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4.10: Newton’s Method

Learning Objectives

o Describe the steps of Newton’s method.

o Explain what an iterative process means.

o Recognize when Newton’s method does not work.
o Apply iterative processes to various situations.

In many areas of pure and applied mathematics, we are interested in finding solutions to an equation of the form f(z) =0. For
most functions, however, it is difficult—if not impossible—to calculate their zeroes explicitly. In this section, we take a look at a
technique that provides a very efficient way of approximating the zeroes of functions. This technique makes use of tangent line
approximations and is behind the method used often by calculators and computers to find zeroes.

Describing Newton’s Method

Consider the task of finding the solutions of f(z) =0. If f is the first-degree polynomial f(z)=az +b, then the solution of
f(z) =0 is given by the formula z = —% .If f is the second-degree polynomial f(z) = az?® +bz +c , the solutions of f(z) =0
can be found by using the quadratic formula. However, for polynomials of degree 3 or more, finding roots of f becomes more
complicated. Although formulas exist for third- and fourth-degree polynomials, they are quite complicated. Also, if f is a
polynomial of degree 5 or greater, it is known that no such formulas exist. For example, consider the function

f(z)=2°+8z* +423 — 22 - 7.

No formula exists that allows us to find the solutions of f(z) = 0. Similar difficulties exist for nonpolynomial functions. For
example, consider the task of finding solutions of tan(z) —z = 0. No simple formula exists for the solutions of this equation. In
cases such as these, we can use Newton’s method to approximate the roots.

Newton’s method makes use of the following idea to approximate the solutions of f(z) = 0. By sketching a graph of f, we can
estimate a root of f(x) =0. Let’s call this estimate zo. We then draw the tangent line to f at zg. If f'(zo) # 0, this tangent line
intersects the z-axis at some point (1, 0). Now let z; be the next approximation to the actual root. Typically, z; is closer than z
to an actual root. Next we draw the tangent line to f at @;. If f’(z1) #0, this tangent line also intersects the z-axis, producing
another approximation, 5. We continue in this way, deriving a list of approximations: zg, 1, 2, . ... Typically, the numbers
g, T1, T2, ... quickly approach an actual root z*, as shown in the following figure.
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Figure 4.10.1:The approximations g, z1, 2, ... approach the actual root z*. The approximations are derived by looking at

tangent lines to the graph of f.

Now let’s look at how to calculate the approximations zg, 1, Z2, ....If ¢ is our first approximation, the approximation z; is
defined by letting (1, 0) be the z-intercept of the tangent line to f at . The equation of this tangent line is given by

y = f(zo) + f (o) (z — z0)-

Therefore, £; must satisfy

f(@o) + f (o) (z1 —20) = 0.

Solving this equation for x;, we conclude that

N {C:)
1 =20 — .
f'(zo)
Similarly, the point (32, 0) is the z-intercept of the tangent line to f at z;. Therefore, x5 satisfies the equation
SR C))
2 =21 — .
f'(z1)
In general, for n > 0, z,, satisfies
Ty
Tn = Tn_1 — M (4.10.1)
.f (mn—l)

Next we see how to make use of this technique to approximate the root of the polynomial f(z) =z —3z + 1.

Example 4.10.1: Finding a Root of a Polynomial

Use Newton’s method to approximate a root of f(z) = x> — 3z +1 in the interval [1,2]. Let o = 2 and find z1, 3, T3, T4,
and xs5.

Solution

From Figure 4.10.2 we see that f has one root over the interval (1,2). Therefore zy =2 seems like a reasonable first
approximation. To find the next approximation, we use Equation 4.10.1. Since f(z)=2®—3z+1, the derivative is
f’(z) = 3z® — 3. Using Equation 4.10.1with n = 1 (and a calculator that displays 10 digits), we obtain
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To find the next approximation, z2, we use Equation with n = 2 and the value of x; stored on the calculator. We find that

S(z1)
f'(z1)

L1 = Io

To =T — ~1.548611111.

Continuing in this way, we obtain the following results:

e 71 ~1.666666667
e 3~ 1.548611111
e x3~1.532390162
e x4~1.532088989
e x5 ~1.532088886
e x5~ 1.532088886.

We note that we obtained the same value for x5 and x¢. Therefore, any subsequent application of Newton’s method will most
likely give the same value for z,,.

) =x3—3x+ 1

Figure 4.10.2: The function f(x) = 2> —3z +1 has one root over the interval [1, 2].

Exercise 4.10.1

Letting zg = 0, let’s use Newton’s method to approximate the root of f(z)=2z®—3z+1 over the interval [0,1] by
calculating z; and zs.
Hint

Use Equation 4.10.1.

Answer

x1 ~0.33333333
T2 ~20.347222222
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Newton’s method can also be used to approximate square roots. Here we show how to approximate /2. This method can be
modified to approximate the square root of any positive number.

Example 4.10.2: Finding a Square Root

Use Newton’s method to approximate V2 (Figure 4.10.3). Let f(z) = z2 —2, let g =2, and calculate z;, xa, &3, L4, T5.
(We note that since f(z) = 2? —2 has a zero at /2, the initial value 2o = 2 is a reasonable choice to approximate v/2).
s
X* =
—2-
Figure 4.10.3: We can use Newton’s method to find /2.
Solution
For f(z) =2? -2, f'(z) =2z. From , we know that
Ty = Tp1 — f(mnfl)
" " f/(mnfl)
2
. x, 1 —2
n—1 2:1:”_1
1 o 1
—Ln—
9 n—1 -
1 o 2
= — || 48+—_ .
9 n—1 Tn1
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Therefore,
n=1(20+2L)=1(2+2)=15
_ 1 2\ _ 1 2\ ~
=% (21+2) =3(1.5+ %) ~1.416666667.

Continuing in this way, we find that

L1 = 1.5

T2 ~1.416666667

z3 ~ 1.414215686

x4 ~1.414213562

5 ~1.414213562.

Since we obtained the same value for z4 and x5, it is unlikely that the value ,, will change on any subsequent application of
Newton’s method. We conclude that /2 /= 1.414213562.

Exercise 4.10.2

Use Newton’s method to approximate 4/3 by letting f(z) = 22 — 3 and 2o = 3. Find z; and z5.

Hint

For f(z) = z® —3 , Equation 4.10. Ireduces to x,, = % 2wi_1 .
Answer

Ir1 = 2

T9 = 1.75

When using Newton’s method, each approximation after the initial guess is defined in terms of the previous approximation by
f(z)
f'(=)
Zn, = F(z,-1) . This type of process, where each x,, is defined in terms of z,,_; by repeating the same function, is an example of
an iterative process. Shortly, we examine other iterative processes. First, let’s look at the reasons why Newton’s method could fail
to find a root.

using the same formula. In particular, by defining the function F(z) :x—[ ] , we can rewrite Equation 4.10.1 as

Failures of Newton’s Method

Typically, Newton’s method is used to find roots fairly quickly. However, things can go wrong. Some reasons why Newton’s
method might fail include the following:

1. At one of the approximations z,,, the derivative f’is zero at x,,, but f(z,) # 0. As a result, the tangent line of f at z,, does not
intersect the z-axis. Therefore, we cannot continue the iterative process.

2. The approximations zg, #1, Z2, ... may approach a different root. If the function f has more than one root, it is possible that
our approximations do not approach the one for which we are looking, but approach a different root (see Figure 4.10.4). This
event most often occurs when we do not choose the approximation xy close enough to the desired root.

3. The approximations may fail to approach a root entirely. In Example 4.10.3 we provide an example of a function and an initial
guess x( such that the successive approximations never approach a root because the successive approximations continue to
alternate back and forth between two values.

https://stats.libretexts.org/@go/page/25972



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25972?pdf

LibreTextsw

! ;}U root sought\/root found

Figure 4.10.4: If the initial guess x is too far from the root sought, it may lead to approximations that approach a different root.

Example 4.10.3: When Newton’s Method Fails

Consider the function f(z) = x3 — 22 +2 . Let £y = 0. Show that the sequence z;, Zs, . . . fails to approach a root of f.
Solution

For f(z) = 2® — 2z + 2, the derivative is f'(z) = 32> — 2 .Therefore,
fa) SO 2

fla) £ -2

L1 =T —

In the next step,

fle) S 1

— = _——_—— _—= 0

f'(@1) f1() 1
Consequently, the numbers x, =1, 22, ... continue to bounce back and forth between 0 and 1 and never get closer to the root
of f which is over the interval [—2, —1] (Figure 4.10.5). Fortunately, if we choose an initial approximation zg closer to the
actual root, we can avoid this situation.

L9 = 1

¥

)| = x3 — 2x + 2
a1l

Figure 4.10.5: The approximations continue to alternate between 0 and 1 and never approach the root of f.
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Exercise 4.10.3

For f(z) =2® — 2z +2, let 2y = —1.5 and find z; and z.
Hint
Use Equation

Answer

T ~ —1.842105263
To ~2 —1.772826920

From Example 4.10.3 we see that Newton’s method does not always work. However, when it does work, the sequence of
approximations approaches the root very quickly. Discussions of how quickly the sequence of approximations approach a root
found using Newton’s method are included in texts on numerical analysis.

Other lterative Processes

As mentioned earlier, Newton’s method is a type of iterative process. We now look at an example of a different type of iterative
process.

Consider a function F' and an initial number z. Define the subsequent numbers x,, by the formula x,, = F'(z,—1) . This process is
an iterative process that creates a list of numbers zg, 1, 2, ..., &y, . ... This list of numbers may approach a finite number z*
as n gets larger, or it may not. In Example 4.10.4, we see an example of a function F' and an initial guess x( such that the resulting
list of numbers approaches a finite value.

Example 4.10.4: Finding a Limit for an Iterative Process

Let F(z) = %a: +4 and let zp = 0. For all n > 1, let ¢, = F(x,,_1) . Find the values 1, x5, x3, 4, 5. Make a conjecture
about what happens to this list of numbers 1, 3, 23, ..., n, ... as n—>00. If the list of numbers zi, z2, z3, ...
approaches a finite number z*, then z* satisfies * = F'(z*), and z* is called a fixed point of F.

Solution
If g =0, then
o T = 1(0)+4:4

2
o zy=1(7)+4=75
o o5=1(7.5)+4="1.75
o x5=3(7.75)+4="7.875

@ 0 g @ 4.10.7 https://stats.libretexts.org/@go/page/25972


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25972?pdf
https://www.youtube.com/watch?v=YPZhaDzYvIM
https://www.youtube.com/watch?v=YPZhaDzYvIM

LibreTextsw

e @7 =1(7.875)+4 ="7.9375
. m8_§(7 9375)+4 = 7.96875
1
2

(7.96875) +4 = 7.984375.
From this list, we conjecture that the values x,, approach 8.

Figure 4.10.6 provides a graphical argument that the values approach 8 as n — oo. Starting at the point (2, zg), we draw a
vertical line to the point (2o, F(z¢)). The next number in our list is ; = F(z¢). We use ; to calculate zo. Therefore, we
draw a horizontal line connecting (zo, 1) to the point (z1, ;) on the line y = z, and then draw a vertical line connecting
(z1, 1) to the point (z1, F(z1)). The output F'(x;) becomes z5. Continuing in this way, we could create an infinite number
of line segments. These line segments are trapped between the lines F'(z) = % +4 and y = z. The line segments get closer to
the intersection point of these two lines, which occurs when = F'(z). Solving the equation & = % +4, we conclude they
intersect at z = 8. Therefore, our graphical evidence agrees with our numerical evidence that the list of numbers

Zg, T1, T2, - ..approaches xx =8 asn — oo.
Yi
F(x*)
1
Xy = F(x;) Fx)=35x+4
X, = F(x;) +
3 y=x
X, = F(xp) £
A
Xo X, X, Xy XX

Figure 4.10.6: This iterative process approaches the value x* = 8.

Exercise 4.10.4

Consider the function F(z) = %:c +6. Let 2y =0 and let z, = F(z,—1) for n>2. Find z1, z3, ©3, 4, 5. Make a
conjecture about what happens to the list of numbers x1, %3, x3, ... @,, ...asn — 0.

Hint

Consider the point where the lines y =« and y = F'(z) intersect.

Answer

26 __ 80 242 PR
Taxﬁl_?ya‘% 2771"_9

Iterative Processes and Chaos

Iterative processes can yield some very interesting behavior. In this section, we have seen several examples of iterative
processes that converge to a fixed point. We also saw in Example 4.10.4 that the iterative process bounced back and forth
between two values. We call this kind of behavior a 2-cycle. Iterative processes can converge to cycles with various
periodicities, such as 2—cycles, 4-cycles (where the iterative process repeats a sequence of four values), 8-cycles, and so on.

1'1:6, 5132:8, I3 =

Some iterative processes yield what mathematicians call chaos. In this case, the iterative process jumps from value to value in a
seemingly random fashion and never converges or settles into a cycle. Although a complete exploration of chaos is beyond the
scope of this text, in this project we look at one of the key properties of a chaotic iterative process: sensitive dependence on
initial conditions. This property refers to the concept that small changes in initial conditions can generate drastically different
behavior in the iterative process.
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Probably the best-known example of chaos is the Mandelbrot set (see Figure), named after Benoit Mandelbrot (1924-2010),
who investigated its properties and helped popularize the field of chaos theory. The Mandelbrot set is usually generated by
computer and shows fascinating details on enlargement, including self-replication of the set. Several colorized versions of the
set have been shown in museums and can be found online and in popular books on the subject.

Figure 4.10.7: The Mandelbrot set is a well-known example of a set of points generated by the iterative chaotic behavior of a
relatively simple function.

In this project we use the logistic map
f(z)=rz(l—2x) (4.10.2)
where z € [0,1]and 7 > 0

as the function in our iterative process. The logistic map is a deceptively simple function; but, depending on the value of r, the
resulting iterative process displays some very interesting behavior. It can lead to fixed points, cycles, and even chaos.

To visualize the long-term behavior of the iterative process associated with the logistic map, we will use a tool called a cobweb
diagram. As we did with the iterative process we examined earlier in this section, we first draw a vertical line from the point
(0, 0) to the point (zg, f(20)) = (zo, 1) . We then draw a horizontal line from that point to the point (1, 1), then draw a
vertical line to (z1, f(z1)) = (21, x2), and continue the process until the long-term behavior of the system becomes apparent.
Figure shows the long-term behavior of the logistic map when r» =3.55 and zy = 0.2. (The first 100 iterations are not
plotted.) The long-term behavior of this iterative process is an 8-cycle.
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Figure 4.10.8: A cobweb diagram for f(z) = 3.55z(1 — ) is presented here. The sequence of values results in an 8-cycle.

1. Let 7 = 0.5 and choose zy = 0.2. Either by hand or by using a computer, calculate the first 10 values in the sequence.
Does the sequence appear to converge? If so, to what value? Does it result in a cycle? If so, what kind of cycle (for
example, 2—cycle, 4—cycle.)?

2. What happens when r» = 2?

3. For r = 3.2 and r = 3.5, calculate the first 100 sequence values. Generate a cobweb diagram for each iterative process.
(Several free applets are available online that generate cobweb diagrams for the logistic map.) What is the long-term
behavior in each of these cases?

4. Now let » = 4. Calculate the first 100 sequence values and generate a cobweb diagram. What is the long-term behavior in
this case?

5. Repeat the process for » = 4, but let o = 0.201. How does this behavior compare with the behavior for 2y = 0.2?

Key Concepts

o Newton’s method approximates roots of f(z) = 0 by starting with an initial approximation x, then uses tangent lines to the
graph of f to create a sequence of approximations z1, 3, Z3, - .. .

o Typically, Newton’s method is an efficient method for finding a particular root. In certain cases, Newton’s method fails to work
because the list of numbers g, z1, 2, ... does not approach a finite value or it approaches a value other than the root sought.

e Any process in which a list of numbers xg, 1, %2, ... is generated by defining an initial number x( and defining the

subsequent numbers by the equation z,, = F'(z,,_1) for some function F' is an iterative process. Newton’s method is an
example of an iterative process, where the function F(z) =z — [%] for a given function f.

Glossary

iterative process
process in which a list of numbers g, 1, 2, Z3 . . . is generated by starting with a number z and defining z,, = F(z,_1) for
n>1

Newton’s method

method for approximating roots of f(z) = 0; using an initial guess zy; each subsequent approximation is defined by the
f(zn—l)
f/(xnfl)

equation £, = Tp_1 —
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e 4.9: Newton’s Method by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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