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5.2: Important Densities
In this section, we will introduce some important probability density functions and give some examples of their use. We will also
consider the question of how one simulates a given density using a computer.

Continuous Uniform Density
The simplest density function corresponds to the random variable  whose value represents the outcome of the experiment
consisting of choosing a real number at random from the interval .

It is easy to simulate this density on a computer. We simply calculate the expression

Exponential and Gamma Densities
The exponential density function is defined by

Here  is any positive constant, depending on the experiment. The reader has seen this density in Example 2.2.11. In Figure 
 we show graphs of several exponential densities for different choices of . The exponential density is often used to describe

experiments involving a question of the form: How long until something happens? For example, the exponential density is often
used to study the time between emissions of particles from a radioactive source.

Figure : Exponential densities.

The cumulative distribution function of the exponential density is easy to compute. Let  be an exponentially distributed random
variable with parameter . If , then we have
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Both the exponential density and the geometric distribution share a property known as the “memoryless" property. This property
was introduced in Example 5.1.1; it says that

This can be demonstrated to hold for the exponential density by computing both sides of this equation. The right-hand side is just

while the left-hand side is

There is a very important relationship between the exponential density and the Poisson distribution. We begin by defining 
 to be a sequence of independent exponentially distributed random variables with parameter . We might think of 

as denoting the amount of time between the th and st emissions of a particle by a radioactive source. (As we shall see in
Chapter 6, we can think of the parameter  as representing the reciprocal of the average length of time between emissions. This
parameter is a quantity that might be measured in an actual experiment of this type.)

We now consider a time interval of length , and we let  denote the random variable which counts the number of emissions that
occur in the time interval. We would like to calculate the distribution function of  (clearly,  is a discrete random variable). If we
let  denote the sum , then it is easy to see that

Since the event  is a subset of the event , the above probability is seen to be equal to

We will show in Chapter 7 that the density of  is given by the following formula:

This density is an example of a gamma density with parameters  and . The general gamma density allows  to be any positive
real number. We shall not discuss this general density.

It is easy to show by induction on  that the cumulative distribution function of  is given by:

Using this expression, the quantity in ([eq 5.8]) is easy to compute; we obtain

which the reader will recognize as the probability that a Poisson-distributed random variable, with parameter , takes on the value 
.

The above relationship will allow us to simulate a Poisson distribution, once we have found a way to simulate an exponential
density. The following random variable does the job:
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Using Corollary  (below), one can derive the above expression (see Exercise ). We content ourselves for now with a
short calculation that should convince the reader that the random variable  has the required property. We have

This last expression is seen to be the cumulative distribution function of an exponentially distributed random variable with
parameter .

To simulate a Poisson random variable  with parameter , we simply generate a sequence of values of an exponentially
distributed random variable with the same parameter, and keep track of the subtotals  of these values. We stop generating the
sequence when the subtotal first exceeds . Assume that we find that

Then the value  is returned as a simulated value for .

Suppose that customers arrive at random times at a service station with one server, and suppose that each customer is served
immediately if no one is ahead of him, but must wait his turn in line otherwise. How long should each customer expect to wait?
(We define the waiting time of a customer to be the length of time between the time that he arrives and the time that he begins
to be served.)

Answer

Let us assume that the interarrival times between successive customers are given by random variables , , …,  that
are mutually independent and identically distributed with an exponential cumulative distribution function given by

Let us assume, too, that the service times for successive customers are given by random variables , , …,  that again
are mutually independent and identically distributed with another exponential cumulative distribution function given by

The parameters  and  represent, respectively, the reciprocals of the average time between arrivals of customers and the
average service time of the customers. Thus, for example, the larger the value of , the smaller the average time between
arrivals of customers. We can guess that the length of time a customer will spend in the queue depends on the relative sizes
of the average interarrival time and the average service time.

It is easy to verify this conjecture by simulation. The program Queue simulates this queueing process. Let  be the
number of customers in the queue at time . Then we plot  as a function of  for different choices of the parameters 
and  (see Figure  ).
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 Example 5.2.1
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Figure : Queue sizes.

 

Figure : Waiting times.

We note that when , then , so the average interarrival time is greater than the average service time, i.e.,
customers are served more quickly, on average, than new ones arrive. Thus, in this case, it is reasonable to expect that 
remains small. However, if  then customers arrive more quickly than they are served, and, as expected,  appears
to grow without limit.

We can now ask: How long will a customer have to wait in the queue for service? To examine this question, we let  be
the length of time that the th customer has to remain in the system (waiting in line and being served). Then we can present
these data in a bar graph, using the program Queue, to give some idea of how the  are distributed (see Figure ).
(Here  and .)

We see that these waiting times appear to be distributed exponentially. This is always the case when . The proof of
this fact is too complicated to give here, but we can verify it by simulation for different choices of  and , as above.

Functions of a Random Variable

Before continuing our list of important densities, we pause to consider random variables which are functions of other random
variables. We will prove a general theorem that will allow us to derive expressions such as Equation [eq 5.9].

Let  be a continuous random variable, and suppose that  is a strictly increasing function on the range of . Define 
. Suppose that  and  have cumulative distribution functions  and  respectively. Then these functions are

related by

If  is strictly decreasing on the range of , then

5.2.2

5.2.3
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 Theorem 5.2.1
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Proof

Since  is a strictly increasing function on the range of , the events  and  are equal. Thus, we
have

If  is strictly decreasing on the range of , then we have

This completes the proof.

Let  be a continuous random variable, and suppose that  is a strictly increasing function on the range of . Define 
. Suppose that the density functions of  and  are  and , respectively. Then these functions are related by

If  is strictly decreasing on the range of , then

Proof

This result follows from Theorem 5.1.1 by using the Chain Rule.

If the function  is neither strictly increasing nor strictly decreasing, then the situation is somewhat more complicated but
can be treated by the same methods. For example, suppose that , Then , and

Moreover,

We see that in order to express  in terms of  when , we have to express  in terms of , and this
process will depend in general upon the structure of .

(y) = 1 − ( (y)) .FY FX ϕ−1 (5.2.18)
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 Corollary 5.2.1
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Simulation
Theorem  tells us, among other things, how to simulate on the computer a random variable  with a prescribed cumulative
distribution function . We assume that  is strictly increasing for those values of  where . For this purpose, let 

 be a random variable which is uniformly distributed on . Then  has cumulative distribution function . Now, if 
 is the prescribed cumulative distribution function for , then to write  in terms of  we first solve the equation

for  in terms of . We obtain . Note that since  is an increasing function this equation always has a unique solution
(see Figure 5.9). Then we set  and obtain, by Theorem ,

since . Therefore,  and  have the same cumulative distribution function. Summarizing, we have the following.

If  is a given cumulative distribution function that is strictly increasing when  and if  is a random variable
with uniform distribution on , then

h

as the cumulative distribution 

Thus, to simulate a random variable with a given cumulative distribution  we need only set .

Figure : Converting a uniform distribution F  into a prescribed distribution F  .

Normal Density
We now come to the most important density function, the normal density function. We have seen in Chapter 3 that the binomial
distribution functions are bell-shaped, even for moderate size values of . We recall that a binomially-distributed random variable
with parameters  and  can be considered to be the sum of  mutually independent 0-1 random variables. A very important
theorem in probability theory, called the Central Limit Theorem, states that under very general conditions, if we sum a large
number of mutually independent random variables, then the distribution of the sum can be closely approximated by a certain
specific continuous density, called the normal density. This theorem will be discussed in Chapter 9.

The normal density function with parameters  and  is defined as follows:

5.2.1 Y

F F (y) y 0 < F (y) < 1
U [0, 1] U (u) = uFU

F Y Y U

F (y) = u (5.2.21)

y u y = (u)F −1 F

Z = (U)F −1 5.2.1

(y) = (F (y)) = F (y) ,FZ FU (5.2.22)

(u) = uFU Z Y

 Corollary 5.2.2

F (y) 0 < F (y) < 1 U
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Y = (U)F −1 (5.2.23)

F (y)
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The parameter  represents the “center" of the density (and in Chapter 6, we will show that it is the average, or expected, value of
the density). The parameter  is a measure of the “spread" of the density, and thus it is assumed to be positive. (In Chapter 6, we
will show that  is the standard deviation of the density.) We note that it is not at all obvious that the above function is a density,
i.e., that its integral over the real line equals 1. The cumulative distribution function is given by the formula

Figure : Normal density for two sets of parameter values.

 

In Figure  we have included for comparison a plot of the normal density for the cases  and , and  and .

One cannot write  in terms of simple functions. This leads to several problems. First of all, values of  must be computed
using numerical integration. Extensive tables exist containing values of this function (see Appendix A). Secondly, we cannot write 

 in closed form, so we cannot use Corollary  to help us simulate a normal random variable. For this reason, special
methods have been developed for simulating a normal distribution. One such method relies on the fact that if  and  are
independent random variables with uniform densities on , then the random variables

and

are independent, and have normal density functions with parameters  and . (This is not obvious, nor shall we prove it
here. See Box and Muller. )

Let  be a normal random variable with parameters  and . A normal random variable with these parameters is said to
be a normal random variable. It is an important and useful fact that if we write

then  is a normal random variable with parameters  and . To show this, we will use Theorem 5.1.1. We have , 
, and

(x) =  .fX
1

σ2π
−−

√
e−(x−μ /2)2 σ2

(5.2.24)
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(5.2.25)
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√ (5.2.26)

Y = sin2πV−2 logU
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√ (5.2.27)

μ = 0 σ = 1
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The reader will note that this last expression is the density function with parameters  and , as claimed.

We have seen above that it is possible to simulate a standard normal random variable . If we wish to simulate a normal random
variable  with parameters  and , then we need only transform the simulated values for  using the equation .

Suppose that we wish to calculate the value of a cumulative distribution function for the normal random variable , with
parameters  and . We can reduce this calculation to one concerning the standard normal random variable  as follows:

This last expression can be found in a table of values of the cumulative distribution function for a standard normal random variable.
Thus, we see that it is unnecessary to make tables of normal distribution functions with arbitrary  and .

The process of changing a normal random variable to a standard normal random variable is known as standardization. If  has a
normal distribution with parameters  and  and if

then  is said to be the standardized version of .

The following example shows how we use the standardized version of a normal random variable  to compute specific
probabilities relating to .

Suppose that  is a normally distributed random variable with parameters  and . Find the probability that  is
between 4 and 16.

Answer

To solve this problem, we note that  is the standardized version of . So, we have

This last expression can be evaluated by using tabulated values of the standard normal distribution function (see [app_a]);
when we use this table, we find that  and . Thus, the answer is .9544.

In Chapter 6, we will see that the parameter  is the mean, or average value, of the random variable . The parameter  is a
measure of the spread of the random variable, and is called the standard deviation. Thus, the question asked in this example is of a
typical type, namely, what is the probability that a random variable has a value within two standard deviations of its average value.
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=

=

( ) ,FZ
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=

=

P (X ≤ x)

P (Z ≤ )
x−μ

σ

( )  .FZ

x−μ
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μ σ
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μ σ
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σ
(5.2.29)
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 Example 5.2.2
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=

=
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Maxwell and Rayleigh Densities

Suppose that we drop a dart on a large table top, which we consider as the -plane, and suppose that the  and  coordinates
of the dart point are independent and have a normal distribution with parameters  and . How is the distance of the
point from the origin distributed?

Answer

This problem arises in physics when it is assumed that a moving particle in  has components of the velocity that are
mutually independent and normally distributed and it is desired to find the density of the speed of the particle. The density
in the case  is called the Maxwell density.

The density in the case  (i.e. the dart board experiment described above) is called the Rayleigh density. We can
simulate this case by picking independently a pair of coordinates , each from a normal distribution with  and 

 on , calculating the distance  of the point  from the origin, repeating this process a
large number of times, and then presenting the results in a bar graph. The results are shown in Figure 

Figure : Distribution of dart distances in 1000 drops.

We have also plotted the theoretical density

This will be derived in Chapter 7; see Example 7.2.5

Chi-Squared Density

We return to the problem of independence of traits discussed in Example 5.1.6. It is frequently the case that we have two traits,
each of which have several different values. As was seen in the example, quite a lot of calculation was needed even in the case of
two values for each trait. We now give another method for testing independence of traits, which involves much less calculation.

Suppose that we have the data shown in Table  concerning grades and gender of students in a Calculus class.

Table : Calculus class data.

 Female Male  

A 37 56 93

B 63 60 123

C 47 43 90

 Exercise 5.2.1

xy x y

μ = 0 σ = 1

Rn

n = 3

n = 2
(x, y) μ = 0

σ = 1 (−∞, ∞) r = +x2 y2− −−−−−
√ (x, y)

5.2.4

5.2.4

f(r) = r  .e− /2r2
(5.2.30)

 Example :5.2.2

5.2.1

5.2.1

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://stats.libretexts.org/@go/page/3141?pdf


GNU Free Documentation License 5.2.10 https://stats.libretexts.org/@go/page/3141

 Female Male  

Below C 5 8 13

 152 167 319

We can use the same sort of model in this situation as was used in Example 5.1.6. We imagine that we have an urn with 319
balls of two colors, say blue and red, corresponding to females and males, respectively. We now draw 93 balls, without
replacement, from the urn. These balls correspond to the grade of A. We continue by drawing 123 balls, which correspond to
the grade of B. When we finish, we have four sets of balls, with each ball belonging to exactly one set. (We could have
stipulated that the balls were of four colors, corresponding to the four possible grades. In this case, we would draw a subset of
size 152, which would correspond to the females. The balls remaining in the urn would correspond to the males. The choice
does not affect the final determination of whether we should reject the hypothesis of independence of traits.)

The expected data set can be determined in exactly the same way as in Example 5.1.6. If we do this, we obtain the expected
values shown in Table .

Table  Expected data.

 Female Male  

A 44.3 48.7 93

B 58.6 64.4 123

C 42.9 47.1 90

Below C 6.2 6.8 13

 152 167 319

Even if the traits are independent, we would still expect to see some differences between the numbers in corresponding boxes
in the two tables. However, if the differences are large, then we might suspect that the two traits are not independent. In
Example 5.1.6, we used the probability distribution of the various possible data sets to compute the probability of finding a
data set that differs from the expected data set by at least as much as the actual data set does. We could do the same in this case,
but the amount of computation is enormous.

Instead, we will describe a single number which does a good job of measuring how far a given data set is from the expected
one. To quantify how far apart the two sets of numbers are, we could sum the squares of the differences of the corresponding
numbers. (We could also sum the absolute values of the differences, but we would not want to sum the differences.) Suppose
that we have data in which we expect to see 10 objects of a certain type, but instead we see 18, while in another case we expect
to see 50 objects of a certain type, but instead we see 58. Even though the two differences are about the same, the first
difference is more surprising than the second, since the expected number of outcomes in the second case is quite a bit larger
than the expected number in the first case. One way to correct for this is to divide the individual squares of the differences by
the expected number for that box. Thus, if we label the values in the eight boxes in the first table by  (for observed values)
and the values in the eight boxes in the second table by  (for expected values), then the following expression might be a
reasonable one to use to measure how far the observed data is from what is expected:

This expression is a random variable, which is usually denoted by the symbol , pronounced “ki-squared." It is called this
because, under the assumption of independence of the two traits, the density of this random variable can be computed and is
approximately equal to a density called the chi-squared density. We choose not to give the explicit expression for this density,
since it involves the gamma function, which we have not discussed. The chi-squared density is, in fact, a special case of the
general gamma density.

In applying the chi-squared density, tables of values of this density are used, as in the case of the normal density. The chi-
squared density has one parameter , which is called the number of degrees of freedom. The number  is usually easy to

5.2.2

5.2.2

Oi

Ei

 .∑
i=1

8 ( −Oi Ei)
2

Ei

(5.2.31)
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determine from the problem at hand. For example, if we are checking two traits for independence, and the two traits have 
and  values, respectively, then the number of degrees of freedom of the random variable  is . So, in the
example at hand, the number of degrees of freedom is 3.

We recall that in this example, we are trying to test for independence of the two traits of gender and grades. If we assume these
traits are independent, then the ball-and-urn model given above gives us a way to simulate the experiment. Using a computer,
we have performed 1000 experiments, and for each one, we have calculated a value of the random variable . The results are
shown in Figure , together with the chi-squared density function with three degrees of freedom.

Figure : Chi-squared density with three degrees of freedom.

 

As we stated above, if the value of the random variable  is large, then we would tend not to believe that the two traits are
independent. But how large is large? The actual value of this random variable for the data above is 4.13. In Figure [fig 5.14.5],
we have shown the chi-squared density with 3 degrees of freedom. It can be seen that the value 4.13 is larger than most of the
values taken on by this random variable.

Typically, a statistician will compute the value  of the random variable , just as we have done. Then, by looking in a table
of values of the chi-squared density, a value  is determined which is only exceeded 5% of the time. If , the statistician
rejects the hypothesis that the two traits are independent. In the present case, , so we would not reject the
hypothesis that the two traits are independent.

Cauchy Density
The following example is from Feller.

Suppose that a mirror is mounted on a vertical axis, and is free to revolve about that axis. The axis of the mirror is 1 foot from
a straight wall of infinite length. A pulse of light is shown onto the mirror, and the reflected ray hits the wall. Let  be the
angle between the reflected ray and the line that is perpendicular to the wall and that runs through the axis of the mirror. We
assume that  is uniformly distributed between  and . Let  represent the distance between the point on the wall that
is hit by the reflected ray and the point on the wall that is closest to the axis of the mirror. We now determine the density of .

Let  be a fixed positive quantity. Then  if and only if , which happens if and only if . This
happens with probability

a

b χ2 (a−1)(b−1)

χ2

5.2.5

5.2.5

χ2

v χ2

v0 v≥ v0

= 7.815v0

10

 Example :5.2.3

ϕ

ϕ −π/2 π/2 X

X

B X ≥ B tan(ϕ) ≥ B ϕ ≥ arctan(B)

 .
π/2 −arctan(B)

π
(5.2.32)

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://stats.libretexts.org/@go/page/3141?pdf


GNU Free Documentation License 5.2.12 https://stats.libretexts.org/@go/page/3141

Thus, for positive , the cumulative distribution function of  is

Therefore, the density function for positive  is

Since the physical situation is symmetric with respect to , it is easy to see that the above expression for the density is
correct for negative values of  as well.

The Law of Large Numbers, which we will discuss in Chapter 8, states that in many cases, if we take the average of
independent values of a random variable, then the average approaches a specific number as the number of values increases. It
turns out that if one does this with a Cauchy-distributed random variable, the average does not approach any specific number.

Exercises

Exercise 

Choose a number  from the unit interval  with uniform distribution. Find the cumulative distribution and density for the
random variables

a. .
b. .

Exercise 

Choose a number  from the interval  with uniform distribution. Find the cumulative distribution and density for the random
variables

a. .
b. .

Exercise 

Use Corollary  to derive the expression for the random variable given in Equation [eq 5.9]. : The random variables 
and  are identically distributed.

Exercise 

Suppose we know a random variable  as a function of the uniform random variable : , and suppose we have
calculated the cumulative distribution function  and thence the density . How can we check whether our answer is
correct? An easy simulation provides the answer: Make a bar graph of  and compare the result with the
graph of . These graphs should look similar. Check your answers to Exercises 5.2.1 and 5.2.2 by this method.

Exercise 

Choose a number  from the interval  with uniform distribution. Find the cumulative distribution and density for the random
variables

a. .
b. .

Exercise 

Check your results for Exercise  by simulation as described in Exercise .

Exercise 

Explain how you can generate a random variable whose cumulative distribution function is

B X

F (B) = 1 −  .
π/2 −arctan(B)

π
(5.2.33)

B

f(B) =  .
1

π(1 + )B2
(5.2.34)

ϕ = 0
B

5.2.1

U [0, 1]

Y = U +2
Y = U 3

5.2.2

U [0, 1]

Y = 1/(U +1)
Y = log(U +1)

5.2.3

5.2.2 1 −rnd

rnd

5.2.4

Y U Y = ϕ(U)
(y)FY (y)fY

Y = \phi(\mbox{\)rnd\(})
(y)fY

5.2.5

U [0, 1]

Y = |U −1/2|
Y = (U −1/2)2

5.2.6

5.2.5 5.2.4

5.2.7
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Exercise 

Write a program to generate a sample of 1000 random outcomes each of which is chosen from the distribution given in  Plot a
bar graph of your results and compare this empirical density with the density for the cumulative distribution given in Exercise 

Exercise 

Let ,  be random numbers chosen independently from the interval  with uniform distribution. Find the cumulative
distribution and density of each of the variables

a. .
b. .

Exercise 

Let ,  be random numbers chosen independently from the interval . Find the cumulative distribution and density for the
random variables

a. .
b. .

Exercise 

Write a program to simulate the random variables of Exercises  and  and plot a bar graph of the results. Compare the
resulting empirical density with the density found in Exercises  and .

Exercise 

A number  is chosen at random in the interval . Find the probability that

a. .
b. .
c. .

Exercise 

Find the cumulative distribution function  and the density function  for each of the random variables , , and  in Exercise 
.

Exercise 

A point  in the unit square has coordinates  and  chosen at random in the interval . Let  be the distance from  to the
nearest edge of the square, and  the distance to the nearest corner. What is the probability that

a. ?
b. ?

Exercise 

In Exercise  find the cumulative distribution  and density  for the random variable .

Exercise 

Let  be a random variable with density function

a. What is the value of ?
b. What is the cumulative distribution function  for ?
c. What is the probability that ?

F (x) =
⎧

⎩
⎨
⎪

⎪

0,

,x2

1,

if x < 0,

if 0 ≤ x ≤ 1,

if x > 1.

(5.2.35)

5.2.8

5.2.7
5.2.7

5.2.9

U V [0, 1]

Y = U +V

Y = |U −V |

PageIndex10

U V [0, 1]

Y = max(U,V )
Y = min(U,V )

5.2.11

5.2.9 5.2.10
5.2.9 5.2.10

5.2.12

U [0, 1]

R = < 1/4U 2

S = U(1 −U) < 1/4
T = U/(1 −U) < 1/4

PageIndex13

F f R S T

5.2.12

5.2.14

P X Y [0, 1] D P

E

D < 1/4
E < 1/4

5.2.15

5.2.14 F f D

5.2.16

X

(x) ={fX
cx(1 −x),

0,

if 0 < x < 1,

otherwise.
(5.2.36)

c

FX X

X < 1/4
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Exercise 

Let  be a random variable with cumulative distribution function

a. What is the density function  for ?
b. What is the probability that ?

Exercise 

Let  be a random variable with cumulative distribution function , and let , , and , where 
and  are any constants. Find the cumulative distribution functions , , and . : The cases , , and  require
different arguments.

Exercise 

Let  be a random variable with density function , and let , , and , where . Find the
density functions , , and . (See Exercise .)

Exercise 

Let  be a random variable uniformly distributed over , and let . For what choice of  and  is  uniformly
distributed over ?

Exercise 

Let  be a random variable with cumulative distribution function  strictly increasing on the range of . Let . Show
that  is uniformly distributed in the interval . (The formula  then tells us how to construct  from a uniform
random variable .)

Exercise 

Let  be a random variable with cumulative distribution function . The of  is the value  for which . Then 
 with probability 1/2 and  with probability 1/2. Find  if  is

a. uniformly distributed over the interval .
b. normally distributed with parameters  and .
c. exponentially distributed with parameter .

Exercise 

Let  be a random variable with density function . The mean of  is the value . Then  gives an average
value for  (see Section 6.3). Find  if  is distributed uniformly, normally, or exponentially, as in Exercise 

Exercise 

Let  be a random variable with density function . The of  is the value  for which  is maximum. Then values of 
near  are most likely to occur. Find  if  is distributed normally or exponentially, as in Exercise  What happens if  is
distributed uniformly?

Exercise 

Let  be a random variable normally distributed with parameters , . Estimate

a. .
b. .
c. .
d. .

5.2.17

X

F (x) =
⎧

⎩
⎨
⎪

⎪

0,

(πx/2),sin2

1,

if x < 0,

if 0 ≤ x ≤ 1,

if 1 < x.

(5.2.37)

fX X

X < 1/4

PageIndex18

X FX Y = X+b Z = aX W = aX+b a

b FY FZ FW a > 0 a = 0 a < 0

5.2.19

X fX Y = X+b Z = aX W = aX+b a ≠ 0
fY fZ fW 5.2.18

5.2.20

X [c, d] Y = aX+b a b Y

[0, 1]

PageIndex21

X F X Y = F (X)
Y [0, 1] X = (Y )F −1 X

Y

5.2.22

X F X m F (m) = 1/2
X < m X > m m X

[a, b]
μ σ

λ

PageIndex23

X fX X μ = ∫ x (x)dxfx μ

X μ X 5.2.22

5.2.24

X fX X M f(M) X

M M X 5.2.22 X

5.2.25

X μ = 70 σ = 10

P (X > 50)
P (X < 60)
P (X > 90)
P (60 < X < 80)
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Exercise 

Bridies’ Bearing Works manufactures bearing shafts whose diameters are normally distributed with parameters , .
The buyer’s specifications require these diameters to be  cm. What fraction of the manufacturer’s shafts are likely to
be rejected? If the manufacturer improves her quality control, she can reduce the value of . What value of  will ensure that no
more than 1 percent of her shafts are likely to be rejected?

Exercise 

A final examination at Podunk University is constructed so that the test scores are approximately normally distributed, with
parameters  and . The instructor assigns letter grades to the test scores as shown in Table  (this is the process of “grading on
the curve").

Table  Grading on the curve.

Test Score Letter grade

A

B

C

D

F

What fraction of the class gets A, B, C, D, F?

Exercise 

(Ross ) An expert witness in a paternity suit testifies that the length (in days) of a pregnancy, from conception to delivery, is
approximately normally distributed, with parameters , . The defendant in the suit is able to prove that he was out of
the country during the period from 290 to 240 days before the birth of the child. What is the probability that the defendant was in
the country when the child was conceived?

Exercise 

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter .
What is the probability that the repair time exceeds 4 hours? If it exceeds 4 hours what is the probability that it exceeds 8 hours?

Exercise 

Suppose that the number of years a car will run is exponentially distributed with parameter . If Prosser buys a used car
today, what is the probability that it will still run after 4 years?

Exercise 

Let  be a uniformly distributed random variable on . What is the probability that the equation

has two distinct real roots  and ?

Exercise 

Write a program to simulate the random variables whose densities are given by the following, making a suitable bar graph of each
and comparing the exact density with the bar graph.

a. 
b. 
c. 
d. 

5.2.26

μ = 1 σ = .002
1.000 ±.003

σ σ

5.2.27

μ σ 5.2.3

5.2.3

μ+ σ < x

μ < x < μ+ σ

μ− σ < x < μ

μ− 2σ < x < μ− σ

x < μ− 2σ

5.2.28

11

μ = 270 σ = 10

5.2.29

λ = 1/2

5.2.30

μ = 1/4

5.2.31

U [0, 1]

+4Ux+1 = 0x2 (5.2.38)

x1 x2

5.2.32

(x) =   on [0, ∞) (but\,\,just\,\,do\,\,it\,\,on\,\,[0, 10]).fX e−x

(x) = 2x  on [0, 1].fX
(x) = 3   on [0, 1].fX x2

(x) = 4|x−1/2|  on [0, 1].fX
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Exercise 

Suppose we are observing a process such that the time between occurrences is exponentially distributed with  (i.e., the
average time between occurrences is 30 minutes). Suppose that the process starts at a certain time and we start observing the
process 3 hours later. Write a program to simulate this process. Let  denote the length of time that we have to wait, after we start
our observation, for an occurrence. Have your program keep track of . What is an estimate for the average value of ?

Exercise 

Jones puts in two new lightbulbs: a 60 watt bulb and a 100 watt bulb. It is claimed that the lifetime of the 60 watt bulb has an
exponential density with average lifetime 200 hours ( ). The 100 watt bulb also has an exponential density but with
average lifetime of only 100 hours ( ). Jones wonders what is the probability that the 100 watt bulb will outlast the 60
watt bulb.

If  and  are two independent random variables with exponential densities  and , respectively, then
the probability that  is less than  is given by

where  is the cumulative distribution function for . Explain why this is the case. Use this to show that

and to answer Jones’s question.

Exercise 

Consider the simple queueing process of Example . Suppose that you watch the size of the queue. If there are  people in the
queue the next time the queue size changes it will either decrease to  or increase to . Use the result of Exercise  to
show that the probability that the queue size decreases to  is  and the probability that it increases to  is 

. When the queue size is 0 it can only increase to 1. Write a program to simulate the queue size. Use this simulation to
help formulate a conjecture containing conditions on  and  that will ensure that the queue will have times when it is empty.

Exercise 

Let  be a random variable having an exponential density with parameter . Find the density for the random variable ,
where  is a positive real number.

Exercise 

Let  be a random variable having a normal density and consider the random variable . Then  has a log normal density.
Find this density of .

Exercise 

Let  and  be independent random variables and for , let , where  is strictly increasing on the range of 
. Show that  and  are independent. Note that the same result is true without the assumption that the ’s are strictly

increasing, but the proof is more difficult.
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5.2.33

λ = 1/30

T

T T

5.2.34

λ = 1/200
λ = 1/100

X Y f(x) = λe−λx g(x) = μe−μx

X Y

P (X < Y ) = f(x)(1 −G(x))dx,∫
∞

0
(5.2.39)

G(x) g(x)

P (X < Y ) =
λ

λ+μ
(5.2.40)

5.2.35

5.2.1 j

j−1 j+1 5.2.34
j−1 μ/(μ+λ) j+1

λ/(μ+λ)
μ λ

5.2.36

X λ Y = rX

r

5.2.37

X Y = eX Y

Y

5.2.38

X1 X2 i = 1, 2 = ( )Yi ϕi Xi ϕi

Xi Y1 Y2 ϕi
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