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1.6: Exponential and Logarithmic Functions

Identify the form of an exponential function.
Explain the difference between the graphs of  and .
Recognize the significance of the number .
Identify the form of a logarithmic function.
Explain the relationship between exponential and logarithmic functions.
Describe how to calculate a logarithm to a different base.
Identify the hyperbolic functions, their graphs, and basic identities.

In this section we examine exponential and logarithmic functions. We use the properties of these functions to solve equations
involving exponential or logarithmic terms, and we study the meaning and importance of the number . We also define hyperbolic
and inverse hyperbolic functions, which involve combinations of exponential and logarithmic functions. (Note that we present
alternative definitions of exponential and logarithmic functions in the chapter Applications of Integrations, and prove that the
functions have the same properties with either definition.)

Exponential Functions

Exponential functions arise in many applications. One common example is population growth. For example, if a population starts
with  individuals and then grows at an annual rate of , its population after 1 year is

Its population after 2 years is

In general, its population after  years is

which is an exponential function. More generally, any function of the form , where , , is an exponential
function with base  and exponent  Exponential functions have constant bases and variable exponents. Note that a function of
the form  for some constant  is not an exponential function but a power function.

To see the difference between an exponential function and a power function, we compare the functions  and . In
Table , we see that both  and  approach infinity as . Eventually, however,  becomes larger than  and grows
more rapidly as . In the opposite direction, as , , whereas . The line  is a horizontal
asymptote for .

Table 

-3 -2 -1 0 1 2 3 4 5 6

9 4 1 0 1 4 9 16 25 36

1/8 1/4 1/2 1 2 4 8 16 32 64

In Figure , we graph both  and  to show how the graphs differ.
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 Figure : Both  and  approach infinity as , but  grows more rapidly than 
. As , , whereas .

Evaluating Exponential Functions

Recall the properties of exponents: If  is a positive integer, then we define  (with  factors of ). If  is a negative
integer, then  for some positive integer , and we define . Also,  is defined to be . If  is a rational
number, then , where  and  are integers and . For example, . However,
how is  defined if  is an irrational number? For example, what do we mean by ? This is too complex a question for us to
answer fully right now; however, we can make an approximation.

Table : Values of  for a List of Rational Numbers Approximating 

1.4 1.41 1.414 1.4142 1.41421 1.414213

2.639 2.65737 2.66475 2.665119 2.665138 2.665143

In Table , we list some rational numbers approaching , and the values of  for each rational number  are presented as
well. We claim that if we choose rational numbers  getting closer and closer to , the values of  get closer and closer to some
number . We define that number  to be .

Suppose a particular population of bacteria is known to double in size every  hours. If a culture starts with  bacteria, the
number of bacteria after  hours is . The number of bacteria after  hours is . In
general, the number of bacteria after  hours is . Letting , we see that the number of bacteria
after t hours is . Find the number of bacteria after  hours,  hours, and  hours.

Solution
The number of bacteria after 6 hours is given by

The number of bacteria after  hours is given by

The number of bacteria after  hours is given by  bacteria.
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 Example : Bacterial Growth1.6.1

4 1000

4 n(4) = 1000 ⋅ 2 8 n(8) = n(4) ⋅ 2 = 1000 ⋅ 22

4m n(4m) = 1000 ⋅ 2m t = 4m

n(t) = 1000 ⋅ 2t/4 6 10 24

n(6) = 1000 ⋅ ≈ 2828 bacteria.26/4

10

n(10) = 1000 ⋅ ≈ 5657 bacteria.210/4

24 n(24) = 1000 ⋅ = 64, 00026
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Given the exponential function , evaluate  and .

Answer

.

Graphing Exponential Functions
For any base , , the exponential function  is defined for all real numbers  and . Therefore, the domain
of  is  and the range is . To graph , we note that for ,  is increasing on  and 

 as , whereas  as . On the other hand, if ,  is decreasing on  and 
 as  whereas  as  (Figure ).

 Figure : If , then  is increasing on . If , then  is
decreasing on .

Note that exponential functions satisfy the general laws of exponents. To remind you of these laws, we state them as rules.

For any constants , , and for all  and 

1. 

2. 

3. 

4. 

5. 

Use the laws of exponents to simplify each of the following expressions.

a. 

b. 

Soution

a. We can simplify as follows:

 Exercise 1.6.1
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 Example : Using the Laws of Exponents1.6.2
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b. We can simplify as follows:

Use the laws of exponents to simplify .

Hint

Answer

The Number e
A special type of exponential function appears frequently in real-world applications. To describe it, consider the following example
of exponential growth, which arises from compounding interest in a savings account. Suppose a person invests  dollars in a
savings account with an annual interest rate , compounded annually. The amount of money after 1 year is

.

The amount of money after  years is

.

More generally, the amount after  years is

.

If the money is compounded 2 times per year, the amount of money after half a year is

.

The amount of money after  year is

After  years, the amount of money in the account is

.

More generally, if the money is compounded  times per year, the amount of money in the account after  years is given by the
function

What happens as  To answer this question, we let  and write

and examine the behavior of  as , using a table of values (Table ).

Table : Values of  as 

10 100 1000 10,000 100,000 1,000,000

= = = = .
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(x−2 y2)−2
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6x−3y2

12x−4y5

/ =xa xb xa−b

x/(2 )y3

P

r

A(1) = P +rP = P (1+r)

2

A(2) = A(1)+rA(1) = P (1+r)+rP (1+r) = P (1+r)2

t

A(t) = P (1+r)t

A( ) = P +( )P = P (1+( ))
1

2

r

2

r

2

1

A(1) = A( )+( )A( ) = P (1+ )+ ((P (1+ ))= P .
1

2

r

2

1

2

r

2

r

2

r

2
(1+ )

r

2

2

t

A(t) = P(1+ )
r

2

2t

n t

A(t) = P .(1+ )
r

n

nt

n →∞? m = n/r

= ,(1+ )
r

n

nt

(1+ )
1

m

mrt

(1+1/m)m m →∞ 1.6.3

1.6.3 (1+ )
1

m

m

m → ∞

m

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25917?pdf


1.6.5 https://stats.libretexts.org/@go/page/25917

2.5937 2.7048 2.71692 2.71815 2.718268 2.718280

Looking at this table, it appears that  is approaching a number between  and  as . In fact, 
does approach some number as . We call this number . To six decimal places of accuracy,

The letter  was first used to represent this number by the Swiss mathematician Leonhard Euler during the 1720s. Although
Euler did not discover the number, he showed many important connections between  and logarithmic functions. We still use
the notation  today to honor Euler’s work because it appears in many areas of mathematics and because we can use it in many
practical applications.

Returning to our savings account example, we can conclude that if a person puts  dollars in an account at an annual interest rate 
, compounded continuously, then . This function may be familiar. Since functions involving base  arise often in

applications, we call the function  the natural exponential function. Not only is this function interesting because of the
definition of the number , but also, as discussed next, its graph has an important property.

Since , we know  is increasing on . In Figure , we show a graph of  along with a tangent
line to the graph of  at . We give a precise definition of tangent line in the next chapter; but, informally, we say a tangent
line to a graph of  at  is a line that passes through the point  and has the same “slope” as  at that point . The
function  is the only exponential function  with tangent line at  that has a slope of  As we see later in the text,
having this property makes the natural exponential function the most simple exponential function to use in many instances.

 Figure : The graph of  has a tangent line with slope  at .

Suppose  is invested in an account at an annual interest rate of , compounded continuously.

a. Let  denote the number of years after the initial investment and  denote the amount of money in the account at time .
Find a formula for .

b. Find the amount of money in the account after  years and after  years.

Solution
a. If  dollars are invested in an account at an annual interest rate , compounded continuously, then . Here 

 and . Therefore, .

b. After  years, the amount of money in the account is

.

After  years, the amount of money in the account is

.

(1+ )
1

m

m

(1+1/m)m 2.7 2.8 m →∞ (1+1/m)m

m →∞ e

e ≈ 2.718282.

 Leonhard Euler

e

e

e

P

r A(t) = P ert e

f(x) = ex

e

e > 1 f(x) = ex (−∞,∞) 1.6.3 f(x) = ex

f x = 0
f x = a (a, f(a)) f

f(x) = ex bx x = 0 1.

1.6.3 f(x) = ex 1 x = 0

 Example : Compounding Interest1.6.3

$500 r = 5.5%

t A(t) t

A(t)
10 20

P r A(t) = P ert

P = $500 r = 0.055 A(t) = 500e0.055t

10

A(10) = 500 = 500 ≈ $866.63e0.055⋅10 e0.55

20

A(20) = 500 = 500 ≈ $1, 502.08e0.055⋅20 e1.1
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If  is invested in an account at an annual interest rate of , compounded continuously, find a formula for the amount of
money in the account after  years. Find the amount of money after  years.

Hint

Answer

. After  years, there will be approximately .

Logarithmic Functions
Using our understanding of exponential functions, we can discuss their inverses, which are the logarithmic functions. These come
in handy when we need to consider any phenomenon that varies over a wide range of values, such as the pH scale in chemistry or
decibels in sound levels.

The exponential function  is one-to-one, with domain  and range . Therefore, it has an inverse function,
called the logarithmic function with base . For any , the logarithmic function with base , denoted , has domain 

 and range ,and satisfies

if and only if .

For example,

since ,

since ,

since  for any base .

Furthermore, since  and  are inverse functions,

and

The most commonly used logarithmic function is the function . Since this function uses natural  as its base, it is called the
natural logarithm. Here we use the notation  or  to mean . For example,

Since the functions  and  are inverses of each other,

 and ,

and their graphs are symmetric about the line  (Figure ).

 Exercise 1.6.3

$750 4%
t 30

A(t) = P ert

A(t) = 750e0.04t 30 $2, 490.09
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(0,∞) (−∞,∞)
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= x.b (x)logb
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 Figure : The functions  and  are inverses of each other, so their graphs
are symmetric about the line .

In general, for any base , , the function  is symmetric about the line  with the function .
Using this fact and the graphs of the exponential functions, we graph functions  for several values of  ( Figure ).

 Figure : Graphs of  are depicted for .

Before solving some equations involving exponential and logarithmic functions, let’s review the basic properties of logarithms.

If , and  is any real number, then

Product property

Quotient property

Power property

Solve each of the following equations for .

a. 
b. 

Solution
a. Applying the natural logarithm function to both sides of the equation, we have

.

Using the power property of logarithms,

1.6.4 y = ex y = ln(x)
y = x

b > 0 b ≠ 1 g(x) = (x)logb y = x f(x) = bx

logb b > 1 1.6.5

1.6.5 y = (x)logb b = 2, e, 10

 Properties of Logarithms

a, b, c > 0, b ≠ 1 r

(ac) = (a)+ (c)logb logb logb (1.6.1)

( )= (a)− (c)logb

a

c
logb logb (1.6.2)

( ) = r (a)logb ar logb (1.6.3)

 Example : Solving Equations Involving Exponential Functions1.6.4

x

= 25x

+6 = 5ex e−x

ln = ln25x
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Therefore,

b. Multiplying both sides of the equation by ,we arrive at the equation

.

Rewriting this equation as

,

we can then rewrite it as a quadratic equation in :

Now we can solve the quadratic equation. Factoring this equation, we obtain

Therefore, the solutions satisfy  and . Taking the natural logarithm of both sides gives us the solutions 
.

Solve

Hint

First solve the equation for 

Answer

.

Solve each of the following equations for .

a. 

b. 
c. 

Solution
a. By the definition of the natural logarithm function,

if and only if .

Therefore, the solution is .

b. Using the product (Equation ) and power (Equation ) properties of logarithmic functions, rewrite the left-hand
side of the equation as

x ln5 = ln2.

x = .
ln2

ln5

ex

+6 = 5e2x ex

−5 +6 = 0e2x ex

ex

( −5( )+6 = 0.ex)2 ex

( −3)( −2) = 0.ex ex

= 3ex = 2ex

x = ln3, ln2

 Exercise 1.6.4

/(3+ ) = 1/2.e2x e2x

e2x

x =
ln3

2

 Example : Solving Equations Involving Logarithmic Functions1.6.5

x

ln( ) = 4
1

x

+ x = 2log10 x−−√ log10
ln(2x)−3 ln( ) = 0x2

ln( ) = 4
1

x

=e4
1

x

x = 1/e4

1.6.1 1.6.3
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Therefore, the equation can be rewritten as

or

.

The solution is .

c. Using the power property (Equation ) of logarithmic functions, we can rewrite the equation as .

Using the quotient property (Equation ), this becomes

Therefore, , which implies . We should then check for any extraneous solutions.

Solve .

Hint

First use the power property, then use the product property of logarithms.

Answer

When evaluating a logarithmic function with a calculator, you may have noticed that the only options are  or , called the
common logarithm, or , which is the natural logarithm. However, exponential functions and logarithm functions can be
expressed in terms of any desired base . If you need to use a calculator to evaluate an expression with a different base, you can
apply the change-of-base formulas first. Using this change of base, we typically write a given exponential or logarithmic function
in terms of the natural exponential and natural logarithmic functions.

Let , and .

1.  for any real number .

If , this equation reduces to .

2.  for any real number .

If , this equation reduces to .

+ xlog10 x−−√ log10 = xlog10 x−−√

= log10 x3/2

= x.
3

2
log10

x = 2
3

2
log10

x =log10
4

3

x = = 10104/3 10
−−

√3

1.6.3 ln(2x)−ln( ) = 0x6

1.6.2

ln( ) = 0
2

x5

2/ = 1x5 x = 2
–

√5

 Exercise 1.6.5

ln( )−4 ln(x) = 1x3

x =
1

e

log10 log
ln

b

 Rule: Change-of-Base Formulas

a > 0, b > 0 a ≠ 1, b ≠ 1

=ax bx alogb x

b = e = =ax ex aloge ex ln a

x =loga

xlogb

alogb

x > 0

b = e x =loga

lnx

lna
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For the first change-of-base formula, we begin by making use of the power property of logarithmic functions. We know that for
any base , . Therefore,

= .

In addition, we know that  and  are inverse functions. Therefore,

.

Combining these last two equalities, we conclude that .

To prove the second property, we show that

Let , and . We will show that . By the definition of logarithmic functions, we know
that , and . From the previous equations, we see that

Therefore, . Since exponential functions are one-to-one, we can conclude that .

Use a calculating utility to evaluate  with the change-of-base formula presented earlier.

Solution

Use the second equation with  and : .

Use the change-of-base formula and a calculating utility to evaluate .

Hint

Use the change of base to rewrite this expression in terms of expressions involving the natural logarithm function.

Answer

In 1935, Charles Richter developed a scale (now known as the Richter scale) to measure the magnitude of an earthquake. The
scale is a base-10 logarithmic scale, and it can be described as follows: Consider one earthquake with magnitude  on the
Richter scale and a second earthquake with magnitude  on the Richter scale. Suppose , which means the
earthquake of magnitude  is stronger, but how much stronger is it than the other earthquake?

 Figure : (credit: modification of work by Robb Hannawacker, NPS)

A way of measuring the intensity of an earthquake is by using a seismograph to measure the amplitude of the earthquake
waves. If  is the amplitude measured for the first earthquake and  is the amplitude measured for the second earthquake,
then the amplitudes and magnitudes of the two earthquakes satisfy the following equation:

 Proof

b > 0, b ≠ 1 ( ) = x alogb ax logb

b ( )logb ax

bx alogb

bx (x)logb

=b ( )logb ax

ax

=ax bx alogb

( a) ⋅ ( x) = x.logb loga logb

u = a, v = xlogb loga w = xlogb u ⋅ v = w

= a, = xbu av = xbw

= ( = = x = .buv bu)v av bw

=buv bw u ⋅ v = w

□

 Example : Changing Bases1.6.6

7log3

a = 3 b = e 7 = ≈ 1.77124log3
ln7

ln3

 Exercise 1.6.6

6log4

6 = ≈ 1.29248log4
ln6

ln4

 Example : The Richter Scale for Earthquakes1.6.7

R1

R2 >R1 R2

R1

1.6.6

A1 A2
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.

Consider an earthquake that measures 8 on the Richter scale and an earthquake that measures 7 on the Richter scale. Then,

.

Therefore,

,

which implies  or . Since  is 10 times the size of , we say that the first earthquake is 10 times as
intense as the second earthquake. On the other hand, if one earthquake measures 8 on the Richter scale and another measures 6,
then the relative intensity of the two earthquakes satisfies the equation

.

Therefore, .That is, the first earthquake is 100 times more intense than the second earthquake.

How can we use logarithmic functions to compare the relative severity of the magnitude 9 earthquake in Japan in 2011 with the
magnitude 7.3 earthquake in Haiti in 2010?

Solution
To compare the Japan and Haiti earthquakes, we can use an equation presented earlier:

.

Therefore, , and we conclude that the earthquake in Japan was approximately 50 times more intense than the
earthquake in Haiti.

Compare the relative severity of a magnitude  earthquake with a magnitude  earthquake.

Hint

.

Answer

The magnitude  earthquake is roughly  times as severe as the magnitude  earthquake.

Hyperbolic Functions
The hyperbolic functions are defined in terms of certain combinations of  and . These functions arise naturally in various
engineering and physics applications, including the study of water waves and vibrations of elastic membranes. Another common
use for a hyperbolic function is the representation of a hanging chain or cable, also known as a catenary (Figure ). If we
introduce a coordinate system so that the low point of the chain lies along the -axis, we can describe the height of the chain in
terms of a hyperbolic function. First, we define the hyperbolic functions.

− = ( )R1 R2 log10
A1

A2

8−7 = ( )log10
A1

A2

( ) = 1log10
A1

A2

/ = 10A1 A2 = 10A1 A2 A1 A2

( ) = 8−6 = 2log10
A1

A2

= 100A1 A2

9−7.3 = ( )log10
A1

A2

/ =A1 A2 101.7

 Exercise 1.6.7

8.4 7.4

− = (A1/A2)R1 R2 log10

8.4 10 7.4

ex e−x

1.6.7
y
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 Figure :The shape of a strand of silk in a spider’s web can be described in
terms of a hyperbolic function. The same shape applies to a chain or cable hanging from two supports with only its own weight.
(credit: “Mtpaley”, Wikimedia Commons)

Hyperbolic cosine

Hyperbolic sine

Hyperbolic tangent

Hyperbolic cosecant

Hyperbolic secant

Hyperbolic cotangent

The name  rhymes with “gosh,” whereas the name  is pronounced “cinch.”  and  are pronounced
“tanch,” “seech,” “coseech,” and “cotanch,” respectively.

Using the definition of  and principles of physics, it can be shown that the height of a hanging chain, such as the one in
Figure , can be described by the function  for certain constants  and .

But why are these functions called hyperbolic functions? To answer this question, consider the quantity . Using
the definition of  and , we see that

This identity is the analog of the trigonometric identity . Here, given a value , the point 
 lies on the unit hyperbola  (Figure ).

1.6.7

 Definitions: hyperbolic functions

coshx =
+ex e−x

2

sinhx =
−ex e−x

2

tanhx = =
sinhx

coshx

−ex e−x

+ex e−x

cschx = =
1

sinhx

2

−ex e−x

sechx = =
1

coshx

2

+ex e−x

cothx = =
coshx

sinhx

+ex e−x

−ex e−x

cosh sinh Tanh, sech, csch, coth

cosh(x)
1.6.8 h(x) = a cosh(x/a)+c a c

t− tcosh2 sinh2

cosh sinh

t− t = − = 1.cosh2 sinh2 +2+e2t e−2t

4

−2+e2t e−2t

4

t+ t = 1cos2 sin2 t

(x, y) = (cosh t, sinh t) − = 1x2 y2 1.6.8
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 Figure : The unit hyperbola .

Graphs of Hyperbolic Functions

To graph  and , we make use of the fact that both functions approach  as , since  as .
As  approaches , whereas  approaches . Therefore, using the graphs of ,
and  as guides, we graph  and . To graph , we use the fact that ,  for
all ,  as , and  as . The graphs of the other three hyperbolic functions can be sketched
using the graphs of , , and  (Figure ).

 Figure : The hyperbolic functions involve combinations of
 and .

1.6.8 t− t = 1cosh2 sinh2

coshx sinhx (1/2)ex x →∞ →0e−x x →∞
x →−∞, coshx 1/2e−x sinhx −1/2e−x 1/2 , 1/2ex e−x

−1/2e−x coshx sinhx tanhx tanh(0) = 0 −1 < tanh(x) < 1
x tanhx →1 x →∞ tanhx →−1 x →−∞

coshx sinhx tanhx 1.6.9

1.6.9
ex e−x
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Identities Involving Hyperbolic Functions

The identity , shown in Figure , is one of several identities involving the hyperbolic functions, some of
which are listed next. The first four properties follow easily from the definitions of hyperbolic sine and hyperbolic cosine. Except
for some differences in signs, most of these properties are analogous to identities for trigonometric functions.

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

a. Simplify .
b. If , find the values of the remaining five hyperbolic functions.

Solution:

a. Using the definition of the  function, we write

b. Using the identity ,we see that

Since  for all , we must have . Then, using the definitions for the other hyperbolic
functions, we conclude that , and .

Simplify .

Hint

Use the definition of the  function and the power property of logarithm functions.

Answer

Inverse Hyperbolic Functions
From the graphs of the hyperbolic functions, we see that all of them are one-to-one except  and . If we restrict the
domains of these two functions to the interval  then all the hyperbolic functions are one-to-one, and we can define the
inverse hyperbolic functions. Since the hyperbolic functions themselves involve exponential functions, the inverse hyperbolic
functions involve logarithmic functions.

t− t = 1cosh2 sinh2 1.6.8

 Identities Involving Hyperbolic Functions

cosh(−x) = coshx

sinh(−x) =−sinhx

coshx+sinhx = ex

coshx−sinhx = e−x

x− x = 1cosh2 sinh2

1− x = xtanh2 sech2

x−1 = xcoth2 csch2

sinh(x±y) = sinhx coshy ±coshx sinhy

cosh(x±y) = coshx coshy ±sinhx sinhy

 Example : Evaluating Hyperbolic Functions1.6.8

sinh(5 lnx)
sinhx = 3/4

sinh

sinh(5 lnx) = = = .
−e5 ln x e−5 ln x

2

−eln( )x5
eln( )x−5

2

−x5 x−5

2

x− x = 1cosh2 sinh2

x = 1+ = .cosh2 ( )3
4

2 25

16

coshx ≥ 1 x coshx = 5/4
tanhx = 3/5, cschx = 4/3, sechx = 4/5 cothx = 5/3

 Exercise 1.6.8

cosh(2 lnx)

cosh

( + )/2x2 x−2

coshx sechx

[0,∞),
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Let’s look at how to derive the first equation. The others follow similarly. Suppose . Then,  and, by the

definition of the hyperbolic sine function, . Therefore,

Multiplying this equation by , we obtain

.

This can be solved like a quadratic equation, with the solution

.

Since ,the only solution is the one with the positive sign. Applying the natural logarithm to both sides of the equation, we
conclude that

Evaluate each of the following expressions.

Solution:

Evaluate .

Hint

Use the definition of  and simplify.

Answer

.

Key Concepts
The exponential function  is increasing if  and decreasing if . Its domain is  and its range is 

.
The logarithmic function  is the inverse of . Its domain is  and its range is 

 Definitions: Inverse Hyperbolic Functions

x = arcsinhx = ln(x+ )sinh−1 +1x2− −−−−
√

x = arctanhx = ln( )tanh−1 1

2

1+x

1−x

x = arcsechx = ln( )sech−1 1+ 1−x2
− −−−−

√

x

x = arccoshx = ln(x+ )cosh−1 −1x2− −−−−
√

x = arccotx = ln( )coth−1 1

2

x+1

x−1

x = arccschx = ln( + )csch−1 1

x

1+x2
− −−−−

√

|x|

y = xsinh−1 x = sinhy

x =
−ey e−y

2

−2x− = 0.ey e−y

ey

−2x −1 = 0e2y ey

= = x±ey 2x± 4 +4x2
− −−−−−

√

2
+1x2

− −−−−
√

> 0ey

y = ln(x+ ).+1x2
− −−−−

√

 Example : Evaluating Inverse Hyperbolic Functions1.6.9

(2)sinh−1

(1/4)tanh−1

(2) = ln(2+ ) = ln(2+ ) ≈ 1.4436sinh−1 +122
− −−−−

√ 5
–

√

(1/4) = ln( ) = ln( ) = ln( ) ≈ 0.2554tanh−1 1

2

1+1/4

1−1/4

1

2

5/4

3/4

1

2

5

3

 Exercise 1.6.9

(1/2)tanh−1

xtanh−1

ln(3) ≈ 0.5493
1

2

y = bx b > 1 0 < b < 1 (−∞,∞)
(0,∞)

y = (x)logb y = bx (0,∞) (−∞,∞).
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The natural exponential function is  and the natural logarithmic function is 
Given an exponential function or logarithmic function in base , we can make a change of base to convert this function to any
base ,  We typically convert to base .
The hyperbolic functions involve combinations of the exponential functions  and  As a result, the inverse hyperbolic
functions involve the natural logarithm.

Glossary

base
the number  in the exponential function  and the logarithmic function 

exponent
the value  in the expression 

hyperbolic functions
the functions denoted  and , which involve certain combinations of  and 

inverse hyperbolic functions
the inverses of the hyperbolic functions where  and  are restricted to the domain ;each of these functions can be
expressed in terms of a composition of the natural logarithm function and an algebraic function

natural exponential function
the function 

natural logarithm
the function 

number e
as  gets larger, the quantity  gets closer to some real number; we define that real number to be  the value of 
is approximately 

This page titled 1.6: Exponential and Logarithmic Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by .

1.5: Exponential and Logarithmic Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

y = ex y = lnx = x.loge

a

b > 0 b ≠ 1. e

ex .e−x

b f(x) = bx f(x) = xlogb

x bx

sinh, cosh, tanh, csch, sech, coth ex e−x

cosh sech [0,∞)

f(x) = ex

lnx = xloge

m (1+(1/m)m e; e

2.718282
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