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1.1: Simulation of Discrete Probabilities

Probability

In this chapter, we shall first consider chance experiments with a finite number of possible outcomes , , …, . For example,
we roll a die and the possible outcomes are 1, 2, 3, 4, 5, 6 corresponding to the side that turns up. We toss a coin with possible
outcomes H (heads) and T (tails).

It is frequently useful to be able to refer to an outcome of an experiment. For example, we might want to write the mathematical
expression which gives the sum of four rolls of a die. To do this, we could let ,  represent the values of the
outcomes of the four rolls, and then we could write the expression

for the sum of the four rolls. The ’s are called . A random variable is simply an expression whose value is the outcome of a
particular experiment. Just as in the case of other types of variables in mathematics, random variables can take on different values.

Let  be the random variable which represents the roll of one die. We shall assign probabilities to the possible outcomes of this
experiment. We do this by assigning to each outcome  a nonnegative number  in such a way that

The function  is called the of the random variable . For the case of the roll of the die we would assign equal probabilities
or probabilities 1/6 to each of the outcomes. With this assignment of probabilities, one could write

to mean that the probability is  that a roll of a die will have a value which does not exceed 4.

Let  be the random variable which represents the toss of a coin. In this case, there are two possible outcomes, which we can label
as H and T. Unless we have reason to suspect that the coin comes up one way more often than the other way, it is natural to assign
the probability of 1/2 to each of the two outcomes.

In both of the above experiments, each outcome is assigned an equal probability. This would certainly not be the case in general.
For example, if a drug is found to be effective 30 percent of the time it is used, we might assign a probability .3 that the drug is
effective the next time it is used and .7 that it is not effective. This last example illustrates the intuitive That is, if we have a
probability  that an experiment will result in outcome , then if we repeat this experiment a large number of times we should
expect that the fraction of times that  will occur is about . To check intuitive ideas like this, we shall find it helpful to look at
some of these problems experimentally. We could, for example, toss a coin a large number of times and see if the fraction of times
heads turns up is about 1/2. We could also simulate this experiment on a computer.

Simulation
We want to be able to perform an experiment that corresponds to a given set of probabilities; for example, , 

, and . In this case, one could mark three faces of a six-sided die with an , two faces with an , and
one face with an .

In the general case we assume that , , …,  are all rational numbers, with least common denominator . If 
, we can imagine a long cylindrical die with a cross-section that is a regular -gon. If , then we can label 

of the long faces of the cylinder with an , and if one of the end faces comes up, we can just roll the die again. If , a coin
could be used to perform the experiment.

We will be particularly interested in repeating a chance experiment a large number of times. Although the cylindrical die would be
a convenient way to carry out a few repetitions, it would be difficult to carry out a large number of experiments. Since the modern
computer can do a large number of operations in a very short time, it is natural to turn to the computer for this task.

Random Numbers
We must first find a computer analog of rolling a die. This is done on the computer by means of a Depending upon the particular
software package, the computer can be asked for a real number between 0 and 1, or an integer in a given set of consecutive
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integers. In the first case, the real numbers are chosen in such a way that the probability that the number lies in any particular
subinterval of this unit interval is equal to the length of the subinterval. In the second case, each integer has the same probability of
being chosen.

Let  be a random variable with distribution function , where  is in the set , and , ,
and . If our computer package can return a random integer in the set , then we simply ask it to do so, and
make 1, 2, and 3 correspond to , 4 and 5 correspond to , and 6 correspond to . If our computer package returns a random
real number  in the interval , then the expression

will be a random integer between 1 and 6. (The notation  means the greatest integer not exceeding , and is read “floor of .")

The method by which random real numbers are generated on a computer is described in the historical discussion at the end of this
section. The following example gives sample output of the program RandomNumbers.

The program RandomNumbers generates  random real numbers in the interval , where  is chosen by the user. When
we ran the program with , we obtained the data shown in Table 

Sample output of the program RandomNumbers.

.203309 .762057 .151121 .623868

.932052 .415178 .716719 .967412

.069664 .670982 .352320 .049723

.750216 .784810 .089734 .966730

.946708 .380365 .027381 .900794

As we have noted, our intuition suggests that the probability of obtaining a head on a single toss of a coin is 1/2. To have the
computer toss a coin, we can ask it to pick a random real number in the interval  and test to see if this number is less than
1/2. If so, we shall call the outcome ; if not we call it Another way to proceed would be to ask the computer to pick a random
integer from the set . The program CoinTosses carries out the experiment of tossing a coin  times. Running this
program, with , resulted in:

Note that in 20 tosses, we obtained 5 heads and 15 tails. Let us toss a coin  times, where  is much larger than 20, and see if
we obtain a proportion of heads closer to our intuitive guess of 1/2. The program CoinTosses keeps track of the number of
heads. When we ran this program with , we obtained 494 heads. When we ran it with , we obtained 5039
heads.

We notice that when we tossed the coin 10,000 times, the proportion of heads was close to the “true value" .5 for obtaining a
head when a coin is tossed. A mathematical model for this experiment is called Bernoulli Trials (see Chapter 3). The which we
shall study later (see Chapter 8), will show that in the Bernoulli Trials model, the proportion of heads should be near .5,
consistent with our intuitive idea of the frequency interpretation of probability.

Of course, our program could be easily modified to simulate coins for which the probability of a head is , where  is a real
number between 0 and 1.

In the case of coin tossing, we already knew the probability of the event occurring on each experiment. The real power of
simulation comes from the ability to estimate probabilities when they are not known ahead of time. This method has been used
in the recent discoveries of strategies that make the casino game of blackjack favorable to the player. We illustrate this idea in a
simple situation in which we can compute the true probability and see how effective the simulation is.
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We consider a dice game that played an important role in the historical development of probability. The famous letters between
Pascal and Fermat, which many believe started a serious study of probability, were instigated by a request for help from a
French nobleman and gambler, Chevalier de Méré. It is said that de Méré had been betting that, in four rolls of a die, at least
one six would turn up. He was winning consistently and, to get more people to play, he changed the game to bet that, in 24
rolls of two dice, a pair of sixes would turn up. It is claimed that de Méré lost with 24 and felt that 25 rolls were necessary to
make the game favorable. It was that mathematics was wrong.

We shall try to see if de Méré is correct by simulating his various bets. The program DeMere1 simulates a large number of
experiments, seeing, in each one, if a six turns up in four rolls of a die. When we ran this program for 1000 plays, a six came
up in the first four rolls 48.6 percent of the time. When we ran it for 10,000 plays this happened 51.98 percent of the time.

We note that the result of the second run suggests that de Méré was correct in believing that his bet with one die was favorable;
however, if we had based our conclusion on the first run, we would have decided that he was wrong. Accurate results by
simulation require a large number of experiments.

The program DeMere2 simulates de Méré’s second bet that a pair of sixes will occur in  rolls of a pair of dice. The previous
simulation shows that it is important to know how many trials we should simulate in order to expect a certain degree of
accuracy in our approximation. We shall see later that in these types of experiments, a rough rule of thumb is that, at least 95%
of the time, the error does not exceed the reciprocal of the square root of the number of trials. Fortunately, for this dice game, it
will be easy to compute the exact probabilities. We shall show in the next section that for the first bet the probability that de
Méré wins is .

One can understand this calculation as follows: The probability that no 6 turns up on the first toss is . The probability that
no 6 turns up on either of the first two tosses is . Reasoning in the same way, the probability that no 6 turns up on any of
the first four tosses is . Thus, the probability of at least one 6 in the first four tosses is . Similarly, for the
second bet, with 24 rolls, the probability that de Méré wins is , and for 25 rolls it is 

.

Using the rule of thumb mentioned above, it would require 27,000 rolls to have a reasonable chance to determine these
probabilities with sufficient accuracy to assert that they lie on opposite sides of .5. It is interesting to ponder whether a gambler
can detect such probabilities with the required accuracy from gambling experience. Some writers on the history of probability
suggest that de Méré was, in fact, just interested in these problems as intriguing probability problems.

Figure : Peter’s winnings in 40 plays of heads or tails.

 

For our next example, we consider a problem where the exact answer is difficult to obtain but for which simulation easily gives
the qualitative results. Peter and Paul play a game called In this game, a fair coin is tossed a sequence of times—we choose 40.

 Example : Dice Rolling1.1.3
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Each time a head comes up Peter wins 1 penny from Paul, and each time a tail comes up Peter loses 1 penny to Paul. For
example, if the results of the 40 tosses are

Peter’s winnings may be graphed as in Figure 

Peter has won 6 pennies in this particular game. It is natural to ask for the probability that he will win  pennies; here  could
be any even number from  to . It is reasonable to guess that the value of  with the highest probability is , since
this occurs when the number of heads equals the number of tails. Similarly, we would guess that the values of  with the lowest
probabilities are .

A second interesting question about this game is the following: How many times in the 40 tosses will Peter be in the lead?
Looking at the graph of his winnings (Figure ), we see that Peter is in the lead when his winnings are positive, but we
have to make some convention when his winnings are 0 if we want all tosses to contribute to the number of times in the lead.
We adopt the convention that, when Peter’s winnings are 0, he is in the lead if he was ahead at the previous toss and not if he
was behind at the previous toss. With this convention, Peter is in the lead 34 times in our example. Again, our intuition might
suggest that the most likely number of times to be in the lead is 1/2 of 40, or 20, and the least likely numbers are the extreme
cases of 40 or 0.

It is easy to settle this by simulating the game a large number of times and keeping track of the number of times that Peter’s
final winnings are , and the number of times that Peter ends up being in the lead by . The proportions over all games then
give estimates for the corresponding probabilities. The program HTSimulation carries out this simulation. Note that when
there are an even number of tosses in the game, it is possible to be in the lead only an even number of times. We have
simulated this game 10,000 times. The results are shown in Figures(Figure ) and (Figure ). These graphs, which we
call spike graphs, were generated using the program Spikegraph. The vertical line, or spike, at position  on the horizontal
axis, has a height equal to the proportion of outcomes which equal . Our intuition about Peter’s final winnings was quite
correct, but our intuition about the number of times Peter was in the lead was completely wrong. The simulation suggests that
the least likely number of times in the lead is 20 and the most likely is 0 or 40. This is indeed correct, and the explanation for it
is suggested by playing the game of heads or tails with a large number of tosses and looking at a graph of Peter’s winnings. In
Figure(Figure ) we show the results of a simulation of the game, for 1000 tosses and in Figure (Figure ) for 10,000
tosses.

In the second example Peter was ahead most of the time. It is a remarkable fact, however, that, if play is continued long enough,
Peter’s winnings will continue to come back to 0, but there will be very long times between the times that this happens. These and
related results will be discussed in Chapter 12.

In all of our examples so far, we have simulated equiprobable outcomes. We illustrate next an example where the outcomes are not
equiprobable.

Four horses (Acorn, Balky, Chestnut, and Dolby) have raced many times. It is estimated that Acorn wins 30 percent of the
time, Balky 40 percent of the time, Chestnut 20 percent of the time, and Dolby 10 percent of the time.

We can have our computer carry out one race as follows: Choose a random number . If  then we say that Acorn won. If
 then Balky wins. If  then Chestnut wins. Finally, if  then Dolby wins.

The program HorseRace uses this method to simulate the outcomes of  races. Running this program for  we found
that Acorn won 40 percent of the time, Balky 20 percent of the time, Chestnut 10 percent of the time, and Dolby 30 percent of
the time.

A larger number of races would be necessary to have better agreement with the past experience. Therefore we ran the program
to simulate 1000 races with our four horses. Although very tired after all these races, they performed in a manner quite
consistent with our estimates of their abilities. Acorn won 29.8 percent of the time, Balky 39.4 percent, Chestnut 19.5 percent,
and Dolby 11.3 percent of the time.

The program GeneralSimulation uses this method to simulate repetitions of an arbitrary experiment with a finite number of
outcomes occurring with known probabilities.
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Figure : Distribution of winnings.

 

Figure : Distribution of number of times in the lead

 

Figure : Peter’s winnings in 1000 plays of heads or tails

 

Figure : Peter’s winnings in 10,000 plays of heads or tails

Historical Remarks
Anyone who plays the same chance game over and over is really carrying out a simulation, and in this sense the process of
simulation has been going on for centuries. As we have remarked, many of the early problems of probability might well have been
suggested by gamblers’ experiences.
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It is natural for anyone trying to understand probability theory to try simple experiments by tossing coins, rolling dice, and so forth.
The naturalist Buffon tossed a coin 4040 times, resulting in 2048 heads and 1992 tails. He also estimated the number  by throwing
needles on a ruled surface and recording how many times the needles crossed a line The English biologist W. F. R. Weldon
recorded 26,306 throws of 12 dice, and the Swiss scientist Rudolf Wolf  recorded 100,000 throws of a single die without a
computer. Such experiments are very time-consuming and may not accurately represent the chance phenomena being studied. For
example, for the dice experiments of Weldon and Wolf, further analysis of the recorded data showed a suspected bias in the dice.
The statistician Karl Pearson analyzed a large number of outcomes at certain roulette tables and suggested that the wheels were
biased. He wrote in 1894:

Clearly, since the Casino does not serve the valuable end of huge laboratory for the
preparation of probability statistics, it has no scientific Men of science cannot have their
most refined theories disregarded in this shameless manner! The French Government
must be urged by the hierarchy of science to close the gaming-saloons; it would be, of
course, a graceful act to hand over the remaining resources of the Casino to the Académie
des Sciences for the endowment of a laboratory of orthodox probability; in particular, of
the new branch of that study, the application of the theory of chance to the biological
problems of evolution, which is likely to occupy so much of men’s thoughts in the near
future.

However, these early experiments were suggestive and led to important discoveries in probability and statistics. They led Pearson
to the which is of great importance in testing whether observed data fit a given probability distribution.

By the early 1900s it was clear that a better way to generate random numbers was needed. In 1927, L. H. C. Tippett published a list
of 41,600 digits obtained by selecting numbers haphazardly from census reports. In 1955, RAND Corporation printed a table of
1,000,000 random numbers generated from electronic noise. The advent of the high-speed computer raised the possibility of
generating random numbers directly on the computer, and in the late 1940s John von Neumann suggested that this be done as
follows: Suppose that you want a random sequence of four-digit numbers. Choose any four-digit number, say 6235, to start. Square
this number to obtain 38,875,225. For the second number choose the middle four digits of this square (i.e., 8752). Do the same
process starting with 8752 to get the third number, and so forth.

More modern methods involve the concept of modular arithmetic. If  is an integer and  is a positive integer, then by 
we mean the remainder when  is divided by . For example, , , and so forth. To generate a
random sequence  of numbers choose a starting number  and then obtain the numbers  from  by the
formula

where , , and  are carefully chosen constants. The sequence   is then a sequence of integers between 0 and 
. To obtain a sequence of real numbers in , we divide each  by . The resulting sequence consists of rational

numbers of the form , where . Since  is usually a very large integer, we think of the numbers in the sequence
as being random real numbers in .

For both von Neumann’s squaring method and the modular arithmetic technique the sequence of numbers is actually completely
determined by the first number. Thus, there is nothing really random about these sequences. However, they produce numbers that
behave very much as theory would predict for random experiments. To obtain different sequences for different experiments the
initial number  is chosen by some other procedure that might involve, for example, the time of day.

During the Second World War, physicists at the Los Alamos Scientific Laboratory needed to know, for purposes of shielding, how
far neutrons travel through various materials. This question was beyond the reach of theoretical calculations. Daniel McCracken,
writing in the , states:

The physicists had most of the necessary data: they knew the average distance a neutron
of a given speed would travel in a given substance before it collided with an atomic
nucleus, what the probabilities were that the neutron would bounce off instead of being

π
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absorbed by the nucleus, how much energy the neutron was likely to lose after a given
collision and so on.

John von Neumann and Stanislas Ulam suggested that the problem be solved by modeling the experiment by chance devices on a
computer. Their work being secret, it was necessary to give it a code name. Von Neumann chose the name “Monte Carlo." Since
that time, this method of simulation has been called the

William Feller indicated the possibilities of using computer simulations to illustrate basic concepts in probability in his book In
discussing the problem about the number of times in the lead in the game of “heads or tails" Feller writes:

The results concerning fluctuations in coin tossing show that widely held beliefs about the
law of large numbers are fallacious. These results are so amazing and so at variance with
common intuition that even sophisticated colleagues doubted that coins actually
misbehave as theory predicts. The record of a simulated experiment is therefore included.

Feller provides a plot showing the result of 10,000 plays of similar to that in Figure 

The martingale betting system described in Exercise  has a long and interesting history. Russell Barnhart pointed out to the
authors that its use can be traced back at least to 1754, when Casanova, writing in his memoirs, History of My Life, writes

She [Casanova’s mistress] made me promise to go to the casino [the Ridotto in Venice]
for money to play in partnership with her. I went there and took all the gold I found, and,
determinedly doubling my stakes according to the system known as the martingale, I won
three or four times a day during the rest of the Carnival. I never lost the sixth card. If I
had lost it, I should have been out of funds, which amounted to two thousand zecchini.

Even if there were no zeros on the roulette wheel so the game was perfectly fair, the martingale system, or any other system for that
matter, cannot make the game into a favorable game. The idea that a fair game remains fair and unfair games remain unfair under
gambling systems has been exploited by mathematicians to obtain important results in the study of probability. We will introduce
the general concept of a martingale in Chapter 6.

The word itself also has an interesting history. The origin of the word is obscure. A recent version of the gives examples of its use
in the early 1600s and says that its probable origin is the reference in Rabelais’s Book One, Chapter 20:

Everything was done as planned, the only thing being that Gargantua doubted if they
would be able to find, right away, breeches suitable to the old fellow’s legs; he was
doubtful, also, as to what cut would be most becoming to the orator—the martingale,
which has a draw-bridge effect in the seat, to permit doing one’s business more easily; the
sailor-style, which affords more comfort for the kidneys; the Swiss, which is warmer on
the belly; or the codfish-tail, which is cooler on the loins.

Dominic Lusinchi noted an earlier occurrence of the word martingale. According to the French dictionary Le Petit Robert, the word
comes from the Provençal word “martegalo," which means “from Martigues." Martigues is a town due west of Merseille. The
dictionary gives the example of “chausses à la martinguale" (which means Martigues-style breeches) and the date 1491.

In modern uses martingale has several different meanings, all related to in addition to the gambling use. For example, it is a strap
on a horse’s harness used to hold down the horse’s head, and also part of a sailing rig used to hold down the bowsprit.

The Labouchere system described in Exercise  is named after Henry du Pre Labouchere (1831–1912), an English journalist
and member of Parliament. Labouchere attributed the system to Condorcet. Condorcet (1743–1794) was a political leader during
the time of the French revolution who was interested in applying probability theory to economics and politics. For example, he
calculated the probability that a jury using majority vote will give a correct decision if each juror has the same probability of
deciding correctly. His writings provided a wealth of ideas on how probability might be applied to human affairs.
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Exercise 

Modify the program CoinTosses to toss a coin  times and print out after every 100 tosses the proportion of heads minus 1/2. Do
these numbers appear to approach 0 as increases? Modify the program again to print out, every 100 times, both of the following
quantities: the proportion of heads minus 1/2, and the number of heads minus half the number of tosses. Do these numbers appear
to approach 0 as  increases?

Exercise 

Modify the program CoinTosses so that it tosses a coin  times and records whether or not the proportion of heads is within .1 of .5
(i.e., between .4 and .6). Have your program repeat this experiment 100 times. About how large must  be so that approximately 95
out of 100 times the proportion of heads is between .4 and .6?

Exercise 

In the early 1600s, Galileo was asked to explain the fact that, although the number of triples of integers from 1 to 6 with sum 9 is
the same as the number of such triples with sum 10, when three dice are rolled, a 9 seemed to come up less often than a 10—
supposedly in the experience of gamblers.

1. Write a program to simulate the roll of three dice a large number of times and keep track of the proportion of times that the sum
is 9 and the proportion of times it is 10.

2. Can you conclude from your simulations that the gamblers were correct?

Exercise 

In raquetball, a player continues to serve as long as she is winning; a point is scored only when a player is serving and wins the
volley. The first player to win 21 points wins the game. Assume that you serve first and have a probability .6 of winning a volley
when you serve and probability .5 when your opponent serves. Estimate, by simulation, the probability that you will win a game.

Exercise 

Consider the bet that all three dice will turn up sixes at least once in  rolls of three dice. Calculate , the probability of at least
one triple-six when three dice are rolled times. Determine the smallest value of  necessary for a favorable bet that a triple-six
will occur when three dice are rolled  times. (DeMoivre would say it should be about  and so would answer 150
—see Exercise  Do you agree with him?)

Exercise 

In Las Vegas, a roulette wheel has 38 slots numbered 0, 00, 1, 2, …, 36. The 0 and 00 slots are green and half of the remaining 36
slots are red and half are black. A croupier spins the wheel and throws in an ivory ball. If you bet 1 dollar on red, you win 1 dollar
if the ball stops in a red slot and otherwise you lose 1 dollar. Write a program to find the total winnings for a player who makes
1000 bets on red.

Exercise 

Another form of bet for roulette is to bet that a specific number (say 17) will turn up. If the ball stops on your number, you get your
dollar back plus 35 dollars. If not, you lose your dollar. Write a program that will plot your winnings when you make 500 plays of
roulette at Las Vegas, first when you bet each time on red (see Exercise ), and then for a second visit to

Exercise 

An astute student noticed that, in our simulation of the game of heads or tails (see Example ), the proportion of times the
player is always in the lead is very close to the proportion of times that the player’s total winnings end up 0. Work out these
probabilities by enumeration of all cases for two tosses and for four tosses, and see if you think that these probabilities are, in fact,
the same.

Exercise 

The for roulette is played as follows. Write down a list of numbers, usually 1, 2, 3, 4. Bet the sum of the first and last, ,
on red. If you win, delete the first and last numbers from your list. If you lose, add the amount that you last bet to the end of your
list. Then use the new list and bet the sum of the first and last numbers (if there is only one number, bet that amount). Continue
until your list becomes empty. Show that, if this happens, you win the sum, , of your original list. Simulate this
system and see if you do always stop and, hence, always win. If so, why is this not a foolproof gambling system?
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Exercise 

Another well-known gambling system is the . Suppose that you are betting on red to turn up in roulette. Every time you win, bet 1
dollar next time. Every time you lose, double your previous bet. Suppose that you use this system until you have won at least 5
dollars or you have lost more than 100 dollars. Write a program to simulate this and play it a number of times and see how you do.
In his book W. M. Thackeray remarks “You have not played as yet? Do not do so; above all avoid a martingale if you do."  Was
this good advice?

Exercise 

Modify the program HTSimulation so that it keeps track of the maximum of Peter’s winnings in each game of 40 tosses. Have
your program print out the proportion of times that your total winnings take on values . Calculate the
corresponding exact probabilities for games of two tosses and four tosses.

Exercise 

In an upcoming national election for the President of the United States, a pollster plans to predict the winner of the popular vote by
taking a random sample of 1000 voters and declaring that the winner will be the one obtaining the most votes in his sample.
Suppose that 48 percent of the voters plan to vote for the Republican candidate and 52 percent plan to vote for the Democratic
candidate. To get some idea of how reasonable the pollster’s plan is, write a program to make this prediction by simulation. Repeat
the simulation 100 times and see how many times the pollster’s prediction would come true. Repeat your experiment, assuming
now that 49 percent of the population plan to vote for the Republican candidate; first with a sample of 1000 and then with a sample
of 3000. (The Gallup Poll uses about 3000.) (This idea is discussed further in Chapter 9, Section 9.1.)

Exercise 

The psychologist Tversky and his colleagues  say that about four out of five people will answer (a) to the following question:

A certain town is served by two hospitals. In the larger hospital about 45 babies are born each day, and in the smaller hospital 15
babies are born each day. Although the overall proportion of boys is about 50 percent, the actual proportion at either hospital may
be more or less than 50 percent on any day. At the end of a year, which hospital will have the greater number of days on which
more than 60 percent of the babies born were boys?

1. the large hospital
2. the small hospital
3. neither—the number of days will be about the same.

Assume that the probability that a baby is a boy is .5 (actual estimates make this more like .513). Decide, by simulation, what the
right answer is to the question. Can you suggest why so many people go wrong?

Exercise 

You are offered the following game. A fair coin will be tossed until the first time it comes up heads. If this occurs on the th toss
you are paid  dollars. You are sure to win at least 2 dollars so you should be willing to pay to play this game—but how much?
Few people would pay as much as 10 dollars to play this game. See if you can decide, by simulation, a reasonable amount that you
would be willing to pay, per game, if you will be allowed to make a large number of plays of the game. Does the amount that you
would be willing to pay per game depend upon the number of plays that you will be allowed?

Exercise 

Tversky and his colleagues  studied the records of 48 of the Philadelphia 76ers basketball games in the 1980–81 season to see if a
player had times when he was hot and every shot went in, and other times when he was cold and barely able to hit the backboard.
The players estimated that they were about 25 percent more likely to make a shot after a hit than after a miss. In fact, the opposite
was true—the 76ers were 6 percent more likely to score after a miss than after a hit. Tversky reports that the number of hot and
cold streaks was about what one would expect by purely random effects. Assuming that a player has a fifty-fifty chance of making
a shot and makes 20 shots a game, estimate by simulation the proportion of the games in which the player will have a streak of 5 or
more hits.

Exercise 

Estimate, by simulation, the average number of children there would be in a family if all people had children until they had a boy.
Do the same if all people had children until they had at least one boy and at least one girl. How many more children would you
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expect to find under the second scheme than under the first in 100,000 families? (Assume that boys and girls are equally likely.)

Exercise 

Mathematicians have been known to get some of the best ideas while sitting in a cafe, riding on a bus, or strolling in the park. In
the early 1900s the famous mathematician George Pólya lived in a hotel near the woods in Zurich. He liked to walk in the woods
and think about mathematics. Pólya describes the following incident:

At the hotel there lived also some students with whom I usually took my meals and had
friendly relations. On a certain day one of them expected the visit of his fiancée, what
(sic) I knew, but I did not foresee that he and his fiancée would also set out for a stroll in
the woods, and then suddenly I met them there. And then I met them the same morning
repeatedly, I don’t remember how many times, but certainly much too often and I felt
embarrassed: It looked as if I was snooping around which was, I assure you, not the
case.

This set him to thinking about whether random walkers were destined to meet.

Pólya considered random walkers in one, two, and three dimensions. In one dimension, he envisioned the walker on a very long
street. At each intersection the walker flips a fair coin to decide which direction to walk next (see Figure ). In two
dimensions, the walker is walking on a grid of streets, and at each intersection he chooses one of the four possible directions with
equal probability (see Figure ). In three dimensions (we might better speak of a random climber), the walker moves on a
three-dimensional grid, and at each intersection there are now six different directions that the walker may choose, each with equal
probability (see Figure ).

The reader is referred to Section 12.1 where this and related problems are discussed.

1. Write a program to simulate a random walk in one dimension starting at 0. Have your program print out the lengths of the times
between returns to the starting point (returns to 0). See if you can guess from this simulation the answer to the following
question: Will the walker always return to his starting point eventually or might he drift away forever?

2. The paths of two walkers in two dimensions who meet after n steps can be considered to be a single path that starts at (0, 0) and
returns to (0, 0) after 2n steps. This means that the probability that two random walkers in two dimensions meet is the same as
the probability that a single walker in two dimensions ever returns to the starting point. Thus the question of whether two
walkers are sure to meet is the same as the question of whether a single walker is sure to return to the starting point. Write a
program to simulate a random walk in two dimensions and see if you think that the walker is sure to return to (0, 0). If so, P
´olya would be sure to keep meeting his friends in the park. Perhaps by now you have conjectured the answer to the question: Is
a random walker in one or two dimensions sure to return to the starting point? P´olya answered this question for dimensions
one, two, and three. He established the remarkable result that the answer is yes in one and two dimensions and no in three
dimensions

3. Write a program to simulate a random walk in two dimensions and see if you think that the walker is sure to return to . If
so, Pólya would be sure to keep meeting his friends in the park. Perhaps by now you have conjectured the answer to the
question: Is a random walker in one or two dimensions sure to return to the starting point? Pólya answered this question for
dimensions one, two, and three. He established the remarkable result that the answer is in one and two dimensions and in three
dimensions.

P´olya, “Two Incidents,” Scientists at Work: Festschrift in Honour of Herman Wold, ed. T. Dalenius, G. Karlsson, and S.
Malmquist (Uppsala: Almquist & Wiksells Boktryckeri AB, 1970).
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Figure : Random walks
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