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4.9: L'Hopital's Rule

Learning Objectives

e Recognize when to apply L’Hopital’s rule.

e Identify indeterminate forms produced by quotients, products, subtractions, and powers, and apply L’Hopital’s rule in each
case.

o Describe the relative growth rates of functions.

In this section, we examine a powerful tool for evaluating limits. This tool, known as L’Hopital’s rule, uses derivatives to calculate
limits. With this rule, we will be able to evaluate many limits we have not yet been able to determine. Instead of relying on
numerical evidence to conjecture that a limit exists, we will be able to show definitively that a limit exists and to determine its
exact value.

Applying L'Ho6pital's Rule

L’Hopital’s rule can be used to evaluate limits involving the quotient of two functions. Consider

. f(=z)
ig% m (491)
If ilj}% f(z)=1L; and ﬂlﬂg&g(x) =Ly #0, then
(=) Ly
b ) I (49

0
However, what happens if lim f(z) =0 and lim g(z) =0? We call this one of the indeterminate forms, of type e This is
T—a T—a

x
considered an indeterminate form because we cannot determine the exact behavior of (( ) as x — a without further analysis. We
g(z
have seen examples of this earlier in the text. For example, consider
. xt—4
lim
z—2 T —2
and
. sinz
lim
z—0 €

For the first of these examples, we can evaluate the limit by factoring the numerator and writing

2_4 z+2)(x—2
lim &4 gy 2HDE@ ) —lim(z +2)=2+2 = 4.
z—2 1 —2 z—2 x—2 z—2

. sinz . .
For hn(} — we were able to show, using a geometric argument, that
T xXr

sinz
=1.

lim
z—0 @

Here we use a different technique for evaluating limits such as these. Not only does this technique provide an easier way to
evaluate these limits, but also, and more importantly, it provides us with a way to evaluate many other limits that we could not
calculate previously.

The idea behind L’Hopital’s rule can be explained using local linear approximations. Consider two differentiable functions f and g
such that lim f(z) =0 = lim g(z) and such that g’(a) # 0 For z near a,we can write
r—a T—a

f(z)~f(a)+f'(a)(z —a) (4.9.3)

and
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Therefore,

g9(z) = g(a) +g'(a)(z - a). (4.9.4)

f(z)  fla)+f'(a)(z—a)
9z)  gla)+gla)(z—a) (4.9.5)

Yi

y =109

y =f@) + f(a)x — a)

y=g@ +g@x - a)

y =gk

X
Figure 4.9.1: If ligl f(z) = 1131 g(z), then the ratio f(z)/g(x)is approximately equal to the ratio of their linear approximations
r—a r—a

near a.
Since f is differentiable at a, then f is continuous at a, and therefore f(a) = lim f(z) =0. Similarly, g(a) = limg(z) =0 . If
r—a T—a
we also assume that f’and g’ are continuous at z = a, then f’(a) =lim f'(z) and g'(a) =lim g'(z). Using these ideas, we
T—a Tx—a

conclude that

im f(@) = lim f(z)(@—a) = lim f'(=)
’1”—”1 g(z) alﬁ—m g'(z)(z—a) alc—m g'(z) ’ (4.9.6)

Note that the assumption that f’and g’ are continuous at @ and g'(a) # 0 can be loosened. We state L’Hopital’s rule formally for

0 0
the indeterminate form —. Also note that the notation 0 does not mean we are actually dividing zero by zero. Rather, we are using

the notation 0 to represent a quotient of limits, each of which is zero.

L'Hopital’'s Rule (0/0 Case)

Suppose f and g are differentiable functions over an open interval containing a, except possibly at a. If lim f(z) =0 and
T—a

lim g(z) = 0, then

T—a

lim f(z) =lim 1)

z—a g(:z:) z—a g'(:c)’ (4'9.7)

assuming the limit on the right exists or is oo or —oo. This result also holds if we are considering one-sided limits, or if a = co
ora = —o0.

We provide a proof of this theorem in the special case when f, g, f’,and g’ are all continuous over an open interval containing
a. In that case, since lim, ,, f(z) =0 =1lim, ,, g(z) and f and g are continuous at a, it follows that f(a) =0 = g(a) .
Therefore,
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lim 2@ _ iy S~ fl@) Since f(a) = 0 = g(a)
va g(z) @ g(x)—g(a)
f(z)— f(a)
=lim —2—2% Multiply numerator and denominator by
2 g(z) —g(a) z—a
T—a
L f@) -~ f@
=T D= The limit of a quotient is the quotient of the limits.
- ol@)—o@
im
T—a Tr—a
_ f(a) " o
== By the definition of the derivative
g'(a)
lim f'(z)
== = By the continuity of f "and g’
lim g'(z)
r—a
A C) - :
= lim — The limit of a quotient
z—a g'(z)

Note that L’Hopital’s rule states we can calculate the limit of a quotient i by considering the limit of the quotient of the
9

derivatives —. It is important to realize that we are not calculating the derivative of the quotient i
g

Example 4.9.1: Applying L’'Hopital’s Rule (0/0 Case)

Evaluate each of the following limits by applying L’Hépital’s rule.

. 1l—cosz
a. lim
z—0 T
sin(mx
b. li (=)
z—1 Inzx
) el/z 1
c. lim
z—o0 1 / T
sinz —x
d. lim
z—0 ;1:2
Solution

a.. Since the numerator 1 —cosx — 0 and the denominator  — 0, we can apply L’Hopital’s rule to evaluate this limit. We

have
d N
1 — (1 —cosx) . limsin z
cosT T . sinz 70 0
lim =lim = lim = — =—=0.
z—0 T z—0 d z—0 1 lim 1 1
- (:L’) z—0
dz
b. As z — 1, the numerator sin(wz) — 0 and the denominator In(z) — 0. Therefore, we can apply L’Hopital’s rule. We
obtain
lim sin(7z) . mcos(mx)
z—1 lnac z—1 1/J;

= lim(7z) cos(mx)
z—1

= (m-1)(~1) = .
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c. As & — 00, the numerator €'/ —1 — 0 and the denominator % — 0. Therefore, we can apply L’Hopital’s rule. We obtain
1/z _ 1 el/x(—_l)
lim < = lim 2~ lime/* =€ =1.
T—00 T—00 (;1 T—00
152

1
T

d. As £ — 0, both the numerator and denominator approach zero. Therefore, we can apply L’Hopital’s rule. We obtain

. sinz—=x . cosx—1
lim = lim .
z—0 1-2 z—0 2x

Since the numerator and denominator of this new quotient both approach zero as * — 0, we apply L’Hopital’s rule again. In
doing so, we see that

cosr —1 —sinz
im = lim =0.
z—0 2x z—0 2
Therefore, we conclude that
. sinz—=x
lim =0
z—0 m2

Exercise 4.9.1

Evaluate

lim .
z—0 tanzx
Hint

© — e
x(tanm) sec” x

Answer

1

f(z)
9(z)

are classified as indeterminate forms of type co/oco. Again, note that we are not actually dividing co by co. Since oo is not a real

We can also use L’Hopital’s rule to evaluate limits of quotients in which f(z) — to00 and g(x) — oo . Limits of this form
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number, that is impossible; rather, co/oc. is used to represent a quotient of limits, each of which is co or —co.

L'Hopital's Rule (0o /0o Case)

Suppose f and g are differentiable functions over an open interval containing a, except possibly at a. Suppose lim f(z) = co
T—a
(or —o00) and lim g(z) = oo (or —oo). Then,
T—a

lim f(@) = lim f(@)

z—a g(;p) z—a g'(m) (4'9.8)

assuming the limit on the right exists or is co or —oco. This result also holds if the limit is infinite, if a = co or —oco, or the
limit is one-sided.

Example 4.9.2: Applying L'H6pital’'s Rule (co/oo) Case

Evaluate each of the following limits by applying L’Hopital’s rule.

b. lim
z—0+ cotx

Solution

a. Since 3z+5 and 2z +1 are first-degree polynomials with positive leading coefficients, lim (3z+5) =00 and
T—00

lim (2z + 1) = oo . Therefore, we apply L’Hdpital’s rule and obtain

T—00

3z+5 .. 3+5/z . 3 3

ST TAm S Tim g =3

Note that this limit can also be calculated without invoking L’Hdpital’s rule. Earlier in the chapter we showed how to evaluate
such a limit by dividing the numerator and denominator by the highest power of x in the denominator. In doing so, we saw that

3z +5 . 3+5/z 3

zllglo 2x+1 :xig}) 2z +1 :E'

L’Hopital’s rule provides us with an alternative means of evaluating this type of limit.

b. Here, lim Inx = —oo and lim cotx = oo. Therefore, we can apply L’Hdpital’s rule and obtain
z—0" z—0"

. Inz . 1/z ) 1
lim = lim = lim .
z—0t cotx  z0t —cscixr 20t —xzcscla

Now as ¢ — 0T, csc? 2 — 0o. Therefore, the first term in the denominator is approaching zero and the second term is getting
really large. In such a case, anything can happen with the product. Therefore, we cannot make any conclusion yet. To evaluate
the limit, we use the definition of cscx to write

1 sin? z

lim ———— = lim
z—0" —T CSC’ T z—=0" —I

Now lim sin® z =0 and lim z =0, so we apply L’Hopital’s rule again. We find
z—0" z—0"

sin? I 2sinz cosz 0

lim = lim ———=—=0.
=07 —Z z—0" -1 -1

We conclude that

Inz

1im
z—0" cotx
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Evaluate
lim ln_a:
z—00 DT
Hint
% (ln a:) = %
Answer
0

As mentioned, I’Hopital’s rule is an extremely useful tool for evaluating limits. It is important to remember, however, that to apply
f(=)
g(z)

be of the form 9 or 0co/oo. Consider the following

L’Hopital’s rule to a quotient f(x)g(x), it is essential that the limit of

example.

Example 4.9.3: When L'Hépital's Rule Does Not Apply

2
Consider lim z +6 .
z—1 3z +4

Show that the limit cannot be evaluated by applying L’Ho6pital’s rule.
Solution

Because the limits of the numerator and denominator are not both zero and are not both infinite, we cannot apply L’Hopital’s
rule. If we try to do so, we get

d
%(au2 +5) =2z

and

d
2 4) = 3.
dz(3w+) 3

At which point we would conclude erroneously that

z2+5 . 2z

im = lim
z—=1 3z +4 =1 3

_Z

=3

However, since lim(z* +5) = 6 and lim(3z 4 4) = 7, we actually have
z—1 z—1

. x2+5 6
lim =—.
-1 3z+4 7

We can conclude that

im 2* +5 im do
=1 3x+4 " =1 d

Exercise 4.9.3

) . . cosz . cosz
Explain why we cannot apply L’Hopital’s rule to evaluate lim . Evaluate lim
z—=0" T z—0T T

by other means.

Hint
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Determine the limits of the numerator and denominator separately.

Answer

lim cosz = 1. Therefore, we cannot apply L’Hopital’s rule. The limit of the quotient is co.
z—0"

Other Indeterminate Forms

TA s . o . . : 0
L’Hépital’s rule is very useful for evaluating limits involving the indeterminate forms 0 and oo/oo. However, we can also use

L’Hopital’s rule to help evaluate limits involving other indeterminate forms that arise when evaluating limits. The expressions
0- 00, 00 —00,1%,00° , and 0° are all considered indeterminate forms. These expressions are not real numbers. Rather, they
represent forms that arise when trying to evaluate certain limits. Next we realize why these are indeterminate forms and then
understand how to use L’Hopital’s rule in these cases. The key idea is that we must rewrite the indeterminate forms in such a way

0
that we arrive at the indeterminate form i / 00.

Indeterminate Form of Type 0-o
Suppose we want to evaluate lim(f(z) - g(z)), where f(z) — 0 and g(z) — co (or —o0) as  — a. Since one term in the product
Tr—a

is approaching zero but the other term is becoming arbitrarily large (in magnitude), anything can happen to the product. We use the
notation 0 - co to denote the form that arises in this situation. The expression 0 - 0o is considered indeterminate because we cannot
determine without further analysis the exact behavior of the product f(x)g(x) as z — oco. For example, let n be a positive integer
and consider

f(z)= and g(z) = 3z2.

(z" +1)
3z?
(zn +1)
then lim f(z)g(z) =3.If n =1, then lim f(z)g(z) = oco. If n =3, then lim f(z)g(x) =0. Here we consider another limit

T—00 T—00 T—00

As x — 00, f(z) — 0 and g(xz) — co. However, the limit as x — oo of f(z)g(z) = varies, depending on n. If n =2,

involving the indeterminate form 0 - co and show how to rewrite the function as a quotient to use L’Hopital’s rule.

Example 4.9.4: Indeterminate Form of Type 0 - co

Evaluate lim zIlnz.
z—0"

Solution
First, rewrite the function z In x as a quotient to apply L’Hopital’s rule. If we write

Inz

Inz = —
rinr 1/1:

1
we see that Inz — —oco as ¢ — 0" and — — oo as z — 0" . Therefore, we can apply L’Hdopital’s rule and obtain
x

T G S Ve
lim — = lim = lim = lim (—z) =0.
0" 1/z 200 d e—0" —1/x 250"

= (1/2)

‘We conclude that

lim zlnz =0.
z—0"
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Exercise 4.9.4

Evaluate
lim z cot z.
z—0
Hint
. T COST
Write x cotx = —
sinx
Answer
1

Indeterminate Form of Type oo — oo

Another type of indeterminate form is co — co. Consider the following example. Let nn be a positive integer and let f(z) = 3z"
and g(z) =3z® +5. As = — oo, f(x) — oo and g(x) — co. We are interested in lim (f(z) — g(z)). Depending on whether
T—00

f(z) grows faster, g(z) grows faster, or they grow at the same rate, as we see next, anything can happen in this limit. Since
f(z) — oo and g(z) — 0o, we write 0o — 0o to denote the form of this limit. As with our other indeterminate forms, co — oo has

https://stats.libretexts.org/@go/page/25970
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no meaning on its own and we must do more analysis to determine the value of the limit. For example, suppose the exponent n in
the function f(z) = 32" is n = 3, then

lim (f(z) —g(z)) = lim (3z® — 322 —5) = 0.

T—00 T—00
On the other hand, if n = 2, then
lim (f(z) — g(z)) = lim (32® — 32 —5) = —b.

T—00 T—00

However, if n =1, then

lim (f(z) — g(z)) = lim (3z — 32° —5) = —o0.

T—00 Tr—00

Therefore, the limit cannot be determined by considering only co — oo . Next we see how to rewrite an expression involving the
indeterminate form oo — co as a fraction to apply L’Hopital’s rule.

Example 4.9.5: Indeterminate Form of Type oo — oo

Evaluate
. ( 1 1 )
lim | —— .
z—0t \ 2 tanz

By combining the fractions, we can write the function as a quotient. Since the least common denominator is 22 tan z, we have
2

Solution

1 1 (tanz)-—=z

r2 tancz z2tanz

As z — 0%, the numerator tanz — x> — 0 and the denominator x2 tanz — 0. Therefore, we can apply L’Hdpital’s rule.
Taking the derivatives of the numerator and the denominator, we have

" (tanz) —x2 (sec’ ) — 2z
im — — .
z—0"  x2tanx 0" x2sec?x +2xtanz

Asz — 0%, (sec’z) —2z — 1 and z%sec’z +2z tanz — 0. Since the denominator is positive as x approaches zero from
the right, we conclude that

(sec® ) — 2z

lim CR =
z—0" x?sec’x +2x tanz

. < 1 1 )
lim ([ — — =00
e—0t \ 22 tanzx

Therefore,

Exercise 4.9.5

. 1 1
Evaluate lim (| — — — .
z—0t \ T sinz

Hint
Rewrite the difference of fractions as a single fraction.

Answer

0

Another type of indeterminate form that arises when evaluating limits involves exponents. The expressions 0°, 0o?, and 1°° are all
indeterminate forms. On their own, these expressions are meaningless because we cannot actually evaluate these expressions as we
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would evaluate an expression involving real numbers. Rather, these expressions represent forms that arise when finding limits.
Now we examine how I’Ho6pital’s rule can be used to evaluate limits involving these indeterminate forms.

Since L’Hépital’s rule applies to quotients, we use the natural logarithm function and its properties to reduce a problem evaluating a
limit involving exponents to a related problem involving a limit of a quotient. For example, suppose we want to evaluate

lim f (m)g(w) and we arrive at the indeterminate form oo®. (The indeterminate forms 0° and 1°° can be handled similarly.) We
T—a

proceed as follows. Let

y = f(z)?2). (4.9.9)
Then,
Iny =In(f(z)"”) = g(z) In(f(z))- (4.9.10)
Therefore,
lim{ln(y)] — limlg(e) In(f(x))). (4.9.11)

Since lim f(z) = oo, we know that lim In(f(x)) = oo. Therefore, lim g(x) In(f(z)) is of the indeterminate form 0 - co, and we
T—a T—a T—a

can use the techniques discussed earlier to rewrite the expression g(z)In(f(z)) in a form so that we can apply L’Hopital’s rule.
Suppose lim g(z) In(f(x)) = L, where L may be oo or —oo. Then
r—a

lim[In(y)] = L. (4.9.12)

Tx—a

Since the natural logarithm function is continuous, we conclude that

ln(limy) ~I, (4.9.13)
T—a
which gives us
limy = lim f(z)%®) =" (4.9.14)
T—a T—a
Example 4.9.6: Indeterminate Form of Type oo
Evaluate
lim z'/%.
T—00
Solution

Lety = /% Then,
Inz

1
In(z'/?) = —lnz = —.
i 3

. Inz . ~ .
We need to evaluate lim ——. Applying L’Hopital’s rule, we obtain
T—00 o

1
lim Iny = lim 22 lim ﬁ =0.

z—00 T—00 I z—oo 1

Therefore, lim Iny = 0. Since the natural logarithm function is continuous, we conclude that
T—00

ln( lim y) =0,
T—00
which leads to
1
lim y = lim ﬂ:e():l_
T—00 T—00 €T

Hence,
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T—00

| lim z'/* =1.

Exercise 4.9.6

Evaluate

lim z!/2(),
T—00

Hint

Let y = z1/1n(2) and apply the natural logarithm to both sides of the equation.

Answer
e
Example 4.9.7: Indeterminate Form of Type 0°

Evaluate

lim :L.sinx

z—0"
Solution
Let

y= :Esinz
Therefore,

Iny = In(z*"%) =sinz Inz.
We now evaluate ling sinz Inz. Since ling sinz =0 and lin1 Inz = —oo, we have the indeterminate form 0 - co. To apply
z—0 z—0 z—0

L’Hopital’s rule, we need to rewrite sin z Inz as a fraction. We could write

sinx

1/Inz

sinzlnzx =

or

4.9.11 https://stats.libretexts.org/@go/page/25970



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25970?pdf
https://www.youtube.com/watch?v=tZsEMdcKhsg
https://www.youtube.com/watch?v=tZsEMdcKhsg

LibreTextsw

Inz _ Inz

singlng = —— = .
1/sinz csczx

Let’s consider the first option. In this case, applying L’Hépital’s rule, we would obtain
lim sinzlnz = lim ———a = lim ————% _ _ Jim (—z(Inz)?cosz).
z—0" z—07" ]./ Inz z—0" —1/($ (ln $)2) z—0"

Unfortunately, we not only have another expression involving the indeterminate form 0 - oo, but the new limit is even more
complicated to evaluate than the one with which we started. Instead, we try the second option. By writing

. Inz Inz
sinzlng = ——— =
1/sinz  cscz,
and applying L’Hopital’s rule, we obtain
o . Ilnz l/z . -1
lim sinzlnz = lim = lim = lim ———.
z—0" 20T CSCT  z—0t —cCscxcotxT -0t TCScx cotx

1 cosT
Using the fact that cscz = — and cot x = ———, we can rewrite the expression on the right-hand side as
sinx sinx

__ & 2 . .
lim ——2 — lim [sma: -(—tanw)] = (lim smac) . (lim (—tanw)) =1-0=0.

x z—0T T z—0"

We conclude that lim Ilny = 0. Therefore, ln( lim y) = 0 and we have

z—0" z—07"

lim y = lim 2% =% =1.
z—0" z—0"

Hence,

lim 7% =1.
z—0"

Exercise 4.9.7

Evaluate lim z”.
z—0"

Hint
Let y = 2 and take the natural logarithm of both sides of the equation.

Answer

1

Growth Rates of Functions

Suppose the functions f and g both approach infinity as x — oo. Although the values of both functions become arbitrarily large as
the values of z become sufficiently large, sometimes one function is growing more quickly than the other. For example, f(z) = z?
and g(z) = x* both approach infinity as  — co. However, as Table 4.9.1 shows, the values of z3 are growing much faster than

the values of z2.

Table 4.9.1: Comparing the Growth Rates of 22 and

x 10 100 1000 10,000
f(x) = z? 100 10,000 1,000,000 100,000,000
g(z) ==* 1000 1,000,000 1,000,000,000 1,000,000,000,000

In fact,
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3
. z .
lim — = lim z = oo.
T—00 T—00
or, equivalently
2
z .
lim — =1lim — =0
00T T—00 T

As a result, we say 3 is growing more rapidly than 2% as & — co. On the other hand, for f(z) = z? and g(z) = 32> +4z +1,
although the values of g(z) are always greater than the values of f(z) for > 0, each value of g(x) is roughly three times the
corresponding value of f(z)as ¢ — oo, as shown in Table 4.9.2. In fact,
I z? 1
im —————— =—.
z—oo 3x2+4x+1 3
Table 4.9.2: Comparing the Growth Rates of 2 and 3z2 44z + 1

z 10 100 1000 10,000
f(z) =22 100 10,000 1,000,000 100,000,000
g(xz) =3z2 +4x+1 341 30,401 3,004,001 300,040,001

In this case, we say that z? and 322 + 42 + 1 are growing at the same rate as & — oo.

More generally, suppose f and g are two functions that approach infinity as  — oco. We say g grows more rapidly than f as
T — oo if
x T
im 9(@) =00 or,equivalently, lim M =0. (4.9.15)
T—00 f(m) T—00 g(x)

On the other hand, if there exists a constant M # 0 such that

. flz)
xlgglo @ =M, (4.9.16)

we say f and g grow at the same rate as * — 00.

Next we see how to use L’Hopital’s rule to compare the growth rates of power, exponential, and logarithmic functions.

Example 4.9.8: Comparing the Growth Rates of In(z), 2%, and e®

For each of the following pairs of functions, use L’Hépital’s rule to evaluate

a f(z) =22 and g(z) = €*
b. f(z) =In(z) and g(z) = x?

Solution

2

. . . - . T .

a. Since lim 22 = 0o and lim e*, we can use L’Hopital’s rule to evaluate lim |— [ . We obtain
T—00 T—00 z—o00 | et

o 2 . 2z
lim — = lim —.
z—o00 et z—o00 el

Since lim 2z = oo and lim e® = oo, we can apply L’Hopital’s rule again. Since
T—00 T—00

2x 2
lim — = lim — =0,
z—00 et z—00 e’

we conclude that
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Therefore, e* grows more rapidly than 2> as  — oo (See Figure 4.9.3 and Table 4.9.3)

60}
50-
40+
30+
204

10

01 3 3 4 5 o
Figure 4.9.3: An exponential function grows at a faster rate than a power function.
Table 4.9.3: Growth rates of a power function and an exponential function.

z 5 10 15 20
x> 25 100 225 400
e® 148 22,026 3,269,017 485,165,195

. . . 2 STTA e 1 . Inzx .
b. Since lim Inz = oo and lim z° = 0o, we can use L’Hopital’s rule to evaluate lim ——. We obtain
z—00 z—00 z00 22

1' hl_w_l' ]-/_w_l' L_O
shoo @2 wo 2z aoe 222

Thus, 2> grows more rapidly than Inz as £ — oo (see Figure 4.9.4 and Table 4.9.4).
Yi
6+

g(x) = x*

fix) = In(x)

Figure 4.9.4: A power function grows at a faster rate than a logarithmic function.
Table 4.9.4: Growth rates of a power function and a logarithmic function

T 10 100 1000 10,000
In(z) 2.303 4.605 6.908 9.10
z2 100 10,000 1,000,000 100,000,000

Example 4.9.9: Comparing the Growth Rates of z'00 and 2*

Compare the growth rates of ' and 2°.

Hint: Apply L’Hépital’s rule to 2190 /27
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Solution
The function 2% grows faster than 2190,

Using the same ideas as in Example a. it is not difficult to show that e” grows more rapidly than z? for any p > 0. In Figure
4.9.5and Table 4.9.5, we compare e with > and z* as z — co.

Y Yi
140 7000°
= 9 4
120+ y = x3 6000~ “
100 5000+
804 4000~
60 3000+
a0+ 2000+
20 1000+
19 1 2 3 4 5 6 7% 10 1 2 3 4 5 6 7 8 9 10 1X
20 1000+

(a) (b)
Figure 4.9.5: The exponential function e® grows faster than x? for any p > 0. (a) A comparison of e* with z3. (b) A
comparison of €% with z*.
Table 4.9.5: An exponential function grows at a faster rate than any power function

T 5 10 15 20

x3 125 1000 3375 8000
xt 625 10,000 50,625 160,000
e’ 148 22,026 3,326,017 485,165,195

Similarly, it is not difficult to show that 2P grows more rapidly than Inz for any p > 0. In Figure 4.9.6 and Table, we compare

Inz with \/z and /.
e
6 y = y = 3x
4 v = In(x)
21

O 20 40 60 80 100 120 140 160%
Figure 4.9.6: The function y = In(z) grows more slowly than z? for any p > 0 as ¢ — 0.
Table 4.9.6: A logarithmic function grows at a slower rate than any root function

a5 10 100 1000 10,000
In(z) 2.303 4.605 6.908 9.210

Jz 2.154 4.642 10 21.544

VT 3.162 10 31.623 100

Key Concepts

.y . ) . . 0 :
o L’Hopital’s rule can be used to evaluate the limit of a quotient when the indeterminate form 0 or 0o/ oo arises.
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o I’Hopital’s rule can also be applied to other indeterminate forms if they can be rewritten in terms of a limit involving a quotient

0
that has the indeterminate form 0o /00.

o The exponential function e” grows faster than any power function z¥,p > 0.
e The logarithmic function In  grows more slowly than any power function z?,p > 0.

Glossary

indeterminate forms

. - 0 . : .
When evaluating a limit, the forms —,00,/00, 0 - 00, 00 — 00, 0%, 00? , and 1*° are considered indeterminate because further

analysis is required to determine whether the limit exists and, if so, what its value is.

L’Hopital’s rule
If f and g are differentiable functions over an interval a, except possibly at a, and lim f(z) =0 = limg(z) or lim f(z) and
r—a T—a r—a

. L . f=) . fl=) : - o
lim g(z) are infinite, then lim =1 - , assuming the limit on the right exists or is co or —oo.
z—a z—a g(m) z>a g (x)
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