the given data and, on a
separate coordinate plane, graph 

Answer

51) [T] The best cubic fit to the data is given by , where  is the height of the
rocket (in m) and  is the time elapsed since take off. From this equation, determine . Graph  with the given data and, on
a separate coordinate plane, graph . Does the linear, quadratic, or cubic function fit the data best?

52) Using the best linear, quadratic, and cubic fits to the data, determine what  are. What are the physical
meanings of  and what are their units?

Answer
 represent the acceleration of the rocket, with units of meters

per second squared 

3.3E: Exercises for Section 3.2 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

3.2E: Exercises for Section 3.2 is licensed CC BY-NC-SA 4.0.

H(t) = 7.229t−4.905 H

H'(t) H(t

H'(t).

G(t) = 1.429 +0.0857t−0.1429,t

2

G

t G'(t) G(t)

G'(t).

G'(t) = 2.858t+0.0857

F (t) = 0.2037 +2.956 −2.705t+0.4683t

3

t

2

F

t F '(t) F (t)

F '(t)

(t), (t) and  (t)H

′′

G

′′

F

′′

(t), (t) and  (t),H

′′

G

′′

F

′′

(t) = 0, (t) = 2.858 and  (t) = 1.222t+5.912H

′′

G

′′

f

′′

( ).m/s

2
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3.4: Differentiation Rules

State the constant, constant multiple, and power rules.
Apply the sum and difference rules to combine derivatives.
Use the product rule for finding the derivative of a product of functions.
Use the quotient rule for finding the derivative of a quotient of functions.
Extend the power rule to functions with negative exponents.
Combine the differentiation rules to find the derivative of a polynomial or rational function.

Finding derivatives of functions by using the definition of the derivative can be a lengthy and, for certain functions, a rather challenging process. For
example, previously we found that

by using a process that involved multiplying an expression by a conjugate prior to evaluating a limit.

The process that we could use to evaluate  using the definition, while similar, is more complicated.

In this section, we develop rules for finding derivatives that allow us to bypass this process. We begin with the basics.

The Basic Rules
The functions  and  where  is a positive integer are the building blocks from which all polynomials and rational functions are
constructed. To find derivatives of polynomials and rational functions efficiently without resorting to the limit definition of the derivative, we must first
develop formulas for differentiating these basic functions.

The Constant Rule
We first apply the limit definition of the derivative to find the derivative of the constant function, . For this function, both  and 

, so we obtain the following result:

The rule for differentiating constant functions is called the constant rule. It states that the derivative of a constant function is zero; that is, since a
constant function is a horizontal line, the slope, or the rate of change, of a constant function is . We restate this rule in the following theorem.

Let  be a constant. If , then 

Alternatively, we may express this rule as

Find the derivative of 

Solution

This is just a one-step application of the rule: 

Find the derivative of .

Hint

Use the preceding example as a guide

Learning Objectives

( ) =

d

dx

x

−−

√

1

2 x

−−

√

( )

d

dx

x

−−

√

3

f(x) = c g(x) = x

n

n

f(x) = c f(x) = c

f(x+h) = c

f '(x) = lim

h→0

f(x+h)−f(x)

h

= lim

h→0

c−c

h

= lim

h→0

0

h

= 0 = 0.lim

h→0

0

The Constant Rule

c f(x) = c f '(c) = 0.

(c) = 0.

d

dx

(3.4.1)

Example : Applying the Constant Rule3.4.1

f(x) = 8.

f '(8) = 0.

Exercise 3.4.1

g(x) =−3
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Answer

0

The Power Rule

We have shown that

At this point, you might see a pattern beginning to develop for derivatives of the form . We continue our examination of derivative formulas by

differentiating power functions of the form  where  is a positive integer. We develop formulas for derivatives of this type of function in
stages, beginning with positive integer powers. Before stating and proving the general rule for derivatives of functions of this form, we take a look at a

specific case, . As we go through this derivation, pay special attention to the portion of the expression in boldface, as the technique used in this

case is essentially the same as the technique used to prove the general case.

Find .

Solution:

 

Notice that the first term in the expansion of  is  and the second
term is . All other terms contain powers of  that are two or greater

In this step the  terms have been cancelled, leaving only terms containing
.

Factor out the common factor of .

After cancelling the common factor of ,the only term not containing  is 
.

Let  go to .

Find 

Hint

Use  and follow the procedure outlined in the preceding example.

Answer

As we shall see, the procedure for finding the derivative of the general form  is very similar. Although it is often unwise to draw general
conclusions from specific examples, we note that when we differentiate , the power on  becomes the coefficient of  in the derivative and
the power on  in the derivative decreases by 1. The following theorem states that the power rule holds for all positive integer powers of . We will
eventually extend this result to negative integer powers. Later, we will see that this rule may also be extended first to rational powers of  and then to
arbitrary powers of . Be aware, however, that this rule does not apply to functions in which a constant is raised to a variable power, such as .

Let  be a positive integer. If ,then

Alternatively, we may express this rule as

( )= 2x  and  ( )= .

d

dx

x

2

d

dx

x

1/2

1

2

x

−1/2

( )

d

dx

x

n

f(x) = x

n

n

( )

d

dx

x

3

Example : Differentiating 3.4.2 x

3

( )

d

dx

x

3

( ) =

d

dx

x

3

lim

h→0

(x+h −)

3

x

3

h

= lim

h→0

+3 h+3x + −x

3

x

2

h

2

h

3

x

3

h

(x+h)

3

x

3

3 hx

2

h

= lim

h→0

3 h+3x +x

2

h

2

h

3

h

x

3

h

= lim

h→0

h(3 + 3xh+ )x

2

h

2

h

h

= (3 +3xh+ )lim

h→0

x

2

h

2 h h

3x

2

= 3x

2

h 0

Exercise 3.4.2

( ) .

d

dx

x

4

(x+h = +4 h+6 +4x +)

4

x

4

x

3

x

2

h

2

h

3

h

4

( )= 4

d

dx

x

4

x

3

f(x) = x

n

f(x) = x

3

x x

2

x x

x

x f(x) = 3

x

The Power Rule

n f(x) = x

n

f '(x) = n .x

n−1

(3.4.2)
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For  where  is a positive integer, we have

Since

we see that

Next, divide both sides by h:

Thus,

Finally,

□

Find the derivative of the function  by applying the power rule.

Solution

Using the power rule with , we obtain

Find the derivative of .

Hint

Use the power rule with 

Answer

The Sum, Difference, and Constant Multiple Rules

We find our next differentiation rules by looking at derivatives of sums, differences, and constant multiples of functions. Just as when we work with
functions, there are rules that make it easier to find derivatives of functions that we add, subtract, or multiply by a constant. These rules are summarized
in the following theorem.

Let  and  be differentiable functions and  be a constant. Then each of the following equations holds.

Sum Rule. The derivative of the sum of a function  and a function  is the same as the sum of the derivative of  and the derivative of .

that is,

( ) = n

d

dx

x

n

x

n−1.

(3.4.3)

Proof

f(x) = x

n

n

f '(x) = .lim

h→0

(x+h −)

n

x

n

h

(x+h = +n h+( ) +( ) +…+nx + ,)

n

x

n

x

n−1

n

2

x

n−2

h

2

n

3

x

n−3

h

3

h

n−1

h

n

(x+h − = n h+( ) +( ) +…+nx + .)

n

x

n

x

n−1

n

2

x

n−2

h

2

n

3

x

n−3

h

3

h

n−1

h

n

= .

(x+h −)

n

x

n

h

n h+( ) +( ) +…+nx +x

n−1

n

2

x

n−2

h

2

n

3

x

n−3

h

3

h

n−1

h

n

h

= n +( ) h+( ) +…+nx + .

(x+h −)

n

x

n

h

x

n−1

n

2

x

n−2

n

3

x

n−3

h

2

h

n−2

h

n−1

f '(x) = (n +( ) h+( ) +…+nx + )lim

h→0

x

n−1

n

2

x

n−2

n

3

x

n−3

h

2

h

n−1

h

n

= n .x

n−1

Example : Applying the Power Rule3.4.3

f(x) = x

10

n= 10

(x) = 10 = 10 .f

′

x

10−1

x

9

Exercise 3.4.3

f(x) = x

7

n= 7.

f '(x) = 7x

6

Sum, Difference, and Constant Multiple Rules

f(x) g(x) k

f g f g

(f(x)+g(x))= (f(x))+ (g(x));

d

dx

d

dx

d

dx

(3.4.4)
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Difference Rule. The derivative of the difference of a function  and a function  is the same as the difference of the derivative of  and the
derivative of  :

that is,

Constant Multiple Rule. The derivative of a constant  multiplied by a function  is the same as the constant multiplied by the derivative:

that is,

We provide only the proof of the sum rule here. The rest follow in a similar manner.

For differentiable functions  and , we set . Using the limit definition of the derivative we have

By substituting  and  we obtain

Rearranging and regrouping the terms, we have

We now apply the sum law for limits and the definition of the derivative to obtain

□

Find the derivative of  and compare it to the derivative of 

Solution

We use the power rule directly:

for s(x) = f(x)+g(x), s'(x) = f '(x)+g'(x).

f g f

g

(f(x)−g(x)) = (f(x))− (g(x));

d

dx

d

dx

d

dx

(3.4.5)

for d(x) = f(x)−g(x), d'(x) = f '(x)−g'(x).

c f

(kf(x))= k (f(x));

d

dx

d

dx

(3.4.6)

for m(x) = kf(x), m'(x) = kf '(x). (3.4.7)

Proof

f(x) g(x) s(x) = f(x)+g(x)

s'(x) = .lim

h→0

s(x+h)−s(x)

h

s(x+h) = f(x+h)+g(x+h) s(x) = f(x)+g(x),

s'(x) = .lim

h→0

(f(x+h)+g(x+h))−(f(x)+g(x))

h

s'(x) = ( + ) .lim

h→0

f(x+h)−f(x)

h

g(x+h)−g(x)

h

s'(x) = + = f '(x)+g'(x).lim

h→0

f(x+h)−f(x)

h

lim

h→0

g(x+h)−g(x)

h

Using the Power Rule to Take a DerivativeUsing the Power Rule to Take a Derivative

Example : Applying the Constant Multiple Rule3.4.4

g(x) = 3x

2

f(x) = .x

2
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Since  has derivative , we see that the derivative of  is 3 times the derivative of . This relationship is illustrated in
Figure.

Figure : The derivative of  is 3 times the derivative of .

Find the derivative of .

Solution

We begin by applying the rule for differentiating the sum of two functions, followed by the rules for differentiating constant multiples of functions
and the rule for differentiating powers. To better understand the sequence in which the differentiation rules are applied, we use Leibniz notation
throughout the solution:

Find the derivative of 

Hint

Use the preceding example as a guide.

Answer

g'(x) = (3 ) = 3 ( ) = 3(2x) = 6x.

d

dx

x

2

d

dx

x

2

f(x) = x

2

f '(x) = 2x g(x) f(x)

3.4.1 g(x) f(x)

Example : Applying Basic Derivative Rules3.4.5

f(x) = 2 +7x

5

f '(x) = (2 +7)

d

dx

x

5

= (2 ) + (7)

d

dx

x

5

d

dx

= 2 ( ) + (7)

d

dx

x

5

d

dx

= 2(5 ) +0x

4

= 10x

4

Apply the sum rule.

Apply the constant multiple rule.

Apply the power rule and the constant rule.

Simplify.

Exercise 3.4.4

f(x) = 2 −6 +3.x

3

x

2

f '(x) = 6 −12x.x

2

Finding the Equation of the Tangent LineFinding the Equation of the Tangent Line
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Find the equation of the line tangent to the graph of  at 

Solution

To find the equation of the tangent line, we need a point and a slope. To find the point, compute

This gives us the point . Since the slope of the tangent line at 1 is , we must first find . Using the definition of a derivative, we have

so the slope of the tangent line is . Using the point-slope formula, we see that the equation of the tangent line is

Putting the equation of the line in slope-intercept form, we obtain

Find the equation of the line tangent to the graph of  at . Use the point-slope form.

Hint

Use the preceding example as a guide.

Answer

 

 

Example : Finding the Equation of a Tangent Line3.4.6

f(x) = −4x+6x

2

x = 1

f(1) = −4(1)+6 = 3.1

2

(1, 3) f '(1) f '(x)

f '(x) = 2x−4

f '(1) =−2

y−3 =−2(x−1).

y =−2x+5.

Exercise 3.4.5

f(x) = 3 −11x

2

x = 2

y = 12x−23

Using Algebra and the Power Rule to Find a DeriUsing Algebra and the Power Rule to Find a Deri……

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25939?pdf
https://www.youtube.com/watch?v=aKI_O1TQts8
https://www.youtube.com/watch?v=aKI_O1TQts8


3.4.7 https://stats.libretexts.org/@go/page/25939

The Product Rule
Now that we have examined the basic rules, we can begin looking at some of the more advanced rules. The first one examines the derivative of the
product of two functions. Although it might be tempting to assume that the derivative of the product is the product of the derivatives, similar to the sum
and difference rules, the product rule does not follow this pattern. To see why we cannot use this pattern, consider the function , whose

derivative is  and not 

Let  and  be differentiable functions. Then

That is,

This means that the derivative of a product of two functions is the derivative of the first function times the second function plus the derivative of the
second function times the first function.

We begin by assuming that  and  are differentiable functions. At a key point in this proof we need to use the fact that, since  is
differentiable, it is also continuous. In particular, we use the fact that since  is continuous, 

By applying the limit definition of the derivative to  we obtain

By adding and subtracting  in the numerator, we have

After breaking apart this quotient and applying the sum law for limits, the derivative becomes

Rearranging, we obtain

By using the continuity of , the definition of the derivatives of  and , and applying the limit laws, we arrive at the product rule,

□

Finding the VelocityFinding the Velocity

f(x) = x

2

f '(x) = 2x (x) ⋅ (x) = 1 ⋅ 1 = 1.

d

dx

d

dx

Product Rule

f(x) g(x)

(f(x)g(x)) = (f(x)) ⋅ g(x)+ (g(x)) ⋅ f(x).

d

dx

d

dx

d

dx

(3.4.8)

if p(x) = f(x)g(x), then p'(x) = f '(x)g(x)+g'(x)f(x).

Proof

f(x) g(x) g(x)

g(x) g(x+h) = g(x).lim

h→0

p(x) = f(x)g(x),

p'(x) = .lim

h→0

f(x+h)g(x+h)−f(x)g(x)

h

f(x)g(x+h)

p'(x) = .lim

h→0

f(x+h)g(x+h)−f(x)g(x+h)+f(x)g(x+h)−f(x)g(x)

h

p'(x) = + .lim

h→0

f(x+h)g(x+h)−f(x)g(x+h)

h

lim

h→0

f(x)g(x+h)−f(x)g(x)

h

p'(x) = ( ⋅ g(x+h))+ ( ⋅ f(x))lim

h→0

f(x+h)−f(x)

h

lim

h→0

g(x+h)−g(x)

h

=( ) ⋅( g(x+h))+( ) ⋅ f(x)lim

h→0

f(x+h)−f(x)

h

lim

h→0

lim

h→0

g(x+h)−g(x)

h

g(x) f(x) g(x)

p'(x) = f '(x)g(x)+g'(x)f(x).
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For , use the product rule to find  if , and .

Solution

Since ,  and hence

For  find  by applying the product rule. Check the result by first finding the product and then differentiating.

Solution

If we set  and , then  and . Thus,

Simplifying, we have

To check, we see that  and, consequently, 

Use the product rule to obtain the derivative of 

Hint

Set  and  and use the preceding example as a guide.

Answer

The Quotient Rule

Having developed and practiced the product rule, we now consider differentiating quotients of functions. As we see in the following theorem, the
derivative of the quotient is not the quotient of the derivatives; rather, it is the derivative of the function in the numerator times the function in the
denominator minus the derivative of the function in the denominator times the function in the numerator, all divided by the square of the function in the
denominator. In order to better grasp why we cannot simply take the quotient of the derivatives, keep in mind that

Using the Product Rule to Find a DerivativeUsing the Product Rule to Find a Derivative

Example : Applying the Product Rule to Constant Functions3.4.7

p(x) = f(x)g(x) p'(2) f(2) = 3, f '(2) =−4, g(2) = 1 g'(2) = 6

p(x) = f(x)g(x) p'(x) = f '(x)g(x)+g'(x)f(x),

p'(2) = f '(2)g(2)+g'(2)f(2) = (−4)(1)+(6)(3) = 14.

Example : Applying the Product Rule to Binomials3.4.8

p(x) = ( +2)(3 −5x),x

2

x

3

p'(x)

f(x) = +2x

2

g(x) = 3 −5xx

3

f '(x) = 2x g'(x) = 9 −5x

2

p'(x) = f '(x)g(x)+g'(x)f(x) = (2x)(3 −5x)+(9 −5)( +2).x

3

x

2

x

2

p'(x) = 15 +3 −10.x

4

x

2

p(x) = 3 + −10xx

5

x

3

p'(x) = 15 +3 −10.x

4

x

2

Exercise 3.4.6

p(x) = 2 (4 +x).x

5

x

2

f(x) = 2x

5

g(x) = 4 +xx

2

p'(x) = 10 (4 +x)+(8x+1)(2 ) = 56 +12 .x

4

x

2

x

5

x

6

x

5

( ) = 2x,  not  = = 3 .

d

dx

x

2

( )

d

dx

x

3

(x)

d

dx

3x

2

1

x

2
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Let  and  be differentiable functions. Then

That is, if

then

The proof of the quotient rule is very similar to the proof of the product rule, so it is omitted here. Instead, we apply this new rule for finding derivatives
in the next example.

Use the quotient rule to find the derivative of 

Solution

Let  and . Thus,  and .

Substituting into the quotient rule, we have

Simplifying, we obtain

Find the derivative of .

Answer

Apply the quotient rule with  and .

Answer

The Quotient Rule

f(x) g(x)

( ) = .

d

dx

f(x)

g(x)

(f(x)) ⋅ g(x)− (g(x)) ⋅ f(x)

d

dx

d

dx

(g(x))

2

(3.4.9)

q(x) =

f(x)

g(x)

q'(x) = .

f '(x)g(x)−g'(x)f(x)

(g(x))

2

Example : Applying the Quotient Rule3.4.9

q(x) = .

5x

2

4x+3

f(x) = 5x

2

g(x) = 4x+3 f '(x) = 10x g'(x) = 4

q'(x) = = .

f '(x)g(x)−g'(x)f(x)

(g(x))

2

10x(4x+3)−4(5 )x

2

(4x+3)

2

q'(x) =

20 +30xx

2

(4x+3)

2

Using the Quotient Rule to Find a DerivativeUsing the Quotient Rule to Find a Derivative

Exercise 3.4.7

h(x) =

3x+1

4x−3

f(x) = 3x+1 g(x) = 4x−3

h'(x) =− .

13

(4x−3)

2
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It is now possible to use the quotient rule to extend the power rule to find derivatives of functions of the form  where  is a negative integer.

If  is a negative integer, then

If  is a negative integer, we may set , so that n is a positive integer with . Since for each positive integer , , we may

now apply the quotient rule by setting  and . In this case,  and . Thus,

Simplifying, we see that

Finally, observe that since , by substituting we have

□

Find .

Solution

By applying the extended power rule with , we obtain

Use the extended power rule and the constant multiple rule to find .

Solution

It may seem tempting to use the quotient rule to find this derivative, and it would certainly not be incorrect to do so. However, it is far easier to
differentiate this function by first rewriting it as .

Find the derivative of  using the extended power rule.

Hint

Rewrite . Use the extended power rule with .

x

k

k

Extended Power Rule

k

( ) = k .

d

dx

x

k

x

k−1

(3.4.10)

Proof

k n = −k k = −n n =x

−n

1

x

n

f(x) = 1 g(x) = x

n

f '(x) = 0 g'(x) = nx

n−1

( ) = .

d

d

x

−n

0( ) −1(n )x

n

x

n−1

(x

n

)

2

( )

d

d

x

−n

=

−nx

n−1

nx

2

= −nx

(n−1)−2n

= −n .x

−n−1

k = −n

( ) = k .

d

dx

x

k

x

k−1

Example : Using the Extended Power Rule3.4.10

( )

d

dx

x

−4

k = −4

( ) = −4 = −4 .

d

dx

x

−4

x

−4−1

x

−5

Example : Using the Extended Power Rule and the Constant Multiple Rule3.4.11

f(x) =

6

x

2

f(x) = 6x

−2

f '(x) = ( ) = (6 )

d

dx

6

x

2

d

dx

x

−2

= 6 ( )

d

dx

x

−2

= 6(−2 )x

−3

= −12x

−3

Rewrite   as 6 .

6

x

2

x

−2

Apply the constant multiple rule.

Use the extended power rule to differentiate  .x

−2

Simplify.

Exercise 3.4.8

g(x) =

1

x

7

g(x) = =

1

x

7

x

−7

k = −7
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Answer

.

Combining Differentiation Rules

As we have seen throughout the examples in this section, it seldom happens that we are called on to apply just one differentiation rule to find the
derivative of a given function. At this point, by combining the differentiation rules, we may find the derivatives of any polynomial or rational function.
Later on we will encounter more complex combinations of differentiation rules. A good rule of thumb to use when applying several rules is to apply the
rules in reverse of the order in which we would evaluate the function.

For , find .

Solution: Finding this derivative requires the sum rule, the constant multiple rule, and the product rule.

Apply the sum rule.

Apply the constant multiple rule to differentiate  and the product rule
to differentiate .

 

For , express  in terms of , and their derivatives.

Solution

We can think of the function  as the product of the function  and the function . That is, . Thus,

For , find .

Solution

This procedure is typical for finding the derivative of a rational function.

Find 

Hint

Apply the difference rule and the constant multiple rule.

Answer

g'(x) = −7x

−8

Example : Combining Differentiation Rules3.4.12

k(x) = 3h(x) + g(x)x

2

k'(x)

k'(x) = (3h(x) + g(x)) = (3h(x))+ ( g(x))

d

dx

x

2

d

dx

d

dx

x

2

= 3 (h(x))+( ( )g(x) + (g(x)) )

d

dx

d

dx

x

2

d

dx

x

2

3h(x)

g(x)x

2

= 3h'(x) + 2xg(x) + g'(x)x

2

Example : Extending the Product Rule3.4.13

k(x) = f(x)g(x)h(x) k'(x) f(x), g(x),h(x)

k(x) f(x)g(x) h(x) k(x) = (f(x)g(x)) ⋅h(x)

k'(x) = (f(x)g(x)) ⋅h(x) + (h(x)) ⋅ (f(x)g(x)).

d

dx

d

dx

= (f '(x)g(x) +g'(x)f(x))h(x) +h'(x)f(x)g(x)

= f '(x)g(x)h(x) +f(x)g'(x)h(x) +f(x)g(x)h'(x).

Apply the product rule to the product of f(x)g(x) and h(x).

Apply the product rule to f(x)g(x)

Simplify.

Example : Combining the Quotient Rule and the Product Rule3.4.14

h(x) =

2 k(x)x

3

3x+2

h'(x)

h'(x) =

(2 k(x)) ⋅ (3x+2) − (3x+2) ⋅ (2 k(x))

d

dx

x

3

d

dx

x

3

(3x+2)

2

=

(6 k(x) +k'(x) ⋅ 2 )(3x+2) −3(2 k(x))x

2

x

3

x

3

(3x+2)

2

=

−6 k(x) +18 k(x) +12 k(x) +6 k'(x) +4 k'(x)x

3

x

3

x

2

x

4

x

3

(3x+2)

2

Apply the quotient rule.

Apply the product rule to find  (2 k(x)).  Use  (3x+2) = 3.

d

dx

x

3

d

dx

Simplify

Exercise 3.4.9

(3f(x) −2g(x)).

d

dx

3f '(x) −2g'(x).

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25939?pdf


3.4.12 https://stats.libretexts.org/@go/page/25939

Determine the values of  for which  has a horizontal tangent line.

Solution

To find the values of  for which  has a horizontal tangent line, we must solve .

Since ,

we must solve . Thus we see that the function has horizontal tangent lines at  and  as shown in the following

graph.

Figure : This function has horizontal tangent lines at  and .

The position of an object on a coordinate axis at time  is given by  What is the initial velocity of the object?

Solution

Since the initial velocity is  begin by finding  by applying the quotient rule:

.

After evaluating, we see that 

Find the values of  for which the line tangent to the graph of  has a tangent line parallel to the line 

Hint

Solve .

Answer

Formula One car races can be very exciting to watch and attract a lot of spectators. Formula One track designers have to ensure sufficient
grandstand space is available around the track to accommodate these viewers. However, car racing can be dangerous, and safety considerations are
paramount. The grandstands must be placed where spectators will not be in danger should a driver lose control of a car (Figure ).

Example : Determining Where a Function Has a Horizontal Tangent3.4.15

x f(x) = −7 +8x+1x

3

x

2

x f(x) f '(x) = 0

f '(x) = 3 −14x+8 = (3x−2)(x−4)x

2

(3x−2)(x−4) = 0 x =

2

3

x = 4

3.4.2 x = 2/3 x = 4

Example : Finding a Velocity3.4.16

t s(t) = .

t

+1t

2

v(0) = s'(0), s'(t)

s'(t) = =

1( +1)−2t(t)t

2

( +1t

2

)

2

1− t

2

( +1t

2

)

2

v(0) = 1.

Exercise 3.4.10

x f(x) = 4 −3x+2x

2

y = 2x+3.

f '(x) = 2

5

8

Formula One Grandstands

3.4.3
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Figure : The grandstand next to a straightaway of the Circuit de Barcelona-Catalunya race track, located where the spectators are not in danger.

Safety is especially a concern on turns. If a driver does not slow down enough before entering the turn, the car may slide off the racetrack. Normally,
this just results in a wider turn, which slows the driver down. But if the driver loses control completely, the car may fly off the track entirely, on a
path tangent to the curve of the racetrack.

Suppose you are designing a new Formula One track. One section of the track can be modeled by the function  (Figure ).
The current plan calls for grandstands to be built along the first straightaway and around a portion of the first curve. The plans call for the front
corner of the grandstand to be located at the point ( ). We want to determine whether this location puts the spectators in danger if a driver
loses control of the car.

Figure : (a) One section of the racetrack can be modeled by the function . (b) The front corner of the grandstand is
located at ( ).

1. Physicists have determined that drivers are most likely to lose control of their cars as they are coming into a turn, at the point where the slope of
the tangent line is 1. Find the  coordinates of this point near the turn.

2. Find the equation of the tangent line to the curve at this point.
3. To determine whether the spectators are in danger in this scenario, find the -coordinate of the point where the tangent line crosses the line 

. Is this point safely to the right of the grandstand? Or are the spectators in danger?
4. What if a driver loses control earlier than the physicists project? Suppose a driver loses control at the point ( ). What is the slope of

the tangent line at this point?
5. If a driver loses control as described in part 4, are the spectators safe?
6. Should you proceed with the current design for the grandstand, or should the grandstands be moved?

Key Concepts
The derivative of a constant function is zero.
The derivative of a power function is a function in which the power on  becomes the coefficient of the term and the power on  in the derivative
decreases by 1.
The derivative of a constant  multiplied by a function  is the same as the constant multiplied by the derivative.
The derivative of the sum of a function  and a function  is the same as the sum of the derivative of  and the derivative of .
The derivative of the difference of a function  and a function  is the same as the difference of the derivative of  and the derivative of .
The derivative of a product of two functions is the derivative of the first function times the second function plus the derivative of the second function
times the first function.
The derivative of the quotient of two functions is the derivative of the first function times the second function minus the derivative of the second
function times the first function, all divided by the square of the second function.

3.4.3

f(x) = +3 +xx

3

x

2

3.4.4

−1.9, 2.8

3.4.4 f(x) = +3 +xx

3

x

2

−1.9, 2.8

(x, y)

x

y = 2.8

−2.5, 0.625

x x

c f

f g f g

f g f g
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We used the limit definition of the derivative to develop formulas that allow us to find derivatives without resorting to the definition of the derivative.
These formulas can be used singly or in combination with each other.

Glossary

constant multiple rule

the derivative of a constant  multiplied by a function  is the same as the constant multiplied by the derivative: 

constant rule

the derivative of a constant function is zero: , where  is a constant

difference rule
the derivative of the difference of a function  and a function  is the same as the difference of the derivative of  and the derivative of : 

power rule
the derivative of a power function is a function in which the power on  becomes the coefficient of the term and the power on  in the derivative

decreases by 1: If  is an integer, then 

product rule
the derivative of a product of two functions is the derivative of the first function times the second function plus the derivative of the second function

times the first function: 

quotient rule
the derivative of the quotient of two functions is the derivative of the first function times the second function minus the derivative of the second

function times the first function, all divided by the square of the second function: 

sum rule
the derivative of the sum of a function  and a function  is the same as the sum of the derivative of  and the derivative of : 
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c f (cf(x))= cf '(x)

d

dx

(c) = 0

d

dx

c

f g f g

(f(x)−g(x))= f '(x)−g'(x)

d

dx

x x

n ( ) = n

d

dx

x

n

x

n−1

(f(x)g(x))= f '(x)g(x)+g'(x)f(x)

d

dx

( ) =

d

dx

f(x)

g(x)

f '(x)g(x)−g'(x)f(x)

(g(x))

2

f g f g

(f(x)+g(x))= f '(x)+g'(x)

d

dx
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3.4E: Exercises for Section 3.3
In exercises 1 - 12, find  for each function.

1) 

2) 

Answer

3) 

4) 

Answer

5) 

6) 

Answer

7) 

8) 

Answer

9) 

10) 

Answer

11) 

12) 

Answer

In exercises 13 - 16, find the equation of the tangent line  to the graph of the given function at the indicated point. Use a
graphing calculator to graph the function and the tangent line.

13) [T]  at 

(x)f

′

f(x) = +10x

7

f(x) = 5 −x+1x

3

(x) = 15 −1f

′

x

2

f(x) = 4 −7xx

2

f(x) = 8 +9 −1x

4

x

2

(x) = 32 +18xf

′

x

3

f(x) = +2xx

4

f(x) = 3x(18 + )x

4

13

x+1

(x) = 270 +f

′

x

4

39

(x+1)

2

f(x) = (x+2)(2 −3)x

2

f(x) = ( + )x

2

2

x

2

5

x

3

(x) =f

′

−5

x

2

f(x) =

+2 −4x

3

x

2

3

f(x) =

4 −2x+1x

3

x

2

(x) =f

′

4 +2 −2xx

4

x

2

x

4

f(x) =

+4x

2

−4x

2

f(x) =

x+9

−7x+1x

2

(x) =f

′

− −18x+64x

2

( −7x+1x

2

)

2

T (x)

y = 3 +4x+1x

2

(0, 1)
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14) [T]  at 

Answer

15) [T]  at 

16) [T]  at 

Answer

In exercises 17 - 20, assume that  and  are both differentiable functions for all . Find the derivative of each of the
functions .

17) 

18) 

Answer

19) 

20) 

Answer

For exercises 21 - 24, assume that  and  are both differentiable functions with values as given in the following table.
Use the following table to calculate the following derivatives.

y = 2 +1x

−−

√

(4, 5)

T (x) = x+3

1

2

y =

2x

x−1

(−1, 1)

y = −

2

x

3

x

2

(1, −1)

T (x) = 4x−5

f(x) g(x) x

h(x)

h(x) = 4f(x)+

g(x)

7

h(x) = f(x)x

3

(x) = 3 f(x)+ f '(x)h

′

x

2

x

3

h(x) =

f(x)g(x)

2

h(x) =

3f(x)

g(x)+2

(x) =h

′

3f '(x)(g(x)+2)−3f(x)g'(x)

(g(x)+2)

2

f(x) g(x)
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1 2 3 4

3 5 −2 0

2 3 −4 6

−1 7 8 −3

4 1 2 9

21) Find  if .

22) Find  if .

Answer

23) Find  if .

24) Find  if .

Answer
 is undefined.

In exercises 25 - 27, use the following figure to find the indicated derivatives, if they exist.

25) Let . Find

a) ,

b) , and

c) .

26) Let  Find

a) 

b) , and

c) 

Answer
a. , 
b.  does not exist, 
c. 

27) Let  Find

x

f(x)

g(x)

f'(x)

g'(x)

h'(1) h(x) = xf(x)+4g(x)

h'(2) h(x) =

f(x)

g(x)

(2) =h

′

16

9

h'(3) h(x) = 2x+f(x)g(x)

h'(4) h(x) = +

1

x

g(x)

f(x)

(4)h

′

h(x) = f(x)+g(x)

h'(1)

h'(3)

h'(4)

h(x) = f(x)g(x).

h'(1),

h'(3)

h'(4).

(1) = 2h

′

(3)h

′

(4) = 2.5h

′

h(x) = .

f(x)

g(x)

https://libretexts.org/
https://stats.libretexts.org/@go/page/25940?pdf


3.4E.4 https://stats.libretexts.org/@go/page/25940

a) 

b) , and

c) 

In exercises 28 - 31,

a) evaluate , and

b) graph the function  and the tangent line at .

28) [T] 

Answer

a. 23 
b. 

29) [T] 

30) [T] 

Answer

a.  
b. 

h'(1),

h'(3)

h'(4).

f '(a)

f(x) x = a

f(x) = 2 +3x− , a= 2x

3

x

2

y = 23x−28

f(x) = − , a= 1

1

x

x

2

f(x) = − +3x+2, a= 0x

2

x

12

3

y = 3x+2
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31) [T] 

32) Find the equation of the tangent line to the graph of  at 

Answer

33) Find the equation of the tangent line to the graph of  at .

34) Find the equation of the tangent line to the graph of  at .

Answer

35) Find the point on the graph of  such that the tangent line at that point has an -intercept of .

36) Find the equation of the line passing through the point  and tangent to the graph of .

Answer

37) Determine all points on the graph of  for which the slope of the tangent line is

a. horizontal

b. −1.

38) Find a quadratic polynomial such that  and 

Answer

39) A car driving along a freeway with traffic has traveled  meters in  seconds.

a. Determine the time in seconds when the velocity of the car is 0.

b. Determine the acceleration of the car when the velocity is 0.

40) [T] A herring swimming along a straight line has traveled  feet in 

seconds. Determine the velocity of the herring when it has traveled 3 seconds.

Answer
 or 0.0992 ft/s

41) The population in millions of arctic flounder in the Atlantic Ocean is modeled by the function , where  is

measured in years.

a. Determine the initial flounder population.

b. Determine  and briefly interpret the result.

42) [T] The concentration of antibiotic in the bloodstream  hours after being injected is given by the function ,

where  is measured in milligrams per liter of blood.

a. Find the rate of change of 

b. Determine the rate of change for ,and .

f(x) = − , a=−1

1

x

x

2/3

f(x) = 2 +4 −5x−3x

3

x

2

x =−1.

y =−7x−3

f(x) = + −10x

2

4

x

x = 8

f(x) = (3x− )(3−x− )x

2

x

2

x = 1

y =−5x+7

f(x) = x

3

x (6, 0)

P (3, 3) f(x) =

6

x−1

y =− x+

3

2

15

2

f(x) = + −x−1x

3

x

2

f(1) = 5, f '(1) = 3 (1) =−6.f

′′

y =−3 +9x−1x

2

s(t) = −6 +9tt

3

t

2

t

s(t) =

t

2

+2t

2

t

12

121

P (t) =

8t+3

0.2 +1t

2

t

P '(10)

t C(t) =

2 + tt

2

+50t

3

C

C(t).

t = 8, 12, 24 36
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c. Briefly describe what seems to be occurring as the number of hours increases.

Answer

a.  

b.  mg/L-hr,  mg/L-hr,  mg/L-hr,  mg/L-hr 
c. The rate at which the concentration of drug in the bloodstream decreases is slowing to 0 as time increases.

43) A book publisher has a cost function given by , where  is the number of copies of a book in thousands

and  is the cost, per book, measured in dollars. Evaluate and explain its meaning.

44) [T] According to Newton’s law of universal gravitation, the force  between two bodies of constant mass  and  is given

by the formula , where  is the gravitational constant and  is the distance between the bodies.

a. Suppose that  and  are constants. Find the rate of change of force  with respect to distance .

b. Find the rate of change of force  with gravitational constant , on two bodies 10 meters
apart, each with a mass of 1000 kilograms.

Answer

a.  

b.  N/m

3.4E: Exercises for Section 3.3 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

3.3E: Exercises for Section 3.3 is licensed CC BY-NC-SA 4.0.

−2 −2 +200t+50t

4

t

3

( +50t

3

)

2

−0.02395 −0.01344 −0.003566 −0.001579

C(x) =

+2x+3x

3

x

2

x

C C'(2)

F m

1

m

2

F =

Gm

1

m

2

d

2

G d

G, ,m

1

m

2

F d

F G= 6.67× /10

−11

Nm

2

kg

2

(d) =F

′

−2Gm

1

m

2

d

3

−1.33×10

−7
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3.5: Derivatives as Rates of Change

Determine a new value of a quantity from the old value and the amount of change.
Calculate the average rate of change and explain how it differs from the instantaneous rate of change.
Apply rates of change to displacement, velocity, and acceleration of an object moving along a straight line.
Predict the future population from the present value and the population growth rate.
Use derivatives to calculate marginal cost and revenue in a business situation.

In this section we look at some applications of the derivative by focusing on the interpretation of the derivative as the rate of
change of a function. These applications include acceleration and velocity in physics, population growth rates in biology, and
marginal functions in economics.

Amount of Change Formula
One application for derivatives is to estimate an unknown value of a function at a point by using a known value of a function at
some given point together with its rate of change at the given point. If  is a function defined on an interval , then the
amount of change of  over the interval is the change in the  values of the function over that interval and is given by

The average rate of change of the function  over that same interval is the ratio of the amount of change over that interval to the
corresponding change in the  values. It is given by

As we already know, the instantaneous rate of change of  at  is its derivative

For small enough values of , . We can then solve for  to get the amount of change formula:

We can use this formula if we know only and  and wish to estimate the value of . For example, we may use the
current population of a city and the rate at which it is growing to estimate its population in the near future. As we can see in Figure 

, we are approximating  by the  coordinate at a+h on the line tangent to  at . Observe that the accuracy of
this estimate depends on the value of  as well as the value of .

 Figure : The new value of a changed quantity equals the original
value plus the rate of change times the interval of change: 

 Learning Objectives

f(x) [a, a+h]

f(x) y

f(a+h)−f(a).

f

x

.

f(a+h)−f(a)

h

f(x) a

f '(a) = .lim

h→0

f(a+h)−f(a)

h

h f '(a) ≈

f(a+h)−f(a)

h

f(a+h)

f(a+h) ≈ f(a)+f '(a)h. (3.5.1)

f(a) f '(a) f(a+h)

3.5.1 f(a+h) y f(x) x = a

h f '(a)

3.5.1

f(a+h) ≈ f(a)+f '(a)h.
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If  and , estimate .

Solution
Begin by finding . We have  Thus,

Given  and , estimate .

Hint

Use the same process as in the preceding example.

Answer

Motion along a Line
Another use for the derivative is to analyze motion along a line. We have described velocity as the rate of change of position. If we
take the derivative of the velocity, we can find the acceleration, or the rate of change of velocity. It is also important to introduce
the idea of speed, which is the magnitude of velocity. Thus, we can state the following mathematical definitions.

Let  be a function giving the position of an object at time t.

The velocity of the object at time  is given by .
The speed of the object at time  is given by .
The acceleration of the object at  is given by .

A ball is dropped from a height of 64 feet. Its height above ground (in feet)  seconds later is given by .

a. What is the instantaneous velocity of the ball when it hits the ground?
b. What is the average velocity during its fall?

Solution
The first thing to do is determine how long it takes the ball to reach the ground. To do this, set . Solving 

, we get , so it takes 2 seconds for the ball to reach the ground.

 Example : Estimating the Value of a Function3.5.1

f(3) = 2 f '(3) = 5 f(3.2)

h h = 3.2−3 = 0.2.

f(3.2) = f(3+0.2) ≈ f(3)+(0.2)f '(3) = 2+0.2(5) = 3.

 Exercise 3.5.1

f(10) =−5 f '(10) = 6 f(10.1)

−4.4

 Definition

s(t)

t v(t) = s'(t)

t |v(t)|

t a(t) = v'(t) = (t)s

′′

 Example : Comparing Instantaneous Velocity and Average Velocity3.5.2

t s(t) =−16 +64t

2

s(t) = 0

−16 +64 = 0t

2

t = 2
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a. The instantaneous velocity of the ball as it strikes the ground is . Since , we obtain 
ft/s.

b. The average velocity of the ball during its fall is

 ft/s.

A particle moves along a coordinate axis in the positive direction to the right. Its position at time  is given by 
. Find  and  and use these values to answer the following questions.

a. Is the particle moving from left to right or from right to left at time ?
b. Is the particle speeding up or slowing down at time ?

Solution
Begin by finding  and .

 and .

Evaluating these functions at , we obtain  and .

a. Because , the particle is moving from right to left.
b. Because  and , velocity and acceleration are acting in opposite directions. In other words, the particle is

being accelerated in the direction opposite the direction in which it is traveling, causing  to decrease. The particle is
slowing down.

The position of a particle moving along a coordinate axis is given by 

a. Find .
b. At what time(s) is the particle at rest?
c. On what time intervals is the particle moving from left to right? From right to left?
d. Use the information obtained to sketch the path of the particle along a coordinate axis.

Solution
a. The velocity is the derivative of the position function:

b. The particle is at rest when , so set . Factoring the left-hand side of the equation produces 
. Solving, we find that the particle is at rest at  and .

c. The particle is moving from left to right when  and from right to left when . Figure  gives the analysis
of the sign of  for , but it does not represent the axis along which the particle is moving.

 Figure :The sign of  determines the direction of the particle.
Since  on , the particle is moving from left to right on these intervals.
Since  on , the particle is moving from right to left on this interval.

d. Before we can sketch the graph of the particle, we need to know its position at the time it starts moving  and at the
times that it changes direction . We have , , and . This means that the particle begins on
the coordinate axis at  and changes direction at  and  on the coordinate axis. The path of the particle is shown on a
coordinate axis in Figure .

v(2) v(t) = s'(t) =−32t v(t) =−64

= = =−32v

ave

s(2)−s(0)

2−0

0−64

2

 Example : Interpreting the Relationship between  and 3.5.3 v(t) a(t)

t

s(t) = −4t+2t

3

v(1) a(1)

t = 1

t = 1

v(t) a(t)

v(t) = (t) = 3 −4s

′

t

2

a(t) = v'(t) = (t) = 6ts

′′

t = 1 v(1) =−1 a(1) = 6

v(1) < 0

v(1) < 0 a(1) > 0

|v(t)|

 Example : Position and Velocity3.5.4

s(t) = −9 +24t+4, t ≥ 0.t

3

t

2

v(t)

v(t) = s'(t) = 3 −18t+24.t

2

v(t) = 0 3 −18t+24 = 0t

2

3(t−2)(t−4) = 0 t = 2 t = 4

v(t) > 0 v(t) < 0 3.5.2

v(t) t ≥ 0

3.5.2 v(t)

3 −18t+24 > 0t

2

[0, 2)∪ (4,+∞)

3 −18t+24 < 0t

2

(2, 4)

(t = 0)

(t = 2, 4) s(0) = 4 s(2) = 24 s(4) = 20

4 24 20

3.5.3
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 Figure : The path of the particle can be determined by analyzing 
.

A particle moves along a coordinate axis. Its position at time  is given by . Is the particle moving from
right to left or from left to right at time ?

Hint

Find  and look at the sign.

Answer

left to right

Population Change
In addition to analyzing velocity, speed, acceleration, and position, we can use derivatives to analyze various types of populations,
including those as diverse as bacteria colonies and cities. We can use a current population, together with a growth rate, to estimate
the size of a population in the future. The population growth rate is the rate of change of a population and consequently can be
represented by the derivative of the size of the population.

If  is the number of entities present in a population, then the population growth rate of  is defined to be .

The population of a city is tripling every 5 years. If its current population is 10,000, what will be its approximate population 2
years from now?

Solution
Let  be the population (in thousands)  years from now. Thus, we know that  and based on the information, we
anticipate . Now estimate , the current growth rate, using

.

By applying Equation  to , we can estimate the population 2 years from now by writing

;

thus, in 2 years the population will be 18,000.

The current population of a mosquito colony is known to be 3,000; that is, . If , estimate the size of
the population in 3 days, where  is measured in days.

Hint

Use 

Answer

3,300

3.5.3

v(t)

 Exercise 3.5.2

t s(t) = −5t+1t

2

t = 3

v(3)

 Definition

P (t) P (t) P '(t)

 Example : Estimating a Population3.5.5

P (t) t P (0) = 10

P (5) = 30 P '(0)

P '(0) ≈ = = 4

P(5)−P(0)

5−0

30−10

5

3.5.1 P (t)

P (2) ≈ P (0)+(2)P '(0) ≈ 10+2(4) = 18

 Exercise 3.5.3

P (0) = 3, 000 P '(0) = 100

t

P (3) ≈ P (0)+3P '(0)
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Changes in Cost and Revenue
In addition to analyzing motion along a line and population growth, derivatives are useful in analyzing changes in cost, revenue,
and profit. The concept of a marginal function is common in the fields of business and economics and implies the use of
derivatives. The marginal cost is the derivative of the cost function. The marginal revenue is the derivative of the revenue function.
The marginal profit is the derivative of the profit function, which is based on the cost function and the revenue function.

If  is the cost of producing  items, then the marginal cost  is .
If  is the revenue obtained from selling  items, then the marginal revenue  is .
If  is the profit obtained from selling  items, then the marginal profit  is defined to be 

.

We can roughly approximate

by choosing an appropriate value for . Since  represents objects, a reasonable and small value for  is 1. Thus, by substituting 
, we get the approximation . Consequently,  for a given value of  can be

thought of as the change in cost associated with producing one additional item. In a similar way,  approximates
the revenue obtained by selling one additional item, and  approximates the profit obtained by producing and
selling one additional item.

Assume that the number of barbeque dinners that can be sold, , can be related to the price charged, , by the equation 
.

In this case, the revenue in dollars obtained by selling  barbeque dinners is given by

.

Use the marginal revenue function to estimate the revenue obtained from selling the  barbeque dinner. Compare this to
the actual revenue obtained from the sale of this dinner.

Solution
First, find the marginal revenue function: 

Next, use  to approximate , the revenue obtained from the sale of the  dinner. Since 
, the revenue obtained from the sale of the  dinner is approximately $3.

The actual revenue obtained from the sale of the  dinner is

 or 

The marginal revenue is a fairly good estimate in this case and has the advantage of being easy to compute.

Suppose that the profit obtained from the sale of  fish-fry dinners is given by . Use the marginal
profit function to estimate the profit from the sale of the  fish-fry dinner.

Hint

Use  to approximate .

Answer

$2

 Definition

C(x) x MC(x) MC(x) =C'(x)

R(x) x MR(x) MR(x) =R'(x)

P (x) =R(x)−C(x) x MP (x)

MP (x) = P '(x) =MR(x)−MC(x) =R'(x)−C'(x)

MC(x) =C'(x) = lim

h→0

C(x+h)−C(x)

h

h x h

h = 1 MC(x) =C'(x) ≈C(x+1)−C(x) C'(x) x

MR(x) =R'(x)

MP (x) = P '(x)

 Example : Applying Marginal Revenue3.5.6

x p

p(x) = 9−0.03x, 0 ≤ x ≤ 300

x

R(x) = xp(x) = x(9−0.03x) =−0.03 +9x  for 0 ≤ x ≤ 300x

2

101

st

MR(x) =R'(x) =−0.06x+9.

R'(100) R(101)−R(100) 101

st

R'(100) = 3 101

st

101

st

R(101)−R(100) = 602.97−600 = 2.97, $2.97.

 Exercise 3.5.4

x P (x) =−0.03 +8x−50x

2

101

st

P '(100) P (101)−P (100)
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Key Concepts
Using , it is possible to estimate  given  and .
The rate of change of position is velocity, and the rate of change of velocity is acceleration. Speed is the absolute value, or
magnitude, of velocity.
The population growth rate and the present population can be used to predict the size of a future population.
Marginal cost, marginal revenue, and marginal profit functions can be used to predict, respectively, the cost of producing one
more item, the revenue obtained by selling one more item, and the profit obtained by producing and selling one more item.

Glossary

acceleration
is the rate of change of the velocity, that is, the derivative of velocity

amount of change
the amount of a function  over an interval 

average rate of change

is a function  over an interval  is 

marginal cost
is the derivative of the cost function, or the approximate cost of producing one more item

marginal revenue
is the derivative of the revenue function, or the approximate revenue obtained by selling one more item

marginal profit
is the derivative of the profit function, or the approximate profit obtained by producing and selling one more item

population growth rate
is the derivative of the population with respect to time

speed
is the absolute value of velocity, that is,  is the speed of an object at time  whose velocity is given by 

This page titled 3.5: Derivatives as Rates of Change is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

3.4: Derivatives as Rates of Change by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f(a+h) ≈ f(a)+f '(a)h f(a+h) f '(a) f(a)

f(x) [x, x+h]isf(x+h)−f(x)

f(x) [x, x+h]

f(x+h)−f(a)

b−a

|v(t)| t v(t)
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3.5E: Exercises for Section 3.4
In exercises 1 - 3, the given functions represent the position of a particle traveling along a horizontal line.

a. Find the velocity and acceleration functions.

b. Determine the time intervals when the object is slowing down or speeding up.

1) 

2) 

Answer
a. ; 
b. speeds up for , slows down for 

3) 

4) A rocket is fired vertically upward from the ground. The distance  in feet that the rocket travels from the ground after  seconds
is given by .

a. Find the velocity of the rocket 3 seconds after being fired.

b. Find the acceleration of the rocket 3 seconds after being fired.

Answer
a.  
b. 

5) A ball is thrown downward with a speed of 8 ft/s from the top of a 64-foot-tall building. After  seconds, its height above the
ground is given by 

a. Determine how long it takes for the ball to hit the ground.

b. Determine the velocity of the ball when it hits the ground.

6) The position function  represents the position of the back of a car backing out of a driveway and then driving
in a straight line, where  is in feet and  is in seconds. In this case,  represents the time at which the back of the car is at
the garage door, so  is the starting position of the car, 4 feet inside the garage.

a. Determine the velocity of the car when .

b. Determine the velocity of the car when .

Answer
a.  ft/s 
b.  ft/s

7) The position of a hummingbird flying along a straight line in  seconds is given by  meters.

a. Determine the velocity of the bird at  sec.

b. Determine the acceleration of the bird at  sec.

c. Determine the acceleration of the bird when the velocity equals 0.

8) A potato is launched vertically upward with an initial velocity of 100 ft/s from a potato gun at the top of an 85-foot-tall building.
The distance in feet that the potato travels from the ground after  seconds is given by .

a. Find the velocity of the potato after  s and  s.

b. Find the speed of the potato at  s and  s.

c. Determine when the potato reaches its maximum height.

s(t) = 2 −3 −12t+8t

3

t

2

s(t) = 2 −15 +36t−10t

3

t

2

v(t) = 6 −30t+36, a(t) = 12t−30t

2

(2, 2.5)∪ (3,∞) (0, 2)∪ (2.5, 3)

s(t) =

t

1+ t

2

s t

s(t) =−16 +560tt

2

464 ft/s

2

−32 ft/s

2

t

s(t) =−16 −8t+64.t

2

s(t) = −3t−4t

2

s t s(t) = 0

s(0) =−4

s(t) = 0

s(t) = 14

5

9

t s(t) = 3 −7tt

3

t = 1

t = 1

t s(t) =−16 +100t+85t

2

0.5 5.75

0.5 5.75
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d. Find the acceleration of the potato at  s and  s.

e. Determine how long the potato is in the air.

f. Determine the velocity of the potato upon hitting the ground.

Answer
a. 84 ft/s, −84 ft/s 
b. 84 ft/s 
c.  s 
d.  in both cases 
e.  s 
f.  ft/s

9) The position function  gives the position in miles of a freight train where east is the positive direction and  is
measured in hours.

a. Determine the direction the train is traveling when .

b. Determine the direction the train is traveling when .

c. Determine the time intervals when the train is slowing down or speeding up.

10) The following graph shows the position  of an object moving along a straight line.

a. Use the graph of the position function to determine the time intervals when the velocity is positive, negative, or zero.

b. Sketch the graph of the velocity function.

c. Use the graph of the velocity function to determine the time intervals when the acceleration is positive, negative, or zero.

d. Determine the time intervals when the object is speeding up or slowing down.

Answer
a. Velocity is positive on , negative on , and zero on .

b.

0.5 1.5

25

8

−32 ft/s

2

(25+ )

1

8

965

−−−

√

−4 965

−−−

√

s(t) = −8tt

3

t

s(t) = 0

a(t) = 0

y = s(t)

(0, 1.5)∪ (6, 7) (1.5, 2)∪ (5, 6) (2, 5)
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c. Acceleration is positive on , negative on , and zero on . 
d. The object is speeding up on  and slowing down on .

11) The cost function, in dollars, of a company that manufactures food processors is given by , where  is

the number of food processors manufactured.

a. Find the marginal cost function.

b. Find the marginal cost of manufacturing 12 food processors.

c. Find the actual cost of manufacturing the thirteenth food processor.

12) The price p (in dollars) and the demand  for a certain digital clock radio is given by the price–demand function 
.

a. Find the revenue function 

b. Find the marginal revenue function.

c. Find the marginal revenue at  and .

Answer
a.  
b.  
c. $6 per item, $0 per item

13) [T] A profit is earned when revenue exceeds cost. Suppose the profit function for a skateboard manufacturer is given by 
, where  is the number of skateboards sold.

a. Find the exact profit from the sale of the thirtieth skateboard.

b. Find the marginal profit function and use it to estimate the profit from the sale of the thirtieth skateboard.

14) [T] In general, the profit function is the difference between the revenue and cost functions: .

Suppose the price-demand and cost functions for the production of cordless drills is given respectively by  and 
, where  is the number of cordless drills that are sold at a price of  dollars per drill and  is the cost of

producing  cordless drills.

a. Find the marginal cost function.

b. Find the revenue and marginal revenue functions.

c. Find  and . Interpret the results.

d. Find the profit and marginal profit functions.

e. Find  and . Interpret the results.

Answer
a.  
b. ,  

(5, 7) (0, 2) (2, 5)

(6, 7)∪ (1.5, 2) (0, 1.5)∪ (5, 6)

C(x) = 200+ +

7

x

x

27

x

x

p = 10−0.001x

R(x)

x = 2000 5000

R(x) = 10x−0.001x

2

R'(x) = 10−0.002x

P (x) = 30x−0.3 −250x

2

x

P (x) =R(x)−C(x)

p = 143−0.03x

C(x) = 75, 000+65x x p C(x)

x

R'(1000) R'(4000)

P '(1000) P '(4000)

C'(x) = 65

R(x) = 143x−0.03x

2

R'(x) = 143−0.06x
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c. . At a production level of 1000 cordless drills, revenue is increasing at a rate of $83 per
drill; at a production level of 4000 cordless drills, revenue is decreasing at a rate of $97 per drill. 
d.  
e. . At a production level of 1000 cordless drills, profit is increasing at a rate of $18 per
drill; at a production level of 4000 cordless drills, profit is decreasing at a rate of $162 per drill.

15) A small town in Ohio commissioned an actuarial firm to conduct a study that modeled the rate of change of the town’s
population. The study found that the town’s population (measured in thousands of people) can be modeled by the function 

, where  is measured in years.

a. Find the rate of change function  of the population function.

b. Find , and . Interpret what the results mean for the town.

c. Find , and . Interpret what the results mean for the town’s population.

16) [T] A culture of bacteria grows in number according to the function , where  is measured in

hours.

a. Find the rate of change of the number of bacteria.

b. Find , and .

c. Interpret the results in (b).

d. Find  and . Interpret what the answers imply about the bacteria population growth.

Answer

a.  

b.  
c. The bacteria population increases from time 0 to 10 hours; afterwards, the bacteria population decreases. 
d. . The rate at which the bacteria is increasing is decreasing during the first 10 hours. Afterwards, the
bacteria population is decreasing at a decreasing rate.

17) The centripetal force of an object of mass m is given by , where  is the speed of rotation and  is the distance

from the center of rotation.

a. Find the rate of change of centripetal force with respect to the distance from the center of rotation.

b. Find the rate of change of centripetal force of an object with mass 1000 kilograms, velocity of 13.89 m/s, and a distance
from the center of rotation of 200 meters.

The following questions concern the population (in millions) of London by decade in the 19th century, which is listed in the
following table.

Year Since 1800 Population (millions)

1 0.8975

11 1.040

21 1.264

31 1.516

41 1.661

51 2.000

61 2.634

R'(1000) = 83, R'(4000) =−97

P (x) =−0.03 +78x−75000, P '(x) =−0.06x+78x

2

P '(1000) = 18, P '(4000) =−162

P (t) =− +64t+3000

1

3

t

3

t

P '(t)

P '(1), P '(2), P '(3) P '(4)

(1), (2), (3)P

′′

P

′′

P

′′

(4)P

′′

N(t) = 3000(1+ )

4t

+100t

2

t

N '(0), N '(10), N '(20) N '(30)

(0), (10), (20),N

′′

N

′′

N

′′

(30)N

′′

N '(t) = 3000( )

−4 +400t

2

( +100t

2

)

2

120, 0, −14.4, −9.6

0,−6, 0.384, 0.432

F (r) =

mv

2

r

v r
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71 3.272

81 3.911

91 4.422

Population of LondonSource: http://en.Wikipedia.org/wiki/Demographics_of_London

18) [T]

a. Using a calculator or a computer program, find the best-fit linear function to measure the population.

b. Find the derivative of the equation in a. and explain its physical meaning.

c. Find the second derivative of the equation and explain its physical meaning.

Answer
a.  
b. . The population is increasing. 
c. . The rate at which the population is increasing is constant.

19) [T]

a. Using a calculator or a computer program, find the best-fit quadratic curve through the data.

b. Find the derivative of the equation and explain its physical meaning.

c. Find the second derivative of the equation and explain its physical meaning.

For the following exercises, consider an astronaut on a large planet in another galaxy. To learn more about the composition of this
planet, the astronaut drops an electronic sensor into a deep trench. The sensor transmits its vertical position every second in relation
to the astronaut’s position. The summary of the falling sensor data is displayed in the following table.

Time after dropping (s) Position (m)

0 0

1 −1

2 −2

3 −5

4 −7

5 −14

20) [T]

a. Using a calculator or computer program, find the best-fit quadratic curve to the data.

b. Find the derivative of the position function and explain its physical meaning.

c. Find the second derivative of the position function and explain its physical meaning.

Answer
a.  
b. . This is the velocity of the sensor. 
c. . This is the acceleration of the sensor; it is a constant acceleration downward.

21) [T]

a. Using a calculator or computer program, find the best-fit cubic curve to the data.

b. Find the derivative of the position function and explain its physical meaning.

P (t) = 0.03983+0.4280

P '(t) = 0.03983

(t) = 0P

′′

p(t) =−0.6071 +0.4357x−0.3571x

2

p'(t) =−1.214x+0.4357

(t) =−1.214p

′′
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c. Find the second derivative of the position function and explain its physical meaning.

d. Using the result from c. explain why a cubic function is not a good choice for this problem.

The following problems deal with the Holling type I, II, and III equations. These equations describe the ecological event of growth
of a predator population given the amount of prey available for consumption.

22) [T] The Holling type I equation is described by , where  is the amount of prey available and  is the rate at
which the predator meets the prey for consumption.

a. Graph the Holling type I equation, given .

b. Determine the first derivative of the Holling type I equation and explain physically what the derivative implies.

c. Determine the second derivative of the Holling type I equation and explain physically what the derivative implies.

d. Using the interpretations from b. and c. explain why the Holling type I equation may not be realistic.

Answer

a.

b. . The more increase in prey, the more growth for predators. 
c. . As the amount of prey increases, the rate at which the predator population growth increases is constant. 
d. This equation assumes that if there is more prey, the predator is able to increase consumption linearly. This assumption is
unphysical because we would expect there to be some saturation point at which there is too much prey for the predator to
consume adequately.

23) [T] The Holling type II equation is described by , where  is the amount of prey available and  is the

maximum consumption rate of the predator.

a. Graph the Holling type II equation given  and . What are the differences between the Holling type I and II
equations?

b. Take the first derivative of the Holling type II equation and interpret the physical meaning of the derivative.

c. Show that  and interpret the meaning of the parameter n.

d. Find and interpret the meaning of the second derivative. What makes the Holling type II function more realistic than the
Holling type I function?

24) [T] The Holling type III equation is described by , where x is the amount of prey available and  is the

maximum consumption rate of the predator.

a. Graph the Holling type III equation given  and  What are the differences between the Holling type II and III
equations?

b. Take the first derivative of the Holling type III equation and interpret the physical meaning of the derivative.

c. Find and interpret the meaning of the second derivative (it may help to graph the second derivative).

d. What additional ecological phenomena does the Holling type III function describe compared with the Holling type II
function?

f(x) = ax x a> 0

a= 0.5

f '(x) = a

(x) = 0f

′′

f(x) =

ax

n+x

x a> 0

a= 0.5 n= 5

f(n) = a

1

2

f(x) =

ax

2

+n

2

x

2

a> 0

a= 0.5 n= 5.
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Answer

a.

b. . When the amount of prey increases, the predator growth increases. 

c. . When the amount of prey is extremely small, the rate at which predator growth is increasing is

increasing, but when the amount of prey reaches above a certain threshold, the rate at which predator growth is increasing
begins to decrease. 
d. At lower levels of prey, the prey is more easily able to avoid detection by the predator, so fewer prey individuals are
consumed, resulting in less predator growth.

25) [T] The populations of the snowshoe hare (in thousands) and the lynx (in hundreds) collected over 7 years from 1937 to 1943
are shown in the following table. The snowshoe hare is the primary prey of the lynx.

Population of snowshoe hare (thousands) Population of lynx (hundreds)

20 10

5 15

65 55

95 60

Snowshoe Hare and Lynx PopulationsSource: http://www.biotopics.co.uk/newgcse/predatorprey.html.

a. Graph the data points and determine which Holling-type function fits the data best.

b. Using the meanings of the parameters  and , determine values for those parameters by examining a graph of the data.
Recall that  measures what prey value results in the half-maximum of the predator value.

c. Plot the resulting Holling-type I, II, and III functions on top of the data. Was the result from part a. correct?

3.5E: Exercises for Section 3.4 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

3.4E: Exercises for Section 3.4 is licensed CC BY-NC-SA 4.0.

f '(x) =

2axn

2

( +n

2

x

2

)

2

(x) =f

′′

2a ( −3 )n

2

n

2

x

2

( +n

2

x

2

)

3

a n

n
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3.6: Derivatives of Trigonometric Functions

Find the derivatives of the sine and cosine function.
Find the derivatives of the standard trigonometric functions.
Calculate the higher-order derivatives of the sine and cosine.

One of the most important types of motion in physics is simple harmonic motion, which is associated with such systems as an
object with mass oscillating on a spring. Simple harmonic motion can be described by using either sine or cosine functions. In this
section we expand our knowledge of derivative formulas to include derivatives of these and other trigonometric functions. We
begin with the derivatives of the sine and cosine functions and then use them to obtain formulas for the derivatives of the remaining
four trigonometric functions. Being able to calculate the derivatives of the sine and cosine functions will enable us to find the
velocity and acceleration of simple harmonic motion.

Derivatives of the Sine and Cosine Functions
We begin our exploration of the derivative for the sine function by using the formula to make a reasonable guess at its derivative.
Recall that for a function 

Consequently, for values of  very close to ,

We see that by using ,

By setting

and using a graphing utility, we can get a graph of an approximation to the derivative of  (Figure ).

 Figure : The graph of the function  looks a lot like a cosine curve.

Upon inspection, the graph of  appears to be very close to the graph of the cosine function. Indeed, we will show that

 Learning Objectives

f(x),

f '(x) = .lim

h→0

f(x+h)−f(x)

h

h 0

f '(x) ≈ .

f(x+h)−f(x)

h

h = 0.01

(sinx) ≈

d

dx

sin(x+0.01)−sinx

0.01

D(x) =

sin(x+0.01)−sinx

0.01

sinx 3.6.1

3.6.1 D(x)

D(x)

(sinx) = cosx.

d

dx
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If we were to follow the same steps to approximate the derivative of the cosine function, we would find that

The derivative of the sine function is the cosine and the derivative of the cosine function is the negative sine.

Because the proofs for  and  use similar techniques, we provide only the proof for 

. Before beginning, recall two important trigonometric limits:

 and .

The graphs of  and  are shown in Figure .

 Figure : These graphs show
two important limits needed to establish the derivative formulas for the sine and cosine functions.

We also recall the following trigonometric identity for the sine of the sum of two angles:

Now that we have gathered all the necessary equations and identities, we proceed with the proof.

(cosx) =−sinx.

d

dx

 The Derivatives of  and sin x cosx

(sinx) = cosx

d

dx

(cosx) =−sinx

d

dx

 Proof

(sinx) = cosx

d

dx

(cosx) =−sinx

d

dx

(sinx) = cosx

d

dx

= 1lim

h→0

sinh

h

= 0lim

h→0

cosh−1

h

y =

sinh

h

y =

cosh−1

h

3.6.2

3.6.2

sin(x+h) = sinx cosh+cosx sinh.
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□

Figure  shows the relationship between the graph of  and its derivative . Notice that at the points
where  has a horizontal tangent, its derivative  takes on the value zero. We also see that where f

 is increasing,  and where  is decreasing, 

 Figure : Where  has a maximum or a minimum,  that
is,  where  has a horizontal tangent. These points are noted with dots on the graphs

Find the derivative of .

Solution
Using the product rule, we have

After simplifying, we obtain

Find the derivative of 

Hint

(sinx)

d

dx

= lim

h→0

sin(x+h) −sinx

h

= lim

h→0

sinx cosh+cosx sinh−sinx

h

= ( + )lim

h→0

sinx cosh−sinx

h

cosx sinh

h

= (sinx( )+(cosx)( ))lim

h→0

cosh−1

h

sinh

h

= (sinx) ( )+(cosx) ( )lim

h→0

cosh−1

h

lim

h→0

sinh

h

= (sinx)(0) +(cosx)(1)

= cosx

Apply the definition of the derivative.

Use trig identity for the sine of the sum of two angles.

Regroup.

Factor out  sinx and  cosx

Factor  sinx and  cosx out of limits.

Apply trig limit formulas.

Simplify.

3.6.3 f(x) = sinx f '(x) = cosx

f(x) = sinx f '(x) = cosx

(x) = sinx f '(x) = cosx > 0 f(x) = sinx f '(x) = cosx < 0.

3.6.3 f(x) (x) = 0f

′

(x) = 0f

′

f(x)

 Example : Differentiating a Function Containing 3.6.1 sin x

f(x) = 5 sinxx

3

(x)f

′

= (5 ) ⋅ sinx+ (sinx) ⋅ 5

d

dx

x

3

d

dx

x

3

= 15 ⋅ sinx+cosx ⋅ 5 .x

2

x

3

f '(x) = 15 sinx+5 cosx.x

2

x

3

 Exercise 3.6.1

f(x) = sinx cosx.
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Don’t forget to use the product rule.

Answer

Find the derivative of .

Solution
By applying the quotient rule, we have

Simplifying, we obtain

Find the derivative of .

Hint

Use the quotient rule.

Answer

A particle moves along a coordinate axis in such a way that its position at time  is given by  for 
At what times is the particle at rest?

Solution
To determine when the particle is at rest, set  Begin by finding  We obtain

so we must solve

The solutions to this equation are  and . Thus the particle is at rest at times  and .

A particle moves along a coordinate axis. Its position at time  is given by  for  At what
times is the particle at rest?

Hint

Use the previous example as a guide.

f '(x) = x− xcos

2

sin

2

 Example : Finding the Derivative of a Function Containing cos x3.6.2

g(x) =

cosx

4x

2

g'(x) = .

(−sinx)4 −8x(cosx)x

2

(4x

2

)

2

g'(x) = = .

−4 sinx−8x cosxx

2

16x

4

−x sinx−2 cosx

4x

3

 Exercise 3.6.2

f(x) =

x

cosx

(x) =f

′

cosx+x sinx

xcos

2

 Example : An Application to Velocity3.6.3

t s(t) = 2 sin t− t 0 ≤ t ≤ 2π.

s'(t) = v(t) = 0. s'(t).

s'(t) = 2 cos t−1,

2 cos t−1 = 0 for 0 ≤ t ≤ 2π.

t =

π

3

t =

5π

3

t =

π

3

t =

5π

3

 Exercise 3.6.3

t s(t) = t+2 cos t3

–

√ 0 ≤ t ≤ 2π.
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Answer

Derivatives of Other Trigonometric Functions

Since the remaining four trigonometric functions may be expressed as quotients involving sine, cosine, or both, we can use the
quotient rule to find formulas for their derivatives.

Find the derivative of 

Solution
Start by expressing  as the quotient of  and :

.

Now apply the quotient rule to obtain

.

Simplifying, we obtain

Recognizing that  by the Pythagorean theorem, we now have

Finally, use the identity  to obtain

.

Find the derivative of 

Hint

Rewrite  as  and use the quotient rule.

Answer

The derivatives of the remaining trigonometric functions may be obtained by using similar techniques. We provide these formulas
in the following theorem.

The derivatives of the remaining trigonometric functions are as follows:

t = , t =

π

3

2π

3

 Example : The Derivative of the Tangent Function3.6.4

f(x) = tanx.

tanx sinx cosx

f(x) = tanx =

sinx

cosx

f '(x) =

cosx cosx−(−sinx) sinx

(cosx)

2

f '(x) = .

x+ xcos

2

sin

2

xcos

2

x+ x = 1,cos

2

sin

2

f '(x) =

1

xcos

2

secx =

1

cosx

f '(x) = xsec

2

 Exercise 3.6.4

f(x) = cotx.

cotx

cosx

sinx

f '(x) =− xcsc

2

 Derivatives of , , , and tan x cotx secx cscx
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Find the equation of a line tangent to the graph of  at .

Solution
To find the equation of the tangent line, we need a point and a slope at that point. To find the point, compute

.

Thus the tangent line passes through the point . Next, find the slope by finding the derivative of  and
evaluating it at :

 and .

Using the point-slope equation of the line, we obtain

or equivalently,

.

Find the derivative of 

Solution
To find this derivative, we must use both the sum rule and the product rule. Using the sum rule, we find

.

In the first term,  and by applying the product rule to the second term we obtain

.

Therefore, we have

.

Find the derivative of 

Hint

Use the rule for differentiating a constant multiple and the rule for differentiating a difference of two functions.

Answer

(tanx)

d

dx

(cotx)

d

dx

(secx)

d

dx

(cscx)

d

dx

= xsec

2

=− xcsc

2

= secx tanx

=−cscx cotx.

(3.6.1)

(3.6.2)

(3.6.3)

(3.6.4)

 Example : Finding the Equation of a Tangent Line3.6.5

f(x) = cotx x =

π

4

f ( )= cot = 1

π

4

π

4

( , 1)

π

4

f(x) = cotx

π

4

f '(x) =− xcsc

2

f ' ( )=− ( )=−2

π

4

csc

2

π

4

y−1 =−2 (x− )

π

4

y =−2x+1+

π

2

 Example : Finding the Derivative of Trigonometric Functions3.6.6

f(x) = cscx+x tanx.

f '(x) = (cscx)+ (x tanx)

d

dx

d

dx

(cscx) =−cscx cotx,

d

dx

(x tanx) = (1)(tanx)+( x)(x)

d

dx

sec

2

f '(x) =−cscx cotx+tanx+x xsec

2

 Exercise 3.6.5

f(x) = 2 tanx−3 cotx.

f '(x) = 2 x+3 xsec

2

csc

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25943?pdf


3.6.7 https://stats.libretexts.org/@go/page/25943

Find the slope of the line tangent to the graph of  at .

Hint

Evaluate the derivative at .

Answer

Higher-Order Derivatives

The higher-order derivatives of  and  follow a repeating pattern. By following the pattern, we can find any higher-order
derivative of  and 

Find the first four derivatives of 

Solution
Each step in the chain is straightforward:

Analysis
Once we recognize the pattern of derivatives, we can find any higher-order derivative by determining the step in the pattern to
which it corresponds. For example, every fourth derivative of  equals , so

For , find .

Hint

See the previous example.

Answer

 Exercise 3.6.6

f(x) = tanx x =

π

6

x =

π

6

4

3

sinx cosx

sinx cosx.

 Example : Finding Higher-Order Derivatives of 3.6.7 y = sin x

y = sinx.

y

dy

dx

yd

2

dx

2

yd

3

dx

3

yd

4

dx

4

= sinx

= cosx

=−sinx

=−cosx

= sinx

sinx sinx

(sinx) = (sinx) = (sinx) =… = (sinx) = sinx

d

4

dx

4

d

8

dx

8

d

12

dx

12

d

4n

dx

4n

(sinx) = (sinx) = (sinx) =… = (sinx) = cosx.

d

5

dx

5

d

9

dx

9

d

13

dx

13

d

4n+1

dx

4n+1

 Exercise 3.6.7

y = cosx

yd

4

dx

4

cosx
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Find .

Solution
We can see right away that for the 74th derivative of , , so

For , find 

Hint

Answer

A particle moves along a coordinate axis in such a way that its position at time  is given by . Find  and
. Compare these values and decide whether the particle is speeding up or slowing down.

Solution
First find 

Thus,

.

Next, find . Thus,  and we have

.

Since  and , we see that velocity and acceleration are acting in opposite directions; that

is, the object is being accelerated in the direction opposite to the direction in which it is traveling. Consequently, the particle is
slowing down.

A block attached to a spring is moving vertically. Its position at time t is given by . Find  and .
Compare these values and decide whether the block is speeding up or slowing down.

Hint

Use Example  as a guide.

Answer

 Example : Using the Pattern for Higher-Order Derivatives of 3.6.8 y = sin x

(sinx)

d

74

dx

74

sinx 74 = 4(18)+2

(sinx) = (sinx) = (sinx) =−sinx.

d

74

dx

74

d

72+2

dx

72+2

d

2

dx

2

 Exercise 3.6.8

y = sinx (sinx).

d

59

dx

59

(sinx) = (sinx)

d

59

dx

59

d

4⋅14+3

dx

4⋅14+3

−cosx

 Example : An Application to Acceleration3.6.9

t s(t) = 2−sin t v(π/4)

a(π/4)

v(t) = s'(t)

v(t) = s'(t) =−cos t.

v( )=− =−

π

4

1

2

–

√

2

–

√

2

a(t) = v'(t) a(t) = v'(t) = sin t

a ( )= =

π

4

1

2

–

√

2

–

√

2

v( )=− < 0

π

4

2

–

√

2

a ( )= > 0

π

4

2

–

√

2

 Exercise 3.6.9

s(t) = 2 sin t v( )

5π

6

a ( )

5π

6

3.6.9
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 and . The block is speeding up.

Key Concepts
We can find the derivatives of  and  by using the definition of derivative and the limit formulas found earlier. The
results are

.

With these two formulas, we can determine the derivatives of all six basic trigonometric functions.

Key Equations
Derivative of sine function

Derivative of cosine function

Derivative of tangent function

Derivative of cotangent function

Derivative of secant function

Derivative of cosecant function

This page titled 3.6: Derivatives of Trigonometric Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by .

3.5: Derivatives of Trigonometric Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

v( )=− < 0

5π

6

3

–

√ a( )=−1 < 0

5π

6

sinx cosx

( sinx)= cosx and ( cosx)=−sinx

d

dx

d

dx

(sinx) = cosx

d

dx

(cosx) =−sinx

d

dx

(tanx) = x

d

dx

sec

2

(cotx) =− x

d

dx

csc

2

(secx) = secx tanx

d

dx

(cscx) =−cscx cotx

d

dx
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3.6E: Exercises for Section 3.5

In exercises 1 - 10, find  for the given functions.

1) 

Answer

2) 

3) 

Answer

4) 

5) 

Answer

6) 

7) 

Answer

8) 

9) 

Answer

10) 

In exercises 11 - 16, find the equation of the tangent line to each of the given functions at the indicated values of . Then use
a calculator to graph both the function and the tangent line to ensure the equation for the tangent line is correct.

11) [T] 

Answer

dy

dx

y = −secx+1x

2

= 2x−secx tanx

dy

dx

y = 3 cscx+

5

x

y = cotxx

2

= 2x cotx− x

dy

dx

x

2

csc

2

y = x− sinxx

3

y =

secx

x

=

dy

dx

x secx tanx−secx

x

2

y = sinx tanx

y = (x+cosx)(1−sinx)

= (1−sinx)(1−sinx)−cosx(x+cosx)

dy

dx

y =

tanx

1−secx

y =

1−cotx

1+cotx

=

dy

dx

2 xcsc

2

(1+cotx)

2

y = (cosx)(1+cscx)

x

f(x) =−sinx, x = 0

y =−x

https://libretexts.org/
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12) [T] 

13) [T] 

Answer

14) [T] 

15) [T] 

Answer

16) [T] 

In exercises 17 - 22, find  for the given functions.

17) 

Answer

f(x) = cscx, x =

π

2

f(x) = 1+cosx, x =

3π

2

y = x+

2−3π

2

f(x) = secx, x =

π

4

f(x) = −tanx, x = 0x

2

y =−x

f(x) = 5 cotx, x =

π

4

yd

2

dx

2

y = x sinx−cosx
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18) 

19) 

Answer

20) 

21) 

Answer

22) 

23) Find all  values on the graph of  where the tangent line is horizontal.

Answer

,where  is an integer

24) Find all  values on the graph of  for  where the tangent line has slope 2.

25) Let  Determine the points on the graph of  for  where the tangent line(s) is (are) parallel to the line 
.

Answer

26) [T] A mass on a spring bounces up and down in simple harmonic motion, modeled by the function  where s is
measured in inches and  is measured in seconds. Find the rate at which the spring is oscillating at  s.

27) Let the position of a swinging pendulum in simple harmonic motion be given by . Find the constants 
and  such that when the velocity is 3 cm/s,  and .

Answer

28) After a diver jumps off a diving board, the edge of the board oscillates with position given by  cm at  seconds
after the jump.

a. Sketch one period of the position function for .

b. Find the velocity function.

c. Sketch one period of the velocity function for .

d. Determine the times when the velocity is  over one period.

e. Find the acceleration function.

f. Sketch one period of the acceleration function for .

29) The number of hamburgers sold at a fast-food restaurant in Pasadena, California, is given by  where  is the
number of hamburgers sold and  represents the number of hours after the restaurant opened at 11 a.m. until 11 p.m., when the

= 3 cosx−x sinx

yd

2

dx

2

y = sinx cosx

y = x− sinx

1

2

= sinx

yd

2

dx

2

1

2

y = +tanx

1

x

y = 2 cscx

= 2 csc(x)( (x)+ (x))

yd

2

dx

2

csc

2

cot

2

y = xsec

2

x f(x) =−3 sinx cosx

x =

(2n+1)π

4

n

x f(x) = x−2 cosx 0 < x < 2π

f(x) = cotx. f 0 < x < 2π

y =−2x

( , 1) , ( , −1) , ( , 1) , ( , −1)

π

4

3π

4

5π

4

7π

4

s(t) =−6 cos t

t t = 5

s(t) = a cos t+b sin t a

b s= 0 t = 0

a= 0, b = 3

s(t) =−5 cos t t

t ≥ 0

t ≥ 0

0

t ≥ 0

y = 10+5 sinx y

x
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store closes. Find  and determine the intervals where the number of burgers being sold is increasing.

Answer

, increasing on , and 

30) [T] The amount of rainfall per month in Phoenix, Arizona, can be approximated by , where  is months
since January. Find and use a calculator to determine the intervals where the amount of rain falling is decreasing.

For exercises 31 - 33, use the quotient rule to derive the given equations.

31) 

32) 

33) 

34) Use the definition of derivative and the identity  to prove that .

For exercises 35 - 39, find the requested higher-order derivative for the given functions.

35)  of 

Answer

36)  of 

37)  of 

Answer

38)  of 

39)  of 

Answer

3.6E: Exercises for Section 3.5 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

3.5E: Exercises for Section 3.5 is licensed CC BY-NC-SA 4.0.

y

′

y' = 5 cos(x) (0, ) , ( , )

π

2

3π

2

5π

2

( , 12)

7π

2

y(t) = 0.5+0.3 cos t t

y'

(cotx) =− x

d

dx

csc

2

(secx) = secx tanx

d

dx

(cscx) =−cscx cotx

d

dx

cos(x+h) = cosx cosh−sinx sinh (cosx) =−sinx

d

dx

yd

3

dx

3

y = 3 cosx

= 3 sinx

yd

3

dx

3

yd

2

dx

2

y = 3 sinx+ cosxx

2

yd

4

dx

4

y = 5 cosx

= 5 cosx

yd

4

dx

4

yd

2

dx

2

y = secx+cotx

yd

3

dx

3

y = −secxx

10

= 720 −5 tan(x) (x)− (x) sec(x)

yd

3

dx

3

x

7

sec

3

tan

3
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3.7: The Chain Rule

State the chain rule for the composition of two functions.
Apply the chain rule together with the power rule.
Apply the chain rule and the product/quotient rules correctly in combination when both are necessary.
Recognize the chain rule for a composition of three or more functions.
Describe the proof of the chain rule.

We have seen the techniques for differentiating basic functions  as well as sums, differences, products,
quotients, and constant multiples of these functions. However, these techniques do not allow us to differentiate compositions of
functions, such as  or . In this section, we study the rule for finding the derivative of the
composition of two or more functions.

Deriving the Chain Rule

When we have a function that is a composition of two or more functions, we could use all of the techniques we have already
learned to differentiate it. However, using all of those techniques to break down a function into simpler parts that we are able to
differentiate can get cumbersome. Instead, we use the chain rule, which states that the derivative of a composite function is the
derivative of the outer function evaluated at the inner function times the derivative of the inner function.

To put this rule into context, let’s take a look at an example: . We can think of the derivative of this function with
respect to  as the rate of change of  relative to the change in . Consequently, we want to know how  changes as 
changes. We can think of this event as a chain reaction: As  changes,  changes, which leads to a change in . This chain
reaction gives us hints as to what is involved in computing the derivative of . First of all, a change in  forcing a change in 

 suggests that somehow the derivative of  is involved. In addition, the change in  forcing a change in  suggests that
the derivative of  with respect to , where , is also part of the final derivative.

We can take a more formal look at the derivative of  by setting up the limit that would give us the derivative at a
specific value  in the domain of .

This expression does not seem particularly helpful; however, we can modify it by multiplying and dividing by the expression 
 to obtain

From the definition of the derivative, we can see that the second factor is the derivative of  at  That is,

However, it might be a little more challenging to recognize that the first term is also a derivative. We can see this by letting 
and observing that as :

Thus, .

In other words, if , then . Thus, if we think of  as the composition 
 where  and , then the derivative of  is the product of the derivative

Learning Objectives

( , sinx, cosx, etc. )x

n

h(x) = sin( )x

3

k(x) = 3 +1x

2

− −−−−−

√

h(x) = sin( )x

3

x sin( )x

3

x sin( )x

3

x

x x

3

sin( )x

3

sin( )x

3

x

x

3

x

3

x

3

sin( )x

3

sin(u) u u = x

3

h(x) = sin( )x

3

a h(x) = sin( )x

3

(a) =h

′

lim

x→a

sin( )−sin( )x

3

a

3

x−a

−x

3

a

3

(a) = ⋅ .h

′

lim

x→a

sin( )−sin( )x

3

a

3

−x

3

a

3

−x

3

a

3

x−a

x

3

x = a.

= ( ) = 3 .lim

x→a

−x

3

a

3

x−a

d

dx

x

3

a

2

u = x

3

x→ a, u→ a

3

.

lim

x→a

sin( )−sin( )x

3

a

3

−x

3

a

3

= lim

u→a

3

sinu−sin( )a

3

u−a

3

= (sinu)

d

du

∣

∣

u=a

3

= cos( )a

3

(a) = cos( ) ⋅ 3h

′

a

3

a

2

h(x) = sin( )x

3

(x) = cos( ) ⋅ 3h

′

x

3

x

2

h(x) = sin( )x

3

(f ∘ g)(x) = f(g(x)) f(x) = sinx g(x) = x

3

h(x) = sin( )x

3
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of  and the derivative of the function  evaluated at the function . At this point, we anticipate that
for , it is quite likely that . As we determined above, this is the case for 

.

Now that we have derived a special case of the chain rule, we state the general case and then apply it in a general form to other
composite functions. An informal proof is provided at the end of the section.

Let  and  be functions. For all  in the domain of  for which  is differentiable at  and  is differentiable at , the
derivative of the composite function

is given by

Alternatively, if  is a function of , and  is a function of , then

1. To differentiate , begin by identifying  and .
2. Find  and evaluate it at  to obtain .
3. Find 
4. Write 

Note: When applying the chain rule to the composition of two or more functions, keep in mind that we work our way from the
outside function in. It is also useful to remember that the derivative of the composition of two functions can be thought of as
having two parts; the derivative of the composition of three functions has three parts; and so on. Also, remember that we never
evaluate a derivative at a derivative.

The Chain and Power Rules Combined

We can now apply the chain rule to composite functions, but note that we often need to use it with other rules. For example, to find
derivatives of functions of the form , we need to use the chain rule combined with the power rule. To do so, we can
think of  as  where . Then . Thus, . This leads us to the
derivative of a power function using the chain rule,

For all values of  for which the derivative is defined, if

Then

Find the derivative of .

Solution

g(x) = x

3

f(x) = sinx g(x) = x

3

h(x) = sin(g(x)) (x) = cos(g(x)) (x)h

′

g

′

h(x) = sin( )x

3

Rule: The Chain Rule

f g x g g x f g(x)

h(x) = (f ∘ g)(x) = f(g(x)) (3.7.1)

(x) = (g(x)) ⋅ (x).h

′

f

′

g

′

(3.7.2)

y u u x

= ⋅ .

dy

dx

dy

du

du

dx

(3.7.3)

Problem-Solving Strategy: Applying the Chain Rule

h(x) = f(g(x)) f(x) g(x)

(x)f

′

g(x) (g(x))f

′

(x).g

′

(x) = (g(x)) ⋅ (x).h

′

f

′

g

′

h(x) = (g(x))

n

h(x) = (g(x))

n

f(g(x)) f(x) = x

n

(x) = nf

′

x

n−1

(g(x))= n(g(x)f

′

)

n−1

(x) = n(g(x) ⋅ (x)h

′

)

n−1

g

′

Rule: Power Rule for Composition of Functions (General Power Rule)

x

h(x) = (g(x) ,)

n

(3.7.4)

(x) = n(g(x) ⋅ (x).h

′

)

n−1

g

′

(3.7.5)

Example : Using the Chain and Power Rules3.7.1

h(x) =

1

(3 +1x

2

)

2
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First, rewrite .

Applying the power rule with , we have

.

Rewriting back to the original form gives us

Find the derivative of .

Hint

Use the General Power Rule (Equation ) with .

Answer

Find the derivative of .

Solution

First recall that , so we can rewrite  as .

Applying the power rule with , we obtain

.

h(x) = = (3 +1

1

(3 +1x

2

)

2

x

2

)

−2

g(x) = 3 +1x

2

(x) =−2(3 +1 ⋅ 6xh

′

x

2

)

−3

(x) =h

′

−12x

(3 +1x

2

)

3

Using the Chain Rule to Find a DerivativeUsing the Chain Rule to Find a Derivative

Exercise 3.7.1

h(x) = (2 +2x−1x

3

)

4

3.7.5 g(x) = 2 +2x−1x

3

(x) = 4(2 +2x−1 (6x+2) = 8(3x+1)(2 +2x−1h

′

x

3

)

3

x

3

)

3

Example : Using the Chain and Power Rules with a Trigonometric Function3.7.2

h(x) = xsin

3

x = (sinxsin

3

)

3

h(x) = xsin

3

h(x) = (sinx)

3

g(x) = sinx

(x) = 3(sinx cosx = 3 x cosxh

′

)

2

sin

2
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Find the equation of a line tangent to the graph of  at .

Solution

Because we are finding an equation of a line, we need a point. The -coordinate of the point is 2. To find the -coordinate,

substitute 2 into . Since , the point is .

For the slope, we need . To find , first we rewrite  and apply the power rule to obtain

.

By substituting, we have 

Therefore, the line has equation . Rewriting, the equation of the line is .

Find the equation of the line tangent to the graph of  at .

Hint

Use the preceding example as a guide.

Answer

Combining the Chain Rule with Other Rules
Now that we can combine the chain rule and the power rule, we examine how to combine the chain rule with the other rules we
have learned. In particular, we can use it with the formulas for the derivatives of trigonometric functions or with the product rule.

Find the derivative of 

Solution

Think of  as  where . Since . we have . Then
we do the following calculation.

Using the Chain Rule to Find the EquatioUsing the Chain Rule to Find the Equatio……

Example : Finding the Equation of a Tangent Line3.7.3

h(x) =

1

(3x−5)

2

x = 2

x y

h(x) h(2) = = 1

1

(3(2) −5)

2

(2, 1)

(2)h

′

(x)h

′

h(x) = (3x−5)

−2

(x) = −2(3x−5 (3) = −6(3x−5h

′

)

−3

)

−3

(2) = −6(3(2) −5 = −6.h

′

)

−3

y−1 = −6(x−2) y = −6x+13

Exercise 3.7.2

f(x) = ( −2x

2

)

3

x = −2

y = −48x−88

Example : Using the Chain Rule on a General Cosine Function3.7.4

h(x) = cos(g(x)).

h(x) = cos(g(x)) f(g(x)) f(x) = cosx (x) = −sinxf

′

(g(x)) = −sin(g(x))f

′

(x)h

′

= (g(x)) ⋅ (x)f

′

g

′

= −sin(g(x)) ⋅ (x)g

′

Apply the chain rule.

Substitute (g(x)) = −sin(g(x)).f

′

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25945?pdf
https://www.youtube.com/watch?v=q0V0fFfD02w
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Thus, the derivative of  is given by 

In the following example we apply the rule that we have just derived.

Find the derivative of 

Solution

Let . Then . Using the result from the previous example,

Find the derivative of 

Solution

Apply the chain rule to  to obtain

In this problem,  so we have  Therefore, we obtain

Find the derivative of 

Hint

Apply the chain rule to  first and then use .

Answer

At this point we provide a list of derivative formulas that may be obtained by applying the chain rule in conjunction with the
formulas for derivatives of trigonometric functions. Their derivations are similar to those used in the examples above. For
convenience, formulas are also given in Leibniz’s notation, which some students find easier to remember. (We discuss the chain
rule using Leibniz’s notation at the end of this section.) It is not absolutely necessary to memorize these as separate formulas as
they are all applications of the chain rule to previously learned formulas.

For all values of  for which the derivative is defined,

h(x) = cos(g(x)) (x) =−sin(g(x)) ⋅ (x).h

′

g

′

Example : Using the Chain Rule on a Cosine Function3.7.5

h(x) = cos(5 ).x

2

g(x) = 5x

2

(x) = 10xg

′

(x) =−sin(5 ) ⋅ 10x =−10x sin(5 )h

′

x

2

x

2

Example : Using the Chain Rule on Another Trigonometric Function3.7.6

h(x) = sec(4 +2x).x

5

h(x) = sec(g(x))

(x) = sec(g(x)) tan(g(x)) ⋅ (x).h

′

g

′

g(x) = 4 +2x,x

5

(x) = 20 +2.g

′

x

4

(x) = sec(4 +2x) tan(4 +2x)(20 +2) = (20 +2)sec(4 +2x) tan(4 +2x).h

′

x

5

x

5

x

4

x

4

x

5

x

5

Exercise 3.7.3

h(x) = sin(7x+2).

h(x) = sin(g(x)) g(x) = 7x+2

(x) = 7 cos(7x+2)h

′

Using the Chain Rule with Trigonometric Functions

x

( sin(g(x))) = cos(g(x)) ⋅ (x)

d

dx

g

′

( sinu) = cosu ⋅

d

dx

du

dx

( cos(g(x))) = −sin(g(x)) ⋅ (x)

d

dx

g

′

( cosu) = −sinu ⋅

d

dx

du

dx

( tan(g(x))) = (g(x)) ⋅ (x)

d

dx

sec

2

g

′

( tanu) = u ⋅

d

dx

sec

2

du

dx

( cot(g(x))) = − (g(x)) ⋅ (x)

d

dx

csc

2

g

′

( cotu) = − u ⋅

d

dx

csc

2

du

dx

(sec(g(x))) = sec(g(x)) tan(g(x)) ⋅ (x)

d

dx

g

′

(sec u) = sec u tanu ⋅

d

dx

du

dx

https://libretexts.org/
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Find the derivative of .

Solution

First apply the product rule, then apply the chain rule to each term of the product.

Find the derivative of .

Hint

Start out by applying the quotient rule. Remember to use the chain rule to differentiate the denominator.

Answer

Composites of Three or More Functions
We can now combine the chain rule with other rules for differentiating functions, but when we are differentiating the composition
of three or more functions, we need to apply the chain rule more than once. If we look at this situation in general terms, we can
generate a formula, but we do not need to remember it, as we can simply apply the chain rule multiple times.

In general terms, first we let

(csc(g(x))) = −csc(g(x)) cot(g(x)) ⋅ (x)

d

dx

g

′

(csc u) = −csc u cotu ⋅ .

d

dx

du

dx

Example : Combining the Chain Rule with the Product Rule3.7.7

h(x) = (2x+1 (3x−2)

5

)

7

(x)h

′

= ((2x+1 ) ⋅ (3x−2 + ((3x−2 ) ⋅ (2x+1

d

dx

)

5

)

7

d

dx

)

7

)

5

= 5(2x+1 ⋅ 2 ⋅ (3x−2 +7(3x−2 ⋅ 3 ⋅ (2x+1)

4

)

7

)

6

)

5

= 10(2x+1 (3x−2 +21(3x−2 (2x+1)

4

)

7

)

6

)

5

= (2x+1 (3x−2 (10(3x−2) +21(2x+1)))

4

)

6

= (2x+1 (3x−2 (72x+1))

4

)

6

Apply the product rule.

Apply the chain rule.

Simplify.

Factor out (2x+1 (3x−2)

4

)

6

Simplify.

Using the Chain and Product Rule to FinUsing the Chain and Product Rule to Fin……

Exercise 3.7.4

h(x) =

x

(2x+3)

3

(x) =h

′

3 −4x

(2x+3)

4

k(x) = h(f(g(x))).

https://libretexts.org/
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Then, applying the chain rule once we obtain

Applying the chain rule again, we obtain

Solution

For all values of  for which the function is differentiable, if

then

In other words, we are applying the chain rule twice.

Notice that the derivative of the composition of three functions has three parts. (Similarly, the derivative of the composition of
four functions has four parts, and so on.) Also, remember, we can always work from the outside in, taking one derivative at a
time.

Find the derivative of 

Solution

First, rewrite  as

.

Then apply the chain rule several times.

Find the derivative of 

Hint

Rewrite  and use Example  as a guide.

Answer

(x) = (h(f(g(x)))) = (f(g(x))) ⋅ (f(g(x))).k

′

d

dx

h

′

d

dx

(x) = (f(g(x))) ⋅ (g(x)) ⋅ (x)).k

′

h

′

f

′

g

′

Rule: Chain Rule for a Composition of Three Functions

x

k(x) = h(f(g(x))),

(x) = (f(g(x))) ⋅ (g(x)) ⋅ (x)).k

′

h

′

f

′

g

′

Example : Differentiating a Composite of Three Functions3.7.8

k(x) = (7 +1).cos

4

x

2

k(x)

k(x) = ( cos(7 +1)x

2

)

4

(x)k

′

= 4(cos(7 +1) ⋅ ( cos(7 +1))x

2

)

3

d

dx

x

2

= 4(cos(7 +1) (−sin(7 +1)) ⋅ (7 +1)x

2

)

3

x

2

d

dx

x

2

= 4(cos(7 +1) (−sin(7 +1))(14x)x

2

)

3

x

2

= −56x sin(7 +1) (7 +1)x

2

cos

3

x

2

Apply the chain rule.

Apply the chain rule.

Apply the chain rule.

Simplify

Exercise 3.7.5

h(x) = ( ).sin

6

x

3

h(x) = ( ) = ( sin( )sin

6

x

3

x

3

)

6

3.7.8

(x) = 18 ( ) cos( )h

′

x

2

sin

5

x

3

x

3
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A particle moves along a coordinate axis. Its position at time t is given by . What is the velocity of

the particle at time ?

Solution

To find , the velocity of the particle at time , we must differentiate . Thus,

At this point, we present a very informal proof of the chain rule. For simplicity’s sake we ignore certain issues: For example,
we assume that  for  in some open interval containing . We begin by applying the limit definition of the
derivative to the function  to obtain :

Rewriting, we obtain

Although it is clear that

it is not obvious that

To see that this is true, first recall that since  is differentiable at ,  is also continuous at  Thus,

Next, make the substitution and  and use change of variables in the limit to obtain

Finally,

□

Let  If , and , find 

Solution

Use the chain rule, then substitute.

Example : Using the Chain Rule in a Velocity Problem3.7.9

s(t) = sin(2t)+cos(3t)

t =

π

6

v(t) t s(t)

v(t) = (t) = 2 cos(2t)−3 sin(3t).s

′

Proof of Chain Rule

g(x) ≠ g(a) x ≠ a a

h(x) (a)h

′

(a) = .h

′

lim

x→a

f(g(x))−f(g(a))

x−a

(3.7.6)

(a) = ⋅ .h

′

lim

x→a

f(g(x))−f(g(a))

g(x)−g(a)

g(x)−g(a)

x−a

(3.7.7)

= (a),lim

x→a

g(x)−g(a)

x−a

g

′

(3.7.8)

= (g(a)).lim

x→a

f(g(x))−f(g(a))

g(x)−g(a)

f

′

(3.7.9)

g a g a.

g(x) = g(a).lim

x→a

(3.7.10)

y = g(x) b = g(a)

= = (b) = (g(a)).lim

x→a

f(g(x))−f(g(a))

g(x)−g(a)

lim

y→b

f(y)−f(b)

y−b

f

′

f

′

(3.7.11)

(a) = ⋅ = (g(a)) ⋅ (a).h

′

lim

x→a

f(g(x))−f(g(a))

g(x)−g(a)

g(x)−g(a)

x−a

f

′

g

′

(3.7.12)

Example : Using the Chain Rule with Functional Values3.7.10

h(x) = f(g(x)). g(1) = 4, (1) = 3g

′

(4) = 7f

′

(1).h

′
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Given . If  and , find .

Hint

Follow Example .

Answer

28

The Chain Rule Using Leibniz’s Notation
As with other derivatives that we have seen, we can express the chain rule using Leibniz’s notation. This notation for the chain rule
is used heavily in physics applications.

For  let  and  Thus,

and

Consequently,

If  is a function of , and  is a function of , then

Find the derivative of 

Solution

First, let . Thus, . Next, find  and . Using the quotient rule,

and

.

(1)h

′

= (g(1)) ⋅ (1)f

′

g

′

= (4) ⋅ 3f

′

= 7 ⋅ 3

= 21

Apply the chain rule.

Substitute g(1) = 4 and (1) = 3.g

′

Substitute (4) = 7.f

′

Simplify.

Exercise 3.7.6

h(x) = f(g(x)) g(2) = −3, (2) = 4,g

′

(−3) = 7f

′

(2)h

′

3.7.10

h(x) = f(g(x)), u = g(x) y = h(x) = g(u).

(x) =h

′

dy

dx

(g(x)) = (u) =f

′

f

′

dy

du

(x) = .g

′

du

dx

= (x) = (g(x)) ⋅ (x) = ⋅ .

dy

dx

h

′

f

′

g

′

dy

du

du

dx

Rule: Chain Rule Using Leibniz’s Notation

y u u x

= ⋅ .

dy

dx

dy

du

du

dx

(3.7.13)

Example : Taking a Derivative Using Leibniz’s Notation I3.7.11

y = .( )

x

3x+2

5

u =

x

3x+2

y = u

5

du

dx

dy

du

=

du

dx

2

(3x+2)

2

= 5

dy

du

u

4

https://libretexts.org/
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Finally, we put it all together.

It is important to remember that, when using the Leibniz form of the chain rule, the final answer must be expressed entirely in
terms of the original variable given in the problem.

Find the derivative of 

Solution

First, let  Then . Next, find  and :

 and 

Finally, we put it all together.

Use Leibniz’s notation to find the derivative of . Make sure that the final answer is expressed entirely in terms of
the variable .

Hint

Let .

Answer

Key Concepts
The chain rule allows us to differentiate compositions of two or more functions. It states that for 

In Leibniz’s notation this rule takes the form

.

We can use the chain rule with other rules that we have learned, and we can derive formulas for some of them.
The chain rule combines with the power rule to form a new rule:

dy

dx

= ⋅

dy

du

du

dx

= 5 ⋅u

4

2

(3x+2)

2

= 5 ⋅( )

x

3x+2

4

2

(3x+2)

2

=

10x

4

(3x+2)

6

Apply the chain rule.

Substitute = 5 and = .

dy

du

u

4

du

dx

2

(3x+2)

2

Substitute u = .

x

3x+2

Simplify.

Example : Taking a Derivative Using Leibniz’s Notation II3.7.12

y = tan(4 −3x+1).x

2

u = 4 −3x+1.x

2

y = tanu

du

dx

dy

du

= 8x−3

du

dx

= u.

dy

du

sec

2

dy

dx

= ⋅

dy

du

du

dx

= u ⋅ (8x−3)sec

2

= (4 −3x+1) ⋅ (8x−3)sec

2

x

2

Apply the chain rule.

Use = 8x−3 and = u.

du

dx

dy

du

sec

2

Substitute u = 4 −3x+1.x

2

Exercise 3.7.7

y = cos( )x

3

x

u = x

3

= −3 sin( ).

dy

dx

x

2

x

3

h(x) = f(g(x)),

(x) = (g(x)) ⋅ (x).h

′

f

′

g

′

= ⋅

dy

dx

dy

du

du

dx

https://libretexts.org/
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If ,then .

When applied to the composition of three functions, the chain rule can be expressed as follows: If  then 

Key Equations
The chain rule

The power rule for functions

Glossary

chain rule
the chain rule defines the derivative of a composite function as the derivative of the outer function evaluated at the inner
function times the derivative of the inner function

Contributors and Attributions
Template:ContribOpenStaxCalc

This page titled 3.7: The Chain Rule is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

3.6: The Chain Rule by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

h(x) = (g(x))

n

(x) = n(g(x) ⋅ (x)h

′

)

n−1

g

′

h(x) = f(g(k(x))),

(x) = (g(k(x))) ⋅ (k(x)) ⋅ (x).h

′

f

′

g

′

k

′

(x) = (g(x)) ⋅ (x)h

′

f

′

g

′

(x) = n(g(x) ⋅ (x)h

′

)

n−1

g

′
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3.7E: Exercises for Section 3.6

In exercises 1 - 6, given  and , find  by using Leibniz’s notation for the chain rule: 

1) 

2) 

Answer

3) 

4) 

Answer

5) 

6) 

Answer

For each of the following exercises,

a. decompose each function in the form  and , and

b. find  as a function of .

7) 

8) 

Answer
a. ; 
 

b. 

9) 

10) 

Answer

a. ; 

 

b. 

11) 

12) 

Answer
a. ; 
 

y = f(u) u = g(x)

dy

dx

= .

dy

dx

dy

du

du

dx

y = 3u−6, u = 2x

2

y = 6 , u = 7x−4u

3

= 18 ⋅ 7 = 18(7x−4 ⋅ 7 = 126(7x−4

dy

dx

u

2

)

2

)

2

y = sinu, u = 5x−1

y = cosu, u =−

x

8

=−sinu ⋅(− )= sin(− )

dy

dx

1

8

1

8

x

8

y = tanu, u = 9x+2

y = , u = −6x4u+3

− −−−−

√ x

2

= =

dy

dx

8x−24

2 4u+3

− −−−−

√

4x−12

4 −24x+3x

2

− −−−−−−−−−−

√

y = f(u) u = g(x)

dy

dx

x

y = (3x−2)

6

y = (3 +1x

2

)

3

f(u) = , u = 3 +1u

3

x

2

= 18x(3 +1

dy

dx

x

2

)

2

y = (x)sin

5

y =( + )

x

7

7

x

7

f(u) = , u = +u

7

x

7

7

x

= 7 ⋅( − )

dy

dx

( + )

x

7

7

x

6

1

7

7

x

2

y = tan(secx)

y = csc(πx+1)

f(u) = cscu, u = πx+1
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b. 

13) 

14) 

Answer
a. ; 
 

b. 

In exercises 15 - 24, find  for each function.

15) 

16) 

Answer

17) 

18) 

Answer

19) 

20) 

Answer

21) 

22) 

Answer

23) 

24) 

Answer

25) Let  and suppose that  and  for . Find .

26) Let  and suppose that  and  when . Find 

Answer

27) Let  and . If  and  when , find .

=−π csc(πx+1) ⋅ cot(πx+1)

dy

dx

y = xcot

2

y =−6 xsin

−3

f(u) =−6 , u = sinxu

−3

= 18 x ⋅ cosx

dy

dx

sin

−4

dy

dx

y = (3 +3x−1x

2

)

4

y = (5−2x)

−2

=

dy

dx

4

(5−2x)

3

y = (πx)cos

3

y = (2 − +6x+1x

3

x

2

)

3

= 6(2 − +6x+1 ⋅ (3 −x+3)

dy

dx

x

3

x

2

)

2

x

2

y =

1

(x)sin

2

y = ( tanx+sinx)

−3

=−3( tanx+sinx ⋅ ( x+cosx)

dy

dx

)

−4

sec

2

y = xx

2

cos

4

y = sin(cos7x)

=−7 cos(cos7x) ⋅ sin7x

dy

dx

y = 6+secπx

2

− −−−−−−−−

√

y = (4x+1)cot

3

=−12 (4x+1) ⋅ (4x+1)

dy

dx

cot

2

csc

2

y = [f(x)]

3

f '(1) = 4 = 10

dy

dx

x = 1 f(1)

y = (f(x)+5x

2

)

4

f(−1) =−4 = 3

dy

dx

x =−1 f '(−1)

f '(−1) = 10

3

4

y = (f(u)+3x)

2

u = −2xx

3

f(4) = 6 = 18

dy

dx

x = 2 f '(4)
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28) [T] Find the equation of the tangent line to  at the origin. Use a calculator to graph the function and the tangent line
together.

Answer

29) [T] Find the equation of the tangent line to  at the point . Use a calculator to graph the function and the tangent
line together.

30) Find the  -coordinates at which the tangent line to  is horizontal.

Answer

31) [T] Find an equation of the line that is normal to  at the point . Use a calculator to graph the function and the
normal line together.

For exercises 32 - 39, use the information in the following table to find  at the given value for .

0 2 5 0 2

1 1 −2 3 0

2 4 4 1 −1

3 3 −3 2 3

32) 

Answer

33) 

34) 

Answer

35) 

36) 

Answer

37) 

38) 

Answer

39) 

40) [T] The position function of a freight train is given by , with  in meters and  in seconds. At time  s, find the
train’s

a. velocity and

b. acceleration.

y =−sin( )

x

2

y =− x

1

2

y = (3x+ )

1

x

2

(1, 16)

x y = (x− )

6

x

8

x =± 6

–

√

g(θ) = (πθ)sin

2

( , )

1

4

1

2

h'(a) a

x f(x) (x)f

′

g(x) (x)g

′

h(x) = f(g(x)); a= 0

(0) = 10h

′

h(x) = g(f(x)); a= 0

h(x) = ( +g(x) ; a= 1x

4

)

−2

(1) =−h

′

1

8

h(x) = ; a= 3( )

f(x)

g(x)

2

h(x) = f(x+f(x)); a= 1

(1) =−4h

′

h(x) = (1+g(x) ; a= 2)

3

h(x) = g(2+f( )); a= 1x

2

(1) =−12h

′

h(x) = f(g(sinx)); a= 0

s(t) = 100(t+1)

−2

s t t = 6
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c. Considering your results in parts a. and b., is the train speeding up or slowing down?

Answer
a.  m/s, 
 
b.  
 
c. The train is slowing down since velocity and acceleration have opposite signs.

41) [T] A mass hanging from a vertical spring is in simple harmonic motion as given by the following position function, where  is
measured in seconds and  is in inches:

a. Determine the position of the spring at  s.

b. Find the velocity of the spring at  s.

42) [T] The total cost to produce  boxes of Thin Mint Girl Scout cookies is  dollars, where  In 
weeks production is estimated to be  boxes.

a. Find the marginal cost 

b. Use Leibniz’s notation for the chain rule, , to find the rate with respect to time  that the cost is changing.

c. Use your result in part b. to determine how fast costs are increasing when  weeks. Include units with the answer.

Answer
a.  
 

b.  

 
c. Approximately $90,300 per week

43) [T] The formula for the area of a circle is , where  is the radius of the circle. Suppose a circle is expanding, meaning that both
the area  and the radius  (in inches) are expanding.

a. Suppose  where  is time in seconds. Use the chain rule  to find the rate at which the area is

expanding.

b. Use your result in part a. to find the rate at which the area is expanding at  s.

44) [T] The formula for the volume of a sphere is , where  (in feet) is the radius of the sphere. Suppose a spherical snowball is
melting in the sun.

a. Suppose  where  is time in minutes. Use the chain rule  to find the rate at which the snowball

is melting.

b. Use your result in part a. to find the rate at which the volume is changing at  min.

Answer

a.  

 
b. The volume is decreasing at a rate of /min

45) [T] The daily temperature in degrees Fahrenheit of Phoenix in the summer can be modeled by the function 
, where  is hours after midnight. Find the rate at which the temperature is changing at 4 p.m.

v(6) =−

200

343

a(6) = ,

600

2401

m/s

2

t

s

s(t) =−3 cos(πt+ ).

π

4

t = 1.5

t = 1.5

x C C = 0.0001 −0.02 +3x+300.x

3

x

2

t

x = 1600+100t

C'(x).

= ⋅

dC

dt

dC

dx

dx

dt

t

t = 2

C'(x) = 0.0003 −0.04x+3x

2

= 100 ⋅ (0.0003 −0.04x+3) = 100 ⋅ (0.0003(1600+100t −0.04(1600+100t)+3) = 300 +9200t+70700

dC

dt

x

2

)

2

t

2

A= πr

2

r

A r

r= 2−

100

(t+7)

2

t = ⋅

dA

dt

dA

dr

dr

dt

t = 4

S = π

4

3

r

3

r

r= −

1

(t+1)

2

1

12

t = ⋅

dS

dt

dS

dr

dr

dt

t = 1

=− =−

dS

dt

8πr

2

(t+1)

3

8π( − )

1

(t+1)

2

1

12

2

(t+1)

3

−

π

36

ft

3

T (x) = 94−10 cos[ (x−2)]

π

12

x
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46) [T] The depth (in feet) of water at a dock changes with the rise and fall of tides. The depth is modeled by the function 
, where  is the number of hours after midnight. Find the rate at which the depth is changing at 6 a.m.

Answer
 ft/hr

3.7E: Exercises for Section 3.6 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

3.6E: Exercises for Section 3.6 is licensed CC BY-NC-SA 4.0.

D(t) = 5 sin( t− )+8

π

6

7π

6

t

 2.3
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3.8: Derivatives of Inverse Functions

Calculate the derivative of an inverse function.
Recognize the derivatives of the standard inverse trigonometric functions.

In this section we explore the relationship between the derivative of a function and the derivative of its inverse. For functions
whose derivatives we already know, we can use this relationship to find derivatives of inverses without having to use the limit
definition of the derivative. In particular, we will apply the formula for derivatives of inverse functions to trigonometric functions.
This formula may also be used to extend the power rule to rational exponents.

The Derivative of an Inverse Function
We begin by considering a function and its inverse. If  is both invertible and differentiable, it seems reasonable that the inverse
of  is also differentiable. Figure  shows the relationship between a function  and its inverse . Look at the
point  on the graph of  having a tangent line with a slope of

This point corresponds to a point  on the graph of  having a tangent line with a slope of

Thus, if  is differentiable at , then it must be the case that

.

Figure :The tangent lines of a function and its inverse are related; so, too, are the derivatives of these functions.

We may also derive the formula for the derivative of the inverse by first recalling that . Then by differentiating both
sides of this equation (using the chain rule on the right), we obtain

.

Solving for , we obtain

.

We summarize this result in the following theorem.

Learning Objectives

f(x)

f(x) 3.8.1 f(x) (x)f

−1

(a, (a))f

−1

(x)f

−1

( )'(a) = .f

−1

p

q

(3.8.1)

( (a), a)f

−1

f(x)

f '( (a))= .f

−1

q

p

(3.8.2)

(x)f

−1

a

( )'(a) =f

−1

1

f '( (a))f

−1

3.8.1

x = f( (x))f

−1

1 = f '( (x))( )'(x))f

−1

f

−1

( )'(x)f

−1

( )'(x) =f

−1

1

f '( (x))f

−1
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Let  be a function that is both invertible and differentiable. Let  be the inverse of . For all  satisfying 
,

Alternatively, if  is the inverse of , then

Use the inverse function theorem to find the derivative of . Compare the resulting derivative to that obtained by

differentiating the function directly.

Solution

The inverse of  is .

We will use Equation  and begin by finding . Thus,

and

Finally,

We can verify that this is the correct derivative by applying the quotient rule to  to obtain

Use the inverse function theorem to find the derivative of . Compare the result obtained by differentiating 

directly.

Hint

Use the preceding example as a guide.

Answer

Inverse Function Theorem

f(x) y = (x)f

−1

f(x) x

f '( (x))≠ 0f

−1

= ( (x))= ( )'(x) = .

dy

dx

d

dx

f

−1

f

−1

1

f '( (x))f

−1

(3.8.3)

y = g(x) f(x)

(x) = .g

′

1

f '(g(x))

(3.8.4)

Example : Applying the Inverse Function Theorem3.8.1

g(x) =

x+2

x

g(x) =

x+2

x

f(x) =

2

x−1

3.8.4 f '(x)

f '(x) =

−2

(x−1)

2

f '(g(x))= = =− .

−2

(g(x)−1)

2

−2

( −1)

x+2

x

2

x

2

2

g'(x) = =− .

1

f '(g(x))

2

x

2

g(x)

g'(x) =− .

2

x

2

Exercise 3.8.1

g(x) =

1

x+2

g(x)

g'(x) =−

1

(x+2)

2
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Use the inverse function theorem to find the derivative of .

Solution

The function  is the inverse of the function . Since , begin by finding . Thus,

and

Finally,

If we were to integrate  directing, using the power rule, we would first rewrite  as a power of  to get,

Then we would differentiate using the power rule to obtain

Find the derivative of  by applying the inverse function theorem.

Hint

 is the inverse of .

Answer

From the previous example, we see that we can use the inverse function theorem to extend the power rule to exponents of the form 

, where  is a positive integer. This extension will ultimately allow us to differentiate , where  is any rational number.

The power rule may be extended to rational exponents. That is, if  is a positive integer, then

Also, if  is a positive integer and  is an arbitrary integer, then

The function  is the inverse of the function . Since , begin by finding . Thus,

 and .

Example : Applying the Inverse Function Theorem3.8.2

g(x) = x

−−

√

3

g(x) = x

−−

√

3

f(x) = x

3

g'(x) =

1

f '(g(x))

f '(x)

f '(x) = 3x

3

f '(g(x))= 3( = 3x

−−

√

3

)

2

x

2/3

g'(x) = .

1

3x

2/3

g(x) g(x) = x

−−

√

3

x

g(x) = x

1/3

(x) = = .g

′ 1

3

x

−2/3

1

3x

2/3

Exercise 3.8.2

g(x) = x

−−

√

5

g(x) f(x) = x

5

g(x) =

1

5

x

−4/5

1

n

n x

q

q

Extending the Power Rule to Rational Exponents

n

( )= .

d

dx

x

1/n

1

n

x

(1/n)−1

(3.8.5)

n m

( )= .

d

dx

x

m/n

m

n

x

(m/n)−1

(3.8.6)

Proof

g(x) = x

1/n

f(x) = x

n

g'(x) =

1

f '(g(x))

f '(x)

f '(x) = nx

n−1

f '(g(x))= n( = nx

1/n

)

n−1

x

(n−1)/n
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Finally,

.

To differentiate  we must rewrite it as  and apply the chain rule. Thus,

□

Find the equation of the line tangent to the graph of  at .

Solution

First find  and evaluate it at . Since

and

the slope of the tangent line to the graph at  is .

Substituting  into the original function, we obtain . Thus, the tangent line passes through the point .
Substituting into the point-slope formula for a line, we obtain the tangent line

Find the derivative of .

Hint

Use the chain rule.

Answer

Derivatives of Inverse Trigonometric Functions
We now turn our attention to finding derivatives of inverse trigonometric functions. These derivatives will prove invaluable in the
study of integration later in this text. The derivatives of inverse trigonometric functions are quite surprising in that their derivatives
are actually algebraic functions. Previously, derivatives of algebraic functions have proven to be algebraic functions and derivatives
of trigonometric functions have been shown to be trigonometric functions. Here, for the first time, we see that the derivative of a
function need not be of the same type as the original function.

Use the inverse function theorem to find the derivative of .

Solution

Since for  in the interval  is the inverse of , begin by finding . Since

g'(x) = = =

1

nx

(n−1)/n

1

n

x

(1−n)/n

1

n

x

(1/n)−1

x

m/n

(x

1/n

)

m

( )= (( ) =m( ⋅ = .

d

dx

x

m/n

d

dx

x

1/n

)

m

x

1/n

)

m−1

1

n

x

(1/n)−1

m

n

x

(m/n)−1

Example : Applying the Power Rule to a Rational Power3.8.3

y = x

2/3

x = 8

dy

dx

x = 8

=

dy

dx

2

3

x

−1/3

=

dy

dx

∣

∣

∣

x=8

1

3

x = 8

1

3

x = 8 y = 4 (8, 4)

y = x+ .

1

3

4

3

Exercise 3.8.3

s(t) = 2t+1

− −−−−

√

s'(t) = (2t+1)

−1/2

Example : Derivative of the Inverse Sine Function3.8.4A

g(x) = xsin

−1

x [− , ] , f(x) = sinx

π

2

π

2

g(x) = xsin

−1

f '(x)
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and

we see that

Analysis

To see that , consider the following argument. Set . In this case,  where 
. We begin by considering the case where . Since  is an acute angle, we may construct a right triangle

having acute angle , a hypotenuse of length  and the side opposite angle  having length . From the Pythagorean theorem,
the side adjacent to angle  has length . This triangle is shown in Figure  Using the triangle, we see that 

.

Figure : Using a right triangle having acute angle , a hypotenuse of length , and the side opposite angle  having length
, we can see that .

In the case where , we make the observation that  and hence

.

Now if  or  or , and since in either case  and , we have

.

Consequently, in all cases,

f '(x) = cosx

f '(g(x))= cos( x)=sin

−1

1−x

2

− −−−−

√

g'(x) = ( x)= =

d

dx

sin

−1

1

f '(g(x))

1

1−x

2

− −−−−

√

cos( x) =sin

−1

1−x

2

− −−−−

√

x = θsin

−1

sinθ= x

− ≤ θ≤

π

2

π

2

0 < θ<

π

2

θ

θ 1 θ x

θ 1−x

2

− −−−−

√

3.8.2

cos( x) = cosθ=sin

−1

1−x

2

− −−−−

√

3.8.2 θ 1 θ

x cos( x) = cos θ =sin

−1

1−x

2

− −−−−

√

− < θ< 0

π

2

0 <−θ<

π

2

cos( x)= cosθ= cos(−θ) =sin

−1

1−x

2

− −−−−

√

θ=

π

2

θ=− , x = 1

π

2

x =−1 cosθ= 0 = 01−x

2

− −−−−

√

cos( x)= cosθ=sin

−1

1−x

2

− −−−−

√

cos( x)= .sin

−1

1−x

2

− −−−−

√

Finding a Derivative Involving Arcsin(x)Finding a Derivative Involving Arcsin(x)
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Apply the chain rule to the formula derived in Example  to find the derivative of  and use this
result to find the derivative of 

Solution

Applying the chain rule to , we have

.

Now let  so . Substituting into the previous result, we obtain

Use the inverse function theorem to find the derivative of .

Hint

The inverse of  is . Use Example  as a guide.

Answer

The derivatives of the remaining inverse trigonometric functions may also be found by using the inverse function theorem. These
formulas are provided in the following theorem.

Find the derivative of 

Solution

Let , so . Substituting into Equation , we obtain

Example : Applying the Chain Rule to the Inverse Sine Function3.8.4B

3.8.4A h(x) = (g(x))sin

−1

h(x) = (2 ).sin

−1

x

3

h(x) = (g(x))sin

−1

h'(x) = g'(x)

1

1−(g(x))

2

− −−−−−−−−

√

g(x) = 2 ,x

3

g'(x) = 6x

2

h'(x) = ⋅ 6

1

1−4x

6

− −−−−−

√

x

2

=

6x

2

1−4x

6

− −−−−−

√

Exercise 3.8.4

g(x) = xtan

−1

g(x) f(x) = tanx 3.8.4A

g'(x) =

1

1+x

2

Derivatives of Inverse Trigonometric Functions

( x)

d

dx

sin

−1

( x)

d

dx

cos

−1

( x)

d

dx

tan

−1

( x)

d

dx

cot

−1

( x)

d

dx

sec

−1

( x)

d

dx

csc

−1

=

1

1−x

2

− −−−−

√

=

−1

1−x

2

− −−−−

√

=

1

1+x

2

=

−1

1+x

2

=

1

|x| −1x

2

− −−−−

√

=

−1

|x| −1x

2

− −−−−

√

(3.8.7)

(3.8.8)

(3.8.9)

(3.8.10)

(3.8.11)

(3.8.12)

Example : Applying Differentiation Formulas to an Inverse Tangent Function3.8.5A

f(x) = ( ).tan

−1

x

2

g(x) = x

2

g'(x) = 2x 3.8.9
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Simplifying, we have

.

Find the derivative of 

Solution

By applying the product rule, we have

Find the derivative of 

Hint

Use Equation . with 

Answer

The position of a particle at time  is given by  for . Find the velocity of the particle at time .

Solution

Begin by differentiating  in order to find .Thus,

f '(x) = ⋅ (2x).

1

1+(x

2

)

2

f '(x) =

2x

1+x

4

Example : Applying Differentiation Formulas to an Inverse Sine Function3.8.5B

h(x) = x.x

2

sin

−1

h'(x) = 2x x+ ⋅sin

−1

1

1−x

2

− −−−−

√

x

2

Exercise 3.8.5

h(x) = (3x−1).cos

−1

3.8.8 g(x) = 3x−1

h'(x) =

−3

6x−9x

2

− −−−−−−

√

Finding a Derivative Involving Arctan(x)Finding a Derivative Involving Arctan(x)

Example : Applying the Inverse Tangent Function3.8.6

t s(t) = ( )tan

−1

1

t

t ≥

1

2

t = 1

s(t) v(t)
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.

Simplifying, we have

.

Thus, 

Find the equation of the line tangent to the graph of  at 

Hint

 is the slope of the tangent line.

Answer

Key Concepts
The inverse function theorem allows us to compute derivatives of inverse functions without using the limit definition of the
derivative.
We can use the inverse function theorem to develop differentiation formulas for the inverse trigonometric functions.

Key Equations
Inverse function theorem

 whenever  and  is differentiable.

Power rule with rational exponents

Derivative of inverse sine function

v(t) = s'(t) = ⋅

1

1+( )

1

t

2

−1

t

2

v(t) =−

1

+1t

2

v(1) =− .

1

2

Exercise 3.8.6

f(x) = xsin

−1

x = 0.

f '(0)

y = x

Finding a Derivative Involving Arcsec(x)Finding a Derivative Involving Arcsec(x)

(f −1)'(x) =

1

f '( (x))f

−1

f '( (x))≠ 0f

−1

f(x)

( )= .

d

dx

x

m/n

m

n

x

(m/n)−1
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Derivative of inverse cosine function

Derivative of inverse tangent function

Derivative of inverse cotangent function

Derivative of inverse secant function

Derivative of inverse cosecant function

Contributors and Attributions
Template:ContribOpenStaxCalc
Paul Seeburger (Monroe Community College) added the second half of Example .

This page titled 3.8: Derivatives of Inverse Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

3.7: Derivatives of Inverse Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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− −−−−

√

( x)=

d

dx
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−1

1

1+x

2

( x)=
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( x)=
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−1

1

|x| −1x

2
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3.8E: Exercises for Section 3.7
In exercises 1 - 4, use the graph of  to

a. sketch the graph of , and

b. use part a. to estimate .

1)

2)

Answer

a.

b. 

3)

y = f(x)

y = (x)f

−1

( )'(1)f

−1

( )'(1) ≈ 2f

−1
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4)

Answer

a.

b. 

For exercises 5 - 8, use the given function  to find

a.  at  and

b. .

c. Then use part b. to find  at 

5) 

6) 

Answer

( )'(1) ≈−1/f

−1

3

–

√

y = f(x)

df

dx

x = a

x = (y)f

−1

df

−1

dy

y = f(a).

f(x) = 6x−1, x =−2

f(x) = 2 −3, x = 1x

3
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a. 

b.  

c. 

7) 

8) 

Answer

a. 

b.  

c. 

For each function in exercises 9 - 14, find .

9) 

10 

Answer

11) 

12) 

Answer

13) 

14) 

Answer

For each function , given in exercises 15 - 19,

a. find the slope of the tangent line to its inverse function  at the indicated point , and

b. find the equation of the tangent line to the graph of  at the indicated point.

15) 

16) 

Answer
a.  
b. 

17) 

18) 

Answer

= 6

df

dx

x = (y) =f

−1

( )

y+3

2

1/3

=

df

−1

dy

1

6

f(x) = 9− , 0 ≤ x ≤ 3, x = 2x

2

f(x) = sinx, x = 0

= 1

df

dx

x = (y) = yf

−1

sin

−1

= 1

df

−1

dy

( )'(a)f

−1

f(x) = +3x+2, x ≥−1, a= 2x

2

f(x) = +2x+3, a= 0x

3

( )'(1) =f

−1

1

5

f(x) = x+ , a= 2x

−−

√

f(x) = x− , x < 0, a= 1

2

x

( )'(1) =f

−1

1

3

f(x) = x+sinx, a= 0

f(x) = tanx+3 , a= 0x

2

( )'(0) = 1f

−1

y = f(x)

f

−1

P

f

−1

f(x) = , P (2, 1)

4

1+x

2

f(x) = , P (2, 8)x−4

− −−−−

√

4

y = 4x

f(x) = ( +1 , P (16, 1)x

3

)

4

f(x) =− −x+2, P (−8, 2)x

3
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a.  
b. 

19) 

In exercises 20 - 29, find  for the given function.

20) 

Answer

21) 

22) 

Answer

23) 

24) 

Answer

25) 

26) 

Answer

27) 

28) 

Answer

29) 

In exercises 30 - 35, use the given values to find .

30) 

Answer

31) 

32) 

−

1

96

y =− x+

1

13

18

13

f(x) = +3 −4x−8, P (−8, 1)x

5

x

3

dy

dx

y = ( )sin

−1

x

2

=

dy

dx

2x

1−x

4

− −−−−

√

y = ( )cos

−1

x

−−

√

y = ( )sec

−1

1

x

=

dy

dx

−1

1−x

2

− −−−−

√

y = xcsc

−1

− −−−−−

√

y = (1+ xtan

−1

)

3

=

dy

dx

3(1+ xtan

−1

)

2

1+x

2

y = (2x) ⋅ (2x)cos

−1

sin

−1

y =

1

(x)tan

−1

=

dy

dx

−1

(1+ )( xx

2

tan

−1

)

2

y = (−x)sec

−1

y = cot

−1

4−x

2

− −−−−

√

=

dy

dx

x

(5− )x

2

4−x

2

− −−−−

√

y = x ⋅ xcsc

−1

( )'(a)f

−1

f(π) = 0, (π) =−1, a= 0f

′

( )'(0) =−1f

−1

f(6) = 2, f '(6) = , a= 2

1

3

f( ) =−8, ( ) = 2, a=−8

1

3

f

′

1

3
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Answer

33) 

34) 

Answer

35) 

36) [T] The position of a moving hockey puck after  seconds is  where  is in meters.

a. Find the velocity of the hockey puck at any time .

b. Find the acceleration of the puck at any time .

c. Evaluate parts a. and b. for ,and  seconds.

d. What conclusion can be drawn from the results in c.?

Answer

a.  

b. 

c. (a) ; (b) 

d. The hockey puck is decelerating/slowing down at 2, 4, and 6 seconds.

Solution:

37) [T] A building that is 225 feet tall casts a shadow of various lengths  as the day goes by. An angle of elevation  is formed by
lines from the top and bottom of the building to the tip of the shadow, as seen in the following figure. Find the rate of change of the
angle of elevation  when  feet.

38) [T] A pole stands 75 feet tall. An angle  is formed when wires of various lengths of  feet are attached from the ground to the
top of the pole, as shown in the following figure. Find the rate of change of the angle  when a wire of length 90 feet is attached.

( )'(−8) =f

−1

1

2

f( ) = , ( ) = , a=3

–

√

1

2

f

′

3

–

√

2

3

1

2

f(1) =−3, (1) = 10, a=−3f

′

( )'(−3) =f

−1

1

10

f(1) = 0, (1) =−2, a= 0f

′

t s(t) = ta tn

−1

s

t

t

t = 2, 4 6

v(t) =

1

1+ t

2

a(t) =

−2t

(1+ t

2

)

2

0.2, 0.06, 0.03 −0.16, −0.028, −0.0088

x θ

dθ

dx

x = 272

θ x

dθ

dx
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Answer
 radians per foot

39) [T] A television camera at ground level is 2000 feet away from the launching pad of a space rocket that is set to take off
vertically, as seen in the following figure. The angle of elevation of the camera can be found by , where  is the
height of the rocket. Find the rate of change of the angle of elevation after launch when the camera and the rocket are 5000 feet
apart.

40) [T] A local movie theater with a 30-foot-high screen that is 10 feet above a person’s eye level when seated has a viewing angle 
 (in radians) given by ,

where  is the distance in feet away from the movie screen that the person is sitting, as shown in the following figure.

a. Find .

b. Evaluate  for  and .

c. Interpret the results in part b.

d. Evaluate  for , and .

e. Interpret the results in part d. At what distance  should the person stand to maximize his or her viewing angle?

Answer

a.  

b.  
c. As a person moves farther away from the screen, the viewing angle is increasing, which implies that as he or she moves
farther away, his or her screen vision is widening. d.  
e. As the person moves beyond 20 feet from the screen, the viewing angle is decreasing. The optimal distance the person
should stand for maximizing the viewing angle is 20 feet.

3.8E: Exercises for Section 3.7 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

−0.0168

θ= ( )tan

−1

x

2000

x

θ θ= −cot

−1

x

40

cot

−1

x

10

x

dθ

dx

dθ

dx

x = 5, 10, 15, 20

dθ

dx

x = 25, 30, 35 40

x

= −

dθ

dx

10

100+x

2

40

1600+x

2

, , , 0
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325

9

340

42

4745

− , − , − , −
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3
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29945

9
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3.9: Implicit Differentiation

Find the derivative of a complicated function by using implicit differentiation.
Use implicit differentiation to determine the equation of a tangent line.

We have already studied how to find equations of tangent lines to functions and the rate of change of a function at a specific point.
In all these cases we had the explicit equation for the function and differentiated these functions explicitly. Suppose instead that we
want to determine the equation of a tangent line to an arbitrary curve or the rate of change of an arbitrary curve at a point. In this
section, we solve these problems by finding the derivatives of functions that define  implicitly in terms of .

Implicit Differentiation
In most discussions of math, if the dependent variable  is a function of the independent variable , we express y in terms of . If
this is the case, we say that  is an explicit function of . For example, when we write the equation , we are defining y
explicitly in terms of . On the other hand, if the relationship between the function  and the variable  is expressed by an equation
where  is not expressed entirely in terms of , we say that the equation defines  implicitly in terms of . For example, the
equation  defines the function  implicitly.

Implicit differentiation allows us to find slopes of tangents to curves that are clearly not functions (they fail the vertical line test).
We are using the idea that portions of  are functions that satisfy the given equation, but that y is not actually a function of .

In general, an equation defines a function implicitly if the function satisfies that equation. An equation may define many different
functions implicitly. For example, the functions

and

which are illustrated in Figure , are just three of the many functions defined implicitly by the equation .

Learning Objectives

y x

y x x

y x y = +1x

2

x y x

y x y x

y− = 1x

2

y = +1x

2

y x

y = 25−x

2

− −−−−−

√

y ={

,25−x

2

− −−−−−

√

− ,25−x

2

− −−−−−

√

if −25 ≤ x < 0

if 0 ≤ x ≤ 25

3.9.1 + = 25x

2

y

2
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Figure :The equation  defines many functions implicitly.

If we want to find the slope of the line tangent to the graph of  at the point , we could evaluate the derivative of
the function  at . On the other hand, if we want the slope of the tangent line at the point , we could
use the derivative of . However, it is not always easy to solve for a function defined implicitly by an equation.
Fortunately, the technique of implicit differentiation allows us to find the derivative of an implicitly defined function without ever

solving for the function explicitly. The process of finding  using implicit differentiation is described in the following problem-

solving strategy.

To perform implicit differentiation on an equation that defines a function  implicitly in terms of a variable , use the following
steps:

1. Take the derivative of both sides of the equation. Keep in mind that  is a function of . Consequently, whereas

and

3.9.1 + = 25x

2

y

2

+ = 25x

2

y

2

(3, 4)

y =− 25−x

2

− −−−−−

√

x = 3 (3,−4)

y =− 25−x

2

− −−−−−

√

dy

dx

Problem-Solving Strategy: Implicit Differentiation

y x

y x

(sinx) = cosx

d

dx
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because we must use the chain rule to differentiate  with respect to .
2. Rewrite the equation so that all terms containing  are on the left and all terms that do not contain  are on the

right.
3. Factor out  on the left.
4. Solve for  by dividing both sides of the equation by an appropriate algebraic expression.

Assuming that  is defined implicitly by the equation , find .

Solution

Follow the steps in the problem-solving strategy.

Step 1. Differentiate both sides of the equation.

Step 1.1. Use the sum rule on the left.On the right .

Step 1.2. Take the derivatives, so  and 

.

Step 2. Keep the terms with  on the left.Move the remaining

terms to the right.

Step 4. Divide both sides of the equation by .(Step 3 does not
apply in this case.)

Analysis

Note that the resulting expression for  is in terms of both the independent variable  and the dependent variable .

Although in some cases it may be possible to express  in terms of  only, it is generally not possible to do so.

(siny) = cosy ⋅

d

dx

dy

dx

siny x

dy/dx dy/dx

dy/dx

dy/dx

Implicit DifferentiationImplicit Differentiation

Example : Using Implicit Differentiation3.9.1

y + = 25x

2

y

2

dy

dx

( + ) = (25)

d

dx

x

2

y

2

d

dx

( )+ ( ) = 0

d

dx

x

2

d

dx

y

2

(25) = 0

d

dx

2x+2y = 0

dy

dx

( ) = 2x

d

dx

x

2

( ) = 2y

d

dx

y

2

dy

dx

2y = −2x

dy

dx

dy

dx

= −

dy

dx

x

y

2y

dy

dx

x y

dy

dx

x
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Assuming that  is defined implicitly by the equation , find .

Solution

Step 1: Differentiate both sides of the equation.

Step 1.1: Apply the sum rule on the left.On the right, 

.

Step 1.2: Use the product rule to find .Observe that

.

Step 1.3: We know .Use the chain rule to obtain 

.

Step 2: Keep all terms containing  on the left. Move all other

terms to the right.

Step 3: Factor out  on the left.

Step 4: Solve for  by dividing both sides of the equation by 

.

Find  if .

Solution

In Example , we showed that . We can take the derivative of both sides of this equation to find .

Example : Using Implicit Differentiation and the Product Rule3.9.2

y siny+y = 4x+3x

3

dy

dx

( sin y+ y) = (4x+3)

d

dx

x

3

d

dx

( sin y)+ (y) = 4

d

dx

x

3

d

dx (4x+3) = 4

d

dx

( ( ) ⋅ sin y+ (sin y) ⋅ )+ = 4

d

dx

x

3

d

dx

x

3

dy

dx

( sin y)

d

dx

x

3

(y) =

d

dx

dy

dx

3 sin y+(cos y ) ⋅ + = 4x

2

dy

dx

x

3

dy

dx

( ) = 3

d

dx

x

3

x

2

(sin y) = cos y

d

dx

dy

dx

cos y + = 4−3 sin yx

3

dy

dx

dy

dx

x

2

dy

dx

( cos y+1) = 4−3 sin y

dy

dx

x

3

x

2

dy

dx

=

dy

dx

4− 3 sin yx

2

cos y+1x

3

dy

dx

cos y+1x

3

Finding the Second Derivative Using ImFinding the Second Derivative Using Im……

Example : Using Implicit Differentiation to Find a Second Derivative3.9.3

yd

2

dx

2

+ = 25x

2

y

2

3.9.1 =−

dy

dx

x

y

yd

2

dx

2
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At this point we have found an expression for . If we choose, we can simplify the expression further by recalling that 

 and making this substitution in the numerator to obtain .

Find  for  defined implicitly by the equation .

Hint

Follow the problem solving strategy, remembering to apply the chain rule to differentiate  and .

Answer

Finding Tangent Lines Implicitly

Now that we have seen the technique of implicit differentiation, we can apply it to the problem of finding equations of tangent lines
to curves described by equations.

Find the equation of the line tangent to the curve  at the point .

Solution

Although we could find this equation without using implicit differentiation, using that method makes it much easier. In

Example , we found .

The slope of the tangent line is found by substituting  into this expression. Consequently, the slope of the tangent line is

.

Using the point  and the slope  in the point-slope equation of the line, we obtain the equation 

(Figure).

yd

2

dx

2

= (− )

d

dy

x

y

= −

(1 ⋅ y−x )

dy

dx

y

2

=

−y+x

dy

dx

y

2

=

−y+x(− )

x

y

y

2

=

− −y

2

x

2

y

3

Differentiate both sides of  = − .

dy

dx

x

y

Use the quotient rule to find  (− ) .

d

dy

x

y

Simplify.

Substitute  = − .

dy

dx

x

y

Simplify.

yd

2

dx

2

+ = 25x

2

y

2

= −

yd

2

dx

2

25

y

3

Exercise 3.9.1

dy

dx

y 4 +tany = +5xx

5

y

2

tany y

2

=

dy

dx

5 −20x

4

y−2ysec

2

(3.9.1)

Example : Finding a Tangent Line to a Circle3.9.4

+ = 25x

2

y

2

(3, −4)

3.9.1 = −

dy

dx

x

y

(3, −4)

= − =

dy

dx

∣

∣

(3,−4)

3

−4

3

4

(3, −4)

3

4

y = x−

3

4

25

4
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Figure : The line  is tangent to  at the point (3, −4).

Find the equation of the line tangent to the graph of  at the point  (Figure). This curve is known as
the folium (or leaf) of Descartes.

Figure : Finding the tangent line to the folium of Descartes at .

Solution

3.9.2 y = x−

3

4

25

4

+ = 25x

2

y

2

Implicit Differentation and the Tangent Implicit Differentation and the Tangent ……

Example : Finding the Equation of the Tangent Line to a Curve3.9.5

+ −3xy = 0y

3

x

3

( , )

3

2

3

2

3.9.3 ( , )

3

2
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2
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Begin by finding .

.

Next, substitute  into  to find the slope of the tangent line:

.

Finally, substitute into the point-slope equation of the line to obtain

.

In a simple video game, a rocket travels in an elliptical orbit whose path is described by the equation . The
rocket can fire missiles along lines tangent to its path. The object of the game is to destroy an incoming asteroid traveling along
the positive -axis toward . If the rocket fires a missile when it is located at , where will it intersect the -axis?

Solution

To solve this problem, we must determine where the line tangent to the graph of

 at  intersects the -axis. Begin by finding  implicitly.

Differentiating, we have

Solving for ,

we have

.

The slope of the tangent line is . The equation of the tangent line is . To determine where

the line intersects the -axis, solve . The solution is . The missile intersects the -axis at the point 

.

Find the equation of the line tangent to the hyperbola  at the point .

Hint

Answer

dy

dx

( + −3xy) = (0)

d

dx

y

3

x

3

d

dx

3 +3 −(3y+ 3x) = 0y

2

dy

dx

x

2

dy

dx

=

dy

dx

3y−3x

2

3 −3xy

2

( , )

3

2

3

2

=

dy

dx

3y−3x

2

3 −3xy

2

=−1

dy

dx

∣

∣

∣

( , )

3

2

3

2

y =−x+3

Example : Applying Implicit Differentiation3.9.6

4 +25 = 100x

2

y

2

x (0, 0) (3, )

8

3

x

4 +25 = 100x

2

y

2

(3, )

8

3

x

dy

dx

8x+50y = 0.

dy

dx

dy

dx

=−

dy

dx

4x

25y

=−

dy

dx

∣

∣

∣

(3, )

8

3

9

50

y =− x+

9

50

183

200

x 0 =− x+

9

50

183

200

x =

6

13

x

( , 0)

61

3

Exercise 3.9.2

− = 16x

2

y

2

(5, 3)

=

dy

dx

x

y
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Key Concepts
We use implicit differentiation to find derivatives of implicitly defined functions (functions defined by equations).
By using implicit differentiation, we can find the equation of a tangent line to the graph of a curve.

Glossary

implicit differentiation

is a technique for computing  for a function defined by an equation, accomplished by differentiating both sides of the

equation (remembering to treat the variable  as a function) and solving for 

Contributors and Attributions
Template:ContribOpenStaxCalc

This page titled 3.9: Implicit Differentiation is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

3.8: Implicit Differentiation by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

y = x−

5

3

16

3

dy

dx

y

dy

dx
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3.9E: Exercises for Section 3.8

In exercises 1 - 10, use implicit differentiation to find .

1) 

2) 

Answer

3) 

4) 

Answer

5) 

6) 

Answer

7) 

8) 

Answer

9) 

10) 

Answer

For exercises 11 - 16, find the equation of the tangent line to the graph of the given equation at the indicated point. Use a
calculator or computer software to graph the function and the tangent line.

11) [T] 

12) [T] 

Answer

dy

dx

− = 4x

2

y

2

6 +3 = 12x

2

y

2

=

dy

dx

−2x

y

y = y−7x

2

3 +9x = 5x

3

y

2

x

3

= −

dy

dx

x

3y

y

2x

xy−cos(xy) = 1

y = xy+8x+4

− −−−−

√

=

dy

dx

y−

y

2 x+4

− −−−−

√

−xx+4

− −−−−

√

−xy−2 =

x

7

y sin(xy) = +2y

2

=

dy

dx

cos(xy)y

2

2y−sin(xy)−xy cos(xy)

(xy +3x =)

2

y

2

y+x =−8x

3

y

3

=

dy

dx

−3 y−x

2

y

3

+3xx

3

y

2

y−x =−2, (−1,−1)x

4

y

3

+5xy = 14, (2, 1)x

2

y

2

y =− x+2

1

2
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13) [T] 

14) [T] 

Answer

15) [T] 

16) [T] 

Answer

17) [T] The graph of a folium of Descartes with equation  is given in the following graph.

tan(xy) = y, ( , 1)

π

4

x +sin(πy)−2 = 10, (2, −3)y

2

x

2

y = x−

1

π+12

3π+38

π+12

+5x−7 =− y, (1, 2)

x

y

3

4

xy+sin(x) = 1, ( , 0)

π

2

y = 0

2 +2 −9xy = 0x

3

y

3
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a. Find the equation of the tangent line at the point . Graph the tangent line along with the folium.

b. Find the equation of the normal line to the tangent line in a. at the point .

18) For the equation 

a. Find the equation of the normal to the tangent line at the point .

b. At what other point does the normal line in a. intersect the graph of the equation?

Answer
a.  
b. 

19) Find all points on the graph of  at which the tangent line is vertical.

20) For the equation ,

a. Find the -intercept(s).

b.Find the slope of the tangent line(s) at the -intercept(s).

c. What does the value(s) in part b. indicate about the tangent line(s)?

Answer
a.  
b.  
c. They are parallel since the slope is the same at both intercepts.

21) Find the equation of the tangent line to the graph of the equation  at the point .

22) Find the equation of the tangent line to the graph of the equation  at the point .

Answer

23) Find  and  for .

24) [T] The number of cell phones produced when  dollars is spent on labor and  dollars is spent on capital invested by a
manufacturer can be modeled by the equation .

a. Find  and evaluate at the point .

b. Interpret the result of a.

Answer

a.  
b. When $81 is spent on labor and $16 is spent on capital, the amount spent on capital is decreasing by $0.5926 per $1
spent on labor.

(2, 1)

(2, 1)

+2xy−3 = 0,x

2

y

2

(1, 1)

y =−x+2

(3,−1)

−27y = −90y

3

x

2

+xy+ = 7x

2

y

2

x

x

(± , 0)7

–

√

−2

x+ y =sin

−1

sin

−1 π

6

(0, )

1

2

(x+y) = +tan

−1

x

2

π

4

(0, 1)

y =−x+1

y' y

′′

+6xy−2 = 3x

2

y

2

x y

60 = 3240x

3/4

y

1/4

dy

dx

(81, 16)

=−0.5926

dy

dx
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25) [T] The number of cars produced when  dollars is spent on labor and  dollars is spent on capital invested by a manufacturer
can be modeled by the equation .

(Both and  are measured in thousands of dollars.)

a. Find  and evaluate at the point .

b. Interpret the result of part a.

26) The volume of a right circular cone of radius  and height  is given by . Suppose that the volume of the cone is 

. Find  when  and .

Answer

For exercises 27 - 28, consider a closed rectangular box with a square base with side  and height .

27) Find an equation for the surface area of the rectangular box, .

28) If the surface area of the rectangular box is 78 square feet, find  when  feet and  feet.

Answer

In exercises 29 - 31, use implicit differentiation to determine . Does the answer agree with the formulas we have previously
determined?

29) 

30) 

Answer

31) 

3.9E: Exercises for Section 3.8 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

3.8E: Exercises for Section 3.8 is licensed CC BY-NC-SA 4.0.

x y

30 = 360x

1/3

y

2/3

x y

dy

dx

(27, 8)

x y V = π y

1

3

x

2

85π cm

3

dy

dx

x = 4 y = 16

=−8

dy

dx

x y

S(x, y)

dy

dx

x = 3 y = 5

=−2.67

dy

dx

y'

x = siny

x = cosy

y' =−

1

1−x

2

− −−−−

√

x = tany
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3.10: Derivatives of Exponential and Logarithmic Functions

Find the derivative of exponential functions.
Find the derivative of logarithmic functions.
Use logarithmic differentiation to determine the derivative of a function.

So far, we have learned how to differentiate a variety of functions, including trigonometric, inverse, and implicit functions. In this section, we
explore derivatives of exponential and logarithmic functions. As we discussed in Introduction to Functions and Graphs, exponential functions
play an important role in modeling population growth and the decay of radioactive materials. Logarithmic functions can help rescale large
quantities and are particularly helpful for rewriting complicated expressions.

Derivative of the Exponential Function
Just as when we found the derivatives of other functions, we can find the derivatives of exponential and logarithmic functions using formulas. As
we develop these formulas, we need to make certain basic assumptions. The proofs that these assumptions hold are beyond the scope of this
course.

First of all, we begin with the assumption that the function  is defined for every real number and is continuous. In previous
courses, the values of exponential functions for all rational numbers were defined—beginning with the definition of , where  is a positive
integer—as the product of  multiplied by itself  times. Later, we defined , for a positive integer , and  for
positive integers  and . These definitions leave open the question of the value of br where r is an arbitrary real number. By assuming the
continuity of , we may interpret  as  where the values of  as we take the limit are rational. For example, we may view

 as the number satisfying

As we see in the following table, 

64 77.8802710486

73.5166947198 77.8810268071

77.7084726013 77.9242251944

77.8162741237 78.7932424541

77.8702309526 84.4485062895

77.8799471543 256

Approximating a Value of 

We also assume that for , the value  of the derivative exists. In this section, we show that by making this one additional
assumption, it is possible to prove that the function  is differentiable everywhere.

We make one final assumption: that there is a unique value of  for which . We define e to be this unique value, as we did in
Introduction to Functions and Graphs. Figure provides graphs of the functions  and . A visual estimate of
the slopes of the tangent lines to these functions at 0 provides evidence that the value of e lies somewhere between 2.7 and 2.8. The function 

 is called the natural exponential function. Its inverse,  is called the natural logarithmic function.

Learning Objectives

B(x) = , b > 0,b

x

b

n

n

b n = 1, =b

0

b

−n

1

b

n

n = (b

s/t

b√
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B(x) = , b > 0b

x

b

r
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x→r

b

x
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π
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4
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4
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π

B(x) = , b > 0b

x

B'(0)

B(x)

b > 0 B'(0) = 1

y = , y = , y = ,2

x

3

x

2.7

x

y = 2.8

x

E(x) = e

x

L(x) = x = lnxlog

e

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25951?pdf
https://stats.libretexts.org/Courses/Lake_Tahoe_Community_College/Interactive_Calculus_Q1/03%3A_Derivatives/3.10%3A_Derivatives_of_Exponential_and_Logarithmic_Functions


3.10.2 https://stats.libretexts.org/@go/page/25951

Figure : The graph of  is between  and .

For a better estimate of , we may construct a table of estimates of  for functions of the form . Before doing this, recall that

for values of  very close to zero. For our estimates, we choose  and 

to obtain the estimate

See the following table.

Table : Estimating the value of 

2 2.718

2.7 2.719

2.71 2.72

2.718 2.8

2.7182 3

The evidence from the table suggests that 

The graph of  together with the line  are shown in Figure. This line is tangent to the graph of  at .

Figure : The tangent line to  at  has slope 1.

3.10.1 E(x) = e

x

y = 2

x

y = 3

x

e B'(0) B(x) = b

x

B'(0) = = ≈lim

x→0

−b

x

b

0

x−0

lim

x→0

−1b

x

x

−1b

x

x

x x = 0.00001 x =−0.00001

<B'(0) < .

−1b

−0.00001

−0.00001

−1b

0.00001

0.00001

e

b

<B'(0) < .

−1b

−0.00001

−0.00001

−1b

0.00001

0.00001

b

<B'(0) < .

−1b

−0.00001

−0.00001

−1b

0.00001

0.00001

0.693145 < B'(0) < 0.69315 1.000002 < B'(0) < 1.000012

0.993247 < B'(0) < 0.993257 1.000259 < B'(0) < 1.000269

0.996944 < B'(0) < 0.996954 1.000627 < B'(0) < 1.000637

0.999891 < B'(0) < 0.999901 1.029614 < B'(0) < 1.029625

0.999965 < B'(0) < 0.999975 1.098606 < B'(0) < 1.098618

2.7182 < e< 2.7183.

E(x) = e

x

y = x+1 E(x) = e

x

x = 0

3.10.2 E(x) = e

x

x = 0
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Now that we have laid out our basic assumptions, we begin our investigation by exploring the derivative of . Recall that we
have assumed that  exists. By applying the limit definition to the derivative we conclude that

Turning to , we obtain the following.

We see that on the basis of the assumption that  is differentiable at  is not only differentiable everywhere, but its derivative is

For  Thus, we have . (The value of  for an arbitrary function of the form  will be
derived later.)

Let  be the natural exponential function. Then

In general,

Find the derivative of .

Solution:

Using the derivative formula and the chain rule,

Find the derivative of .

Solution

Use the derivative of the natural exponential function, the quotient rule, and the chain rule.

B(x) = , b > 0b

x

B'(0)

B'(0) = =lim

h→0

−b

0+h

b

0

h

lim

h→0

−1b

h

h

B'(x)

B'(x) = lim

h→0

−b

x+h

b

x

h

= lim

h→0

−b

x

b

h

b

x

h

= lim

h→0

( −1)b

x

b

h

h

= b

x

lim

h→0

−1b

h

h

= B'(0)b

x

Apply the limit definition of the derivative.

Note that  = .b

x+h

b

x

b

h

Factor out  .b

x

Apply a property of limits.

Use B'(0) = = .lim

h→0

−b

0+h

b

0

h

lim

h→0

−1b

h

h

B(x) = b

x

0,B(x)

B'(x) = B'(0).b

x

E(x) = , E'(0) = 1.e

x

E'(x) = e

x

B'(0) B(x) = , b > 0,b

x

Derivative of the Natural Exponential Function

E(x) = e

x

E'(x) = .e

x

(3.10.1)

( ) = g'(x)

d

dx

e

g(x)

e

g(x)

(3.10.2)

Example : Derivative of an Exponential Function3.10.1

f(x) = e

tan(2x)

f '(x) = (tan(2x)) = (2x) ⋅ 2e

tan(2x)

d

dx

e

tan(2x)

sec

2

Example : Combining Differentiation Rules3.10.2

y =

e

x

2

x

y' =

( ⋅ 2)x ⋅ x−1 ⋅e

x

2

e

x

2

x

2

=

(2 −1)e

x

2

x

2

x

2

Apply the quotient rule.

Simplify.
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Find the derivative of .

Hint

Don’t forget to use the product rule.

Answer

A colony of mosquitoes has an initial population of 1000. After  days, the population is given by . Show that the ratio of
the rate of change of the population, , to the population,  is constant.

Solution

First find . By using the chain rule, we have  Thus, the ratio of the rate of change of the population to the population
is given by

The ratio of the rate of change of the population to the population is the constant 0.3.

If  describes the mosquito population after  days, as in the preceding example, what is the rate of change of  after 4
days?

Hint

Find .

Answer

Derivative of the Logarithmic Function
Now that we have the derivative of the natural exponential function, we can use implicit differentiation to find the derivative of its inverse, the
natural logarithmic function.

If  and , then

More generally, let  be a differentiable function. For all values of  for which , the derivative of  is given by

If  and , then  Differentiating both sides of this equation results in the equation

Solving for  yields

Exercise 3.10.1

h(x) = xe

2x

h'(x) = +2xe

2x

e

2x

Example : Applying the Natural Exponential Function3.10.3

t A(t) = 1000e

0.3t

A'(t) A(t)

A'(t) A'(t) = 300 .e

0.3t

A'(t) = = 0.3.

300e

0.3t

1000e

0.3t

Exercise 3.10.2

A(t) = 1000e

0.3t

t A(t)

A'(4)

996

Definition: The Derivative of the Natural Logarithmic Function

x > 0 y = lnx

= .

dy

dx

1

x

(3.10.3)

g(x) x g'(x) > 0 h(x) = ln(g(x))

h'(x) = g'(x).

1

g(x)

(3.10.4)

Proof

x > 0 y = lnx = x.e

y

= 1.e

y

dy

dx

(3.10.5)

dy

dx

= .

dy

dx

1

e

y

(3.10.6)
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Finally, we substitute  to obtain

We may also derive this result by applying the inverse function theorem, as follows. Since 

is the inverse of , by applying the inverse function theorem we have

Using this result and applying the chain rule to  yields

□

The graph of  and its derivative  are shown in Figure.

Figure : The function  is increasing on . Its derivative  is greater than zero on 

Find the derivative of .

Solution

Use Equation  directly.

x = e

y

= .

dy

dx

1

x

(3.10.7)

y = g(x) = lnx

f(x) = e

x

= = = .

dy

dx

1

f '(g(x))

1

e

ln x

1

x

(3.10.8)

h(x) = ln(g(x))

h'(x) = g'(x).

1

g(x)

(3.10.9)

y = lnx =

dy

dx

1

x

3.10.3 y = ln x (0,+∞) =y

′

1

x

(0,+∞)

Example : Taking a Derivative of a Natural Logarithm3.10.4

f(x) = ln( +3x−4)x

3

3.10.9

f '(x) = ⋅ (3 +3)

1

+3x−4x

3

x

2

=

3 +3x

2

+3x−4x

3

Use g(x) = +3x−4 in h'(x) = g'(x).x

3

1

g(x)

Rewrite.

Taking a Derivative Involving lnTaking a Derivative Involving ln
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Find the derivative of .

Solution

At first glance, taking this derivative appears rather complicated. However, by using the properties of logarithms prior to finding the
derivative, we can make the problem much simpler.

Differentiate: .

Hint

Use a property of logarithms to simplify before taking the derivative.

Answer

Now that we can differentiate the natural logarithmic function, we can use this result to find the derivatives of  and  for 
.

Let  and let  be a differentiable function.

i. If, , then

More generally, if , then for all values of  for which ,

ii. If  then

More generally, if  then

If  then  It follows that . Thus . Solving for , we have . Differentiating and keeping

in mind that  is a constant, we see that

The derivative in Equation  now follows from the chain rule.

If . then  Using implicit differentiation, again keeping in mind that  is constant, it follows that . Solving

for  and substituting , we see that

Example : Using Properties of Logarithms in a Derivative3.10.5

f(x) = ln( )

sinxx

2

2x+1

f(x)

f '(x)

= ln( ) = 2 lnx+ln(sinx) −ln(2x+1)

sinxx

2

2x+1

= +cotx−

2

x

2

2x+1

Apply properties of logarithms.

Apply sum rule and h'(x) = g'(x).

1

g(x)

Exercise 3.10.3

f(x) = ln(3x+2)

5

f '(x) =

15

3x+2

y = xlog

b

y = b

x

b > 0, b ≠ 1

Derivatives of General Exponential and Logarithmic Functions

b > 0, b ≠ 1, g(x)

y = xlog

b

= .

dy

dx

1

x lnb

(3.10.10)

h(x) = (g(x))log

b

x g(x) > 0

h'(x) = .

g'(x)

g(x) lnb

(3.10.11)

y = ,b

x

= lnb.

dy

dx

b

x

(3.10.12)

h(x) = ,b

g(x)

h'(x) = (x) lnbb

g(x)

g

′

(3.10.13)

Proof

y = x,log

b

= x.b

y

ln( ) = lnxb

y

y lnb = lnx y y =

lnx

lnb

lnb

= .

dy

dx

1

x lnb

(3.10.14)

3.10.11

y = b

x

lny = x lnb. lnb = lnb

1

y

dy

dx

dy

dx

y = b

x
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The more general derivative (Equation ) follows from the chain rule.

□

Find the derivative of .

Solution

Use the quotient rule and Note.

Find the slope of the line tangent to the graph of  at .

Solution

To find the slope, we must evaluate  at . Using Equation, we see that

By evaluating the derivative at , we see that the tangent line has slope

Find the slope for the line tangent to  at 

Hint

Evaluate the derivative at 

= y lnb = lnb.

dy

dx

b

x

(3.10.15)

3.10.13

Example : Applying Derivative Formulas3.10.6

h(x) =

3

x

+23

x

h'(x) =

ln3( +2) − ln3( )3

x

3

x

3

x

3

x

( +23

x

)

2

=

2 ⋅ ln33

x

(3x+2)

2

Apply the quotient rule.

Simplify.

Taking a Derivative of a Function Involving LoTaking a Derivative of a Function Involving Lo……

Example : Finding the Slope of a Tangent Line3.10.7

y = (3x+1)log

2

x = 1

dy

dx

x = 1

= .

dy

dx

3

(3x+1) ln2

x = 1

= = .

dy

dx

∣

∣

∣

x=1

3

4 ln2

3

ln16

Exercise 3.10.4

y = 3

x

x = 2.

x = 2.
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Answer

Logarithmic Differentiation

At this point, we can take derivatives of functions of the form  for certain values of , as well as functions of the form ,
where  and . Unfortunately, we still do not know the derivatives of functions such as  or . These functions require a
technique called logarithmic differentiation, which allows us to differentiate any function of the form . It can also be used to

convert a very complex differentiation problem into a simpler one, such as finding the derivative of . We outline this technique

in the following problem-solving strategy.

1. To differentiate  using logarithmic differentiation, take the natural logarithm of both sides of the equation to obtain 

2. Use properties of logarithms to expand  as much as possible.

3. Differentiate both sides of the equation. On the left we will have .

4. Multiply both sides of the equation by  to solve for .

5. Replace  by .

Find the derivative of .

Solution

Use logarithmic differentiation to find this derivative.

9 ln(3)

y = (g(x))

n

n y = b

g(x)

b > 0 b ≠ 1 y = x

x

y = x

π

h(x) = g(x)

f(x)

y =

x 2x+1

− −−−−

√

xe

x

sin

3

Problem-Solving Strategy: Using Logarithmic Differentiation

y = h(x)

lny = ln(h(x)).

ln(h(x))

1

y

dy

dx

y

dy

dx

y h(x)

Example : Using Logarithmic Differentiation3.10.8

y = (2 +1x

4

)

tan x

lny

lny

1

y

dy

dx

dy

dx

dy

dx

= ln(2 +1x

4

)

tan x

= tanx ln(2 +1)x

4

= x ln(2 +1) + ⋅ tanxsec

2

x

4

8x

3

2 +1x

4

= y ⋅ ( x ln(2x4 +1) + ⋅ tanx)sec

2

8x

3

2 +1x

4

= (2 +1 ( x ln(2 +1) + ⋅ tanx)x

4

)

tan x

sec

2

x

4

8x

3

2 +1x

4

Step 1. Take the natural logarithm of both sides.

Step 2. Expand using properties of logarithms.

Step 3. Differentiate both sides. Use the product rule on the right.

Step 4. Multiply by y on both sides.

Step 5. Substitute y = (2 +1 .x

4

)

tan x
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Find the derivative of .

Solution

This problem really makes use of the properties of logarithms and the differentiation rules given in this chapter.

Step 1. Take the natural logarithm of both sides.

Step 2. Expand using properties of logarithms.

Step 3. Differentiate both sides.

Step 4. Multiply by  on both sides.

Step 5. Substitute 

Use logarithmic differentiation to find the derivative of .

Hint

Follow the problem solving strategy.

Answer

Solution: 

Find the derivative of .

Hint

Use the power rule (since the exponent  is a constant) and the chain rule.

Using Logarithmic DifferentiationUsing Logarithmic Differentiation

Example : Extending the Power Rule3.10.9

y =

x 2x+1

− −−−−

√

xe

x

sin

3

ln y= ln

x 2x+1

− −−−−

√

xe

x

sin

3

ln y= lnx+ ln(2x+1)−x ln e−3ln sinx

1

2

= + −1−3

1

y

dy

dx

1

x

1

2x+1

cosx

sinx

= y( + −1−3cotx)

dy

dx

1

x

1

2x+1

y

= ( + −1−3cotx)

dy

dx

x 2x+1

− −−−−

√

xe

x

sin

3

1

x

1

2x+1

y= .

x 2x+1

− −−−−

√

xe

x

sin

3

Exercise 3.10.5

y = x

x

= (1+lnx)

dy

dx

x

x

Exercise 3.10.6

y = (tanx)

π

π
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Answer

Key Concepts
On the basis of the assumption that the exponential function  is continuous everywhere and differentiable at , this function is
differentiable everywhere and there is a formula for its derivative.

We can use a formula to find the derivative of , and the relationship  allows us to extend our differentiation formulas

to include logarithms with arbitrary bases.
Logarithmic differentiation allows us to differentiate functions of the form  or very complex functions by taking the natural
logarithm of both sides and exploiting the properties of logarithms before differentiating.

Key Equations
Derivative of the natural exponential function

Derivative of the natural logarithmic function

Derivative of the general exponential function

Derivative of the general logarithmic function

Glossary

logarithmic differentiation
is a technique that allows us to differentiate a function by first taking the natural logarithm of both sides of an equation, applying properties
of logarithms to simplify the equation, and differentiating implicitly

Contributors and Attributions
Template:ContribOpenStaxCalc

This page titled 3.10: Derivatives of Exponential and Logarithmic Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by .

3.9: Derivatives of Exponential and Logarithmic Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

y' = π(tanx x)

π−1

sec

2

y = , b > 0b

x

0

y = lnx x =log

b

lnx

lnb

y = g(x)

f(x)

( )= g'(x)

d

dx

e

g(x)

e

g(x)

( lng(x))= g'(x)

d

dx

1

g(x)

( )= g'(x) lnb

d

dx

b

g(x)

b

g(x)

( g(x))=

d

dx

log

b

g'(x)

g(x) lnb

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25951?pdf
https://stats.libretexts.org/Courses/Lake_Tahoe_Community_College/Interactive_Calculus_Q1/03%3A_Derivatives/3.10%3A_Derivatives_of_Exponential_and_Logarithmic_Functions
https://creativecommons.org/licenses/by-nc-sa/
https://math.libretexts.org/@go/page/2498
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


3.10E.1 https://stats.libretexts.org/@go/page/25952

3.10E: Exercises for Section 3.9
In exercises 1 - 15, find  for each function.

1) 

Answer

2) 

3) 

Answer

4) 

5) 

Answer

6) 

7) 

Answer

8) 

9) 

Answer

10) 

11) 

Answer

12) 

13) 

Answer

14) 

15) 

f '(x)

f(x) = x

2

e

x

(x) = 2x +f

′

e

x

x

2

e

x

f(x) =

e

−x

x

f(x) = e

ln xx

3

(x) = (3 lnx+ )f

′

e

ln xx

3

x

2

x

2

f(x) = +2xe

2x

− −−−−−−

√

f(x) =

−e

x

e

−x

+e

x

e

−x

(x) =f

′

4

( +e

x

e

−x

)

2

f(x) =

10

x

ln10

f(x) = +42

4x

x

2

(x) = ⋅ ln2+8xf

′

2

4x+2

f(x) = 3

sin 3x

f(x) = ⋅x

π

π

x

(x) = π ⋅ + ⋅ lnπf

′

x

π−1

π

x

x

π

π

x

f(x) = ln(4 +x)x

3

f(x) = ln 5x−7

− −−−−

√

(x) =f

′

5

2(5x−7)

f(x) = ln9xx

2

f(x) = log(secx)

(x) =f

′

tanx

ln10

f(x) = (6 +3log

7

x

4

)

5

f(x) = ⋅2

x

log

3

7

−4x

2
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Answer

For exercises 16 - 23, use logarithmic differentiation to find .

16) 

17) 

Answer

18) 

19) 

Answer

20) 

21) 

Answer

22) 

23) 

Answer

24) [T] Find an equation of the tangent line to the graph of  at the point where

 Graph both the function and the tangent line.

25) [T] Find the equation of the line that is normal to the graph of  at the point where . Graph both the function
and the normal line.

Answer

 

(x) = ⋅ ln2 ⋅ + ⋅f

′

2

x

log

3

7

−4x

2

2

x

2x ln7

ln3

dy

dx

y = x

x

√

y = (sin2x)

4x

= (sin2x [4 ⋅ ln(sin2x)+8x ⋅ cot 2x]

dy

dx

)

4x

y = (lnx)

ln x

y = x

xlog

2

= ⋅

dy

dx

x

xlog

2

2 lnx

x ln2

y = ( −1x

2

)

ln x

y = x

cot x

= ⋅ [− x ⋅ lnx+ ]

dy

dx

x

cot x

csc

2

cotx

x

y =

x+11

−4x

2

− −−−−

√

3

y = ( +3 (3x−4x

−1/2

x

2

)

2/3

)

4

= ( +3 (3x−4 ⋅ [ + + ]

dy

dx

x

−1/2

x

2

)

2/3

)

4

−1

2x

4x

3( +3)x

2

12

3x−4

f(x) = 4xe

( −1)x

2

x =−1.

f(x) = x ⋅ 5

x

x = 1

y = x+(5+ )

−1

5+5 ln 5

1

5+5 ln 5
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26) [T] Find the equation of the tangent line to the graph of  at the point where . (Hint: Use

implicit differentiation to find .) Graph both the curve and the tangent line.

27) Consider the function  for 

a. Determine the points on the graph where the tangent line is horizontal.

b. Determine the points on the graph where  and those where .

Answer
a.  
b.  and 

28) The formula  is the formula for a decaying alternating current.

a. Complete the following table with the appropriate values.

0 (i)

(ii)

(iii)

(vi)

(v)

(vi)

(vii)

b. Using only the values in the table, determine where the tangent line to the graph of  is horizontal.

29) [T] The population of Toledo, Ohio, in 2000 was approximately 500,000. Assume the population is increasing at a rate of 5%
per year.

a. Write the exponential function that relates the total population as a function of .

b. Use part a. to determine the rate at which the population is increasing in  years.

c. Use part b. to determine the rate at which the population is increasing in 10 years

Answer
a.  individuals 
b.  individuals per year 
c.  individuals per year

30)[T] An isotope of the element erbium has a half-life of approximately 12 hours. Initially there are 9 grams of the isotope present.

a. Write the exponential function that relates the amount of substance remaining as a function of , measured in hours.

b. Use a. to determine the rate at which the substance is decaying in  hours.

c. Use b. to determine the rate of decay at  hours.

31) [T] The number of cases of influenza in New York City from the beginning of 1960 to the beginning of 1964 is modeled by the
function , where  gives the number of cases (in thousands) and  is measured in years,
with  corresponding to the beginning of 1960.

a. Show work that evaluates  and . Briefly describe what these values indicate about the disease in New York
City.

−x lny+ = 2x+5x

3

y

3

x = 2

dy

dx

y = x

1/x

x > 0.

y' > 0 y' < 0

x = e≈ 2.718

> 0 for (0, e)y

′

< 0 for (e,∞).y

′

I(t) =

sin t

e

t

t

sin t

e

t

π/2

π

3π/2

2π

2π

3π

I(t)

t

t

P = 500, 000(1.05)

t

P '(t) = 24395 ⋅ (1.05)

t

39, 737

t

t

t = 4

N(t) = 5.3 , (0 ≤ t ≤ 4)e

0.093 −0.87tt

2

N(t) t

t = 0

N(0) N(4)
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b. Show work that evaluates  and . Briefly describe what these values indicate about the disease in the United
States.

Answer
a. At the beginning of 1960 there were 5.3 thousand cases of the disease in New York City. At the beginning of 1963
there were approximately 723 cases of the disease in the United States. 
b. At the beginning of 1960 the number of cases of the disease was decreasing at rate of  thousand per year; at the
beginning of 1963, the number of cases of the disease was decreasing at a rate of  thousand per year.

32) [T] The relative rate of change of a differentiable function  is given by  One model for population growth is a

Gompertz growth function, given by  where , and  are constants.

a. Find the relative rate of change formula for the generic Gompertz function.

b. Use part a. to find the relative rate of change of a population in  months when  and 

c. Briefly interpret what the result of part b. means.

For exercises 33 - 36, use the population of New York City from 1790 to 1860, given in the following table.

Year since 1790 Population

0 33,131

10 60,515

20 96,373

30 123,706

40 202,300

50 312,710

60 515,547

70 813,669

New York City Population Over TimeSource: http://en.Wikipedia.org/wiki/Largest..._United_States

_by_population_by_decade

33) [T] Using a computer program or a calculator, fit a growth curve to the data of the form .

Answer

34) [T] Using the exponential best fit for the data, write a table containing the derivatives evaluated at each year.

35) [T] Using the exponential best fit for the data, write a table containing the second derivatives evaluated at each year.

Answer

Year since 1790

0 69.25

10 107.5

20 167.0

30 259.4

40 402.8

N '(0) N '(3)

−4.611

−0.2808

y = f(x)

100⋅f'(x)

f(x)

P (x) = ae

−b⋅e

−cx

a, b c

x = 20 a= 204, b = 0.0198,

c = 0.15.

p = ab

t

p = 35741(1.045)

t

P "
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50 625.5

60 971.4

70 1508.5

36) [T] Using the tables of first and second derivatives and the best fit, answer the following questions:

a. Will the model be accurate in predicting the future population of New York City? Why or why not?

b. Estimate the population in 2010. Was the prediction correct from part a.?

3.10E: Exercises for Section 3.9 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

3.9E: Exercises for Section 3.9 is licensed CC BY-NC-SA 4.0.
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3.11: Chapter 3 Review Exercises

Chapter Review Exercises

True or False? Justify the answer with a proof or a counterexample.

1) Every function has a derivative.

Answer
False

2) A continuous function has a continuous derivative.

3) A continuous function has a derivative.

Answer
False

4) If a function is differentiable, it is continuous.

In exercises 5 and 6, use the limit definition of the derivative to exactly evaluate the derivative.

5) 

Answer

6) 

In exercises 7 - 15, find the derivatives of the given functions.

7) 

Answer

9) 

10) 

Answer

11) 

12) 

Answer

13) 

14) 

Answer

f(x) = x+4

− −−−−

√

(x) =f

′

1

2 x+4

− −−−−

√

f(x) =

3

x

f(x) = 3 −x

3

4

x

2

(x) = 9 +f

′

x

2

8

x

3

f(x) = (4−x

2

)

3

f(x) = e

sin x

(x) = cosxf

′

e

sin x

f(x) = ln(x+2)

f(x) = cosx+x tanxx

2

(x) = x x+2x cosx+tanx− sinxf

′

sec

2

x

2

f(x) = 3 +2x

2

− −−−−−

√

f(x) = (x)

x

4

sin

−1

(x) = ( + x)f

′

1

4

x

1−x

2

√

sin

−1
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15) 

In exercises 16 - 18, find the indicated derivatives of various orders.

16) First derivative of 

Answer

17) Third derivative of 

18) Second derivative of 

Answer

In exercises 19 and 20, find the equation of the tangent line to the following equations at the specified point.

19)  at 

20)  at 

Answer

In exercises 21 and 22, draw the derivative of the functions with the given graphs.

21)

22)

Answer

y = (y+2)+xy sinxx

2

y = x(lnx) cosx

= cosx ⋅ (lnx+1)−x(lnx) sinx

dy

dx

y = (3x+2)

2

y = + sinx4

x

x

2

= (ln4 +2 sinx+4x cosx− sinx

yd

2

dx

2

4

x

)

2

x

2

y = (x)+xcos

−1

x = 0

y = x+ −e

x

1

x

x = 1

y = (2+e)x−2
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Questions 22 and 23 concern the water level in Ocean City, New Jersey, in January, which can be approximated by 
 where  is measured in hours after midnight, and the height is measured in feet.

22) Find and graph the derivative. What is the physical meaning?

23) Find  What is the physical meaning of this value?

Answer
. At 3 a.m. the tide is decreasing at a rate of 1.514 ft/hr.

Questions 24 and 25 consider the wind speeds of Hurricane Katrina, which affected New Orleans, Louisiana, in August
2005. The data are displayed in a table.

Hours after Midnight, August 26 Wind Speed (mph)

1 45

5 75

11 100

29 115

49 145

58 175

73 155

81 125

85 95

107 35

Wind Speeds of Hurricane KatrinaSource: news.nationalgeographic.com/n..._timeline.html.

24) Using the table, estimate the derivative of the wind speed at hour 39. What is the physical meaning?

25) Estimate the derivative of the wind speed at hour 83. What is the physical meaning?

Answer
 The wind speed is decreasing at a rate of 7.5 mph/hr

This page titled 3.11: Chapter 3 Review Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by .

3.R: Chapter 3 Review Exercises by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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CHAPTER OVERVIEW

4: Applications of Derivatives
A rocket launch involves two related quantities that change over time. Being able to solve this type of problem is just one
application of derivatives introduced in this chapter. We also look at how derivatives are used to find maximum and minimum
values of functions. As a result, we will be able to solve applied optimization problems, such as maximizing revenue and
minimizing surface area. In addition, we examine how derivatives are used to evaluate complicated limits, to approximate roots of
functions, and to provide accurate graphs of functions.
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4.1: Prelude to Applications of Derivatives
A rocket is being launched from the ground and cameras are recording the event. A video camera is located on the ground a certain
distance from the launch pad. At what rate should the angle of inclination (the angle the camera makes with the ground) change to
allow the camera to record the flight of the rocket as it heads upward?

 Figure : As a rocket is being launched, at what
rate should the angle of a video camera change to continue viewing the rocket? (credit: modification of work by Steve Jurvetson,
Wikimedia Commons)

A rocket launch involves two related quantities that change over time. Being able to solve this type of problem is just one
application of derivatives introduced in this chapter. We also look at how derivatives are used to find maximum and minimum
values of functions. As a result, we will be able to solve applied optimization problems, such as maximizing revenue and
minimizing surface area. In addition, we examine how derivatives are used to evaluate complicated limits, to approximate roots of
functions, and to provide accurate graphs of functions.

This page titled 4.1: Prelude to Applications of Derivatives is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
.

4.0: Prelude to Applications of Derivatives by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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4.2: Related Rates

Express changing quantities in terms of derivatives.
Find relationships among the derivatives in a given problem.
Use the chain rule to find the rate of change of one quantity that depends on the rate of change of other quantities.

We have seen that for quantities that are changing over time, the rates at which these quantities change are given by derivatives. If
two related quantities are changing over time, the rates at which the quantities change are related. For example, if a balloon is being
filled with air, both the radius of the balloon and the volume of the balloon are increasing. In this section, we consider several
problems in which two or more related quantities are changing and we study how to determine the relationship between the rates of
change of these quantities.

Setting up Related-Rates Problems
In many real-world applications, related quantities are changing with respect to time. For example, if we consider the balloon
example again, we can say that the rate of change in the volume, , is related to the rate of change in the radius, . In this case, we
say that  and  are related rates because  is related to r. Here we study several examples of related quantities that are
changing with respect to time and we look at how to calculate one rate of change given another rate of change.

A spherical balloon is being filled with air at the constant rate of  (Figure). How fast is the radius increasing when
the radius is ?

Figure : As the balloon is being filled with air, both the radius and the volume are increasing with respect to time.

Solution

The volume of a sphere of radius  centimeters is

Learning Objectives

V r

dV

dt
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dt
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Since the balloon is being filled with air, both the volume and the radius are functions of time. Therefore,  seconds after
beginning to fill the balloon with air, the volume of air in the balloon is

Differentiating both sides of this equation with respect to time and applying the chain rule, we see that the rate of change in the
volume is related to the rate of change in the radius by the equation

The balloon is being filled with air at the constant rate of , so . Therefore,

which implies

.

When the radius  cm,

What is the instantaneous rate of change of the radius when  cm?

Solution

Answer

 cm/sec, or approximately 0.0044 cm/sec

Before looking at other examples, let’s outline the problem-solving strategy we will be using to solve related-rates problems.

1. Assign symbols to all variables involved in the problem. Draw a figure if applicable.
2. State, in terms of the variables, the information that is given and the rate to be determined.
3. Find an equation relating the variables introduced in step 1.
4. Using the chain rule, differentiate both sides of the equation found in step 3 with respect to the independent variable. This

new equation will relate the derivatives.
5. Substitute all known values into the equation from step 4, then solve for the unknown rate of change

Note that when solving a related-rates problem, it is crucial not to substitute known values too soon. For example, if the value for a
changing quantity is substituted into an equation before both sides of the equation are differentiated, then that quantity will behave
as a constant and its derivative will not appear in the new equation found in step 4. We examine this potential error in the following
example.

Examples of the Process

Let’s now implement the strategy just described to solve several related-rates problems. The first example involves a plane flying
overhead. The relationship we are studying is between the speed of the plane and the rate at which the distance between the plane
and a person on the ground is changing.

V = π .

4

3

r

3

cm

3

t

V (t) = π[r(t) .

4

3

]

3

cm

3

(t) = 4π[r(t) r'(t).V

′

]

2

2 /seccm
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(t) = 2 /secV
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An airplane is flying overhead at a constant elevation of  ft. A man is viewing the plane from a position  ft from the
base of a radio tower. The airplane is flying horizontally away from the man. If the plane is flying at the rate of  ft/sec, at
what rate is the distance between the man and the plane increasing when the plane passes over the radio tower?

Solution

Step 1. Draw a picture, introducing variables to represent the different quantities involved.

Figure : An airplane is flying at a constant height of  ft. The distance between the person and the airplane and the
person and the place on the ground directly below the airplane are changing. We denote those quantities with the variables 
and , respectively.

As shown,  denotes the distance between the man and the position on the ground directly below the airplane. The variable 
denotes the distance between the man and the plane. Note that both  and  are functions of time. We do not introduce a
variable for the height of the plane because it remains at a constant elevation of  ft. Since an object’s height above the
ground is measured as the shortest distance between the object and the ground, the line segment of length 4000 ft is
perpendicular to the line segment of length  feet, creating a right triangle.

Step 2. Since  denotes the horizontal distance between the man and the point on the ground below the plane,  represents
the speed of the plane. We are told the speed of the plane is  ft/sec. Therefore,  ft/sec. Since we are asked to find
the rate of change in the distance between the man and the plane when the plane is directly above the radio tower, we need to
find  when  ft.

Step 3. From the figure, we can use the Pythagorean theorem to write an equation relating  and :

Step 4. Differentiating this equation with respect to time and using the fact that the derivative of a constant is zero, we arrive at
the equation

Step 5. Find the rate at which the distance between the man and the plane is increasing when the plane is directly over the radio
tower. That is, find  when  ft. Since the speed of the plane is  ft/sec, we know that  ft/sec. We are not
given an explicit value for ; however, since we are trying to find  when  ft, we can use the Pythagorean theorem
to determine the distance  when  ft and the height is  ft. Solving the equation

for , we have  ft at the time of interest. Using these values, we conclude that 

is a solution of the equation

Example : An Airplane Flying at a Constant Elevation4.2.2
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.

Therefore,

Note: When solving related-rates problems, it is important not to substitute values for the variables too soon. For example, in
step 3, we related the variable quantities  and  by the equation

Since the plane remains at a constant height, it is not necessary to introduce a variable for the height, and we are allowed to use
the constant 4000 to denote that quantity. However, the other two quantities are changing. If we mistakenly substituted 

 into the equation before differentiating, our equation would have been

After differentiating, our equation would become

As a result, we would incorrectly conclude that 

What is the speed of the plane if the distance between the person and the plane is increasing at the rate of  ft/sec?

Hint

 ft/sec

Answer

 ft/sec

We now return to the problem involving the rocket launch from the beginning of the chapter.

A rocket is launched so that it rises vertically. A camera is positioned  ft from the launch pad. When the rocket is  ft
above the launch pad, its velocity is  ft/sec.

(3000)(600) = (5000) ⋅
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dt
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Figure : (credit: modification of work by Steve Jurvetson, Wikimedia Commons)

Find the necessary rate of change of the camera’s angle as a function of time so that it stays focused on the rocket.

Solution

Step 1. Draw a picture introducing the variables.

Figure : A camera is positioned  ft from the launch pad of the rocket. The height of the rocket and the angle of the
camera are changing with respect to time. We denote those quantities with the variables  and ,respectively.

Let  denote the height of the rocket above the launch pad and  be the angle between the camera lens and the ground.

Step 2. We are trying to find the rate of change in the angle of the camera with respect to time when the rocket is 1000 ft off the
ground. That is, we need to find  when  ft. At that time, we know the velocity of the rocket is  ft/sec.

Step 3. Now we need to find an equation relating the two quantities that are changing with respect to time:  and . How can
we create such an equation? Using the fact that we have drawn a right triangle, it is natural to think about trigonometric
functions. Recall that  is the ratio of the length of the opposite side of the triangle to the length of the adjacent side. Thus,
we have

.

This gives us the equation

Step 4. Differentiating this equation with respect to time , we obtain

4.2.3

4.2.4 5000
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.

Step 5. We want to find  when  ft. At this time, we know that  ft/sec. We need to determine .
Recall that  is the ratio of the length of the hypotenuse to the length of the adjacent side. We know the length of the
adjacent side is  ft. To determine the length of the hypotenuse, we use the Pythagorean theorem, where the length of one
leg is  ft, the length of the other leg is  ft, and the length of the hypotenuse is  feet as shown in the following
figure.

We see that

and we conclude that the hypotenuse is

Therefore, when  we have

Recall from step 4 that the equation relating  to our known values is

When  ft, we know that  ft/sec and . Substituting these values into the previous equation, we
arrive at the equation

.

Therefore,  rad/sec.

What rate of change is necessary for the elevation angle of the camera if the camera is placed on the ground at a distance of 
 ft from the launch pad and the velocity of the rocket is  ft/sec when the rocket is  ft off the ground?

Hint

Find  when  ft. At that time,  ft/sec.

Answer

 rad/sec
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In the next example, we consider water draining from a cone-shaped funnel. We compare the rate at which the level of water in the
cone is decreasing with the rate at which the volume of water is decreasing.

Water is draining from the bottom of a cone-shaped funnel at the rate of . The height of the funnel is  ft and the
radius at the top of the funnel is  ft. At what rate is the height of the water in the funnel changing when the height of the water
is  ft?

Solution

Step 1: Draw a picture introducing the variables.

Figure : Water is draining from a funnel of height  ft and radius  ft. The height of the water and the radius of water are
changing over time. We denote these quantities with the variables  and , respectively.

Let  denote the height of the water in the funnel, r denote the radius of the water at its surface, and  denote the volume of
the water.

Step 2: We need to determine  when  ft. We know that  ft/sec.

Step 3: The volume of water in the cone is

Related Rates: Related Rates: Changing Angle as a BirdChanging Angle as a Bird……

Example : Water Draining from a Funnel4.2.4
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From the figure, we see that we have similar triangles. Therefore, the ratio of the sides in the two triangles is the same.
Therefore,  or  Using this fact, the equation for volume can be simplified to

.

Step 4: Applying the chain rule while differentiating both sides of this equation with respect to time , we obtain

Step 5: We want to find  when  ft. Since water is leaving at the rate of , we know that 
. Therefore,

which implies

It follows that

At what rate is the height of the water changing when the height of the water is  ft?

Hint

We need to find  when 

Answer

 ft/sec

Key Concepts
To solve a related rates problem, first draw a picture that illustrates the relationship between the two or more related quantities
that are changing with respect to time.
In terms of the quantities, state the information given and the rate to be found.
Find an equation relating the quantities.
Use differentiation, applying the chain rule as necessary, to find an equation that relates the rates.
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Be sure not to substitute a variable quantity for one of the variables until after finding an equation relating the rates.

Glossary

related rates
are rates of change associated with two or more related quantities that are changing over time
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4.2E: Exercises for Section 4.1
In exercises 1 - 3, find the quantities for the given equation.

1) Find  at  and  if 

Answer

2) Find  at  and  if 

3) Find  at  and  if  and .

Answer

In exercises 4 - 15, sketch the situation if necessary and used related rates to solve for the quantities.

4) [T] If two electrical resistors are connected in parallel, the total resistance (measured in ohms, denoted by the Greek capital letter
omega, ) is given by the equation  If  is increasing at a rate of  and  decreases at a rate of 

, at what rate does the total resistance change when  and ?

5) A -ft ladder is leaning against a wall. If the top of the ladder slides down the wall at a rate of  ft/sec, how fast is the bottom
moving along the ground when the bottom of the ladder is  ft from the wall?

Answer
 ft/sec

6) A -ft ladder is leaning against a wall. If we push the ladder toward the wall at a rate of  ft/sec, and the bottom of the ladder is
initially  ft away from the wall, how fast does the ladder move up the wall  sec after we start pushing?

7) Two airplanes are flying in the air at the same height: airplane A is flying east at  mi/h and airplane B is flying north at 
mi/h. If they are both heading to the same airport, located  miles east of airplane A and  miles north of airplane B, at what rate
is the distance between the airplanes changing?
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Answer
The distance is decreasing at  mi/h.

8) You and a friend are riding your bikes to a restaurant that you think is east; your friend thinks the restaurant is north. You both
leave from the same point, with you riding at  mph east and your friend riding  mph north. After you traveled  mi, at what
rate is the distance between you changing?

9) Two buses are driving along parallel freeways that are  mi apart, one heading east and the other heading west. Assuming that
each bus drives a constant  mph, find the rate at which the distance between the buses is changing when they are  mi apart (as
the crow flies), heading toward each other.

Answer
The distance between them shrinks at a rate of  mph.

10) A -ft-tall person walks away from a -ft lamppost at a constant rate of  ft/sec. What is the rate that the tip of the shadow
moves away from the pole when the person is  ft away from the pole?

11) Using the previous problem, what is the rate at which the tip of the shadow moves away from the person when the person is 
ft from the pole?

Answer
 ft/sec

12) A -ft-tall person walks toward a wall at a rate of  ft/sec. A spotlight is located on the ground  ft from the wall. How fast
does the height of the person’s shadow on the wall change when the person is  ft from the wall?

13) Using the previous problem, what is the rate at which the shadow changes when the person is  ft from the wall, if the person
is walking away from the wall at a rate of  ft/sec?

Answer
It grows at a rate  ft/sec

390

16 12 4

5

55 13

≈ 101.5

1320

13

6 10 3

10

10

9

2

5 2 40

10

10

2

4

9

https://libretexts.org/
https://stats.libretexts.org/@go/page/25957?pdf


4.2E.3 https://stats.libretexts.org/@go/page/25957

14) A helicopter starting on the ground is rising directly into the air at a rate of  ft/sec. You are running on the ground starting
directly under the helicopter at a rate of  ft/sec. Find the rate of change of the distance between the helicopter and yourself after 
sec.

15) Using the previous problem, assuming the helicopter is again rising at a rate of  ft/sec and you are running on the ground
starting directly under the helicopter at a rate of  ft/sec, what is the rate at which the distance between you and the helicopter is
changing when the helicopter has risen to a height of  ft in the air, assuming that, initially, it was  ft above you?

Answer

The distance is increasing at  ft/sec

In exercises 16 - 24, draw and label diagrams to help solve the related-rates problems.

16) The side of a cube increases at a rate of  m/sec. Find the rate at which the volume of the cube increases when the side of the
cube is  m.

17) The volume of a cube decreases at a rate of /sec. Find the rate at which the side of the cube changes when the side of the
cube is  m.

Answer
 m/sec

18) The radius of a circle increases at a rate of  m/sec. Find the rate at which the area of the circle increases when the radius is 
m.

19) The radius of a sphere decreases at a rate of  m/sec. Find the rate at which the surface area decreases when the radius is  m.

Answer

20) The radius of a sphere increases at a rate of  m/sec. Find the rate at which the volume increases when the radius is  m.

21) The radius of a sphere is increasing at a rate of  cm/sec. Find the radius of the sphere when the volume and the radius of the
sphere are increasing at the same numerical rate.

Answer
 cm

22) The base of a triangle is shrinking at a rate of  cm/min and the height of the triangle is increasing at a rate of  cm/min. Find
the rate at which the area of the triangle changes when the height is  cm and the base is  cm.

23) A triangle has two constant sides of length  ft and  ft. The angle between these two sides is increasing at a rate of  rad/sec.
Find the rate at which the area of the triangle is changing when the angle between the two sides is 

Answer

The area is increasing at a rate .

24) A triangle has a height that is increasing at a rate of  cm/sec and its area is increasing at a rate of . Find the rate at
which the base of the triangle is changing when the height of the triangle is  cm and the area is .

In exercises 25 - 27, consider an inverted right cone that is leaking water. (Inverted means the cone's point is facing down,
like a funnel.) The dimensions of the conical tank are a height of 16 ft and a radius of 5 ft.

25) How fast does the depth of the water change when the water is  ft high if the cone leaks water at a rate of ?

Answer

The depth of the water decreases at  ft/min.
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26) Find the rate at which the surface area of the water changes when the water is  ft high if the cone leaks water at a rate of 
.

27) If the water level is decreasing at a rate of  in/min when the depth of the water is  ft, determine the rate at which water is
leaking out of the cone.

Answer
The volume is decreasing at a rate of .

28) A vertical cylinder is leaking water at a rate of . If the cylinder has a height of  ft and a radius of  ft, at what rate is
the height of the water changing when the height is  ft?

29) A cylinder is leaking water but you are unable to determine at what rate. The cylinder has a height of  m and a radius of  m.
Find the rate at which the water is leaking out of the cylinder if the rate at which the height is decreasing is  cm/min when the
height is  m.

Answer

The water flows out at rate .

30) A trough has ends shaped like isosceles triangles, with width  m and height  m, and the trough is  m long. Water is being
pumped into the trough at a rate of . At what rate does the height of the water change when the water is  m deep?

31) A tank is shaped like an upside-down square pyramid, with base of  m by  m and a height of  m (see the following figure).
How fast does the height increase when the water is  m deep if water is being pumped in at a rate of /sec?

Answer
 m/sec

For exercises 32 - 34, consider a pool shaped like the bottom half of a sphere, that is being filled at a rate of /min. The
radius of the pool is  ft.

32) Find the rate at which the depth of the water is changing when the water has a depth of  ft.
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33) Find the rate at which the depth of the water is changing when the water has a depth of  ft.

Answer
 ft/min

34) If the height is increasing at a rate of  in/sec when the depth of the water is  ft, find the rate at which water is being pumped
in.

35) Gravel is being unloaded from a truck and falls into a pile shaped like a cone at a rate of . The radius of the cone
base is three times the height of the cone. Find the rate at which the height of the gravel changes when the pile has a height of  ft.

Answer

 ft/min

36) Using a similar setup from the preceding problem, find the rate at which the gravel is being unloaded if the pile is  ft high and
the height is increasing at a rate of  in/min.

In exercises 37 - 41, draw the situations and solve the related-rate problems.

37) You are stationary on the ground and are watching a bird fly horizontally at a rate of  m/sec. The bird is located  m above
your head. How fast does the angle of elevation change when the horizontal distance between you and the bird is  m?

Answer

The angle decreases at  rad/sec.

38) You stand  ft from a bottle rocket on the ground and watch as it takes off vertically into the air at a rate of  ft/sec. Find the
rate at which the angle of elevation changes when the rocket is  ft in the air.

39) A lighthouse, , is on an island  mi away from the closest point, , on the beach (see the following image). If the lighthouse
light rotates clockwise at a constant rate of  revolutions/min, how fast does the beam of light move across the beach  mi away
from the closest point on the beach?

Answer
 mi/min
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40) Using the same setup as the previous problem, determine at what rate the beam of light moves across the beach  mi away from
the closest point on the beach.

41) You are walking to a bus stop at a right-angle corner. You move north at a rate of  m/sec and are  m south of the
intersection. The bus travels west at a rate of  m/sec away from the intersection – you have missed the bus! What is the rate at
which the angle between you and the bus is changing when you are  m south of the intersection and the bus is  m west of the
intersection?

Answer
The angle is changing at a rate of  rad/sec.

In exercises 42 - 45, refer to the figure of baseball diamond, which has sides of 90 ft.

42) [T] A batter hits a ball toward third base at  ft/sec and runs toward first base at a rate of  ft/sec. At what rate does the
distance between the ball and the batter change when  sec have passed?

43) [T] A batter hits a ball toward second base at  ft/sec and runs toward first base at a rate of  ft/sec. At what rate does the
distance between the ball and the batter change when the runner has covered one-third of the distance to first base? (Hint: Recall
the law of cosines.)

Answer
The distance is increasing at a rate of  ft/sec.

44) [T] A batter hits the ball and runs toward first base at a speed of  ft/sec. At what rate does the distance between the runner
and second base change when the runner has run  ft?

45) [T] Runners start at first and second base. When the baseball is hit, the runner at first base runs at a speed of  ft/sec toward
second base and the runner at second base runs at a speed of  ft/sec toward third base. How fast is the distance between runners
changing 1 sec after the ball is hit?

Answer
The distance is decreasing at a rate of  ft/sec.

4.2E: Exercises for Section 4.1 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.1E: Exercises for Section 4.1 is licensed CC BY-NC-SA 4.0.
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4.3: Linear Approximations and Differentials

Describe the linear approximation to a function at a point.
Write the linearization of a given function.
Draw a graph that illustrates the use of differentials to approximate the change in a quantity.
Calculate the relative error and percentage error in using a differential approximation.

We have just seen how derivatives allow us to compare related quantities that are changing over time. In this section, we examine
another application of derivatives: the ability to approximate functions locally by linear functions. Linear functions are the easiest
functions with which to work, so they provide a useful tool for approximating function values. In addition, the ideas presented in
this section are generalized later in the text when we study how to approximate functions by higher-degree polynomials
Introduction to Power Series and Functions.

Linear Approximation of a Function at a Point
Consider a function  that is differentiable at a point . Recall that the tangent line to the graph of  at  is given by the
equation

For example, consider the function  at . Since  is differentiable at  and , we see that 
. Therefore, the tangent line to the graph of  at  is given by the equation

Figure  shows a graph of  along with the tangent line to  at . Note that for  near , the graph of the tangent
line is close to the graph of . As a result, we can use the equation of the tangent line to approximate  for  near . For
example, if , the  value of the corresponding point on the tangent line is

The actual value of  is given by

Therefore, the tangent line gives us a fairly good approximation of  (Figure ). However, note that for values of  far
from , the equation of the tangent line does not give us a good approximation. For example, if , the -value of the
corresponding point on the tangent line is

whereas the value of the function at  is 
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Figure : (a) The tangent line to  at  provides a good approximation to  for  near . (b) At , the
value of  on the tangent line to  is . The actual value of  is , which is approximately .

In general, for a differentiable function , the equation of the tangent line to  at  can be used to approximate  for  near
. Therefore, we can write

 for  near .

We call the linear function

the linear approximation, or tangent line approximation, of  at . This function  is also known as the linearization of 
at 

To show how useful the linear approximation can be, we look at how to find the linear approximation for  at 

Find the linear approximation of  at  and use the approximation to estimate .

Solution

Since we are looking for the linear approximation at  using Equation  we know the linear approximation is given
by

We need to find  and 
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Therefore, the linear approximation is given by Figure .

Using the linear approximation, we can estimate  by writing

Figure : The local linear approximation to  at  provides an approximation to  for  near .

Analysis

Using a calculator, the value of  to four decimal places is . The value given by the linear approximation, , is
very close to the value obtained with a calculator, so it appears that using this linear approximation is a good way to estimate 

, at least for x near . At the same time, it may seem odd to use a linear approximation when we can just push a few buttons
on a calculator to evaluate . However, how does the calculator evaluate ? The calculator uses an approximation! In
fact, calculators and computers use approximations all the time to evaluate mathematical expressions; they just use higher-
degree approximations.

Find the local linear approximation to  at . Use it to approximate  to five decimal places.

Hint

Answer
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Find the linear approximation of  at  and use it to approximate 

Solution

First we note that since  rad is equivalent to , using the linear approximation at  seems reasonable. The linear
approximation is given by

We see that

Therefore, the linear approximation of  at  is given by Figure .

To estimate  using , we must first convert  to radians. We have  radians, so the estimate for 
is given by

Figure : The linear approximation to  at  provides an approximation to  for  near 

Find the linear approximation for  at 

Hint

Answer

Linear approximations may be used in estimating roots and powers. In the next example, we find the linear approximation for 
 at , which can be used to estimate roots and powers for real numbers near . The same idea can be

extended to a function of the form  to estimate roots and powers near a different number .

Find the linear approximation of  at . Use this approximation to estimate 

Solution

The linear approximation at  is given by
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π

2

L(x) = f(a)+ (a)(x−a)f

′

L(x) =−x+

π

2

f(x) = (1+x)

n

x = 0 1

f(x) = (m+x)

n

m

Example : Approximating Roots and Powers4.3.3

f(x) = (1+x)

n

x = 0 (1.01 .)

3

x = 0

L(x) = f(0)+ (0)(x−0).f

′
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Because

the linear approximation is given by Figure .

We can approximate  by evaluating  when . We conclude that

Figure : (a) The linear approximation of  at  is . (b) The actual value of  is . The linear
approximation of  at  estimates  to be .

Find the linear approximation of  at  without using the result from the preceding example.

Hint

Answer

Differentials
We have seen that linear approximations can be used to estimate function values. They can also be used to estimate the amount a
function value changes as a result of a small change in the input. To discuss this more formally, we define a related concept:
differentials. Differentials provide us with a way of estimating the amount a function changes as a result of a small change in input
values.

When we first looked at derivatives, we used the Leibniz notation  to represent the derivative of  with respect to .
Although we used the expressions  and  in this notation, they did not have meaning on their own. Here we see a meaning to
the expressions  and . Suppose  is a differentiable function. Let  be an independent variable that can be assigned
any nonzero real number, and define the dependent variable  by

It is important to notice that  is a function of both  and . The expressions  and  are called differentials. We can divide
both sides of Equation  by  which yields

f(x) = (1+x ⇒ f(0) = 1)

n

(x) = n(1+x ⇒ (0) = n,f

′

)

n−1

f

′

4.3.1a

L(x) = 1+n(x−0) = 1+nx

(1.01)

3

L(0.01) n= 3

(1.01 = f(1.01) ≈L(1.01) = 1+3(0.01) = 1.03.)

3

4.3.4 f(x) x = 0 L(x) 1.01

3

1.030301

f(x) x = 0 1.01

3

1.03

Exercise 4.3.3

f(x) = (1+x)

4

x = 0

(x) = 4(1+xf

′

)

3

L(x) = 1+4x

dy/dx y x

dy dx

dy dx y = f(x) dx

dy

dy = (x)dx.f

′

(4.3.2)

dy x dx dy dx

4.3.2 dx,

= (x).

dy

dx

f

′

(4.3.3)
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This is the familiar expression we have used to denote a derivative. Equation  is known as the differential form of Equation 
.

For each of the following functions, find  and evaluate when  and 

a. 
b. 

Solution

The key step is calculating the derivative. When we have that, we can obtain  directly.

a. Since  we know , and therefore

When  and 

b. Since  This gives us

When  and 

For , find .

Hint

Answer

We now connect differentials to linear approximations. Differentials can be used to estimate the change in the value of a function
resulting from a small change in input values. Consider a function  that is differentiable at point . Suppose the input  changes
by a small amount. We are interested in how much the output  changes. If  changes from  to , then the change in  is 
(also denoted ), and the change in  is given by

4.3.3

4.3.2

Differentials: Differentials: Finding dy and delta yFinding dy and delta y

Example : Computing Differentials4.3.4

dy x = 3 dx = 0.1.

y = +2xx

2

y = cosx

dy

f(x) = +2x,x

2

(x) = 2x+2f

′

dy = (2x+2)dx.

x = 3 dx = 0.1,

dy = (2 ⋅ 3+2)(0.1) = 0.8.

f(x) = cosx, (x) =−sin(x).f

′

dy =−sinx dx.

x = 3 dx = 0.1,

dy =−sin(3)(0.1) =−0.1 sin(3).

Exercise 4.3.4

y = e

x

2

dy

dy = (x)dxf

′

dy = 2x dxe

x

2

f a x

y x a a+dx x dx

Δx y

Δy = f(a+dx)−f(a).
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Instead of calculating the exact change in , however, it is often easier to approximate the change in  by using a linear
approximation. For  near  can be approximated by the linear approximation (Equation )

Therefore, if  is small,

That is,

In other words, the actual change in the function  if  increases from  to  is approximately the difference between 
 and , where  is the linear approximation of  at . By definition of , this difference is equal to .

In summary,

Therefore, we can use the differential  to approximate the change in  if  increases from  to . We
can see this in the following graph.

Figure : The differential  is used to approximate the actual change in  if  increases from  to .

We now take a look at how to use differentials to approximate the change in the value of the function that results from a small
change in the value of the input. Note the calculation with differentials is much simpler than calculating actual values of functions
and the result is very close to what we would obtain with the more exact calculation.

Let  Compute  and  at  if 

Solution

The actual change in  if  changes from  to  is given by

The approximate change in  is given by . Since  we have

For  find  and  at  if 

Hint

Answer

y y

x a, f(x) 4.3.1

L(x) = f(a)+ (a)(x−a).f

′

dx

f(a+dx) ≈L(a+dx) = f(a)+ (a)(a+dx−a).f

′

f(a+dx)−f(a) ≈L(a+dx)−f(a) = (a)dx.f

′

f x a a+dx

L(a+dx) f(a) L(x) f a L(x) (a)dxf

′

Δy = f(a+dx)−f(a) ≈L(a+dx)−f(a) = (a)dx = dy.f

′

(4.3.4)

dy = (a)dxf

′

y x x = a x = a+dx

4.3.5 dy = (a) dxf

′

y x a a+dx

Example : Approximating Change with Differentials4.3.5

y = +2x.x

2

Δy dy x = 3 dx = 0.1.

y x x = 3 x = 3.1

Δy = f(3.1)−f(3) = [(3.1 +2(3.1)] −[ +2(3)] = 0.81.)

2

3

2

y dy = (3)dxf

′

(x) = 2x+2,f

′

dy = (3)dx = (2(3)+2)(0.1) = 0.8.f

′

Exercise 4.3.5

y = +2x,x

2

Δy dy x = 3 dx = 0.2.

dy = (3)dx, Δy = f(3.2)−f(3)f

′

dy = 1.6, Δy = 1.64
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Calculating the Amount of Error
Any type of measurement is prone to a certain amount of error. In many applications, certain quantities are calculated based on
measurements. For example, the area of a circle is calculated by measuring the radius of the circle. An error in the measurement of
the radius leads to an error in the computed value of the area. Here we examine this type of error and study how differentials can be
used to estimate the error.

Consider a function  with an input that is a measured quantity. Suppose the exact value of the measured quantity is , but the
measured value is . We say the measurement error is dx (or ). As a result, an error occurs in the calculated quantity .
This type of error is known as a propagated error and is given by

Since all measurements are prone to some degree of error, we do not know the exact value of a measured quantity, so we cannot
calculate the propagated error exactly. However, given an estimate of the accuracy of a measurement, we can use differentials to
approximate the propagated error  Specifically, if  is a differentiable function at a,the propagated error is

Unfortunately, we do not know the exact value  However, we can use the measured value  and estimate

In the next example, we look at how differentials can be used to estimate the error in calculating the volume of a box if we assume
the measurement of the side length is made with a certain amount of accuracy.

Suppose the side length of a cube is measured to be  cm with an accuracy of  cm.

a. Use differentials to estimate the error in the computed volume of the cube.
b. Compute the volume of the cube if the side length is (i)  cm and (ii)  cm to compare the estimated error with the

actual potential error.

Solution

a. The measurement of the side length is accurate to within  cm. Therefore,

The volume of a cube is given by , which leads to

Using the measured side length of  cm, we can estimate that

Therefore,

b. If the side length is actually  cm, then the volume of the cube is

If the side length is actually  cm, then the volume of the cube is

Therefore, the actual volume of the cube is between  and . Since the side length is measured to be 5 cm,
the computed volume is  Therefore, the error in the computed volume is

That is,

f a

a+dx Δx f(x)

Δy = f(a+dx)−f(a). (4.3.5)

Δy. f

Δy ≈ dy = (a)dx.f

′

(4.3.6)

a. a+dx,

Δy ≈ dy ≈ (a+dx)dx.f

′

(4.3.7)

Example : Volume of a Cube4.3.6

5 0.1

4.9 5.1

±0.1

−0.1 ≤ dx ≤ 0.1.

V = x

3

dV = 3 dx.x

2

5

−3(5 (0.1) ≤ dV ≤ 3(5 (0.1).)

2

)

2

−7.5 ≤ dV ≤ 7.5.

4.9

V (4.9) = (4.9 = 117.649c .)

3

m

3

5.1

V (5.1) = (5.1 = 132.651c .)

3

m

3

117.649 132.651

V (5) = = 125.5

3

117.649−125 ≤ΔV ≤ 132.651−125.
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We see the estimated error  is relatively close to the actual potential error in the computed volume.

Estimate the error in the computed volume of a cube if the side length is measured to be  cm with an accuracy of  cm.

Hint

Answer

The volume measurement is accurate to within .

The measurement error ) and the propagated error  are absolute errors. We are typically interested in the size of an
error relative to the size of the quantity being measured or calculated. Given an absolute error  for a particular quantity, we
define the relative error as , where  is the actual value of the quantity. The percentage error is the relative error expressed as
a percentage. For example, if we measure the height of a ladder to be  in. when the actual height is  in., the absolute error is 1
in. but the relative error is , or . By comparison, if we measure the width of a piece of cardboard to be  in. when
the actual width is  in., our absolute error is  in., whereas the relative error is , or  Therefore, the percentage error
in the measurement of the cardboard is larger, even though  in. is less than  in.

 

−7.351 ≤ΔV ≤ 7.651.

dV

Exercise 4.3.6

6 0.2

dV = 3 dxx

2

21.6 cm

3

dx =Δx Δy

Δq

Δq

q

q

63 62

= 0.016

1

62

1.6 8.25

8

1

4

=

0.25

8

1

32

3.1

0.25 1

Differentials Application: Percent ErrorDifferentials Application: Percent Error

Differentials and Relative ErrorDifferentials and Relative Error
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An astronaut using a camera measures the radius of Earth as  mi with an error of  mi. Let’s use differentials to
estimate the relative and percentage error of using this radius measurement to calculate the volume of Earth, assuming the
planet is a perfect sphere.

Solution: If the measurement of the radius is accurate to within  we have

Since the volume of a sphere is given by  we have

Using the measured radius of  mi, we can estimate

To estimate the relative error, consider . Since we do not know the exact value of the volume , use the measured radius 

 mi to estimate . We obtain . Therefore the relative error satisfies

which simplifies to

The relative error is  and the percentage error is .

Determine the percentage error if the radius of Earth is measured to be  mi with an error of  mi.

Hint

Use the fact that  to find .

Answer

Key Concepts
A differentiable function  can be approximated at  by the linear function

For a function , if  changes from  to , then

is an approximation for the change in . The actual change in  is

A measurement error  can lead to an error in a calculated quantity . The error in the calculated quantity is known as the
propagated error. The propagated error can be estimated by

To estimate the relative error of a particular quantity , we estimate .

Example : Relative and Percentage Error4.3.7

4000 ±80

±80,

−80 ≤ dr≤ 80.

V = ( )π ,

4

3

r

3

dV = 4π dr.r

2

4000

−4π(4000 (80) ≤ dV ≤ 4π(4000 (80).)

2

)

2

dV

V

V

r= 4000 V V ≈ ( )π(4000

4

3

)

3

≤ ≤ ,

−4π(4000 (80))

2

4π(4000 /3)

3

dV

V

4π(4000 (80))

2

4π(4000 /3)

3

−0.06 ≤ ≤ 0.06.

dV

V

0.06 6

Exercise 4.3.7

3950 ±100

dV = 4π drr

2

dV /V

7.6

y = f(x) a

L(x) = f(a)+ (a)(x−a).f

′

y = f(x) x a a+dx

dy = (x)dxf

′

y y

Δy = f(a+dx)−f(a).

dx f(x)

dy ≈ (x)dx.f

′

q

Δq

q
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Key Equations
Linear approximation

A differential

Glossary

differential
the differential  is an independent variable that can be assigned any nonzero real number; the differential  is defined to be 

differential form
given a differentiable function  the equation  is the differential form of the derivative of  with
respect to 

linear approximation
the linear function  is the linear approximation of  at 

percentage error
the relative error expressed as a percentage

propagated error
the error that results in a calculated quantity  resulting from a measurement error 

relative error

given an absolute error  for a particular quantity,  is the relative error.

tangent line approximation (linearization)
since the linear approximation of  at  is defined using the equation of the tangent line, the linear approximation of  at 

 is also known as the tangent line approximation to  at 

Contributors and Attributions
Template:ContribOpenStaxCalc

This page titled 4.3: Linear Approximations and Differentials is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by .

4.2: Linear Approximations and Differentials by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

L(x) = f(a)+ (a)(x−a)f

′

dy = (x)dxf

′

dx dy

dy = (x)dxf

′

y = (x),f

′

dy = (x)dxf

′

y

x

L(x) = f(a)+ (a)(x−a)f

′

f x = a

f(x) dx

Δq

Δq

q

f x = a f

x = a f x = a
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4.3E: Exercises for Section 4.2
1) What is the linear approximation for any generic linear function ?

2) Determine the necessary conditions such that the linear approximation function is constant. Use a graph to prove your result.

Answer

3) Explain why the linear approximation becomes less accurate as you increase the distance between  and . Use a graph to prove
your argument.

4) When is the linear approximation exact?

Answer
The linear approximation exact when  is linear or constant.

In exercises 5 - 10, find the linear approximation  to  near  for the function.

5) [T] 

6) [T] 

Answer

7) [T] 

8) [T] 

Answer

9) [T] 

10) [T] 

Answer

In exercises 11 - 16, compute the values given within  by deciding on the appropriate  and , and evaluating 
. Check your answer using a calculator.

11) [T] 

12) [T] 

Answer

13) [T] 

14) [T] 

Answer

15) [T] 

16) [T] 

y =mx+b

(a) = 0f

′

x a

y = f(x)

L(x) y = f(x) x = a

f(x) = x+ , a= 0x

4

f(x) = , a= 2

1

x

L(x) = − (x−2)

1

2

1

4

f(x) = tanx, a=

π

4

f(x) = sinx, a=

π

2

L(x) = 1

f(x) = x sinx, a= 2π

f(x) = x, a= 0sin

2

L(x) = 0

0.01 f(x) a

L(x) = f(a)+f '(a)(x−a)

(2.001)

6

sin(0.02)

sin(0.02) ≈ 0.02

cos(0.03)

(15.99)

1/4

(15.99 ≈ 1.9996875)

1/4

1

0.98

sin(3.14)
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Answer

In exercises 17 - 22, determine the appropriate  and , and evaluate . Calculate the
numerical error in the linear approximations that follow.

17) 

18) 

Answer
 error, 

19) 

20) 

Answer
 error, 

21) 

22) 

Answer
 error, 

In exercises 23 - 26, find the differential of the function.

23) 

24) 

Answer

25) 

26) 

Answer

In exercises 27 - 32, find the differential and evaluate for the given  and .

27) 

28) 

Answer

29) 

30) 

Answer

sin(3.14) ≈ 0.001593

f(x) a L(x) = f(a)+f '(a)(x−a)

(1.01)

3

cos(0.01)

cos(0.01) ≈L(0.01) = f(0)+ (0)(0−0.01) = 1;f

′

 0.00005

(sin(0.01))

2

(1.01)

−3

(1.01 ≈L(1.01) = f(1)+ (1)(1.01−1) = 0.97;)

−3

f

′

 0.0006

(1+ )

1

10

10

8.99

− −−−

√

≈L(8.99) = f(9)+ (9)(8.99−9) = 3− ;8.99

− −−−

√ f

′

1

600

 4.632×10

−7

y = 3 + −2x+1x

4

x

2

y = x cosx

dy = (cosx−x sinx)dx

y = 1+x

− −−−−

√

y =

+2x

2

x−1

dy = ( )dx

−2x−2x

2

(x−1)

2

x dx

y = 3 −x+6, x = 2, dx = 0.1x

2

y = , x = 1, dx = 0.25

1

x+1

dy =− dx, dy =−

1

(x+1)

2

1

16

y = tanx, x = 0, dx =

π

10

y = , x = 0, dx = 0.1

3 +2x

2

x+1

− −−−−

√

https://libretexts.org/
https://stats.libretexts.org/@go/page/25959?pdf


4.3E.3 https://stats.libretexts.org/@go/page/25959

31) 

32) 

Answer

In exercises 33 - 38, find the change in volume  or in surface area .

33)  if the sides of a cube change from 10 to 10.1.

34)  if the sides of a cube change from  to .

Answer

35)  if the radius of a sphere changes from  by 

36)  if the radius of a sphere changes from  by .

Answer

37)  if a circular cylinder with  changes height from  cm to 

38)  if a circular cylinder of height 3 changes from  to  cm.

Answer

In exercises 39 - 41, use differentials to estimate the maximum and relative error when computing the surface area or
volume.

39) A spherical golf ball is measured to have a radius of  mm, with a possible measurement error of  mm. What is the possible
change in volume?

40) A pool has a rectangular base of 10 ft by 20 ft and a depth of 6 ft. What is the change in volume if you only fill it up to 5.5 ft?

Answer

41) An ice cream cone has height 4 in. and radius 1 in. If the cone is 0.1 in. thick, what is the difference between the volume of the
cone, including the shell, and the volume of the ice cream you can fit inside the shell?

In exercises 42 - 44, confirm the approximations by using the linear approximation at .

42) 

43) 

44) 

4.3E: Exercises for Section 4.2 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.2E: Exercises for Section 4.2 is licensed CC BY-NC-SA 4.0.

dy = dx, dy =−0.1

9 +12x−2x

2

2(x+1)

3/2

y = , x = π, dx = 0.25

sin(2x)

x

y = +2x+ , x = 1, dx = 0.05x

3

1

x

dy =(3 +2− ) dx, dy = 0.2x

2

1

x

2

dV dA

dV

dA x x+dx

dA= 12x dx

dA r dr.

dV r dr

dV = 4π drr

2

dV r= 2 3 3.05cm.

dV r= 2 r= 1.9

dV =−1.2π cm

3

5 0.1

−100 ft

3

x = 0

≈ 1− x1−x

− −−−−

√

1

2

≈ 1

1

1−x

2

− −−−−

√

≈ c+c

2

x

2

− −−−−−

√
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4.4: Maxima and Minima

Define absolute extrema.
Define local extrema.
Explain how to find the critical points of a function over a closed interval.
Describe how to use critical points to locate absolute extrema over a closed interval.

Given a particular function, we are often interested in determining the largest and smallest values of the function. This information
is important in creating accurate graphs. Finding the maximum and minimum values of a function also has practical significance,
because we can use this method to solve optimization problems, such as maximizing profit, minimizing the amount of material
used in manufacturing an aluminum can, or finding the maximum height a rocket can reach. In this section, we look at how to use
derivatives to find the largest and smallest values for a function.

Absolute Extrema
Consider the function  over the interval . As .FN Therefore, the function does not
have a largest value. However, since  for all real numbers  and  when , the function has a smallest
value, , when . We say that  is the absolute minimum of  and it occurs at . We say that 
does not have an absolute maximum (Figure ).

Figure : The given function has an absolute minimum of  at . The function does not have an absolute maximum.

Let  be a function defined over an interval  and let . We say  has an absolute maximum on  at  if  for
all . We say  has an absolute minimum on  at  if  for all . If  has an absolute maximum on  at  or
an absolute minimum on  at , we say  has an absolute extremum on  at .

Before proceeding, let’s note two important issues regarding this definition. First, the term absolute here does not refer to absolute
value. An absolute extremum may be positive, negative, or zero. Second, if a function  has an absolute extremum over an interval 

 at , the absolute extremum is . The real number c is a point in the domain at which the absolute extremum occurs. For
example, consider the function  over the interval . Since

for all real numbers , we say  has an absolute maximum over  at . The absolute maximum is . It occurs
at , as shown in Figure (b).

A function may have both an absolute maximum and an absolute minimum, just one extremum, or neither. Figure  shows
several functions and some of the different possibilities regarding absolute extrema. However, the following theorem, called the
Extreme Value Theorem, guarantees that a continuous function  over a closed, bounded interval  has both an absolute
maximum and an absolute minimum.
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Figure : Graphs (a), (b), and (c) show several possibilities for absolute extrema for functions with a domain of 
Graphs (d), (e), and (f) show several possibilities for absolute extrema for functions with a domain that is a bounded interval.

If  is a continuous function over the closed, bounded interval , then there is a point in  at which  has an absolute
maximum over  and there is a point in  at which  has an absolute minimum over .

The proof of the extreme value theorem is beyond the scope of this text. Typically, it is proved in a course on real analysis. There
are a couple of key points to note about the statement of this theorem. For the extreme value theorem to apply, the function must be
continuous over a closed, bounded interval. If the interval  is open or the function has even one point of discontinuity, the function
may not have an absolute maximum or absolute minimum over . For example, consider the functions shown in Figure  (d),
(e), and (f). All three of these functions are defined over bounded intervals. However, the function in graph (e) is the only one that
has both an absolute maximum and an absolute minimum over its domain. The extreme value theorem cannot be applied to the
functions in graphs (d) and (f) because neither of these functions is continuous over a closed, bounded interval. Although the
function in graph (d) is defined over the closed interval , the function is discontinuous at . The function has an absolute
maximum over  but does not have an absolute minimum. The function in graph (f) is continuous over the half-open interval 

, but is not defined at , and therefore is not continuous over a closed, bounded interval. The function has an absolute
minimum over , but does not have an absolute maximum over . These two graphs illustrate why a function over a
bounded interval may fail to have an absolute maximum and/or absolute minimum.

4.4.2 (−∞,∞).

Theorem : Extreme Value Theorem4.4.1
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Before looking at how to find absolute extrema, let’s examine the related concept of local extrema. This idea is useful in
determining where absolute extrema occur.

Local Extrema and Critical Points
Consider the function  shown in Figure . The graph can be described as two mountains with a valley in the middle. The
absolute maximum value of the function occurs at the higher peak, at . However,  is also a point of interest. Although 

 is not the largest value of , the value  is larger than  for all  near 0. We say  has a local maximum at .
Similarly, the function  does not have an absolute minimum, but it does have a local minimum at  because  is less than 

 for  near 1.

Figure : This function  has two local maxima and one local minimum. The local maximum at  is also the absolute
maximum.

A function  has a local maximum at  if there exists an open interval  containing  such that  is contained in the domain of 
 and  for all . A function  has a local minimum at  if there exists an open interval  containing  such that
 is contained in the domain of  and  for all . A function  has a local extremum at  if  has a local

maximum at  or  has a local minimum at .

Note that if  has an absolute extremum at  and  is defined over an interval containing , then  is also considered a local
extremum. If an absolute extremum for a function  occurs at an endpoint, we do not consider that to be a local extremum, but
instead refer to that as an endpoint extremum.

Given the graph of a function , it is sometimes easy to see where a local maximum or local minimum occurs. However, it is not
always easy to see, since the interesting features on the graph of a function may not be visible because they occur at a very small
scale. Also, we may not have a graph of the function. In these cases, how can we use a formula for a function to determine where
these extrema occur?

To answer this question, let’s look at Figure  again. The local extrema occur at  and  Notice that at 
and , the derivative . At , the derivative  does not exist, since the function  has a corner there. In fact,
if  has a local extremum at a point , the derivative  must satisfy one of the following conditions: either  or 

 is undefined. Such a value  is known as a critical point and it is important in finding extreme values for functions.

Let  be an interior point in the domain of . We say that  is a critical point of  if  or  is undefined.

As mentioned earlier, if  has a local extremum at a point , then  must be a critical point of . This fact is known as
Fermat’s theorem.
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If  has a local extremum at  and  is differentiable at , then 

Suppose  has a local extremum at  and  is differentiable at . We need to show that . To do this, we will show that
 and , and therefore . Since  has a local extremum at ,  has a local maximum or local

minimum at . Suppose  has a local maximum at . The case in which  has a local minimum at  can be handled similarly.
There then exists an open interval I such that  for all . Since  is differentiable at , from the definition of the
derivative, we know that

Since this limit exists, both one-sided limits also exist and equal . Therefore,

and

Since  is a local maximum, we see that  for  near . Therefore, for  near , but , we have 

. From Equation we conclude that . Similarly, it can be shown that  Therefore, 

□

From Fermat’s theorem, we conclude that if  has a local extremum at , then either  or  is undefined. In other
words, local extrema can only occur at critical points.

Note this theorem does not claim that a function  must have a local extremum at a critical point. Rather, it states that critical
points are candidates for local extrema. For example, consider the function . We have  when .
Therefore,  is a critical point. However,  is increasing over , and thus  does not have a local extremum
at . In Figure , we see several different possibilities for critical points. In some of these cases, the functions have local
extrema at critical points, whereas in other cases the functions do not. Note that these graphs do not show all possibilities for the
behavior of a function at a critical point.

Theorem : Fermat’s Theorem4.4.2
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Figure : (a–e) A function  has a critical point at  if  or  is undefined. A function may or may not have a local
extremum at a critical point.

Later in this chapter we look at analytical methods for determining whether a function actually has a local extremum at a critical
point. For now, let’s turn our attention to finding critical points. We will use graphical observations to determine whether a critical
point is associated with a local extremum.

For each of the following functions, find all critical points. Use a graphing utility to determine whether the function has a local
extremum at each of the critical points.

a. 
b. 
c. 

Solution

a. The derivative  is defined for all real numbers . Therefore, we only need to find the values for 
where . Since , the critical points are  and  From the graph of 
in Figure , we see that  has a local maximum at  and a local minimum at .

Figure : This function has a local maximum and a local minimum.

b. Using the chain rule, we see the derivative is

Therefore,  has critical points when  and when . We conclude that the critical points are . From
the graph of  in Figure , we see that  has a local (and absolute) minimum at , but does not have a local extremum
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at  or .

Figure : This function has three critical points: x=0, x=1, and x=−1. The function has a local (and absolute) minimum at
x=0, but does not have extrema at the other two critical points.

c. By the chain rule, we see that the derivative is

.

The derivative is defined everywhere. Therefore, we only need to find values for  where . Solving , we
see that  which implies . Therefore, the critical points are . From the graph of  in Figure ,
we see that f has an absolute maximum at  and an absolute minimum at  Hence,  has a local maximum at 

 and a local minimum at . (Note that if  has an absolute extremum over an interval  at a point  that is not an
endpoint of , then  has a local extremum at 

Figure : This function has an absolute maximum and an absolute minimum.

Find all critical points for 

Hint
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Answer

Locating Absolute Extrema

The extreme value theorem states that a continuous function over a closed, bounded interval has an absolute maximum and an
absolute minimum. As shown in Figure , one or both of these absolute extrema could occur at an endpoint. If an absolute
extremum does not occur at an endpoint, however, it must occur at an interior point, in which case the absolute extremum is a local
extremum. Therefore, by Fermat's Theorem, the point  at which the local extremum occurs must be a critical point. We summarize
this result in the following theorem.

Let  be a continuous function over a closed, bounded interval . The absolute maximum of  over  and the absolute
minimum of  over  must occur at endpoints of  or at critical points of  in .

With this idea in mind, let’s examine a procedure for locating absolute extrema.

Consider a continuous function  defined over the closed interval 

1. Evaluate  at the endpoints  and 
2. Find all critical points of  that lie over the interval  and evaluate  at those critical points.
3. Compare all values found in (1) and (2). From Note, the absolute extrema must occur at endpoints or critical points.

Therefore, the largest of these values is the absolute maximum of . The smallest of these values is the absolute minimum
of .

Now let’s look at how to use this strategy to find the absolute maximum and absolute minimum values for continuous functions.

For each of the following functions, find the absolute maximum and absolute minimum over the specified interval and state
where those values occur.

a.  over 
b.  over .

Solution

a. Step 1. Evaluate  at the endpoints  and .

 and 

Step 2. Since  is defined for all real numbers x. Therefore, there are no critical points where the derivative
is undefined. It remains to check where . Since at  and  is in the interval 
is a candidate for an absolute extremum of  over . We evaluate  and find

.

Step 3. We set up the following table to compare the values found in steps 1 and 2.

Conclusion

 

Absolute maximum

Absolute minimum
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From the table, we find that the absolute maximum of  over the interval [1, 3] is , and it occurs at . The absolute
minimum of  over the interval  is , and it occurs at  as shown in Figure .

Figure : This function has both an absolute maximum and an absolute minimum.

b. Step 1. Evaluate  at the endpoints  and .

 and 

Step 2. The derivative of  is given by

for . The derivative is zero when , which implies . The derivative is undefined at .
Therefore, the critical points of  are . The point  is an endpoint, so we already evaluated  in step 1.
The point  is not in the interval of interest, so we need only evaluate . We find that

Step 3. We compare the values found in steps 1 and 2, in the following table.

Conclusion

Absolute maximum

Absolute minimum

 

We conclude that the absolute maximum of  over the interval [0, 2] is zero, and it occurs at . The absolute minimum is
−2, and it occurs at  as shown in Figure .

Figure : This function has an absolute maximum at an endpoint of the interval.
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Find the absolute maximum and absolute minimum of  over the interval .

Hint

Look for critical points. Evaluate  at all critical points and at the endpoints.

Answer

The absolute maximum is  and it occurs at . The absolute minimum is  and it occurs at .

At this point, we know how to locate absolute extrema for continuous functions over closed intervals. We have also defined local
extrema and determined that if a function  has a local extremum at a point , then  must be a critical point of . However, 
being a critical point is not a sufficient condition for  to have a local extremum at . Later in this chapter, we show how to
determine whether a function actually has a local extremum at a critical point. First, however, we need to introduce the Mean Value
Theorem, which will help as we analyze the behavior of the graph of a function.

Key Concepts
A function may have both an absolute maximum and an absolute minimum, have just one absolute extremum, or have no
absolute maximum or absolute minimum.
If a function has a local extremum, the point at which it occurs must be a critical point. However, a function need not have a
local extremum at a critical point.
A continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. Each extremum
occurs at a critical point or an endpoint.

Glossary

absolute extremum
if  has an absolute maximum or absolute minimum at , we say  has an absolute extremum at 

absolute maximum
if  for all  in the domain of , we say  has an absolute maximum at 

absolute minimum
if  for all  in the domain of , we say  has an absolute minimum at 

critical point
if  or  is undefined, we say that c is a critical point of 

extreme value theorem

Finding Absolute ExtremaFinding Absolute Extrema
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if  is a continuous function over a finite, closed interval, then  has an absolute maximum and an absolute minimum

Fermat’s theorem
if  has a local extremum at , then  is a critical point of 

local extremum
if  has a local maximum or local minimum at , we say  has a local extremum at 

local maximum
if there exists an interval  such that  for all , we say  has a local maximum at 

local minimum
if there exists an interval  such that  for all , we say  has a local minimum at 
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4.4E: Exercises for Section 4.3
1) In precalculus, you learned a formula for the position of the maximum or minimum of a quadratic equation ,
which was . Prove this formula using calculus.

2) If you are finding an absolute minimum over an interval  why do you need to check the endpoints? Draw a graph that
supports your hypothesis.

Answer
On a closed interval, the endpoints often lie above or below any local (relative) extrema. Answers may vary for the graph.

3) If you are examining a function over an interval  for  and  finite, is it possible not to have an absolute maximum or
absolute minimum?

4) When you are checking for critical points to locate the extrema of a function , explain why you also need to determine points
where  is undefined. Draw a graph to support your explanation.

Answer
Points on the graph of  where there is a corner, a cusp, or a jump discontinuity or removable discontinuity can easily be
absolute (or local) extrema of the function. Answers may vary for the graph.

5) Can you have a finite absolute maximum for  over ? Explain why or why not using graphical
arguments.

6) Can you have a finite absolute maximum for  over  assuming  is non-zero? Explain why or
why not using graphical arguments.

Answer
No; answers will vary

7) Let  be the number of local minima and  be the number of local maxima. Can you create a function where ?
Draw a graph to support your explanation.

8) Is it possible to have more than one absolute maximum? Use a graphical argument to prove your hypothesis.

Answer
Since the absolute maximum is the function (output) value rather than the x value, the answer is no; answers will vary

9) Is it possible to have no absolute minimum or maximum for a function? If so, construct such a function. If not, explain why this
is not possible.

10) [T] Graph the function  For which values of , on any infinite domain, will you have an absolute minimum and
absolute maximum?

Answer
When 

In exercises 11 - 14, determine where the local and absolute maxima and minima occur on the graph given. Assume
domains are closed intervals unless otherwise specified.
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12)

Answer
Absolute minimum at 3; Absolute maximum at −2.2; local minima at −2, 1; local maxima at −1, 2

13)

14)

Answer
Absolute minima at −2, 2; absolute maxima at −2.5, 2.5; local minimum at 0; local maxima at −1, 1

For exercises 15 - 18, draw graphs of , which is continuous, over the interval  with the following properties:f(x) [−4, 4]

https://libretexts.org/
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15) Absolute maximum at  and absolute minima at 

16) Absolute minimum at  and absolute maximum at 

Answer
Answers may vary.

17) Absolute maximum at  absolute minimum at  local maximum at  and a critical point that is not a
maximum or minimum at 

18) Absolute maxima at  and , local minimum at , and absolute minimum at 

Answer
Answers may vary.

In exercises 19 - 28, find the critical points in the domains of the given functions.

19) 

20) 

Answer

21) 

22) 

Answer
None

23) 

24) 

Answer

25) 

26) 

Answer
None

27) 

28) 

Answer
 and 

In exercises 29 - 39, find the local and/or absolute maxima for the functions over the specified domain.

29)  over 

30)  over 

Answer

x = 2 x =±3

x = 1 x = 2

x = 4, x =−1, x =−2,

x = 2

x = 2 x =−3 x = 1 x = 4

y = 4 −3xx

3

y = 4 −x

−−

√

x

2

x = 1

y =

1

x−1

y = ln(x−2)

y = tan(x)

y = 4−x

2

− −−−−

√

x = 0

y = −3x

3/2

x

5/2

y =

−1x

2

+2x−3x

2

y = (x)sin

2

y = x+

1

x

x =−1 x = 1

f(x) = +3x

2

[−1, 4]

y = +x

2

2

x

[1, 4]
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Absolute maximum: ; absolute minimum: 

31)  over 

32)  over 

Answer
Absolute minimum: 

33)  over 

34)  over 

Answer
Absolute maximum:  absolute minimum: 

35)  over 

36)  over 

Answer
Absolute maximum:  absolute minimum: 

37)  over 

38)  over 

Answer
Absolute maximum: ; absolute minimum: 

39)  over 

In exercises 40 - 45, find the local and absolute minima and maxima for the functions over .

40) 

Answer
Absolute minimum: 

41) 

42) 

Answer
Absolute minimum:  local maximum: ; local minimum: 

43) 

44) 

Answer
Local maximum: ; local minimum: 

45) 

In exercises 46 - 50, use a calculator to graph the function and to estimate the absolute and local maxima and minima.
Then, solve for them explicitly.

x = 4, y =

33

2

x = 1, y = 3

y = (x−x

2

)

2

[−1, 1]

y =

1

x−x

2

[0, 1]

x = , y = 4

1

2

y = 9−x

− −−−−

√ [1, 9]

y = x+sin(x) [0, 2π]

x = 2π, y = 2π; x = 0, y = 0

y =

x

1+x

[0, 100]

y = |x+1|+|x−1| [−3, 2]

x =−3, y = 6; −1 ≤ x ≤ 1, y = 2

y = −x

−−

√

x

3

−−

√

[0, 4]

y = sinx+cosx [0, 2π]

x = , y =

π

4

2

–

√ x = , y =−

5π

4

2

–

√

y = 4 sinθ−3 cosθ [0, 2π]

(−∞,∞)

y = +4x+5x

2

x =−2, y = 1

y = −12xx

3

y = 3 +8 −18x

4

x

3

x

2

x =−3, y =−135; x = 0, y = 0 x = 1, y =−7

y = (1−xx

3

)

6

y =

+x+6x

2

x−1

x = 1−2 , y = 3−42

–

√ 2

–

√ x = 1+2 , y = 3+42

–

√ 2

–

√

y =

−1x

2

x−1
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46) [T] 

Answer

Absolute maximum:  absolute minimum: 

47) [T] 

48) [T] 

Answer
Local maximum: ; local minimum: 

49) [T] 

50) [T] 

Answer
Absolute maximum:  absolute minimum: 

51) A company that produces cell phones has a cost function of  where  is cost in dollars and  is
number of cell phones produced (in thousands). How many units of cell phone (in thousands) minimizes this cost function?

52) A ball is thrown into the air and its position is given by  Find the height at which the ball stops
ascending. How long after it is thrown does this happen?

Answer
 m,  s

For exercises 53-54, consider the production of gold during the California gold rush (1848–1888). The production of gold

can be modeled by , where  is the number of years since the rush began  and  is ounces of

gold produced (in millions). A summary of the data is shown in the following figure.

53) Find when the maximum (local and global) gold production occurred, and the amount of gold produced during that maximum.

54) Find when the minimum (local and global) gold production occurred. What was the amount of gold produced during this
minimum?

Answer
The global minimum was in 1848, when no gold was produced.

y = 3x 1−x

2

− −−−−

√

x = , y = ;

2√

2

3

2

x =− , y =−

2√

2

3

2

y = x+sin(x)

y = 12 +45 +20 −90 −120x+3x

5

x

4

x

3

x

2

x =−2, y = 59 x = 1, y =−130

y =

+6 −x−30x

3

x

2

x−2

y =

4−x

2

− −−−−

√

4+x

2

− −−−−

√

x = 0, y = 1; x =−2, 2, y = 0

C = −1200x+36, 400,x

2

C x

h(t) =−4.9 +60t+5m.t

2

h =

9245

49

t =

300

49

G(t) =

(25t)

( +16)t

2

t (0 ≤ t ≤ 40) G
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In exercises 55 & 56, find the critical points, maxima, and minima for the given piecewise functions.

55) 

56) 

Answer
Absolute minima: ; local maximum at 

In exercises 57 - 58, find the critical points of the following generic functions. Are they maxima, minima, or neither? State
the necessary conditions.

57)  given that 

58) , given that 

Answer
No maxima/minima if  is odd, minimum at  if  is even

Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is
licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

Paul Seeburger (Monroe Community College) added answers for exercises 2 and 4.

4.4E: Exercises for Section 4.3 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.3E: Exercises for Section 4.3 is licensed CC BY-NC-SA 4.0.

y ={

−4x,x

2

−4,x

2

if 0 ≤ x ≤ 1

if 1 < x ≤ 2

y ={

+1,x

2

−4x+5,x

2

if x ≤ 1

if x > 1

x = 0, x = 2, y = 1 x = 1, y = 2

y = a +bx+c,x

2

a> 0

y = (x−1)

a

a> 1

a x = 1 a
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4.5: The Mean Value Theorem

Explain the meaning of Rolle’s theorem.
Describe the significance of the Mean Value Theorem.
State three important consequences of the Mean Value Theorem.

The Mean Value Theorem is one of the most important theorems in calculus. We look at some of its implications at the end of this
section. First, let’s start with a special case of the Mean Value Theorem, called Rolle’s theorem.

Rolle’s Theorem
Informally, Rolle’s theorem states that if the outputs of a differentiable function  are equal at the endpoints of an interval, then
there must be an interior point  where . Figure  illustrates this theorem.

Figure : If a differentiable function  satisfies , then its derivative must be zero at some point(s) between  and .

Let  be a continuous function over the closed interval  and differentiable over the open interval  such that 
. There then exists at least one  such that 

Let  We consider three cases:

1.  for all 
2. There exists  such that 
3. There exists  such that 

Case 1: If  for all , then  for all 

Case 2: Since  is a continuous function over the closed, bounded interval , by the extreme value theorem, it has an
absolute maximum. Also, since there is a point  such that , the absolute maximum is greater than .
Therefore, the absolute maximum does not occur at either endpoint. As a result, the absolute maximum must occur at an
interior point . Because  has a maximum at an interior point , and  is differentiable at , by Fermat’s theorem, 

Case 3: The case when there exists a point  such that  is analogous to case 2, with maximum replaced by
minimum.

□

An important point about Rolle’s theorem is that the differentiability of the function  is critical. If  is not differentiable, even at a
single point, the result may not hold. For example, the function  is continuous over  and ,
but  for any  as shown in the following figure.

Learning Objectives

f

c (c) = 0f

′

4.5.1

4.5.1 f f(a) = f(b) a b

Rolle’s Theorem

f [a, b] (a, b)

f(a) = f(b) c ∈ (a, b) (c) = 0.f

′

Proof

k= f(a) = f(b).

f(x) = k x ∈ (a, b).

x ∈ (a, b) f(x) > k.

x ∈ (a, b) f(x) < k.

f(x) = 0 x ∈ (a, b) (x) = 0f

′

x ∈ (a, b).

f [a, b]

x ∈ (a, b) f(x) > k k

c ∈ (a, b) f c f c

(c) = 0.f

′

x ∈ (a, b) f(x) < k

f f

f(x) = |x| −1 [−1, 1] f(−1) = 0 = f(1)

(c) ≠ 0f

′

c ∈ (−1, 1)
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Figure : Since  is not differentiable at , the conditions of Rolle’s theorem are not satisfied. In fact, the
conclusion does not hold here; there is no  such that 

Let’s now consider functions that satisfy the conditions of Rolle’s theorem and calculate explicitly the points c where 

 

4.5.2 f(x) = |x|−1 x = 0

c ∈ (−1, 1) (c) = 0.f

′

(c) = 0.f

′

Determining Whether Rolle's Theorem CDetermining Whether Rolle's Theorem C……

Using Rolle's Theorem for Two Runners Using Rolle's Theorem for Two Runners ……
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For each of the following functions, verify that the function satisfies the criteria stated in Rolle’s theorem and find all values 
in the given interval where 

a.  over 
b.  over 

Solution

Since  is a polynomial, it is continuous and differentiable everywhere. In addition,  Therefore,  satisfies
the criteria of Rolle’s theorem. We conclude that there exists at least one value  such that . Since 

 we see that  implies  as shown in the following graph.

Figure : This function is continuous and differentiable over [−2,0],  when .

b. As in part a.  is a polynomial and therefore is continuous and differentiable everywhere. Also,  That
said,  satisfies the criteria of Rolle’s theorem. Differentiating, we find that  Therefore,  when 

. Both points are in the interval , and, therefore, both points satisfy the conclusion of Rolle’s theorem as

shown in the following graph.

Figure : For this polynomial over  at .

Verify that the function  defined over the interval  satisfies the conditions of Rolle’s theorem. Find
all points  guaranteed by Rolle’s theorem.

Hint

Find all values , where .

Answer

The Mean Value Theorem and Its Meaning

Rolle’s theorem is a special case of the Mean Value Theorem. In Rolle’s theorem, we consider differentiable functions  that are
zero at the endpoints. The Mean Value Theorem generalizes Rolle’s theorem by considering functions that are not necessarily zero
at the endpoints. Consequently, we can view the Mean Value Theorem as a slanted version of Rolle’s theorem (Figure ). The

Example : Using Rolle’s Theorem4.5.1

c

(c) = 0.f

′

f(x) = +2xx

2

[−2, 0]

f(x) = −4xx

3

[−2, 2]

f f(−2) = 0 = f(0). f

c ∈ (−2, 0) (c) = 0f

′

(x) = 2x+2 = 2(x+1),f

′

(c) = 2(c+1) = 0f

′

c =−1

4.5.3 (c) = 0f

′

c =−1

f f(−2) = 0 = f(2).

f (x) = 3 −4.f

′

x

2

(c) = 0f

′

x =±

2

3

√

[−2, 2]

4.5.4 [−2, 2], (c) = 0f

′

x =±2/ 3

–

√

Exercise 4.5.1

f(x) = 2 −8x+6x

2

[1, 3]

c

c (c) = 0f

′

c = 2

f

4.5.5
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Mean Value Theorem states that if  is continuous over the closed interval  and differentiable over the open interval ,
then there exists a point  such that the tangent line to the graph of  at  is parallel to the secant line connecting 
and 

Figure : The Mean Value Theorem says that for a function that meets its conditions, at some point the tangent line has the
same slope as the secant line between the ends. For this function, there are two values  and  such that the tangent line to  at 
and  has the same slope as the secant line.

Let  be continuous over the closed interval  and differentiable over the open interval . Then, there exists at least
one point  such that

The proof follows from Rolle’s theorem by introducing an appropriate function that satisfies the criteria of Rolle’s theorem.
Consider the line connecting  and  Since the slope of that line is

and the line passes through the point  the equation of that line can be written as

Let  denote the vertical difference between the point  and the point  on that line. Therefore,

Figure : The value  is the vertical difference between the point  and the point  on the secant line
connecting  and .

Since the graph of  intersects the secant line when  and , we see that . Since  is a differentiable
function over ,  is also a differentiable function over . Furthermore, since  is continuous over  is also

f [a, b] (a, b)

c ∈ (a, b) f c (a, f(a))

(b, f(b)).

4.5.5

c

1

c

2

f c

1

c

2

Mean Value Theorem

f [a, b] (a, b)

c ∈ (a, b)

(c) =f

′

f(b)−f(a)

b−a

(4.5.1)

Proof

(a, f(a)) (b, f(b)).

f(b)−f(a)

b−a

(4.5.2)

(a, f(a)),

y = (x−a)+f(a).

f(b)−f(a)

b−a

(4.5.3)

g(x) (x, f(x)) (x, y)

g(x) = f(x)−[ (x−a)+f(a)] .

f(b)−f(a)

b−a

(4.5.4)

4.5.6 g(x) (x,f(x)) (x,y)

(a,f(a)) (b,f(b))

f x = a x = b g(a) = 0 = g(b) f

(a, b) g (a, b) f [a, b], g
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continuous over . Therefore,  satisfies the criteria of Rolle’s theorem. Consequently, there exists a point  such
that  Since

we see that

Since  we conclude that

□

In the next example, we show how the Mean Value Theorem can be applied to the function  over the interval . The
method is the same for other functions, although sometimes with more interesting consequences.

For  over the interval , show that  satisfies the hypothesis of the Mean Value Theorem, and therefore there
exists at least one value  such that  is equal to the slope of the line connecting  and . Find
these values  guaranteed by the Mean Value Theorem.

Solution

We know that  is continuous over  and differentiable over  Therefore,  satisfies the hypotheses of the
Mean Value Theorem, and there must exist at least one value  such that  is equal to the slope of the line
connecting  and  (Figure). To determine which value(s) of  are guaranteed, first calculate the derivative of 

. The derivative . The slope of the line connecting  and  is given by

We want to find  such that . That is, we want to find  such that

Solving this equation for , we obtain . At this point, the slope of the tangent line equals the slope of the line joining the
endpoints.

[a, b] g c ∈ (a, b)

(c) = 0.g

′

(x) = (x)− ,g

′

f

′

f(b)−f(a)

b−a

(4.5.5)

(c) = (c)− .g

′

f

′

f(b)−f(a)

b−a

(4.5.6)

(c) = 0,g

′

(c) = .f

′

f(b)−f(a)

b−a

(4.5.7)

f(x) = x

−−

√

[0, 9]

Example : Verifying that the Mean Value Theorem Applies4.5.2

f(x) = x

−−

√

[0, 9] f

c ∈ (0, 9) f '(c) (0, f(0)) (9, f(9))

c

f(x) = x

−−

√

[0, 9] (0, 9). f

c ∈ (0, 9) f '(c)

(0, f(0)) (9, f(9)) c

f f '(x) =

1

(2 )x

√

(0, f(0)) (9, f(9))

= = = .

f(9)−f(0)

9−0

−9

–

√ 0

–

√

9−0

3

9

1

3

c f '(c) =

1

3

c

= .

1

2 c

√

1

3

c c =

9

4
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Figure : The slope of the tangent line at  is the same as the slope of the line segment connecting (0,0) and (9,3).

One application that helps illustrate the Mean Value Theorem involves velocity. For example, suppose we drive a car for 1 h
down a straight road with an average velocity of 45 mph. Let  and  denote the position and velocity of the car,
respectively, for  h. Assuming that the position function  is differentiable, we can apply the Mean Value
Theorem to conclude that, at some time , the speed of the car was exactly

If a rock is dropped from a height of 100 ft, its position  seconds after it is dropped until it hits the ground is given by the
function 

a. Determine how long it takes before the rock hits the ground.
b. Find the average velocity  of the rock for when the rock is released and the rock hits the ground.
c. Find the time  guaranteed by the Mean Value Theorem when the instantaneous velocity of the rock is 

Solution

a. When the rock hits the ground, its position is . Solving the equation  for , we find that 
. Since we are only considering , the ball will hit the ground  sec after it is dropped.

b. The average velocity is given by

c. The instantaneous velocity is given by the derivative of the position function. Therefore, we need to find a time  such that 
 ft/sec. Since  is continuous over the interval  and differentiable over the interval 

 by the Mean Value Theorem, there is guaranteed to be a point  such that

Taking the derivative of the position function , we find that  Therefore, the equation reduces to 
 Solving this equation for , we have . Therefore,  sec after the rock is dropped, the

instantaneous velocity equals the average velocity of the rock during its free fall:  ft/sec.

4.5.7 c = 9/4

s(t) v(t)

0 ≤ t ≤ 1 s(t)

c ∈ (0, 1)

v(c) = s'(c) = = 45mph.

s(1)−s(0)

1−0

Example : Mean Value Theorem and Velocity4.5.3

t

s(t) =−16 +100.t

2

v

avg

t .v

avg

s(t) = 0 −16 +100 = 0t

2

t

t =± sec

5

2

t ≥ 0

5

2

= = =−40 ft/sec.v

avg

s(5/2)−s(0)

5/2−0

1−100

5/2

t

v(t) = s'(t) = =−40v

avg

s(t) [0, 5/2]

(0, 5/2), c ∈ (0, 5/2)

s'(c) = =−40.

s(5/2)−s(0)

5/2−0

s(t) s'(t) =−32t.

s'(c) =−32c =−40. c c =

5

4

5

4

−40
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Figure : At time  sec, the velocity of the rock is equal to its average velocity from the time it is dropped until it
hits the ground.

Suppose a ball is dropped from a height of 200 ft. Its position at time  is  Find the time  when the
instantaneous velocity of the ball equals its average velocity.

Hint

First, determine how long it takes for the ball to hit the ground. Then, find the average velocity of the ball from the time it
is dropped until it hits the ground.

Answer

 sec

Corollaries of the Mean Value Theorem
Let’s now look at three corollaries of the Mean Value Theorem. These results have important consequences, which we use in
upcoming sections.

At this point, we know the derivative of any constant function is zero. The Mean Value Theorem allows us to conclude that the
converse is also true. In particular, if  for all  in some interval , then  is constant over that interval. This result may
seem intuitively obvious, but it has important implications that are not obvious, and we discuss them shortly.

4.5.8 t= 5/4

Mean Value Theorem: Mean Value Theorem: Find c that Satis�Find c that Satis�……

Exercise 4.5.2

t s(t) =−16 +200.t

2

t

5

2 2√

f '(x) = 0 x I f(x)
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Let  be differentiable over an interval . If  for all , then  constant for all 

Since  is differentiable over ,  must be continuous over . Suppose  is not constant for all  in . Then there exist 
, where  and  Choose the notation so that  Therefore,

Since  s a differentiable function, by the Mean Value Theorem, there exists  such that

Therefore, there exists  such that , which contradicts the assumption that  for all .

□

From Note, it follows that if two functions have the same derivative, they differ by, at most, a constant.

If  and  are differentiable over an interval  and  for all , then  for some constant .

Let  Then,  for all  By Corollary 1, there is a constant  such that 
 for all . Therefore,  for all 

□

The third corollary of the Mean Value Theorem discusses when a function is increasing and when it is decreasing. Recall that a
function  is increasing over  if  whenever , whereas  is decreasing over  if  whenever 

. Using the Mean Value Theorem, we can show that if the derivative of a function is positive, then the function is
increasing; if the derivative is negative, then the function is decreasing (Figure ). We make use of this fact in the next section,
where we show how to use the derivative of a function to locate local maximum and minimum values of the function, and how to
determine the shape of the graph.

This fact is important because it means that for a given function , if there exists a function  such that ; then, the
only other functions that have a derivative equal to  are  for some constant . We discuss this result in more detail later
in the chapter.

Figure : If a function has a positive derivative over some interval , then the function increases over that interval ; if the
derivative is negative over some interval , then the function decreases over that interval .

Corollary 1: Functions with a Derivative of Zero

f I f '(x) = 0 x ∈ I f(x) = x ∈ I.

Proof

f I f I f(x) x I

a, b ∈ I a≠ b f(a) ≠ f(b). a< b.

≠ 0.

f(b)−f(a)

b−a

f c ∈ (a, b)

f '(c) = .

f(b)−f(a)

b−a

c ∈ I f '(c) ≠ 0 f '(x) = 0 x ∈ I

Corollary 2: Constant Difference Theorem

f g I f '(x) = g'(x) x ∈ I f(x) = g(x)+C C

Proof

h(x) = f(x)−g(x). h'(x) = f '(x)−g'(x) = 0 x ∈ I. C

h(x) =C x ∈ I f(x) = g(x)+C x ∈ I.

f I f( ) < f( )x

1

x

2

<x

1

x

2

f I f(x > f( ))

1

x

2

<x

1

x

2

4.5.9

f F F '(x) = f(x)

f F (x)+C C

4.5.9 I I

I I
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Let  be continuous over the closed interval  and differentiable over the open interval .

i. If  for all , then  is an increasing function over 
ii. If  for all , then  is a decreasing function over 

We will prove i.; the proof of ii. is similar. Suppose  is not an increasing function on . Then there exist  and  in  such that
, but . Since  is a differentiable function over , by the Mean Value Theorem there exists  such

that

Since , we know that . Also,  tells us that  We conclude that

However,  for all . This is a contradiction, and therefore  must be an increasing function over .

□

Key Concepts
If  is continuous over  and differentiable over  and , then there exists a point  such that 

 This is Rolle’s theorem.
If  is continuous over  and differentiable over , then there exists a point  such that

This is the Mean Value Theorem.
If  over an interval , then  is constant over .
If two differentiable functions  and  satisfy  over , then  for some constant .
If  over an interval , then  is increasing over . If  over , then  is decreasing over .

Corollary 3: Increasing and Decreasing Functions

f [a, b] (a, b)

f '(x) > 0 x ∈ (a, b) f [a, b].

f '(x) < 0 x ∈ (a, b) f [a, b].

Proof

f I a b I

a< b f(a) ≥ f(b) f I c ∈ (a, b)

f '(c) = .

f(b)−f(a)

b−a

f(a) ≥ f(b) f(b)−f(a) ≤ 0 a< b b−a> 0.

f '(c) = ≤ 0.

f(b)−f(a)

b−a

f '(x) > 0 x ∈ I f I

The Proof of the Fixed Point TheoremThe Proof of the Fixed Point Theorem

f [a, b] (a, b) f(a) = 0 = f(b) c ∈ (a, b)

f '(c) = 0.

f [a, b] (a, b) c ∈ (a, b)

(c) = .f

′

f(b)−f(a)

b−a

(x) = 0f

′

I f I

f g f '(x) = g'(x) I f(x) = g(x)+C C

f '(x) > 0 I f I f '(x) < 0 I f I
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Glossary

mean value theorem

if  is continuous over  and differentiable over , then there exists  such that 

rolle’s theorem
if  is continuous over  and differentiable over , and if , then there exists  such that 
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f [a, b] (a, b) c ∈ (a, b) f '(c) =

f(b)−f(a)

b−a

f [a, b] (a, b) f(a) = f(b) c ∈ (a, b) f '(c) = 0
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4.5E: Exercises for Section 4.4
1)Why do you need continuity to apply the Mean Value Theorem? Construct a counterexample.

2) Why do you need differentiability to apply the Mean Value Theorem? Find a counterexample.

Answer
One example is 

3) When are Rolle’s theorem and the Mean Value Theorem equivalent?

4) If you have a function with a discontinuity, is it still possible to have  Draw such an example or
prove why not.

Answer
Yes, but the Mean Value Theorem still does not apply

In exercises 5 - 9, determine over what intervals (if any) the Mean Value Theorem applies. Justify your answer.

5) 

6) 

Answer

7) 

8) 

Answer

9) 

In exercises 10 - 13, graph the functions on a calculator and draw the secant line that connects the endpoints. Estimate the
number of points  such that .

10) [T]  over 

Answer
2 points

11) [T]  over 

12) [T]  over 

Answer
5 points

13) [T]  over 

In exercises 14 - 19, use the Mean Value Theorem and find all points  such that .

14) 

Answer

15) 

f(x) = |x| +3,−2 ≤ x ≤ 2

f '(c)(b−a) = f(b)−f(a)?

y = sin(πx)

y =

1

x

3

(−∞, 0), (0,∞)

y = 4−x

2

− −−−−

√

y = −4x

2

− −−−−

√

(−∞,−2), (2,∞)

y = ln(3x−5)

c f '(c)(b−a) = f(b)−f(a)

y = 3 +2x+1x

3

[−1, 1]

y = tan( x)

π

4

[− , ]

3

2

3

2

y = cos(πx)x

2

[−2, 2]

y = − − + + + x+x

6 3

4

x

5 9

8

x

4 15

16

x

3 3

32

x

2 3

16

1

32

[−1, 1]

0 < c < 2 f(2)−f(0) = f '(c)(2−0)

f(x) = x

3

c =

2 3

√

3

f(x) = sin(πx)
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16) 

Answer

17) 

18) 

Answer

19) 

In exercises 20 - 23, show there is no  such that . Explain why the Mean Value Theorem does not
apply over the interval .

20) 

Answer
Not differentiable

21) 

22) 

Answer
Not differentiable

23)  (Hint: This is called the floor function and it is defined so that  is the largest integer less than or equal to .)

In exercises 24 - 34, determine whether the Mean Value Theorem applies for the functions over the given interval .
Justify your answer.

24)  over 

Answer
Yes

25)  over 

26)  over 

Answer
The Mean Value Theorem does not apply since the function is discontinuous at 

27)  over 

28)  over 

Answer
Yes

29)  over 

30)  over 

Answer

f(x) = cos(2πx)

c = , 1,

1

2

3

2

f(x) = 1+x+x

2

f(x) = (x−1)

10

c = 1

f(x) = (x−1)

9

c f(1)−f(−1) = f '(c)(2)

[−1, 1]

f(x) = x−

∣

∣

1

2

∣

∣

f(x) =

1

x

2

f(x) = |x|

−−

√

f(x) = ⌊x⌋ f(x) x

[a, b]

y = e

x

[0, 1]

y = ln(2x+3) [− , 0]

3

2

f(x) = tan(2πx) [0, 2]

x = , , , .

1

4

3

4

5

4

7

4

y = 9−x

2

− −−−−

√

[−3, 3]

y =

1

|x+1|

[0, 3]

y = +2x+1x

3

[0, 6]

y =

+3x+2x

2

x

[−1, 1]

https://libretexts.org/
https://stats.libretexts.org/@go/page/25963?pdf


4.5E.3 https://stats.libretexts.org/@go/page/25963

The Mean Value Theorem does not apply; discontinuous at 

31)  over 

32)  over 

Answer
Yes

33)  over 

34)  over 

Answer
The Mean Value Theorem does not apply; not differentiable at .

For exercises 35 - 37, consider the roots of each equation.

35) Show that the equation  has exactly one real root. What is it?

36) Find the conditions for exactly one root (double root) for the equation 

Answer

37) Find the conditions for  to have one root. Is it possible to have more than one root?

In exercises 38 - 42, use a calculator to graph the function over the interval  and graph the secant line from  to . Use
the calculator to estimate all values of  as guaranteed by the Mean Value Theorem. Then, find the exact value of , if
possible, or write the final equation and use a calculator to estimate to four digits.

38) [T]  over 

Answer
 

39) [T]  over 

40) [T]  over 

Answer
The Mean Value Theorem does not apply.

41) [T]  over 

42) [T]  over 

Answer

 

43) At 10:17 a.m., you pass a police car at 55 mph that is stopped on the freeway. You pass a second police car at 55 mph at 10:53
a.m., which is located 39 mi from the first police car. If the speed limit is 60 mph, can the police cite you for speeding?

x = 0.

y =

x

sin(πx)+1

[0, 1]

y = ln(x+1) [0, e−1]

y = x sin(πx) [0, 2]

y = 5+|x| [−1, 1]

x = 0

y = +3 +16x

3

x

2

y = +bx+cx

2

b =±2 c

√

y = −be

x

[a, b] a b

c c

y = tan(πx) [− , ]

1

4

1

4

c ≈±0.1533

c =± ( )

1

π

cos

−1

π

√

2

y =

1

x+1

− −−−−

√

[0, 3]

y = | +2x−4|x

2

[−4, 0]

y = x+

1

x

[ , 4]

1

2

y = +x+1

− −−−−

√

1

x

2

[3, 8]

− =

1

2 c+1

− −−−

√

2

c

3

521

2880

c ≈ 3.133, 5.867
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44) Two cars drive from one stoplight to the next, leaving at the same time and arriving at the same time. Is there ever a time when
they are going the same speed? Prove or disprove.

Answer
Yes

45) Show that  and  have the same derivative. What can you say about ?

46) Show that  and  have the same derivative. What can you say about ?

Answer
It is constant.

4.5E: Exercises for Section 4.4 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.4E: Exercises for Section 4.4 is licensed CC BY-NC-SA 4.0.

y = xsec

2

y = xtan

2

y = x− xsec

2

tan

2

y = xcsc

2

y = xcot

2

y = x− xcsc

2

cot

2
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4.6: Derivatives and the Shape of a Graph

Explain how the sign of the first derivative affects the shape of a function’s graph.
State the first derivative test for critical points.
Use concavity and inflection points to explain how the sign of the second derivative affects the shape of a function’s graph.
Explain the concavity test for a function over an open interval.
Explain the relationship between a function and its first and second derivatives.
State the second derivative test for local extrema.

Earlier in this chapter we stated that if a function  has a local extremum at a point , then  must be a critical point of . However,
a function is not guaranteed to have a local extremum at a critical point. For example,  has a critical point at  since 

 is zero at , but  does not have a local extremum at . Using the results from the previous section, we are
now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also
see how the second derivative provides information about the shape of a graph by describing whether the graph of a function
curves upward or curves downward.

The First Derivative Test

Corollary  of the Mean Value Theorem showed that if the derivative of a function is positive over an interval  then the function is
increasing over . On the other hand, if the derivative of the function is negative over an interval , then the function is decreasing
over  as shown in the following figure.

Learning Objectives

f c c f

f(x) = x

3

x = 0

(x) = 3f

′

x

2

x = 0 f x = 0

Using the Derivative to Identify Where a Using the Derivative to Identify Where a ……

3 I

I I

I
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Figure : Both functions are increasing over the interval . At each point , the derivative . Both functions are
decreasing over the interval . At each point , the derivative 

A continuous function  has a local maximum at point  if and only if  switches from increasing to decreasing at point .
Similarly,  has a local minimum at  if and only if  switches from decreasing to increasing at . If  is a continuous function
over an interval  containing  and differentiable over , except possibly at , the only way  can switch from increasing to
decreasing (or vice versa) at point  is if  changes sign as  increases through . If  is differentiable at , the only way that .
can change sign as  increases through  is if . Therefore, for a function  that is continuous over an interval  containing
 and differentiable over , except possibly at , the only way  can switch from increasing to decreasing (or vice versa) is if 

 or  is undefined. Consequently, to locate local extrema for a function , we look for points  in the domain of 
such that  or  is undefined. Recall that such points are called critical points of .

Note that  need not have a local extrema at a critical point. The critical points are candidates for local extrema only. In Figure 
, we show that if a continuous function  has a local extremum, it must occur at a critical point, but a function may not have a

local extremum at a critical point. We show that if  has a local extremum at a critical point, then the sign of  switches as 
increases through that point.

Figure : The function  has four critical points: ,and . The function  has local maxima at  and , and a local
minimum at . The function  does not have a local extremum at . The sign of  changes at all local extrema.

Using Figure , we summarize the main results regarding local extrema.

4.6.1 (a, b) x (x) > 0f

′

(a, b) x (x) < 0.f

′

f c f c

f c f c f

I c I c f

c f

′

x c f c f

′

x c (c) = 0f

′

f I

c I c f

(c) = 0f

′

(c)f

′

f c f

(c) = 0f

′

(c)f

′

f

f

4.6.2 f

f f

′

x

4.6.2 f a, b, c d f a d

b f c f

′

4.6.2
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If a continuous function  has a local extremum, it must occur at a critical point .
The function has a local extremum at the critical point  if and only if the derivative  switches sign as  increases through .
Therefore, to test whether a function has a local extremum at a critical point , we must determine the sign of  to the left
and right of .

This result is known as the first derivative test.

Suppose that  is a continuous function over an interval  containing a critical point . If  is differentiable over , except
possibly at point , then  satisfies one of the following descriptions:

i. If  changes sign from positive when  to negative when , then  is a local maximum of .
ii. If  changes sign from negative when  to positive when , then  is a local minimum of .

iii. If  has the same sign for  and , then  is neither a local maximum nor a local minimum of 

Now let’s look at how to use this strategy to locate all local extrema for particular functions.

Use the first derivative test to find the location of all local extrema for  Use a graphing utility to
confirm your results.

Solution

Step 1. The derivative is  To find the critical points, we need to find where  Factoring the
polynomial, we conclude that the critical points must satisfy

Therefore, the critical points are  Now divide the interval  into the smaller intervals 
and 

Step 2. Since  is a continuous function, to determine the sign of  over each subinterval, it suffices to choose a point
over each of the intervals  and  and determine the sign of  at each of these points. For example,
let’s choose , , and  as test points.

Table: : First Derivative Test for 

Interval Test Point
Sign of 

at Test Point
Conclusion

(+)(−)(−)=+  is increasing.

(+)(−)(+)=+  is increasing.

(+)(+)(+)=+  is increasing.

Step 3. Since  switches sign from positive to negative as  increases through ,  has a local maximum at . Since 
switches sign from negative to positive as  increases through ,  has a local minimum at . These analytical results
agree with the following graph.

f c

c f

′

x c

c (x)f

′

c

First Derivative Test

f I c f I

c f(c)

f

′

x < c x > c f(c) f

f

′

x < c x > c f(c) f

f

′

x < c x > c f(c) f

Example : Using the First Derivative Test to Find Local Extrema4.6.1

f(x) = −3 −9x−1.x

3

x

2

(x) = 3 −6x−9.f

′

x

2

(x) = 0.f

′

3( −2x−3) = 3(x−3)(x+1) = 0.x

2

x = 3,−1. (−∞,∞) (−∞,−1), (−1, 3)

(3,∞).

f

′

(x)f

′

(−∞,−1), (−1, 3) (3,∞) f

′

x =−2 x = 0 x = 4

4.6.1 f(x) = −3 −9x−1.x

3

x

2

(x) = 3(x−3)(x+1)f

′

(−∞,−1) x= −2 f

(−1, 3) x= 0 f

(3,∞) x= 4 f

f

′

x 1 f x =−1 f

′

x 3 f x = 3
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Figure : The function  has a maximum at  and a minimum at 

Use the first derivative test to locate all local extrema for 

Hint

Find all critical points of  and determine the signs of  over particular intervals determined by the critical points.

Answer

 has a local minimum at  and a local maximum at .

4.6.3 f x =−1 x = 3

Using the First Derivative TestUsing the First Derivative Test

Exercise 4.6.1

f(x) =− + +18x.x

3 3

2

x

2

f (x)f

′

f −2 3
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Use the first derivative test to find the location of all local extrema for  Use a graphing utility to confirm
your results.

Solution

Step 1. The derivative is

The derivative  when  Therefore,  at . The derivative  is undefined at 
Therefore, we have three critical points: , , and . Consequently, divide the interval  into the
smaller intervals , and .

Step 2: Since  is continuous over each subinterval, it suffices to choose a test point  in each of the intervals from step 1 and
determine the sign of  at each of these points. The points , and  are test points for these
intervals.

Table: : First Derivative Test for 

Interval Test Point Sign of  at
Test Point

Conclusion

 is decreasing.

 is increasing.

 is increasing.

 is decreasing.

Step 3: Since  is decreasing over the interval  and increasing over the interval ,  has a local minimum at 
. Since  is increasing over the interval  and the interval ,  does not have a local extremum at .

Since  is increasing over the interval  and decreasing over the interval ,  has a local maximum at . The
analytical results agree with the following graph.

Figure : The function  has a local minimum at  and a local maximum at 

Use the first derivative test to find all local extrema for .

Hint

The only critical point of  is 

Answer

Example : Using the First Derivative Test4.6.2

f(x) = 5 − .x

1/3

x

5/3

(x) = − = − = = .f

′

5

3

x

−2/3

5

3

x

2/3

5

3x

2/3

5x

2/3

3

5−5x

4/3

3x

2/3

5(1− )x

4/3

3x

2/3

(x) = 0f

′

1− = 0.x

4/3

(x) = 0f

′

x =±1 (x)f

′

x = 0.

x = 0 x = 1 x =−1 (−∞,∞)

(−∞,−1), (−1, 0), (0, 1) (1,∞)

f
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 has no local extrema because  does not change sign at .

Concavity and Points of Inflection
We now know how to determine where a function is increasing or decreasing. However, there is another issue to consider regarding
the shape of the graph of a function. If the graph curves, does it curve upward or curve downward? This notion is called the
concavity of the function.

Figure  shows a function  with a graph that curves upward. As  increases, the slope of the tangent line increases. Thus,
since the derivative increases as  increases,  is an increasing function. We say this function  is concave up. Figure 
shows a function  that curves downward. As  increases, the slope of the tangent line decreases. Since the derivative decreases as 

 increases,  is a decreasing function. We say this function  is concave down.

Let  be a function that is differentiable over an open interval . If  is increasing over , we say  is concave up over . If 
 is decreasing over , we say  is concave down over .

Figure : (a), (c) Since  is increasing over the interval , we say  is concave up over  Since  is
decreasing over the interval , we say  is concave down over 

In general, without having the graph of a function , how can we determine its concavity? By definition, a function  is
concave up if  is increasing. From Corollary , we know that if  is a differentiable function, then  is increasing if its
derivative . Therefore, a function  that is twice differentiable is concave up when . Similarly, a function 

 is concave down if  is decreasing. We know that a differentiable function  is decreasing if its derivative .
Therefore, a twice-differentiable function  is concave down when . Applying this logic is known as the concavity
test.

f f

′

x = 1

4.6.4a f x

x f

′

f 4.6.4b

f x

x f

′

f

Definition: concavity test

f I f

′

I f I

f

′

I f I

4.6.5 f

′

(a, b) f (a, b). (b), (d) f

′

(a, b) f (a, b).

f f

f

′

3 f

′

f

′

(x) > 0f

′′

f (x) > 0f

′′

f f

′

f

′

(x) < 0f

′′

f (x) < 0f

′′
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Let  be a function that is twice differentiable over an interval .

i. If  for all , then  is concave up over 
ii. If  for all  then  is concave down over .

We conclude that we can determine the concavity of a function  by looking at the second derivative of . In addition, we observe
that a function  can switch concavity (Figure ). However, a continuous function can switch concavity only at a point  if 

 or  is undefined. Consequently, to determine the intervals where a function  is concave up and concave down,
we look for those values of  where  or  is undefined. When we have determined these points, we divide the
domain of  into smaller intervals and determine the sign of  over each of these smaller intervals. If  changes sign as we pass
through a point , then  changes concavity. It is important to remember that a function  may not change concavity at a point 
even if  or  is undefined. If, however,  does change concavity at a point  and  is continuous at , we say the
point  is an inflection point of .

If  is continuous at  and  changes concavity at , the point  is an inflection point of .

Figure : Since  for , the function  is concave up over the interval . Since  for , the
function  is concave down over the interval . The point  is an inflection point of .

For the function  determine all intervals where  is concave up and all intervals where  is
concave down. List all inflection points for . Use a graphing utility to confirm your results.

Solution

To determine concavity, we need to find the second derivative  The first derivative is  so the
second derivative is  If the function changes concavity, it occurs either when  or  is
undefined. Since  is defined for all real numbers , we need only find where . Solving the equation ,
we see that  is the only place where  could change concavity. We now test points over the intervals  and 
to determine the concavity of . The points  and  are test points for these intervals.

Table: : Test for Concavity for 

Interval Test Point
Sign of  at

Test Point
Conclusion

−  is concave down

+  is concave up

Test for Concavity

f I
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f f

f 4.6.6 x
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′′
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′′
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′′

f f
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f

′′

x f f x

(x) = 0f

′′

(x)f

′′

f a f a

(a, f(a)) f

Definition: inflection point

f a f a (a, f(a)) f

4.6.6 (x) > 0f

′′

x < a f (−∞,a) (x) < 0f

′′

x > a

f (a,∞) (a,f(a)) f

Example : Testing for Concavity4.6.3
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′′
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We conclude that  is concave down over the interval  and concave up over the interval . Since  changes
concavity at , the point  is an inflection point. Figure  confirms the analytical results.

Figure : The given function has a point of inflection at  where the graph changes concavity.

For , find all intervals where  is concave up and all intervals where  is concave down.

Hint

Find where 

Answer

 is concave up over the interval  and concave down over the interval 

We now summarize, in Table , the information that the first and second derivatives of a function  provide about the graph of 
, and illustrate this information in Figure .

Table: : What Derivatives Tell Us about Graphs

Sign of Sign of Is  increasing or decreasing? Concavity

Positive Positive Increasing Concave up

Positive Negative Increasing Concave down

Negative Positive Decreasing Concave up

f (−∞, 2) (2,∞) f

x = 2 (2, f(2)) = (2, 32) 4.6.7

4.6.7 (2, 32)

Concavity and In�ection PointsConcavity and In�ection Points

Exercise 4.6.3
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2

x

2

f f
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′′
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2
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2

4.6.4 f
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Sign of Sign of Is  increasing or decreasing? Concavity

Negative Negative Decreasing Concave down

Figure :Consider a twice-differentiable  over an open interval . If  for all , the function is increasing over .
If  for all , the function is decreasing over . If  for all , the function is concave up. If 
for all , the function is concave down on .

The Second Derivative Test
The first derivative test provides an analytical tool for finding local extrema, but the second derivative can also be used to locate
extreme values. Using the second derivative can sometimes be a simpler method than using the first derivative.

We know that if a continuous function has a local extremum, it must occur at a critical point. However, a function need not have a
local extremum at a critical point. Here we examine how the second derivative test can be used to determine whether a function
has a local extremum at a critical point. Let  be a twice-differentiable function such that  and  is continuous over an
open interval  containing . Suppose . Since  is continuous over  for all  (Figure ). Then, by
Corollary ,  is a decreasing function over . Since , we conclude that for all  if  and 

 if . Therefore, by the first derivative test,  has a local maximum at .

On the other hand, suppose there exists a point  such that  but . Since  is continuous over an open interval 
 containing , then  for all  (Figure ). Then, by Corollary ,  is an increasing function over . Since 

, we conclude that for all ,  if  and  if . Therefore, by the first derivative test,  has
a local minimum at 

Figure : Consider a twice-differentiable function  such that  is continuous. Since  and , there is an
interval  containing  such that for all  in ,  is increasing if  and  is decreasing if . As a result,  has a local
maximum at . Since  and , there is an interval  containing  such that for all  in ,  is decreasing if 

 and  is increasing if . As a result,  has a local minimum at .
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Suppose  and  is continuous over an interval containing .

i. If , then  has a local minimum at .
ii. If , then  has a local maximum at .

iii. If  then the test is inconclusive.

Note that for case iii. when , then  may have a local maximum, local minimum, or neither at . For example, the
functions  and  all have critical points at . In each case, the second derivative is zero at 

. However, the function  has a local minimum at  whereas the function  has a local maximum at
, and the function  does not have a local extremum at .

Let’s now look at how to use the second derivative test to determine whether  has a local maximum or local minimum at a critical
point  where 

Use the second derivative to find the location of all local extrema for 

Solution

To apply the second derivative test, we first need to find critical points  where . The derivative is 
. Therefore,  when .

To determine whether  has a local extremum at any of these points, we need to evaluate the sign of  at these points. The
second derivative is

In the following table, we evaluate the second derivative at each of the critical points and use the second derivative test to
determine whether  has a local maximum or local minimum at any of these points.

Table: : Second Derivative Test for 

Conclusion

Local maximum

Second derivative test is inconclusive

Local minimum

By the second derivative test, we conclude that  has a local maximum at  and  has a local minimum at .
The second derivative test is inconclusive at . To determine whether  has a local extrema at  we apply the first
derivative test. To evaluate the sign of  for  and , let  and  be the
two test points. Since  and , we conclude that  is decreasing on both intervals and, therefore,  does not
have a local extrema at  as shown in the following graph.

Second Derivative Test
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Example : Using the Second Derivative Test4.6.4

f(x) = −5 .x

5

x

3

c (c) = 0f

′

(x) = 5 −15f

′

x

4

x

2

(x) = 5 −15 = 5 ( −3) = 0f

′

x

4

x

2

x

2

x

2

x = 0, ± 3

–

√

f f

′′

(x) = 20 −30x = 10x(2 −3).f

′′

x

3

x

2

f

4.6.5 f(x) = −5 .x

5

x

3

x (x)f

′′

− 3

–

√ −30 3

–

√

0 0

3

–

√ 30 3

–

√

f x =− 3

–

√ f x = 3

–

√

x = 0 f x = 0,

(x) = 5 ( −3)f

′

x

2

x

2

x ∈ (− , 0)3

–

√ x ∈ (0, )3

–

√ x =−1 x = 1

(−1) < 0f

′

(1) < 0f

′

f f

x = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25964?pdf


4.6.11 https://stats.libretexts.org/@go/page/25964

Figure :The function  has a local maximum at  and a local minimum at 

Consider the function . The points  satisfy . Use the second derivative test to
determine whether  has a local maximum or local minimum at those points.

Hint

Answer

 has a local maximum at  and a local minimum at .

We have now developed the tools we need to determine where a function is increasing and decreasing, as well as acquired an
understanding of the basic shape of the graph. In the next section we discuss what happens to a function as  At that point,
we have enough tools to provide accurate graphs of a large variety of functions.
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Key Concepts
If  is a critical point of  and  for  and  for , then  has a local maximum at .
If  is a critical point of  and  for  and  for  then  has a local minimum at .
If  over an interval , then  is concave up over .
If  over an interval , then  is concave down over .
If  and , then  has a local minimum at .
If  and , then  has a local maximum at .
If  and , then evaluate  at a test point  to the left of  and a test point  to the right of , to determine
whether  has a local extremum at .

Glossary

concave down
if  is differentiable over an interval  and  is decreasing over , then  is concave down over 

concave up
if  is differentiable over an interval  and  is increasing over , then  is concave up over 

concavity
the upward or downward curve of the graph of a function

concavity test
suppose  is twice differentiable over an interval ; if  over , then  is concave up over ; if  over , then  is
concave down over 

first derivative test
let  be a continuous function over an interval  containing a critical point  such that  is differentiable over  except possibly
at ; if  changes sign from positive to negative as  increases through , then  has a local maximum at ; if  changes sign
from negative to positive as  increases through , then  has a local minimum at ; if  does not change sign as  increases
through , then  does not have a local extremum at 

inflection point
if  is continuous at  and  changes concavity at , the point  is an inflection point of 

second derivative test
suppose  and ' is continuous over an interval containing ; if , then  has a local minimum at ; if 

, then  has a local maximum at ; if , then the test is inconclusive
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4.6E: Exercises for Section 4.5
1) If  is a critical point of , when is there no local maximum or minimum at ? Explain.

2) For the function , is  both an inflection point and a local maximum/minimum?

Answer
It is not a local maximum/minimum because  does not change sign

3) For the function , is  an inflection point?

4) Is it possible for a point  to be both an inflection point and a local extremum of a twice differentiable function?

Answer
No

5) Why do you need continuity for the first derivative test? Come up with an example.

6) Explain whether a concave-down function has to cross  for some value of .

Answer
False; for example, .

7) Explain whether a polynomial of degree  can have an inflection point.

In exercises 8 - 12, analyze the graphs of , then list all intervals where  is increasing or decreasing.

8)

Answer
Increasing for  and ; 
Decreasing for  and 

9)

c f(x) c

y = x

3

x = 0

f

′

y = x

3

x = 0

c

y = 0 x

y = x

−−

√

2

f

′

f

−2 < x <−1 x > 2

x <−2 −1 < x < 2
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10)

Answer
Decreasing for , 
Increasing for 

11)

12)

x < 1

x > 1
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Answer
Decreasing for  and ; 
Increasing for  and  and 

In exercises 13 - 17, analyze the graphs of , then list all intervals where

a.  is increasing and decreasing and

b. the minima and maxima are located.

13)

14)

Answer
a. Increasing over , Decreasing over  
b. Maxima at  and , Minima at  and  and 

15)

−2 < x <−1 1 < x < 2

−1 < x < 1 x <−2 x > 2

f

′

f

−2 < x <−1, 0 < x < 1, x > 2 x <−2, −1 < x < 0, 1 < x < 2;

x =−1 x = 1 x =−2 x = 0 x = 2
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16)

Answer
a. Increasing over , Decreasing over  
b. Minimum at 

17)

In exercises 18 - 22, analyze the graphs of , then list all inflection points and intervals  that are concave up and concave
down.

18)

x > 0 x < 0;

x = 0

f

′

f
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Answer
Concave up for all , 
No inflection points

19)

20)

Answer
Concave up for all , 
No inflection points

21)

x

x
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22)

Answer
Concave up for  and , 
Concave down for , 
Inflection points at  and 

For exercises 23 - 27, draw a graph that satisfies the given specifications for the domain . The function does not
have to be continuous or differentiable.

23)  over  over 

24)  over  over  for all 

Answer
Answers will vary

25)  over  local maximum at  local minima at 

26) There is a local maximum at  local minimum at  and the graph is neither concave up nor concave down.

Answer
Answers will vary

27) There are local maxima at  the function is concave up for all , and the function remains positive for all 

For the following exercises, determine

a. intervals where  is increasing or decreasing and

b. local minima and maxima of .

x < 0 x > 1

0 < x < 1

x = 0 x = 1

x = [−3, 3]

f(x) > 0, (x) > 0f

′

x > 1, −3 < x < 0, (x) = 0f

′

0 < x < 1

(x) > 0f

′

x > 2, −3 < x <−1, (x) < 0f

′

−1 < x < 2, (x) < 0f

′′

x

(x) < 0f

′′

−1 < x < 1, (x) > 0, −3 < x <−1, 1 < x < 3,f

′′

x = 0, x =±2

x = 2, x = 1,

x =±1, x x.

f

f
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28)  over 

Answer

a. Increasing over  decreasing over 

b. Local maximum at ; local minimum at 

29) 

For exercise 30, determine

a. intervals where  is concave up or concave down, and

b. the inflection points of .

30) 

Answer

a. Concave up for  concave down for 

b. Inflection point at 

For exercises 31 - 37, determine

a. intervals where  is increasing or decreasing,

b. local minima and maxima of ,

c. intervals where  is concave up and concave down, and

d. the inflection points of .

31) 

32) 

Answer
a. Increasing over  and  decreasing over  
b. Maximum at , minimum at  
c. Concave up for , concave down for  
d. Inflection point at 

33) 

34) 

Answer
a. Increasing over  and , decreasing over  
b. Maximum at , minimum at  
c. Concave down for , concave up for  
d. Inflection point at 

35) 

36) 

Answer
a. Increasing over , decreasing over  
b. Minimum at  
c. Concave up for all  
d. No inflection points

f(x) = sinx+ xsin

3

−π < x < π

− < x < ,

π

2

π

2

x <− , x >

π

2

π

2

x =

π

2

x =−

π

2

f(x) = +cosxx

2

f

f

f(x) = −4 +x+2x

3

x

2

x > ,

4

3

x <

4

3

x =

4

3

f

f

f

f

f(x) = −6xx

2

f(x) = −6x

3

x

2

x < 0 x > 4, 0 < x < 4

x = 0 x = 4

x > 2 x < 2

x = 2

f(x) = −6x

4

x

3

f(x) = −6x

11

x

10

x < 0 x >

60

11

0 < x <

60

11

x = 0 x =

60

11

x <

54

11

x >

54

11

x =

54

11

f(x) = x+ −x

2

x

3

f(x) = +x+1x

2

x >−

1

2

x <−

1

2

x =−

1

2

x

https://libretexts.org/
https://stats.libretexts.org/@go/page/25965?pdf


4.6E.8 https://stats.libretexts.org/@go/page/25965

37) 

For exercises 38 - 47, determine

a. intervals where  is increasing or decreasing,

b. local minima and maxima of ,

c. intervals where  is concave up and concave down, and

d. the inflection points of . Sketch the curve, then use a calculator to compare your answer. If you cannot determine
the exact answer analytically, use a calculator.

38) [T]  over 

Answer
a. Increases over  decreases over  and  
b. Minimum at , maximum at  
c. Concave up for , concave down for  and  
d. Inflection points at 

39) [T]  over 

40) [T]  over 

Answer
a. Increasing for all  
b. No local minimum or maximum 
c. Concave up for , concave down for  
d. Inflection point at 

41) [T] 

42) [T] 

Answer
a. Increasing for all  where defined 
b. No local minima or maxima 
c. Concave up for ; concave down for  
d. No inflection points in domain

43) [T]  over 

44)  over 

Answer
a. Increasing over , decreasing over  
b. Minimum at , maximum at  
c. Concave up for , concave down for  
d. Inflection points at 

45) 

46) 

Answer
a. Increasing over  decreasing over  
b. Minimum at  

f(x) = +x

3

x

4

f

f

f

f

f(x) = sin(πx)−cos(πx) x = [−1, 1]

− < x < ,

1

4

3

4

x >

3

4

x <−

1

4

x =−

1

4

x =

3

4

− < x <

3

4

1

4

x <−

3

4

x >

1

4

x =− , x =

3

4

1

4

f(x) = x+sin(2x) x = [− , ]

π

2

π

2

f(x) = sinx+tanx (− , )

π

2

π

2

x

x > 0 x < 0

x = 0

f(x) = (x−2 (x−4)

2

)

2

f(x) = , x ≠ 1

1

1−x

x

x < 1 x > 1

f(x) =

sinx

x

x = [−2π, 0)∪ (0, 2π]

f(x) = sin(x)e

x

x = [−π, π]

− < x <

π

4

3π

4

x > , x <−

3π

4

π

4

x =−

π

4

x =

3π

4

− < x <

π

2

π

2

x <− , x >

π

2

π

2

x =±

π

2

f(x) = lnx , x > 0x

−−

√

f(x) = + , x > 0

1

4

x

−−

√

1

x

x > 4, 0 < x < 4

x = 4
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c. Concave up for , concave down for  
d. Inflection point at 

47) 

In exercises 48 - 52, interpret the sentences in terms of , , and .

48) The population is growing more slowly. Here  is the population.

Answer

49) A bike accelerates faster, but a car goes faster. Here  Bike’s position minus Car’s position.

50) The airplane lands smoothly. Here  is the plane’s altitude.

Answer

51) Stock prices are at their peak. Here is the stock price.

52) The economy is picking up speed. Here  is a measure of the economy, such as GDP.

Answer

For exercises 53 - 57, consider a third-degree polynomial , which has the properties  and .

Determine whether the following statements are true or false. Justify your answer.

53)  for some .

54)  for some .

Answer
True, by the Mean Value Theorem

55) There is no absolute maximum at .

56) If  has three roots, then it has  inflection point.

Answer
True, examine derivative

57) If  has one inflection point, then it has three real roots.

4.6E: Exercises for Section 4.5 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.5E: Exercises for Section 4.5 is licensed CC BY-NC-SA 4.0.

0 < x < 8 2

–

√

3

x > 8 2

–

√

3

x = 8 2

–

√

3

f(x) = , x ≠ 0

e

x

x

f f

′

f

′′

f

f > 0, > 0, < 0f

′

f

′′

f =

f

f > 0, < 0, > 0f

′

f

′′

f

f

f > 0, > 0, > 0f

′

f

′′

f(x) (1) = 0f

′

(3) = 0f

′

f(x) = 0 1 ≤ x ≤ 3

(x) = 0f

′′

1 ≤ x ≤ 3

x = 3

f(x) 1

f(x)
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4.7: Limits at Infinity and Asymptotes

Calculate the limit of a function as  increases or decreases without bound.
Recognize a horizontal asymptote on the graph of a function.
Estimate the end behavior of a function as  increases or decreases without bound.
Recognize an oblique asymptote on the graph of a function.
Analyze a function and its derivatives to draw its graph.

We have shown how to use the first and second derivatives of a function to describe the shape of a graph. To graph a function 
defined on an unbounded domain, we also need to know the behavior of  as . In this section, we define limits at infinity
and show how these limits affect the graph of a function. At the end of this section, we outline a strategy for graphing an arbitrary
function .

We begin by examining what it means for a function to have a finite limit at infinity. Then we study the idea of a function with an
infinite limit at infinity. Back in Introduction to Functions and Graphs, we looked at vertical asymptotes; in this section we deal
with horizontal and oblique asymptotes.

Limits at Infinity and Horizontal Asymptotes

Recall that  means  becomes arbitrarily close to  as long as  is sufficiently close to . We can extend this idea

to limits at infinity. For example, consider the function . As can be seen graphically in Figure  and numerically
in Table , as the values of  get larger, the values of  approach . We say the limit as  approaches  of  is  and
write . Similarly, for , as the values  get larger, the values of  approaches . We say the limit as 

approaches  of  is  and write .

Figure :The function approaches the asymptote  as  approaches .
Table : Values of a function  as 

10 100 1,000 10,000

2.1 2.01 2.001 2.0001

−10 −100 −1000 −10,000

1.9 1.99 1.999 1.9999

More generally, for any function , we say the limit as  of  is  if  becomes arbitrarily close to  as long as  is
sufficiently large. In that case, we write . Similarly, we say the limit as  of  is  if  becomes

Learning Objectives

x

x

f

f x→±∞

f

f(x) =Llim

x→a

f(x) L x a

f(x) = 2+

1

x

4.7.1

4.7.1 x f(x) 2 x ∞ f(x) 2

f(x) = 2lim

x→∞

x < 0 |x| f(x) 2 x

−∞ f(x) 2 f(x) = 2lim

x→−∞

4.7.1 y = 2 x ±∞

4.7.1 f x→±∞

x

2+

1

x

x

2+

1

x
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arbitrarily close to  as long as  and  is sufficiently large. In that case, we write . We now look at the

definition of a function having a limit at infinity.

If the values of  become arbitrarily close to  as  becomes sufficiently large, we say the function  has a limit at infinity
and write

If the values of  becomes arbitrarily close to  for  as  becomes sufficiently large, we say that the function  has
a limit at negative infinity and write

If the values  are getting arbitrarily close to some finite value  as  or , the graph of  approaches the

line . In that case, the line  is a horizontal asymptote of  (Figure ). For example, for the function ,

since , the line  is a horizontal asymptote of .

Figure : (a) As , the values of  are getting arbitrarily close to . The line  is a horizontal asymptote of .
(b) As , the values of  are getting arbitrarily close to . The line  is a horizontal asymptote of .

If  or , we say the line  is a horizontal asymptote of .

A function cannot cross a vertical asymptote because the graph must approach infinity (or ) from at least one direction as 
approaches the vertical asymptote. However, a function may cross a horizontal asymptote. In fact, a function may cross a horizontal

asymptote an unlimited number of times. For example, the function  shown in Figure  intersects the

horizontal asymptote  an infinite number of times as it oscillates around the asymptote with ever-decreasing amplitude.

Figure : The graph of  crosses its horizontal asymptote  an infinite number of times.

The algebraic limit laws and squeeze theorem we introduced in Introduction to Limits also apply to limits at infinity. We illustrate
how to use these laws to compute several limits at infinity.

L x < 0 |x| f(x) =Llim

x→−∞

Definition: Limit at Infinity (Informal)

f(x) L x f

f(x) =L.lim

x→∞

(4.7.1)

f(x) L x < 0 |x| f

f(x) =L.lim

x→−∞

(4.7.2)

f(x) L x→∞ x→−∞ f

y =L y =L f 4.7.2 f(x) =

1

x

f(x) = 0lim

x→∞

y = 0 f(x) =

1

x

4.7.2 x→∞ f L y = L f

x→−∞ f M y =M f

Definition: Horizontal Asymptote

f(x) =Llim

x→∞

f(x) =Llim

x→−∞

y =L f

−∞ x

f(x) = +1

cosx

x

4.7.3

y = 1

4.7.3 f(x) = (cos x)/x+1 y = 1
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For each of the following functions , evaluate  and . Determine the horizontal asymptote(s) for .

a. 

b. 

c. 

Solution

a. Using the algebraic limit laws, we have

Similarly, . Therefore,  has a horizontal asymptote of  and  approaches this horizontal

asymptote as  as shown in the following graph.

Figure : This function approaches a horizontal asymptote as 

b. Since  for all , we have

for all . Also, since

,

we can apply the squeeze theorem to conclude that

Similarly,

Thus,  has a horizontal asymptote of  and  approaches this horizontal asymptote as  as

shown in the following graph.

Example : Computing Limits at Infinity4.7.1

f f(x)lim

x→∞

f(x)lim

x→−∞

f

f(x) = 5−

2

x

2

f(x) =

sinx

x

f(x) = (x)tan

−1

(5− ) = 5−2( ) ⋅( ) = 5−2 ⋅ 0 = 5.lim

x→∞

2

x

2

lim

x→∞

lim

x→∞

1

x

lim

x→∞

1

x

f(x) = 5lim

x→−∞

f(x) =

5−2

x

2

y = 5 f

x→±∞

4.7.4 x→±∞.

1 ≤ sinx ≤ 1 x

≤ ≤

−1

x

sinx

x

1

x

x ≠ 0

= 0 =lim

x→∞

−1

x

lim

x→∞

1

x

= 0.lim

x→∞

sinx

x

= 0.lim

x→−∞

sinx

x

f(x) =

sinx

x

y = 0 f(x) x→±∞
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Figure : This function crosses its horizontal asymptote multiple times.

c. To evaluate  and , we first consider the graph of  over the interval  as

shown in the following graph.

Figure : The graph of  has vertical asymptotes at 

Since

it follows that

Similarly, since

it follows that

As a result,  and  are horizontal asymptotes of  as shown in the following graph.

Figure : This function has two horizontal asymptotes.

4.7.5

(x)lim

x→∞

tan

−1

(x)lim

x→−∞

tan

−1

y = tan(x) (− , )

π

2

π

2

4.7.6 y = tan x x =±

π

2

tanx =∞,lim

x→

π

2

−

(x) = .lim

x→∞

tan

−1

π

2

tanx =−∞,lim

x→−

π

2

+

(x) =− .lim

x→−∞

tan

−1

π

2

y =

π

2

y =−

π

2

f(x) = (x)tan

−1

4.7.7
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Evaluate  and . Determine the horizontal asymptotes of  if any.

Hint

Answer

Both limits are  The line  is a horizontal asymptote.

Infinite Limits at Infinity
Sometimes the values of a function  become arbitrarily large as (or as ). In this case, we write 

(or ). On the other hand, if the values of  are negative but become arbitrarily large in magnitude as  (or

as ), we write  (or ).

For example, consider the function . As seen in Table  and Figure , as  the values  become
arbitrarily large. Therefore, . On the other hand, as , the values of  are negative but become

arbitrarily large in magnitude. Consequently, 

Table 

10 20 50 100 1000

Find the Limit as x Goes to In�nityFind the Limit as x Goes to In�nity

Exercise 4.7.1

(3+ )lim

x→−∞

4

x

(3+ )lim

x→∞

4

x

f(x) = 3+ ,

4

x

= 0lim

x→±∞

1

x

3. y = 3

Limit With x Approaching Negative In�niLimit With x Approaching Negative In�ni……

f x→∞ x→−∞ f(x) =∞lim

x→∞

f(x) =∞lim

x→−∞

f x→∞

x→−∞ f(x) =−∞lim

x→∞

f(x) =−∞lim

x→−∞

f(x) = x

3

4.7.2 4.7.8 x→∞ f(x)

=∞lim

x→∞

x

3

x→−∞ f(x) = x

3

=−∞.lim

x→−∞

x

3

4.7.2

x
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1000 8000 125,000 1,000,000 1,000,000,000

−10 −20 −50 −100 −1000

−1000 −8000 −125,000 −1,000,000 −1,000,000,000

Values of a power function as 

Figure : For this function, the functional values approach infinity as 

We say a function  has an infinite limit at infinity and write

if  becomes arbitrarily large for  sufficiently large. We say a function has a negative infinite limit at infinity and write

if  and  becomes arbitrarily large for  sufficiently large. Similarly, we can define infinite limits as 

Formal Definitions
Earlier, we used the terms arbitrarily close, arbitrarily large, and sufficiently large to define limits at infinity informally. Although
these terms provide accurate descriptions of limits at infinity, they are not precise mathematically. Here are more formal definitions
of limits at infinity. We then look at how to use these definitions to prove results involving limits at infinity.

We say a function  has a limit at infinity, if there exists a real number  such that for all , there exists  such that

for all  in that case, we write

Figure : For a function with a limit at infinity, for all 

x

3

x

x

3

x→±∞

4.7.8 ± x→±∞.

Definition: Infinite Limit at Infinity (Informal)

f

f(x) =∞.lim

x→∞

(4.7.3)

f(x) x

f(x) =−∞.lim

x→∞

(4.7.4)

f(x) < 0 |f(x)| x x→−∞.

Definition: Limit at Infinity (Formal)

f L ε> 0 N > 0

|f(x)−L| < ε (4.7.5)

x >N .

f(x) =Llim

x→∞

(4.7.6)

4.7.9 x >N , |f(x) −L| < ε.
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Earlier in this section, we used graphical evidence in Figure  and numerical evidence in Table  to conclude that 

. Here we use the formal definition of limit at infinity to prove this result rigorously.

Use the formal definition of limit at infinity to prove that .

Solution

Let  Let . Therefore, for all , we have

Use the formal definition of limit at infinity to prove that .

Hint

Let .

Answer

Let  Let . Therefore, for all  we have

Therefore, 

We now turn our attention to a more precise definition for an infinite limit at infinity.

We say a function  has an infinite limit at infinity and write

if for all  there exists an  such that

for all  (see Figure ).

We say a function has a negative infinite limit at infinity and write

if for all , there exists an  such that

for all .

Similarly we can define limits as 

4.7.1 4.7.1

(2+ ) = 2lim

x→∞

1

x

Example :4.7.2

( ) = 2lim

x→∞

2+1

x

ε> 0. N =

1

ε

x >N

2+ −2 = = < = ε

∣

∣

∣

1

x

∣

∣

∣

∣

∣

∣

1

x

∣

∣

∣

1

x

1

N

Exercise 4.7.2

( ) = 3lim

x→∞

3−1

x

2

N =

1

ε

√

ε> 0. N =

1

ε

√

x >N ,

3 − −3 = < = ε

∣

∣

1

x

2

∣

∣

1

x

2

1

N

2

(3−1/ ) = 3.lim

x→∞

x

2

Definition: Infinite Limit at Infinity (Formal)

f

f(x) =∞lim

x→∞

M > 0, N > 0

f(x) >M

x >N 4.7.10

f(x) =−∞lim

x→∞

M < 0 N > 0

f(x) <M

x >N

x→−∞.
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Figure : For a function with an infinite limit at infinity, for all 

Earlier, we used graphical evidence (Figure ) and numerical evidence (Table ) to conclude that . Here we

use the formal definition of infinite limit at infinity to prove that result.

Use the formal definition of infinite limit at infinity to prove that 

Solution

Let  Let . Then, for all , we have

Therefore, .

Use the formal definition of infinite limit at infinity to prove that 

Hint

Let .

Answer

Let  Let . Then, for all  we have

4.7.10 x >N , f(x) >M .

4.7.8 4.7.2 =∞lim

x→∞

x

3

Example 4.7.3

=∞.lim

x→∞

x

3

M > 0. N = M

−−

√

3

x >N

> = ( =M .x

3

N

3

M

−−

√

3

)

3

=∞lim

x→∞

x

3

Epsilon M De�nition of a Limit as x ApprEpsilon M De�nition of a Limit as x Appr……

Exercise 4.7.3

3 =∞.lim

x→∞

x

2

N =

M

3

−−

√

M > 0. N =

M

3

−−

√ x >N ,

3 > 3 = 3 = =Mx

2

N

2

( )

M

3

−−

√

2

3M

3
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End Behavior

The behavior of a function as  is called the function’s end behavior. At each of the function’s ends, the function could
exhibit one of the following types of behavior:

1. The function  approaches a horizontal asymptote .
2. The function  or 
3. The function does not approach a finite limit, nor does it approach  or . In this case, the function may have some

oscillatory behavior.

Let’s consider several classes of functions here and look at the different types of end behaviors for these functions.

End Behavior for Polynomial Functions

Consider the power function  where  is a positive integer. From Figure  and Figure , we see that

and

Figure : For power functions with an even power , .

Figure : For power functions with an odd power ,  and 

Using these facts, it is not difficult to evaluate  and , where  is any constant and  is a positive integer. If 

, the graph of is a vertical stretch or compression of  and therefore

 and  if .

x→±∞

f(x) y =L

f(x) →∞ f(x) →−∞.

∞ −∞

f(x) = x

n

n 4.7.11 4.7.12

=∞; n= 1, 2, 3,…lim

x→∞

x

n

(4.7.7)

={lim

x→−∞

x

n

∞,

−∞,

n= 2, 4, 6,…

n= 1, 3, 5,… .

(4.7.8)

4.7.11 n =∞ =lim

x→∞

x

n

lim

x→−∞

x

n

4.7.12 n =∞lim

x→∞

x

n

=−∞.lim

x→−∞

x

n

clim

x→∞

x

n

clim

x→−∞

x

n

c n

c > 0 y = cx

n

y = ,x

n

c =lim

x→∞

x

n

lim

x→∞

x

n

c =lim

x→−∞

x

n

lim

x→−∞

x

n

c > 0
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If  the graph of  is a vertical stretch or compression combined with a reflection about the -axis, and therefore

 and  if 

If  in which case 

For each function , evaluate  and .

a. 
b. 

Solution

a. Since the coefficient of  is , the graph of  involves a vertical stretch and reflection of the graph of 
 about the -axis. Therefore,  and .

b. Since the coefficient of  is , the graph of  is a vertical stretch of the graph of . Therefore, 
 and .

Let . Find .

Hint

The coefficient  is negative.

Answer

We now look at how the limits at infinity for power functions can be used to determine  for any polynomial function .

Consider a polynomial function

of degree  so that 

Factoring, we see that

As  all the terms inside the parentheses approach zero except the first term. We conclude that

For example, the function  behaves like  as  as shown in Figure  and Table 
.

c < 0, y = cx

n

x

c =−lim

x→∞

x

n

lim

x→∞

x

n

c =−lim

x→−∞

x

n

lim

x→−∞

x

n

c < 0.

c = 0, y = c = 0,x

n

c = 0 = c .lim

x→∞

x

n

lim

x→−∞

x

n

Example : Limits at Infinity for Power Functions4.7.4

f f(x)lim

x→∞

f(x)lim

x→−∞

f(x) =−5x

3

f(x) = 2x

4

x

3

−5 f(x) =−5x

3

y = x

3

x (−5 ) =−∞lim

x→∞

x

3

(−5 ) =∞lim

x→−∞

x

3

x

4

2 f(x) = 2x

4

y = x

4

2 =∞lim

x→∞

x

4

2 =∞lim

x→−∞

x

4

Exercise 4.7.4

f(x) =−3x

4

f(x)lim

x→∞

−3

−∞

f(x)lim

x→±∞

f

f(x) = + +…+ x+a

n

x

n

a

n−1

x

n−1

a

1

a

0

(4.7.9)

n≥ 1 ≠ 0.a

n

f(x) = (1+ +…+ + ) .a

n

x

n

a

n−1

a

n

1

x

a

1

a

n

1

x

n−1

a

0

a

n

1

x

n

(4.7.10)

x→±∞,

f(x) = .lim

x→±∞

lim

x→±∞

a

n

x

n

(4.7.11)

f(x) = 5 −3 +4x

3

x

2

g(x) = 5x

3

x→±∞ 4.7.13

4.7.3
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Figure : The end behavior of a polynomial is determined by the behavior of the term with the largest exponent.
Table : A polynomial’s end behavior is determined by the term with the largest exponent

10 100 1000

4704 4,970,004 4,997,000,004

5000 5,000,000 5,000,000,000

−10 −100 −000

−5296 −5,029,996 −5,002,999,996

−5000 −5,000,000 −5,000,000,000

End Behavior for Algebraic Functions
The end behavior for rational functions and functions involving radicals is a little more complicated than for polynomials. In

Example, we show that the limits at infinity of a rational function  depend on the relationship between the degree of

the numerator and the degree of the denominator. To evaluate the limits at infinity for a rational function, we divide the numerator
and denominator by the highest power of  appearing in the denominator. This determines which term in the overall expression
dominates the behavior of the function at large values of .

For each of the following functions, determine the limits as  and  Then, use this information to describe the
end behavior of the function.

a.  (Note: The degree of the numerator and the denominator are the same.)

b.  (Note: The degree of numerator is less than the degree of the denominator.)

c.  in the denominator is . Therefore, dividing the numerator and denominator by  and applying the

algebraic limit laws, we see that

Solution

a. The highest power of  in the denominator is . Therefore, dividing the numerator and denominator by  and applying the
algebraic limit laws, we see that

4.7.13

4.7.3

x

f(x) = 5 −3 +4x

3

x

2

g(x) = 5x

3

x

f(x) = 5 −3 +4x

3

x

2

g(x) = 5x

3

f(x) =

p(x)

q(x)

x

x

Example : Determining End Behavior for Rational Functions4.7.5

x→∞ x→−∞.

f(x) =

3x−1

2x+5

f(x) =

3 +2xx

2

4 −5x+7x

3

f(x) =

3 +4xx

2

x+2

x x

x x x
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Since , we know that  is a horizontal asymptote for this function as shown in the following graph.

Figure : The graph of this rational function approaches a horizontal asymptote as 

b. Since the largest power of  appearing in the denominator is , divide the numerator and denominator by . After doing
so and applying algebraic limit laws, we obtain

Therefore  has a horizontal asymptote of  as shown in the following graph.

Figure : The graph of this rational function approaches the horizontal asymptote  as 

c. Dividing the numerator and denominator by , we have

lim

x→±∞

3x−1

2x+5

= lim

x→±∞

3−1/x

2+5/x

=

(3−1/x)lim

x→±∞

(2+5/x)lim

x→±∞

=

3− 1/xlim

x→±∞

lim

x→±∞

2+ 5/xlim

x→±∞

lim

x→±∞

= = .

3−0

2+0

3

2

f(x) =lim

x→±∞

3

2

y =

3

2

4.7.14 x→±∞.

x x

3

x

3

= = = = 0.lim

x→±∞

3 +2xx

2

4 −5x+7x

3

lim

x→±∞

3/x+2/x

2

4−5/ +7/x

2

x

3

3 ⋅ 0+2 ⋅ 0

4−5 ⋅ 0+7 ⋅ 0

0

4

f y = 0

4.7.15 y = 0 x→±∞.

x

= .lim

x→±∞

3 +4xx

2

x+2

lim

x→±∞

3x+4

1+2/x
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As , the denominator approaches . As , the numerator approaches . As , the numerator
approaches . Therefore , whereas  as shown in the following figure.

Figure : As , the values . As , the values 

Evaluate  and use these limits to determine the end behavior of .

Hint

Divide the numerator and denominator by .

Answer

Before proceeding, consider the graph of  shown in Figure . As  and , the graph of 

appears almost linear. Although  is certainly not a linear function, we now investigate why the graph of  seems to be
approaching a linear function. First, using long division of polynomials, we can write

x→±∞ 1 x→∞ +∞ x→−∞

−∞ f(x) =∞lim

x→∞

f(x) =−∞lim

x→−∞

4.7.16 →∞ f(x) →∞ x→−∞ f(x) → −∞.

Sketching a Graph With Both a HorizontSketching a Graph With Both a Horizont……

Exercise 4.7.5

lim

x→±∞

3 +2x−1x

2

5 −4x+7x

2

f(x) =

3 +2x−2x

2

5 −4x+7x

2

x

2

3

5

f(x) =

3 +4xx

2

x+2

4.7.16 x→∞ x→−∞ f

f f
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Since  as  we conclude that

Therefore, the graph of  approaches the line  as . This line is known as an oblique asymptote for  (Figure 
).

Figure : The graph of the rational function  approaches the oblique asymptote  as 

We can summarize the results of Example to make the following conclusion regarding end behavior for rational functions. Consider
a rational function

where  and 

1. If the degree of the numerator is the same as the degree of the denominator  then  has a horizontal asymptote of 
 as 

2. If the degree of the numerator is less than the degree of the denominator  then  has a horizontal asymptote of 
as 

3. If the degree of the numerator is greater than the degree of the denominator  then  does not have a horizontal
asymptote. The limits at infinity are either positive or negative infinity, depending on the signs of the leading terms. In addition,
using long division, the function can be rewritten as

where the degree of  is less than the degree of . As a result, . Therefore, the values of 

 approach zero as . If the degree of  is exactly one more than the degree of  (i.e., ),
the function  is a linear function. In this case, we call  an oblique asymptote.

Now let’s consider the end behavior for functions involving a radical.

Find the limits as  and  for  and describe the end behavior of .

Solution

f(x) = = 3x−2+ .

3 +4xx

2

x+2

4

x+2

→ 0

4

x+2

x→±∞,

(f(x)−(3x−2)) = = 0.lim

x→±∞

lim

x→±∞

4

x+2

f y = 3x−2 x→±∞ f

4.7.17

4.7.17 f(x) = (3 +4x)/(x+2)x

2

y = 3x−2

x→±∞.

f(x) = = ,

p(x)

q(x)

+ +…+ x+a

n

x

n

a

n−1

x

n−1

a

1

a

0

+ +…+ x+b

m

x

m

b

m−1

x

m−1

b

1

b

0

≠ 0a

n

≠ 0.b

m

(n=m), f

y = /a

n

b

m

x→±∞.

(n<m), f y = 0

x→±∞.

(n>m), f

f(x) = = g(x)+ ,

p(x)

q(x)

r(x)

q(x)

(4.7.12)

r(x) q(x) r(x)/q(x) = 0lim

x→±∞

[f(x)−g(x)] x→±∞ p(x) q(x) n=m+1

g(x) g(x)

Example : Determining End Behavior for a Function Involving a Radical4.7.6

x→∞ x→−∞ f(x) =

3x−2

4 +5x

2

− −−−−−

√

f
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Let’s use the same strategy as we did for rational functions: divide the numerator and denominator by a power of . To
determine the appropriate power of , consider the expression  in the denominator. Since

for large values of  in effect  appears just to the first power in the denominator. Therefore, we divide the numerator and
denominator by . Then, using the fact that  for  for , and  for all , we calculate the
limits as follows:

Therefore,  approaches the horizontal asymptote  as  and the horizontal asymptote  as  as
shown in the following graph.

Figure : This function has two horizontal asymptotes and it crosses one of the asymptotes.

Evaluate .

Hint

Divide the numerator and denominator by .

Answer

Determining End Behavior for Transcendental Functions

The six basic trigonometric functions are periodic and do not approach a finite limit as  For example,  oscillates
between 1 and −1 (Figure ). The tangent function  has an infinite number of vertical asymptotes as ; therefore, it
does not approach a finite limit nor does it approach  as  as shown in Figure .

x

x 4 +5x

2

− −−−−−

√

≈ = 2|x|4 +5x

2

− −−−−−

√

4x

2

−−−

√

x x

|x| |x| = x x > 0, |x| = −x x < 0 |x| = x

2

−−

√

x

lim

x→∞

3x−2

4 +5x

2

− −−−−−

√

= lim

x→∞

(1/|x|)(3x−2)

(1/|x|) 4 +5x

2

− −−−−−

√

= lim

x→∞

(1/x)(3x−2)

(1/ )(4 +5)x

2

x

2

− −−−−−−−−−−−−

√

= = =lim

x→∞

3−2/x

4+5/x

2

− −−−−−−

√

3

4

–

√

3

2

lim

x→−∞

3x−2

4 +5x

2

− −−−−−

√

= lim

x→−∞

(1/|x|)(3x−2)

(1/|x|) 4 +5x

2

− −−−−−

√

= lim

x→−∞

(−1/x)(3x−2)

(1/ )(4 +5)x

2

x

2

− −−−−−−−−−−−−

√

= = = .lim

x→−∞

−3+2/x

4+5/x

2

− −−−−−−

√

−3

4

–

√

−3

2

f(x) y =

3

2

x→∞ y =−

3

2

x→−∞

4.7.18

Exercise 4.7.6

lim

x→∞

3 +4x

2

− −−−−−

√

x+6

x

3

–

√

x→±∞. sinx

4.7.19 x x→±∞

±∞ x→±∞ 4.7.20
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Figure : The function  oscillates between  and  as 

Figure : The function  does not approach a limit and does not approach  as 

Recall that for any base  the function  is an exponential function with domain  and range . If 
 is increasing over . If  is decreasing over  For the natural exponential

function . Therefore,  is increasing on `  and the range is ` . The exponential
function  approaches  as  and approaches  as  as shown in Table  and Figure .

Table : End behavior of the natural exponential function

−5 −2 0 2 5

0.00674 0.135 1 7.389 148.413

Figure : The exponential function approaches zero as  and approaches  as 

Recall that the natural logarithm function  is the inverse of the natural exponential function . Therefore, the
domain of  is  and the range is . The graph of  is the reflection of the graph of 
about the line . Therefore,  as  and  as  as shown in Figure  and Table .

Table : End behavior of the natural logarithm function

0.01 0.1 1 10 100

−4.605 −2.303 0 2.303 4.605

4.7.19 f(x) = sin x 1 −1 x→±∞

4.7.20 f(x) = tan x ±∞ x→±∞

b > 0, b ≠ 1, y = b

x

(−∞,∞) (0,∞)

b > 1, y = b

x

(−∞,∞) 0 < b < 1, y = b

x

(−∞,∞).

f(x) = , e≈ 2.718 > 1e

x

f(x) = e

x

(−∞,∞) (0,∞)

f(x) = e

x

∞ x→∞ 0 x→−∞ 4.7.4 4.7.21

4.7.4

x

e

x

4.7.21 x→−∞ ∞ x→∞.

f(x) = ln(x) y = e

x

f(x) = ln(x) (0,∞) (−∞,∞) f(x) = ln(x) y = e

x

y = x ln(x) →−∞ x→0

+

ln(x) →∞ x→∞ 4.7.22 4.7.5

4.7.5

x

ln(x)
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Figure : The natural logarithm function approaches  as 

Find the limits as  and  for  and describe the end behavior of 

Solution

To find the limit as  divide the numerator and denominator by :

As shown in Figure ,  as . Therefore,

.

We conclude that , and the graph of  approaches the horizontal asymptote  as  To find the

limit as , use the fact that  as  to conclude that , and therefore the graph of

approaches the horizontal asymptote  as .

Find the limits as  and  for .

Hint

 and 

Answer

Guidelines for Drawing the Graph of a Function
We now have enough analytical tools to draw graphs of a wide variety of algebraic and transcendental functions. Before showing
how to graph specific functions, let’s look at a general strategy to use when graphing any function.

Given a function , use the following steps to sketch a graph of :

1. Determine the domain of the function.

4.7.22 ∞ x→∞.

Example : Determining End Behavior for a Transcendental Function4.7.7

x→∞ x→−∞ f(x) =

2+3e

x

7−5e

x

f .

x→∞, e

x

f(x)lim

x→∞

= lim

x→∞

2+3e

x

7−5e

x

= lim

x→∞

(2/ )+3e

x

(7/ )−5.e

x

4.7.21 →∞e

x

x→∞

=0 =lim

x→∞

2

e

x

lim

x→∞

7

e

x

(x) =−lim

x→∞f

3

5

f y =−

3

5

x→∞.

x→−∞ →0e

x

x→−∞ f(x) =lim

x→∞

2

7

y =

2

7

x→−∞

Exercise 4.7.7

x→∞ x→−∞ f(x) =

3 −4e

x

5 +2e

x

=∞lim

x→∞

e

x

= 0.lim

x→∞

e

x

f(x) = , f(x) =−2lim

x→∞

3

5

lim

x→−∞

Problem-Solving Strategy: Drawing the Graph of a Function

f f
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2. Locate the - and -intercepts.
3. Evaluate  and  to determine the end behavior. If either of these limits is a finite number , then 

is a horizontal asymptote. If either of these limits is  or , determine whether  has an oblique asymptote. If s a

rational function such that , where the degree of the numerator is greater than the degree of the denominator,

then  can be written as

where the degree of  is less than the degree of . The values of  approach the values of  as . If 
 is a linear function, it is known as an oblique asymptote.

4. Determine whether  has any vertical asymptotes.
5. Calculate  Find all critical points and determine the intervals where  is increasing and where  is decreasing. Determine

whether  has any local extrema.
6. Calculate  Determine the intervals where  is concave up and where  is concave down. Use this information to

determine whether  has any inflection points. The second derivative can also be used as an alternate means to determine or
verify that  has a local extremum at a critical point.

Now let’s use this strategy to graph several different functions. We start by graphing a polynomial function.

Sketch a graph of 

Solution

Step 1: Since  is a polynomial, the domain is the set of all real numbers.

Step 2: When  Therefore, the -intercept is . To find the -intercepts, we need to solve the equation 
, gives us the -intercepts  and 

Step 3: We need to evaluate the end behavior of  As  and . Therefore, 
.

As  and . Therefore, .

To get even more information about the end behavior of , we can multiply the factors of . When doing so, we see that

Since the leading term of  is , we conclude that  behaves like  as 

Step 4: Since  is a polynomial function, it does not have any vertical asymptotes.

Step 5: The first derivative of  is

Therefore,  has two critical points:  Divide the interval  into the three smaller intervals: 
, and . Then, choose test points , and  from these intervals and evaluate the

sign of  at each of these test points, as shown in the following table.

Interval Test point
Sign of Derivative 

Conclusion

 is increasing

 decreasing

 is increasing

x y

f(x)lim

x→∞

f(x)lim

x→−∞

L y =L

∞ −∞ f i

f(x) =

p(x)

q(x)

f

f(x) = = g(x)+

p(x)

q(x)

r(x)

q(x),

(4.7.13)

r(x) q(x) f(x) g(x) x→±∞

g(x)

f

f '. f f

f

.f

′′

f f

f

f

Example : Sketching a Graph of a Polynomial4.7.8

f(x) = (x−1 (x+2).)

2

f

x = 0, f(x) = 2. y (0, 2) x

(x−1 (x+2) = 0)

2

x (1, 0) (−2, 0)

f . x→∞, (x−1 →∞)

2

(x+2)→∞

f(x) =∞lim

x→∞

x→−∞, (x−1 →∞)

2

(x+2)→−∞ f(x) =−∞lim

x→∞

f f

f(x) = (x−1 (x+2) = −3x+2.)

2

x

3

f x

3

f y = x

3

x→±∞.

f

f

f '(x) = 3 −3.x

2

f x = 1,−1. (−∞,∞)

(−∞,−1), (−1, 1) (1,∞) x =−2, x = 0 x = 2

f '(x)

(x) = 3 −3= 3(x−1)(x+1)f

′

x

2

(−∞,−1) x= −2 (+)(−)(−) = + f

(−1, 1) x= 0 (+)(−)(+) = − f

(1,∞) x= 2 (+)(+)(+) = + f
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From the table, we see that  has a local maximum at  and a local minimum at . Evaluating  at those two
points, we find that the local maximum value is  and the local minimum value is 

Step 6: The second derivative of  is

The second derivative is zero at  Therefore, to determine the concavity of , divide the interval  into the
smaller intervals  and , and choose test points  and  to determine the concavity of  on each of
these smaller intervals as shown in the following table.

Interval Test Point Sign of Conclusion

 is concave down..

 is concave up.

We note that the information in the preceding table confirms the fact, found in step , that f has a local maximum at 
and a local minimum at . In addition, the information found in step —namely,  has a local maximum at  and a
local minimum at , and  at those points—combined with the fact that  changes sign only at  confirms
the results found in step  on the concavity of .

Combining this information, we arrive at the graph of  shown in the following graph.

Sketch a graph of 

Hint

 is a fourth-degree polynomial.

Answer

f x =−1 x = 1 f(x)

f(−1) = 4 f(1) = 0.

f

(x) = 6x.f

′′

x = 0. f (−∞,∞)

(−∞, 0) (0,∞) x =−1 x = 1 f

(x) = 6x

′′

(−∞, 0) x= −1 − f

(0,∞) x= 1 + f

5 x =−1

x = 1 5 f x =−1

x = 1 f '(x) = 0 f

′′

x = 0

6 f

f(x) = (x−1 (x+2))

2

Exercise 4.7.8

f(x) = (x−1 (x+2).)

3

f
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Sketch the graph of .

Solution

Step 1: The function  is defined as long as the denominator is not zero. Therefore, the domain is the set of all real numbers 
except 

Step 2: Find the intercepts. If  then , so  is an intercept. If , then  which implies .

Therefore,  is the only intercept.

Step 3: Evaluate the limits at infinity. Since is a rational function, divide the numerator and denominator by the highest power
in the denominator: .We obtain

Therefore,  has a horizontal asymptote of  as  and 

Step 4: To determine whether  has any vertical asymptotes, first check to see whether the denominator has any zeroes. We
find the denominator is zero when . To determine whether the lines  or  are vertical asymptotes of ,
evaluate  and . By looking at each one-sided limit as  we see that

 and 

In addition, by looking at each one-sided limit as  we find that

 and 

Step 5: Calculate the first derivative:

Example : Sketching a Rational Function4.7.9

f(x) =

x

2

1−x

2

f x

x =±1.

x = 0, f(x) = 0 0 y = 0 = 0,

x

2

1−x

2

x = 0

(0, 0)

f

x

2

= =−1.lim

x→±∞

x

2

1−x

2

lim

x→±∞

1

−1

1

x

2

f y =−1 x→∞ x→−∞.

f

x =±1 x = 1 x =−1 f

f(x)lim

x→1

f(x)lim

x→−1

x→1,

=−∞lim

x→1

+

x

2

1−x

2

=∞.lim

x→1

−

x

2

1−x

2

x→−1,

=∞lim

x→−1

+

x

2

1−x

2

=−∞.lim

x→−1

−

x

2

1−x

2
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.

Critical points occur at points  where  or  is undefined. We see that  when  The derivative 
is not undefined at any point in the domain of . However,  are not in the domain of . Therefore, to determine where 

 is increasing and where  is decreasing, divide the interval  into four smaller intervals: 
and , and choose a test point in each interval to determine the sign of  in each of these intervals. The values 

, and  are good choices for test points as shown in the following table.

Interval Test point Sign of Conclusion

 is decreasing.

 is decreasing.

 is increasing.

 is increasing.

From this analysis, we conclude that  has a local minimum at  but no local maximum.

Step 6: Calculate the second derivative:

To determine the intervals where  is concave up and where  is concave down, we first need to find all points  where 
 or  is undefined. Since the numerator  for any  is never zero. Furthermore,  is not

undefined for any  in the domain of . However, as discussed earlier,  are not in the domain of . Therefore, to
determine the concavity of , we divide the interval  into the three smaller intervals , and 

, and choose a test point in each of these intervals to evaluate the sign of . in each of these intervals. The values 
, and  are possible test points as shown in the following table.

Interval Test Point Sign of Conclusion

 is concave down.

 is concave up

 is concave down.

Combining all this information, we arrive at the graph of  shown below. Note that, although  changes concavity at 
and , there are no inflection points at either of these places because  is not continuous at  or 

f '(x) = =

(1− )(2x)− (−2x)x

2

x

2

(1−x

2

)

2

2x

(1−x

2

)

2

x f '(x) = 0 f '(x) f '(x) = 0 x = 0. f '

f x =±1 f

f f (−∞,∞) (−∞,−1), (−1, 0), (0, 1),

(1,∞) f '(x)

x =−2, x =− , x =

1

2

1

2

x = 2

f'(x) =

2x

(1−x

2

)

2

(−∞,−1) x= −2 −/+ = − f

(−1, 0) x= −/2 −/+ = − f

(0, 1) x= 1/2 +/+ = + f

(1,∞) x= 2 +/+ = + f

f x = 0

(x)f

′′

=

(1− (2)−2x(2(1− )(−2x))x

2

)

2

x

2

(1−x

2

)

4

=

(1− )[2(1− )+8 ]x

2

x

2

x

2

(1−x

2

)

4

=

2(1− )+8x

2

x

2

(1−x

2

)

3

= .

6 +2x

2

(1−x

2

)

3

f f x

(x) = 0f

′′

(x)f

′′

6 +2 ≠ 0x

2

x, (x)f

′′

f

′′

x f x =±1 f

f (−∞,∞) (−∞,−1), (−1,−1)

(1,∞) (x)f

′′

x =−2, x = 0 x = 2

(x) =f

′′

6 +2x

2

(1−x

2

)

3

(−∞,−1) x= −2 +/− = − f

(−1, −1) x= 0 +/+ = + f

(1,∞) x= 2 +/− = − f

f f x =−1

x = 1 f x =−1 x = 1.
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Sketch a graph of 

Hint

A line  is a horizontal asymptote of  if the limit as  or the limit as  of  is . A line  is a
vertical asymptote if at least one of the one-sided limits of  as  is  or 

Answer

Sketch the graph of 

Solution

Step 1: The domain of  is the set of all real numbers  except 

Step 2: Find the intercepts. We can see that when  so  is the only intercept.

Step 3: Evaluate the limits at infinity. Since the degree of the numerator is one more than the degree of the denominator, 
must have an oblique asymptote. To find the oblique asymptote, use long division of polynomials to write

.

Exercise 4.7.9

f(x) = .

3x+5

8+4x

y =L f x→∞ x→−∞ f(x) L x = a

f x→ a ∞ −∞.

Example : Sketching a Rational Function with an Oblique Asymptote4.7.10

f(x) =

x

2

x−1

f x x = 1.

x = 0, f(x) = 0, (0, 0)

f

f(x) = = x+1+

x

2

x−1

1

x−1
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Since  as  approaches the line  as . The line  is an oblique asymptote

for .

Step 4: To check for vertical asymptotes, look at where the denominator is zero. Here the denominator is zero at 
Looking at both one-sided limits as  we find

 and 

Therefore,  is a vertical asymptote, and we have determined the behavior of  as  approaches  from the right and the
left.

Step 5: Calculate the first derivative:

We have  when . Therefore,  and  are critical points. Since  is undefined at 
, we need to divide the interval  into the smaller intervals  and , and choose a test

point from each interval to evaluate the sign of  in each of these smaller intervals. For example, let 
, and  be the test points as shown in the following table.

Interval Test Point Sign of Conclusion

(−)(−)/+=+  is increasing.

(+)(−)/+=−  is decreasing.

(+)(−)/+=−  is decreasing.

(+)(+)/+=+  is increasing.

From this table, we see that  has a local maximum at  and a local minimum at . The value of  at the local
maximum is  and the value of  at the local minimum is . Therefore,  and  are important points
on the graph.

Step 6. Calculate the second derivative:

We see that  is never zero or undefined for  in the domain of . Since  is undefined at , to check concavity we
just divide the interval  into the two smaller intervals  and , and choose a test point from each interval
to evaluate the sign of  in each of these intervals. The values  and  are possible test points as shown in the
following table.

Interval Test Point Sign of Conclusion

 is concave down.

 is concave up

→0

1

x−1

x→±∞, f(x) y = x+1 x→±∞ y = x+1

f

x = 1.

x→1,

=∞lim

x→1

+

x

2

x−1

=−∞.lim

x→1

−

x

2

x−1

x = 1 f x 1

f '(x) = = .

(x−1)(2x)− (1)x

2

(x−1)

2

−2xx

2

(x−1)

2

f '(x) = 0 −2x = x(x−2) = 0x

2

x = 0 x = 2 f

x = 1 (−∞,∞) (−∞, 0), (0, 1), (1, 2), (2,∞)

f '(x)

x =−1, x = , x =

1

2

3

2

x = 3

(x) =f

′

−2xx

2

(x−1)

2

(−∞, 0) x= −1 f

(0, 1) x= 1/2 f

(1, 2) x= 3/2 f

(2,∞) x= 3 f

f x = 0 x = 2 f

f(0) = 0 f f(2) = 4 (0, 0) (2, 4)

(x)f

′′

=

(x−1 (2x−2)−2(x−1)( −2x))

2

x

2

(x−1)

4

=

2(x−1)[(x−1 −( −2x)])

2

x

2

(x−1)

4

=

2[ −2x+1− +2x]x

2

x

2

(x−1)

3

= .

2

(x−1)

3

(x)f

′′

x f f x = 1

(−∞,∞) (−∞, 1) (1,∞)

(x)f

′′

x = 0 x = 2

(x) =f

′′

2

(x−1)

3

(−∞, 1) x= 0 +/− = − f

(1,∞) x= 2 +/+ = + f
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From the information gathered, we arrive at the following graph for 

Find the oblique asymptote for .

Hint

Use long division of polynomials.

Answer

Sketch a graph of 

Solution

Step 1: Since the cube-root function is defined for all real numbers  and , the domain of  is all real
numbers.

Step 2: To find the -intercept, evaluate . Since  the -intercept is . To find the -intercept, solve 
. The solution of this equation is , so the -intercept is 

Step 3: Since  the function continues to grow without bound as  and 

Step 4: The function has no vertical asymptotes.

Step 5: To determine where  is increasing or decreasing, calculate  We find

This function is not zero anywhere, but it is undefined when  Therefore, the only critical point is  Divide the
interval  into the smaller intervals  and , and choose test points in each of these intervals to determine
the sign of  in each of these smaller intervals. Let  and  be the test points as shown in the following table.

Interval Test Point Sign of Conclusion

 is decreasing

 is increasing

f .

Exercise 4.7.10

f(x) =

3 −2x+1x

3

2 −4x

2

y = x

3

2

Example : Sketching the Graph of a Function with a Cusp4.7.11

f(x) = (x−1)

2/3

x (x−1 = ()

2/3

x−1

− −−−−

√

3

)

2

f

y f(0) f(0) = 1, y (0, 1) x

(x−1 = 0)

2/3

x = 1 x (1, 0).

(x−1 =∞,lim

x→±∞

)

2/3

x→∞ x→−∞.

f f '.

f '(x) = (x−1 =

2

3

)

−1/3

2

3(x−1)

1/3

(4.7.14)

x = 1. x = 1.

(−∞,∞) (−∞, 1) (1,∞)

f '(x) x = 0 x = 2

f'(x) =

2

3(x−1)

1/3

(−∞, 1) x= 0 +/− = − f

(1,∞) x= 2 +/+ = + f
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We conclude that  has a local minimum at . Evaluating  at , we find that the value of  at the local minimum is
zero. Note that  is undefined, so to determine the behavior of the function at this critical point, we need to examine 

 Looking at the one-sided limits, we have

Therefore,  has a cusp at 

Step 6: To determine concavity, we calculate the second derivative of 

We find that  is defined for all , but is undefined when . Therefore, divide the interval  into the smaller
intervals  and , and choose test points to evaluate the sign of  in each of these intervals. As we did earlier,
let  and  be test points as shown in the following table.

Interval Test Point
Sign of 

Conclusion

 is concave down

 is concave down

From this table, we conclude that  is concave down everywhere. Combining all of this information, we arrive at the following
graph for .

Consider the function . Determine the point on the graph where a cusp is located. Determine the end behavior
of .

Hint

A function  has a cusp at a point a if  exists,  is undefined, one of the one-sided limits as  of  is 
, and the other one-sided limit is 

Answer

The function  has a cusp at , since  and . For end behavior, 

Key Concepts
The limit of  is  as  (or as  if the values  become arbitrarily close to  as  becomes sufficiently
large.

f x = 1 f x = 1 f

f '(1)

f '(x).lim

x→1

=∞ and  =−∞.lim

x→1

+

2

3(x−1)

1/3

lim

x→1

−

2

3(x−1)

1/3

f x = 1.

f :

(x) =− (x−1 = .f

′′

2

9

)

−4/3

−2

9(x−1)

4/3

(4.7.15)

(x)f

′′

x x = 1 (−∞,∞)

(−∞, 1) (1,∞) (x)f

′′

x = 0 x = 2

(x) =f

′′

−2

9(x−1)

4/3

(−∞, 1) x= 0 −/+ = − f

(1,∞) x= 2 −/+ = − f

f

f

Exercise 4.7.11

f(x) = 5−x

2/3

f

f f(a) (a)f

′

x→ a (x)f

′

+∞ −∞.

f (0, 5) f '(x) =∞lim

x→0

−

f '(x) =−∞lim

x→0

+

f(x) =−∞.lim

x→±∞

f(x) L x→∞ x→−∞) f(x) L x
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The limit of  is  as  if  becomes arbitrarily large as  becomes sufficiently large. The limit of  is 
as  if  and  becomes arbitrarily large as  becomes sufficiently large. We can define the limit of  as 

 approaches  similarly.
For a polynomial function  where , the end behavior is determined by the
leading term . If  approaches  or at each end.

For a rational function  the end behavior is determined by the relationship between the degree of  and the degree

of . If the degree of  is less than the degree of , the line  is a horizontal asymptote for . If the degree of  is equal to

the degree of , then the line  is a horizontal asymptote, where  and  are the leading coefficients of  and ,

respectively. If the degree of  is greater than the degree of , then  approaches  or  at each end.

Glossary

end behavior
the behavior of a function as  and 

horizontal asymptote
if  or , then  is a horizontal asymptote of 

infinite limit at infinity
a function that becomes arbitrarily large as  becomes large

limit at infinity
a function that approaches a limit value  as  becomes large

oblique asymptote
the line  if  approaches it as  or
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4.7E: Exercises for Section 4.6
For exercises 1 - 5, examine the graphs. Identify where the vertical asymptotes are located.

1)

Answer

2)

3)

Answer

x = 1

x =−1, x = 2
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4)

5)

Answer

For the functions  in exercises 6 - 10, determine whether there is an asymptote at . Justify your answer without
graphing on a calculator.

6) 

7) 

Answer
Yes, there is a vertical asymptote at .

8) 

9) 

Answer
Yes, there is vertical asymptote at .

10) 

In exercises 11 - 20, evaluate the limit.

11) 

x = 0

f(x) x = a

f(x) = , a=−1

x+1

+5x+4x

2

f(x) = , a= 2

x

x−2

x = 2

f(x) = (x+2 , a=−2)

3/2

f(x) = (x−1 , a= 1)

−1/3

x = 1

f(x) = 1+ , a= 1x

−2/5

lim

x→∞

1

3x+6
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Answer

12) 

13) 

Answer

14) 

15) 

Answer

16) 

17) 

Answer

18) 

19) 

Answer

20) 

For exercises 21 - 25, find the horizontal and vertical asymptotes.

21) 

Answer
Horizontal: none, 
Vertical: 

22) 

23) 

= 0lim

x→∞

1

3x+6

lim

x→∞

2x−5

4x

lim

x→∞

−2x+5x

2

x+2

=∞lim

x→∞

−2x+5x

2

x+2

lim

x→−∞

3 −2xx

3

+2x+8x

2

lim

x→−∞

−4 +1x

4

x

3

2−2 −7x

2

x

4

=−lim

x→−∞

−4 +1x

4

x

3

2−2 −7x

2

x

4

1

7

lim

x→∞

3x

+1x

2

− −−−−

√

lim

x→−∞

4 −1x

2

− −−−−−

√

x+2

=−2lim

x→−∞

4 −1x

2

− −−−−−

√

x+2

lim

x→∞

4x

−1x

2

− −−−−

√

lim

x→−∞

4x

−1x

2

− −−−−

√

=−4lim

x→−∞

4x

−1x

2

− −−−−

√

lim

x→∞

2 x

−−

√

x− +1x

−−

√

f(x) = x−

9

x

x = 0

f(x) =

1

1−x

2

f(x) =

x

3

4−x

2
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Answer
Horizontal: none, 
Vertical: 

24) 

25) 

Answer
Horizontal: none, 
Vertical: none

26) 

27) 

Answer
Horizontal:  
Vertical: 

28) 

29) 

Answer
Horizontal:  
Vertical:  and 

30) 

31) 

Answer
Horizontal:  
Vertical: 

32) 

33) 

Answer
Horizontal: none, 
Vertical: none

34) 

For exercises 35 - 38, construct a function  that has the given asymptotes.

35)  and 

Answer

Answers will vary, for example: 

x =±2

f(x) =

+3x

2

+1x

2

f(x) = sin(x) sin(2x)

f(x) = cosx+cos(3x)+cos(5x)

f(x) =

x sin(x)

−1x

2

y = 0,

x =±1

f(x) =

x

sin(x)

f(x) =

1

+x

3

x

2

y = 0,

x = 0 x =−1

f(x) = −2x

1

x−1

f(x) =

+1x

3

−1x

3

y = 1,

x = 1

f(x) =

sinx+cosx

sinx−cosx

f(x) = x−sinx

f(x) = −

1

x

x

−−

√

f(x)

x = 1 y = 2

y =

2x

x−1
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36)  and 

37) 

Answer

Answers will vary, for example: 

38) 

In exercises 39 - 43, graph the function on a graphing calculator on the window  and estimate the horizontal
asymptote or limit. Then, calculate the actual horizontal asymptote or limit.

39) [T] 

Answer

 so  has a horizontal asymptote of .

40) [T] 

41) [T] 

Answer

42) [T] 

43) [T] 

Answer

 so this function has a horizontal asymptote of .

In exercises 44 - 55, draw a graph of the functions without using a calculator. Be sure to notice all important features of the
graph: local maxima and minima, inflection points, and asymptotic behavior.

44) 

45) 

Answer

46) 

x = 1 y = 0

y = 4, x =−1

y =

4x

x+1

x = 0

x = [−5, 5]

f(x) =

1

x+10

= 0lim

x→∞

1

x+10

f y = 0

f(x) =

x+1

+7x+6x

2

+10x+25lim

x→−∞

x

2

+10x+25 =∞lim

x→−∞

x

2

lim

x→−∞

x+2

+7x+6x

2

lim

x→∞

3x+2

x+5

= 3lim

x→∞

3x+2

x+5

y = 3

y = 3 +2x+4x

2

y = −3 +4x

3

x

2

y =

2x+1

+6x+5x

2
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47) 

Answer

48) 

49) 

Answer

50) 

51) , on 

Answer

y =

+4 +3xx

3

x

2

3x+9

y =

+x−2x

2

−3x−4x

2

y = −5x+4x

2

− −−−−−−−−

√

y = 2x 16−x

2

− −−−−−

√

y =

cosx

x

x = [−2π, 2π]
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52) 

53) 

Answer

54) 

55) 

Answer

y = −e

x

x

3

y = x tanx, x = [−π, π]

y = x ln(x), x > 0

y = sin(x), x = [−2π, 2π]x

2
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56) For  to have an asymptote at  then the polynomials  and  must have what relation?

57) For  to have an asymptote at , then the polynomials  and  must have what relation?

Answer
 must have have  as a factor, where  has  as a factor.

58) If  has asymptotes at  and , then  has what asymptotes?

59) Both  and  have asymptotes at  and  What is the most obvious difference between

these two functions?

Answer

60) True or false: Every ratio of polynomials has vertical asymptotes.

4.7E: Exercises for Section 4.6 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.6E: Exercises for Section 4.6 is licensed CC BY-NC-SA 4.0.

f(x) =

P (x)

Q(x)

y = 2 P (x) Q(x)

f(x) =

P (x)

Q(x)

x = 0 P (x) Q(x).

Q(x). x

k+1

P (x) x

k

f '(x) y = 3 x = 1 f(x)

f(x) =

1

x−1

g(x) =

1

(x−1)

2

x = 1 y = 0.

f(x) =−∞ and  g(x) =∞lim

x→1

−

lim

x→1

−
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4.8: Applied Optimization Problems

Set up and solve optimization problems in several applied fields.

One common application of calculus is calculating the minimum or maximum value of a function. For example, companies often
want to minimize production costs or maximize revenue. In manufacturing, it is often desirable to minimize the amount of material
used to package a product with a certain volume. In this section, we show how to set up these types of minimization and
maximization problems and solve them by using the tools developed in this chapter.

Solving Optimization Problems over a Closed, Bounded Interval
The basic idea of the optimization problems that follow is the same. We have a particular quantity that we are interested in
maximizing or minimizing. However, we also have some auxiliary condition that needs to be satisfied. For example, in Example 

, we are interested in maximizing the area of a rectangular garden. Certainly, if we keep making the side lengths of the garden
larger, the area will continue to become larger. However, what if we have some restriction on how much fencing we can use for the
perimeter? In this case, we cannot make the garden as large as we like. Let’s look at how we can maximize the area of a rectangle
subject to some constraint on the perimeter.

A rectangular garden is to be constructed using a rock wall as one side of the garden and wire fencing for the other three sides
(Figure ). Given  of wire fencing, determine the dimensions that would create a garden of maximum area. What is
the maximum area?

Figure : We want to determine the measurements  and  that will create a garden with a maximum area using  of
fencing.

Solution

Let  denote the length of the side of the garden perpendicular to the rock wall and  denote the length of the side parallel to
the rock wall. Then the area of the garden is

We want to find the maximum possible area subject to the constraint that the total fencing is . From Figure , the
total amount of fencing used will be  Therefore, the constraint equation is

Solving this equation for , we have  Thus, we can write the area as

Learning Objectives

4.8.1

Example : Maximizing the Area of a Garden4.8.1

4.8.1 100 ft

4.8.1 x y 100 ft

x y

A= x ⋅ y.

100 ft 4.8.1

2x+y.

2x+y = 100.

y y = 100−2x.

A(x) = x ⋅ (100−2x) = 100x−2 .x

2
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Before trying to maximize the area function  we need to determine the domain under consideration. To
construct a rectangular garden, we certainly need the lengths of both sides to be positive. Therefore, we need  and .
Since , if , then . Therefore, we are trying to determine the maximum value of  for  over the
open interval . We do not know that a function necessarily has a maximum value over an open interval. However, we do
know that a continuous function has an absolute maximum (and absolute minimum) over a closed interval. Therefore, let’s
consider the function  over the closed interval . If the maximum value occurs at an interior point,
then we have found the value  in the open interval  that maximizes the area of the garden.

Therefore, we consider the following problem:

Maximize  over the interval 

As mentioned earlier, since  is a continuous function on a closed, bounded interval, by the extreme value theorem, it has a
maximum and a minimum. These extreme values occur either at endpoints or critical points. At the endpoints, . Since
the area is positive for all  in the open interval , the maximum must occur at a critical point. Differentiating the
function , we obtain

Therefore, the only critical point is  (Figure ). We conclude that the maximum area must occur when .

Figure : To maximize the area of the garden, we need to find the maximum value of the function .

Then we have  To maximize the area of the garden, let  and . The area
of this garden is .

Determine the maximum area if we want to make the same rectangular garden as in Figure , but we have  of
fencing.

Hint

We need to maximize the function  over the interval 

Answer

The maximum area is .

A(x) = 100x−2 ,x

2

x > 0 y > 0

y = 100−2x y > 0 x < 50 A(x) x

(0, 50)

A(x) = 100x−2x

2

[0, 50]

x (0, 50)

A(x) = 100x−2x

2

[0, 50].

A

A(x) = 0

x (0, 50)

A(x)

A'(x) = 100−4x.

x = 25 4.8.2 x = 25

4.8.2 A(x) = 100x−2x

2

y = 100−2x = 100−2(25) = 50. x = 25 ft y = 50 ft

1250 ft

2

Exercise 4.8.1

4.8.2 200 ft

A(x) = 200x−2x

2

[0, 100].

5000 ft

2
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Now let’s look at a general strategy for solving optimization problems similar to Example.

1. Introduce all variables. If applicable, draw a figure and label all variables.
2. Determine which quantity is to be maximized or minimized, and for what range of values of the other variables (if this can

be determined at this time).
3. Write a formula for the quantity to be maximized or minimized in terms of the variables. This formula may involve more

than one variable.
4. Write any equations relating the independent variables in the formula from step . Use these equations to write the quantity

to be maximized or minimized as a function of one variable.
5. Identify the domain of consideration for the function in step  based on the physical problem to be solved.
6. Locate the maximum or minimum value of the function from step  This step typically involves looking for critical points

and evaluating a function at endpoints.

Now let’s apply this strategy to maximize the volume of an open-top box given a constraint on the amount of material to be
used.

An open-top box is to be made from a  by  piece of cardboard by removing a square from each corner of the box
and folding up the flaps on each side. What size square should be cut out of each corner to get a box with the maximum
volume?

Solution

Step 1: Let  be the side length of the square to be removed from each corner (Figure ). Then, the remaining four flaps
can be folded up to form an open-top box. Let  be the volume of the resulting box.

Figure : A square with side length  inches is removed from each corner of the piece of cardboard. The remaining flaps
are folded to form an open-top box.

Step 2: We are trying to maximize the volume of a box. Therefore, the problem is to maximize .

Step 3: As mentioned in step 2, are trying to maximize the volume of a box. The volume of a box is

Maximizing the Area of a RectangleMaximizing the Area of a Rectangle

Problem-Solving Strategy: Solving Optimization Problems

3

4

4.

Example : Maximizing the Volume of a Box4.8.2

24 in. 36 in.

x 4.8.3

V

4.8.3 x

V
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where and  are the length, width, and height, respectively.

Step 4: From Figure , we see that the height of the box is  inches, the length is  inches, and the width is 
inches. Therefore, the volume of the box is

Step 5: To determine the domain of consideration, let’s examine Figure . Certainly, we need  Furthermore, the side
length of the square cannot be greater than or equal to half the length of the shorter side, ; otherwise, one of the flaps
would be completely cut off. Therefore, we are trying to determine whether there is a maximum volume of the box for  over
the open interval  Since  is a continuous function over the closed interval , we know  will have an absolute
maximum over the closed interval. Therefore, we consider  over the closed interval  and check whether the absolute
maximum occurs at an interior point.

Step 6: Since  is a continuous function over the closed, bounded interval ,  must have an absolute maximum (and
an absolute minimum). Since  at the endpoints and  for  the maximum must occur at a critical
point. The derivative is

To find the critical points, we need to solve the equation

Dividing both sides of this equation by , the problem simplifies to solving the equation

Using the quadratic formula, we find that the critical points are

Since  is not in the domain of consideration, the only critical point we need to consider is . Therefore, the
volume is maximized if we let  The maximum volume is

as shown in the following graph.

Figure : Maximizing the volume of the box leads to finding the maximum value of a cubic polynomial.

V =L ⋅W ⋅H,

L, W , H

4.8.3 x 36−2x 24−2x

.

V (x) = (36−2x)(24−2x)x

= 4 −120 +864xx

3

x

2

4.8.3 x > 0.

24 in.

x

(0, 12). V [0, 12] V

V [0, 12]

V (x) [0, 12] V

V (x) = 0 V (x) > 0 0 < x < 12,

V '(x) = 12 −240x+864.x

2

12 −240x+864 = 0.x

2

12

−20x+72 = 0.x

2

.

x =

20± (−20 −4(1)(72))

2

− −−−−−−−−−−−−−

√

2

=

20± 112

−−−

√

2

=

20±4 7

–

√

2

= 10±2 7

–

√

10+2 7

–

√ 10−2 7

–

√

x = 10−2 in.7

–

√

V (10−2 ) = 640+448 ≈ 1825 .7

–

√ 7

–

√ in

3
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Suppose the dimensions of the cardboard in Example  are  by  Let  be the side length of each square and
write the volume of the open-top box as a function of . Determine the domain of consideration for .

Hint

The volume of the box is 

Answer

 The domain is .

An island is  mi due north of its closest point along a straight shoreline. A visitor is staying at a cabin on the shore that is  mi
west of that point. The visitor is planning to go from the cabin to the island. Suppose the visitor runs at a rate of  mph and
swims at a rate of  mph. How far should the visitor run before swimming to minimize the time it takes to reach the island?

Solution

Step 1: Let  be the distance running and let  be the distance swimming (Figure ). Let  be the time it takes to get from
the cabin to the island.

Figure : How can we choose  and  to minimize the travel time from the cabin to the island?

Step 2: The problem is to minimize .

Step 3: To find the time spent traveling from the cabin to the island, add the time spent running and the time spent swimming.
Since Distance = Rate × Time  the time spent running is

Exercise 4.8.2

4.8.2 20 in. 30 in. x

x x

L ⋅W ⋅H.

V (x) = x(20−2x)(30−2x). [0, 10]

Minimizing the Surface Area of a CylindMinimizing the Surface Area of a Cylind……

Example : Minimizing Travel Time4.8.3

2 6

8

3

x y 4.8.5 T

4.8.5 x y

T

(D=R×T ),
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,

and the time spent swimming is

.

Therefore, the total time spent traveling is

.

Step 4: From Figure , the line segment of  miles forms the hypotenuse of a right triangle with legs of length  mi and 
 mi. Therefore, by the Pythagorean theorem, , and we obtain . Thus, the total

time spent traveling is given by the function

.

Step 5: From Figure , we see that . Therefore,  is the domain of consideration.

Step 6: Since  is a continuous function over a closed, bounded interval, it has a maximum and a minimum. Let’s begin by
looking for any critical points of  over the interval  The derivative is

If , then

Therefore,

Squaring both sides of this equation, we see that if  satisfies this equation, then  must satisfy

which implies

We conclude that if  is a critical point, then  satisfies

Therefore, the possibilities for critical points are

Since  is not in the domain, it is not a possibility for a critical point. On the other hand,  is in
the domain. Since we squared both sides of Equation  to arrive at the possible critical points, it remains to verify that 

 satisfies Equation . Since  does satisfy that equation, we conclude that 
is a critical point, and it is the only one. To justify that the time is minimized for this value of , we just need to check the
values of  at the endpoints  and , and compare them with the value of  at the critical point 

. We find that  and , whereas

= =T

running

D

running

R

running

x

8

= =T

swimming

D

swimming

R

swimming

y

3

T = +

x

8

y

3

4.8.5 y 2

6−x +(6−x =2

2

)

2

y

2

y = (6−x +4)

2

− −−−−−−−−−

√

T (x) = +

x

8

(6−x +4)

2

− −−−−−−−−−

√

3

4.8.5 0 ≤ x ≤ 6 [0, 6]

T (x)

T [0, 6].

T '(x) = − ⋅ 2(6−x)

1

8

1

2

[(6−x +4)

2

]

−1/2

3

= −

1

8

(6−x)

3 (6−x +4)

2

− −−−−−−−−−

√

T '(x) = 0,

=

1

8

6−x

3 (6−x +4)

2

− −−−−−−−−−

√

(4.8.1)

3 = 8(6−x).(6−x +4)

2

− −−−−−−−−−

√ (4.8.2)

x x

9[(6−x +4] = 64(6−x ,)

2

)

2

55(6−x = 36.)

2

x x

(x−6 = .)

2

36

55

x = 6± .

6

55

−−

√

x = 6+6/ 55

−−

√ x = 6−6/ 55

−−

√

4.8.2

x = 6−6/ 55

−−

√ 4.8.1 x = 6−6/ 55

−−

√ x = 6−6/ 55

−−

√

x

T (x) x = 0 x = 6 T (x)

x = 6−6/ 55

−−

√ T (0) ≈ 2.108 h T (6) ≈ 1.417 h
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Therefore, we conclude that  has a local minimum at  mi.

Suppose the island is  mi from shore, and the distance from the cabin to the point on the shore closest to the island is  mi.
Suppose a visitor swims at the rate of  mph and runs at a rate of  mph. Let  denote the distance the visitor will run before
swimming, and find a function for the time it takes the visitor to get from the cabin to the island.

Hint

The time 

Answer

In business, companies are interested in maximizing revenue. In the following example, we consider a scenario in which a
company has collected data on how many cars it is able to lease, depending on the price it charges its customers to rent a car. Let’s
use these data to determine the price the company should charge to maximize the amount of money it brings in.

Owners of a car rental company have determined that if they charge customers  dollars per day to rent a car, where 
, the number of cars  they rent per day can be modeled by the linear function . If they charge

 per day or less, they will rent all their cars. If they charge  per day or more, they will not rent any cars. Assuming the
owners plan to charge customers between  per day and  per day to rent a car, how much should they charge to
maximize their revenue?

Solution

Step 1: Let  be the price charged per car per day and let n be the number of cars rented per day. Let  be the revenue per day.

Step 2: The problem is to maximize 

Step 3: The revenue (per day) is equal to the number of cars rented per day times the price charged per car per day—that is, 

Step 4: Since the number of cars rented per day is modeled by the linear function  the revenue  can be
represented by the function

T (6−6/ ) ≈ 1.368 h.55

−−

√

T x ≈ 5.19

Exercise 4.8.3

1 15

2.5 6 x

T = + .T

running

T

swimming

T (x) = +

x

6

(15−x +1)

2

− −−−−−−−−−−

√

2.5

Finding the Minimum Time: Finding the Minimum Time: Lifeguard PLifeguard P……

Example : Maximizing Revenue4.8.4

p

50 ≤ p ≤ 200 n n(p) = 1000−5p

$50 $200

$50 $200

p R

R.

R= n×p.

n(p) = 1000−5p, R
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Step 5: Since the owners plan to charge between  per car per day and  per car per day, the problem is to find the
maximum revenue  for  in the closed interval .

Step 6: Since  is a continuous function over the closed, bounded interval , it has an absolute maximum (and an
absolute minimum) in that interval. To find the maximum value, look for critical points. The derivative is 

 Therefore, the critical point is  When  When 
. When .

Therefore, the absolute maximum occurs at . The car rental company should charge  per day per car to
maximize revenue as shown in the following figure.

Figure : To maximize revenue, a car rental company has to balance the price of a rental against the number of cars people
will rent at that price.

A car rental company charges its customers  dollars per day, where . It has found that the number of cars rented
per day can be modeled by the linear function  How much should the company charge each customer to
maximize revenue?

Hint

 where  is the number of cars rented and  is the price charged per car.

Answer

The company should charge  per car per day.

A rectangle is to be inscribed in the ellipse

What should the dimensions of the rectangle be to maximize its area? What is the maximum area?

Solution

Step 1: For a rectangle to be inscribed in the ellipse, the sides of the rectangle must be parallel to the axes. Let  be the length
of the rectangle and  be its width. Let  be the area of the rectangle.

R(p) = n×p

= (1000−5p)p

=−5 +1000p.p

2

$50 $200

R(p) p [50, 200]

R [50, 200]

R'(p) =−10p+1000. p = 100 p = 100,R(100) = $50, 000.

p = 50,R(p) = $37, 500 p = 200,R(p) = $0

p = $100 $100

4.8.6

Exercise 4.8.4

p 60 ≤ p ≤ 150

n(p) = 750−5p.

R(p) = n×p, n p

$75

Example : Maximizing the Area of an Inscribed Rectangle4.8.5

+ = 1.

x

2

4

y

2

L

W A
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Figure : We want to maximize the area of a rectangle inscribed in an ellipse.

Step 2: The problem is to maximize .

Step 3: The area of the rectangle is 

Step 4: Let  be the corner of the rectangle that lies in the first quadrant, as shown in Figure . We can write length 

 and width . Since  and , we have . Therefore, the area is

Step 5: From Figure , we see that to inscribe a rectangle in the ellipse, the -coordinate of the corner in the first quadrant
must satisfy . Therefore, the problem reduces to looking for the maximum value of  over the open interval 

. Since  will have an absolute maximum (and absolute minimum) over the closed interval , we consider 
 over the interval . If the absolute maximum occurs at an interior point, then we have found an

absolute maximum in the open interval.

Step 6: As mentioned earlier,  is a continuous function over the closed, bounded interval . Therefore, it has an
absolute maximum (and absolute minimum). At the endpoints  and ,  For , .

Therefore, the maximum must occur at a critical point. Taking the derivative of , we obtain

To find critical points, we need to find where  We can see that if  is a solution of

then  must satisfy

Therefore,  Thus,  are the possible solutions of Equation . Since we are considering  over the interval 
,  is a possibility for a critical point, but  is not. Therefore, we check whether  is a solution of

Equation . Since  is a solution of Equation , we conclude that  is the only critical point of  in the
interval .

Therefore,  must have an absolute maximum at the critical point . To determine the dimensions of the rectangle,
we need to find the length  and the width . If  then
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Therefore, the dimensions of the rectangle are  and . The area of this rectangle is

Modify the area function  if the rectangle is to be inscribed in the unit circle . What is the domain of
consideration?

Hint

If  is the vertex of the square that lies in the first quadrant, then the area of the square is 

Answer

 The domain of consideration is .

Solving Optimization Problems when the Interval Is Not Closed or Is Unbounded
In the previous examples, we considered functions on closed, bounded domains. Consequently, by the extreme value theorem, we
were guaranteed that the functions had absolute extrema. Let’s now consider functions for which the domain is neither closed nor
bounded.

Many functions still have at least one absolute extrema, even if the domain is not closed or the domain is unbounded. For example,
the function  over  has an absolute minimum of  at . Therefore, we can still consider functions
over unbounded domains or open intervals and determine whether they have any absolute extrema. In the next example, we try to
minimize a function over an unbounded domain. We will see that, although the domain of consideration is  the function has
an absolute minimum.

In the following example, we look at constructing a box of least surface area with a prescribed volume. It is not difficult to show
that for a closed-top box, by symmetry, among all boxes with a specified volume, a cube will have the smallest surface area.
Consequently, we consider the modified problem of determining which open-topped box with a specified volume has the smallest
surface area.

A rectangular box with a square base, an open top, and a volume of  is to be constructed. What should the dimensions
of the box be to minimize the surface area of the box? What is the minimum surface area?

Solution

Step 1: Draw a rectangular box and introduce the variable  to represent the length of each side of the square base; let 
represent the height of the box. Let  denote the surface area of the open-top box.

Figure : We want to minimize the surface area of a square-based box with a given volume.

Step 2: We need to minimize the surface area. Therefore, we need to minimize .

Step 3: Since the box has an open top, we need only determine the area of the four vertical sides and the base. The area of each
of the four vertical sides is  The area of the base is . Therefore, the surface area of the box is
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.

Step 4: Since the volume of this box is  and the volume is given as , the constraint equation is

.

Solving the constraint equation for , we have . Therefore, we can write the surface area as a function of  only:

Therefore, .

Step 5: Since we are requiring that , we cannot have . Therefore, we need . On the other hand,  is
allowed to have any positive value. Note that as  becomes large, the height of the box  becomes correspondingly small so
that . Similarly, as  becomes small, the height of the box becomes correspondingly large. We conclude that the
domain is the open, unbounded interval . Note that, unlike the previous examples, we cannot reduce our problem to
looking for an absolute maximum or absolute minimum over a closed, bounded interval. However, in the next step, we
discover why this function must have an absolute minimum over the interval 

Step 6: Note that as  Also, as . Since  is a continuous function that approaches
infinity at the ends, it must have an absolute minimum at some . This minimum must occur at a critical point of .
The derivative is

Therefore,  when . Solving this equation for , we obtain , so  Since this is

the only critical point of , the absolute minimum must occur at  (see Figure ).

When ,  Therefore, the dimensions of the box should be  and  With

these dimensions, the surface area is

Figure : We can use a graph to determine the dimensions of a box of given the volume and the minimum surface area.

Consider the same open-top box, which is to have volume . Suppose the cost of the material for the base is  and
the cost of the material for the sides is  and we are trying to minimize the cost of this box. Write the cost as a function
of the side lengths of the base. (Let  be the side length of the base and  be the height of the box.)

Hint

If the cost of one of the sides is  the cost of that side is  dollars.

Answer
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 dollars

Key Concepts
To solve an optimization problem, begin by drawing a picture and introducing variables.
Find an equation relating the variables.
Find a function of one variable to describe the quantity that is to be minimized or maximized.
Look for critical points to locate local extrema.

Glossary

optimization problems
problems that are solved by finding the maximum or minimum value of a function
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4.8E: Exercises for Section 4.7
For exercises 1 - 4, answer by proof, counterexample, or explanation.

1) When you find the maximum for an optimization problem, why do you need to check the sign of the derivative around the
critical points?

Answer
The critical points can be the minima, maxima, or neither.

2) Why do you need to check the endpoints for optimization problems?

3) True or False. For every continuous nonlinear function, you can find the value  that maximizes the function.

Answer
False;  has a minimum only

4) True or False. For every continuous non-constant function on a closed, finite domain, there exists at least one  that minimizes
or maximizes the function.

In exercises 5 - 8, set up and evaluate each optimization problem.

5) To carry a suitcase on an airplane, the  of the box must be less than or equal to  in. Assuming the
height is fixed, show that the maximum volume is  What height allows you to have the largest volume?

Answer

 in.

6) You are constructing a cardboard box with the dimensions  m by  m. You then cut equal-size squares from each corner so you
may fold the edges. What are the dimensions of the box with the largest volume?

7) Find the positive integer that minimizes the sum of the number and its reciprocal.

Answer

8) Find two positive integers such that their sum is , and minimize and maximize the sum of their squares.

In exercises 9 - 11, consider the construction of a pen to enclose an area.

9) You have  of fencing to construct a rectangular pen for cattle. What are the dimensions of the pen that maximize the area?

Answer
 by 

10) You have  of fencing to make a pen for hogs. If you have a river on one side of your property, what is the dimension of
the rectangular pen that maximizes the area?

11) You need to construct a fence around an area of . What are the dimensions of the rectangular pen to minimize the
amount of material needed?
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Answer
 by 

12) Two poles are connected by a wire that is also connected to the ground. The first pole is  tall and the second pole is 
tall. There is a distance of  between the two poles. Where should the wire be anchored to the ground to minimize the amount
of wire needed?

13) [T] You are moving into a new apartment and notice there is a corner where the hallway narrows from  to . What is the
length of the longest item that can be carried horizontally around the corner?

Answer

14) A patient’s pulse measures , then . To determine an accurate measurement of pulse, the doctor wants
to know what value minimizes the expression ? What value minimizes it?

15) In the previous problem, assume the patient was nervous during the third measurement, so we only weight that value half as
much as the others. What is the value that minimizes 

Answer

16) You can run at a speed of  mph and swim at a speed of  mph and are located on the shore,  miles east of an island that is 
mile north of the shoreline. How far should you run west to minimize the time needed to reach the island?
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For exercises 17 - 19, consider a lifeguard at a circular pool with diameter  m. He must reach someone who is drowning
on the exact opposite side of the pool, at position . The lifeguard swims with a speed  and runs around the pool at speed 

17) Find a function that measures the total amount of time it takes to reach the drowning person as a function of the swim angle, .

Answer

18) Find at what angle  the lifeguard should swim to reach the drowning person in the least amount of time.

19) A truck uses gas as , where  represents the speed of the truck and  represents the gallons of fuel per mile. At

what speed is fuel consumption minimized?

Answer

For exercises 20 - 21, consider a limousine that gets  at speed , the chauffeur costs , and gas is 
.

20) Find the cost per mile at speed 

21) Find the cheapest driving speed.

Answer
approximately  mph

For exercises 22 - 24, consider a pizzeria that sell pizzas for a revenue of  and costs , where 
 represents the number of pizzas.

22) Find the profit function for the number of pizzas. How many pizzas gives the largest profit per pizza?

23) Assume that  and . How many pizzas sold maximizes the profit?

Answer
Selling  pizzas will maximize the profit.

24) Assume that , and . How many pizzas sold maximizes the profit?

For exercises 25 - 26, consider a wire  ft long cut into two pieces. One piece forms a circle with radius  and the other
forms a square of side .

25) Choose  to maximize the sum of their areas.

Answer

26) Choose  to minimize the sum of their areas.
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For exercises 27 - 30, consider two nonnegative numbers  and  such that . Maximize and minimize the
quantities.

27) 

Answer
Maximal:  
Minimal:  and 

28 

29) 

Answer
Maximal:  
Minimal: none

30) 

In exercises 31 - 36, draw the given optimization problem and solve.

31) Find the volume of the largest right circular cylinder that fits in a sphere of radius .

Answer

32) Find the volume of the largest right cone that fits in a sphere of radius .

33) Find the area of the largest rectangle that fits into the triangle with sides  and 

Answer

34) Find the largest volume of a cylinder that fits into a cone that has base radius  and height .

35) Find the dimensions of the closed cylinder volume  that has the least amount of surface area.

Answer

36) Find the dimensions of a right cone with surface area  that has the largest volume.

For exercises 37 - 40, consider the points on the graphs of the given equations. Use a calculator to graph the functions.

37) [T] Where is the line  closest to the origin?

Answer

38) [T] Where is the line  closest to point ?

39) [T] Where is the parabola  closest to point ?

Answer

40) [T] Where is the parabola  closest to point ?

In exercises 41 - 45, set up, but do not evaluate, each optimization problem.
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41) A window is composed of a semicircle placed on top of a rectangle. If you have  of window-framing materials for the
outer frame, what is the maximum size of the window you can create? Use r to represent the radius of the semicircle.

Answer

42) You have a garden row of  watermelon plants that produce an average of  watermelons apiece. For any additional
watermelon plants planted, the output per watermelon plant drops by one watermelon. How many extra watermelon plants should
you plant?

43) You are constructing a box for your cat to sleep in. The plush material for the square bottom of the box costs  and the
material for the sides costs . You need a box with volume . Find the dimensions of the box that minimize cost. Use  to
represent the length of the side of the box.

Answer

44) You are building five identical pens adjacent to each other with a total area of , as shown in the following figure. What
dimensions should you use to minimize the amount of fencing?

45) You are the manager of an apartment complex with  units. When you set rent at , all apartments are rented. As
you increase rent by , one fewer apartment is rented. Maintenance costs run  for each occupied unit. What
is the rent that maximizes the total amount of profit?

Answer

4.8E: Exercises for Section 4.7 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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4.9: L’Hôpital’s Rule

Recognize when to apply L’Hôpital’s rule.
Identify indeterminate forms produced by quotients, products, subtractions, and powers, and apply L’Hôpital’s rule in each
case.
Describe the relative growth rates of functions.

In this section, we examine a powerful tool for evaluating limits. This tool, known as L’Hôpital’s rule, uses derivatives to calculate
limits. With this rule, we will be able to evaluate many limits we have not yet been able to determine. Instead of relying on
numerical evidence to conjecture that a limit exists, we will be able to show definitively that a limit exists and to determine its
exact value.

Applying L’Hôpital’s Rule
L’Hôpital’s rule can be used to evaluate limits involving the quotient of two functions. Consider

If  and  then

However, what happens if  and ? We call this one of the indeterminate forms, of type . This is

considered an indeterminate form because we cannot determine the exact behavior of  as  without further analysis. We

have seen examples of this earlier in the text. For example, consider

and

For the first of these examples, we can evaluate the limit by factoring the numerator and writing

For  we were able to show, using a geometric argument, that

Here we use a different technique for evaluating limits such as these. Not only does this technique provide an easier way to
evaluate these limits, but also, and more importantly, it provides us with a way to evaluate many other limits that we could not
calculate previously.

The idea behind L’Hôpital’s rule can be explained using local linear approximations. Consider two differentiable functions  and 
such that  and such that  For  near ,we can write

and

Learning Objectives
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Therefore,

Figure : If , then the ratio  is approximately equal to the ratio of their linear approximations

near a.

Since  is differentiable at , then  is continuous at , and therefore . Similarly, . If

we also assume that  and  are continuous at , then  and . Using these ideas, we

conclude that

Note that the assumption that  and  are continuous at  and  can be loosened. We state L’Hôpital’s rule formally for

the indeterminate form . Also note that the notation  does not mean we are actually dividing zero by zero. Rather, we are using

the notation  to represent a quotient of limits, each of which is zero.

Suppose  and  are differentiable functions over an open interval containing , except possibly at . If  and 

 then

assuming the limit on the right exists or is  or . This result also holds if we are considering one-sided limits, or if 
or 

We provide a proof of this theorem in the special case when  and  are all continuous over an open interval containing
a. In that case, since  and  and  are continuous at , it follows that .
Therefore,

g(x) ≈ g(a)+g'(a)(x−a). (4.9.4)

≈ .

f(x)

g(x)

f(a)+f '(a)(x−a)

g(a)+g'(a)(x−a)

(4.9.5)

4.9.1 f(x) = g(x)lim

x→a

lim

x→a

f(x)/g(x)

f a f a f(a) = f(x) = 0lim

x→a

g(a) = g(x) = 0lim

x→a

f ' g' x = a f '(a) = f '(x)lim

x→a

g'(a) = g'(x)lim

x→a

= = .lim

x→a

f(x)

g(x)

lim

x→a

f '(x)(x−a)

g'(x)(x−a)

lim

x→a

f '(x)

g'(x)

(4.9.6)

f ' g' a g'(a) ≠ 0

0

0

0

0

0

0

L’Hôpital’s Rule (0/0 Case)

f g a a f(x) = 0lim

x→a

g(x) = 0,lim

x→a

= ,lim

x→a

f(x)

g(x)

lim

x→a

f '(x)

g'(x)

(4.9.7)

∞ −∞ a=∞

a=−∞.

Proof

f , g, f ', g'

f(x) = 0 = g(x)lim

x→a

lim

x→a

f g a f(a) = 0 = g(a)
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Note that L’Hôpital’s rule states we can calculate the limit of a quotient  by considering the limit of the quotient of the

derivatives . It is important to realize that we are not calculating the derivative of the quotient .

□

Evaluate each of the following limits by applying L’Hôpital’s rule.

a. 

b. 

c. 

d. 

Solution

a.. Since the numerator  and the denominator , we can apply L’Hôpital’s rule to evaluate this limit. We
have

b. As  the numerator  and the denominator  Therefore, we can apply L’Hôpital’s rule. We
obtain

lim

x→a

f(x)

g(x)

= lim

x→a

f(x) −f(a)

g(x) −g(a)

= lim

x→a

f(x) −f(a)

x−a

g(x) −g(a)

x−a

=

lim

x→a

f(x) −f(a)

x−a

lim

x→a

g(x) −g(a)

x−a

=

f '(a)

g'(a)

=

f '(x)lim

x→a

g'(x)lim

x→a

= .lim

x→a

f '(x)

g'(x)

Since f(a) = 0 = g(a)

Multiply numerator and denominator by

1

x−a

The limit of a quotient is the quotient of the limits.

By the definition of the derivative

By the continuity of f ' andg'

The limit of a quotient

f

g

f '

g'

f

g

Example : Applying L’Hôpital’s Rule (0/0 Case)4.9.1

lim

x→0

1 −cosx

x

lim

x→1

sin(πx)

lnx

lim

x→∞

−1e

1/x

1/x

lim

x→0

sinx−x

x

2

1 −cosx → 0 x → 0

= = = = = 0.lim

x→0

1 −cosx

x

lim

x→0

(1 −cosx)

d

dx

(x)

d

dx

lim

x→0

sinx

1

sinxlim

x→0

1lim

x→0

0

1

x → 1, sin(πx) → 0 ln(x) → 0.

lim

x→1

sin(πx)

lnx

= lim

x→1

π cos(πx)

1/x

= (πx) cos(πx)lim

x→1

= (π ⋅ 1)(−1) = −π.
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c. As , the numerator  and the denominator . Therefore, we can apply L’Hôpital’s rule. We obtain

d. As  both the numerator and denominator approach zero. Therefore, we can apply L’Hôpital’s rule. We obtain

Since the numerator and denominator of this new quotient both approach zero as , we apply L’Hôpital’s rule again. In
doing so, we see that

Therefore, we conclude that

Evaluate

Hint

Answer

We can also use L’Hôpital’s rule to evaluate limits of quotients  in which  and . Limits of this form

are classified as indeterminate forms of type . Again, note that we are not actually dividing  by . Since  is not a real

x→∞ −1→ 0e

1/x

→0

1

x

= = = = 1.lim

x→∞

−1e

1/x

1

x

lim

x→∞

( )e

1/x

−1

x

2

( )

−1

x

2

lim

x→∞

e

1/x

e

0

x→0,

= .lim

x→0

sinx−x

x

2

lim

x→0

cosx−1

2x

x→0

= = 0.lim

x→0

cosx−1

2x

lim

x→0

−sinx

2

= 0.lim

x→0

sinx−x

x

2

Exercise 4.9.1

.lim

x→0

x

tanx

( tanx)= x

d

dx

sec

2

1

Using L'Hopital's Rule TwiceUsing L'Hopital's Rule Twice

f(x)

g(x)

f(x) →±∞ g(x) →±∞

∞/∞ ∞ ∞ ∞
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number, that is impossible; rather, . is used to represent a quotient of limits, each of which is  or .

Suppose  and  are differentiable functions over an open interval containing , except possibly at . Suppose 

(or ) and  (or ). Then,

assuming the limit on the right exists or is  or . This result also holds if the limit is infinite, if  or , or the
limit is one-sided.

Evaluate each of the following limits by applying L’Hôpital’s rule.

a. 

b. 

Solution

a. Since  and  are first-degree polynomials with positive leading coefficients,  and 

. Therefore, we apply L’Hôpital’s rule and obtain

Note that this limit can also be calculated without invoking L’Hôpital’s rule. Earlier in the chapter we showed how to evaluate
such a limit by dividing the numerator and denominator by the highest power of x in the denominator. In doing so, we saw that

L’Hôpital’s rule provides us with an alternative means of evaluating this type of limit.

b. Here,  and . Therefore, we can apply L’Hôpital’s rule and obtain

Now as . Therefore, the first term in the denominator is approaching zero and the second term is getting
really large. In such a case, anything can happen with the product. Therefore, we cannot make any conclusion yet. To evaluate
the limit, we use the definition of  to write

Now  and , so we apply L’Hôpital’s rule again. We find

We conclude that

∞/∞ ∞ −∞

L’Hôpital’s Rule (  Case)∞/∞

f g a a f(x) =∞lim

x→a

−∞ g(x) =∞lim

x→a

−∞

=lim

x→a

f(x)

g(x)

lim

x→a

f '(x)

g'(x)

(4.9.8)

∞ −∞ a=∞ −∞

Example : Applying L’Hôpital’s Rule ( ) Case4.9.2 ∞/∞

lim

x→∞

3x+5

2x+1

lim

x→0

+

lnx

cotx

3x+5 2x+1 (3x+5) =∞lim

x→∞

(2x+1) =∞lim

x→∞

= = = .lim

x→∞

3x+5

2x+1

lim

x→∞

3+5/x

2x+1

lim

x→∞

3

2

3

2

= = .lim

x→∞

3x+5

2x+1

lim

x→∞

3+5/x

2x+1

3

2

lnx =−∞lim

x→0

+

cotx =∞lim

x→0

+

= = .lim

x→0

+

lnx

cotx

lim

x→0

+

1/x

− xcsc

2

lim

x→0

+

1

−x xcsc

2

x→ , x→∞0

+

csc

2

cscx

= .lim

x→0

+

1

−x xcsc

2

lim

x→0

+

xsin

2

−x

x = 0lim

x→0

+

sin

2

x = 0lim

x→0

+

= = = 0.lim

x→0

+

xsin

2

−x

lim

x→0

+

2 sinx cosx

−1

0

−1

= 0.lim

x→0

+

lnx

cotx
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Evaluate

Hint

Answer

As mentioned, L’Hôpital’s rule is an extremely useful tool for evaluating limits. It is important to remember, however, that to apply

L’Hôpital’s rule to a quotient f(x)g(x), it is essential that the limit of  be of the form  or . Consider the following

example.

Consider 

Show that the limit cannot be evaluated by applying L’Hôpital’s rule.

Solution

Because the limits of the numerator and denominator are not both zero and are not both infinite, we cannot apply L’Hôpital’s
rule. If we try to do so, we get

and

At which point we would conclude erroneously that

However, since  and  we actually have

We can conclude that

Explain why we cannot apply L’Hôpital’s rule to evaluate . Evaluate  by other means.

Hint

Exercise 4.9.2

.lim

x→∞

lnx

5x

( lnx)=

d

dx

1

x

0

f(x)

g(x)

0

0

∞/∞

Example : When L’Hôpital’s Rule Does Not Apply4.9.3

.lim

x→1

+5x

2

3x+4

( +5) = 2x

d

dx

x

2

(3x+4) = 3.

d

dx

= = .lim

x→1

+5x

2

3x+4

lim

x→1

2x

3

2

3

( +5) = 6lim

x→1

x

2

(3x+4) = 7,lim

x→1

= .lim

x→1

+5x

2

3x+4

6

7

≠lim

x→1

+5x

2

3x+4

lim

x→1

( +5)

d

dx

x

2

(3x+4).

d

dx

Exercise 4.9.3

lim

x→0

+

cosx

x

lim

x→0

+

cosx

x
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Determine the limits of the numerator and denominator separately.

Answer

 Therefore, we cannot apply L’Hôpital’s rule. The limit of the quotient is 

Other Indeterminate Forms

L’Hôpital’s rule is very useful for evaluating limits involving the indeterminate forms  and . However, we can also use

L’Hôpital’s rule to help evaluate limits involving other indeterminate forms that arise when evaluating limits. The expressions 
, and  are all considered indeterminate forms. These expressions are not real numbers. Rather, they

represent forms that arise when trying to evaluate certain limits. Next we realize why these are indeterminate forms and then
understand how to use L’Hôpital’s rule in these cases. The key idea is that we must rewrite the indeterminate forms in such a way

that we arrive at the indeterminate form  or .

Indeterminate Form of Type 0⋅∞
Suppose we want to evaluate , where  and  (or ) as . Since one term in the product

is approaching zero but the other term is becoming arbitrarily large (in magnitude), anything can happen to the product. We use the
notation  to denote the form that arises in this situation. The expression  is considered indeterminate because we cannot
determine without further analysis the exact behavior of the product  as . For example, let  be a positive integer
and consider

 and .

As  and . However, the limit as  of  varies, depending on . If ,

then . If , then . If , then . Here we consider another limit

involving the indeterminate form  and show how to rewrite the function as a quotient to use L’Hôpital’s rule.

Evaluate 

Solution

First, rewrite the function  as a quotient to apply L’Hôpital’s rule. If we write

we see that  as  and  as . Therefore, we can apply L’Hôpital’s rule and obtain

We conclude that

cosx = 1.lim

x→0

+

∞.

0

0

∞/∞

0 ⋅∞,∞−∞, ,1

∞

∞

0

0

0

0

0

∞/∞

(f(x) ⋅ g(x))lim

x→a

f(x) → 0 g(x) →∞ −∞ x→ a

0 ⋅∞ 0 ⋅∞

f(x)g(x) x→∞ n

f(x) =

1

( +1)x

n

g(x) = 3x

2

x→∞, f(x) → 0 g(x) →∞ x→∞ f(x)g(x) =

3x

2

( +1)x

n

n n= 2

f(x)g(x) = 3lim

x→∞

n= 1 f(x)g(x) =∞lim

x→∞

n= 3 f(x)g(x) = 0lim

x→∞

0 ⋅∞

Example : Indeterminate Form of Type 4.9.4 0 ⋅ ∞

x lnx.lim

x→0

+

x lnx

x lnx =

lnx

1/x

lnx→−∞ x→0

+

→∞

1

x

x→0

+

= = = (−x) = 0.lim

x→0

+

lnx

1/x

lim

x→0

+

( lnx)

d

dx

(1/x)

d

dx

lim

x→0

+

1/x

2

−1/x

lim

x→0

+

x lnx = 0.lim

x→0

+
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Figure : Finding the limit at  of the function 

Evaluate

Hint

Write 

Answer

Indeterminate Form of Type 
Another type of indeterminate form is  Consider the following example. Let  be a positive integer and let 
and . As  and . We are interested in . Depending on whether 

 grows faster,  grows faster, or they grow at the same rate, as we see next, anything can happen in this limit. Since 
 and , we write  to denote the form of this limit. As with our other indeterminate forms,  has

4.9.2 x = 0 f(x) = x ln x.

L'Hopital's Rule for Zero Times In�nityL'Hopital's Rule for Zero Times In�nity

Exercise 4.9.4

x cotx.lim

x→0

x cotx =

x cosx

sinx

1

∞−∞

∞−∞. n f(x) = 3x

n

g(x) = 3 +5x

2

x→∞, f(x) →∞ g(x) →∞ (f(x)−g(x))lim

x→∞

f(x) g(x)

f(x) →∞ g(x) →∞ ∞−∞ ∞−∞
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no meaning on its own and we must do more analysis to determine the value of the limit. For example, suppose the exponent n in
the function  is , then

On the other hand, if  then

However, if , then

Therefore, the limit cannot be determined by considering only . Next we see how to rewrite an expression involving the
indeterminate form  as a fraction to apply L’Hôpital’s rule.

Evaluate

Solution

By combining the fractions, we can write the function as a quotient. Since the least common denominator is  we have

.

As , the numerator  and the denominator  Therefore, we can apply L’Hôpital’s rule.
Taking the derivatives of the numerator and the denominator, we have

As ,  and . Since the denominator is positive as  approaches zero from
the right, we conclude that

Therefore,

Evaluate .

Hint

Rewrite the difference of fractions as a single fraction.

Answer

0

Another type of indeterminate form that arises when evaluating limits involves exponents. The expressions , and  are all
indeterminate forms. On their own, these expressions are meaningless because we cannot actually evaluate these expressions as we

f(x) = 3x

n

n= 3

(f(x)−g(x)) = (3 −3 −5) =∞.lim

x→∞

lim

x→∞

x

3

x

2

n= 2,

(f(x)−g(x)) = (3 −3 −5) =−5.lim

x→∞

lim

x→∞

x

2

x

2

n= 1

(f(x)−g(x)) = (3x−3 −5) =−∞.lim

x→∞

lim

x→∞

x

2

∞−∞

∞−∞

Example : Indeterminate Form of Type 4.9.5 ∞ −∞

( − ) .lim

x→0

+

1

x

2

1

tanx

tanx,x

2

− =

1

x

2

1

tanx

(tanx)−x

2

tanxx

2

x→0

+

tanx− →0x

2

tanx→0.x

2

= .lim

x→0

+

(tanx)−x

2

tanxx

2

lim

x→0

+

( x)−2xsec

2

x+2x tanxx

2

sec

2

x→0

+

(se x)−2x→1c

2

se x+2x tanx→0x

2

c

2

x

=∞.lim

x→0

+

( x)−2xsec

2

x+2x tanxx

2

sec

2

( − ) =∞.lim

x→0

+

1

x

2

1

tanx

Exercise 4.9.5

( − )lim

x→0

+

1

x

1

sinx

,0

0

∞

0

1

∞
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would evaluate an expression involving real numbers. Rather, these expressions represent forms that arise when finding limits.
Now we examine how L’Hôpital’s rule can be used to evaluate limits involving these indeterminate forms.

Since L’Hôpital’s rule applies to quotients, we use the natural logarithm function and its properties to reduce a problem evaluating a
limit involving exponents to a related problem involving a limit of a quotient. For example, suppose we want to evaluate 

 and we arrive at the indeterminate form . (The indeterminate forms  and  can be handled similarly.) We

proceed as follows. Let

Then,

Therefore,

Since  we know that . Therefore,  is of the indeterminate form , and we

can use the techniques discussed earlier to rewrite the expression  in a form so that we can apply L’Hôpital’s rule.
Suppose , where  may be  or  Then

Since the natural logarithm function is continuous, we conclude that

which gives us

Evaluate

Solution

Let .Then,

We need to evaluate . Applying L’Hôpital’s rule, we obtain

Therefore,  Since the natural logarithm function is continuous, we conclude that

which leads to

Hence,

f(xlim

x→a

)

g(x)

∞

0

0

0

1

∞

y = f(x .)

g(x)

(4.9.9)

lny = ln(f(x ) = g(x) ln(f(x)).)

g(x)

(4.9.10)

[ln(y)] = [g(x) ln(f(x))].lim

x→a

lim

x→a

(4.9.11)

f(x) =∞,lim

x→a

ln(f(x)) =∞lim

x→a

g(x) ln(f(x))lim

x→a

0 ⋅∞

g(x) ln(f(x))

g(x) ln(f(x)) =Llim

x→a

L ∞ −∞.

[ln(y)] =L.lim

x→a

(4.9.12)

ln( y)=L,lim

x→a

(4.9.13)

y = f(x = .lim

x→a

lim

x→a

)

g(x)

e

L

(4.9.14)

Example : Indeterminate Form of Type 4.9.6 ∞

0

.lim

x→∞

x

1/x

y = x

1/x

ln( ) = lnx = .x

1/x

1

x

lnx

x

lim

x→∞

lnx

x

lny = = = 0.lim

x→∞

lim

x→∞

lnx

x

lim

x→∞

1/x

1

lny = 0.lim

x→∞

ln( y)= 0,lim

x→∞

y = = = 1.lim

x→∞

lim

x→∞

lnx

x

e

0
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Evaluate

Hint

Let  and apply the natural logarithm to both sides of the equation.

Answer

Evaluate

Solution

Let

Therefore,

We now evaluate  Since  and , we have the indeterminate form . To apply

L’Hôpital’s rule, we need to rewrite  as a fraction. We could write

or

= 1.lim

x→∞

x

1/x

L'Hopital's Rule with ExponentialsL'Hopital's Rule with Exponentials

Exercise 4.9.6

.lim

x→∞

x

1/ ln(x)

y = x

1/ ln(x)

e

Example : Indeterminate Form of Type 4.9.7 0

0

.lim

x→0

+

x

sin x

y = .x

sin x

lny = ln( ) = sinx lnx.x

sin x

sinx lnx.lim

x→0

+

sinx = 0lim

x→0

+

lnx =−∞lim

x→0

+

0 ⋅∞

sinx lnx

sinx lnx =

sinx

1/ lnx
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Let’s consider the first option. In this case, applying L’Hôpital’s rule, we would obtain

Unfortunately, we not only have another expression involving the indeterminate form  but the new limit is even more
complicated to evaluate than the one with which we started. Instead, we try the second option. By writing

and applying L’Hôpital’s rule, we obtain

Using the fact that  and , we can rewrite the expression on the right-hand side as

We conclude that  Therefore,  and we have

Hence,

Evaluate .

Hint

Let  and take the natural logarithm of both sides of the equation.

Answer

1

Growth Rates of Functions

Suppose the functions  and  both approach infinity as . Although the values of both functions become arbitrarily large as
the values of  become sufficiently large, sometimes one function is growing more quickly than the other. For example, 
and  both approach infinity as . However, as Table  shows, the values of  are growing much faster than
the values of .

Table : Comparing the Growth Rates of  and 

10 100 1000 10,000

100 10,000 1,000,000 100,000,000

1000 1,000,000 1,000,000,000 1,000,000,000,000

In fact,
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or, equivalently

As a result, we say  is growing more rapidly than  as . On the other hand, for  and ,
although the values of  are always greater than the values of  for , each value of  is roughly three times the
corresponding value of  as , as shown in Table . In fact,

Table : Comparing the Growth Rates of  and 

10 100 1000 10,000

100 10,000 1,000,000 100,000,000

341 30,401 3,004,001 300,040,001

In this case, we say that  and  are growing at the same rate as 

More generally, suppose  and  are two functions that approach infinity as . We say  grows more rapidly than  as 
 if

On the other hand, if there exists a constant  such that

we say  and  grow at the same rate as .

Next we see how to use L’Hôpital’s rule to compare the growth rates of power, exponential, and logarithmic functions.

For each of the following pairs of functions, use L’Hôpital’s rule to evaluate

a.  and 
b.  and 

Solution

a. Since  and , we can use L’Hôpital’s rule to evaluate . We obtain

Since  and , we can apply L’Hôpital’s rule again. Since

we conclude that
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Example : Comparing the Growth Rates of , , and 4.9.8 ln(x) x
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Therefore,  grows more rapidly than  as  (See Figure  and Table )

Figure : An exponential function grows at a faster rate than a power function.
Table : Growth rates of a power function and an exponential function.

5 10 15 20

25 100 225 400

148 22,026 3,269,017 485,165,195

b. Since  and , we can use L’Hôpital’s rule to evaluate . We obtain

Thus,  grows more rapidly than  as  (see Figure  and Table ).

Figure : A power function grows at a faster rate than a logarithmic function.
Table : Growth rates of a power function and a logarithmic function

10 100 1000 10,000

2.303 4.605 6.908 9.10

100 10,000 1,000,000 100,000,000

Compare the growth rates of  and .

Hint: Apply L’Hôpital’s rule to 
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Example : Comparing the Growth Rates of  and 4.9.9 x
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Solution

The function  grows faster than .

Using the same ideas as in Example a. it is not difficult to show that  grows more rapidly than  for any . In Figure 
 and Table , we compare  with  and  as .

Figure : The exponential function  grows faster than  for any . (a) A comparison of  with . (b) A
comparison of  with .

Table : An exponential function grows at a faster rate than any power function

5 10 15 20

125 1000 3375 8000

625 10,000 50,625 160,000

148 22,026 3,326,017 485,165,195

Similarly, it is not difficult to show that  grows more rapidly than  for any . In Figure  and Table, we compare 
 with  and .

Figure : The function  grows more slowly than  for any  as .
Table : A logarithmic function grows at a slower rate than any root function

10 100 1000 10,000

2.303 4.605 6.908 9.210

2.154 4.642 10 21.544

3.162 10 31.623 100

Key Concepts

L’Hôpital’s rule can be used to evaluate the limit of a quotient when the indeterminate form  or  arises.
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L’Hôpital’s rule can also be applied to other indeterminate forms if they can be rewritten in terms of a limit involving a quotient

that has the indeterminate form  or 

The exponential function  grows faster than any power function .
The logarithmic function  grows more slowly than any power function .

Glossary

indeterminate forms

When evaluating a limit, the forms , , and  are considered indeterminate because further

analysis is required to determine whether the limit exists and, if so, what its value is.

L’Hôpital’s rule
If  and  are differentiable functions over an interval , except possibly at , and  or  and 

 are infinite, then , assuming the limit on the right exists or is  or .
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4.9E: Exercises for Section 4.8
In exercises 1 - 6, evaluate the limit.

1) Evaluate the limit .

2) Evaluate the limit .

Answer

3) Evaluate the limit .

4) Evaluate the limit .

Answer

5. Evaluate the limit .

6. Evaluate the limit .

Answer

In exercises 7 - 11, determine whether you can apply L’Hôpital’s rule directly. Explain why or why not. Then, indicate if
there is some way you can alter the limit so you can apply L’Hôpital’s rule.

7) 

8) 

Answer
Cannot apply directly; use logarithms

9) 

10) 

Answer
Cannot apply directly; rewrite as 

11) 

In exercises 12 - 40, evaluate the limits with either L’Hôpital’s rule or previously learned methods.

12) 

Answer
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13) 

14) 

Answer

15) 

16) 

Answer

17) 

18) 

Answer

19) 

20) 

Answer

21) 

22) 

Answer

23) 

24) 

Answer
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25) 

26) 

Answer

27) 

28) 

Answer

29) 

30) 

Answer

31) 

32) 

Answer

33) 

34) 

Answer

35) 

36) 

Answer

37) 

38) 

Answer
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39) 

40) 

Answer

For exercises 41 - 50, use a calculator to graph the function and estimate the value of the limit, then use L’Hôpital’s rule to
find the limit directly.

41) [T] 

42) [T] 

Answer

43) [T] 

44) [T] 

Answer

45) [T] 

46) [T] 

Answer

47) [T] 

48) [T] 

Answer

49) [T] 

50) [T] 
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4.10: Newton’s Method

Describe the steps of Newton’s method.
Explain what an iterative process means.
Recognize when Newton’s method does not work.
Apply iterative processes to various situations.

In many areas of pure and applied mathematics, we are interested in finding solutions to an equation of the form  For
most functions, however, it is difficult—if not impossible—to calculate their zeroes explicitly. In this section, we take a look at a
technique that provides a very efficient way of approximating the zeroes of functions. This technique makes use of tangent line
approximations and is behind the method used often by calculators and computers to find zeroes.

Describing Newton’s Method
Consider the task of finding the solutions of  If  is the first-degree polynomial , then the solution of 

 is given by the formula . If  is the second-degree polynomial , the solutions of 
can be found by using the quadratic formula. However, for polynomials of degree 3 or more, finding roots of  becomes more
complicated. Although formulas exist for third- and fourth-degree polynomials, they are quite complicated. Also, if f is a
polynomial of degree 5 or greater, it is known that no such formulas exist. For example, consider the function

No formula exists that allows us to find the solutions of  Similar difficulties exist for nonpolynomial functions. For
example, consider the task of finding solutions of No simple formula exists for the solutions of this equation. In
cases such as these, we can use Newton’s method to approximate the roots.

Newton’s method makes use of the following idea to approximate the solutions of  By sketching a graph of , we can
estimate a root of . Let’s call this estimate . We then draw the tangent line to  at . If , this tangent line
intersects the -axis at some point . Now let  be the next approximation to the actual root. Typically,  is closer than 
to an actual root. Next we draw the tangent line to  at . If , this tangent line also intersects the -axis, producing
another approximation, . We continue in this way, deriving a list of approximations:  Typically, the numbers 

 quickly approach an actual root , as shown in the following figure.
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Figure :The approximations  approach the actual root . The approximations are derived by looking at
tangent lines to the graph of .

Now let’s look at how to calculate the approximations  If  is our first approximation, the approximation  is
defined by letting  be the -intercept of the tangent line to  at . The equation of this tangent line is given by

Therefore,  must satisfy

Solving this equation for , we conclude that

Similarly, the point  is the -intercept of the tangent line to  at . Therefore,  satisfies the equation

In general, for  satisfies

Next we see how to make use of this technique to approximate the root of the polynomial 

Use Newton’s method to approximate a root of  in the interval . Let  and find 
and .

Solution

From Figure , we see that  has one root over the interval . Therefore  seems like a reasonable first
approximation. To find the next approximation, we use Equation . Since , the derivative is 

. Using Equation  with  (and a calculator that displays  digits), we obtain
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To find the next approximation, , we use Equation with  and the value of  stored on the calculator. We find that

Continuing in this way, we obtain the following results:

We note that we obtained the same value for  and . Therefore, any subsequent application of Newton’s method will most
likely give the same value for .

Figure : The function  has one root over the interval 

Letting , let’s use Newton’s method to approximate the root of  over the interval  by
calculating  and .

Hint

Use Equation .

Answer

 

= − = 2− = 2− ≈ 1.666666667.x

1

x

0

f( )x

0

( )f

′

x

0

f(2)

(2)f

′

3

9

x

2

n= 2 x

1

= − ≈ 1.548611111.x

2

x

1

f( )x

1

( )f

′

x

1

≈ 1.666666667x

1

≈ 1.548611111x

2

≈ 1.532390162x

3

≈ 1.532088989x

4

≈ 1.532088886x

5

≈ 1.532088886.x

6

x

5

x

6

x

n

4.10.2 f(x) = −3x+1x

3

[1, 2].

Exercise 4.10.1

= 0x

0

f(x) = −3x+1x

3

[0, 1]

x

1

x

2

4.10.1

≈ 0.33333333x

1

≈ 0.347222222x

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25972?pdf


4.10.4 https://stats.libretexts.org/@go/page/25972

Newton’s method can also be used to approximate square roots. Here we show how to approximate . This method can be
modified to approximate the square root of any positive number.

Use Newton’s method to approximate  (Figure ). Let , let , and calculate .
(We note that since  has a zero at , the initial value  is a reasonable choice to approximate ).

Figure : We can use Newton’s method to find .

Solution

For  From , we know that
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Therefore,

Continuing in this way, we find that

Since we obtained the same value for  and , it is unlikely that the value  will change on any subsequent application of
Newton’s method. We conclude that 

Use Newton’s method to approximate  by letting  and . Find  and .

Hint

For , Equation  reduces to .

Answer

 

When using Newton’s method, each approximation after the initial guess is defined in terms of the previous approximation by

using the same formula. In particular, by defining the function , we can rewrite Equation  as 

. This type of process, where each  is defined in terms of  by repeating the same function, is an example of
an iterative process. Shortly, we examine other iterative processes. First, let’s look at the reasons why Newton’s method could fail
to find a root.

Failures of Newton’s Method
Typically, Newton’s method is used to find roots fairly quickly. However, things can go wrong. Some reasons why Newton’s
method might fail include the following:

1. At one of the approximations , the derivative  is zero at , but . As a result, the tangent line of  at  does not
intersect the -axis. Therefore, we cannot continue the iterative process.

2. The approximations  may approach a different root. If the function  has more than one root, it is possible that
our approximations do not approach the one for which we are looking, but approach a different root (see Figure ). This
event most often occurs when we do not choose the approximation  close enough to the desired root.

3. The approximations may fail to approach a root entirely. In Example , we provide an example of a function and an initial
guess  such that the successive approximations never approach a root because the successive approximations continue to
alternate back and forth between two values.
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Figure : If the initial guess  is too far from the root sought, it may lead to approximations that approach a different root.

Consider the function . Let . Show that the sequence  fails to approach a root of .

Solution

For  the derivative is .Therefore,

In the next step,

Consequently, the numbers  continue to bounce back and forth between  and  and never get closer to the root
of  which is over the interval  (Figure ). Fortunately, if we choose an initial approximation  closer to the
actual root, we can avoid this situation.

Figure : The approximations continue to alternate between  and  and never approach the root of .
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For  let  and find  and .

Hint

Use Equation .

Answer

 

From Example , we see that Newton’s method does not always work. However, when it does work, the sequence of
approximations approaches the root very quickly. Discussions of how quickly the sequence of approximations approach a root
found using Newton’s method are included in texts on numerical analysis.

Other Iterative Processes
As mentioned earlier, Newton’s method is a type of iterative process. We now look at an example of a different type of iterative
process.

Consider a function  and an initial number . Define the subsequent numbers  by the formula . This process is
an iterative process that creates a list of numbers  This list of numbers may approach a finite number 
as  gets larger, or it may not. In Example , we see an example of a function  and an initial guess  such that the resulting
list of numbers approaches a finite value.

Let  and let . For all , let . Find the values . Make a conjecture
about what happens to this list of numbers  as . If the list of numbers 
approaches a finite number , then  satisfies , and  is called a fixed point of .
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From this list, we conjecture that the values  approach .

Figure  provides a graphical argument that the values approach  as . Starting at the point , we draw a
vertical line to the point . The next number in our list is . We use  to calculate . Therefore, we
draw a horizontal line connecting  to the point  on the line , and then draw a vertical line connecting 

 to the point . The output  becomes . Continuing in this way, we could create an infinite number
of line segments. These line segments are trapped between the lines  and . The line segments get closer to
the intersection point of these two lines, which occurs when . Solving the equation  we conclude they
intersect at . Therefore, our graphical evidence agrees with our numerical evidence that the list of numbers 

 approaches  as .

Figure : This iterative process approaches the value 

Consider the function . Let  and let  for . Find . Make a
conjecture about what happens to the list of numbers  as 

Hint

Consider the point where the lines  and  intersect.

Answer

Iterative processes can yield some very interesting behavior. In this section, we have seen several examples of iterative
processes that converge to a fixed point. We also saw in Example  that the iterative process bounced back and forth
between two values. We call this kind of behavior a 2-cycle. Iterative processes can converge to cycles with various
periodicities, such as 2−cycles, 4−cycles (where the iterative process repeats a sequence of four values), 8-cycles, and so on.

Some iterative processes yield what mathematicians call chaos. In this case, the iterative process jumps from value to value in a
seemingly random fashion and never converges or settles into a cycle. Although a complete exploration of chaos is beyond the
scope of this text, in this project we look at one of the key properties of a chaotic iterative process: sensitive dependence on
initial conditions. This property refers to the concept that small changes in initial conditions can generate drastically different
behavior in the iterative process.
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Probably the best-known example of chaos is the Mandelbrot set (see Figure), named after Benoit Mandelbrot (1924–2010),
who investigated its properties and helped popularize the field of chaos theory. The Mandelbrot set is usually generated by
computer and shows fascinating details on enlargement, including self-replication of the set. Several colorized versions of the
set have been shown in museums and can be found online and in popular books on the subject.

Figure : The Mandelbrot set is a well-known example of a set of points generated by the iterative chaotic behavior of a
relatively simple function.

In this project we use the logistic map

where  and 

as the function in our iterative process. The logistic map is a deceptively simple function; but, depending on the value of , the
resulting iterative process displays some very interesting behavior. It can lead to fixed points, cycles, and even chaos.

To visualize the long-term behavior of the iterative process associated with the logistic map, we will use a tool called a cobweb
diagram. As we did with the iterative process we examined earlier in this section, we first draw a vertical line from the point 

 to the point . We then draw a horizontal line from that point to the point  then draw a
vertical line to , and continue the process until the long-term behavior of the system becomes apparent.
Figure shows the long-term behavior of the logistic map when  and . (The first  iterations are not
plotted.) The long-term behavior of this iterative process is an -cycle.
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Figure : A cobweb diagram for  is presented here. The sequence of values results in an 8-cycle.

1. Let  and choose . Either by hand or by using a computer, calculate the first  values in the sequence.
Does the sequence appear to converge? If so, to what value? Does it result in a cycle? If so, what kind of cycle (for
example, −cycle, −cycle.)?

2. What happens when ?
3. For  and , calculate the first  sequence values. Generate a cobweb diagram for each iterative process.

(Several free applets are available online that generate cobweb diagrams for the logistic map.) What is the long-term
behavior in each of these cases?

4. Now let  Calculate the first  sequence values and generate a cobweb diagram. What is the long-term behavior in
this case?

5. Repeat the process for  but let  How does this behavior compare with the behavior for ?

Key Concepts
Newton’s method approximates roots of  by starting with an initial approximation , then uses tangent lines to the
graph of  to create a sequence of approximations 
Typically, Newton’s method is an efficient method for finding a particular root. In certain cases, Newton’s method fails to work
because the list of numbers  does not approach a finite value or it approaches a value other than the root sought.
Any process in which a list of numbers  is generated by defining an initial number  and defining the
subsequent numbers by the equation  for some function  is an iterative process. Newton’s method is an

example of an iterative process, where the function  for a given function .

Glossary

iterative process
process in which a list of numbers  is generated by starting with a number  and defining  for 

Newton’s method
method for approximating roots of  using an initial guess ; each subsequent approximation is defined by the

equation 
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4.10E: Exercises for Section 4.9
In exercises 1 - 5, write Newton’s formula as  for solving .

1) 

2) 

Answer

3) 

4) 

Answer

5) 

In exercises 6 - 8, solve  using the iteration , which differs slightly from Newton’s method. Find a
 that works and a  that fails to converge, with the exception of 

6)  with 

Answer
 fails,  works

7)  with 

8) What is the value of  for Newton’s method?

Answer

In exercises 9 - 16, compute  and  using the specified iterative method.
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a.  and

b. 

9) 

10) 
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a.  
b. 
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12) 

Answer
a.  
b. 
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13) 

14) 

Answer

a.  
b. 

15) 

16) 

Answer

a.  
b. 

In exercises 17 - 26, solve to four decimal places using Newton’s method and a computer or calculator. Choose any initial
guess  that is not the exact root.

17) 

18) 

Answer
 or 

19) 

20) 

Answer
  or 

21) 

22)  choose 

Answer

23) 

24) 

Answer
 or 

25) 

26) 

Answer

In exercises 27 - 30, use Newton’s method to find the fixed points of the function where ; round to three decimals.
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28)  on 
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x = (x)sin

2

0

f(x) = x

sinx

tanx x = ( , )

π

2

3π

2
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29) 

30) 

Answer

Newton’s method can be used to find maxima and minima of functions in addition to the roots. In this case apply Newton’s
method to the derivative function  to find its roots, instead of the original function. In exercises 31 - 32, consider the
formulation of the method.

31) To find candidates for maxima and minima, we need to find the critical points  Show that to solve for the critical

points of a function , Newton’s method is given by .

32) What additional restrictions are necessary on the function ?

Answer
We need  to be twice continuously differentiable.

In exercises 33 - 40, use Newton’s method to find the location of the local minima and/or maxima of the following functions;
round to three decimals.

33) Minimum of 

34) Minimum of 

Answer

35) Minimum of 

36) Maximum of 

Answer

37) Maximum of 

38) Maximum of 

Answer

39) Minimum of  closest non-zero minimum to 

40) Minimum of 

Answer

In exercises 41 - 44, use the specified method to solve the equation. If it does not work, explain why it does not work.

41) Newton’s method, 

42) Newton’s method, 

Answer

4.493

−2e

x

ln(x)+2

0.159, 3.146

f '(x)

f '(x) = 0.

f(x) = −x

n+1

x

n

f '( )x

n

( )f

′′

x

n

f

f

f(x) = +2x+4x

2

f(x) = 3 +2 −16x

3

x

2

x = 0

f(x) = x

2

e

x

f(x) = x+

1

x

x =−1

f(x) = +10 +15x−2x

3

x

2

f(x) =

−x

−−

√

x

−−

√

3

x

x = 5.619

f(x) = sinx,x

2

x = 0

f(x) = + +3 +12x+6x

4

x

3

x

2

x =−1.326

+2 = 0x

2

0 = e

x
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There is no solution to the equation.

43) Newton’s method,  starting at 

44) Solving  starting at 

Answer
It enters a cycle.

In exercises 45 - 48, use the secant method, an alternative iterative method to Newton’s method. The formula is given by

45) a root to  accurate to three decimal places.

46) Find a root to  accurate to four decimal places.

Answer

47) Find a root to  accurate to four decimal places.

48) Find a root to  accurate to four decimal places.

Answer

49) Why would you use the secant method over Newton’s method? What are the necessary restrictions on ?

In exercises 50 - 54, use both Newton’s method and the secant method to calculate a root for the following equations. Use a
calculator or computer to calculate how many iterations of each are needed to reach within three decimal places of the exact
answer. For the secant method, use the first guess from Newton’s method.

50) 

Answer
Newton:  iterations, secant:  iterations

51) 

52) 

Answer
Newton: three iterations, secant: six iterations

53) 

54) 

Answer
Newton: five iterations, secant: eight iterations

In exercises 55 - 56, consider Kepler’s equation regarding planetary orbits, , where  is the mean
anomaly,  is eccentric anomaly, and  measures eccentricity.

55) Use Newton’s method to solve for the eccentric anomaly  when the mean anomaly  and the eccentricity of the orbit 
 round to three decimals.

56) Use Newton’s method to solve for the eccentric anomaly  when the mean anomaly  and the eccentricity of the orbit 
 round to three decimals.

0 = 1+x

2

= 0x

0

=−x

n+1

x

3

n

=−1x

0

= −f( ) .x

n

x

n−1

x

n−1

−x

n−1

x

n−2

f( )−f( )x

n−1

x

n−2

0 = −x−3x

2

0 = sinx+3x

0

0 = −2e

x

ln(x+2) =

1

2

−0.3513

f

f(x) = +2x+1, = 1x

2

x

0

11 16

f(x) = , = 1x

2

x

0

f(x) = sinx, = 1x

0

f(x) = −1, = 2e

x

x

0

f(x) = +2x+4, = 0x

3

x

0

M =E−ε sin(E) M

E ε

E M =

π

3

ε= 0.25;

E M =

3π

2

ε= 0.8;
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Answer

In exercises 57 - 58, consider a bank investment. The initial investment is . After  years, the investment has
tripled to 

57) Use Newton’s method to determine the interest rate if the interest was compounded annually.

58) Use Newton’s method to determine the interest rate if the interest was compounded continuously.

Answer

59) The cost for printing a book can be given by the equation . Use Newton’s method to find the
break-even point if the printer sells each book for 

4.10E: Exercises for Section 4.9 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.9E: Exercises for Section 4.9 is licensed CC BY-NC-SA 4.0.

E = 4.071

$10, 000 25
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1

2

x
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4.11: Antiderivatives

Find the general antiderivative of a given function.
Explain the terms and notation used for an indefinite integral.
State the power rule for integrals.
Use antidifferentiation to solve simple initial-value problems.

At this point, we have seen how to calculate derivatives of many functions and have been introduced to a variety of their
applications. We now ask a question that turns this process around: Given a function , how do we find a function with the
derivative  and why would we be interested in such a function?

We answer the first part of this question by defining antiderivatives. The antiderivative of a function  is a function with a
derivative . Why are we interested in antiderivatives? The need for antiderivatives arises in many situations, and we look at
various examples throughout the remainder of the text. Here we examine one specific example that involves rectilinear motion. In
our examination in Derivatives of rectilinear motion, we showed that given a position function  of an object, then its velocity
function  is the derivative of —that is, . Furthermore, the acceleration  is the derivative of the velocity 

—that is, . Now suppose we are given an acceleration function , but not the velocity function v or the
position function . Since , determining the velocity function requires us to find an antiderivative of the acceleration
function. Then, since  determining the position function requires us to find an antiderivative of the velocity function.
Rectilinear motion is just one case in which the need for antiderivatives arises. We will see many more examples throughout the
remainder of the text. For now, let’s look at the terminology and notation for antiderivatives, and determine the antiderivatives for
several types of functions. We examine various techniques for finding antiderivatives of more complicated functions later in the
text (Introduction to Techniques of Integration).

The Reverse of Differentiation

At this point, we know how to find derivatives of various functions. We now ask the opposite question. Given a function , how
can we find a function with derivative ? If we can find a function  derivative  we call  an antiderivative of .

A function  is an antiderivative of the function  if

for all  in the domain of .

Consider the function . Knowing the power rule of differentiation, we conclude that  is an antiderivative of 
since .

Are there any other antiderivatives of ?

Yes; since the derivative of any constant  is zero,  is also an antiderivative of . Therefore,  and  are also
antiderivatives.

Are there any others that are not of the form  for some constant ?

The answer is no. From Corollary 2 of the Mean Value Theorem, we know that if  and  are differentiable functions such that 
 then  for some constant . This fact leads to the following important theorem.

Let  be an antiderivative of  over an interval . Then,

I. for each constant , the function  is also an antiderivative of  over ;
II. if  is an antiderivative of  over , there is a constant  for which  over .

In other words, the most general form of the antiderivative of  over  is .

Learning Objectives

f

f

f

f

s(t)

v(t) s(t) v(t) = s'(t) a(t)

v(t) a(t) = v'(t) = (t)s

′′

a

s a(t) = v'(t)

v(t) = s'(t),

f

f F f , F f

Definition: Antiderivative

F f

F '(x) = f(x)

x f

f(x) = 2x F (x) = x

2

f

F '(x) = 2x

f

C +Cx

2

2x +5x

2

−x

2

2

–

√

+Cx

2

C

F G

F '(x) =G'(x), F (x)−G(x) =C C

Theorem : General Form of an Antiderivative4.11.1

F f I

C F (x)+C f I

G f I C G(x) = F (x)+C I

f I F (x)+C
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We use this fact and our knowledge of derivatives to find all the antiderivatives for several functions.

For each of the following functions, find all antiderivatives.

a. 

b. 

c. 
d. 

Solution:

a. Because

then  is an antiderivative of . Therefore, every antiderivative of  is of the form  for some constant ,
and every function of the form  is an antiderivative of .

b. Let  For  and

For  and

Therefore,

Thus,  is an antiderivative of . Therefore, every antiderivative of  is of the form  for some

constant  and every function of the form  is an antiderivative of .

c. We have

so  is an antiderivative of . Therefore, every antiderivative of  is of the form  for some
constant  and every function of the form  is an antiderivative of .

d. Since

then  is an antiderivative of . Therefore, every antiderivative of  is of the form  for some constant  and
every function of the form  is an antiderivative of .

Find all antiderivatives of .

Hint

What function has a derivative of ?

Answer

Example : Finding Antiderivatives4.11.1

f(x) = 3x

2

f(x) =

1

x

f(x) = cosx

f(x) = e

x

( )= 3

d

dx

x

3

x

2

F (x) = x

3

3x

2

3x

2

+Cx

3

C

+Cx

3

3x

2

f(x) = ln |x|. x > 0, f(x) = ln(x)

( lnx)= .

d

dx

1

x

x < 0, f(x) = ln(−x)

( ln(−x))=− = .

d

dx

1

−x

1

x

( ln |x|)= .

d

dx

1

x

F (x) = ln |x|

1

x

1

x

ln |x| +C

C ln |x| +C

1

x

( sinx)= cosx,

d

dx

F (x) = sinx cosx cosx sinx+C

C sinx+C cosx

( ) = ,

d

dx

e

x

e

x

F (x) = e

x

e

x

e

x

+Ce

x

C

+Ce

x

e

x

Exercise 4.11.1

f(x) = sinx

sinx
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Indefinite Integrals
We now look at the formal notation used to represent antiderivatives and examine some of their properties. These properties allow

us to find antiderivatives of more complicated functions. Given a function , we use the notation  or  to denote the

derivative of . Here we introduce notation for antiderivatives. If  is an antiderivative of , we say that  is the most
general antiderivative of  and write

The symbol  is called an integral sign, and  is called the indefinite integral of .

Given a function , the indefinite integral of , denoted

is the most general antiderivative of . If  is an antiderivative of , then

The expression  is called the integrand and the variable x is the variable of integration.

Given the terminology introduced in this definition, the act of finding the antiderivatives of a function  is usually referred to as
integrating .

For a function  and an antiderivative , the functions , where  is any real number, is often referred to as the family of
antiderivatives of . For example, since  is an antiderivative of  and any antiderivative of  is of the form  we write

The collection of all functions of the form  where  is any real number, is known as the family of antiderivatives of .
Figure  shows a graph of this family of antiderivatives.

F (x) =−cosx+C

f f '(x)

df

dx

f F f F (x)+C

f

∫ f(x)dx = F (x)+C.

∫ ∫ f(x)dx f

Definition: Indefinite Integrals

f f

∫ f(x)dx, (4.11.1)

f F f

∫ f(x)dx = F (x)+C. (4.11.2)

f(x)

f

f

f F F (x)+C C

f x

2

2x 2x +C,x

2

∫ 2x dx = +C.x

2

+C,x

2

C 2x

4.11.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25974?pdf


4.11.4 https://stats.libretexts.org/@go/page/25974

Figure : The family of antiderivatives of  consists of all functions of the form , where  is any real number.

For some functions, evaluating indefinite integrals follows directly from properties of derivatives. For example, for ,

which comes directly from

.

This fact is known as the power rule for integrals.

For 

Evaluating indefinite integrals for some other functions is also a straightforward calculation. The following table lists the indefinite
integrals for several common functions. A more complete list appears in Appendix B.

Table : Integration Formulas

Differentiation Formula Indefinite Integral

 for 

4.11.1 2x +Cx

2

C

n≠−1

∫ dx = +C,x

n

x

n+1

n+1

( ) = (n+1) =

d

dx

x

n+1

n+1

x

n

n+1

x

n

Power Rule for Integrals

n≠−1,

∫ dx = +C.x

n

x

n+1

n+1

(4.11.3)

4.11.1

(k) = 0

d

dx

∫ k dx= ∫ k dx= kx+Cx

0

( ) = n

d

dx

x

n

x

n−1

∫ dx= +Cx

n

x

n+1

n+1

n ≠ −1

( ln |x|) =

d

dx

1

x

∫ dx= ln |x| +C

1

x

( ) =

d

dx

e

x

e

x

∫ dx= +Ce

x

e

x

( sinx) = cosx

d

dx

∫ cosxdx= sinx+C
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Differentiation Formula Indefinite Integral

From the definition of indefinite integral of , we know

if and only if  is an antiderivative of .

Therefore, when claiming that

it is important to check whether this statement is correct by verifying that 

Each of the following statements is of the form  Verify that each statement is correct by showing that 

a. 

b. 

Solution:

a. Since

,

the statement

is correct.

( cosx) = −sinx

d

dx

∫ sinxdx= −cosx+C

( tanx) = x

d

dx

sec

2

∫ xdx= tanx+Csec

2

( csc x) = −csc x cotx

d

dx

∫ csc x cotxdx= −csc x+C

( sec x) = sec x tanx

d

dx

∫ sec x tanxdx= sec x+C

( cotx) = − x

d

dx

csc

2

∫ xdx= −cotx+Ccsc

2

( x) =

d

dx

sin

−1

1

1−x

2

− −−−−

√

∫ = x+C

1

1−x

2

− −−−−

√

sin

−1

( x) =

d

dx

tan

−1

1

1+x

2

∫ dx= x+C

1

1+x

2

tan

−1

( |x|) =

d

dx

sec

−1

1

x −1x

2

− −−−−

√

∫ dx= |x| +C

1

x −1x

2

− −−−−

√

sec

−1

f

∫ f(x)dx = F (x)+C

F f

∫ f(x)dx = F (x)+C

F '(x) = f(x).

Example : Verifying an Indefinite Integral4.11.2

∫ f(x)dx = F (x)+C.

F '(x) = f(x).

∫ (x+ ) dx = + +Ce

x

x

2

2

e

x

∫ x dx = x − +Ce

x

e

x

e

x

( + +C) = x+

d

dx

x

2

2

e

x

e

x

∫ (x+ ) dx = + +Ce

x

x

2

2

e

x
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Note that we are verifying an indefinite integral for a sum. Furthermore,  and  are antiderivatives of  and ,

respectively, and the sum of the antiderivatives is an antiderivative of the sum. We discuss this fact again later in this section.

b. Using the product rule, we see that

Therefore, the statement

is correct.

Note that we are verifying an indefinite integral for a product. The antiderivative  is not a product of the
antiderivatives. Furthermore, the product of antiderivatives,  is not an antiderivative of  since

.

In general, the product of antiderivatives is not an antiderivative of a product.

Verify that 

Hint

Calculate 

Answer

In Table , we listed the indefinite integrals for many elementary functions. Let’s now turn our attention to evaluating
indefinite integrals for more complicated functions. For example, consider finding an antiderivative of a sum . In Example 

 we showed that an antiderivative of the sum  is given by the sum —that is, an antiderivative of a sum is

given by a sum of antiderivatives. This result was not specific to this example. In general, if  and  are antiderivatives of any
functions  and , respectively, then

Therefore,  is an antiderivative of  and we have

Similarly,

In addition, consider the task of finding an antiderivative of  where  is any real number. Since

for any real number , we conclude that

x

2

2

e

x

x e

x

(x − +C) = +x − = x .

d

dx

e

x

e

x

e

x

e

x

e

x

e

x

∫ x dx = x − +Ce

x

e

x

e

x

x −e

x

e

x

/2x

2

e

x

xe

x

( ) = x + ≠ x

d

dx

x

2

e

x

2

e

x

x

2

e

x

2

e

x

Exercise 4.11.2

∫ x cosx dx = x sinx+cosx+C.

(x sinx+cosx+C).

d

dx

(x sinx+cosx+C)= sinx+x cosx−sinx = x cosx

d

dx

4.11.1

f +g

4.11.2a x+e

x

+

x

2

2

e

x

F G

f g

(F (x)+G(x))= F '(x)+G'(x) = f(x)+g(x).

d

dx

F (x)+G(x) f(x)+g(x)

∫ (f(x)+g(x)) dx = F (x)+G(x)+C.

∫ (f(x)−g(x)) dx = F (x)−G(x)+C.

kf(x), k

(kf(x))= k (F (x))= kF '(x)

d

dx

d

dx

k
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These properties are summarized next.

Let  and  be antiderivatives of  and , respectively, and let  be any real number.

Sums and Differences

Constant Multiples

From this theorem, we can evaluate any integral involving a sum, difference, or constant multiple of functions with antiderivatives
that are known. Evaluating integrals involving products, quotients, or compositions is more complicated. (See Example  for
an example involving an antiderivative of a product.) We look at and address integrals involving these more complicated functions
in Introduction to Integration. In the next example, we examine how to use this theorem to calculate the indefinite integrals of
several functions.

Evaluate each of the following indefinite integrals:

a. 

b. 

c. 

d. 

Solution:

a. Using Note, we can integrate each of the four terms in the integrand separately. We obtain

From the second part of Note, each coefficient can be written in front of the integral sign, which gives

Using the power rule for integrals, we conclude that

b. Rewrite the integrand as

Then, to evaluate the integral, integrate each of these terms separately. Using the power rule, we have

∫ kf(x)dx = kF (x)+C.

Properties of Indefinite Integrals

F G f g k

∫ (f(x)±g(x)) dx = F (x)±G(x)+C (4.11.4)

∫ kf(x)dx = kF (x)+C (4.11.5)

4.11.2b

Example : Evaluating Indefinite Integrals4.11.3

∫ (5 −7 +3x+4) dxx

3

x

2

∫ dx

+4x

2

x

−−

√

3

x

∫ dx

4

1+x

2

∫ tanx cosx dx

∫ (5 −7 +3x+4) dx = ∫ 5 dx−∫ 7 dx+∫ 3x dx+∫ 4 dx.x

3

x

2

x

3

x

2

∫ 5 dx−∫ 7 dx+∫ 3x dx+∫ 4 dx = 5 ∫ dx−7 ∫ dx+3 ∫ x dx+4 ∫ 1 dx.x

3

x

2

x

3

x

2

∫ (5 −7 +3x+4) dx = − + +4x+C.x

3

x

2

5

4

x

4

7

3

x

3

3

2

x

2

= + = 0.

+4x

2

x

−−

√

3

x

x

2

x

4 x

−−

√

3

x
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c. Using Note, write the integral as

Then, use the fact that  is an antiderivative of  to conclude that

d. Rewrite the integrand as

Therefore,

Evaluate .

Hint

Integrate each term in the integrand separately, making use of the power rule.

Answer

Initial-Value Problems
We look at techniques for integrating a large variety of functions involving products, quotients, and compositions later in the text.
Here we turn to one common use for antiderivatives that arises often in many applications: solving differential equations.

∫ (x+ ) dx

4

x

2/3

= ∫ x dx+4 ∫ dxx

−2/3

= +4 +C

1

2

x

2

1

( )+1

−2

3

x

(−2/3)+1

= +12 +C.

1

2

x

2

x

1/3

4 ∫ dx.

1

1+x

2

(x)tan

−1

1

1+x

2

∫ dx = 4 (x)+C.

4

1+x

2

tan

−1

tanx cosx = ⋅ cosx = sinx.

sinx

cosx

∫ tanx cosx dx = ∫ sinx dx =−cosx+C.

Finding an Inde�nite Integral Using the Finding an Inde�nite Integral Using the ……

Exercise 4.11.3

∫ (4 −5 +x−7) dxx

3

x

2

∫ (4 −5 +x−7) dx = − + −7x+Cx

3

x

2

x

4

5

3

x

3

1

2

x

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25974?pdf
https://www.youtube.com/watch?v=eNWbT2bHFys
https://www.youtube.com/watch?v=eNWbT2bHFys


4.11.9 https://stats.libretexts.org/@go/page/25974

A differential equation is an equation that relates an unknown function and one or more of its derivatives. The equation

is a simple example of a differential equation. Solving this equation means finding a function  with a derivative . Therefore, the
solutions of Equation  are the antiderivatives of . If  is one antiderivative of , every function of the form 
is a solution of that differential equation. For example, the solutions of

are given by

Sometimes we are interested in determining whether a particular solution curve passes through a certain point  —that is, 
. The problem of finding a function  that satisfies a differential equation

with the additional condition

is an example of an initial-value problem. The condition  is known as an initial condition. For example, looking for a
function  that satisfies the differential equation

and the initial condition

is an example of an initial-value problem. Since the solutions of the differential equation are  to find a function  that
also satisfies the initial condition, we need to find  such that . From this equation, we see that , and
we conclude that  is the solution of this initial-value problem as shown in the following graph.

Figure : Some of the solution curves of the differential equation  are displayed. The function 

satisfies the differential equation and the initial condition 

= f(x)

dy

dx

(4.11.6)

y f

4.11.6 f F f y = F (x)+C

= 6

dy

dx

x

2

y = ∫ 6 dx = 2 +C.x

2

x

3

( , )x

0

y

0

y( ) =x

0

y

0

y

= f(x)

dy

dx

y( ) =x

0

y

0

y( ) =x

0

y

0

y

= 6

dy

dx

x

2

y(1) = 5

y = 2 +C,x

3

y

C y(1) = 2(1 +C = 5)

3

C = 3

y = 2 +3x

3

4.11.2 = 6

dy

dx

x

2

y = 2 +3x

3

y(1) = 5.
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Solve the initial-value problem

Solution

First we need to solve the differential equation. If , then

Next we need to look for a solution  that satisfies the initial condition. The initial condition  means we need a
constant  such that  Therefore,

The solution of the initial-value problem is 

Solve the initial value problem .

Hint

Find all antiderivatives of 

Answer

Initial-value problems arise in many applications. Next we consider a problem in which a driver applies the brakes in a car. We are
interested in how long it takes for the car to stop. Recall that the velocity function  is the derivative of a position function 
and the acceleration  is the derivative of the velocity function. In earlier examples in the text, we could calculate the velocity
from the position and then compute the acceleration from the velocity. In the next example we work the other way around. Given
an acceleration function, we calculate the velocity function. We then use the velocity function to determine the position function.

A car is traveling at the rate of  ft/sec (  mph) when the brakes are applied. The car begins decelerating at a constant rate of
 ft/sec .

a. How many seconds elapse before the car stops?
b. How far does the car travel during that time?

Solution

a. First we introduce variables for this problem. Let  be the time (in seconds) after the brakes are first applied. Let  be the
acceleration of the car (in feet per seconds squared) at time . Let  be the velocity of the car (in feet per second) at time .
Let  be the car’s position (in feet) beyond the point where the brakes are applied at time .

The car is traveling at a rate of  ft/sec. Therefore, the initial velocity is  ft/sec. Since the car is decelerating, the
acceleration is

.

The acceleration is the derivative of the velocity,

Example : Solving an Initial-Value Problem4.11.4

= sinx, y(0) = 5.

dy

dx

= sinx

dy

dx

y = ∫ sin(x)dx =−cosx+C.

y y(0) = 5

C −cosx+C = 5.

C = 5+cos(0) = 6.

y =−cosx+6.

Exercise 4.11.4

= 3 , y(1) = 2

dy

dx

x

−2

f(x) = 3x

−2.

y =− +5

3

x

v(t) s(t),

a(t)

Example :4.11.5

88 60

15

2

t a(t)

t v(t) t

s(t) t

88 v(0) = 88

a(t) =−15 ft/sec

2

v'(t) = 15.
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Therefore, we have an initial-value problem to solve:

Integrating, we find that

Since  Thus, the velocity function is

To find how long it takes for the car to stop, we need to find the time t such that the velocity is zero. Solving 

we obtain  sec.

b. To find how far the car travels during this time, we need to find the position of the car after  sec. We know the velocity 

 is the derivative of the position . Consider the initial position to be . Therefore, we need to solve the initial-
value problem

Integrating, we have

Since , the constant is . Therefore, the position function is

After  sec, the position is  ft.

Suppose the car is traveling at the rate of  ft/sec. How long does it take for the car to stop? How far will the car travel?

Hint

Answer

 sec,  ft

Key Concepts
If  is an antiderivative of  then every antiderivative of  is of the form  for some constant .
Solving the initial-value problem

requires us first to find the set of antiderivatives of  and then to look for the particular antiderivative that also satisfies the
initial condition.

Glossary

antiderivative
a function  such that  for all  in the domain of  is an antiderivative of 

indefinite integral

v'(t) =−15, v(0) = 88.

v(t) =−15t+C.

v(0) = 88,C = 88.

v(t) =−15t+88.

−15t+88 = 0,

t =

88

15

88

15

v(t) s(t) s(0) = 0

s'(t) =−15t+88, s(0) = 0.

s(t) =− +88t+C.

15

2

t

2

s(0) = 0 C = 0

s(t) =− +88t.

15

2

t

2

t =

88

15

s( )≈ 258.133

88

15

Exercise 4.11.5

44

v(t) =−15t+44.

2.93 64.5

F f , f F (x)+C C

= f(x), y( ) =

dy

dx

x

0

y

0

f

F F '(x) = f(x) x f f
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the most general antiderivative of  is the indefinite integral of ; we use the notation  to denote the indefinite

integral of 

initial value problem

a problem that requires finding a function  that satisfies the differential equation  together with the initial condition
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4.11E: Exercises for Section 4.10
In exercises 1 - 20, find the antiderivative  of each function 

1) 

2) 

Answer

3) 

4) 

Answer

5) 

6) 

Answer

7) 

8) 

Answer

9) 

10) 

Answer

11) 

12) 

Answer

13) 

14) 

Answer

15) 

16) 

F (x) f(x).

f(x) = +x

1

x

2

f(x) = −3 +sinxe

x

x

2

F (x) = − −cosx+Ce

x

x

3

f(x) = +3x−e

x

x

2

f(x) = x−1+4 sin(2x)

F (x) = −x−2 cos(2x)+C

x

2

2

f(x) = 5 +4x

4

x

5

f(x) = x+12x

2

F (x) = +4 +C

1

2

x

2

x

3

f(x) =

1

x

−−

√

f(x) = ( )x

−−

√

3

F (x) = +C

2

5

( )x

−−

√

5

f(x) = +(2xx

1/3

)

1/3

f(x) =

x

1/3

x

2/3

F (x) = +C

3

2

x

2/3

f(x) = 2 sin(x)+sin(2x)

f(x) = x+1sec

2

F (x) = x+tanx+C

f(x) = sinx cosx

f(x) = (x) cos(x)sin

2

F (x) = (x)+C

1

3

sin

3

f(x) = 0

f(x) = x+

1

2

csc

2

1

x

2
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Answer

17) 

18) 

Answer

19) 

20) 

Answer

For exercises 21 - 29, evaluate the integral.

21) 

22) 

Answer

23) 

24) 

Answer

25) 

26) 

Answer

27) 

28) 

Answer

F (x) =− cotx− +C

1

2

1

x

f(x) = cscx cotx+3x

f(x) = 4 cscx cotx−secx tanx

F (x) =−secx−4 cscx+C

f(x) = 8(secx)( secx−4 tanx)

f(x) = +sinx

1

2

e

−4x

F (x) =− −cosx+C

1

8

e

−4x

∫ (−1)dx

∫ sinx dx

∫ sinx dx =−cosx+C

∫ (4x+ ) dxx

−−

√

∫ dx

3 +2x

2

x

2

∫ dx = 3x− +C

3 +2x

2

x

2

2

x

∫ ( secx tanx+4x) dx

∫ (4 + ) dxx

−−

√

x

−−

√

4

∫ (4 + ) dx = + +Cx

−−

√

x

−−

√

4

8

3

x

3/2

4

5

x

5/4

∫ ( − ) dxx

−1/3

x

2/3

∫ dx

14 +2x+1x

3

x

3

∫ dx = 14x− − +C

14 +2x+1x

3

x

3

2

x

1

2x

2

https://libretexts.org/
https://stats.libretexts.org/@go/page/25975?pdf


4.11E.3 https://stats.libretexts.org/@go/page/25975

29) 

In exercises 30 - 34, solve the initial value problem.

30) 

Answer

31) 

32) 

Answer

33) 

34) 

Answer

In exercises 35 - 39, find two possible functions  given the second- or third-order derivatives

35) 

36) 

Answer
Answers may vary; one possible answer is 

37) 

38) 

Answer
Answers may vary; one possible answer is 

39) 

40) A car is being driven at a rate of  mph when the brakes are applied. The car decelerates at a constant rate of . How
long before the car stops?

Answer
 sec

41) In the preceding problem, calculate how far the car travels in the time it takes to stop.

42) You are merging onto the freeway, accelerating at a constant rate of . How long does it take you to reach merging
speed at  mph?

Answer
 sec

43) Based on the previous problem, how far does the car travel to reach merging speed?

∫ ( + ) dxe

x

e

−x

f '(x) = , f(1) = 1x

−3

f(x) =− +

1

2x

2

3

2

f '(x) = + , f(0) = 2x

−−

√

x

2

f '(x) = cosx+ (x), f( ) = 2+sec

2

π

4

2

√

2

f(x) = sinx+tanx+1

f '(x) = −8 +16x+1, f(0) = 0x

3

x

2

f '(x) = − , f(1) = 0

2

x

2

x

2

2

f(x) =− − +

1

6

x

3

2

x

13

6

f

(x) = +2f

′′

x

2

(x) =f

′′

e

−x

f(x) = e

−x

(x) = 1+xf

′′

(x) = cosxf

′′′

f(x) =−sinx

(x) = 8 −sinxf

′′′

e

−2x

40 10 ft/sec

2

5.867

12 ft/sec

2

60

7.333
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44) A car company wants to ensure its newest model can stop in  sec when traveling at  mph. If we assume constant
deceleration, find the value of deceleration that accomplishes this.

Answer

45) A car company wants to ensure its newest model can stop in less than  ft when traveling at  mph. If we assume constant
deceleration, find the value of deceleration that accomplishes this.

In exercises 46 - 51, find the antiderivative of the function, assuming 

46) [T] 

Answer

47) [T] 

48) [T] 

Answer

49) [T] 

50) [T] 

Answer

51) [T] 

In exercises 52 - 55, determine whether the statement is true or false. Either prove it is true or find a counterexample if it is
false.

52) If  is the antiderivative of , then  is the antiderivative of 

Answer
True

53) If  is the antiderivative of , then  is the antiderivative of 

54) If  is the antiderivative of  then  is the antiderivative of 

Answer
False

55) If  is the antiderivative of , then  is the antiderivative of 

4.11E: Exercises for Section 4.10 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.10E: Exercises for Section 4.10 is licensed CC BY-NC-SA 4.0.

8 75

13.75 ft/sec

2

450 60

F (0) = 0.

f(x) = +2x

2

F (x) = +2x

1

3

x

3

f(x) = 4x− x

−−

√

f(x) = sinx+2x

F (x) = −cosx+1x

2

f(x) = e

x

f(x) =

1

(x+1)

2

F (x) =− +1

1

x+1

f(x) = +3e

−2x

x

2

f(x) v(x) 2f(x) 2v(x).

f(x) v(x) f(2x) v(2x).

f(x) v(x), f(x)+1 v(x)+1.

f(x) v(x) (f(x))

2

(v(x) .)

2
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4.12: Chapter 4 Review Exercises
True or False? Justify your answer with a proof or a counterexample. Assume that  is continuous and differentiable
unless stated otherwise.

1) If  and , then there exists at least one point  such that 

Answer
True, by Mean Value Theorem

2) If  there is a maximum or minimum at 

3) There is a function such that  and  (A graphical “proof” is acceptable for this answer.)

Answer
True

4) There is a function such that there is both an inflection point and a critical point for some value 

5) Given the graph of , determine where  is increasing or decreasing.

Answer
Increasing: , decreasing: 

6) The graph of  is given below. Draw .

7) Find the linear approximation  to  near 

Answer

8) Find the differential of  and evaluate for  with 

Find the critical points and the local and absolute extrema of the following functions on the given interval.

9)  over 

Answer

f(x)

f(−1) =−6 f(1) = 2 x ∈ [−1, 1] f '(x) = 4.

f '(c) = 0, x = c.

f(x) < 0, f '(x) > 0, (x) < 0.f

′′

x = a.

f ' f

(−2, 0)∪ (4,∞) (−∞,−2)∪ (0, 4)

f f '

L(x) y = +tan(πx)x

2

x = .

1

4

L(x) = + (1+4π)(x− )

17

16

1

2

1

4

y = −5x−6x

2

x = 2 dx = 0.1.

f(x) = x+ (x)sin

2

[0, π]
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Critical point:  
Absolute minimum:  when  
Absolute maximum:  when 

Solution:

10)  over 

Determine over which intervals the following functions are increasing, decreasing, concave up, and concave down.

11) 

Answer
Increasing:  
Decreasing:  
Concave up: , 
Concave down: 

12) 

13) 

Answer
Increasing:  
Decreasing: ,
Concave up:  
Concave down: nowhere

14) 

Evaluate the following limits.

15) 

Answer

16) 

17) 

Answer

18) 

Use Newton’s method to find the first two iterations, given the starting point.

19) 

Answer

20) 

Find the antiderivatives  of the following functions.

x = ,

3π

4

0 x = 0,

π x = π

f(x) = 3 −4 −12 +6x

4

x

3

x

2

[−3, 3]

x(t) = 3 −8 −18t

4

t

3

t

2

(−1, 0)∪ (3,∞),

(−∞,−1)∪ (0, 3),

(−∞, (2− ))∪ ( (2+ ) ,∞)

1

3

13

−−

√

1

3

13

−−

√

( (2− ) , (2+ ))

1

3

13

−−

√

1

3

13

−−

√

y = x+sin(πx)

g(x) = x− x

−−

√

( ,∞) ,

1

4

(0, )

1

4

(0,∞),

f(θ) = sin(3θ)

lim

x→∞

3x +1x

2

− −−−−

√

−1x

4

− −−−−

√

3

cos( )lim

x→∞

1

x

lim

x→1

x−1

sin(πx)

−

1

π

(3xlim

x→∞

)

1/x

y = +1, = 0.5x

3

x

0

=−1, =−1x

1

x

2

= , = 0

1

x+1

1

2

x

0

F (x)
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21) 

Answer

22) 

Graph the following functions by hand. Make sure to label the inflection points, critical points, zeros, and asymptotes.

23) 

Answer

Inflection points: none; 
Critical points: ; 
Zeros: none; 
Vertical asymptotes: ; 
Horizontal asymptote: 

24) 

25) A car is being compacted into a rectangular solid. The volume is decreasing at a rate of . The length and width of the
compactor are square, but the height is not the same length as the length and width. If the length and width walls move toward each
other at a rate of  m/sec, find the rate at which the height is changing when the length and width are  m and the height is 
m.

Answer
The height is decreasing at a rate of  m/sec

26) A rocket is launched into space; its kinetic energy is given by , where  is the kinetic energy in joules, 
is the mass of the rocket in kilograms, and  is the velocity of the rocket in meters/second. Assume the velocity is increasing at a
rate of  and the mass is decreasing at a rate of  kg/sec because the fuel is being burned. At what rate is the rocket’s
kinetic energy changing when the mass is  kg and the velocity is  m/sec? Give your answer in mega-Joules (MJ), which
is equivalent to  J.

27) The famous Regiomontanus’ problem for angle maximization was proposed during the  century. A painting hangs on a
wall with the bottom of the painting a distance  feet above eye level, and the top  feet above eye level. What distance  (in feet)
from the wall should the viewer stand to maximize the angle subtended by the painting, ?

g(x) = −x

−−

√

1

x

2

F (x) = + +C

2x

3/2

3

1

x

f(x) = 2x+6 cosx, F (π) = +2π

2

y =

1

x(x+1)

2

x =−

1

3

x =−1, x = 0

y = 0

y = x− 4−x

2

− −−−−

√

2 /secm

3

0.25 2 1.5

0.125

K(t) = m(t)v(t

1

2

)

2

K m

v

15m/sec

2

10

2000 5000

10

6

15

th

a b x

θ
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Answer
 feet

28) An airline sells tickets from Tokyo to Detroit for  There are  seats available and a typical flight books  seats. For
every  decrease in price, the airline observes an additional five seats sold. What should the fare be to maximize profit? How
many passengers would be onboard?

4.12: Chapter 4 Review Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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5.1: A- Table of Derivatives

General Formulas

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Trigonometric Functions

9. 

10. 

11. 

12. 

13. 

14. 

Inverse Trigonometric Functions

15. 

16. 

17. 

18. 

19. 

20. 

(c) = 0

d

dx

(f(x) +g(x)) = f '(x) +g'(x)

d

dx

(f(x)g(x)) = f '(x)g(x) +f(x)g'(x)

d

dx

( ) = n , for real numbers n

d

dx

x

n

x

n−1

(cf(x)) = cf '(x)

d

dx

(f(x) −g(x)) = f '(x) −g'(x)

d

dx

( ) =

d

dx

f(x)

g(x)

g(x)f '(x) −f(x)g'(x)

(g(x))

2

[f(g(x))] = f '(g(x)) ⋅ g'(x)

d

dx

(sinx) = cosx

d

dx

(tanx) = x

d

dx

sec

2

(secx) = secx tanx

d

dx

(cosx) = −sinx

d

dx

(cotx) = − x

d

dx

csc

2

(cscx) = −cscx cotx

d

dx

( x) =

d

dx

sin

−1

1

1 −x

2

− −−−−

√

( x) =

d

dx

tan

−1

1

1 +x

2

( x) =

d

dx

sec

−1

1

|x| −1x

2

− −−−−

√

( x) =

d

dx

cos

−1

−1

1 −x

2

− −−−−

√

( x) =

d

dx

cot

−1

−1

1 +x

2

( x) =

d

dx

csc

−1

−1

|x| −1x

2

− −−−−

√
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Exponential and Logarithmic Functions

21. 

22. 

23. 

24. 

Hyperbolic Functions

25. 

26. 

27. 

28. 

29. 

30. 

Inverse Hyperbolic Functions

31. 

32. 

33. 

34. 

35. 

36. 

This page titled 5.1: A- Table of Derivatives is shared under a not declared license and was authored, remixed, and/or curated by .

Appendix A: Table of Derivatives by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

( ) =

d

dx

e

x

e

x

(ln |x|) =

d

dx

1

x

( ) = lnb

d

dx

b

x

b

x

( x) =

d

dx

log

b

1

x lnb

(sinhx) = coshx

d

dx

(tanhx) = x

d

dx

sech

2

(sechx) =−sechx tanhx

d

dx

(coshx) = sinhx

d

dx

(cothx) =− x

d

dx

csch

2

(cschx) =−cschx cothx

d

dx

( x)=

d

dx

sinh

−1

1

+1x

2

− −−−−

√

( x)= (|x| < 1)

d

dx

tanh

−1

1

1−x

2

( x)= (0 < x < 1)

d

dx

sech

−1

−1

x 1−x

2

− −−−−

√

( x)= (x > 1)

d

dx

cosh

−1

1

−1x

2

− −−−−

√

( x)= (|x| > 1)

d

dx

coth

−1

1

1−x

2

( x)= (x ≠ 0)

d

dx

csch

−1

−1

|x| 1 +x

2

− −−−−

√
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5.2: B- Table of Integrals

Basic Integrals

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

Trigonometric Integrals

18. 

19. 

20. 

21. 

∫ du = +C, n≠−1u

n

u

n+1

n+1

∫ = ln|u| +C

du

u

∫ du = +Ce

u

e

u

∫ du = +Ca

u

a

u

lna

∫ sinu du =−cosu+C

∫ cosu du = sinu+C

∫ u du = tanu+Csec

2

∫ u du =−cotu+Ccsc

2

∫ secu tanu du = secu+C

∫ cscu cotu du =−cscu+C

∫ tanu du = ln| secu| +C

∫ cotu du = ln| sinu| +C

∫ secu du = ln| secu+tanu| +C

∫ cscu du = ln| cscu−cotu| +C

∫ = ( )+C

du

−a

2

u

2

− −−−−−

√

sin

−1

u

a

∫ = ( )+C

du

+a

2

u

2

1

a

tan

−1

u

a

∫ = +C

du

u −u

2

a

2

− −−−−−

√

1

a

sec

−1

|u|

a

∫ u du = u− sin2u+Csin

2

1

2

1

4

∫ u du = u+ sin2u+Ccos

2

1

2

1

4

∫ u du = tanu−u+Ctan

2

∫ u du =−cotu−u+Ccot

2
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22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

Exponential and Logarithmic Integrals

42. 

∫ u du =− (2+ u) cosu+Csin

3

1

3

sin

2

∫ u du = (2+ u) sinu+Ccos

3

1

3

cos

2

∫ u du = u+ln| cosu| +Ctan

3

1

2

tan

2

∫ u du =− u−ln| sinu| +Ccot

3

1

2

cot

2

∫ u du = secu tanu+ ln| secu+tanu| +Csec

3

1

2

1

2

∫ u du =− cscu cotu+ ln| cscu−cotu| +Ccsc

3

1

2

1

2

∫ u du = u cosu+ ∫ u dusin

n

−1

n

sin

n−1

n−1

n

sin

n−2

∫ u du = u sinu+ ∫ u ducos

n

1

n

cos

n−1

n−1

n

cos

n−2

∫ u du = u−∫ u dutan

n

1

n−1

tan

n−1

tan

n−2

∫ u du = u−∫ u ducot

n

−1

n−1

cot

n−1

cot

n−2

∫ u du = tanu u+ ∫ u dusec

n

1

n−1

sec

n−2

n−2

n−1

sec

n−2

∫ u du = cotu u+ ∫ u ducsc

n

−1

n−1

csc

n−2

n−2

n−1

csc

n−2

∫ sinau sinbu du = − +C

sin(a−b)u

2(a−b)

sin(a+b)u

2(a+b)

∫ cosau cos bu du = + +C

sin(a−b)u

2(a−b)

sin(a+b)u

2(a+b)

∫ sinau cos bu du =− − +C

cos(a−b)u

2(a−b)

cos(a+b)u

2(a+b)

∫ u sinu du = sinu−u cosu+C

∫ u cosu du = cosu+u sinu+C

∫ sinu du =− cosu+n∫ cosu duu

n

u

n

u

n−1

∫ cosu du = sinu−n∫ sinu duu

n

u

n

u

n−1

∫ u u du =− + ∫ u u dusin

n

cos

m

u usin

n−1

cos

m+1

n+m

n−1

n+m

sin

n−2

cos

m

= + ∫ u u du

u usin

n+1

cos

m−1

n+m

m−1

n+m

sin

n

cos

m−2

∫ u du = (au−1) +Ce

au

1

a

2

e

au
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43. 

44. 

45. 

46. 

47. 

48. 

Hyperbolic Integrals

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

Inverse Trigonometric Integrals

59. 

60. 

61. 

62. 

63. 

64. 

∫ du = − ∫ duu

n

e

au

1

a

u

n

e

au

n

a

u

n−1

e

au

∫ sinbu du = (a sinbu−b cos bu)+Ce

au

e

au

+a

2

b

2

∫ cos bu du = (a cos bu+b sinbu)+Ce

au

e

au

+a

2

b

2

∫ lnu du = u lnu−u+C

∫ lnu du = [(n+1) lnu−1]+Cu

n

u

n+1

(n+1)

2

∫ du = ln| lnu| +C

1

u lnu

∫ sinhu du = coshu+C

∫ coshu du = sinhu+C

∫ tanhu du = lncoshu+C

∫ cothu du = ln| sinhu| +C

∫ sechu du = | sinhu| +Ctan

−1

∫ cschu du = ln ∣ tanh u ∣ +C

1

2

∫ u du = tanh u+Csech

2

∫ u du =−coth u+Ccsch

2

∫ sechu tanhu du =−sechu+C

∫ cschu cothu du =−cschu+C

∫ u du = u u+ +Csin

−1

sin

−1

1−u

2

− −−−−

√

∫ u du = u u− +Ccos

−1

cos

−1

1−u

2

− −−−−

√

∫ u du = u u− ln(1+ )+Ctan

−1

tan

−1

1

2

u

2

∫ u u du = u+ +Csin

−1

2 −1u

2

4

sin

−1

u 1−u

2

− −−−−

√

4

∫ u u du = u− +Ccos

−1

2 −1u

2

4

cos

−1

u 1−u

2

− −−−−

√

4

∫ u u du = u− +Ctan

−1

+1u

2

2

tan

−1

u

2
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65. 

66. 

67. 

Integrals Involving a  + u , a > 0

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

76. 

Integrals Involving u  − a , a > 0

77. 

78. 

79. 

80. 

81. 

82. 

83. 

84. 

∫ u du = [ u−∫ ] , n≠−1u

n

sin

−1

1

n+1

u

n+1

sin

−1

duu

n+1

1−u

2

− −−−−

√

∫ u du = [ u+∫ ] , n≠−1u

n

cos

−1

1

n+1

u

n+1

cos

−1

duu

n+1

1−u

2

− −−−−

√

∫ u du = [ u−∫ ] , n≠−1u

n

tan

−1

1

n+1

u

n+1

tan

−1

duu

n+1

1+u

2

2 2

∫ du = + ln(u+ )+C+a

2

u

2

− −−−−−

√

u

2

+a

2

u

2

− −−−−−

√

a

2

2

+a

2

u

2

− −−−−−

√

∫ du = ( +2 ) − ln(u+ )+Cu

2

+a

2

u

2

− −−−−−

√

u

8

a

2

u

2

+a

2

u

2

− −−−−−

√

a

4

8

+a

2

u

2

− −−−−−

√

∫ du = −a ln +C

+a

2

u

2

− −−−−−

√

u

+a

2

u

2

− −−−−−

√

∣

∣

∣

a+ +a

2

u

2

− −−−−−

√

u

∣

∣

∣

∫ du =− +ln(u+ )+C

+a

2

u

2

− −−−−−

√

u

2

+a

2

u

2

− −−−−−

√

u

+a

2

u

2

− −−−−−

√

∫ = ln(u+ )+C

du

+a

2

u

2

− −−−−−

√

+a

2

u

2

− −−−−−

√

∫ du = ( )− ln(u+ )+C

u

2

+a

2

u

2

− −−−−−

√

u

2

+a

2

u

2

− −−−−−

√

a

2

2

+a

2

u

2

− −−−−−

√

∫ = ln +C

du

u +a

2

u

2

− −−−−−

√

−1

a

∣

∣

∣

+a+a

2

u

2

− −−−−−

√

u

∣

∣

∣

∫ =− +C

du

u

2

+a

2

u

2

− −−−−−

√

+a

2

u

2

− −−−−−

√

ua

2

∫ = +C

du

( + )a

2

u

2

3/2

u

a

2

+a

2

u

2

− −−−−−

√

2 2

∫ du = − ln u+ +C−u

2

a

2

− −−−−−

√

u

2

−u

2

a

2

− −−−−−

√

a

2

2

∣

∣

−u

2

a

2

− −−−−−

√

∣

∣

∫ du = (2 − ) − ln u+ +Cu

2

−u

2

a

2

− −−−−−

√

u

8

u

2

a

2

−u

2

a

2

− −−−−−

√

a

4

8

∣

∣

−u

2

a

2

− −−−−−

√

∣

∣

∫ du = −a +C

−u

2

a

2

− −−−−−

√

u

−u

2

a

2

− −−−−−

√

cos

−1

a

|u|

∫ du =− +ln u+ +C

−u

2

a

2

− −−−−−

√

u

2

−u

2

a

2

− −−−−−

√

u

∣

∣

−u

2

a

2

− −−−−−

√

∣

∣

∫ = ln u+ +C

du

−u

2

a

2

− −−−−−

√

∣

∣

−u

2

a

2

− −−−−−

√

∣

∣

∫ du = + ln u+ +C

u

2

−u

2

a

2

− −−−−−

√

u

2

−u

2

a

2

− −−−−−

√

a

2

2

∣

∣

−u

2

a

2

− −−−−−

√

∣

∣

∫ = +C

du

u

2

−u

2

a

2

− −−−−−

√

−u

2

a

2

− −−−−−

√

ua

2

∫ =− +C

du

( −u

2

a

2

)

3/2

u

a

2

−u

2

a

2

− −−−−−

√
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Integrals Involving a  − u , a > 0

85. 

86. 

87. 

88. 

89. 

90. 

91. 

92. 

93. 

Integrals Involving 2au − u , a > 0

94. 

95. 

96. 

97. 

Integrals Involving a + bu, a ≠ 0

98. 

99. 

100. 

101. 

102. 

103. 

104. 

2 2

∫ du = + +C−a

2

u

2

− −−−−−

√

u

2

−a

2

u

2

− −−−−−

√

a

2

2

sin

−1

u

a

∫ du = (2 − ) + +Cu

2

−a

2

u

2

− −−−−−

√

u

8

u

2

a

2

−a

2

u

2

− −−−−−

√

a

4

8

sin

−1

u

a

∫ du = −a ln +C

−a

2

u

2

− −−−−−

√

u

−a

2

u

2

− −−−−−

√

∣

∣

∣

a+ −a

2

u

2

− −−−−−

√

u

∣

∣

∣

∫ du = − +C

−a

2

u

2

− −−−−−

√

u

2

−1

u

−a

2

u

2

− −−−−−

√

sin

−1

u

a

∫ du = (−u + )+C

u

2

−a

2

u

2

− −−−−−

√

1

2

−a

2

u

2

− −−−−−

√

a

2

sin

−1

u

a

∫ =− ln +C

du

u −a

2

u

2

− −−−−−

√

1

a

∣

∣

∣

a+ −a

2

u

2

− −−−−−

√

u

∣

∣

∣

∫ =− +C

du

u

2

−a

2

u

2

− −−−−−

√

1

ua

2

−a

2

u

2

− −−−−−

√

∫ du =− (2 −5 ) + +C( − )a

2

u

2

3/2

u

8

u

2

a

2

−a

2

u

2

− −−−−−

√

3a

4

8

sin

−1

u

a

∫ =− +C

du

( −a

2

u

2

)

3/2

u

a

2

−a

2

u

2

− −−−−−

√

2

∫ du = + ( )+C2au−u

2

− −−−−−−

√

u−a

2
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2
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∣

∣
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∣
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∣
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√

2

15b

2

)

3/2
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u

a+bu
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√

2

3b

2

a+bu

− −−−−

√
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2
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√
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a
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√
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⎧

⎩

⎨

⎪

⎪

⎪

⎪
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a

√

∣
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∣

∣

+C, if a< 0

2√
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√
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√
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u
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√
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√
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2
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b
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n
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