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4.7: Limits at Infinity and Asymptotes

Calculate the limit of a function as  increases or decreases without bound.
Recognize a horizontal asymptote on the graph of a function.
Estimate the end behavior of a function as  increases or decreases without bound.
Recognize an oblique asymptote on the graph of a function.
Analyze a function and its derivatives to draw its graph.

We have shown how to use the first and second derivatives of a function to describe the shape of a graph. To graph a function 
defined on an unbounded domain, we also need to know the behavior of  as . In this section, we define limits at infinity
and show how these limits affect the graph of a function. At the end of this section, we outline a strategy for graphing an arbitrary
function .

We begin by examining what it means for a function to have a finite limit at infinity. Then we study the idea of a function with an
infinite limit at infinity. Back in Introduction to Functions and Graphs, we looked at vertical asymptotes; in this section we deal
with horizontal and oblique asymptotes.

Limits at Infinity and Horizontal Asymptotes

Recall that  means  becomes arbitrarily close to  as long as  is sufficiently close to . We can extend this idea

to limits at infinity. For example, consider the function . As can be seen graphically in Figure  and numerically
in Table , as the values of  get larger, the values of  approach . We say the limit as  approaches  of  is  and
write . Similarly, for , as the values  get larger, the values of  approaches . We say the limit as 

approaches  of  is  and write .

Figure :The function approaches the asymptote  as  approaches .
Table : Values of a function  as 

10 100 1,000 10,000

2.1 2.01 2.001 2.0001

−10 −100 −1000 −10,000

1.9 1.99 1.999 1.9999

More generally, for any function , we say the limit as  of  is  if  becomes arbitrarily close to  as long as  is
sufficiently large. In that case, we write . Similarly, we say the limit as  of  is  if  becomes
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arbitrarily close to  as long as  and  is sufficiently large. In that case, we write . We now look at the

definition of a function having a limit at infinity.

If the values of  become arbitrarily close to  as  becomes sufficiently large, we say the function  has a limit at infinity
and write

If the values of  becomes arbitrarily close to  for  as  becomes sufficiently large, we say that the function  has
a limit at negative infinity and write

If the values  are getting arbitrarily close to some finite value  as  or , the graph of  approaches the

line . In that case, the line  is a horizontal asymptote of  (Figure ). For example, for the function ,

since , the line  is a horizontal asymptote of .

Figure : (a) As , the values of  are getting arbitrarily close to . The line  is a horizontal asymptote of .
(b) As , the values of  are getting arbitrarily close to . The line  is a horizontal asymptote of .

If  or , we say the line  is a horizontal asymptote of .

A function cannot cross a vertical asymptote because the graph must approach infinity (or ) from at least one direction as 
approaches the vertical asymptote. However, a function may cross a horizontal asymptote. In fact, a function may cross a horizontal

asymptote an unlimited number of times. For example, the function  shown in Figure  intersects the

horizontal asymptote  an infinite number of times as it oscillates around the asymptote with ever-decreasing amplitude.

Figure : The graph of  crosses its horizontal asymptote  an infinite number of times.

The algebraic limit laws and squeeze theorem we introduced in Introduction to Limits also apply to limits at infinity. We illustrate
how to use these laws to compute several limits at infinity.

L x < 0 |x| f(x) = Llim
x→−∞

Definition: Limit at Infinity (Informal)

f(x) L x f

f(x) = L.lim
x→∞

(4.7.1)

f(x) L x < 0 |x| f
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x→−∞

(4.7.2)
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4.7.3
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For each of the following functions , evaluate  and . Determine the horizontal asymptote(s) for .

a. 

b. 

c. 

Solution

a. Using the algebraic limit laws, we have

Similarly, . Therefore,  has a horizontal asymptote of  and  approaches this horizontal

asymptote as  as shown in the following graph.

Figure : This function approaches a horizontal asymptote as 

b. Since  for all , we have

for all . Also, since

,

we can apply the squeeze theorem to conclude that

Similarly,

Thus,  has a horizontal asymptote of  and  approaches this horizontal asymptote as  as

shown in the following graph.

Example : Computing Limits at Infinity4.7.1
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Figure : This function crosses its horizontal asymptote multiple times.

c. To evaluate  and , we first consider the graph of  over the interval  as

shown in the following graph.

Figure : The graph of  has vertical asymptotes at 

Since

it follows that

Similarly, since

it follows that

As a result,  and  are horizontal asymptotes of  as shown in the following graph.

Figure : This function has two horizontal asymptotes.

4.7.5
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Evaluate  and . Determine the horizontal asymptotes of  if any.

Hint

Answer

Both limits are  The line  is a horizontal asymptote.

Infinite Limits at Infinity
Sometimes the values of a function  become arbitrarily large as (or as ). In this case, we write 

(or ). On the other hand, if the values of  are negative but become arbitrarily large in magnitude as  (or

as ), we write  (or ).

For example, consider the function . As seen in Table  and Figure , as  the values  become
arbitrarily large. Therefore, . On the other hand, as , the values of  are negative but become

arbitrarily large in magnitude. Consequently, 

Table 

10 20 50 100 1000

Find the Limit as x Goes to In�nityFind the Limit as x Goes to In�nity

Exercise 4.7.1
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1000 8000 125,000 1,000,000 1,000,000,000

−10 −20 −50 −100 −1000

−1000 −8000 −125,000 −1,000,000 −1,000,000,000

Values of a power function as 

Figure : For this function, the functional values approach infinity as 

We say a function  has an infinite limit at infinity and write

if  becomes arbitrarily large for  sufficiently large. We say a function has a negative infinite limit at infinity and write

if  and  becomes arbitrarily large for  sufficiently large. Similarly, we can define infinite limits as 

Formal Definitions
Earlier, we used the terms arbitrarily close, arbitrarily large, and sufficiently large to define limits at infinity informally. Although
these terms provide accurate descriptions of limits at infinity, they are not precise mathematically. Here are more formal definitions
of limits at infinity. We then look at how to use these definitions to prove results involving limits at infinity.

We say a function  has a limit at infinity, if there exists a real number  such that for all , there exists  such that

for all  in that case, we write

Figure : For a function with a limit at infinity, for all 

x3

x

x3

x → ±∞

4.7.8 ± x → ±∞.

Definition: Infinite Limit at Infinity (Informal)

f

f(x) = ∞.lim
x→∞

(4.7.3)

f(x) x

f(x) = −∞.lim
x→∞

(4.7.4)

f(x) < 0 |f(x)| x x → −∞.

Definition: Limit at Infinity (Formal)

f L ε > 0 N > 0

|f(x) −L| < ε (4.7.5)

x > N .

f(x) = Llim
x→∞

(4.7.6)

4.7.9 x > N , |f(x) − L| < ε.
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Earlier in this section, we used graphical evidence in Figure  and numerical evidence in Table  to conclude that 

. Here we use the formal definition of limit at infinity to prove this result rigorously.

Use the formal definition of limit at infinity to prove that .

Solution

Let  Let . Therefore, for all , we have

Use the formal definition of limit at infinity to prove that .

Hint

Let .

Answer

Let  Let . Therefore, for all  we have

Therefore, 

We now turn our attention to a more precise definition for an infinite limit at infinity.

We say a function  has an infinite limit at infinity and write

if for all  there exists an  such that

for all  (see Figure ).

We say a function has a negative infinite limit at infinity and write

if for all , there exists an  such that

for all .

Similarly we can define limits as 
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( ) = 3lim
x→∞

3 −1

x2

N = 1
ε√

ε > 0. N = 1
ε√

x > N ,

3 − −3 = < = ε∣
∣

1

x2
∣
∣

1

x2

1

N 2

(3 −1/ ) = 3.lim
x→∞

x2

Definition: Infinite Limit at Infinity (Formal)

f

f(x) = ∞lim
x→∞

M > 0, N > 0

f(x) > M

x > N 4.7.10

f(x) = −∞lim
x→∞

M < 0 N > 0

f(x) < M

x > N

x → −∞.
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Figure : For a function with an infinite limit at infinity, for all 

Earlier, we used graphical evidence (Figure ) and numerical evidence (Table ) to conclude that . Here we

use the formal definition of infinite limit at infinity to prove that result.

Use the formal definition of infinite limit at infinity to prove that 

Solution

Let  Let . Then, for all , we have

Therefore, .

Use the formal definition of infinite limit at infinity to prove that 

Hint

Let .

Answer

Let  Let . Then, for all  we have

4.7.10 x > N , f(x) > M .
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End Behavior

The behavior of a function as  is called the function’s end behavior. At each of the function’s ends, the function could
exhibit one of the following types of behavior:

1. The function  approaches a horizontal asymptote .
2. The function  or 
3. The function does not approach a finite limit, nor does it approach  or . In this case, the function may have some

oscillatory behavior.

Let’s consider several classes of functions here and look at the different types of end behaviors for these functions.

End Behavior for Polynomial Functions

Consider the power function  where  is a positive integer. From Figure  and Figure , we see that

and

Figure : For power functions with an even power , .

Figure : For power functions with an odd power ,  and 

Using these facts, it is not difficult to evaluate  and , where  is any constant and  is a positive integer. If 

, the graph of is a vertical stretch or compression of  and therefore

 and  if .

x → ±∞

f(x) y = L

f(x) → ∞ f(x) → −∞.
∞ −∞

f(x) = xn n 4.7.11 4.7.12

= ∞; n = 1, 2, 3, …lim
x→∞

xn (4.7.7)

={lim
x→−∞

xn ∞,
−∞,

n = 2, 4, 6, …
n = 1, 3, 5, … .

(4.7.8)

4.7.11 n = ∞ =lim
x→∞

xn lim
x→−∞

xn

4.7.12 n = ∞lim
x→∞

xn = −∞.lim
x→−∞

xn

clim
x→∞

xn clim
x→−∞

xn c n

c > 0 y = cxn y = ,xn

c =lim
x→∞

xn lim
x→∞

xn c =lim
x→−∞

xn lim
x→−∞

xn c > 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/25966?pdf


4.7.10 https://stats.libretexts.org/@go/page/25966

If  the graph of  is a vertical stretch or compression combined with a reflection about the -axis, and therefore

 and  if 

If  in which case 

For each function , evaluate  and .

a. 
b. 

Solution

a. Since the coefficient of  is , the graph of  involves a vertical stretch and reflection of the graph of 
 about the -axis. Therefore,  and .

b. Since the coefficient of  is , the graph of  is a vertical stretch of the graph of . Therefore, 
 and .

Let . Find .

Hint

The coefficient  is negative.

Answer

We now look at how the limits at infinity for power functions can be used to determine  for any polynomial function .

Consider a polynomial function

of degree  so that 

Factoring, we see that

As  all the terms inside the parentheses approach zero except the first term. We conclude that

For example, the function  behaves like  as  as shown in Figure  and Table 
.

c < 0, y = cxn x

c = −lim
x→∞

xn lim
x→∞

xn c = −lim
x→−∞

xn lim
x→−∞

xn c < 0.

c = 0, y = c = 0,xn c = 0 = c .lim
x→∞

xn lim
x→−∞

xn

Example : Limits at Infinity for Power Functions4.7.4

f f(x)lim
x→∞

f(x)lim
x→−∞

f(x) = −5x3

f(x) = 2x4

x3 −5 f(x) = −5x3

y = x3 x (−5 ) = −∞lim
x→∞

x3 (−5 ) = ∞lim
x→−∞

x3

x4 2 f(x) = 2x4 y = x4

2 = ∞lim
x→∞

x4 2 = ∞lim
x→−∞

x4

Exercise 4.7.4

f(x) = −3x4 f(x)lim
x→∞

−3

−∞

f(x)lim
x→±∞

f

f(x) = + +… + x +anxn an−1xn−1 a1 a0 (4.7.9)

n ≥ 1 ≠ 0.an

f(x) = (1 + +… + + ) .anxn an−1

an

1

x

a1

an

1

xn−1

a0

an

1

xn
(4.7.10)

x → ±∞,

f(x) = .lim
x→±∞

lim
x→±∞

anxn (4.7.11)

f(x) = 5 −3 +4x3 x2 g(x) = 5x3 x → ±∞ 4.7.13
4.7.3
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Figure : The end behavior of a polynomial is determined by the behavior of the term with the largest exponent.
Table : A polynomial’s end behavior is determined by the term with the largest exponent

10 100 1000

4704 4,970,004 4,997,000,004

5000 5,000,000 5,000,000,000

−10 −100 −000

−5296 −5,029,996 −5,002,999,996

−5000 −5,000,000 −5,000,000,000

End Behavior for Algebraic Functions
The end behavior for rational functions and functions involving radicals is a little more complicated than for polynomials. In

Example, we show that the limits at infinity of a rational function  depend on the relationship between the degree of

the numerator and the degree of the denominator. To evaluate the limits at infinity for a rational function, we divide the numerator
and denominator by the highest power of  appearing in the denominator. This determines which term in the overall expression
dominates the behavior of the function at large values of .

For each of the following functions, determine the limits as  and  Then, use this information to describe the
end behavior of the function.

a.  (Note: The degree of the numerator and the denominator are the same.)

b.  (Note: The degree of numerator is less than the degree of the denominator.)

c.  in the denominator is . Therefore, dividing the numerator and denominator by  and applying the

algebraic limit laws, we see that

Solution

a. The highest power of  in the denominator is . Therefore, dividing the numerator and denominator by  and applying the
algebraic limit laws, we see that

4.7.13

4.7.3

x

f(x) = 5 − 3 + 4x3 x2

g(x) = 5x3

x

f(x) = 5 − 3 + 4x3 x2

g(x) = 5x3

f(x) =
p(x)

q(x)

x

x

Example : Determining End Behavior for Rational Functions4.7.5

x → ∞ x → −∞.

f(x) =
3x −1

2x +5

f(x) =
3 +2xx2

4 −5x +7x3

f(x) =
3 +4xx2

x +2
x x

x x x
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Since , we know that  is a horizontal asymptote for this function as shown in the following graph.

Figure : The graph of this rational function approaches a horizontal asymptote as 

b. Since the largest power of  appearing in the denominator is , divide the numerator and denominator by . After doing
so and applying algebraic limit laws, we obtain

Therefore  has a horizontal asymptote of  as shown in the following graph.

Figure : The graph of this rational function approaches the horizontal asymptote  as 

c. Dividing the numerator and denominator by , we have

lim
x→±∞

3x −1

2x +5
= lim

x→±∞

3 −1/x

2 +5/x

=
(3 −1/x)limx→±∞

(2 +5/x)limx→±∞

=
3 − 1/xlimx→±∞ limx→±∞

2 + 5/xlimx→±∞ limx→±∞

= = .
3 −0

2 +0

3

2

f(x) =lim
x→±∞

3

2
y = 3

2

4.7.14 x → ±∞.

x x3 x3

= = = = 0.lim
x→±∞

3 +2xx2

4 −5x +7x3
lim

x→±∞

3/x +2/x2

4 −5/ +7/x2 x3

3 ⋅ 0 +2 ⋅ 0

4 −5 ⋅ 0 +7 ⋅ 0

0

4

f y = 0

4.7.15 y = 0 x → ±∞.

x

= .lim
x→±∞

3 +4xx2

x +2
lim

x→±∞

3x +4

1 +2/x
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As , the denominator approaches . As , the numerator approaches . As , the numerator
approaches . Therefore , whereas  as shown in the following figure.

Figure : As , the values . As , the values 

Evaluate  and use these limits to determine the end behavior of .

Hint

Divide the numerator and denominator by .

Answer

Before proceeding, consider the graph of  shown in Figure . As  and , the graph of 

appears almost linear. Although  is certainly not a linear function, we now investigate why the graph of  seems to be
approaching a linear function. First, using long division of polynomials, we can write

x → ±∞ 1 x → ∞ +∞ x → −∞
−∞ f(x) = ∞lim

x→∞
f(x) = −∞lim

x→−∞

4.7.16 → ∞ f(x) → ∞ x → −∞ f(x) → −∞.

Sketching a Graph With Both a HorizontSketching a Graph With Both a Horizont……

Exercise 4.7.5

lim
x→±∞

3 +2x −1x2

5 −4x +7x2
f(x) =

3 +2x −2x2

5 −4x +7x2

x2

3
5

f(x) =
3 +4xx2

x +2
4.7.16 x → ∞ x → −∞ f

f f
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Since  as  we conclude that

Therefore, the graph of  approaches the line  as . This line is known as an oblique asymptote for  (Figure 
).

Figure : The graph of the rational function  approaches the oblique asymptote  as 

We can summarize the results of Example to make the following conclusion regarding end behavior for rational functions. Consider
a rational function

where  and 

1. If the degree of the numerator is the same as the degree of the denominator  then  has a horizontal asymptote of 
 as 

2. If the degree of the numerator is less than the degree of the denominator  then  has a horizontal asymptote of 
as 

3. If the degree of the numerator is greater than the degree of the denominator  then  does not have a horizontal
asymptote. The limits at infinity are either positive or negative infinity, depending on the signs of the leading terms. In addition,
using long division, the function can be rewritten as

where the degree of  is less than the degree of . As a result, . Therefore, the values of 

 approach zero as . If the degree of  is exactly one more than the degree of  (i.e., ),
the function  is a linear function. In this case, we call  an oblique asymptote.

Now let’s consider the end behavior for functions involving a radical.

Find the limits as  and  for  and describe the end behavior of .

Solution

f(x) = = 3x −2 + .
3 +4xx2

x +2

4

x +2

→ 0
4

x +2
x → ±∞,

(f(x) −(3x −2)) = = 0.lim
x→±∞

lim
x→±∞

4

x +2

f y = 3x −2 x → ±∞ f

4.7.17

4.7.17 f(x) = (3 + 4x)/(x + 2)x2 y = 3x − 2
x → ±∞.

f(x) = = ,
p(x)

q(x)

+ +… + x +anxn an−1xn−1 a1 a0

+ +… + x +bmxm bm−1 xm−1 b1 b0

≠ 0an ≠ 0.bm

(n = m), f

y = /an bm x → ±∞.
(n < m), f y = 0

x → ±∞.
(n > m), f

f(x) = = g(x) + ,
p(x)

q(x)

r(x)

q(x)
(4.7.12)

r(x) q(x) r(x)/q(x) = 0lim
x→±∞

[f(x) −g(x)] x → ±∞ p(x) q(x) n = m +1
g(x) g(x)

Example : Determining End Behavior for a Function Involving a Radical4.7.6

x → ∞ x → −∞ f(x) =
3x −2

4 +5x2
− −−−−−

√
f
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Let’s use the same strategy as we did for rational functions: divide the numerator and denominator by a power of . To
determine the appropriate power of , consider the expression  in the denominator. Since

for large values of  in effect  appears just to the first power in the denominator. Therefore, we divide the numerator and
denominator by . Then, using the fact that  for  for , and  for all , we calculate the
limits as follows:

Therefore,  approaches the horizontal asymptote  as  and the horizontal asymptote  as  as
shown in the following graph.

Figure : This function has two horizontal asymptotes and it crosses one of the asymptotes.

Evaluate .

Hint

Divide the numerator and denominator by .

Answer

Determining End Behavior for Transcendental Functions

The six basic trigonometric functions are periodic and do not approach a finite limit as  For example,  oscillates
between 1 and −1 (Figure ). The tangent function  has an infinite number of vertical asymptotes as ; therefore, it
does not approach a finite limit nor does it approach  as  as shown in Figure .

x

x 4 +5x2
− −−−−−

√

≈ = 2|x|4 +5x2− −−−−−
√ 4x2

−−−
√

x x

|x| |x| = x x > 0, |x| = −x x < 0 |x| = x2−−
√ x

lim
x→∞

3x −2

4 +5x2
− −−−−−

√
= lim

x→∞

(1/|x|)(3x −2)

(1/|x|) 4 +5x2
− −−−−−

√

= lim
x→∞

(1/x)(3x −2)

(1/ )(4 +5)x2 x2− −−−−−−−−−−−−
√

= = =lim
x→∞

3 −2/x

4 +5/x2− −−−−−−
√

3

4
–

√

3

2

lim
x→−∞

3x −2

4 +5x2
− −−−−−

√
= lim

x→−∞

(1/|x|)(3x −2)

(1/|x|) 4 +5x2
− −−−−−

√

= lim
x→−∞

(−1/x)(3x −2)

(1/ )(4 +5)x2 x2− −−−−−−−−−−−−
√

= = = .lim
x→−∞

−3 +2/x

4 +5/x2− −−−−−−
√

−3

4
–

√

−3

2

f(x) y = 3
2

x → ∞ y = − 3
2

x → −∞

4.7.18

Exercise 4.7.6

lim
x→∞

3 +4x2
− −−−−−

√

x +6

x

3
–

√

x → ±∞. sinx

4.7.19 x x → ±∞
±∞ x → ±∞ 4.7.20
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Figure : The function  oscillates between  and  as 

Figure : The function  does not approach a limit and does not approach  as 

Recall that for any base  the function  is an exponential function with domain  and range . If 
 is increasing over . If  is decreasing over  For the natural exponential

function . Therefore,  is increasing on `  and the range is ` . The exponential
function  approaches  as  and approaches  as  as shown in Table  and Figure .

Table : End behavior of the natural exponential function

−5 −2 0 2 5

0.00674 0.135 1 7.389 148.413

Figure : The exponential function approaches zero as  and approaches  as 

Recall that the natural logarithm function  is the inverse of the natural exponential function . Therefore, the
domain of  is  and the range is . The graph of  is the reflection of the graph of 
about the line . Therefore,  as  and  as  as shown in Figure  and Table .

Table : End behavior of the natural logarithm function

0.01 0.1 1 10 100

−4.605 −2.303 0 2.303 4.605

4.7.19 f(x) = sin x 1 −1 x → ±∞

4.7.20 f(x) = tan x ±∞ x → ±∞

b > 0, b ≠ 1, y = bx (−∞, ∞) (0, ∞)
b > 1, y = bx (−∞, ∞) 0 < b < 1, y = bx (−∞, ∞).

f(x) = , e ≈ 2.718 > 1ex f(x) = ex (−∞, ∞) (0, ∞)
f(x) = ex ∞ x → ∞ 0 x → −∞ 4.7.4 4.7.21

4.7.4

x

ex

4.7.21 x → −∞ ∞ x → ∞.

f(x) = ln(x) y = ex

f(x) = ln(x) (0, ∞) (−∞, ∞) f(x) = ln(x) y = ex

y = x ln(x) → −∞ x → 0+ ln(x) → ∞ x → ∞ 4.7.22 4.7.5

4.7.5

x

ln(x)
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Figure : The natural logarithm function approaches  as 

Find the limits as  and  for  and describe the end behavior of 

Solution

To find the limit as  divide the numerator and denominator by :

As shown in Figure ,  as . Therefore,

.

We conclude that , and the graph of  approaches the horizontal asymptote  as  To find the

limit as , use the fact that  as  to conclude that , and therefore the graph of

approaches the horizontal asymptote  as .

Find the limits as  and  for .

Hint

 and 

Answer

Guidelines for Drawing the Graph of a Function
We now have enough analytical tools to draw graphs of a wide variety of algebraic and transcendental functions. Before showing
how to graph specific functions, let’s look at a general strategy to use when graphing any function.

Given a function , use the following steps to sketch a graph of :

1. Determine the domain of the function.

4.7.22 ∞ x → ∞.

Example : Determining End Behavior for a Transcendental Function4.7.7

x → ∞ x → −∞ f(x) =
2 +3ex

7 −5ex
f .

x → ∞, ex

f(x)lim
x→∞

= lim
x→∞

2 +3ex

7 −5ex

= lim
x→∞

(2/ ) +3ex

(7/ ) −5.ex

4.7.21 → ∞ex x → ∞

= 0 =lim
x→∞

2

ex
lim

x→∞

7

ex

(x) = −lim
x→∞f

3

5
f y = − 3

5
x → ∞.

x → −∞ → 0ex x → −∞ f(x) =lim
x→∞

2

7
y = 2

7
x → −∞

Exercise 4.7.7

x → ∞ x → −∞ f(x) =
3 −4ex

5 +2ex

= ∞lim
x→∞

ex = 0.limx→∞ ex

f(x) = , f(x) = −2lim
x→∞

3

5
lim

x→−∞

Problem-Solving Strategy: Drawing the Graph of a Function

f f
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2. Locate the - and -intercepts.
3. Evaluate  and  to determine the end behavior. If either of these limits is a finite number , then 

is a horizontal asymptote. If either of these limits is  or , determine whether  has an oblique asymptote. If s a

rational function such that , where the degree of the numerator is greater than the degree of the denominator,

then  can be written as

where the degree of  is less than the degree of . The values of  approach the values of  as . If 
 is a linear function, it is known as an oblique asymptote.

4. Determine whether  has any vertical asymptotes.
5. Calculate  Find all critical points and determine the intervals where  is increasing and where  is decreasing. Determine

whether  has any local extrema.
6. Calculate  Determine the intervals where  is concave up and where  is concave down. Use this information to

determine whether  has any inflection points. The second derivative can also be used as an alternate means to determine or
verify that  has a local extremum at a critical point.

Now let’s use this strategy to graph several different functions. We start by graphing a polynomial function.

Sketch a graph of 

Solution

Step 1: Since  is a polynomial, the domain is the set of all real numbers.

Step 2: When  Therefore, the -intercept is . To find the -intercepts, we need to solve the equation 
, gives us the -intercepts  and 

Step 3: We need to evaluate the end behavior of  As  and . Therefore, 
.

As  and . Therefore, .

To get even more information about the end behavior of , we can multiply the factors of . When doing so, we see that

Since the leading term of  is , we conclude that  behaves like  as 

Step 4: Since  is a polynomial function, it does not have any vertical asymptotes.

Step 5: The first derivative of  is

Therefore,  has two critical points:  Divide the interval  into the three smaller intervals: 
, and . Then, choose test points , and  from these intervals and evaluate the

sign of  at each of these test points, as shown in the following table.

Interval Test point
Sign of Derivative 

Conclusion

 is increasing

 decreasing

 is increasing

x y

f(x)lim
x→∞

f(x)lim
x→−∞

L y = L

∞ −∞ f i

f(x) =
p(x)

q(x)
f

f(x) = = g(x) +
p(x)

q(x)

r(x)

q(x),
(4.7.13)

r(x) q(x) f(x) g(x) x → ±∞
g(x)

f

f '. f f

f

.f ′′ f f

f

f

Example : Sketching a Graph of a Polynomial4.7.8

f(x) = (x −1 (x +2).)2

f

x = 0, f(x) = 2. y (0, 2) x

(x −1 (x +2) = 0)2 x (1, 0) (−2, 0)

f . x → ∞, (x −1 → ∞)2 (x +2) → ∞
f(x) = ∞lim

x→∞

x → −∞, (x −1 → ∞)2 (x +2) → −∞ f(x) = −∞lim
x→∞

f f

f(x) = (x −1 (x +2) = −3x +2.)2 x3

f x3 f y = x3 x → ±∞.

f

f

f '(x) = 3 −3.x2

f x = 1, −1. (−∞, ∞)
(−∞, −1), (−1, 1) (1, ∞) x = −2, x = 0 x = 2

f '(x)

(x) = 3 − 3 = 3(x − 1)(x + 1)f ′ x2

(−∞, −1) x = −2 (+)(−)(−) = + f

(−1, 1) x = 0 (+)(−)(+) = − f

(1, ∞) x = 2 (+)(+)(+) = + f
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From the table, we see that  has a local maximum at  and a local minimum at . Evaluating  at those two
points, we find that the local maximum value is  and the local minimum value is 

Step 6: The second derivative of  is

The second derivative is zero at  Therefore, to determine the concavity of , divide the interval  into the
smaller intervals  and , and choose test points  and  to determine the concavity of  on each of
these smaller intervals as shown in the following table.

Interval Test Point Sign of Conclusion

 is concave down..

 is concave up.

We note that the information in the preceding table confirms the fact, found in step , that f has a local maximum at 
and a local minimum at . In addition, the information found in step —namely,  has a local maximum at  and a
local minimum at , and  at those points—combined with the fact that  changes sign only at  confirms
the results found in step  on the concavity of .

Combining this information, we arrive at the graph of  shown in the following graph.

Sketch a graph of 

Hint

 is a fourth-degree polynomial.

Answer

f x = −1 x = 1 f(x)
f(−1) = 4 f(1) = 0.

f

(x) = 6x.f ′′

x = 0. f (−∞, ∞)
(−∞, 0) (0, ∞) x = −1 x = 1 f

(x) = 6x′′

(−∞, 0) x = −1 − f

(0, ∞) x = 1 + f

5 x = −1
x = 1 5 f x = −1

x = 1 f '(x) = 0 f ′′ x = 0
6 f

f(x) = (x −1 (x +2))2

Exercise 4.7.8

f(x) = (x −1 (x +2).)3

f
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Sketch the graph of .

Solution

Step 1: The function  is defined as long as the denominator is not zero. Therefore, the domain is the set of all real numbers 
except 

Step 2: Find the intercepts. If  then , so  is an intercept. If , then  which implies .

Therefore,  is the only intercept.

Step 3: Evaluate the limits at infinity. Since is a rational function, divide the numerator and denominator by the highest power
in the denominator: .We obtain

Therefore,  has a horizontal asymptote of  as  and 

Step 4: To determine whether  has any vertical asymptotes, first check to see whether the denominator has any zeroes. We
find the denominator is zero when . To determine whether the lines  or  are vertical asymptotes of ,
evaluate  and . By looking at each one-sided limit as  we see that

 and 

In addition, by looking at each one-sided limit as  we find that

 and 

Step 5: Calculate the first derivative:

Example : Sketching a Rational Function4.7.9

f(x) =
x2

1 −x2

f x

x = ±1.

x = 0, f(x) = 0 0 y = 0 = 0,
x2

1 −x2
x = 0

(0, 0)

f

x2

= = −1.lim
x→±∞

x2

1 −x2
lim

x→±∞

1

−11
x2

f y = −1 x → ∞ x → −∞.

f

x = ±1 x = 1 x = −1 f

f(x)lim
x→1

f(x)lim
x→−1

x → 1,

= −∞lim
x→1+

x2

1 −x2
= ∞.lim

x→1−

x2

1 −x2

x → −1,

= ∞lim
x→−1+

x2

1 −x2
= −∞.lim

x→−1−

x2

1 −x2
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.

Critical points occur at points  where  or  is undefined. We see that  when  The derivative 
is not undefined at any point in the domain of . However,  are not in the domain of . Therefore, to determine where 

 is increasing and where  is decreasing, divide the interval  into four smaller intervals: 
and , and choose a test point in each interval to determine the sign of  in each of these intervals. The values 

, and  are good choices for test points as shown in the following table.

Interval Test point Sign of Conclusion

 is decreasing.

 is decreasing.

 is increasing.

 is increasing.

From this analysis, we conclude that  has a local minimum at  but no local maximum.

Step 6: Calculate the second derivative:

To determine the intervals where  is concave up and where  is concave down, we first need to find all points  where 
 or  is undefined. Since the numerator  for any  is never zero. Furthermore,  is not

undefined for any  in the domain of . However, as discussed earlier,  are not in the domain of . Therefore, to
determine the concavity of , we divide the interval  into the three smaller intervals , and 

, and choose a test point in each of these intervals to evaluate the sign of . in each of these intervals. The values 
, and  are possible test points as shown in the following table.

Interval Test Point Sign of Conclusion

 is concave down.

 is concave up

 is concave down.

Combining all this information, we arrive at the graph of  shown below. Note that, although  changes concavity at 
and , there are no inflection points at either of these places because  is not continuous at  or 

f '(x) = =
(1 − )(2x) − (−2x)x2 x2

(1 −x2)
2

2x

(1 −x2)
2

x f '(x) = 0 f '(x) f '(x) = 0 x = 0. f '

f x = ±1 f

f f (−∞, ∞) (−∞, −1), (−1, 0), (0, 1),
(1, ∞) f '(x)

x = −2, x = − , x =1
2

1
2

x = 2

f'(x) = 2x

(1−x2)
2

(−∞, −1) x = −2 −/+ = − f

(−1, 0) x = −/2 −/+ = − f

(0, 1) x = 1/2 +/+ = + f

(1, ∞) x = 2 +/+ = + f

f x = 0

(x)f ′′ =
(1 − (2) −2x(2(1 − )(−2x))x2)2 x2

(1 −x2)4

=
(1 − )[2(1 − ) +8 ]x2 x2 x2

(1 −x2)
4

=
2(1 − ) +8x2 x2

(1 −x2)
3

= .
6 +2x2

(1 −x2)
3

f f x

(x) = 0f ′′ (x)f ′′ 6 +2 ≠ 0x2 x, (x)f ′′ f ′′

x f x = ±1 f

f (−∞, ∞) (−∞, −1), (−1, −1)
(1, ∞) (x)f ′′

x = −2, x = 0 x = 2

(x) =f ′′ 6 +2x2

(1−x2)3

(−∞, −1) x = −2 +/− = − f

(−1, −1) x = 0 +/+ = + f

(1, ∞) x = 2 +/− = − f

f f x = −1
x = 1 f x = −1 x = 1.
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Sketch a graph of 

Hint

A line  is a horizontal asymptote of  if the limit as  or the limit as  of  is . A line  is a
vertical asymptote if at least one of the one-sided limits of  as  is  or 

Answer

Sketch the graph of 

Solution

Step 1: The domain of  is the set of all real numbers  except 

Step 2: Find the intercepts. We can see that when  so  is the only intercept.

Step 3: Evaluate the limits at infinity. Since the degree of the numerator is one more than the degree of the denominator, 
must have an oblique asymptote. To find the oblique asymptote, use long division of polynomials to write

.

Exercise 4.7.9

f(x) = .
3x +5

8 +4x

y = L f x → ∞ x → −∞ f(x) L x = a

f x → a ∞ −∞.

Example : Sketching a Rational Function with an Oblique Asymptote4.7.10

f(x) =
x2

x −1

f x x = 1.

x = 0, f(x) = 0, (0, 0)

f

f(x) = = x +1 +
x2

x −1

1

x −1
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Since  as  approaches the line  as . The line  is an oblique asymptote

for .

Step 4: To check for vertical asymptotes, look at where the denominator is zero. Here the denominator is zero at 
Looking at both one-sided limits as  we find

 and 

Therefore,  is a vertical asymptote, and we have determined the behavior of  as  approaches  from the right and the
left.

Step 5: Calculate the first derivative:

We have  when . Therefore,  and  are critical points. Since  is undefined at 
, we need to divide the interval  into the smaller intervals  and , and choose a test

point from each interval to evaluate the sign of  in each of these smaller intervals. For example, let 
, and  be the test points as shown in the following table.

Interval Test Point Sign of Conclusion

(−)(−)/+=+  is increasing.

(+)(−)/+=−  is decreasing.

(+)(−)/+=−  is decreasing.

(+)(+)/+=+  is increasing.

From this table, we see that  has a local maximum at  and a local minimum at . The value of  at the local
maximum is  and the value of  at the local minimum is . Therefore,  and  are important points
on the graph.

Step 6. Calculate the second derivative:

We see that  is never zero or undefined for  in the domain of . Since  is undefined at , to check concavity we
just divide the interval  into the two smaller intervals  and , and choose a test point from each interval
to evaluate the sign of  in each of these intervals. The values  and  are possible test points as shown in the
following table.

Interval Test Point Sign of Conclusion

 is concave down.

 is concave up

→ 0
1

x −1
x → ±∞, f(x) y = x +1 x → ±∞ y = x +1

f

x = 1.
x → 1,

= ∞lim
x→1+

x2

x −1
= −∞.lim

x→1−

x2

x −1

x = 1 f x 1

f '(x) = = .
(x −1)(2x) − (1)x2

(x −1)2

−2xx2

(x −1)2

f '(x) = 0 −2x = x(x −2) = 0x2 x = 0 x = 2 f

x = 1 (−∞, ∞) (−∞, 0), (0, 1), (1, 2), (2, ∞)
f '(x)

x = −1, x = , x =1
2

3
2

x = 3

(x) =f ′ − 2xx2

(x − 1)2

(−∞, 0) x = −1 f

(0, 1) x = 1/2 f

(1, 2) x = 3/2 f

(2, ∞) x = 3 f

f x = 0 x = 2 f

f(0) = 0 f f(2) = 4 (0, 0) (2, 4)

(x)f ′′ =
(x −1 (2x −2) −2(x −1)( −2x))2 x2

(x −1)4

=
2(x −1)[(x −1 −( −2x)])2 x2

(x −1)4

=
2[ −2x +1 − +2x]x2 x2

(x −1)3

= .
2

(x −1)3

(x)f ′′ x f f x = 1
(−∞, ∞) (−∞, 1) (1, ∞)

(x)f ′′ x = 0 x = 2

(x) =f ′′ 2

(x − 1)3

(−∞, 1) x = 0 +/− = − f

(1, ∞) x = 2 +/+ = + f
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From the information gathered, we arrive at the following graph for 

Find the oblique asymptote for .

Hint

Use long division of polynomials.

Answer

Sketch a graph of 

Solution

Step 1: Since the cube-root function is defined for all real numbers  and , the domain of  is all real
numbers.

Step 2: To find the -intercept, evaluate . Since  the -intercept is . To find the -intercept, solve 
. The solution of this equation is , so the -intercept is 

Step 3: Since  the function continues to grow without bound as  and 

Step 4: The function has no vertical asymptotes.

Step 5: To determine where  is increasing or decreasing, calculate  We find

This function is not zero anywhere, but it is undefined when  Therefore, the only critical point is  Divide the
interval  into the smaller intervals  and , and choose test points in each of these intervals to determine
the sign of  in each of these smaller intervals. Let  and  be the test points as shown in the following table.

Interval Test Point Sign of Conclusion

 is decreasing

 is increasing

f .

Exercise 4.7.10

f(x) =
3 −2x +1x3

2 −4x2

y = x3
2

Example : Sketching the Graph of a Function with a Cusp4.7.11

f(x) = (x −1)2/3

x (x −1 = ()2/3 x −1
− −−−−

√3 )2 f

y f(0) f(0) = 1, y (0, 1) x

(x −1 = 0)2/3 x = 1 x (1, 0).

(x −1 = ∞,lim
x→±∞

)2/3 x → ∞ x → −∞.

f f '.

f '(x) = (x −1 =
2

3
)−1/3 2

3(x −1)1/3
(4.7.14)

x = 1. x = 1.
(−∞, ∞) (−∞, 1) (1, ∞)

f '(x) x = 0 x = 2

f'(x) = 2

3(x−1)1/3

(−∞, 1) x = 0 +/− = − f

(1, ∞) x = 2 +/+ = + f
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We conclude that  has a local minimum at . Evaluating  at , we find that the value of  at the local minimum is
zero. Note that  is undefined, so to determine the behavior of the function at this critical point, we need to examine 

 Looking at the one-sided limits, we have

Therefore,  has a cusp at 

Step 6: To determine concavity, we calculate the second derivative of 

We find that  is defined for all , but is undefined when . Therefore, divide the interval  into the smaller
intervals  and , and choose test points to evaluate the sign of  in each of these intervals. As we did earlier,
let  and  be test points as shown in the following table.

Interval Test Point
Sign of 

Conclusion

 is concave down

 is concave down

From this table, we conclude that  is concave down everywhere. Combining all of this information, we arrive at the following
graph for .

Consider the function . Determine the point on the graph where a cusp is located. Determine the end behavior
of .

Hint

A function  has a cusp at a point a if  exists,  is undefined, one of the one-sided limits as  of  is 
, and the other one-sided limit is 

Answer

The function  has a cusp at , since  and . For end behavior, 

Key Concepts
The limit of  is  as  (or as  if the values  become arbitrarily close to  as  becomes sufficiently
large.

f x = 1 f x = 1 f

f '(1)
f '(x).lim

x→1

= ∞ and  = −∞.lim
x→1+

2

3(x −1)1/3
lim

x→1−

2

3(x −1)1/3

f x = 1.

f :

(x) = − (x −1 = .f ′′ 2

9
)−4/3 −2

9(x −1)4/3
(4.7.15)

(x)f ′′ x x = 1 (−∞, ∞)
(−∞, 1) (1, ∞) (x)f ′′

x = 0 x = 2

(x) =f ′′ −2

9(x − 1)4/3

(−∞, 1) x = 0 −/+ = − f

(1, ∞) x = 2 −/+ = − f

f

f

Exercise 4.7.11

f(x) = 5 −x2/3

f

f f(a) (a)f ′ x → a (x)f ′

+∞ −∞.

f (0, 5) f '(x) = ∞lim
x→0−

f '(x) = −∞lim
x→0+

f(x) = −∞.lim
x→±∞

f(x) L x → ∞ x → −∞) f(x) L x
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The limit of  is  as  if  becomes arbitrarily large as  becomes sufficiently large. The limit of  is 
as  if  and  becomes arbitrarily large as  becomes sufficiently large. We can define the limit of  as 

 approaches  similarly.
For a polynomial function  where , the end behavior is determined by the
leading term . If  approaches  or at each end.

For a rational function  the end behavior is determined by the relationship between the degree of  and the degree

of . If the degree of  is less than the degree of , the line  is a horizontal asymptote for . If the degree of  is equal to

the degree of , then the line  is a horizontal asymptote, where  and  are the leading coefficients of  and ,

respectively. If the degree of  is greater than the degree of , then  approaches  or  at each end.

Glossary

end behavior
the behavior of a function as  and 

horizontal asymptote
if  or , then  is a horizontal asymptote of 

infinite limit at infinity
a function that becomes arbitrarily large as  becomes large

limit at infinity
a function that approaches a limit value  as  becomes large

oblique asymptote
the line  if  approaches it as  or
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