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2.5: Continuity

Explain the three conditions for continuity at a point.
Describe three kinds of discontinuities.
Define continuity on an interval.
State the theorem for limits of composite functions.
Provide an example of the intermediate value theorem.

Many functions have the property that their graphs can be traced with a pencil without lifting the pencil from the page. Such functions are
called continuous. Other functions have points at which a break in the graph occurs, but satisfy this property over intervals contained in
their domains. They are continuous on these intervals and are said to have a discontinuity at a point where a break occurs.

We begin our investigation of continuity by exploring what it means for a function to have continuity at a point. Intuitively, a function is
continuous at a particular point if there is no break in its graph at that point.

Continuity at a Point

Before we look at a formal definition of what it means for a function to be continuous at a point, let’s consider various functions that fail
to meet our intuitive notion of what it means to be continuous at a point. We then create a list of conditions that prevent such failures.

Our first function of interest is shown in Figure . We see that the graph of  has a hole at . In fact,  is undefined. At the
very least, for  to be continuous at , we need the following condition:

i.  is defined

Figure : The function  is not continuous at a because  is undefined.

However, as we see in Figure , this condition alone is insufficient to guarantee continuity at the point . Although  is defined,
the function has a gap at . In this example, the gap exists because  does not exist. We must add another condition for continuity

at —namely,

ii.  exists

Figure : The function  is not continuous at a because  does not exist.

However, as we see in Figure , these two conditions by themselves do not guarantee continuity at a point. The function in this figure
satisfies both of our first two conditions, but is still not continuous at . We must add a third condition to our list:
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iii. 

Figure : The function  is not continuous at a because .

Now we put our list of conditions together and form a definition of continuity at a point.

A function  is continuous at a point  if and only if the following three conditions are satisfied:

i.  is defined
ii.  exists

iii. 

A function is discontinuous at a point  if it fails to be continuous at .

The following procedure can be used to analyze the continuity of a function at a point using this definition.

1. Check to see if  is defined. If  is undefined, we need go no further. The function is not continuous at a. If  is
defined, continue to step 2.

2. Compute . In some cases, we may need to do this by first computing  and . If  does not

exist (that is, it is not a real number), then the function is not continuous at a and the problem is solved. If  exists, then

continue to step 3.
3. Compare  and . If , then the function is not continuous at a. If , then the function

is continuous at a.

The next three examples demonstrate how to apply this definition to determine whether a function is continuous at a given point. These
examples illustrate situations in which each of the conditions for continuity in the definition succeed or fail.

f(x) = f(a)lim
x→a

2.5.3 f(x) f(x) ≠ f(a)lim
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Definition: Continuous at a Point

f(x) a

f(a)
f(x)lim

x→a

f(x) = f(a)lim
x→a

a a

Piecewise Functinos and ContinuityPiecewise Functinos and Continuity

Problem-Solving Strategy: Determining Continuity at a Point

f(a) f(a) f(a)

f(x)lim
x→a

f(x)lim
x→a−
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Using the definition, determine whether the function  is continuous at . Justify the conclusion.

Solution

Let’s begin by trying to calculate . We can see that , which is undefined. Therefore,  is discontinuous

at 2 because  is undefined. The graph of  is shown in Figure .

Figure : The function  is discontinuous at  because  is undefined.

Using the definition, determine whether the function  is continuous at . Justify the conclusion.

Solution

Let’s begin by trying to calculate .

.

Thus,  is defined. Next, we calculate . To do this, we must compute  and :

and

.

Limits, Continuity and GraphsLimits, Continuity and Graphs

Example : Determining Continuity at a Point, Condition 12.5.1A

f(x) =
−4x2

x −2
x = 2

f(2) f(2) = 0/0 f(x) =
−4x2

x −2
f(2) f(x) 2.5.4

2.5.4 f(x) 2 f(2)

Example : Determining Continuity at a Point, Condition 22.5.1B

f(x) ={− +4,x2

4x −8,
if x ≤ 3
if x > 3

x = 3

f(3)

f(3) = −( ) +4 = −532

f(3) f(x)lim
x→3

f(x)lim
x→3−

f(x)lim
x→3+

f(x) = −( ) +4 = −5lim
x→3−

32

f(x) = 4(3) −8 = 4lim
x→3+
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Therefore,  does not exist. Thus,  is not continuous at 3. The graph of  is shown in Figure .

Figure : The function  is not continuous at 3 because  does not exist.

Using the definition, determine whether the function  is continuous at .

Solution

First, observe that

Next,

.

Last, compare  and . We see that

.

Since all three of the conditions in the definition of continuity are satisfied,  is continuous at .

Using the definition, determine whether the function  is continuous at . If the function is not

continuous at 1, indicate the condition for continuity at a point that fails to hold.

Hint

Check each condition of the definition.

Answer

 is not continuous at  because .

f(x)lim
x→3

f(x) f(x) 2.5.5

2.5.5 f(x) f(x)lim
x→3

Example : Determining Continuity at a Point, Condition 32.5.1C

f(x) ={
,sin x

x

1,

if x ≠ 0

if x = 0
x = 0

f(0) = 1

f(x) = = 1lim
x→0

lim
x→0

sinx

x

f(0) f(x)lim
x→1

f(0) = 1 = f(x)lim
x→0

f(x) x = 0

Exercise 2.5.1

f(x) =
⎧

⎩
⎨

2x +1,
2,
−x +4,

if x < 1
if x = 1
if x > 1

x = 1

f 1 f(1) = 2 ≠ 3 = f(x)lim
x→1
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By applying the definition of continuity and previously established theorems concerning the evaluation of limits, we can state the
following theorem.

Polynomials and rational functions are continuous at every point in their domains.

Previously, we showed that if  and  are polynomials,  for every polynomial  and  as

long as . Therefore, polynomials and rational functions are continuous on their domains.

□

We now apply Note to determine the points at which a given rational function is continuous.

For what values of x is  continuous?

Solution

The rational function  is continuous for every value of  except .

For what values of  is  continuous?

Hint

Use the Continuity of Polynomials and Rational Functions stated above.

Answer

 is continuous at every real number.

Types of Discontinuities

As we have seen in Example and Example, discontinuities take on several different appearances. We classify the types of discontinuities
we have seen thus far as removable discontinuities, infinite discontinuities, or jump discontinuities. Intuitively, a removable
discontinuity is a discontinuity for which there is a hole in the graph, a jump discontinuity is a noninfinite discontinuity for which the
sections of the function do not meet up, and an infinite discontinuity is a discontinuity located at a vertical asymptote. Figure 
illustrates the differences in these types of discontinuities. Although these terms provide a handy way of describing three common types
of discontinuities, keep in mind that not all discontinuities fit neatly into these categories.

Figure : Discontinuities are classified as (a) removable, (b) jump, or (c) infinite.

These three discontinuities are formally defined as follows:

Continuity of Polynomials and Rational Functions

Proof

p(x) q(x) p(x) = p(a)lim
x→a

p(x) =lim
x→a

p(x)

q(x)

p(a)

q(a)
q(a) ≠ 0

Example :Continuity of a Rational Function2.5.2

f(x) =
x +1

x −5

f(x) =
x +1

x −5
x x = 5

Exercise 2.5.2

x f(x) = 3 −4x4 x2

f(x)

2.5.5

2.5.5
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If  is discontinuous at a, then

1.  has a removable discontinuity at a if  exists. (Note: When we state that  exists, we mean that 

, where L is a real number.)

2.  has a jump discontinuity at a if  and  both exist, but . (Note: When we

state that  and  both exist, we mean that both are real-valued and that neither take on the values .)

3.  has an infinite discontinuity at a if  or .

In Example, we showed that  is discontinuous at . Classify this discontinuity as removable, jump, or infinite.

Solution

To classify the discontinuity at 2 we must evaluate :

Since  is discontinuous at  and  exists, f has a removable discontinuity at .

In Example, we showed that  is discontinuous at . Classify this discontinuity as removable,

jump, or infinite.

Solution

Earlier, we showed that  is discontinuous at  because  does not exist. However, since  and 

both exist, we conclude that the function has a jump discontinuity at .

Definition

f(x)

f f(x)lim
x→a

f(x)lim
x→a

f(x) = Llim
x→a

f f(x)lim
x→a−

f(x)lim
x→a+

f(x) ≠ li f(x)lim
x→a−

mx→a+

f(x)lim
x→a−

f(x)lim
x→a+

±∞

f f(x) = ±∞lim
x→a−

f(x) = ±∞lim
x→a+

Revmovable and Nonremovable DiscontinRevmovable and Nonremovable Discontin……

Example : Classifying a Discontinuity2.5.3

f(x) =
−4x2

x −2
x = 2

f(x)lim
x→2

f(x)lim
x→2

= lim
x→2

−4x2

x −2

= lim
x→2

(x −2)(x +2)

x −2

= (x +2)lim
x→2

= 4.

f 2 f(x)lim
x→2

x = 2

Example : Classifying a Discontinuity2.5.4

f(x) ={− +4,x2

4x −8,
if x ≤ 3
if x > 3

x = 3

f 3 f(x)lim
x→3

f(x) = −5lim
x→3−

f(x) = 4lim
x→3−
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Determine whether  is continuous at . If the function is discontinuous at , classify the discontinuity as

removable, jump, or infinite.

Solution

The function value  is undefined. Therefore, the function is not continuous at . To determine the type of discontinuity, we

must determine the limit at . We see that  and . Therefore, the function has an infinite

discontinuity at .

For , decide whether  is continuous at . If  is not continuous at , classify the discontinuity as

removable, jump, or infinite.

Hint

Consider the definitions of the various kinds of discontinuity stated above. If the function is discontinuous at , look at 

Answer

Discontinuous at ; removable

Continuity over an Interval

Now that we have explored the concept of continuity at a point, we extend that idea to continuity over an interval. As we develop this
idea for different types of intervals, it may be useful to keep in mind the intuitive idea that a function is continuous over an interval if we
can use a pencil to trace the function between any two points in the interval without lifting the pencil from the paper. In preparation for
defining continuity on an interval, we begin by looking at the definition of what it means for a function to be continuous from the right at
a point and continuous from the left at a point.

A function  is said to be continuous from the right at a if .

A function  is said to be continuous from the left at a if 

A function is continuous over an open interval if it is continuous at every point in the interval. A function  is continuous over a
closed interval of the form  if it is continuous at every point in  and is continuous from the right at a and is continuous from the
left at b. Analogously, a function  is continuous over an interval of the form  if it is continuous over  and is continuous
from the left at b. Continuity over other types of intervals are defined in a similar fashion.

Requiring that  and  ensures that we can trace the graph of the function from the point  to

the point  without lifting the pencil. If, for example, , we would need to lift our pencil to jump from  to

the graph of the rest of the function over .

State the interval(s) over which the function  is continuous.

Solution

Since  is a rational function, it is continuous at every point in its domain. The domain of  is the set 

. Thus,  is continuous over each of the intervals , and .

Example : Classifying a Discontinuity2.5.5

f(x) =
x +2

x +1
−1 −1

f(−1) −1

−1 = −∞lim
x→−1−

x +2

x +1
= +∞lim

x→−1+

x +2

x +1
−1

Exercise 2.5.3

f(x) ={ ,x2

3,
if x ≠ 1
if x = 1

f 1 f 1

1 f(x)lim
x→1

1

Continuity from the Right and from the Left

f(x) f(x) = f(a)lim
x→a+

f(x) f(x) = f(a)lim
x→a−

f(x)
[a, b] (a, b)

f(x) (a, b] (a, b)

f(x) = f(a)lim
x→a+

f(x) = f(b)lim
x→b−

(a, f(a))

(b, f(b)) f(x) ≠ f(a)lim
x→a+

f(a)

(a, b]

Example : Continuity on an Interval2.5.6

f(x) =
x −1

+2xx2

f(x) =
x −1

+2xx2
f(x)

(−∞, −2) ∪ (−2, 0) ∪ (0, +∞) f(x) (−∞, −2), (−2, 0) (0, +∞)
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State the interval(s) over which the function  is continuous.

Solution

From the limit laws, we know that  for all values of a in . We also know that 

exists and  exists. Therefore,  is continuous over the interval .

State the interval(s) over which the function  is continuous.

Hint

Use Example  as a guide.

Answer

The Note allows us to expand our ability to compute limits. In particular, this theorem ultimately allows us to demonstrate that
trigonometric functions are continuous over their domains.

If  is continuous at  and , then

Before we move on to Example, recall that earlier, in the section on limit laws, we showed . Consequently, we

know that  is continuous at . In Example we see how to combine this result with the composite function theorem.

Evaluate .

Solution

The given function is a composite of  and . Since  and  is continuous at , we may apply the

composite function theorem. Thus,

Evaluate .

Hint

 is continuous at . Use Example  as a guide.

Answer

The proof of the next theorem uses the composite function theorem as well as the continuity of  and  at the
point  to show that trigonometric functions are continuous over their entire domains.

Example : Continuity over an Interval2.5.7

f(x) = 4 −x2
− −−−−

√

=lim
x→a

4 −x2− −−−−
√ 4 −a2− −−−−

√ (−2, 2) = 0lim
x→−2+

4 −x2− −−−−
√

= 0lim
x→2−

4 −x2− −−−−
√ f(x) [−2, 2]

Exercise 2.5.4

f(x) = x +3
− −−−−

√

2.5.7

[−3, +∞)

Composite Function Theorem

f(x) L g(x) = Llim
x→a

f(g(x)) = f( g(x)) = f(L).lim
x→a

lim
x→a

cos x = 1 = cos(0)lim
x→0

f(x) = cos x 0

Example : Limit of a Composite Cosine Function2.5.8

cos(x − )lim
x→π/2

π

2

cos x x − π

2
(x − ) = 0lim

x→π/2

π

2
cos x 0

cos(x − ) = cos( (x − )) = cos(0) = 1.lim
x→π/2

π

2
lim

x→π/2

π

2

Exercise :2.5.4

sin(x −π)lim
x→π

f(x) = sinx 0 2.5.8

0

f(x) = sinx g(x) = cos x

0
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Trigonometric functions are continuous over their entire domains.

We begin by demonstrating that  is continuous at every real number. To do this, we must show that  for all

values of .

The proof that  is continuous at every real number is analogous. Because the remaining trigonometric functions may be
expressed in terms of  and , their continuity follows from the quotient limit law.

□

As you can see, the composite function theorem is invaluable in demonstrating the continuity of trigonometric functions. As we continue
our study of calculus, we revisit this theorem many times.

The Intermediate Value Theorem
Functions that are continuous over intervals of the form , where a and b are real numbers, exhibit many useful properties.
Throughout our study of calculus, we will encounter many powerful theorems concerning such functions. The first of these theorems is
the Intermediate Value Theorem.

Let  be continuous over a closed, bounded interval . If  is any real number between  and , then there is a number c in
 satisfying  in Figure .

Figure : There is a number  that satisfies .

Show that  has at least one zero.

Solution

Since  is continuous over , it is continuous over any closed interval of the form . If you can find an
interval  such that  and  have opposite signs, you can use the Intermediate Value Theorem to conclude there must be a
real number  in  that satisfies . Note that

Continuity of Trigonometric Functions

Proof

cos x cos x = cos alim
x→a

a

cos xlim
x→a

= cos((x −a) +a)lim
x→a

= (cos(x −a) cos a −sin(x −a) sina)lim
x→a

= cos( (x −a)) cos a −sin( (x −a)) sinalim
x→a

lim
x→a

= cos(0) cos a −sin(0) sina

= 1 ⋅ cos a −0 ⋅ sina = cos a.

Rewrite x = x −a +a.

Apply the identity for the cosine of the sum of two angles.

Since  (x −a) = 0,  and  sinx and  cos x are continuous at 0.lim
x→a

Evaluate  cos(0) and  sin(0) and simplify.

sinx

sinx cos x

[a, b]

The Intermediate Value Theorem

f [a, b] z f(a) f(b)
[a, b] f(c) = z 2.5.6

2.5.6 c ∈ [a, b] f(c) = z

Example : Application of the Intermediate Value Theorem2.5.9

f(x) = x −cos x

f(x) = x −cos x (−∞, +∞) [a, b]
[a, b] f(a) f(b)

c (a, b) f(c) = 0
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and

.

Using the Intermediate Value Theorem, we can see that there must be a real number  in  that satisfies . Therefore, 
 has at least one zero.

If  is continuous over  and , can we use the Intermediate Value Theorem to conclude that  has no
zeros in the interval ? Explain.

Solution

No. The Intermediate Value Theorem only allows us to conclude that we can find a value between  and ; it doesn’t allow us
to conclude that we can’t find other values. To see this more clearly, consider the function . It satisfies 

, and .

For  and . Can we conclude that  has a zero in the interval ?

Solution

No. The function is not continuous over . The Intermediate Value Theorem does not apply here.

Show that  has a zero over the interval .

Hint

Find  and . Apply the Intermediate Value Theorem.

Answer

 is continuous over . It must have a zero on this interval.

Key Concepts
For a function to be continuous at a point, it must be defined at that point, its limit must exist at the point, and the value of the function
at that point must equal the value of the limit at that point.
Discontinuities may be classified as removable, jump, or infinite.
A function is continuous over an open interval if it is continuous at every point in the interval. It is continuous over a closed interval if
it is continuous at every point in its interior and is continuous at its endpoints.
The composite function theorem states: If  is continuous at L and , then .

The Intermediate Value Theorem guarantees that if a function is continuous over a closed interval, then the function takes on every
value between the values at its endpoints.

Glossary

continuity at a point
A function  is continuous at a point a if and only if the following three conditions are satisfied: (1)  is defined, (2) 

exists, and (3) 

continuity from the left
A function is continuous from the left at b if 

continuity from the right

f(0) = 0 −cos(0) = −1 < 0

f( ) = −cos = > 0π

2
π

2
π

2
π

2

c [0, π/2] f(c) = 0
f(x) = x −cos x

Example : When Can You Apply the Intermediate Value Theorem?2.5.10

f(x) [0, 2], f(0) > 0 f(2) > 0 f(x)
[0, 2]

f(0) f(2)
f(x) = (x −1)2

f(0) = 1 > 0, f(2) = 1 > 0 f(1) = 0

Example : When Can You Apply the Intermediate Value Theorem?2.5.11

f(x) = 1/x, f(−1) = −1 < 0 f(1) = 1 > 0 f(x) [−1, 1]

[−1, 1]

Exercise 2.5.5

f(x) = − −3x +1x3 x2 [0, 1]

f(0) f(1)

f(0) = 1 > 0, f(1) = −2 < 0; f(x) [0, 1]

f(x) g(x) = Llim
x→a

f(g(x)) = f( g(x)) = f(L)lim
x→a

lim
x→a

f(x) f(a) f(x)lim
x→a

lim x → af(x) = f(a)

f(x) = f(b)lim
x→b−
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A function is continuous from the right at a if 

continuity over an interval
a function that can be traced with a pencil without lifting the pencil; a function is continuous over an open interval if it is continuous at
every point in the interval; a function  is continuous over a closed interval of the form [ ] if it is continuous at every point in (

), and it is continuous from the right at  and from the left at 

discontinuity at a point
A function is discontinuous at a point or has a discontinuity at a point if it is not continuous at the point

infinite discontinuity
An infinite discontinuity occurs at a point  if  or 

Intermediate Value Theorem
Let  be continuous over a closed bounded interval [ ] if  is any real number between  and , then there is a number c in [

] satisfying 

jump discontinuity
A jump discontinuity occurs at a point  if  and  both exist, but 

removable discontinuity
A removable discontinuity occurs at a point  if  is discontinuous at , but  exists
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f(x) = f(a)lim
x→a+

f(x) a, b

a, b a b

a f(x) = ±∞lim
x→a−

f(x) = ±∞lim
x→a+

f a, b z f(a) f(b)
a, b f(c) = z

a f(x)lim
x→a−

f(x)lim
x→a+

f(x) ≠ f(x)lim
x→a−

lim
x→a+

a f(x) a f(x)lim
x→a
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