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11.5: Mean First Passage Time for Ergodic Chains
In this section we consider two closely related descriptive quantities of interest for ergodic chains: the mean time to return to a state
and the mean time to go from one state to another state.

Let  be the transition matrix of an ergodic chain with states , , …, . Let  be the unique probability
vector such that . Then, by the Law of Large Numbers for Markov chains, in the long run the process will spend a fraction

 of the time in state . Thus, if we start in any state, the chain will eventually reach state ; in fact, it will be in state 
infinitely often.

Another way to see this is the following: Form a new Markov chain by making  an absorbing state, that is, define . If we
start at any state other than , this new process will behave exactly like the original chain up to the first time that state  is
reached. Since the original chain was an ergodic chain, it was possible to reach  from any other state. Thus the new chain is an
absorbing chain with a single absorbing state  that will eventually be reached. So if we start the original chain at a state  with 

, we will eventually reach the state .

Let  be the fundamental matrix for the new chain. The entries of  give the expected number of times in each state before
absorption. In terms of the original chain, these quantities give the expected number of times in each of the states before reaching
state  for the first time. The th component of the vector  gives the expected number of steps before absorption in the new
chain, starting in state . In terms of the old chain, this is the expected number of steps required to reach state  for the first time
starting at state .

Mean First Passage Time

If an ergodic Markov chain is started in state , the expected number of steps to reach state  for the first time is called the
from  to . It is denoted by . By convention .

 

Let us return to the maze example (Example 11.3.3). We shall make this ergodic chain into an absorbing chain by making state
5 an absorbing state. For example, we might assume that food is placed in the center of the maze and once the rat finds the
food, he stays to enjoy it (see Figure [ ).

Figure : The maze problem.

The new transition matrix in canonical form is
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If we compute the fundamental matrix , we obtain

The expected time to absorption for different starting states is given by the vector , where

We see that, starting from compartment 1, it will take on the average six steps to reach food. It is clear from symmetry that we
should get the same answer for starting at state 3, 7, or 9. It is also clear that it should take one more step, starting at one of
these states, than it would starting at 2, 4, 6, or 8. Some of the results obtained from  are not so obvious. For instance, we
note that the expected number of times in the starting state is 14/8 regardless of the state in which we start.

 

Mean Recurrence Time
A quantity that is closely related to the mean first passage time is the mean recurrence time defined as follows. Assume that we
start in state ; consider the length of time before we return to  for the first time. It is clear that we must return, since we either
stay at  the first step or go to some other state , and from any other state , we will eventually reach  because the chain is
ergodic.

If an ergodic Markov chain is started in state , the expected number of steps to return to  for the first time is the mean
recurrance time for . It is denoted by .

We need to develop some basic properties of the mean first passage time. Consider the mean first passage time from  to ;
assume that . This may be computed as follows: take the expected number of steps required given the outcome of the first
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step, multiply by the probability that this outcome occurs, and add. If the first step is to , the expected number of steps required is
1; if it is to some other state , the expected number of steps required is  plus 1 for the step already taken. Thus,

or, since ,

Similarly, starting in , it must take at least one step to return. Considering all possible first steps gives us

Mean First Passage Matrix and Mean Recurrence Matrix
Let us now define two matrices  and . The th entry  of  is the mean first passage time to go from  to  if ; the
diagonal entries are 0. The matrix  is called the mean first passage matrix. The matrix  is the matrix with all entries 0 except
the diagonal entries . The matrix  is called the mean recurrence matrix.  Let  be an  matrix with all entries 1.
Using Equation [eq 11.5.1] for the case  and Equation [eq 11.5.2] for the case , we obtain the matrix equation

or

Equation [eq 11.5.4] with  implies Equations [eq 11.5.1] and [eq 11.5.2]. We are now in a position to prove our first basic
theorem.

For an ergodic Markov chain, the mean recurrence time for state  is , where  is the th component of the fixed
probability vector for the transition matrix.

Proof. Multiplying both sides of Equation  by  and using the fact that 

gives

Here  is a row vector with all entries 1 and  is a row vector with th entry . Thus

and

as was to be proved.

For an ergodic Markov chain, the components of the fixed probability vector w are strictly positive. We know that the values of 
 are finite and so  cannot be 0.
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In  Section 11.3 we found the fixed probability vector for the maze example to be

Hence, the mean recurrence times are given by the reciprocals of these probabilities. That is,

Returning to the Land of Oz, we found that the weather in the Land of Oz could be represented by a Markov chain with states rain,
nice, and snow. In Section 1.3 we found that the limiting vector was . From this we see that the mean number
of days between rainy days is 5/2, between nice days is 5, and between snowy days is 5/2.

Fundamental Matrix

We shall now develop a fundamental matrix for ergodic chains that will play a role similar to that of the fundamental matrix 
 for absorbing chains. As was the case with absorbing chains, the fundamental matrix can be used to find a number

of interesting quantities involving ergodic chains. Using this matrix, we will give a method for calculating the mean first passage
times for ergodic chains that is easier to use than the method given above. In addition, we will state (but not prove) the Central
Limit Theorem for Markov Chains, the statement of which uses the fundamental matrix.

We begin by considering the case that is the transition matrix of a regular Markov chain. Since there are no absorbing states, we
might be tempted to try  for a fundamental matrix. But  does not have an inverse. To see this, recall that a
matrix  has an inverse if and only if  implies . But since  we have , and so  does not
have an inverse.

We recall that if we have an absorbing Markov chain, and is the restriction of the transition matrix to the set of transient states, then
the fundamental matrix could be written as

The reason that this power series converges is that , so this series acts like a convergent geometric series.

This idea might prompt one to try to find a similar series for regular chains. Since we know that , we might consider the
series

We now use special properties of and to rewrite this series. The special properties are: 1) , and 2)  for all
positive integers . These facts are easy to verify, and are left as an exercise (see Exercise [exer 11.5.28]). Using these facts, we see
that

If we expand the expression , using the Binomial Theorem, we obtain the expression in parenthesis above, except that we
have an extra term (which equals 1). Since , we see that the above expression equals -1. So we have

for all .
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r = ( )  .12 8 12 8 6 8 12 8 12 (11.5.13)
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We can now rewrite the series in Eq.  as

Since the th term in this series is equal to , the th term goes to 0 as  goes to infinity. This is sufficient to show that
this series converges, and sums to the inverse of the matrix . We call this inverse the associated with the chain, and we
denote it by .

In the case that the chain is ergodic, but not regular, it is not true that  as . Nevertheless, the matrix 
still has an inverse, as we will now show.

TLet be the transition matrix of an ergodic chain, and let be the matrix all of whose rows are the fixed probability row vector
for . Then the matrix

has an inverse.

 

Proof. Let  be a column vector such that

To prove the proposition, it is sufficient to show that must be the zero vector. Multiplying this equation by  and using the fact that
 and , we have

Therefore,

But this means that  is a fixed column vector for . By Theorem 11.3.4, this can only happen if  is a constant vector.
Since , and has strictly positive entries, we see that . This completes the proof.

As in the regular case, we will call the inverse of the matrix  the for the ergodic chain with transition matrix , and we
will use to denote this fundamental matrix.

Let  be the transition matrix for the weather in the Land of Oz. Then

so

 

11.5.7

I +(P−W) +(P−W +⋯  .)2 (11.5.17)
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Using the Fundamental Matrix to Calculate the Mean First Passage Matrix
We shall show how one can obtain the mean first passage matrix from the fundamental matrix for an ergodic Markov chain. Before
stating the theorem which gives the first passage times, we need a few facts about .

Let , and let  be a column vector of all 1’s. Then

and

Proof. Since  and ,

If we multiply both sides of this equation on the left by , we obtain

Similarly, since  and ,

If we multiply both sides of this equation on the right by , we obtain

Finally, we have

Multiplying on the left by , we obtain

This completes the proof.

The following theorem shows how one can obtain the mean first passage times from the fundamental matrix.

The mean first passage matrix  for an ergodic chain is determined from the fundamental matrix  and the fixed row
probability vector  by

Proof. We showed in Equation  that

Thus,

and from Lemma ,

Again using Lemma , we have

 Lemma 11.5.1
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Zc = c , (11.5.23)

wZ = w , (11.5.24)

Z(I −P) = I −W . (11.5.25)

Pc = c Wc = c

c = (I −P+W)c . (11.5.26)

Z

Zc = c . (11.5.27)

wP = w wW = w

w = w(I −P+W) . (11.5.28)

Z

wZ = w . (11.5.29)

(I −P+W)(I −W) =

=
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 Theorem 11.5.2

M Z
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11.5.6

(I −P)M = C −D . (11.5.32)

Z(I −P)M = ZC −ZD , (11.5.33)

11.5.1

Z(I −P)M = C −ZD . (11.5.34)
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or

From this equation, we see that

But , and so

or

From Equations  and , we have

Since ,

(Example  continued) In the Land of Oz example, we find that

We have also seen that . So, for example,

by Theorem . Carrying out the calculations for the other entries of , we obtain

 

Computation

The program ErgodicChain calculates the fundamental matrix, the fixed vector, the mean recurrence matrix , and the mean first
passage matrix . We have run the program for the Ehrenfest urn model (Example [exam 11.1.6]). We obtain:

M −WM = C −ZD (11.5.35)

M = C −ZD +WM . (11.5.36)
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From the mean first passage matrix, we see that the mean time to go from 0 balls in urn 1 to 2 balls in urn 1 is 2.6667 steps while
the mean time to go from 2 balls in urn 1 to 0 balls in urn 1 is 18.6667. This reflects the fact that the model exhibits a central
tendency. Of course, the physicist is interested in the case of a large number of molecules, or balls, and so we should consider this
example for  so large that we cannot compute it even with a computer.

Ehrenfest Model

(Example ] continued) Let us consider the Ehrenfest model (see Example 11.1.6) for gas diffusion for the general case of
 balls. Every second, one of the  balls is chosen at random and moved from the urn it was in to the other urn. If there are 

balls in the first urn, then with probability  we take one of them out and put it in the second urn, and with probability 
 we take a ball from the second urn and put it in the first urn. At each second we let the number  of balls in the

first urn be the state of the system. Then from state  we can pass only to state  and , and the transition probabilities
are given by

This defines the transition matrix of an ergodic, non-regular Markov chain (see Exercise ). Here the physicist is
interested in long-term predictions about the state occupied. In Example 11.3.4, we gave an intuitive reason for expecting that
the fixed vector  is the binomial distribution with parameters  and . It is easy to check that this is correct. So,

Thus the mean recurrence time for state  is

Consider in particular the central term . We have seen that this term is approximately . Thus we may approximate 
 by .

 

This model was used to explain the concept of reversibility in physical systems. Assume that we let our system run until it is in
equilibrium. At this point, a movie is made, showing the system’s progress. The movie is then shown to you, and you are asked to
tell if the movie was shown in the forward or the reverse direction. It would seem that there should always be a tendency to move
toward an equal proportion of balls so that the correct order of time should be the one with the most transitions from  to  if 

 and  to  if .
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 Example 11.5.5
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Figure : Ehrenfest simulation.

In Figure  we show the results of simulating the Ehrenfest urn model for the case of  and 1000 time units, using the
program EhrenfestUrn. The top graph shows these results graphed in the order in which they occurred and the bottom graph
shows the same results but with time reversed. There is no apparent difference.

We note that if we had not started in equilibrium, the two graphs would typically look quite different.

Reversibility
If the Ehrenfest model is started in equilibrium, then the process has no apparent time direction. The reason for this is that this
process has a property called Define  to be the number of balls in the left urn at step . We can calculate, for a general ergodic
chain, the reverse transition probability:

In general, this will depend upon , since  and also  change with . However, if we start with the vector 
 or wait until equilibrium is reached, this will not be the case. Then we can define

as a transition matrix for the process watched with time reversed.
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Let us calculate a typical transition probability for the reverse chain  in the Ehrenfest model. For example,

Similar calculations for the other transition probabilities show that . When this occurs the process is called Clearly, an
ergodic chain is reversible if, and only if, for every pair of states  and , . In particular, for the Ehrenfest model
this means that . Thus, in equilibrium, the pairs  and  should occur with the same
frequency. While many of the Markov chains that occur in applications are reversible, this is a very strong condition. In Exercise
[exer 11.5.12] you are asked to find an example of a Markov chain which is not reversible.

The Central Limit Theorem for Markov Chains
Suppose that we have an ergodic Markov chain with states . It is natural to consider the distribution of the random
variables , which denotes the number of times that the chain is in state  in the first  steps. The th component  of the
fixed probability row vector  is the proportion of times that the chain is in state  in the long run. Hence, it is reasonable to
conjecture that the expected value of the random variable , as , is asymptotic to , and it is easy to show that this is
the case (see Exercise [exer 11.5.29]).

It is also natural to ask whether there is a limiting distribution of the random variables . The answer is yes, and in fact, this
limiting distribution is the normal distribution. As in the case of independent trials, one must normalize these random variables.
Thus, we must subtract from  its expected value, and then divide by its standard deviation. In both cases, we will use the
asymptotic values of these quantities, rather than the values themselves. Thus, in the first case, we will use the value . It is not
so clear what we should use in the second case. It turns out that the quantity

represents the asymptotic variance. Armed with these ideas, we can state the following theorem.

For an ergodic chain, for any real numbers , we have

as , for any choice of starting state, where  is the quantity defined in Equation 11.1.10.

 

Historical Remarks
Markov chains were introduced by Andreĭ Andreevich Markov (1856–1922) and were named in his honor. He was a talented
undergraduate who received a gold medal for his undergraduate thesis at St. Petersburg University. Besides being an active research
mathematician and teacher, he was also active in politics and patricipated in the liberal movement in Russia at the beginning of the
twentieth century. In 1913, when the government celebrated the 300th anniversary of the House of Romanov family, Markov
organized a counter-celebration of the 200th anniversary of Bernoulli’s discovery of the Law of Large Numbers.

Markov was led to develop Markov chains as a natural extension of sequences of independent random variables. In his first paper,
in 1906, he proved that for a Markov chain with positive transition probabilities and numerical states the average of the outcomes
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 Example Central Limit Theory for Markov Chains 11.5.6
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converges to the expected value of the limiting distribution (the fixed vector). In a later paper he proved the central limit theorem
for such chains. Writing about Markov, A. P. Youschkevitch remarks:

Markov arrived at his chains starting from the internal needs of probability theory, and he
never wrote about their applications to physical science. For him the only real examples
of the chains were literary texts, where the two states denoted the vowels and
consonants.

In a paper written in 1913,  Markov chose a sequence of 20,000 letters from Pushkin’s to see if this sequence can be
approximately considered a simple chain. He obtained the Markov chain with transition matrix

The fixed vector for this chain is , indicating that we should expect about 43.2 percent vowels and 56.8 percent
consonants in the novel, which was borne out by the actual count.

Claude Shannon considered an interesting extension of this idea in his book  in which he developed the information-theoretic
concept of entropy. Shannon considers a series of Markov chain approximations to English prose. He does this first by chains in
which the states are letters and then by chains in which the states are words. For example, for the case of words he presents first a
simulation where the words are chosen independently but with appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT
NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO
FURNISHES THE LINE MESSAGE HAD BE THESE.

He then notes the increased resemblence to ordinary English text when the words are chosen as a Markov chain, in which case he
obtains

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE
CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE
LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN
UNEXPECTED.

A simulation like the last one is carried out by opening a book and choosing the first word, say it is Then the book is read until the
word appears again and the word after this is chosen as the second word, which turned out to be The book is then read until the
word appears again and the next word, is chosen, and so on.

Other early examples of the use of Markov chains occurred in Galton’s study of the problem of survival of family names in 1889
and in the Markov chain introduced by P. and T. Ehrenfest in 1907 for diffusion. Poincaré in 1912 dicussed card shuffling in terms
of an ergodic Markov chain defined on a permutation group. Brownian motion, a continuous time version of random walk, was
introducted in 1900–1901 by L. Bachelier in his study of the stock market, and in 1905–1907 in the works of A. Einstein and M.
Smoluchowsky in their study of physical processes.

One of the first systematic studies of finite Markov chains was carried out by M. Frechet.  The treatment of Markov chains in
terms of the two fundamental matrices that we have used was developed by Kemeny and Snell  to avoid the use of eigenvalues
that one of these authors found too complex. The fundamental matrix  occurred also in the work of J. L. Doob and others in
studying the connection between Markov processes and classical potential theory. The fundamental matrix  for ergodic chains
appeared first in the work of Frechet, who used it to find the limiting variance for the central limit theorem for Markov chains.

Exercises

Exercise 

Consider the Markov chain with transition matrix
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Find the fundamental matrix  for this chain. Compute the mean first passage matrix using .

Exercise 

A study of the strengths of Ivy League football teams shows that if a school has a strong team one year it is equally likely to have a
strong team or average team next year; if it has an average team, half the time it is average next year, and if it changes it is just as
likely to become strong as weak; if it is weak it has 2/3 probability of remaining so and 1/3 of becoming average.

a. A school has a strong team. On the average, how long will it be before it has another strong team?
b. A school has a weak team; how long (on the average) must the alumni wait for a strong team?

Exercise 

Consider Example 11.1.4 with  and . Assume that the President says that he or she will run. Find the expected length
of time before the first time the answer is passed on incorrectly.

Exercise 

Find the mean recurrence time for each state of Example 11.1.4 for  and . Do the same for general  and .

Exercise 

A die is rolled repeatedly. Show by the results of this section that the mean time between occurrences of a given number is 6.

Exercise 

For the Land of Oz example (Example 11.1.1), make rain into an absorbing state and find the fundamental matrix . Interpret the
results obtained from this chain in terms of the original chain.

Exercise 

Figure : Maze for Exercise 7

A rat runs through the maze shown in Figure . At each step it leaves the room it is in by choosing at random one of the doors
out of the room.

a. Give the transition matrix  for this Markov chain.
b. Show that it is an ergodic chain but not a regular chain.
c. Find the fixed vector.
d. Find the expected number of steps before reaching Room 5 for the first time, starting in Room 1.

P =( )  .
1/2

1/4

1/2

3/4
(11.5.55)
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Exercise 

Modify the program ErgodicChain so that you can compute the basic quantities for the queueing example of Exercise 11.3.20.
Interpret the mean recurrence time for state 0.

Exercise 

Consider a random walk on a circle of circumference . The walker takes one unit step clockwise with probability  and one unit
counterclockwise with probability . Modify the program ErgodicChain to allow you to input  and  and compute the
basic quantities for this chain.

a. For which values of  is this chain regular? ergodic?
b. What is the limiting vector ?
c. Find the mean first passage matrix for  and . Verify that , where  is the clockwise distance from 

to .

Exercise 

Two players match pennies and have between them a total of 5 pennies. If at any time one player has all of the pennies, to keep the
game going, he gives one back to the other player and the game will continue. Show that this game can be formulated as an ergodic
chain. Study this chain using the program ErgodicChain.

Exercise 

Calculate the reverse transition matrix for the Land of Oz example (Example 11.1.1). Is this chain reversible?

Exercise 

Give an example of a three-state ergodic Markov chain that is not reversible.

Exercise 

iLet  be the transition matrix of an ergodic Markov chain and  the reverse transition matrix. Show that they have the same
fixed probability vector .

Exercise 

If  is a reversible Markov chain, is it necessarily true that the mean time to go from state  to state  is equal to the mean time to
go from state  to state ? : Try the Land of Oz example (Example 11.1.1).

Exercise 

Show that any ergodic Markov chain with a symmetric transition matrix (i.e.,  is reversible.

Exercise 

(Crowell ) Let  be the transition matrix of an ergodic Markov chain. Show that

and from this show that

as .

Exercise 

An ergodic Markov chain is started in equilibrium (i.e., with initial probability vector ). The mean time until the next occurrence
of state  is . Show that , by using the facts that  and .

Exercise 

A perpetual craps game goes on at Charley’s. Jones comes into Charley’s on an evening when there have already been 100 plays.
He plans to play until the next time that snake eyes (a pair of ones) are rolled. Jones wonders how many times he will play. On the
one hand he realizes that the average time between snake eyes is 36 so he should play about 18 times as he is equally likely to have
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come in on either side of the halfway point between occurrences of snake eyes. On the other hand, the dice have no memory, and so
it would seem that he would have to play for 36 more times no matter what the previous outcomes have been. Which, if either, of
Jones’s arguments do you believe? Using the result of Exercise , calculate the expected to reach snake eyes, in equilibrium,
and see if this resolves the apparent paradox. If you are still in doubt, simulate the experiment to decide which argument is correct.
Can you give an intuitive argument which explains this result?

Exercise 

Show that, for an ergodic Markov chain (see Theorem ),

The second expression above shows that the number  is independent of . The number  is called A prize was offered to the first
person to give an intuitively plausible reason for the above sum to be independent of . (See also Exercise )

Exercise 

Consider a game played as follows: You are given a regular Markov chain with transition matrix , fixed probability vector , and
a payoff function  which assigns to each state  an amount  which may be positive or negative. Assume that . You
watch this Markov chain as it evolves, and every time you are in state  you receive an amount . Show that your expected
winning after  steps can be represented by a column vector , with

Show that as ,  with .

Exercise 

Figure : Simplified Monopoly.

A highly simplified game of “Monopoly" is played on a board with four squares as shown in Figure . You start at GO. You
roll a die and move clockwise around the board a number of squares equal to the number that turns up on the die. You collect or
pay an amount indicated on the square on which you land. You then roll the die again and move around the board in the same
manner from your last position. Using the result of Exercise [exer 11.5.23], estimate the amount you should expect to win in the
long run playing this version of Monopoly.

Exercise 

Show that if  is the transition matrix of a regular Markov chain, and  is the matrix each of whose rows is the fixed probability
vector corresponding to , then , and  for all positive integers .

Exercise 

Assume that an ergodic Markov chain has states . Let  denote the number of times that the chain is in state  in
the first  steps. Let  denote the fixed probability row vector for this chain. Show that, regardless of the starting state, the
expected value of , divided by , tends to  as . : If the chain starts in state , then the expected value of  is
given by the expression
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Exercise 

In the course of a walk with Snell along Minnehaha Avenue in Minneapolisin the fall of 1983, Peter Doyle  suggested the
following explanation for the constancy of (see Exercise ). Choose a target state accordingto the fixed vector . Start from
state  and wait until the time  thatthe target state occurs for the first time. Let  be the expected valueof . Observe that

and hence

By the maximum principle,  is a constant.Should Peter have been given the prize?
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