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2.6: The Precise Definition of a Limit

Describe the epsilon-delta definition of a limit.
Apply the epsilon-delta definition to find the limit of a function.
Describe the epsilon-delta definitions of one-sided limits and infinite limits.
Use the epsilon-delta definition to prove the limit laws.

By now you have progressed from the very informal definition of a limit in the introduction of this chapter to the intuitive
understanding of a limit. At this point, you should have a very strong intuitive sense of what the limit of a function means and how
you can find it. In this section, we convert this intuitive idea of a limit into a formal definition using precise mathematical language.
The formal definition of a limit is quite possibly one of the most challenging definitions you will encounter early in your study of
calculus; however, it is well worth any effort you make to reconcile it with your intuitive notion of a limit. Understanding this
definition is the key that opens the door to a better understanding of calculus.

Quantifying Closeness
Before stating the formal definition of a limit, we must introduce a few preliminary ideas. Recall that the distance between two
points  and  on a number line is given by | |.

The statement | |<ε may be interpreted as: The distance between  and  is less than .
The statement  may be interpreted as:  and the distance between  and  is less than .

It is also important to look at the following equivalences for absolute value:

The statement |  is equivalent to the statement .
The statement  is equivalent to the statement  and .

With these clarifications, we can state the formal epsilon-delta definition of the limit.

Let  be defined for all  over an open interval containing . Let  be a real number. Then

if, for every , there exists a , such that if , then .

This definition may seem rather complex from a mathematical point of view, but it becomes easier to understand if we break it
down phrase by phrase. The statement itself involves something called a universal quantifier (for every ), an existential
quantifier (there exists a ), and, last, a conditional statement (if , then . Let’s take a look at
Table , which breaks down the definition and translates each part.

Table 

Definition Translation

1. For every , 1. For every positive distance  from L,

2. there exists a , 2. There is a positive distance  from a,

3. such that 3. such that

4. if , then .
4. if  is closer than  to a and , then  is closer than ε to
L.

We can get a better handle on this definition by looking at the definition geometrically. Figure shows possible values of  for
various choices of  for a given function , a number a, and a limit L at a. Notice that as we choose smaller values of ε (the
distance between the function and the limit), we can always find a  small enough so that if we have chosen an x value within  of
a, then the value of  is within  of the limit L.

Learning Objectives

a b a −b

f(x) −L f(x) L ε

0 < |x −a| < δ x ≠ a x a δ

f(x) −L| < ε L −ε < f(x) < L +ε

0 < |x −a| < δ a −δ < x < a +δ x ≠ a

Definition: Finite Limits (Formal)

f(x) x ≠ a a L

f(x) = Llim
x→a

(2.6.1)

ε > 0 δ > 0 0 < |x −a| < δ |f(x) −L| < ε

ε > 0
δ > 0 0 < |x −a| < δ |f(x) −L| < ε)

2.6.1

2.6.1

ε > 0 ε

δ > 0 δ

0 < |x − a| < δ |f(x) − L| < ε
x δ x ≠ a f(x)

δ

ε > 0 f(x)
δ δ

f(x) ε
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Figure : These graphs show possible values of , given successively smaller choices of ε.

Visit the following applet to experiment with finding values of  for selected values of :

The epsilon-delta definition of limit

Example  shows how you can use this definition to prove a statement about the limit of a specific function at a specified
value.

Prove that .

Solution

Let .

The first part of the definition begins “For every .”This means we must prove that whatever follows is true no matter
what positive value of ε is chosen. By stating “Let

,” we signal our intent to do so.

Choose .

The definition continues with “there exists a . ” The phrase “there exists” in a mathematical statement is always a signal
for a scavenger hunt. In other words, we must go and find . So, where exactly did  come from? There are two basic
approaches to tracking down . One method is purely algebraic and the other is geometric.

We begin by tackling the problem from an algebraic point of view. Since ultimately we want , we begin by
manipulating this expression:  is equivalent to , which in turn is equivalent to .

2.6.1 δ

Note

δ ε

2.6.1

Epsilon Delta De�nition of the LimitEpsilon Delta De�nition of the Limit

Example : Proving a Statement about the Limit of a Specific Function2.6.2

(2x +1) = 3lim
x→1

ε > 0

ε > 0

ε > 0

δ = ε
2

δ > 0
δ δ = ε/2

δ

|(2x +1) −3| < ε

|(2x +1) −3| < ε |2x −2| < ε |2||x −1| < ε
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Last, this is equivalent to . Thus, it would seem that  is appropriate.

We may also find  through geometric methods. Figure demonstrates how this is done.

Figure : This graph shows how we find  geometrically.

Assume . When  has been chosen, our goal is to show that if , then . To
prove any statement of the form “If this, then that,” we begin by assuming “this” and trying to get “that.”

Thus,

 property of absolute value

 

 here’s where we use the assumption that 

 here’s where we use our choice of 

Analysis

In this part of the proof, we started with  and used our assumption  in a key part of the chain of
inequalities to get  to be less than ε. We could just as easily have manipulated the assumed inequality 

 to arrive at  as follows:

Therefore,  (Having completed the proof, we state what we have accomplished.)

After removing all the remarks, here is a final version of the proof:

Let .

Choose .

Assume .

|x −1| < ε/2 δ = ε/2

δ

2.6.2 δ

0 < |x −1| < δ δ 0 < |x −1| < δ |(2x +1) −3| < ε

|(2x +1) −3| = |2x −2|

= |2(x −1)|

= |2||x −1| |2| = 2

= 2|x −1|

< 2 ⋅ δ 0 < |x −1| < δ

= 2 ⋅ = εε
2

δ = ε/2

|(2x +1) −3| 0 < |x −1| < δ

|(2x +1) −3|
0 < |x −1| < δ |(2x +1) −3| < ε

0 < |x −1| < δ ⇒ |x −1| < δ

⇒ −δ < x −1 < δ

⇒ − < x −1 <ε

2
ε

2

⇒ −ε < 2x −2 < ε

⇒ −ε < 2x −2 < ε

⇒ |2x −2| < ε

⇒ |(2x +1) −3| < ε.

(2x +1) = 3.lim
x→1

ε > 0

δ = ε/2

0 < |x −1| < δ
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Thus,

Therefore, .

The following Problem-Solving Strategy summarizes the type of proof we worked out in Example .

The following Problem-Solving Strategy summarizes the type of proof we worked out in Example.

1. Let’s begin the proof with the following statement: Let .
2. Next, we need to obtain a value for . After we have obtained this value, we make the following statement, filling in the

blank with our choice of : Choose _______.
3. The next statement in the proof should be (at this point, we fill in our given value for ): Assume .
4. Next, based on this assumption, we need to show that , where  and  are our function  and our

limit . At some point, we need to use .
5. We conclude our proof with the statement: Therefore, .

Complete the proof that  by filling in the blanks.

Let _____.

Choose _______.

Assume −_______| .

Thus, |________−________|=_____________________________________ .

Solution

We begin by filling in the blanks where the choices are specified by the definition. Thus, we have

Let .

Choose =_______.

Assume . (or equivalently, .)

Thus, _______ .

Focusing on the final line of the proof, we see that we should choose .

We now complete the final write-up of the proof:

Let .

Choose .

Assume  (or equivalently, .)

Thus, .

|(2x +1) −3| = |2x −2|

= |2(x −1)|

= |2||x −1|

= 2|x −1|

< 2 ⋅ δ

= 2 ⋅
ε

2

= ε.

(2x +1) = 3lim
x→1

2.6.2

Problem-Solving Strategy: Proving That  for a Specific Function f(x) = Llim
x→a

f(x)

ε > 0
δ

δ δ =
a 0 < |x −a| < δ

|f(x) −L| < ε f(x) L f(x)
L 0 < |x −a| < δ

f(x) = Llim
x→a

Example : Proving a Statement about a Limit2.6.3

(4x +1) = −3lim
x→−1

δ =

0 < |x < δ

ε

ε > 0

δ

0 < |x −(−1)| < δ 0 < |x +1| < δ

|(4x +1) −(−3)| = |4x +4| = |4||x +1| < 4δ ε

δ = ε

4

ε > 0

δ = ε

4

0 < |x −(−1)| < δ 0 < |x +1| < δ

|(4x +1) −(−3)| = |4x +4]| = |4||x +1| < 4δ = 4(ε/4) = ε
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Complete the proof that  by filling in the blanks.

Let _______.

Choose  =_______.

Assume ____ ____.

Thus,

|_______−____| ______________________________ .

Therefore, .

Hint

Follow the outline in the Problem-Solving Strategy that we worked out in full in Example .

Answer

Let ; choose ; assume .

Thus, .

Therefore, .

In Examples  and , the proofs were fairly straightforward, since the functions with which we were working were linear.
In Example , we see how to modify the proof to accommodate a nonlinear function.

Prove that .

Solution

1. Let . The first part of the definition begins “For every ,” so we must prove that whatever follows is true no
matter what positive value of  is chosen. By stating “Let ,” we signal our intent to do so.

2. Without loss of generality, assume . Two questions present themselves: Why do we want  and why is it okay to
make this assumption? In answer to the first question: Later on, in the process of solving for , we will discover that  involves
the quantity . Consequently, we need . In answer to the second question: If we can find  that “works” for 

, then it will “work” for any  as well. Keep in mind that, although it is always okay to put an upper bound on ε, it is
never okay to put a lower bound (other than zero) on .

3. Choose . Figure  shows how we made this choice of .

Figure : This graph shows how we find δ geometrically for a given ε for the proof in Example.

Exercise 2.6.1

(3x −2) = 4lim
x→2

δ

0 < |x− | <

= ε

(3x −2) = 4lim
x→2

2.6.3

ε > 0 δ = ε

3
0 < |x −2| < δ

|(3x −2) −4| = |3x −6| = |3| ⋅ |x −2| < 3 ⋅ δ = 3 ⋅ (ε/3) = ε

(3x −2) = 4lim
x→2

2.6.1 2.6.2
2.6.4

Example : Proving a Statement about the Limit of a Specific Function (Geometric Approach)2.6.4

= 4lim
x→2

x2

ε > 0 ε > 0
ε ε > 0

ε ≤ 4 ε ≤ 4
δ δ

4 −ε
− −−−

√ ε ≤ 4 δ > 0
ε ≤ 4 ε > 4

ε

δ = min2 − , −24 −ε
− −−−

√ 4 +ε
− −−−

√ 2.6.3 δ

2.6.3
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4. We must show: If , then , so we must begin by assuming

We don’t really need  (in other words, ) for this proof. Since , it is okay to
drop .

Hence,

Recall that { }. Thus,  and consequently . We also
use  here. We might ask at this point: Why did we substitute  for  on the left-hand side of the
inequality and  on the right-hand side of the inequality? If we look at Figure , we see that 
corresponds to the distance on the left of  on the -axis and  corresponds to the distance on the right. Thus,

We simplify the expression on the left:

.

Then, we add 2 to all parts of the inequality:

We square all parts of the inequality. It is okay to do so, since all parts of the inequality are positive:

We subtract  from all parts of the inequality:

Last,

5. Therefore,

Find δ corresponding to  for a proof that .

Hint

Draw a graph similar to the one in Example .

0 < |x −2| < δ | −4| < εx2

0 < |x −2| < δ.

0 < |x −2| x ≠ 2 0 < |x −2| < δ ⇒ |x −2| < δ

0 < |x −2|

|x −2| < δ.

−δ < x −2 < δ.

δ = min 2 − , −24 −ε
− −−−

√ 4 +ε
− −−−

√ δ ≥ 2 − 4 −ε
− −−−

√ −(2 − ) ≤ −δ4 −ε
− −−−

√
δ ≤ −24 +ε

− −−−
√ 2 − 4 −ε

− −−−
√ δ

−24 +ε
− −−−

√ 2.6.3 2 − 4 −ε
− −−−

√
2 x −24 +ε

− −−−
√

−(2 − ) ≤ −δ < x −2 < δ ≤ −2.4 −ε
− −−−

√ 4 +ε
− −−−

√

−2 + < x −2 < −24 −ε
− −−−

√ 4 +ε
− −−−

√

< x < .4 −ε
− −−−

√ 4 +ε
− −−−

√

4 −ε < < 4 +ε.x2

4

−ε < −4 < ε.x2

| −4| < ε.x2

= 4.lim
x→2

x2

Given Epsilon Find Delta for a LimitGiven Epsilon Find Delta for a Limit

Exercise 2.6.2

ε > 0 = 3lim
x→9

x−−√

2.6.4
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Answer

Choose .

The geometric approach to proving that the limit of a function takes on a specific value works quite well for some functions. Also,
the insight into the formal definition of the limit that this method provides is invaluable. However, we may also approach limit
proofs from a purely algebraic point of view. In many cases, an algebraic approach may not only provide us with additional insight
into the definition, it may prove to be simpler as well. Furthermore, an algebraic approach is the primary tool used in proofs of
statements about limits. For Example , we take on a purely algebraic approach.

Prove that 

Solution

Let’s use our outline from the Problem-Solving Strategy:

1. Let .

2. Choose . This choice of  may appear odd at first glance, but it was obtained by taking a look at our
ultimate desired inequality: . This inequality is equivalent to . At this point, the
temptation simply to choose  is very strong. Unfortunately, our choice of  must depend on ε only and no other
variable. If we can replace  by a numerical value, our problem can be resolved. This is the place where assuming 
comes into play. The choice of  here is arbitrary. We could have just as easily used any other positive number. In some
proofs, greater care in this choice may be necessary. Now, since  and , we are able to show that 

. Consequently, . At this point we realize that we also need . Thus, we
choose .

3. Assume . Thus,

Since , we may conclude that . Thus, by subtracting  from all parts of the inequality, we obtain 
. Consequently, . This gives us

Therefore,

Complete the proof that .

Let ; choose ; assume .

Since , we may conclude that . Thus, . Hence, .

Hint

Use Example  as a guide.

Answer

δ = min{9 −(3 −ε , (3 +ε −9})2 )2

2.6.5

Example :Proving a Statement about the Limit of a Specific Function (Algebraic Approach)2.6.5

( −2x +3) = 6.lim
x→−1

x2

ε > 0

δ = min{1, ε/5} δ

( −2x +3) −6 ∣< ε∣∣ x2 |x +1| ⋅ |x −3| < ε

δ = ε

x−3
δ

|x −3| δ ≤ 1
δ ≤ 1

δ ≤ 1 |x +1| < δ ≤ 1
|x −3| < 5 |x +1| ⋅ |x −3| < |x +1| ⋅ 5 δ ≤ ε/5

δ = min{1, ε/5}

0 < |x +1| < δ

|x +1| < 1 and |x +1| < .
ε

5

|x +1| < 1 −1 < x +1 < 1 4
−5 < x −3 < −1 |x −3| < 5

( −2x +3) −6 = |x +1| ⋅ |x −3| < ⋅ 5 = ε.∣∣ x2 ∣∣
ε

5

( −2x +3) = 6.lim
x→−1

x2

Exercise 2.6.3

= 1lim
x→1

x2

ε > 0 δ = min{1, ε/3} 0 < |x −1| < δ

|x −1| < 1 −1 < x −1 < 1 1 < x +1 < 3 |x +1| < 3

2.6.5

−1 ∣= |x −1| ⋅ |x +1| < ε/3 ⋅ 3 = ε∣∣x2
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You will find that, in general, the more complex a function, the more likely it is that the algebraic approach is the easiest to apply.
The algebraic approach is also more useful in proving statements about limits.

Proving Limit Laws
We now demonstrate how to use the epsilon-delta definition of a limit to construct a rigorous proof of one of the limit laws. The
triangle inequality is used at a key point of the proof, so we first review this key property of absolute value.

The triangle inequality states that if a and b are any real numbers, then .

We prove the following limit law: If  and , then .

Let .

Choose  so that if , then .

Choose  so that if , then .

Choose .

Assume .

Thus,

 and .

Hence,

□

We now explore what it means for a limit not to exist. The limit  does not exist if there is no real number  for which 

. Thus, for all real numbers , . To understand what this means, we look at each part of the definition

of  together with its opposite. A translation of the definition is given in Table .

Table 

Definition Opposite

1. For every , 1. There exists  so that

2. there exists a , so that 2. for every ,

3. if , then .
3. There is an x satisfying  so that 

.

Translation of the Definition of  and its Opposite

Finally, we may state what it means for a limit not to exist. The limit  does not exist if for every real number , there

exists a real number  so that for all , there is an  satisfying , so that . Let’s apply this
in Example  to show that a limit does not exist.

Definition: The Triangle Inequality

|a +b| ≤ |a| + |b|

Proof

f(x) = Llim
x→a

g(x) = Mlim
x→a

(f(x) +g(x)) = L +Mlim
x→a

ε > 0

> 0δ1 0 < |x −a| < δ1 |f(x) −L| < ε/2

> 0δ2 0 < |x −a| < δ2 |g(x) −M | < ε/2

δ = min{ , }δ1 δ2

0 < |x −a| < δ

0 < |x −a| < δ1 0 < |x −a| < δ2

.

|(f(x) +g(x)) −(L +M)| = |(f(x) −L) +(g(x) −M)|

≤ |f(x) −L| + |g(x) −M |

< + = ε
ε

2

ε

2

f(x)lim
x→a

L

f(x) = Llim
x→a

L f(x) ≠ Llim
x→a

f(x) = Llim
x→a

2.6.2

2.6.2

ε > 0 ε > 0

δ > 0 δ > 0

0 < |x − a| < δ |f(x) − L| < ε
0 < |x − a| < δ

|f(x) − L| ≥ ε

f(x) = Llimx→a

f(x)lim
x→a

L

ε > 0 δ > 0 x 0 < |x −a| < δ |f(x) −L| ≥ ε

2.6.6
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Show that  does not exist. The graph of  is shown here:

Solution

Suppose that  is a candidate for a limit. Choose .

Let . Either  or . If , then let .

Thus,

and

.

On the other hand, if , then let . Thus,

and

.

Thus, for any value of , 

One-Sided Limits
Just as we first gained an intuitive understanding of limits and then moved on to a more rigorous definition of a limit, we now
revisit one-sided limits. To do this, we modify the epsilon-delta definition of a limit to give formal epsilon-delta definitions for
limits from the right and left at a point. These definitions only require slight modifications from the definition of the limit. In the
definition of the limit from the right, the inequality  replaces , which ensures that we only consider
values of  that are greater than (to the right of) . Similarly, in the definition of the limit from the left, the inequality 

 replaces , which ensures that we only consider values of  that are less than (to the left of) .

Limit from the Right: Let  be defined over an open interval of the form  where . Then

if for every , there exists a , such that if , then .

Limit from the Left: Let  be defined over an open interval of the form  where . Then,

Example : Showing That a Limit Does Not Exist2.6.6

lim
x→0

|x|

x
f(x) = |x|/x

L ε = 1/2

δ > 0 L ≥ 0 L < 0 L ≥ 0 x = −δ/2

|x −0| =∣ − −0 ∣= < δδ
2

δ
2

−L = | −1 −L| = L +1 ≥ 1 > = ε
∣

∣
∣

−∣∣
δ

2
∣
∣

− δ

2

∣

∣
∣ 1

2

L < 0 x = δ/2

|x −0| =∣ −0 ∣= < δδ
2

δ
2

−L = |1 −L| = |L| +1 ≥ 1 > = ε
∣

∣
∣

∣∣
δ

2
∣∣

δ

2

∣

∣
∣ 1

2

L ≠ L.lim
x→0

|x|

x

0 < x −a < δ 0 < |x −a| < δ

x a

−δ < x −a < 0 0 < |x −a| < δ x a

Definition: One-Sided Limits (Formal)

f(x) (a, b) a < b

f(x) = Llim
x→a+

(2.6.2)

ε > 0 δ > 0 0 < x −a < δ |f(x) −L| < ε

f(x) (b, c) b < c
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if for every ,there exists a  such that if , then .

Prove that

Solution

Let .

Choose . Since we ultimately want , we manipulate this inequality to get  or,
equivalently, , making  a clear choice. We may also determine  geometrically, as shown in Figure 

.

Figure : This graph shows how we find δ for the proof in Example.

Assume . Thus, . Hence, . Finally, . Therefore, 
.

Find  corresponding to  for a proof that .

Hint

Sketch the graph and use Example  as a solving guide.

Answer

Infinite Limits

We conclude the process of converting our intuitive ideas of various types of limits to rigorous formal definitions by pursuing a
formal definition of infinite limits. To have , we want the values of the function  to get larger and larger as 

approaches a. Instead of the requirement that  for arbitrarily small  when  for small enough , we
want  for arbitrarily large positive  when  for small enough . Figure  illustrates this idea by
showing the value of  for successively larger values of .

f(x) = Llim
x→c−

(2.6.3)

ε > 0 δ > 0 −δ < x −c < 0 |f(x) −L| < ε

Example : Proving a Statement about a Limit From the Right2.6.7

= 0.lim
x→4+

x −4
− −−−−

√

ε > 0

δ = ε2 −0 ∣< ε∣∣ x −4
− −−−−

√ < εx −4
− −−−−

√
0 < x −4 < ε2 δ = ε2 δ

2.6.4

2.6.4

0 < x −4 < δ 0 < x −4 < ε2 0 < < εx −4
− −−−−

√ −0 < ε∣∣ x −4
− −−−−

√ ∣∣
= 0lim

x→4+
x −4
− −−−−

√

Exercise 2.6.4

δ ε = 0lim
x→1−

1 −x
− −−−−

√

2.6.7

δ = ε2

f(x) = +∞lim
x→a

f(x) x

|f(x) −L| < ε ε 0 < |x −a| < δ δ

f(x) > M M 0 < |x −a| < δ δ 2.6.5
δ M

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25930?pdf


2.6.11 https://stats.libretexts.org/@go/page/25930

Figure : These graphs plot values of  for  to show that .

Let  be defined for all  in an open interval containing . Then, we have an infinite limit

if for every , there exists  such that if , then .

Let  be defined for all  in an open interval containing . Then, we have a negative infinite limit

if for every , there exists  such that if , then .

Prove that 

Solution

We use a very similar approach to our previous Problem-Solving Strategy. We first find an appropriate . Then we write
our proof.

Step 1: First we find an appropriate .

1. Let  be any real number such that .

2. Let . Then we solve for the expression .

Multiplying both sides of the inequality by the positive quantity  and dividing both sides by the positive quantity 
gives us:

Taking the square root of both sides, we have,

Rewriting this statement gives us, . From this we choose .

2.6.5 δ M f(x) = +∞lim
x→a

Definition: Infinite Limits (Formal)

f(x) x ≠ a a

f(x) = +∞lim
x→a

(2.6.4)

M > 0 δ > 0 0 < |x −a| < δ f(x) > M

f(x) x ≠ a a

f(x) = −∞lim
x→a

(2.6.5)

M > 0 δ > 0 0 < |x −a| < δ f(x) < −M

Example : Proving a Statement about an Infinite Limit2.6.8

= ∞.lim
x→3

1

(x −3)2

δ > 0

δ > 0

M M > 0

f(x) = > M
1

(x −3)2
x −3

(x −3)2 M

> (x −3
1

M
)2

> |x −3|. (Remember that  = |x|.)
1

M

−−−
√ x2−−

√

0 < |x −3| <
1

M

−−−
√ δ =

1

M

−−−
√
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Step 2: Now we write a proof.

3. Let  and assume .

Thus,

Squaring both sides gives us,

Taking the reciprocal of both sides (and remembering that this will reverse the direction of the inequality),

Therefore, we have proven that

A very similar proof will be needed for a limit that is equal to .

Note that a one-sided limit approach will often need to be taken with this type of limit. For example, to prove: .

Key Concepts
The intuitive notion of a limit may be converted into a rigorous mathematical definition known as the epsilon-delta definition of
the limit.
The epsilon-delta definition may be used to prove statements about limits.
The epsilon-delta definition of a limit may be modified to define one-sided limits.
A similar definition of an infinite limit can be used to prove statements about infinite limits.

Glossary

epsilon-delta definition of the limit
 if for every , there exists a  such that if , then 

triangle inequality
If  and  are any real numbers, then 

formal definition of an infinite limit
 if for every , there exists a  such that if , then  

 if for every , there exists a  such that if , then 
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δ =
1

M

−−−
√ 0 < |x −3| < δ =

1

M

−−−
√

|x −3| < .
1

M

−−−
√

(x −3 < .)2 1

M

> M .
1

(x −3)2

= ∞.lim
x→3

1

(x −3)2

−∞

= ∞lim
x→0+

1

x

f(x) = Llim
x→a

ε > 0 δ > 0 0 < |x −a| < δ |f(x) −L| < ε

a b |a +b| ≤ |a| + |b|

f(x) = ∞lim
x→a

M > 0 δ > 0 0 < |x −a| < δ f(x) > M

f(x) = −∞lim
x→a

M > 0 δ > 0 0 < |x −a| < δ f(x) < −M
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