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10.1: Generating Functions for Discrete Distributions

So far we have considered in detail only the two most important attributes of a random variable, namely, the mean and the variance.
We have seen how these attributes enter into the fundamental limit theorems of probability, as well as into all sorts of practical
calculations. We have seen that the mean and variance of a random variable contain important information about the random
variable, or, more precisely, about the distribution function of that variable. Now we shall see that the mean and variance do contain
the available information about the density function of a random variable. To begin with, it is easy to give examples of different
distribution functions which have the same mean and the same variance. For instance, suppose X and Y are random variables, with

distributions
1 2 3 45 6
= : 10.1.1
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- . 10.1.2
Py (1/4 0 0 1/2 1/4 0) (10.1.2)

Then with these choices, we have E(X)=FE(Y)="7/2 and V(X)=V(Y)=9/4, and yet certainly px and py are quite
different density functions.

This raises a question: If X is a random variable with range {1, z2,...} of at most countable size, and distribution function
p =px, and if we know its mean p = E(X) and its variance 0> = V(X), then what else do we need to know to determine p
completely?

Moments

A nice answer to this question, at least in the case that X has finite range, can be given in terms of the of X, which are numbers
defined as follows:

L = kth moment-~of X
= E(X%)
o0
k
= > (@) p(=))
=1

J
provided the sum converges. Here p(z;) = P(X = z;) .
In terms of these moments, the mean y and variance o2 of X are given simply by

M1,

l’l’:
02: #2_,["%;

so that a knowledge of the first two moments of X gives us its mean and variance. But a knowledge of the moments of X
determines its distribution function p completely.

Moment Generating Functions

To see how this comes about, we introduce a new variable ¢, and define a function g(t) as follows:

g(t) = B(e)

We call g(¢t) the for X, and think of it as a convenient bookkeeping device for describing the moments of X. Indeed, if we
differentiate g(t) » times and then set ¢t = 0, we get
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It is easy to calculate the moment generating function for simple examples.

Examples

v/ Example 10.1.1:

Suppose X has range {1,2,3,...,n}tand px(j) =1/n for 1 < j <n (uniform distribution). Then
g(t) = i et
="
1 t 2t nt
= ;(e +e+---+e")
e'(e™—1)
n(et —1)

If we use the expression on the right-hand side of the second line above, then it is easy to see that

= _L +1

M gI(O) n(1+2+3—|—+n)_n2 ,
= _1 n+1)(2n+1

H2 9"(0) n(1+4+9+~-~+n2)—$,

and that g =y = (n+1)/2 and 0 = pp —p? = (n? —1)/12 .

v/ Example 10.1.2:

Suppose now that X has range {0,1,2,3,...,n}and px(j) = (’;) p'q" 7 for 0 < j <n (binomial distribution). Then

i . n . n— .
g(t) = Ze“(.>p’q 7
=
= X (5)eeye
=0 \J
= (pe’ +q)"
Note that

p=g0)=  n(pe'+q" 'pe'|,_, =np,
p2 =g"(0) = n(n—1)p* +np,

so that 4 =y = np, and 02 = py —pu? =np(1 —p) , as expected.

v/ Example 10.1.3:

Suppose X has range {1,2,3,...}and px(j) = ¢’ !p for all j (geometric distribution). Then

o0
gty=" Y g p
=1

pe'

1—get "’
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(1—get)? |y »p
" pe’ 4-pge?t 1+q
pe=  ¢'0)="—-5| =—%
(1 - qet)3 t=0 D ’

p=p =1/p,and 0® = puy —pu} = q/p® , as computed in Example [exam 6.21].

v/ Example 10.1.4:

Let X have range {0,1,2,3,...}and let px(j) = e *A /35! forall j (Poisson distribution with mean \). Then

) e N
e

9(t) = 2.7
= (Aet)d
_ e ; :
_ et — N
Then
p = g (0) =X Dxet| =2,
p= g'(0) =IO )| =N+,

p=pm=A,ando’ =ps —p2 =X\ .

The variance of the Poisson distribution is easier to obtain in this way than directly from the definition (as was done in Exercise
[sec 6.2].[exer 6.2.100]).
Moment Problem

Using the moment generating function, we can now show, at least in the case of a discrete random variable with finite range, that its
distribution function is completely determined by its moments.

? Theorem 10.1.1

Add exercises text here. For the automatic number to work, you need to Let X be a discrete random variable with finite range
{z1,22,...,2,}, distribution function p, and moment generating function g. Then g is uniquely determined by p, and
conversely.

Proof

We know that p determines g, since
n
g(t) = Z e ip(z;) . (10.1.3)
=1
Conversely, assume that g(t) is known. We wish to determine the values of z; and p(z;), for 1 <j<n . We assume,

without loss of generality, that p(z;) >0 for 1 <j <n , and that

T <Ty<...<Zy . (10.1.4)

We note that g(¢) is differentiable for all ¢, since it is a finite linear combination of exponential functions. If we compute
g'(t)/g(t), we obtain \[

\ .\] Dividing both top and bottom by e®*» , we obtain the expression \[\ .\] Since zy, is the largest of the x;’s, this expression
approaches z,, as t goes to co. So we have shown that
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!
t
o= lim 28 (10.1.5)
t—00 g(t)
To find p(z,,), we simply divide g(¢) by e*» and let ¢ go to oco. Once z,, and p(x,,) have been determined, we can subtract
p(z,,)et from g(t), and repeat the above procedure with the resulting function, obtaining, in turn, 1, ..., 2; and
p($n_1), cee 7p($1) .

If we delete the hypothesis that X have finite range in the above theorem, then the conclusion is no longer necessarily true.

Ordinary Generating Functions
In the special but important case where the z; are all nonnegative integers, z; = j, we can prove this theorem in a simpler way.

In this case, we have
g(t)=>_€’p(5), (10.1.6)

and we see that g(t) is a in e’. If we write z = e’ , and define the function h by

h(z) = 2'p(j), (10.1.7)
=0
then h(2) is a polynomial in z containing the same information as g(t), and in fact
h(z) = g(log2),
g(t) = h(e) .
The function h(z) is often called the for X. Note that h(1)=g(0)=1, K (1)=4'(0)=p1, and

R"(1) =¢"(0) —¢'(0) = pa — p1 . It follows from all this that if we know g(¢), then we know h(z), and if we know h(z), then
we can find the p(j) by Taylor’s formula:
p(j) = coefficient~of 27 in h(2)
Rl (0)
.

For example, suppose we know that the moments of a certain discrete random variable X are given by
Ho = 1,

Wi = -+ —, fork>1.

Then the moment generating function g of X is

oo k
Lt
g(t) = ZT
=0
1T &t 1 (2t)F
2 1 K
_ 1 1, 145
- FRIERI
This is a polynomial in z = e’ , and
1 1 1
h(z) = 7+52+ Zzz : (10.1.8)

Hence, X must have range {0, 1, 2}, and p must have values {1/4,1/2,1/4}
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Properties

Both the moment generating function g and the ordinary generating function A have many properties useful in the study of random
variables, of which we can consider only a few here. In particular, if X is any discrete random variable and Y = X +a , then

gr(t) = B(e")
( X+a))
taE( )
6 gX (t) )

while if Y = bX, then

gr(t)= E(e")
_ E(eth)
= gx(bt).

In particular, if

X = : (10.1.9)

then (see Exercise [exer 10.1.14])

t
g0 (t) =€ "7 gx (;) : (10.1.10)

If X and Y are random variables and Z = X 4+ Y is their sum, with px, py, and pz the associated distribution functions, then we
have seen in Chapter [chp 7] that p is the of px and py, and we know that convolution involves a rather complicated calculation.
But for the generating functions we have instead the simple relations

gz(t) = gx(t)gr(t),
hz(z) = hx(2)hv(2),
that is, gz is simply the of gx and gy, and similarly for h.

To see this, first note that if X and Y are independent, then X and e are independent (see Exercise [sec 5.2].[exer 5.2.38]), and

hence
E(e™e™) = E(e™)E(eY) . (10.1.11)
It follows that
gz(t) = E(e”) =B(*)
- E(e™)B(e")
9x(t)gy (t),
and, replacing t by log z, we also get
hz(2) = hx(2)hy(2) . (10.1.12)
If X and Y are independent discrete random variables with range {0, 1,2, ..., n}and binomial distribution
o) =rv )= ()P, (10.1.13)

and if Z =X +Y , then we know (cf. Section [sec 7.1]) that the range of X is
{0,1,2,...,2n} (10.1.14)

and X has binomial distribution
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pz(j) = (px *pv)(j) = (Z;)pfq%j . (10.1.15)

Here we can easily verify this result by using generating functions. We know that

% (5

gx(t) =gv(t)

= (pe’ +)"
and
hx(2) = hy(z) = (pz+q)" . (10.1.16)
Hence, we have
92(t) = gx (t)gv (t) = (pe’ +9)*", (10.1.17)
or, what is the same,
hz(z)=  hx(hy(2) = (pz+q)™"
= i (2;) (pz)ig*" 7,

J=0

from which we can see that the coefficient of 27 is just pz(j) = (2;1) plg*i,

v/ Example 10.1.6:

If X and Y are independent discrete random variables with the non-negative integers {0,1,2,3,...} as range, and with
geometric distribution function

px(j) =pv(j) =a’p, (10.1.18)
then
p
gx(t) =gv(t) = ——, (10.1.19)
1—get
andif Z=X+Y , then
92(t) = g9x(t)gy (¢)
pZ

1—2get +g%e*

If we replace e’ by z, we get
2

p
hZ(Z) = (1 — qz)2
= P (k+1)gkt,
k=0

and we can read off the values of pz(j) as the coefficient of 27 in this expansion for h(z), even though h(z) is not a
polynomial in this case. The distribution pz is a negative binomial distribution (see Section [sec 5.1]).

Here is a more interesting example of the power and scope of the method of generating functions.

Heads or Tails
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In the coin-tossing game discussed in Example [exam 1.3], we now consider the question “When is Peter first in the lead?"

Answer

Let X}, describe the outcome of the kth trial in the game

X, — +1, i‘f kth toss~i's~heafds, (10.1.20)
—1, if kth toss~is~tails.
Then the X}, are independent random variables describing a Bernoulli process. Let Sy =0, and, forn > 1, let
S, =X1+Xo+---+X,. (10.1.21)
Then S,, describes Peter’s fortune after n trials, and Peter is first in the lead after n trials if S, <0 for 1 <k <n and
S, =1.
Now this can happen when n =1, in which case S; = X; =1, or when n > 1, in which case S; = X; = —1 . In the

latter case, Sy =0 for k =n — 1, and perhaps for other k£ between 1 and n. Let m be the such value of k; then S,, =0
and Sy <0 for 1 <k < m . In this case Peter loses on the first trial, regains his initial position in the next m — 1 trials,
and gains the lead in the next n —m trials.

Let p be the probability that the coin comes up heads, and let g =1 —p . Let r,, be the probability that Peter is first in the
lead after n trials. Then from the discussion above, we see that

Tn = 0, if n even,
Ty = p (= probability-of~heads~in~a-~single-~toss),
Tn = q(rirp—o +7r3rp_g+---+rp_0r1), ifn>1, nodd.

Now let T describe the time (that is, the number of trials) required for Peter to take the lead. Then 7" is a random variable,
and since P(T' =n) =, , r is the distribution function for 7.

We introduce the generating function hr(z) for T":
e8]
hr(2) = rnz". (10.1.22)
n=0

Then, by using the relations above, we can verify the relation
hr(z) = pz+qz(hr(2))? . (10.1.23)
If we solve this quadratic equation for hr(z), we get

B 14+./1—4pqz? _ 2pz

2qz C1F/1_dpg?

Of these two solutions, we want the one that has a convergent power series in z (i.e., that is finite for z =0). Hence we
choose

hr(z (10.1.24)

1—+/1—4pqz? 2pz

hr(z) = = (10.1.25)

29z B 1++/1—4pg?

Now we can ask: What is the probability that Peter is in the lead? This probability is given by (see Exercise 10.1.10

20 1—4/1—4pq
Sr= =1
n=0 q
_ 1-lp—d
2q
_ {p/q, ifp<g,
1, ifp>gq,
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so that Peter is sure to be in the lead eventually if p > ¢q .
How long will it take? That is, what is the expected value of T'? This value is given by

1/(p_q)a ifp>q7

. (10.1.26)
0, if p=gq.

BT =y (1) = {

This says that if p > ¢ , then Peter can expect to be in the lead by about 1/(p —q) trials, but if p = ¢, he can expect to wait
a long time.

A related problem, known as the Gambler’s Ruin problem, is studied in Exercise [exer 11.2.22] and in Section 12.2.

Exercises

Exercise 10.1.1

Find the generating functions, both ordinary h(z) and moment g(¢), for the following discrete probability distributions.

1. The distribution describing a fair coin.
2. The distribution describing a fair die.
3. The distribution describing a die that always comes up 3.
4. The uniform distribution on the set {n,n+1,n+2,...,n+k} .
5. The binomial distribution on {n,n+1,n+2,...,n+k} .
6. The geometric distribution on {0, 1,2,. .., }with p(j) =2/37"1.
Exercise 10.1.2
For each of the distributions (a) through (d) of Exercise 10.1.1 calculate the first and second moments, 1 and ps, directly from
their definition, and verify that A(1) =1, A'(1) = py, and A" (1) = pg — 1 -
Exercise 10.1.3
Let p be a probability distribution on {0, 1, 2} with moments p3 =1, ue = 3/2.
1. Find its ordinary generating function h(z).
2. Using (a), find its moment generating function.
3. Using (b), find its first six moments.
4. Using (a), find py, p1, and ps.
Exercise 10.1.4
In Exercise 10.1.3 the probability distribution is completely determined by its first two moments. Show that this is always true for
any probability distribution on {0, 1, 2}. : Given y; and g, find h(z) as in Exercise 10.1.3and use h(z) to determine p.
Exercise 10.1.5
Let p and p' be the two distributions

1 23 4 5

- 10.1.27

P (1/3002/3 0)’ (10.1.27)
3

;o (1 2 4 5
- . 10.1.2
P (0 2/3 0 0 1/3 (10.1.28)

1. Show that p and p’ have the same first and second moments, but not the same third and fourth moments.
2. Find the ordinary and moment generating functions for p and p'.

Exercise 10.1.6
Let p be the probability distribution

0 1 2
p:<0 13 2/3), (10.1.29)
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and let p, =p*px*---*p be the n-fold convolution of p with itself.

1. Find ps by direct calculation (see Definition 7.1.1).

2. Find the ordinary generating functions 4 (z) and hy(z) for p and ps, and verify that hs(2) = (h(2))? .

3. Find hy,(2) from h(z).

4. Find the first two moments, and hence the mean and variance, of p, from h,,(z). Verify that the mean of p,, is n times the mean
of p.

5. Find those integers j for which p, () > 0 from h,(z).

Exercise 10.1.7
Let X be a discrete random variable with values in {0,1,2,...,n}and moment generating function g(¢). Find, in terms of g(t),
the generating functions for

1. -X.
2. X+1.
3.3X.
4.aX+b.

Exercise 10.1.8
Let X, X», ..., X, be an independent trials process, with values in {0, 1} and mean p = 1/3. Find the ordinary and moment
generating functions for the distribution of

1..51 = X; . : First find X3 explicitly.

2.5 =X1+X,.

3., =X +Xo+---+ X, .

Exercise 10.1.9

Let X and Y be random variables with values in {1, 2, 3, 4, 5, 6 }with distribution functions px and py given by
px() = aj,
py(j) = bj .

1. Find the ordinary generating functions hx(z) and hy (z) for these distributions.
2. Find the ordinary generating function hz(z) for the distribution Z =X +Y .
3. Show that hz(z) cannot ever have the form

2242 e g2
11 '

: hx and hy must have at least one nonzero root, but hz(z) in the form given has no nonzero real roots.

hz(z) = (10.1.30)

It follows from this observation that there is no way to load two dice so that the probability that a given sum will turn up when they
are tossed is the same for all sums (i.e., that all outcomes are equally likely).

Exercise 10.1.10

Show that if
1—+/1—4pqz>
h(z) = —Y__"PI% (10.1.31)
2qz
then
if p <
h(1) = {p/q’ CP=d (10.1.32)
1, ifp>gq,
and
1/(p— if
0, ifp=gq.
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Exercise 10.1.11
Show that if X is a random variable with mean y and variance o2, and if X* = (X — ) /o is the standardized version of X, then

gx- (t) =e 7 gx <£) : (10.1.34)
ag
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