
GNU Free Documentation License 11.3.1 https://stats.libretexts.org/@go/page/3174

11.3: Ergodic Markov Chains**
A second important kind of Markov chain we shall study in detail is an ergodic Markov chain, defined as follows.

A Markov chain is called an ergodic Markov chain if it is possible to go from every state to every state (not necessarily in one
move).

In many books, ergodic Markov chains are called irreducible.

A Markov chain is called an ergodic chain if some power of the transition matrix has only positive elements.

In other words, for some , it is possible to go from any state to any state in exactly  steps. It is clear from this definition that
every regular chain is ergodic. On the other hand, an ergodic chain is not necessarily regular, as the following examples show.

Let the transition matrix of a Markov chain be defined by

Then is clear that it is possible to move from any state to any state, so the chain is ergodic. However, if  is odd, then it is not
possible to move from state 0 to state 0 in  steps, and if  is even, then it is not possible to move from state 0 to state 1 in 
steps, so the chain is not regular.

 

A more interesting example of an ergodic, non-regular Markov chain is provided by the Ehrenfest urn model.

Recall the Ehrenfest urn model (Example 11.1.8). The transition matrix for this example is

In this example, if we start in state 0 we will, after any even number of steps, be in either state 0, 2 or 4, and after any odd
number of steps, be in states 1 or 3. Thus this chain is ergodic but not regular.

 

Regular Markov Chains

Any transition matrix that has no zeros determines a regular Markov chain. However, it is possible for a regular Markov chain to
have a transition matrix that has zeros. The transition matrix of the Land of Oz example of Section 11.1 has  but the
second power  has no zeros, so this is a regular Markov chain.

An example of a nonregular Markov chain is an absorbing chain. For example, let
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be the transition matrix of a Markov chain. Then all powers of  will have a 0 in the upper right-hand corner.

We shall now discuss two important theorems relating to regular chains.

Let  be the transition matrix for a regular chain. Then, as , the powers  approach a limiting matrix  with all
rows the same vector . The vector  is a strictly positive probability vector (i.e., the components are all positive and they
sum to one).

 

In the next section we give two proofs of this fundamental theorem. We give here the basic idea of the first proof.

We want to show that the powers  of a regular transition matrix tend to a matrix with all rows the same. This is the same as
showing that  converges to a matrix with constant columns. Now the th column of  is  where  is a column vector with

 in the th entry and 0 in the other entries. Thus we need only prove that for any column vector  approaches a constant
vector as  tend to infinity.

Since each row of  is a probability vector,  replaces  by averages of its components. Here is an example:

The result of the averaging process is to make the components of  more similar than those of . In particular, the maximum
component decreases (from 3 to 2) and the minimum component increases (from 1 to 3/2). Our proof will show that as we do more
and more of this averaging to get , the difference between the maximum and minimum component will tend to 0 as .
This means  tends to a constant vector. The th entry of , , is the probability that the process will be in state  after 
steps if it starts in state . If we denote the common row of  by , then Theorem  states that the probability of being in 
in the long run is approximately , the th entry of , and is independent of the starting state.

Recall that for the Land of Oz example of Section 1.1, the sixth power of the transition matrix  is, to three decimal places,

 

Thus, to this degree of accuracy, the probability of rain six days after a rainy day is the same as the probability of rain six days after
a nice day, or six days after a snowy day. Theorem  predicts that, for large , the rows of  approach a common vector. It is
interesting that this occurs so soon in our example.

Let  be a regular transition matrix, let

let  be the common row of , and let  be the column vector all of whose components are 1. Then

a. , and any row vector  such that  is a constant multiple of .
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b. , and any column vector such that  is a multiple of .

Proof. To prove part (a), we note that from Theorem ,

Thus,

But , and so , and .

Let  be any vector with . Then , and passing to the limit, . Let  be the sum of the components of .
Then it is easily checked that . So, .

To prove part (b), assume that . Then , and again passing to the limit, . Since all rows of  are the
same, the components of  are all equal, so  is a multiple of .

Note that an immediate consequence of Theorem  is the fact that there is only one probability vector  such that .

Fixed Vectors

A row vector  with the property  is called a for . Similarly, a column vector  such that  is called a for .

Thus, the common row of  is the unique vector  which is both a fixed row vector for  and a probability vector. Theorem 
 shows that any fixed row vector for  is a multiple of  and any fixed column vector for  is a constant vector.

One can also state Definition  in terms of eigenvalues and eigenvectors. A fixed row vector is a left eigenvector of the matrix
 corresponding to the eigenvalue 1. A similar statement can be made about fixed column vectors.

We will now give several different methods for calculating the fixed row vector for a regular Markov chain.

By Theorem  we can find the limiting vector  for the Land of Oz from the fact that

and

These relations lead to the following four equations in three unknowns:

Our theorem guarantees that these equations have a unique solution. If the equations are solved, we obtain the solution

in agreement with that predicted from , given in Example 11.1.2.

To calculate the fixed vector, we can assume that the value at a particular state, say state one, is 1, and then use all but one of
the linear equations from . This set of equations will have a unique solution and we can obtain  from this solution
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by dividing each of its entries by their sum to give the probability vector . We will now illustrate this idea for the above
example.

 

(Example  continued) We set , and then solve the first and second linear equations from . We have

If we solve these, we obtain

Now we divide this vector by the sum of the components, to obtain the final answer:

This method can be easily programmed to run on a computer.

As mentioned above, we can also think of the fixed row vector  as a left eigenvector of the transition matrix . Thus, if we
write  to denote the identity matrix, then  satisfies the matrix equation

or equivalently,

Thus,  is in the left nullspace of the matrix . Furthermore, Theorem  states that this left nullspace has dimension
1. Certain computer programming languages can find nullspaces of matrices. In such languages, one can find the fixed row
probability vector for a matrix  by computing the left nullspace and then normalizing a vector in the nullspace so the sum of
its components is 1.

The program FixedVector uses one of the above methods (depending upon the language in which it is written) to calculate the
fixed row probability vector for regular Markov chains.

So far we have always assumed that we started in a specific state. The following theorem generalizes Theorem [thm 11.3.6] to the
case where the starting state is itself determined by a probability vector.

Let  be the transition matrix for a regular chain and  an arbitrary probability vector. Then

where  is the unique fixed probability vector for .

Proof. By Theorem ,

Hence,

But the entries in  sum to 1, and each row of  equals . From these statements, it is easy to check that
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If we start a Markov chain with initial probabilities given by , then the probability vector  gives the probabilities of being in
the various states after  steps. Theorem [thm 11.3.9] then establishes the fact that, even in this more general class of processes, the
probability of being in  approaches .

Equilibrium
We also obtain a new interpretation for . Suppose that our starting vector picks state  as a starting state with probability , for
all . Then the probability of being in the various states after  steps is given by , and is the same on all steps. This
method of starting provides us with a process that is called “stationary." The fact that  is the only probability vector for which 

 shows that we must have a starting probability vector of exactly the kind described to obtain a stationary process.

Many interesting results concerning regular Markov chains depend only on the fact that the chain has a unique fixed probability
vector which is positive. This property holds for all ergodic Markov chains.

For an ergodic Markov chain, there is a unique probability vector  such that  and  is strictly positive. Any row
vector such that  is a multiple of . Any column vector  such that  is a constant vector.

Proof. This theorem states that Theorem  is true for ergodic chains. The result follows easily from the fact that, if  is an
ergodic transition matrix, then  is a regular transition matrix with the same fixed vectors (see Exercises 

–[exer ).

For ergodic chains, the fixed probability vector has a slightly different interpretation. The following two theorems, which we will
not prove here, furnish an interpretation for this fixed vector.

Let  be the transition matrix for an ergodic chain. Let  be the matrix defined by

Then , where  is a matrix all of whose rows are equal to the unique fixed probability vector  for .

 

If  is the transition matrix of an ergodic chain, then Theorem  states that there is only one fixed row probability vector for 
. Thus, we can use the same techniques that were used for regular chains to solve for this fixed vector. In particular, the program

FixedVector works for ergodic chains.

To interpret Theorem , let us assume that we have an ergodic chain that starts in state . Let  if the th step is to
state  and 0 otherwise. Then the average number of times in state  in the first  steps is given by

But  takes on the value 1 with probability  and 0 otherwise. Thus , and the th entry of  gives the
expected value of , that is, the expected proportion of times in state  in the first  steps if the chain starts in state .

If we call being in state  and any other state we could ask if a theorem analogous to the law of large numbers for independent
trials holds. The answer is yes and is given by the following theorem.

Let  be the proportion of times in  steps that an ergodic chain is in state . Then for any ,

independent of the starting state .
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We have observed that every regular Markov chain is also an ergodic chain. Hence, Theorems  and  apply also for
regular chains. For example, this gives us a new interpretation for the fixed vector  in the Land of Oz example.
Theorem  predicts that, in the long run, it will rain 40 percent of the time in the Land of Oz, be nice 20 percent of the
time, and snow 40 percent of the time.

Simulation
We illustrate Theorem  by writing a program to simulate the behavior of a Markov chain. SimulateChain is such a program.

In the Land of Oz, there are 525 days in a year. We have simulated the weather for one year in the Land of Oz, using the
program SimulateChain. The results are shown in Table  .
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SNS

 

Table : Weather in the Land of Oz.

State Times Fraction

   

R 217 .413

N 109 .208

S 199 .379

We note that the simulation gives a proportion of times in each of the states not too different from the long run predictions of
.4, .2, and .4 assured by Theorem . To get better results we have to simulate our chain for a longer time. We do this for
10,000 days without printing out each day’s weather. The results are shown in Table . We see that the results are now
quite close to the theoretical values of .4, .2, and .4.

Table : Comparison of observed and predicted frequencies for the Land of Oz.

State Times Fraction

   

R 4010 .401

N 1902 .19

S 4088 .409
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Examples of Ergodic Chains
The computation of the fixed vector  may be difficult if the transition matrix is very large. It is sometimes useful to guess the
fixed vector on purely intuitive grounds. Here is a simple example to illustrate this kind of situation.

A white rat is put into the maze of Figure  

Figure : The maze problem.

There are nine compartments with connections between the compartments as indicated. The rat moves through the
compartments at random. That is, if there are  ways to leave a compartment, it chooses each of these with equal probability.
We can represent the travels of the rat by a Markov chain process with transition matrix given by

That this chain is not regular can be seen as follows: From an odd-numbered state the process can go only to an even-numbered
state, and from an even-numbered state it can go only to an odd number. Hence, starting in state  the process will be
alternately in even-numbered and odd-numbered states. Therefore, odd powers of  will have 0’s for the odd-numbered entries
in row 1. On the other hand, a glance at the maze shows that it is possible to go from every state to every other state, so that the
chain is ergodic.

To find the fixed probability vector for this matrix, we would have to solve ten equations in nine unknowns. However, it would
seem reasonable that the times spent in each compartment should, in the long run, be proportional to the number of entries to
each compartment. Thus, we try the vector whose th component is the number of entries to the th compartment:

It is easy to check that this vector is indeed a fixed vector so that the unique probability vector is this vector normalized to have
sum 1:

w
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.

 

Add example text here.

Solution
Add example text here.

(Example  continued) We recall the Ehrenfest urn model of Example 11.1.6. The transition matrix for this chain is as
follows:

If we run the program FixedVector for this chain, we obtain the vector

By Theorem , we can interpret these values for  as the proportion of times the process is in each of the states in the long
run. For example, the proportion of times in state 0 is .0625 and the proportion of times in state 1 is .375. The astute reader will
note that these numbers are the binomial distribution 1/16, 4/16, 6/16, 4/16, 1/16. We could have guessed this answer as follows: If
we consider a particular ball, it simply moves randomly back and forth between the two urns. This suggests that the equilibrium
state should be just as if we randomly distributed the four balls in the two urns. If we did this, the probability that there would be
exactly  balls in one urn would be given by the binomial distribution  with  and .

Exercises

Exercise 

Which of the following matrices are transition matrices for regular Markov chains?

a. .

b. .

c. .

d. .

e. .

Exercise 

Consider the Markov chain with transition matrix
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a. Show that this is a regular Markov chain.
b. The process is started in state 1; find the probability that it is in state 3 after two steps.
c. Find the limiting probability vector .

Exercise 

Consider the Markov chain with general  transition matrix

a. Under what conditions is  absorbing?
b. Under what conditions is  ergodic but not regular?
c. Under what conditions is  regular?

Exercise 

Find the fixed probability vector  for the matrices in Exercise [exer 11.3.3] that are ergodic.

Exercise 

Find the fixed probability vector  for each of the following regular matrices.

a. .

b. .

c. .

Exercise 

Consider the Markov chain with transition matrix in Exercise , with . Show that this chain is ergodic but not
regular. Find the fixed probability vector and interpret it. Show that  does not tend to a limit, but that

does.

Exercise 

Consider the Markov chain with transition matrix of Exercise , with  and . Compute directly the unique fixed
probability vector, and use your result to prove that the chain is not ergodic.

Exercise 

Show that the matrix

has more than one fixed probability vector. Find the matrix that  approaches as , and verify that it is not a matrix all of
whose rows are the same.
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Exercise 

Prove that, if a 3-by-3 transition matrix has the property that its sums are 1, then  is a fixed probability vector. State
a similar result for -by-  transition matrices. Interpret these results for ergodic chains.

Exercise 

Is the Markov chain in Example 11.1.8 ergodic?

Exercise 

Is the Markov chain in Example 11.1.9 ergodic?

Exercise 

Consider Example 11.2.1 (Drunkard’s Walk). Assume that if the walker reaches state 0, he turns around and returns to state 1 on the
next step and, similarly, if he reaches 4 he returns on the next step to state 3. Is this new chain ergodic? Is it regular?

Exercise 

For Example 11.1.2 when  is ergodic, what is the proportion of people who are told that the President will run? Interpret the fact
that this proportion is independent of the starting state.

Exercise 

Consider an independent trials process to be a Markov chain whose states are the possible outcomes of the individual trials. What is
its fixed probability vector? Is the chain always regular? Illustrate this for Example 11.1.3.

Exercise 

Show that Example 11.1.6 is an ergodic chain, but not a regular chain. Show that its fixed probability vector  is a binomial
distribution.

Exercise 

Show that Example 11.1.7 is regular and find the limiting vector.

Exercise 

Toss a fair die repeatedly. Let 7 denote the total of the outcomes through the th toss. Show that there is a limiting value for the
proportion of the first  values of  that are divisible by 7, and compute the value for this limit. : The desired limit is an
equilibrium probability vector for an appropriate seven state Markov chain.

Exercise 

Let  be the transition matrix of a regular Markov chain. Assume that there are  states and let  be the smallest integer  such
that  is regular if and only if  has no zero entries. Find a finite upper bound for . See if you can determine 
exactly.

Exercise 

Define  to be the smallest integer  such that for all regular Markov chains with  states, the th power of the transition matrix
has all entries positive. It has been shown,  that .

a. Define the transition matrix of an -state Markov chain as follows: For states , with , 2, …, , , 
, and . Show that this is a regular Markov chain.

b. For , verify that the fifth power is the first power that has no zeros.
c. Show that, for general , the smallest  such that  has all entries positive is .

Exercise 

A discrete time queueing system of capacity  consists of the person being served and those waiting to be served. The queue length
 is observed each second. If , then with probability , the queue size is increased by one by an arrival and,

inependently, with probability , it is decreased by one because the person being served finishes service. If , only an arrival
(with probability ) is possible. If , an arrival will depart without waiting for service, and so only the departure (with
probability ) of the person being served is possible. Form a Markov chain with states given by the number of customers in the
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queue. Modify the program FixedVector so that you can input , , and , and the program will construct the transition matrix and
compute the fixed vector. The quantity  is called the Describe the differences in the fixed vectors according as , 

, or .

Exercise 

Write a computer program to simulate the queue in Exercise . Have your program keep track of the proportion of the time
that the queue length is  for , 1, …,  and the average queue length. Show that the behavior of the queue length is very
different depending upon whether the traffic intensity  has the property , , or .

Exercise 

In the queueing problem of Exercise , let  be the total service time required by a customer and  the time between arrivals
of the customers.

a. Show that  and , for .
b. Show that  and .

Interpret the conditions ,  and  in terms of these expected values.

Exercise 

In Exercise  the service time  has a geometric distribution with . Assume that the service time is, instead, a
constant time of  seconds. Modify your computer program of Exercise [exer 11.3.20] so that it simulates a constant time service
distribution. Compare the average queue length for the two types of distributions when they have the same expected service time
(i.e., take ). Which distribution leads to the longer queues on the average?

Exercise 

A certain experiment is believed to be described by a two-state Markov chain with the transition matrix , where

and the parameter  is not known. When the experiment is performed many times, the chain ends in state one approximately 20
percent of the time and in state two approximately 80 percent of the time. Compute a sensible estimate for the unknown parameter 

 and explain how you found it.

Exercise 

Prove that, in an -state ergodic chain, it is possible to go from any state to any other state in at most  steps.

Exercise 

Let  be the transition matrix of an -state ergodic chain. Prove that, if the diagonal entries  are positive, then the chain is
regular.

Exercise 

Prove that if  is the transition matrix of an ergodic chain, then  is the transition matrix of a regular chain. : Use
Exercise .

Exercise 

Prove that  and  have the same fixed vectors.

Exercise 

In his book,  A. Engle proposes an algorithm for finding the fixed vector for an ergodic Markov chain when the transition
probabilities are rational numbers. Here is his algorithm: For each state , let  be the least common multiple of the denominators
of the non-zero entries in the th row. Engle describes his algorithm in terms of moving chips around on the states—indeed, for
small examples, he recommends implementing the algorithm this way. Start by putting  chips on state  for all . Then, at each
state, redistribute the  chips, sending  to state . The number of chips at state  after this redistribution need not be a multiple
of . For each state , add just enough chips to bring the number of chips at state  up to a multiple of . Then redistribute the

n p r

s = p/r s < 1

s = 1 s > 1

11.3.21

11.3.20

j j = 0 n

s s < 1 s = 1 s > 1

11.3.22

11.3.20 S T

P (S = j) = (1 −r r)j−1 P (T = j) = (1 −p p)j−1 j > 0

E(S) = 1/r E(T ) = 1/p

s < 1 s = 1 s > 1

11.3.23

11.3.20 S E(S) = 1/r

t

t = 1/r

11.3.24

P

P =( )
.5

p

.5

1 −p
(11.3.32)

p

p

11.3.25

r r −1

11.3.26

P r pii

11.3.27

P (1/2)(I +P)

11.3.26

11.3.28

P (1/2)(I +P)

11.3.29

15

i ai

i

ai i i

ai aipij j i

ai i i ai

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://stats.libretexts.org/@go/page/3174?pdf


GNU Free Documentation License 11.3.12 https://stats.libretexts.org/@go/page/3174

chips in the same manner. This process will eventually reach a point where the number of chips at each state, after the
redistribution, is the same as before redistribution. At this point, we have found a fixed vector. Here is an example:

 We start with . The chips after successive redistributions are shown in Table .

We find that  is a fixed vector.

a. Write a computer program to implement this algorithm.
b. Prove that the algorithm will stop. : Let  be a vector with integer components that is a fixed vector for  and such that each

coordinate of the starting vector  is less than or equal to the corresponding component of . Show that, in the iteration, the
components of the vectors are always increasing, and always less than or equal to the corresponding component of .

Exercise 

(Coffman, Kaduta, and Shepp ) A computing center keeps information on a tape in positions of unit length. During each time unit
there is one request to occupy a unit of tape. When this arrives the first free unit is used. Also, during each second, each of the units
that are occupied is vacated with probability . Simulate this process, starting with an empty tape. Estimate the expected number of
sites occupied for a given value of . If  is small, can you choose the tape long enough so that there is a small probability that a
new job will have to be turned away (i.e., that all the sites are occupied)? Form a Markov chain with states the number of sites
occupied. Modify the program FixedVector to compute the fixed vector. Use this to check your conjecture by simulation.

Exercise 

(Alternate proof of Theorem [thm 11.3.8]) Let  be the transition matrix of an ergodic Markov chain. Let  be any column vector
such that . Let  be the maximum value of the components of . Assume that . Show that if  then 

. Use this to prove that  must be a constant vector.

Exercise 

Let  be the transition matrix of an ergodic Markov chain. Let  be a fixed probability vector (i.e.,  is a row vector with 
). Show that if  and  then . Use this to show that the fixed probability vector for an ergodic chain

cannot have any 0 entries.
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Exercise 

Find a Markov chain that is neither absorbing or ergodic.
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