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11.4: Fundamental Limit Theorem for Regular Chains**
The fundamental limit theorem for regular Markov chains states that if  is a regular transition matrix then

where  is a matrix with each row equal to the unique fixed probability row vector  for . In this section we shall give two very
different proofs of this theorem.

Our first proof is carried out by showing that, for any column vector ,  tends to a constant vector. As indicated in Section 1.3,
this will show that  converges to a matrix with constant columns or, equivalently, to a matrix with all rows the same.

The following lemma says that if an -by-  transition matrix has no zero entries, and  is any column vector with  entries, then
the vector  has entries which are “closer together" than the entries are in .

Let  be an -by-  transition matrix with no zero entries. Let  be the smallest entry of the matrix. Let  be a column vector
with  components, the largest of which is  and the smallest . Let  and  be the largest and smallest component,
respectively, of the vector . Then

Proof: In the discussion following Theorem 11.3.1, it was noted that each entry in the vector  is a weighted average of the
entries in . The largest weighted average that could be obtained in the present case would occur if all but one of the entries of 
have value  and one entry has value , and this one small entry is weighted by the smallest possible weight, namely . In this
case, the weighted average would equal

Similarly, the smallest possible weighted average equals

Thus,

This completes the proof of the lemma.

We turn now to the proof of the fundamental limit theorem for regular Markov chains.

If  is the transition matrix for a regular Markov chain, then

where  is matrix with all rows equal. Furthermore, all entries in  are strictly positive.

 

Proof. We prove this theorem for the special case that  has no 0 entries. The extension to the general case is indicated in Exercise
[exer 11.4.6]. Let be any -component column vector, where  is the number of states of the chain. We assume that , since
otherwise the theorem is trivial. Let  and  be, respectively, the maximum and minimum components of the vector . The
vector  is obtained from the vector  by multiplying on the left by the matrix . Hence each component of  is an
average of the components of . Thus
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and

Each sequence is monotone and bounded:

Hence, each of these sequences will have a limit as  tends to infinity.

Let  be the limit of  and  the limit of . We know that . We shall prove that . This will be the case if
 tends to 0. Let  be the smallest element of . Since all entries of  are strictly positive, we have . By our lemma

From this we see that

Since , we must have , so , so the difference  tends to 0 as  tends to infinity. Since every
component of  lies between  and , each component must approach the same number . This shows that

where  is a column vector all of whose components equal .

Now let  be the vector with th component equal to 1 and all other components equal to 0. Then  is the th column of .
Doing this for each  proves that the columns of  approach constant column vectors. That is, the rows of  approach a
common row vector , or,

It remains to show that all entries in  are strictly positive. As before, let  be the vector with th component equal to 1 and all
other components equal to 0. Then  is the th column of , and this column has all entries strictly positive. The minimum
component of the vector  was defined to be , hence . Since , we have . Note finally that this value of 

 is just the th component of , so all components of  are strictly positive.

Doeblin’s Proof

We give now a very different proof of the main part of the fundamental limit theorem for regular Markov chains. This proof was
first given by Doeblin,  a brilliant young mathematician who was killed in his twenties in the Second World War.

Let  be the transition matrix for a regular Markov chain with fixed vector . Then for any initial probability vector , 
 as 

 

Proof. Let  be a Markov chain with transition matrix  started in state . Let  be a Markov chain with
transition probability  started with initial probabilities given by . The  and  processes are run independently of each other.

We consider also a third Markov chain  which consists of watching both the  and  processes. The states for  are pairs 
. The transition probabilities are given by

Since  is regular there is an  such that  for all  and . Thus for the  chain it is also possible to go from any
state  to any other state  in at most  steps. That is  is also a regular Markov chain.

We know that a regular Markov chain will reach any state in a finite time. Let  be the first time the the chain  is in a state of
the form . In other words,  is the first time that the  and the  processes are in the same state. Then we have shown that
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If we watch the  and  processes after the first time they are in the same state we would not predict any difference in their long
range behavior. Since this will happen no matter how we started these two processes, it seems clear that the long range behaviour
should not depend upon the starting state. We now show that this is true.

We first note that if , then since  and  are both in the same state at time ,

If we multiply both sides of this equation by , we obtain

We know that for all ,

But

and the second summand on the right-hand side of this equation goes to 0 as  goes to , since  goes to 0 as  goes to 
. So,

as  goes to . From Equation , we see that

as  goes to . But by similar reasoning to that used above, the difference between this last expression and  goes to 0
as  goes to . Therefore,

as  goes to .

This completes the proof.

In the above proof, we have said nothing about the rate at which the distributions of the ’s approach the fixed distribution . In
fact, it can be shown that

The left-hand side of this inequality can be viewed as the distance between the distribution of the Markov chain after  steps,
starting in state , and the limiting distribution .

Exercises

Exercise 

Define  and  by

Compute , , and  and show that the results are approaching a constant vector. What is this vector?

Exercise 

Let  be a regular  transition matrix and  any -component column vector. Show that the value of the limiting constant
vector for  is .
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be a transition matrix of a Markov chain. Find two fixed vectors of  that are linearly independent. Does this show that the Markov
chain is not regular?

Exercise 

Describe the set of all fixed column vectors for the chain given in Exercise .

Exercise 

The theorem that  was proved only for the case that  has no zero entries. Fill in the details of the following extension to
the case that  is regular. Since  is regular, for some  has no zeros. Thus, the proof given shows that 
approaches 0 as  tends to infinity. However, the difference  can never increase. (Why?) Hence, if we know that the
differences obtained by looking at every th time tend to 0, then the entire sequence must also tend to 0.

Exercise 

Let  be a regular transition matrix and let  be the unique non-zero fixed vector of . Show that no entry of  is 0.

Exercise 

Here is a trick to try on your friends. Shuffle a deck of cards and deal them out one at a time. Count the face cards each as ten. Ask
your friend to look at one of the first ten cards; if this card is a six, she is to look at the card that turns up six cards later; if this card
is a three, she is to look at the card that turns up three cards later, and so forth. Eventually she will reach a point where she is to
look at a card that turns up  cards later but there are not  cards left. You then tell her the last card that she looked at even though
you did not know her starting point. You tell her you do this by watching her, and she cannot disguise the times that she looks at the
cards. In fact you just do the same procedure and, even though you do not start at the same point as she does, you will most likely
end at the same point. Why?

Exercise 

Write a program to play the game in Exercise .

Exercise 

(Suggested by Peter Doyle) In the proof of Theorem , we assumed the existence of a fixed vector . To avoid this
assumption, beef up the coupling argument to show (without assuming the existenceof a stationary distribution ) that for
appropriate constants  and , the distance between  and  is at most  for any starting distributions  and .Apply
this in the case where  toconclude that the sequence  is a Cauchy sequence,and that its limit is a matrix  whose
rows are all equal to a probabilityvector  with . Note that the distance between  and  is at most , so in freeing
ourselves from the assumption abouthaving a fixed vector we’ve proved that the convergence to equilibriumtakes place
exponentially fast.
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