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12.3: Arc Sine Laws**

In Exercise 12.1.6, the distribution of the time of the last equalization in the symmetric random walk was determined. If we let
agkom denote the probability that a random walk of length 2m has its last equalization at time 2k , then we have

Ookom = Uak Umeozk -+ (12.3.1)
We shall now show how one can approximate the distribution of the «’s with a simple function. We recall that

1

Uogp ~ ——— . (12.3.2)
vk
Therefore, as both £ and m go to oo, we have
! (12.3.3)
Qopom ~ T —————— - 3.
T/ k(m — k)
This last expression can be written as
1
e ——— (12.34)
m./ (k/m)(1 - k/m)
Thus, if we define
f(=) — (12.3.5)
)= ——, WO
7r\/ z(l—x)
for0 <z <1 ,then we have
1 k
®opgm R Ef (E) - (12.3.6)

The reason for the ~ sign is that we no longer require that & get large. This means that we can replace the discrete o ys,
distribution by the continuous density 7(z) on the interval [0,1] and obtain a good approximation. In particular, if z is a fixed real
number between 0 and 1, then we have

N askpn / F(t)dt. (12.3.7)
0

k<am

It turns out that f(z) has a nice antiderivative, so we can write

2 —
Y agum ~ = arcsin T . (12.3.8)
k<am T
One can see from the graph of this last function that it has a minimum at z = 1/2 and is symmetric about that point. As noted in
the exercise, this implies that half of the walks of length 2m have no equalizations after time m, a fact which probably would not
be guessed.

It turns out that the arc sine density comes up in the answers to many other questions concerning random walks on the line. Recall
that in Section 1.1, a random walk could be viewed as a polygonal line connecting (0,0) with (m,S,,) . Under this interpretation,
we define b5, to be the probability that a random walk of length 2m has exactly 2& of its 2m polygonal line segments above the
t-axis.

The probability by, is frequently interpreted in terms of a two-player game. (The reader will recall the game Heads or Tails, in
Example 12.1.4 .) Player A is said to be in the lead at time n if the random walk is above the ¢-axis at that time, or if the random
walk is on the ¢-axis at time n but above the ¢ -axis at time n — 1 . (At time 0, neither player is in the lead.) One can ask what is the
most probable number of times that player A is in the lead, in a game of length 2m . Most people will say that the answer to this
question is m . However, the following theorem says that m is the least likely number of times that player A is in the lead, and the
most likely number of times in the lead is 0 or 2m .
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& Theorem

If Peter and Paul play a game of Heads or Tails of length 2m , the probability that Peter will be in the lead exactly 2k times is
equal to

Q2% Iy o (12.3.9)

Proof. To prove the theorem, we need to show that
bokom = Xokom - (12.3.10)

Exercise 12.1.7 shows that by,9, =uj, and by, =us, , SO we only need to prove that Equation 12.3.1 holds for
1<k<m-1 . We can obtain a recursion involving the b’s and the f’s (defined in Section 1.1) by counting the number of paths
of length 2m that have exactly 2k of their segments above the ¢-axis, where1 <k <m -1 . To count this collection of paths, we
assume that the first return occurs at time 25, where 1 <j<m-—1 . There are two cases to consider. Either during the first 25
outcomes the path is above the ¢-axis or below the ¢ -axis. In the first case, it must be true that the path has exactly (2k —2j) line
segments above the t-axis, between ¢t =2j and ¢t=2m . In the second case, it must be true that the path has exactly 2k line
segments above the ¢ -axis, betweent = 2j and¢=2m .

We now count the number of paths of the various types described above. The number of paths of length 25 all of whose line
segments lie above the ¢ -axis and which return to the origin for the first time at time 2j equals (1/2)2% fo; - This also equals the
number of paths of length 2;j all of whose line segments lie below the t -axis and which return to the origin for the first time at time
2j. The number of paths of length (2m —2j)  which have exactly (2k—2j) line segments above the ¢-axis is bok_sj2.-2;

Finally, the number of paths of length (2m — 25)  which have exactly 2k line segments above the ¢-axis is ba 5,,_»; . Therefore, we

have
1 k 1 m=k
borom = ;Z fojbor_2jom 2 + > Z Foibokom_2; - (12.3.11)
j=1 J=1
We now assume that Equation 12.3.1 is true for m < n . Then we have
1 k 1 m=—k
b2k,2n = 2_ Z f2ja2k-2j,2m-2j + ; Z f2j Q 2k 2m—2j
J=1 j=1

m—k

k

1

5 > Fojton-gj wam-ok +7 > fojuok oz
i=1 i=1

k it
1 1
= 35 Yam-2% Z fojUop-95 + 5 Yok Z fo2j Wom—2j-2%
=1 =1
1 1

= ;u2m—2k Uk +;'U'2ku2m-2k ,

where the last equality follows from Theorem [thm 12.1.2]. Thus, we have
bokon = Qok2n » (12.3.12)

which completes the proof.

We illustrate the above theorem by simulating 10,000 games of Heads or Tails, with each game consisting of 40 tosses. The
distribution of the number of times that Peter is in the lead is given in Figure 12.3.1 , together with the arc sine density.
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Figure 12.3.1 : Times in the lead.

We end this section by stating two other results in which the arc sine density appears. Proofs of these results may be found in
Feller.

< Theorem

Let J be the random variable which, for a given random walk of length 2m , gives the smallest subscript j such that §; = S5, .
(Such a subscript j must be even, by parity considerations.) Let 7o, be the probability that J =2k . Then we have

Y2kom = Q2%kdm - (12.3.13)

The next theorem says that the arc sine density is applicable to a wide range of situations. A continuous distribution function F(z)
is said to be if F(z) =1—-F(-z) . (If X is a continuous random variable with a symmetric distribution function, then for any
real z, we have P(X <z) = P(X > -2) .) We imagine that we have a random walk of length n in which each summand has the
distribution F'(z) , where F is continuous and symmetric. The subscript of the of such a walk is the unique subscript & such that

St >80, s S >8h1,8k 2881, o, S 28, (12.3.14)

We define the random variable K, to be the subscript of the first maximum. We can now state the following theorem concerning
the random variable K, .

< Theorem

Let F be a symmetric continuous distribution function, and let « be a fixed real number strictly between 0 and 1. Then as
n — oo , we have

2 —
P(K, < no) — — arcsin /o . (12.3.15)
T

A version of this theorem that holds for a symmetric random walk can also be found in Feller.

Exercises
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Exercise 12.3.1

For a random walk of length 2m , define ¢, to equal 1 if S, >0, orif S,_; =1 and S, —0 . Define ¢, to equal -1 in all other
cases. Thus, ¢, gives the side of the ¢-axis that the random walk is on during the time interval [k—1,% . A “law of large numbers"
for the sequence {¢;,} would say that for any s > 0 , we would have

teg et
P(—6< LT = <5>a1 (12.3.16)

n

as n—oo . Even though the €’s are not independent, the above assertion certainly appears reasonable. Using Theorem
(\PageIndex{3}\), show thatif -1 <z <1 ,then

lim P < ateatote w> ~ 2 wresin \/_l—l——z (12.3.17)
noo n m 2
Exercise 12.3.2
Given a random walk W of length m , with summands
(X1, Xy, X}, (12.3.18)
define the random walk to be the walk W * with summands
X X1 -, X1} (12.3.19)
a. Show that the kth partial sum S} satisfies the equation
S;=8m —Snk (12.3.20)

where S, is the kth partial sum for the random walk w .

b. Explain the geometric relationship between the graphs of a random walk and its reversal. (It is not in general true that one graph
is obtained from the other by reflecting in a vertical line.)

c. Use parts (a) and (b) to prove Theorem [thm 12.3.2].
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