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4.10: Newton’s Method

Describe the steps of Newton’s method.
Explain what an iterative process means.
Recognize when Newton’s method does not work.
Apply iterative processes to various situations.

In many areas of pure and applied mathematics, we are interested in finding solutions to an equation of the form  For
most functions, however, it is difficult—if not impossible—to calculate their zeroes explicitly. In this section, we take a look at a
technique that provides a very efficient way of approximating the zeroes of functions. This technique makes use of tangent line
approximations and is behind the method used often by calculators and computers to find zeroes.

Describing Newton’s Method
Consider the task of finding the solutions of  If  is the first-degree polynomial , then the solution of 

 is given by the formula . If  is the second-degree polynomial , the solutions of 
can be found by using the quadratic formula. However, for polynomials of degree 3 or more, finding roots of  becomes more
complicated. Although formulas exist for third- and fourth-degree polynomials, they are quite complicated. Also, if f is a
polynomial of degree 5 or greater, it is known that no such formulas exist. For example, consider the function

No formula exists that allows us to find the solutions of  Similar difficulties exist for nonpolynomial functions. For
example, consider the task of finding solutions of No simple formula exists for the solutions of this equation. In
cases such as these, we can use Newton’s method to approximate the roots.

Newton’s method makes use of the following idea to approximate the solutions of  By sketching a graph of , we can
estimate a root of . Let’s call this estimate . We then draw the tangent line to  at . If , this tangent line
intersects the -axis at some point . Now let  be the next approximation to the actual root. Typically,  is closer than 
to an actual root. Next we draw the tangent line to  at . If , this tangent line also intersects the -axis, producing
another approximation, . We continue in this way, deriving a list of approximations:  Typically, the numbers 

 quickly approach an actual root , as shown in the following figure.
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Figure :The approximations  approach the actual root . The approximations are derived by looking at
tangent lines to the graph of .

Now let’s look at how to calculate the approximations  If  is our first approximation, the approximation  is
defined by letting  be the -intercept of the tangent line to  at . The equation of this tangent line is given by

Therefore,  must satisfy

Solving this equation for , we conclude that

Similarly, the point  is the -intercept of the tangent line to  at . Therefore,  satisfies the equation

In general, for  satisfies

Next we see how to make use of this technique to approximate the root of the polynomial 

Use Newton’s method to approximate a root of  in the interval . Let  and find 
and .

Solution

From Figure , we see that  has one root over the interval . Therefore  seems like a reasonable first
approximation. To find the next approximation, we use Equation . Since , the derivative is 

. Using Equation  with  (and a calculator that displays  digits), we obtain
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To find the next approximation, , we use Equation with  and the value of  stored on the calculator. We find that

Continuing in this way, we obtain the following results:

We note that we obtained the same value for  and . Therefore, any subsequent application of Newton’s method will most
likely give the same value for .

Figure : The function  has one root over the interval 

Letting , let’s use Newton’s method to approximate the root of  over the interval  by
calculating  and .

Hint

Use Equation .

Answer
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Newton’s method can also be used to approximate square roots. Here we show how to approximate . This method can be
modified to approximate the square root of any positive number.

Use Newton’s method to approximate  (Figure ). Let , let , and calculate .
(We note that since  has a zero at , the initial value  is a reasonable choice to approximate ).

Figure : We can use Newton’s method to find .

Solution

For  From , we know that
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Therefore,

Continuing in this way, we find that

Since we obtained the same value for  and , it is unlikely that the value  will change on any subsequent application of
Newton’s method. We conclude that 

Use Newton’s method to approximate  by letting  and . Find  and .

Hint

For , Equation  reduces to .

Answer

 

When using Newton’s method, each approximation after the initial guess is defined in terms of the previous approximation by

using the same formula. In particular, by defining the function , we can rewrite Equation  as 

. This type of process, where each  is defined in terms of  by repeating the same function, is an example of
an iterative process. Shortly, we examine other iterative processes. First, let’s look at the reasons why Newton’s method could fail
to find a root.

Failures of Newton’s Method
Typically, Newton’s method is used to find roots fairly quickly. However, things can go wrong. Some reasons why Newton’s
method might fail include the following:

1. At one of the approximations , the derivative  is zero at , but . As a result, the tangent line of  at  does not
intersect the -axis. Therefore, we cannot continue the iterative process.

2. The approximations  may approach a different root. If the function  has more than one root, it is possible that
our approximations do not approach the one for which we are looking, but approach a different root (see Figure ). This
event most often occurs when we do not choose the approximation  close enough to the desired root.

3. The approximations may fail to approach a root entirely. In Example , we provide an example of a function and an initial
guess  such that the successive approximations never approach a root because the successive approximations continue to
alternate back and forth between two values.
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Figure : If the initial guess  is too far from the root sought, it may lead to approximations that approach a different root.

Consider the function . Let . Show that the sequence  fails to approach a root of .

Solution

For  the derivative is .Therefore,

In the next step,

Consequently, the numbers  continue to bounce back and forth between  and  and never get closer to the root
of  which is over the interval  (Figure ). Fortunately, if we choose an initial approximation  closer to the
actual root, we can avoid this situation.

Figure : The approximations continue to alternate between  and  and never approach the root of .
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For  let  and find  and .

Hint

Use Equation .

Answer

 

From Example , we see that Newton’s method does not always work. However, when it does work, the sequence of
approximations approaches the root very quickly. Discussions of how quickly the sequence of approximations approach a root
found using Newton’s method are included in texts on numerical analysis.

Other Iterative Processes
As mentioned earlier, Newton’s method is a type of iterative process. We now look at an example of a different type of iterative
process.

Consider a function  and an initial number . Define the subsequent numbers  by the formula . This process is
an iterative process that creates a list of numbers  This list of numbers may approach a finite number 
as  gets larger, or it may not. In Example , we see an example of a function  and an initial guess  such that the resulting
list of numbers approaches a finite value.

Let  and let . For all , let . Find the values . Make a conjecture
about what happens to this list of numbers  as . If the list of numbers 
approaches a finite number , then  satisfies , and  is called a fixed point of .
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From this list, we conjecture that the values  approach .

Figure  provides a graphical argument that the values approach  as . Starting at the point , we draw a
vertical line to the point . The next number in our list is . We use  to calculate . Therefore, we
draw a horizontal line connecting  to the point  on the line , and then draw a vertical line connecting 

 to the point . The output  becomes . Continuing in this way, we could create an infinite number
of line segments. These line segments are trapped between the lines  and . The line segments get closer to
the intersection point of these two lines, which occurs when . Solving the equation  we conclude they
intersect at . Therefore, our graphical evidence agrees with our numerical evidence that the list of numbers 

 approaches  as .

Figure : This iterative process approaches the value 

Consider the function . Let  and let  for . Find . Make a
conjecture about what happens to the list of numbers  as 

Hint

Consider the point where the lines  and  intersect.

Answer

Iterative processes can yield some very interesting behavior. In this section, we have seen several examples of iterative
processes that converge to a fixed point. We also saw in Example  that the iterative process bounced back and forth
between two values. We call this kind of behavior a 2-cycle. Iterative processes can converge to cycles with various
periodicities, such as 2−cycles, 4−cycles (where the iterative process repeats a sequence of four values), 8-cycles, and so on.

Some iterative processes yield what mathematicians call chaos. In this case, the iterative process jumps from value to value in a
seemingly random fashion and never converges or settles into a cycle. Although a complete exploration of chaos is beyond the
scope of this text, in this project we look at one of the key properties of a chaotic iterative process: sensitive dependence on
initial conditions. This property refers to the concept that small changes in initial conditions can generate drastically different
behavior in the iterative process.
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Probably the best-known example of chaos is the Mandelbrot set (see Figure), named after Benoit Mandelbrot (1924–2010),
who investigated its properties and helped popularize the field of chaos theory. The Mandelbrot set is usually generated by
computer and shows fascinating details on enlargement, including self-replication of the set. Several colorized versions of the
set have been shown in museums and can be found online and in popular books on the subject.

Figure : The Mandelbrot set is a well-known example of a set of points generated by the iterative chaotic behavior of a
relatively simple function.

In this project we use the logistic map

where  and 

as the function in our iterative process. The logistic map is a deceptively simple function; but, depending on the value of , the
resulting iterative process displays some very interesting behavior. It can lead to fixed points, cycles, and even chaos.

To visualize the long-term behavior of the iterative process associated with the logistic map, we will use a tool called a cobweb
diagram. As we did with the iterative process we examined earlier in this section, we first draw a vertical line from the point 

 to the point . We then draw a horizontal line from that point to the point  then draw a
vertical line to , and continue the process until the long-term behavior of the system becomes apparent.
Figure shows the long-term behavior of the logistic map when  and . (The first  iterations are not
plotted.) The long-term behavior of this iterative process is an -cycle.
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Figure : A cobweb diagram for  is presented here. The sequence of values results in an 8-cycle.

1. Let  and choose . Either by hand or by using a computer, calculate the first  values in the sequence.
Does the sequence appear to converge? If so, to what value? Does it result in a cycle? If so, what kind of cycle (for
example, −cycle, −cycle.)?

2. What happens when ?
3. For  and , calculate the first  sequence values. Generate a cobweb diagram for each iterative process.

(Several free applets are available online that generate cobweb diagrams for the logistic map.) What is the long-term
behavior in each of these cases?

4. Now let  Calculate the first  sequence values and generate a cobweb diagram. What is the long-term behavior in
this case?

5. Repeat the process for  but let  How does this behavior compare with the behavior for ?

Key Concepts
Newton’s method approximates roots of  by starting with an initial approximation , then uses tangent lines to the
graph of  to create a sequence of approximations 
Typically, Newton’s method is an efficient method for finding a particular root. In certain cases, Newton’s method fails to work
because the list of numbers  does not approach a finite value or it approaches a value other than the root sought.
Any process in which a list of numbers  is generated by defining an initial number  and defining the
subsequent numbers by the equation  for some function  is an iterative process. Newton’s method is an

example of an iterative process, where the function  for a given function .

Glossary

iterative process
process in which a list of numbers  is generated by starting with a number  and defining  for 

Newton’s method
method for approximating roots of  using an initial guess ; each subsequent approximation is defined by the

equation 
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