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1.6: Exponential and Logarithmic Functions

&b Learning Objectives

o Identify the form of an exponential function.

o Explain the difference between the graphs of z° and b*.

e Recognize the significance of the number e.

o Identify the form of a logarithmic function.

o Explain the relationship between exponential and logarithmic functions.
o Describe how to calculate a logarithm to a different base.

o Identify the hyperbolic functions, their graphs, and basic identities.

In this section we examine exponential and logarithmic functions. We use the properties of these functions to solve equations
involving exponential or logarithmic terms, and we study the meaning and importance of the number e. We also define hyperbolic
and inverse hyperbolic functions, which involve combinations of exponential and logarithmic functions. (Note that we present
alternative definitions of exponential and logarithmic functions in the chapter Applications of Integrations, and prove that the
functions have the same properties with either definition.)

Exponential Functions

Exponential functions arise in many applications. One common example is population growth. For example, if a population starts
with P, individuals and then grows at an annual rate of 2%, its population after 1 year is

P(1) =Py +0.02P) = Py(1+0.02) = Py(1.02).
Its population after 2 years is
P(2) = P(1)+0.02P(1) = P(1)(1.02) = Py(1.02)".
In general, its population after ¢ years is
P(t) = Py(1.02),

which is an exponential function. More generally, any function of the form f(z)=b", where b >0, b#1, is an exponential
function with base b and exponent x. Exponential functions have constant bases and variable exponents. Note that a function of
the form f(z) = ¥ for some constant b is not an exponential function but a power function.

To see the difference between an exponential function and a power function, we compare the functions y =z and y =2%. In
Table 1.6.1, we see that both 2% and z2 approach infinity as £ — co. Eventually, however, 2% becomes larger than 22 and grows
more rapidly as £ — oo. In the opposite direction, as £ — —oo, 2 — oo, whereas 2 — 0. The line y =0 is a horizontal
asymptote for y = 27

Table 1.6.1
z 3 2 -1 0 1 2 3 4 5 6
x? 9 4 1 0 1 4 9 16 25 36
2° 1/8 1/4 12 1 2 4 8 16 32 64

In Figure 1.6.1, we graph both y = 2 and y = 2% to show how the graphs differ.
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-5 5 * Figure 1.6.1 Both 2% and > approach infinity as  — oo, but 2 grows more rapidly than
2. Asz — —00, 2 — 00, whereas 2% — 0.

Evaluating Exponential Functions

Recall the properties of exponents: If x is a positive integer, then we define * =b-b---b (with = factors of b). If z is a negative
integer, then 2 = —y for some positive integer y, and we define b* =b7¥ =1/b¥. Also, b° is defined to be 1. If z is a rational

number, then & = p/q, where p and q are integers and b® = b”/? = \/bP . For example, 9%/2 = /9 = (\/5)3 =27 . However,
how is b* defined if « is an irrational number? For example, what do we mean by 2V2? This is too complex a question for us to
answer fully right now; however, we can make an approximation.

Table 1.6.2: Values of 2% for a List of Rational Numbers Approximating v/2
T 1.4 1.41 1.414 1.4142 1.41421 1.414213

27 2.639 2.65737 2.66475 2.665119 2.665138 2.665143

In Table 1.6.2, we list some rational numbers approaching \/5, and the values of 2* for each rational number z are presented as
well. We claim that if we choose rational numbers z getting closer and closer to /2, the values of 2% get closer and closer to some

number L. We define that number L to be 2‘/5.

v Example 1.6.1: Bacterial Growth

Suppose a particular population of bacteria is known to double in size every 4 hours. If a culture starts with 1000 bacteria, the
number of bacteria after 4 hours is 72(4) = 1000 - 2. The number of bacteria after 8 hours is 7(8) = n(4) -2 = 1000 - 2® . In
general, the number of bacteria after 4m hours is n(4m) = 1000 - 2™. Letting t = 4m, we see that the number of bacteria
after t hours is n(¢) = 1000 - 24 Find the number of bacteria after 6 hours, 10 hours, and 24 hours.

Solution
The number of bacteria after 6 hours is given by

n(6) = 1000 - 2’4 ~ 2828 bacteria.
The number of bacteria after 10 hours is given by

n(10) = 1000 - 2'%/* ~ 5657 bacteria.

The number of bacteria after 24 hours is given by n(24) = 1000 - 26 = 64, 000 bacteria.
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Given the exponential function f(z) = 100 - 3%/2, evaluate f(4) and f(10).
Answer

£(4) =900

£(10) = 24, 300

Graphing Exponential Functions

For any base b > 0, b # 1, the exponential function f(z) =b" is defined for all real numbers z and * > 0. Therefore, the domain
of f(z) =b" is (—o00,00) and the range is (0, 00). To graph b”, we note that for b > 1, b* is increasing on (—oo, 00) and
b” — 00 as & — 0o, whereas b — 0 as * — —o00. On the other hand, if 0 <b <1, f(x) =b" is decreasing on (—oo, c0) and
b® — 0 as * — oo whereas b® — oo as ¢ — —oo (Figure 1.6.2).

fx) = (2]

Y f(x) = 4x

-1 1 X Figure 1.6.2 If b > 1, then b® is increasing on (—o0, 00) . If 0 < b < 1, then b® is
decreasing on (—o0, 00) .

Note that exponential functions satisfy the general laws of exponents. To remind you of these laws, we state them as rules.

X Laws of Exponents

For any constants @ > 0, b > 0, and for all z and y,

1. BT . bY = pEtY
2. ¥ ey
o b
3. (%)Y =b™
4. (ab)” =a"b"
5 a® _ ra\®
b ( b)

v/ Example 1.6.2: Using the Laws of Exponents

Use the laws of exponents to simplify each of the following expressions.
(2 :1:2 /3)3
a. m
(z3y~1)?
(zy?)

Soution

b.

a. We can simplify as follows:
(22%/3)3 B 23(£2/3)3 B 822 B 22223 28/3
(4z-1/3)2 42(g1/3)2 T 16z-2/3 2 2
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b. We can simplify as follows:

@y ') _ @2 )’ 2%y

— — 6220204 — 2842
(zy?)2 z2(y?)2 o2y vy Y

? Exercise 1.6.2

Use the laws of exponents to simplify

342
12z 4y5"
Hint

.’Ea/l'b — wa—b

Answer
z/(2y*)

The Number e

A special type of exponential function appears frequently in real-world applications. To describe it, consider the following example
of exponential growth, which arises from compounding interest in a savings account. Suppose a person invests P dollars in a
savings account with an annual interest rate r, compounded annually. The amount of money after 1 year is

AQl)=P+rP=P(1+r) .
The amount of money after 2 years is
A@2)=AQ1)+rA(1)=P(1+r)+rP(l+7)=P(1+r)?
More generally, the amount after ¢ years is
At)=P(1+r).

If the money is compounded 2 times per year, the amount of money after half a year is

1 T r
A(E) =P+(5)P=P(1+(3))
The amount of money after 1 year is

1 r 1 r r r 7 2
A<1)—A(§)+(§)A<§) =P(1+g)+3((Pa+z)) =P(1+3)
After t years, the amount of money in the account is

A(t):P(l—i—%)Zt.

More generally, if the money is compounded n times per year, the amount of money in the account after ¢ years is given by the
function

r nt
Ay =p(1+2)
n
What happens as n — co? To answer this question, we let m = n/r and write
P\ nt 1 mrt
(1+2)" = <1+—) :
n m
and examine the behavior of (1 +1/m)™ as m — oo, using a table of values (Table 1.6.3).

m

1
Table 1.6.3: Values of <1 + E) as m — oo

m 10 100 1000 10,000 100,000 1,000,000
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1 m
(1 + E) 2.5937 2.7048 2.71692 2.71815 2.718268 2.718280

Looking at this table, it appears that (1 +1/m)™ is approaching a number between 2.7 and 2.8 as m — oo. In fact, (1 +1/m)™
does approach some number as m — oo. We call this number e. To six decimal places of accuracy,

e~ 2.718282.

X | eonhard Euler

The letter e was first used to represent this number by the Swiss mathematician Leonhard Euler during the 1720s. Although
Euler did not discover the number, he showed many important connections between e and logarithmic functions. We still use
the notation e today to honor Euler’s work because it appears in many areas of mathematics and because we can use it in many
practical applications.

Returning to our savings account example, we can conclude that if a person puts P dollars in an account at an annual interest rate
7, compounded continuously, then A(t) = Pe™ . This function may be familiar. Since functions involving base e arise often in
applications, we call the function f(z) = e” the natural exponential function. Not only is this function interesting because of the
definition of the number e, but also, as discussed next, its graph has an important property.

Since e > 1, we know f(z) = €” is increasing on (—o0, 00). In Figure 1.6.3, we show a graph of f(z) = e” along with a tangent
line to the graph of f at x = 0. We give a precise definition of tangent line in the next chapter; but, informally, we say a tangent
line to a graph of f at z = a is a line that passes through the point (a, f(a)) and has the same “slope” as f at that point . The
function f(x) = €® is the only exponential function b* with tangent line at = 0 that has a slope of 1. As we see later in the text,
having this property makes the natural exponential function the most simple exponential function to use in many instances.

y
f(x) = e*

slope =1

1 |1 X Figure 1.6.3 The graph of f(z) = e” has a tangent line with slope 1 at z = 0.

v/ Example 1.6.3: Compounding Interest

Suppose $500 is invested in an account at an annual interest rate of 7 = 5.5%, compounded continuously.

a. Let ¢ denote the number of years after the initial investment and A(t) denote the amount of money in the account at time ¢.
Find a formula for A(%).
b. Find the amount of money in the account after 10 years and after 20 years.

Solution

a. If P dollars are invested in an account at an annual interest rate r, compounded continuously, then A(t) = Pe™ . Here
P =$500 and r = 0.055. Therefore, A(t) = 50095,

b. After 10 years, the amount of money in the account is

A(10) = 500€%-95510 = 500€%-%° ~ $866.63.

After 20 years, the amount of money in the account is

A(20) = 500e295520= 500e!"! ~ $1,502.08.
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If $750 is invested in an account at an annual interest rate of 4%, compounded continuously, find a formula for the amount of
money in the account after ¢ years. Find the amount of money after 30 years.

Hint
A(t) = Pe™
Answer

A(t) = 750€%%4, After 30 years, there will be approximately $2,490.09

Logarithmic Functions

Using our understanding of exponential functions, we can discuss their inverses, which are the logarithmic functions. These come
in handy when we need to consider any phenomenon that varies over a wide range of values, such as the pH scale in chemistry or
decibels in sound levels.

The exponential function f(z) = b* is one-to-one, with domain (—o0, 00) and range (0, co). Therefore, it has an inverse function,
called the logarithmic function with base b. For any b > 0, b # 1, the logarithmic function with base b, denoted log,, has domain
(0, 00) and range (—o0, 00),and satisfies

log,(z) =y
if and only if ¥ = .
For example,

logy(8) =3
since 2% =8,

log;o (%) =-2
1 1

since 1072 = 17 = 100"

log,(1)=0

since B° = 1 for any base b > 0.
Furthermore, since y = log, (z) and y = b are inverse functions,
log,(b*) ==z
and
plog,(z) — o

The most commonly used logarithmic function is the function log,. Since this function uses natural e as its base, it is called the
natural logarithm. Here we use the notation In(z) or Inz to mean log, (z). For example,

In(e) =log.(e) =1
In(e?) =log, (e*) =3
In(1) =log,(1) =0.
Since the functions f(z) = e® and g(x) = In(z) are inverses of each other,

In(e®) =z and e** =z,

and their graphs are symmetric about the line y = x (Figure 1.6.4).

https://stats.libretexts.org/@go/page/25917



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25917?pdf
https://chem.libretexts.org/Textbook_Maps/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Acids_and_Bases/Acids_and_Bases_in_Aqueous_Solutions/The_pH_Scale
https://phys.libretexts.org/TextBooks_and_TextMaps/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_I_-_Mechanics%2C_Sound%2C_Oscillations%2C_and_Waves_(OpenStax)/17%3A_Sound/17.3%3A_Sound_Intensity

LibreTextsw

Figure 1.6.4 The functions y = e* and y = In(z) are inverses of each other, so their graphs
are symmetric about the liney = z.

In general, for any base b > 0, b # 1, the function g(x) = logy(x) is symmetric about the line y =  with the function f(z) =b".
Using this fact and the graphs of the exponential functions, we graph functions log, for several values of b > 1 ( Figure 1.6.5).

y = logs(x)

y = In(x)
2 ¥ = logyp(x)
_i / t + X

Before solving some equations involving exponential and logarithmic functions, let’s review the basic properties of logarithms.

X Properties of Logarithms

i

Figure 1.6.5 Graphs of y = log, (x) are depicted for b =2, e, 10.

Ifa, b, ¢ >0, b#1, and r is any real number, then
e Product property
log, (ac) =1log, (a) +log, (c) (1.6.1)
¢ Quotient property
log; (%) =logy(a) —logy(c) (1.6.2)
o Power property
logy(a") = rlogy(a) (1.6.3)

v Example 1.6.4: Solving Equations Involving Exponential Functions

Solve each of the following equations for .

a. 5 =
b.e® +6e® =5
Solution
a. Applying the natural logarithm function to both sides of the equation, we have

In5* =1n2.

Using the power property of logarithms,
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zInb =1n2.
Therefore,
,_ o2
In5"
b. Multiplying both sides of the equation by e*,we arrive at the equation
€?® 46 =b5e® .

Rewriting this equation as
e _5ef+6=0,

we can then rewrite it as a quadratic equation in e”:

(e*)2 —5(e”)+6 =0.
Now we can solve the quadratic equation. Factoring this equation, we obtain

(e* —3)(e* —2)=0.
Therefore, the solutions satisfy e =3 and e® =2. Taking the natural logarithm of both sides gives us the solutions
z=1n3,In2.

? Exercise 1.6.4
Solve
e* /(3 +e?®)=1/2.

Hint

First solve the equation for e2*

Answer

v Example 1.6.5: Solving Equations Involving Logarithmic Functions

Solve each of the following equations for x.

1
a. ln(—) =4

i
b.log;o v/ +loggz =2
c In(2z) —31n(z?) =0

Solution

a. By the definition of the natural logarithm function,

1
o ifandonlyife?=—.
x

Therefore, the solution is z = 1/e*.

b. Using the product (Equation 1.6.1) and power (Equation 1.6.3) properties of logarithmic functions, rewrite the left-hand
side of the equation as
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log,, /Z +1log,, z =log,, /T

=log,, z3/2
= §logw z.
2
Therefore, the equation can be rewritten as
%logw z=2
or
logpz = 4 .
3

The solution is z = 10*3 = 10v/10.
c. Using the power property (Equation 1.6.3) of logarithmic functions, we can rewrite the equation as In(2z) —In(z%) =0.

Using the quotient property (Equation 1.6.2), this becomes

2

Therefore, 2/2° = 1, which implies z = /2. We should then check for any extraneous solutions.

? Exercise 1.6.5
Solve In(z®) —41n(z) =1.
Hint
First use the power property, then use the product property of logarithms.

Answer

1
T=—
e

When evaluating a logarithmic function with a calculator, you may have noticed that the only options are log; or log, called the
common logarithm, or In, which is the natural logarithm. However, exponential functions and logarithm functions can be
expressed in terms of any desired base b. If you need to use a calculator to evaluate an expression with a different base, you can
apply the change-of-base formulas first. Using this change of base, we typically write a given exponential or logarithmic function
in terms of the natural exponential and natural logarithmic functions.

X Rule: Change-of-Base Formulas

Leta>0,b>0,anda#1,b#1.
1. a* = b*l°&% e for any real number z.

If b = e, this equation reduces to a® = gtlog.a — crlna

logy
2. log, xz = o for any real number z > 0.
a

1
If b = e, this equation reduces to log, * = ﬂ.

na
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For the first change-of-base formula, we begin by making use of the power property of logarithmic functions. We know that for
any base b >0, b # 1, log, (a®) = x log, a. Therefore,

plogs(a®) =pzlog, a_
In addition, we know that b” and log; () are inverse functions. Therefore,
plogs(a*) — gz
Combining these last two equalities, we conclude that a® = b®1°% 2 .
To prove the second property, we show that
(logy a) - (log, ) =logy x.

Let u =log, a,v=1log, =, and w = log, = . We will show that v - v = w . By the definition of logarithmic functions, we know
that b* = a, a¥ = x, and b* = x. From the previous equations, we see that

bu’U = (bu)’l) = a’l} —r = bw.

Therefore, b* = b" . Since exponential functions are one-to-one, we can conclude that v - v=w .

v/ Example 1.6.6: Changing Bases

Use a calculating utility to evaluate logs 7 with the change-of-base formula presented earlier.

Solution

In7
Use the second equation witha =3 and b =e:log; 7 = =L ~1.77124

In3
? Exercise 1.6.6

Use the change-of-base formula and a calculating utility to evaluate log, 6.

Hint
Use the change of base to rewrite this expression in terms of expressions involving the natural logarithm function.

Answer

In6
1 = — =~1.2924
0g, 6 na 9248

v Example 1.6.7: The Richter Scale for Earthquakes

In 1935, Charles Richter developed a scale (now known as the Richter scale) to measure the magnitude of an earthquake. The
scale is a base-10 logarithmic scale, and it can be described as follows: Consider one earthquake with magnitude R; on the
Richter scale and a second earthquake with magnitude R, on the Richter scale. Suppose R; > Ry, which means the
earthquake of magnitude R; is stronger, but how much stronger is it than the other earthquake?

Figure 1.6.6 (credit: modification of work by Robb Hannawacker, NPS)

A way of measuring the intensity of an earthquake is by using a seismograph to measure the amplitude of the earthquake
waves. If A; is the amplitude measured for the first earthquake and A is the amplitude measured for the second earthquake,
then the amplitudes and magnitudes of the two earthquakes satisfy the following equation:
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Al
R1 _R2 = logw (E) o

Consider an earthquake that measures 8 on the Richter scale and an earthquake that measures 7 on the Richter scale. Then,

Al
8 -7 :loglo(ﬂ) 0

Al
10g10 E = 1,

which implies A; /A; =10 or A; = 10A,. Since A; is 10 times the size of A,, we say that the first earthquake is 10 times as
intense as the second earthquake. On the other hand, if one earthquake measures 8 on the Richter scale and another measures 6,
then the relative intensity of the two earthquakes satisfies the equation

Al
].Ogl()(E) =8—-6=2.

Therefore, A; = 100A5.That is, the first earthquake is 100 times more intense than the second earthquake.

Therefore,

How can we use logarithmic functions to compare the relative severity of the magnitude 9 earthquake in Japan in 2011 with the
magnitude 7.3 earthquake in Haiti in 2010?

Solution
To compare the Japan and Haiti earthquakes, we can use an equation presented earlier:

Al
9 —73 =10g10 (E) .

Therefore, A; /Ay =10'7, and we conclude that the earthquake in Japan was approximately 50 times more intense than the
earthquake in Haiti.

? Exercise 1.6.7

Compare the relative severity of a magnitude 8.4 earthquake with a magnitude 7.4 earthquake.
Hint

R —Ry = IOgIO(Al/A2) .
Answer

The magnitude 8.4 earthquake is roughly 10 times as severe as the magnitude 7.4 earthquake.

Hyperbolic Functions

The hyperbolic functions are defined in terms of certain combinations of e” and e™®. These functions arise naturally in various
engineering and physics applications, including the study of water waves and vibrations of elastic membranes. Another common
use for a hyperbolic function is the representation of a hanging chain or cable, also known as a catenary (Figure 1.6.7). If we
introduce a coordinate system so that the low point of the chain lies along the y-axis, we can describe the height of the chain in
terms of a hyperbolic function. First, we define the hyperbolic functions.
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: i e Figure 1.6.7The shape of a strand of silk in a spider’s web can be described in
terms of a hyperbohc function. The same shape applies to a chain or cable hanging from two supports with only its own weight.
(credit: “Mtpaley”, Wikimedia Commons)

# Definitions: hyperbolic functions

Hyperbolic cosine

coshx =
2
Hyperbolic sine
ef —e”
sinhz =
inh 5
Hyperbolic tangent
inh T _
tanhe _ S0BT € —e
coshz e*+e®
Hyperbolic cosecant
1 2
cschz = =
T Sinmhz e _e*
Hyperbolic secant
1 2
sechz = =
coshx e*+e®
Hyperbolic cotangent
__coshz e"+e™”
cothx =

smha: et —e @

The name cosh rhymes with “gosh,” whereas the name sinh is pronounced “cinch.” Tanh, sech, csch, and coth are pronounced
“tanch,” “seech,” “coseech,” and “cotanch,” respectively.

Using the definition of cosh(z) and principles of physics, it can be shown that the height of a hanging chain, such as the one in
Figure 1.6.8, can be described by the function h(z) = a cosh(z/a) + ¢ for certain constants a and c.

But why are these functions called hyperbolic functions? To answer this question, consider the quantity cosh? ¢t —sinh? ¢ . Using
the definition of cosh and sinh, we see that
2t -2t 2t -2t
2 -2
cosh? ¢ —sinh? ¢t = ¢ fite - te =1.

4 4
This identity is the analog of the trigonometric identity cos®t+sin?t=1. Here, given a value t, the point
(z,7) = (cosht, sinht) lies on the unit hyperbola 2> —y? = 1 (Figure 1.6.8).
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yi
l x2—y2=1
i (cosh(1), sinh(1))
T
-1

Figure 1.6.8 The unit hyperbola cosh’t —sinh?t =1.
Graphs of Hyperbolic Functions

To graph cosh z and sinh z, we make use of the fact that both functions approach (1/2)e” as x — oo, since e * — 0 as  — 0o.
As x — —o0, coshz approaches 1/2e~*, whereas sinhz approaches —1/2e?. Therefore, using the graphs of 1/2e”,1/2e™”

and —1/2e™" as guides, we graph coshz and sinhz. To graph tanh z, we use the fact that tanh(0) =0, —1 < tanh(z) <1 for
all z, tanhz — 1 as * — oo, and tanhz — —1 as ¢ — —oo. The graphs of the other three hyperbolic functions can be sketched
using the graphs of cosh z, sinh z, and tanh z (Figure 1.6.9).

¥4 y = cosh(x) y
¥ = sinh(x)
b 4
X
i &
a1 % VI
-14 14
yi yi
T y = coth(x)
y = tanh(x)
y=1
D 1 = %
B R | [Ty="1
Figure 1.6.9 The hyperbolic functions involve combinations of
e” and e ”.
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Identities Involving Hyperbolic Functions

The identity cosh’t —sinh?¢ =1 , shown in Figure 1.6.8, is one of several identities involving the hyperbolic functions, some of
which are listed next. The first four properties follow easily from the definitions of hyperbolic sine and hyperbolic cosine. Except
for some differences in signs, most of these properties are analogous to identities for trigonometric functions.

X |dentities Involving Hyperbolic Functions

1. cosh(—z) = coshz
2.sinh(—z) = —sinhz
. coshz +sinhx = e*
.coshx —sinhz =e~
cosh’z —sinh? z =1

1 —tanh? z =sech?z

coth’z —1 =csch’z

. sinh(z +y) =sinhz coshy + coshz sinhy
. cosh(z +y) = coshz coshy +sinhz sinhy

v Example 1.6.8: Evaluating Hyperbolic Functions

a. Simplify sinh(5 Inz).
b. If sinhz = 3/4, find the values of the remaining five hyperbolic functions.

T

© O N DU AW

Solution:

a. Using the definition of the sinh function, we write

5lnz _ _—5lnz In(z®) _ _In(z7%) 5__ .= 5
e e e e z°—x
inh(51 = = =
sinh(5lnz) 5 5 5
b. Using the identity cosh® z —sinh? z = 1 ,we see that

2 25

=T
Since coshz >1 for all , we must have coshz =5/4. Then, using the definitions for the other hyperbolic
functions, we conclude that tanhz = 3/5, cschz =4/3,sechz =4/5, and cothz =5/3.

cosh’z =1+ (%)

? Exercise 1.6.8
Simplify cosh(2Inz).
Hint
Use the definition of the cosh function and the power property of logarithm functions.

Answer

(z2+272)/2

Inverse Hyperbolic Functions

From the graphs of the hyperbolic functions, we see that all of them are one-to-one except coshz and sechz. If we restrict the
domains of these two functions to the interval [0, c0), then all the hyperbolic functions are one-to-one, and we can define the
inverse hyperbolic functions. Since the hyperbolic functions themselves involve exponential functions, the inverse hyperbolic
functions involve logarithmic functions.
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# Definitions: Inverse Hyperbolic Functions

sinh ! z = arcsinhz = ln(z +vVz+ 1) cosh™! z = arccoshz = 1n(a: +vz2 — 1)
1 1 1 1
tanh™! z = arctanhz = =Iln BaD coth™! z = arccotz = =In T
2 1—=x 2 z—1

1++4/1—x2
sech ! z = arcsechz = IH(T>

1
csch™ z = arcecschz = 1n<— +
T

\/l—i-wz)

Ed

Let’s look at how to derive the first equation. The others follow similarly. Suppose y = sinh ™ z. Then, z = sinhy and, by the
Y_e Y
definition of the hyperbolic sine function, z = % . Therefore,

ey —2zx—e ¥ =0.
Multiplying this equation by €Y, we obtain

e —2ze¥ —1=0.
This can be solved like a quadratic equation, with the solution

o 2z £vV4z2 +4
B 2

=z+vVzZ+1 .

Since e¥ > 0,the only solution is the one with the positive sign. Applying the natural logarithm to both sides of the equation, we
conclude that

y=In(z+vax2+1).

v/ Example 1.6.9: Evaluating Inverse Hyperbolic Functions

Evaluate each of the following expressions.
sinh~1(2)
tanh~1(1/4)
Solution:

sinh™(2) =In(2+ /22 +1) =In(2 ++/5) ~ 1.4436

tanh~'(1/4) = %m( 1“:1;:) = %m(g—;i) = %m(g) ~0.2554

? Exercise 1.6.9

Evaluate tanh ™" (1/2).

Hint
Use the definition of tanh ™' z and simplify.

Answer

1
5n(3) ~0.5403

Key Concepts

« The exponential function y =" is increasing if b > 1 and decreasing if 0 < b < 1. Its domain is (—o00, 00) and its range is
(0, 00).
e The logarithmic function y = logy () is the inverse of y = b* . Its domain is (0, co) and its range is (—oo, ).
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o The natural exponential function is y = e® and the natural logarithmic function is y =Inz =log, =.
¢ Given an exponential function or logarithmic function in base a, we can make a change of base to convert this function to any

base b > 0, b # 1. We typically convert to base e.
o The hyperbolic functions involve combinations of the exponential functions e and e™*. As a result, the inverse hyperbolic

functions involve the natural logarithm.

Glossary

base
the number b in the exponential function f(z) = b and the logarithmic function f(z) = log, =

exponent
the value « in the expression b*

hyperbolic functions

the functions denoted sinh, cosh, tanh, csch, sech, and coth, which involve certain combinations of e* and e™*

inverse hyperbolic functions
the inverses of the hyperbolic functions where cosh and sech are restricted to the domain [0, 0o);each of these functions can be
expressed in terms of a composition of the natural logarithm function and an algebraic function

natural exponential function
the function f(z) =€®

natural logarithm
the function Inz =log, x

number e
as m gets larger, the quantity (14 (1/m)™ gets closer to some real number; we define that real number to be e; the value of e

is approximately 2.718282

This page titled 1.6: Exponential and Logarithmic Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
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