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6.3: The Standard Normal Distribution

Introduction to Normal Distributions

The normal distribution is the most important of all the probability distributions. It is widely used and even more widely abused. Its
graph is bell-shaped. You see the bell curve in almost all disciplines. Some of these include psychology, business, economics, the
sciences, nursing, and, of course, mathematics. Some of your instructors may use the normal distribution to help determine your
grade. Most IQ scores are normally distributed. Often real-estate prices fit a normal distribution. The normal distribution is
extremely important, but it cannot be applied to everything in the real world.

In the remainder of this chapter, you will study the normal distributions and applications associated with them. A normal
distribution has two parameters (two numerical descriptive measures), the mean ( ) and the standard deviation ( ). If  is a
quantity to be measured that has a normal distribution with mean ( ) and standard deviation ( ), we designate this by writing

The probability density function is a rather complicated function. Do not memorize it. It is not necessary.

The cumulative distribution function is . It is calculated either by a calculator or a computer, or it is looked up in a table.
Technology has made the tables virtually obsolete. For that reason, as well as the fact that there are various table formats, we are
not including table instructions.

Figure : The standard normal distribution

The curve is symmetrical about a vertical line drawn through the mean, . In theory, the mean is the same as the median, because
the graph is symmetric about . As the notation indicates, the normal distribution depends only on the mean and the standard
deviation. Since the area under the curve must equal one, a change in the standard deviation, , causes a change in the shape of the
curve; the curve becomes fatter or skinnier depending on . A change in  causes the graph to shift to the left or right. This means
there are an infinite number of normal probability distributions. One of special interest is called the standard normal distribution.

Your instructor will record the heights of both men and women in your class, separately. Draw histograms of your data. Then
draw a smooth curve through each histogram. Is each curve somewhat bell-shaped? Do you think that if you had recorded 200
data values for men and 200 for women that the curves would look bell-shaped? Calculate the mean for each data set. Write the
means on the x-axis of the appropriate graph below the peak. Shade the approximate area that represents the probability that
one randomly chosen male is taller than 72 inches. Shade the approximate area that represents the probability that one
randomly chosen female is shorter than 60 inches. If the total area under each curve is one, does either probability appear to be
more than 0.5?
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Z-Scores
The standard normal distribution is a normal distribution of standardized values called z-scores. A z-score is measured in units of
the standard deviation.

If  is a normally distributed random variable and , then the z-score is:

The z-score tells you how many standard deviations the value  is above (to the right of) or below (to the left of) the mean, 
. Values of  that are larger than the mean have positive -scores, and values of  that are smaller than the mean have negative -

scores. If  equals the mean, then  has a -score of zero. For example, if the mean of a normal distribution is five and the standard
deviation is two, the value 11 is three standard deviations above (or to the right of) the mean. The calculation is as follows:

The z-score is three.

Since the mean for the standard normal distribution is zero and the standard deviation is one, then the transformation in Equation 
 produces the distribution . The value  comes from a normal distribution with mean  and standard deviation .

A z-score is measured in units of the standard deviation.

Suppose . This says that  is a normally distributed random variable with mean  and standard deviation 
. Suppose . Then (via Equation ):

This means that  is two standard deviations (2 ) above or to the right of the mean . The standard deviation is 
.

Notice that:  (The pattern is )

Now suppose . Then:

(rounded to two decimal places)

This means that  is  standard deviations ( ) below or to the left of the mean . Notice that: 
 is approximately equal to one (This has the pattern )

Summarizing, when  is positive,  is above or to the right of  and when  is negative,  is to the left of or below . Or,
when  is positive,  is greater than , and when  is negative  is less than .

Some doctors believe that a person can lose five pounds, on the average, in a month by reducing his or her fat intake and by
exercising consistently. Suppose weight loss has a normal distribution. Let  the amount of weight lost(in pounds) by a
person in a month. Use a standard deviation of two pounds. . Fill in the blanks.

a. Suppose a person lost ten pounds in a month. The -score when  pounds is  (verify). This -score tells you
that  is ________ standard deviations to the ________ (right or left) of the mean _____ (What is the mean?).

Definition: Z-Score
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X ∼ N(5, 6) x μ = 5
σ = 6 x = 17 ???

z = = = 2
x−μ

σ

17−5

6

x = 17 σ μ = 5
σ = 6

5+(2)(6) = 17 μ+zσ = x

x = 1

z = = =−0.67
x−μ

σ

1−5

6

x = 1 0.67 – 0.67σ μ = 5
5+(– 0.67)(6) μ+(– 0.67)σ = 1

z x μ z x μ

z x μ z x μ

Example 6.3.2

X =
X ∼ N(5, 2)
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b. Suppose a person gained three pounds (a negative weight loss). Then  __________. This -score tells you that 
is ________ standard deviations to the __________ (right or left) of the mean.

Answers

a. This -score tells you that  is 2.5 standard deviations to the right of the mean five.

b. Suppose the random variables  and  have the following normal distributions:  and . If ,
then . (This was previously shown.) If , what is ?

where  and .

The -score for  is . This means that four is  standard deviations to the right of the mean. Therefore, 
and  are both two (of their own) standard deviations to the right of their respective means.

The z-score allows us to compare data that are scaled differently. To understand the concept, suppose  represents
weight gains for one group of people who are trying to gain weight in a six week period and  measures the same
weight gain for a second group of people. A negative weight gain would be a weight loss. Since  and  are each
two standard deviations to the right of their means, they represent the same, standardized weight gain relative to their means.

The Empirical Rule
If  is a random variable and has a normal distribution with mean  and standard deviation , then the Empirical Rule says the
following:

About 68% of the  values lie between –1  and +1  of the mean  (within one standard deviation of the mean).
About 95% of the  values lie between –2  and +2  of the mean  (within two standard deviations of the mean).
About 99.7% of the  values lie between –3  and +3  of the mean  (within three standard deviations of the mean). Notice that
almost all the  values lie within three standard deviations of the mean.
The -scores for +1  and –1  are +1 and –1, respectively.
The -scores for +2  and –2  are +2 and –2, respectively.
The -scores for +3  and –3  are +3 and –3 respectively.

The empirical rule is also known as the 68-95-99.7 rule.

Figure 

The mean height of 15 to 18-year-old males from Chile from 2009 to 2010 was 170 cm with a standard deviation of 6.28 cm.
Male heights are known to follow a normal distribution. Let  the height of a 15 to 18-year-old male from Chile in 2009 to
2010. Then .

a. Suppose a 15 to 18-year-old male from Chile was 168 cm tall from 2009 to 2010. The -score when  cm is 
_______. This -score tells you that  is ________ standard deviations to the ________ (right or left) of the mean
_____ (What is the mean?).
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Example 6.3.3

X =
X ∼ N(170, 6.28)

z x = 168 z =
z x = 168
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b. Suppose that the height of a 15 to 18-year-old male from Chile from 2009 to 2010 has a -score of . What is the
male’s height? The -score ( ) tells you that the male’s height is ________ standard deviations to the __________
(right or left) of the mean.

Answers

a. –0.32, 0.32, left, 170
b. 177.98, 1.27, right 

From 1984 to 1985, the mean height of 15 to 18-year-old males from Chile was 172.36 cm, and the standard deviation was
6.34 cm. Let  the height of 15 to 18-year-old males from 1984 to 1985. Then .

The mean height of 15 to 18-year-old males from Chile from 2009 to 2010 was 170 cm with a standard deviation of 6.28 cm.
Male heights are known to follow a normal distribution. Let  the height of a 15 to 18-year-old male from Chile in 2009 to
2010. Then .

Find the z-scores for  cm and  cm. Interpret each -score. What can you say about  cm and 
 cm?

Answer

The -score (Equation ) for  is .
The -score for  is .

Both  and  deviate the same number of standard deviations from their respective means and in the same
direction.

Suppose x has a normal distribution with mean 50 and standard deviation 6.

About 68% of the x values lie within one standard deviation of the mean. Therefore, about 68% of the x values lie between
–1σ = (–1)(6) = –6 and 1σ = (1)(6) = 6 of the mean 50. The values 50 – 6 = 44 and 50 + 6 = 56 are within one standard
deviation from the mean 50. The z-scores are –1 and +1 for 44 and 56, respectively.
About 95% of the x values lie within two standard deviations of the mean. Therefore, about 95% of the x values lie
between –2σ = (–2)(6) = –12 and 2σ = (2)(6) = 12. The values 50 – 12 = 38 and 50 + 12 = 62 are within two standard
deviations from the mean 50. The z-scores are –2 and +2 for 38 and 62, respectively.
About 99.7% of the x values lie within three standard deviations of the mean. Therefore, about 99.7% of the x values lie
between –3σ = (–3)(6) = –18 and 3σ = (3)(6) = 18 from the mean 50. The values 50 – 18 = 32 and 50 + 18 = 68 are within
three standard deviations of the mean 50. The z-scores are –3 and +3 for 32 and 68, respectively.

From 1984 to 1985, the mean height of 15 to 18-year-old males from Chile was 172.36 cm, and the standard deviation was
6.34 cm. Let  the height of 15 to 18-year-old males in 1984 to 1985. Then .

a. About 68% of the  values lie between what two values? These values are ________________. The -scores are
________________, respectively.

b. About 95% of the  values lie between what two values? These values are ________________. The -scores are
________________ respectively.

c. About 99.7% of the  values lie between what two values? These values are ________________. The -scores are
________________, respectively.

Answer

a. About 68% of the values lie between 166.02 and 178.7. The -scores are –1 and 1.
b. About 95% of the values lie between 159.68 and 185.04. The -scores are –2 and 2.
c. About 99.7% of the values lie between 153.34 and 191.38. The -scores are –3 and 3.

z z = 1.27
z z = 1.27

Example 6.3.4

Y = Y ∼ N(172.36, 6.34)

X =
X ∼ N(170, 6.28)

x = 160.58 y = 162.85 z x = 160.58
y = 162.85

z ??? x = 160.58 z =– 1.5
z y = 162.85 z =– 1.5

x = 160.58 y = 162.85

Example 6.3.5

Example 6.3.6

Y = Y ∼ N(172.36, 6.34)
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Summary
A -score is a standardized value. Its distribution is the standard normal, . The mean of the -scores is zero and the
standard deviation is one. If  is the z-score for a value  from the normal distribution  then  tells you how many standard
deviations  is above (greater than) or below (less than) .

Formula Review

 standardized value ( -score)

mean = 0; standard deviation = 1

To find the  percentile of  when the -scores is known:

-score: 

 the random variable for z-scores

WebWork Problems

Glossary

Standard Normal Distribution
a continuous random variable (RV) ; when  follows the standard normal distribution, it is often noted as \(Z \sim
N(0, 1)\.

-score

the linear transformation of the form ; if this transformation is applied to any normal distribution  the

result is the standard normal distribution . If this transformation is applied to any specific value  of the RV with
mean  and standard deviation , the result is called the -score of . The -score allows us to compare data that are normally
distributed but scaled differently.
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