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10.1: Generating Functions for Discrete Distributions
So far we have considered in detail only the two most important attributes of a random variable, namely, the mean and the variance.
We have seen how these attributes enter into the fundamental limit theorems of probability, as well as into all sorts of practical
calculations. We have seen that the mean and variance of a random variable contain important information about the random
variable, or, more precisely, about the distribution function of that variable. Now we shall see that the mean and variance do contain
the available information about the density function of a random variable. To begin with, it is easy to give examples of different
distribution functions which have the same mean and the same variance. For instance, suppose  and  are random variables, with
distributions

Then with these choices, we have  and , and yet certainly  and  are quite
different density functions.

This raises a question: If  is a random variable with range  of at most countable size, and distribution function 
, and if we know its mean  and its variance , then what else do we need to know to determine 

completely?

Moments
A nice answer to this question, at least in the case that  has finite range, can be given in terms of the of , which are numbers
defined as follows:

provided the sum converges. Here .

In terms of these moments, the mean  and variance  of  are given simply by

so that a knowledge of the first two moments of  gives us its mean and variance. But a knowledge of the moments of 
determines its distribution function  completely.

Moment Generating Functions
To see how this comes about, we introduce a new variable , and define a function  as follows:

We call  the for , and think of it as a convenient bookkeeping device for describing the moments of . Indeed, if we
differentiate   times and then set , we get :
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It is easy to calculate the moment generating function for simple examples.

Examples

Suppose  has range  and  for  (uniform distribution). Then

If we use the expression on the right-hand side of the second line above, then it is easy to see that

and that  and .

Suppose now that  has range  and  for  (binomial distribution). Then

Note that

so that , and , as expected.

Suppose  has range  and  for all  (geometric distribution). Then
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Here

, and , as computed in Example [exam 6.21].

Let  have range  and let  for all  (Poisson distribution with mean ). Then

Then

, and .

The variance of the Poisson distribution is easier to obtain in this way than directly from the definition (as was done in Exercise
[sec 6.2].[exer 6.2.100]).

Moment Problem
Using the moment generating function, we can now show, at least in the case of a discrete random variable with finite range, that its
distribution function is completely determined by its moments.

Add exercises text here. For the automatic number to work, you need to Let  be a discrete random variable with finite range 
, distribution function , and moment generating function . Then  is uniquely determined by , and

conversely.

Proof

We know that  determines , since

Conversely, assume that  is known. We wish to determine the values of  and , for . We assume,
without loss of generality, that  for , and that

We note that  is differentiable for all , since it is a finite linear combination of exponential functions. If we compute 
, we obtain \[

\ .\] Dividing both top and bottom by , we obtain the expression \[\ .\] Since  is the largest of the ’s, this expression
approaches  as  goes to . So we have shown that
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To find , we simply divide  by  and let  go to . Once  and  have been determined, we can subtract
 from , and repeat the above procedure with the resulting function, obtaining, in turn,  and 

.

If we delete the hypothesis that  have finite range in the above theorem, then the conclusion is no longer necessarily true.

Ordinary Generating Functions

In the special but important case where the  are all nonnegative integers, , we can prove this theorem in a simpler way.

In this case, we have

and we see that  is a in . If we write , and define the function  by

then  is a polynomial in  containing the same information as , and in fact

The function  is often called the for . Note that , , and 
. It follows from all this that if we know , then we know , and if we know , then

we can find the  by Taylor’s formula:

For example, suppose we know that the moments of a certain discrete random variable  are given by

Then the moment generating function  of  is

This is a polynomial in , and

Hence,  must have range , and  must have values .
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Properties
Both the moment generating function  and the ordinary generating function  have many properties useful in the study of random
variables, of which we can consider only a few here. In particular, if  is any discrete random variable and , then

while if , then

In particular, if

then (see Exercise [exer 10.1.14])

If  and  are random variables and  is their sum, with , , and  the associated distribution functions, then we
have seen in Chapter [chp 7] that  is the of  and , and we know that convolution involves a rather complicated calculation.
But for the generating functions we have instead the simple relations

that is,  is simply the of  and , and similarly for .

To see this, first note that if  and  are independent, then  and  are independent (see Exercise [sec 5.2].[exer 5.2.38]), and
hence

It follows that

and, replacing  by , we also get

If  and  are independent discrete random variables with range  and binomial distribution

and if , then we know (cf. Section [sec 7.1]) that the range of  is

and  has binomial distribution
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 Example :10.1.5
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Here we can easily verify this result by using generating functions. We know that

and

Hence, we have

or, what is the same,

from which we can see that the coefficient of  is just .

If  and  are independent discrete random variables with the non-negative integers  as range, and with
geometric distribution function

then

and if , then

If we replace  by , we get

and we can read off the values of  as the coefficient of  in this expansion for , even though  is not a
polynomial in this case. The distribution  is a negative binomial distribution (see Section [sec 5.1]).

Here is a more interesting example of the power and scope of the method of generating functions.

Heads or Tails
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In the coin-tossing game discussed in Example [exam 1.3], we now consider the question “When is Peter first in the lead?"

Answer

Let  describe the outcome of the th trial in the game

Then the  are independent random variables describing a Bernoulli process. Let , and, for , let

Then  describes Peter’s fortune after  trials, and Peter is first in the lead after  trials if  for  and 
.

Now this can happen when , in which case , or when , in which case . In the
latter case,  for , and perhaps for other  between 1 and . Let  be the such value of ; then 
and  for . In this case Peter loses on the first trial, regains his initial position in the next  trials,
and gains the lead in the next  trials.

Let  be the probability that the coin comes up heads, and let . Let  be the probability that Peter is first in the
lead after  trials. Then from the discussion above, we see that

Now let  describe the time (that is, the number of trials) required for Peter to take the lead. Then  is a random variable,
and since ,  is the distribution function for .

We introduce the generating function  for :

Then, by using the relations above, we can verify the relation

If we solve this quadratic equation for , we get

Of these two solutions, we want the one that has a convergent power series in  (i.e., that is finite for ). Hence we
choose

Now we can ask: What is the probability that Peter is in the lead? This probability is given by (see Exercise )
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so that Peter is sure to be in the lead eventually if .

How long will it take? That is, what is the expected value of ? This value is given by

This says that if , then Peter can expect to be in the lead by about  trials, but if , he can expect to wait
a long time.

A related problem, known as the Gambler’s Ruin problem, is studied in Exercise [exer 11.2.22] and in Section 12.2.

Exercises

Exercise 

Find the generating functions, both ordinary  and moment , for the following discrete probability distributions.

1. The distribution describing a fair coin.
2. The distribution describing a fair die.
3. The distribution describing a die that always comes up 3.
4. The uniform distribution on the set .
5. The binomial distribution on .
6. The geometric distribution on  with .

Exercise 

For each of the distributions (a) through (d) of Exercise  calculate the first and second moments,  and , directly from
their definition, and verify that , , and .

Exercise 

Let  be a probability distribution on  with moments , .

1. Find its ordinary generating function .
2. Using (a), find its moment generating function.
3. Using (b), find its first six moments.
4. Using (a), find , , and .

Exercise 

In Exercise  the probability distribution is completely determined by its first two moments. Show that this is always true for
any probability distribution on . : Given  and , find  as in Exercise  and use  to determine .

Exercise 

Let  and  be the two distributions

1. Show that  and  have the same first and second moments, but not the same third and fourth moments.
2. Find the ordinary and moment generating functions for  and .

Exercise 

Let  be the probability distribution

p ≥ q

T

E(T ) = (1) ={h′
T

1/(p−q),

∞,

if p > q,

if p = q.
(10.1.26)
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and let  be the -fold convolution of  with itself.

1. Find  by direct calculation (see Definition 7.1.1).
2. Find the ordinary generating functions  and  for  and , and verify that .
3. Find  from .
4. Find the first two moments, and hence the mean and variance, of  from . Verify that the mean of  is  times the mean

of .
5. Find those integers  for which  from .

Exercise 

Let  be a discrete random variable with values in  and moment generating function . Find, in terms of ,
the generating functions for

1. .
2. .
3. .
4. .

Exercise 

Let , , …,  be an independent trials process, with values in  and mean . Find the ordinary and moment
generating functions for the distribution of

1. . : First find  explicitly.
2. .
3. .

Exercise 

Let  and  be random variables with values in  with distribution functions  and  given by

1. Find the ordinary generating functions  and  for these distributions.
2. Find the ordinary generating function  for the distribution .
3. Show that  cannot ever have the form

:  and  must have at least one nonzero root, but  in the form given has no nonzero real roots.

It follows from this observation that there is no way to load two dice so that the probability that a given sum will turn up when they
are tossed is the same for all sums (i.e., that all outcomes are equally likely).
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11
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Exercise 

Show that if  is a random variable with mean  and variance , and if  is the standardized version of , then

This page titled 10.1: Generating Functions for Discrete Distributions is shared under a GNU Free Documentation License 1.3 license and was
authored, remixed, and/or curated by Charles M. Grinstead & J. Laurie Snell (American Mathematical Society) via source content that was edited
to the style and standards of the LibreTexts platform.

10.1.11

X μ σ2 = (X−μ)/σX∗ X

(t) = ( )  .gX∗ e−μt/σgX
t

σ
(10.1.34)
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