LibreTextsw

11.1: Introduction

Most of our study of probability has dealt with independent trials processes. These processes are the basis of classical probability
theory and much of statistics. We have discussed two of the principal theorems for these processes: the Law of Large Numbers and
the Central Limit Theorem.

We have seen that when a sequence of chance experiments forms an independent trials process, the possible outcomes for each
experiment are the same and occur with the same probability. Further, knowledge of the outcomes of the previous experiments does
not influence our predictions for the outcomes of the next experiment. The distribution for the outcomes of a single experiment is
sufficient to construct a tree and a tree measure for a sequence of n experiments, and we can answer any probability question about
these experiments by using this tree measure.

Modern probability theory studies chance processes for which the knowledge of previous outcomes influences predictions for
future experiments. In principle, when we observe a sequence of chance experiments, all of the past outcomes could influence our
predictions for the next experiment. For example, this should be the case in predicting a student’s grades on a sequence of exams in
a course. But to allow this much generality would make it very difficult to prove general results.

In 1907, A. A. Markov began the study of an important new type of chance process. In this process, the outcome of a given
experiment can affect the outcome of the next experiment. This type of process is called a Markov chain.

Specifying a Markov Chain

v/ Example 11.1.1

According to Kemeny, Snell, and Thompson, 2 the Land of Oz is blessed by many things, but not by good weather. They never
have two nice days in a row. If they have a nice day, they are just as likely to have snow as rain the next day. If they have snow
or rain, they have an even chance of having the same the next day. If there is change from snow or rain, only half of the time is
this a change to a nice day. With this information we form a Markov chain as follows. We take as states the kinds of weather R,
N, and S. From the above information we determine the transition probabilities. These are most conveniently represented in a
square array as

R N S
R [1/2 1/4 1/4
P=" By (11.1.1)
S \1/4 1/4 1/2

Transition Matrix

The entries in the first row of the matrix P in Example 11.1 represent the probabilities for the various kinds of weather following a
rainy day. Similarly, the entries in the second and third rows represent the probabilities for the various kinds of weather following
nice and snowy days, respectively. Such a square array is called the matrix of transition probabilities, or the transition matrix.

We consider the question of determining the probability that, given the chain is in state ¢ today, it will be in state j two days from
2)
ij

from now is the disjoint union of the following three events: 1) it is rainy tomorrow and snowy two days from now, 2) it is nice

now. We denote this probability by p;.’. In Example 11.1.1, we see that if it is rainy today then the event that it is snowy two days
tomorrow and snowy two days from now, and 3) it is snowy tomorrow and snowy two days from now. The probability of the first
of these events is the product of the conditional probability that it is rainy tomorrow, given that it is rainy today, and the conditional
probability that it is snowy two days from now, given that it is rainy tomorrow. Using the transition matrix P, we can write this
product as p11p13. The other two

events also have probabilities that can be written as products of entries of P. Thus, we have

pﬁ? = p11P13 +P12P23 + P13P33- (11.1.2)
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This equation should remind the reader of a dot product of two vectors; we are dotting the first row of P with the third column of
P. This is just what is done in obtaining the 1,3-entry of the product of P with itself. In general, if a Markov chain has r states,
then

T
pl(.f) :Zpikpkj. (11.1.3)
k=1

The following general theorem is easy to prove by using the above observation and induction.

& Theorem 11.1.1

Let P be the transition matrix of a Markov chain. The 13 th entry pgl) of the matrix P™ gives the probability that the Markov
chain, starting in state s;, will be in state s; after n steps.

Proof. The proof of this theorem is left as an exercise (Exercise 11.1.17).

v/ Example 11.1.2

(Example 11.1.1 continued) Consider again the weather in the Land of Oz. We know that the powers of the transition matrix
give us interesting information about the process as it evolves. We shall be particularly interested in the state of the chain after
a large number of steps. The program MatrixPowers computes the powers of P.

We have run the program MatrixPowers for the Land of Oz example to compute the successive powers of P from 1 to 6 . The
results are shown in Table 11.1.1 We note that after six days our weather predictions are, to three-decimal-place accuracy,
independent of today's weather. The probabilities for the three types of weather, R, N, and S, are .4, .2, and .4 no matter where
the chain started. This is an example of a type of Markov chain called a regular Markov chain. For this type of chain, it is true
that long-range predictions are independent of the starting state. Not all chains are regular, but this is an important class of
chains that we shall study in detail later.

We now consider the long-term behavior of a Markov chain when it starts in a state chosen by a probability distribution on the
set of states, which we will call a probability vector. A probability vector with » components is a row vector whose entries are
non-negative and sum to 1 . If u is a probability vector which represents the initial state of a Markov chain, then we think of
the ¢ th component of u as representing the probability that the chain starts in state s;.

With this interpretation of random starting states, it is easy to prove the following theorem.

Rain Nice Snow

p_ Rain 500 .250 .250 (11.1.4)
Nice .500 .000 .500

Snow .250 .250 .500

Rain Nice Snow

p_ Rain 438 .188 .375 (11.1.5)

Nice 375 250 .375
Snow 375 188 .438

Rain Nice Snow

p_ Ra"m 406 .203 .391 (11.1.6)
Nice 406 .188 .406

Snow 391 .203 .406
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Rain Nice Snow
p_ Ra"m 402 .199 .398 (11.1.7)
Nice .398 .203 .398

Snow 398 199 .402

Rain Nice Snow
p_ Ra"m .400 .200 .399 (11.1.8)
Nice .400 .199 .400

Snow .399 .200 .400

Rain Nice Snow
p_ Ra"m .400 .200 .400 (11.1.9)
Nice .400 .200 .400

Snow .400 .200 .400

Table 11.1.1: Powers of the Land of Oz transition matrix.

& Theorem 11.1.2

Let P be the transition matrix of a Markov chain, and let u be the probability vector which represents the starting distribution.
Then the probability that the chain is in state s; after n steps is the ¢ th entry in the vector

u™ =uPn (11.1.10)

Proof. The proof of this theorem is left as an exercise (Exercise 11.1.18).
We note that if we want to examine the behavior of the chain under the assumption that it starts in a certain state s;, we simply
choose u to be the probability vector with 7 th entry equal to 1 and all other entries equal to 0 .

v/ Example 11.1.3

In the Land of Oz example (Example 11.1.1) let the initial probability vector u equal (1/3,1/3,1/3) Then we can calculate
the distribution of the states after three days using Theorem 11.1.2 and our previous calculation of P?. We obtain

406 .203 .391
u® =uP® =(1/3, 1/3, 1/3)| .406 .188 .406
391 .203 .406

—(.401, .198, .401).

Examples

The following examples of Markov chains will be used throughout the chapter for exercises.

v/ Example 11.1.4

The President of the United States tells person A his or her intention to run or not to run in the next election. Then A relays the
news to B, who in turn relays the message to C, and so forth, always to some new person. We assume that there is a probability
a that a person will change the answer from yes to no when transmitting it to the next person and a probability b that he or she
will change it from no to yes. We choose as states the message, either yes or no. The transition matrix is then
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Yes No
P = Yes 1—a a (11.1.11)
No b 1-b

The initial state represents the President's choice.

Each time a certain horse runs in a three-horse race, he has probability 1/2 of winning, 1/4 of coming in second, and 1/4 of
coming in third, independent of the outcome of any previous race. We have an independent trials process, but it can also be
considered from the point of view of Markov chain theory. The transition matrix is

W P S

p_ W (5 .25 25 (11.1.12)
P |5 25 .25
S \.5b .25 .25

v/ Example 11.1.6

A

In the Dark Ages, Harvard, Dartmouth, and Yale admitted only male students. Assume that, at that time, 80 percent of the sons
of Harvard men went to Harvard and the rest went to Yale, 40 percent of the sons of Yale men went to Yale, and the rest split
evenly between Harvard and Dartmouth; and of the sons of Dartmouth men, 70 percent went to Dartmouth, 20 percent to
Harvard, and 10 percent to Yale. We form a Markov chain with transition matrix

HY D

p_H (8 20 (11.1.13)
Yy (3 4 3
D \2 .1 .7

v/ Example 11.1.7

Modify Example 11.1.6by assuming that the son of a Harvard man always went to Harvard. The transition matrix is now

HY D
p_H (1 00 (11.1.14)

Y 3 4 .3

D 2 1 .7

v/ Example 11.1.8

(Ehrenfest Model) The following is a special case of a model, called the Ehrenfest model, ® that has been used to explain
diffusion of gases. The general model will be discussed in detail in Section 11.5. We have two urns that, between them, contain
four balls. At each step, one of the four balls is chosen at random and moved from the urn that it is in into the other urn. We
choose, as states, the number of balls in the first urn. The transition matrix is then
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o 1 2 3
0 1 0 0
1/4 0 3/4 0
0 1/2 0 1/2
0 0 3/4 0 1/4
0o 0 0 1

(11.1.15)

B W N = O
S~ O O O

3 P. and T. Ehrenfest, "Uber zwei bekannte Einwéinde gegen das Boltzmannsche H-Theorem," Physikalishce Zeitschrift, vol. 8
(1907), pp. 311-314.

v/ Example 11.1.9

(Gene Model) The simplest type of inheritance of traits in animals occurs when a trait is governed by a pair of genes, each of
which may be of two types, say G and g. An individual may have a GG combination or Gg (which is genetically the same as
gG ) or gg. Very often the GG and Gg types are indistinguishable in appearance, and then we say that the G gene dominates
the g gene. An individual is called dominant if he or she has GG genes, recessive if he or she has gg, and hybrid with a Gg
mixture.

In the mating of two animals, the offspring inherits one gene of the pair from each parent, and the basic assumption of genetics
is that these genes are selected at random, independently of each other. This assumption determines the probability of
occurrence of each type of offspring. The offspring of two purely dominant parents must be dominant, of two recessive parents
must be recessive, and of one dominant and one recessive parent must be hybrid.

In the mating of a dominant and a hybrid animal, each offspring must get a G gene from the former and has an equal chance of
getting G or g from the latter. Hence there is an equal probability for getting a dominant or a hybrid offspring. Again, in the
mating of a recessive and a hybrid, there is an even chance for getting either a recessive or a hybrid. In the mating of two
hybrids, the offspring has an equal chance of getting G or g from each parent. Hence the probabilities are 1/4 for GG, 1/2 for
Gg, and 1 /4 for gg.

Consider a process of continued matings. We start with an individual of known genetic character and mate it with a hybrid. We
assume that there is at least one offspring. An offspring is chosen at random and is mated with a hybrid and this process
repeated through a number of generations. The genetic type of the chosen offspring in successive generations can be
represented by a Markov chain. The states are dominant, hybrid, and recessive, and indicated by GG, Gg, and gg respectively.
The transition probabilities are

GG Gg gg

p_C¢G¢ (1 00 (11.1.16)
Gg |.25 5 .25
g9 0 5 .5

v/ Example 11.1.10

Modify Example 11.1.9. as follows: Instead of mating the oldest offspring with a hybrid, we mate it with a dominant
individual. The transition matrix is

GG Gg gg
P= &g 100 (11.1.17)
Gg 5 .5 0
q9 0 1 0
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We start with two animals of opposite sex, mate them, select two of their offspring of opposite sex, and mate those, and so
forth. To simplify the example, we will assume that the trait under consideration is independent of sex.
Here a state is determined by a pair of animals. Hence, the states of our process will be:

GG,GG GG,Gg GG,99 Gg,Gg Gg,99 99,99
GG, GG 1.000  .000  .000 .000 .000 .000

GG, Gg 250  .500 .000  .250  .000  .000
P= GG,gg 000  .000 .000 1.000 .000  .000 (11.1.18)
Gg,Gg 062 250  .125 250  .250  .062
Gg, 99 000  .000 .000 .250  .500  .250
99, 99 000 .000 .000 .000  .000 1.000

We illustrate the calculation of transition probabilities in terms of the state s3. When the process is in this state, one parent has
GG genes, the other Gg. Hence, the probability of a dominant offspring is 1/2. Then the probability of transition to s;
(selection of two dominants) is 1/4, transition to s is 1/2, and to s4 is 1/4. The other states are treated the same way. The
transition matrix of this chain is:

v/ Example 11.1.12

(Stepping Stone Model) Our final example is another example that has been used in the study of genetics. It is called the
stepping stone model. 4 In this model we have an n-by- n array of squares, and each square is initially any one of k different
colors. For each step, a square is chosen at random. This square then chooses one of its eight neighbors at random and assumes
the color of that neighbor. To avoid boundary problems, we assume that if a square S is on the left-hand boundary, say, but not
at a corner, it is adjacent to the square 7" on the right-hand boundary in the same row as .S, and S is also adjacent to the squares
just above and below 7'. A similar assumption is made about squares on the upper and lower boundaries. The top left-hand
corner square is adjacent to three obvious neighbors, namely the squares below it, to its right, and diagonally below and to the
right. It has five other neighbors, which are as follows: the other three corner squares, the square below the upper right-hand
corner, and the square to the right of the bottom left-hand corner. The other three corners also have, in a similar way, eight
neighbors. (These adjacencies are much easier to understand if one imagines making the array into a cylinder by gluing the top
and bottom edge together, and then making the cylinder into a doughnut by gluing the two circular boundaries together.) With
these adjacencies, each square in the array is adjacent to exactly eight other squares.

A state in this Markov chain is a description of the color of each square. For this Markov chain the number of states is k”z,
which for even a small array of squares

4'S. Sawyer, "Results for The Stepping Stone Model for Migration in Population Genetics," Annals of Probability, vol. 4
(1979), pp. 699-728.
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Figure 11.1.1: Initial state of the stepping stone model.
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Figure 11.1.2: State of the stepping stone model after 10,000 steps.

is enormous. This is an example of a Markov chain that is easy to simulate but difficult to analyze in terms of its transition
matrix. The program SteppingStone simulates this chain. We have started with a random initial configuration of two colors
with n = 20 and show the result after the process has run for some time in Figure 111.1.2.

This is an example of an absorbing Markov chain. This type of chain will be studied in Section 11.2. One of the theorems
proved in that section, applied to the present example, implies that with probability 1 , the stones will eventually all be the
same color. By watching the program run, you can see that territories are established and a battle develops to see which color
survives. At any time the probability that a particular color will win out is equal to the proportion of the array of this color. You
are asked to prove this in Exercise 11.2.32.

Exercises

Exercise 11.1.1:
It is raining in the Land of Oz. Determine a tree and a tree measure for the next three days' weather. Find w(!), w(?), and w(®) and

compare with the results obtained from P, P2, and P2.

Exercise 11.1.2:

In Example (\PageIndex{4}\, let a = 0 and b = 1/2. Find P, P2, and P3. What would P" be? What happens to P" as n tends to
infinity? Interpret this result.

Exercise 11.1.3:
In Example (\PageIndex{5}\, find P, P?, and P*. What is P" ?
Exercise 11.1.4:

For Example (\PageIndex{6}\, find the probability that the grandson of a man from Harvard went to Harvard.

Exercise 11.1.5:
In Example (\PageIndex{7}\, find the probability that the grandson of a man from Harvard went to Harvard.

Exercise 11.1.6:
In Example (\PageIndex{9}\, assume that we start with a hybrid bred to a hybrid. Find u(®, u®, and u(®). What would u(® be?

Exercise 11.1.7:
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10
Find the matrices P2, P?, P4, and P" for the Markov chain determined by the transition matrix P = (0 1) . Do the same for

the transition matrix P = <(1) ;) . Interpret what happens in each of these processes.

Exercise 11.1.8:

A certain calculating machine uses only the digits 0 and 1 . It is supposed to transmit one of these digits through several stages.
However, at every stage, there is a probability p that the digit that enters this stage will be changed when it leaves and a probability
q =1 —p that it won't. Form a Markov chain to represent the process of transmission by taking as states the digits 0 and 1 . What
is the matrix of transition probabilities?

Exercise 11.1.9:

For the Markov chain in Exercise 11.1.8, draw a tree and assign a tree measure assuming that the process begins in state 0 and
moves through two stages of transmission. What is the probability that the machine, after two stages, produces the digit O (i.e., the
correct digit)? What is the probability that the machine never changed the digit from 0 ? Now let p =.1. Using the program
MatrixPowers, compute the 100th power of the transition matrix. Interpret the entries of this matrix. Repeat this with p = .2. Why
do the 100th powers appear to be the same?

Exercise 11.1.10:

Modify the program MatrixPowers so that it prints out the average A, of the powers P", for n =1 to N. Try your program on the
Land of Oz example and compare A,, and P".

Exercise 11.1.11:

Assume that a man's profession can be classified as professional, skilled laborer, or unskilled laborer. Assume that, of the sons of
professional men, 80 percent are professional, 10 percent are skilled laborers, and 10 percent are unskilled laborers. In the case of
sons of skilled laborers, 60 percent are skilled laborers, 20 percent are professional, and 20 percent are unskilled. Finally, in the
case of unskilled laborers, 50 percent of the sons are unskilled laborers, and 25 percent each are in the other two categories.
Assume that every man has at least one son, and form a Markov chain by following the profession of a randomly chosen son of a
given family through several generations. Set up the matrix of transition probabilities. Find the probability that a randomly chosen
grandson of an unskilled laborer is a professional man.

Exercise 11.1.12:

In Exercise (\PageIlndex{11}\, we assumed that every man has a son. Assume instead that the probability that a man has at least one
son is .8. Form a Markov chain with four states. If a man has a son, the probability that this son is in a particular profession is the
same as in Exercise 11.1.11. If there is no son, the process moves to state four which represents families whose male line has died
out. Find the matrix of transition probabilities and find the probability that a randomly chosen grandson of an unskilled laborer is a
professional man.

Exercise 11.1.13:

Write a program to compute u® given u and P. Use this program to compute u'® for the Land of Oz example, with
u=(0,1,0),and withu =1(1/3,1/3,1/3)

Exercise 11.1.14:

Using the program MatrixPowers, find P! through P% for Examples 11.1.9 and 11.1.10Q. See if you can predict the long-range
probability of finding the process in each of the states for these examples.

Exercise 11.1.15:

Write a program to simulate the outcomes of a Markov chain after n steps, given the initial starting state and the transition matrix
P as data (see Example 11.1.12). Keep this program for use in later problems.

Exercise 11.1.16:

Modify the program of Exercise (\PageIndex{15}\ so that it keeps track of the proportion of times in each state in n steps. Run the
modified program for different starting states for Example (\PageIndex{1}\ and Example (\PageIndex{8}\. Does the initial state
affect the proportion of time spent in each of the states if n is large?
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Exercise 11.1.17:
Prove Theorem 11.1.1

Exercise 11.1.18:
Prove Theorem 11.1.2

Exercise 11.1.19:

Consider the following process. We have two coins, one of which is fair, and the other of which has heads on both sides. We give
these two coins to our friend, who chooses one of them at random (each with probability 1/2). During the rest of the process, she
uses only the coin that she chose. She now proceeds to toss the coin many times, reporting the results. We consider this process to
consist solely of what she reports to us.

(a) Given that she reports a head on the nth toss, what is the probability that a head is thrown on the (n+1) st toss?

(b) Consider this process as having two states, heads and tails. By computing the other three transition probabilities
analogous to the one in part (a), write down a "transition matrix" for this process.

(c) Now assume that the process is in state "heads" on both the (n —1) st and the nth toss. Find the probability that a head
comes up on the (n+1) st toss.

(d) Is this process a Markov chain?
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