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12.3: Arc Sine Laws**
In Exercise 12.1.6, the distribution of the time of the last equalization in the symmetric random walk was determined. If we let 

 denote the probability that a random walk of length  has its last equalization at time , then we have

We shall now show how one can approximate the distribution of the ’s with a simple function. We recall that

Therefore, as both  and  go to , we have

This last expression can be written as

Thus, if we define

for , then we have

The reason for the  sign is that we no longer require that  get large. This means that we can replace the discrete 
distribution by the continuous density  on the interval  and obtain a good approximation. In particular, if  is a fixed real
number between 0 and 1, then we have

It turns out that  has a nice antiderivative, so we can write

One can see from the graph of this last function that it has a minimum at  and is symmetric about that point. As noted in
the exercise, this implies that half of the walks of length  have no equalizations after time , a fact which probably would not
be guessed.

It turns out that the arc sine density comes up in the answers to many other questions concerning random walks on the line. Recall
that in Section 1.1, a random walk could be viewed as a polygonal line connecting  with . Under this interpretation,
we define  to be the probability that a random walk of length  has exactly  of its  polygonal line segments above the
-axis.

The probability  is frequently interpreted in terms of a two-player game. (The reader will recall the game Heads or Tails, in
Example 12.1.4 .) Player A is said to be in the lead at time  if the random walk is above the -axis at that time, or if the random
walk is on the -axis at time  but above the -axis at time . (At time 0, neither player is in the lead.) One can ask what is the
most probable number of times that player A is in the lead, in a game of length . Most people will say that the answer to this
question is . However, the following theorem says that  is the least likely number of times that player A is in the lead, and the
most likely number of times in the lead is 0 or .
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If Peter and Paul play a game of Heads or Tails of length , the probability that Peter will be in the lead exactly  times is
equal to

 

Proof. To prove the theorem, we need to show that

Exercise 12.1.7 shows that  and , so we only need to prove that Equation 12.3.1 holds for 
. We can obtain a recursion involving the ’s and the ’s (defined in Section 1.1) by counting the number of paths

of length  that have exactly  of their segments above the -axis, where . To count this collection of paths, we
assume that the first return occurs at time , where . There are two cases to consider. Either during the first 
outcomes the path is above the -axis or below the -axis. In the first case, it must be true that the path has exactly  line
segments above the -axis, between  and . In the second case, it must be true that the path has exactly  line
segments above the -axis, between  and .

We now count the number of paths of the various types described above. The number of paths of length  all of whose line
segments lie above the -axis and which return to the origin for the first time at time  equals . This also equals the
number of paths of length  all of whose line segments lie below the -axis and which return to the origin for the first time at time 

. The number of paths of length  which have exactly  line segments above the -axis is .
Finally, the number of paths of length  which have exactly  line segments above the -axis is . Therefore, we
have

We now assume that Equation 12.3.1 is true for . Then we have

where the last equality follows from Theorem [thm 12.1.2]. Thus, we have

which completes the proof.

We illustrate the above theorem by simulating 10,000 games of Heads or Tails, with each game consisting of 40 tosses. The
distribution of the number of times that Peter is in the lead is given in Figure , together with the arc sine density.

 Theorem 
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Figure : Times in the lead.

 

We end this section by stating two other results in which the arc sine density appears. Proofs of these results may be found in
Feller.

Let  be the random variable which, for a given random walk of length , gives the smallest subscript  such that .
(Such a subscript  must be even, by parity considerations.) Let  be the probability that . Then we have

 

The next theorem says that the arc sine density is applicable to a wide range of situations. A continuous distribution function 
is said to be if . (If  is a continuous random variable with a symmetric distribution function, then for any
real , we have .) We imagine that we have a random walk of length  in which each summand has the
distribution , where  is continuous and symmetric. The subscript of the of such a walk is the unique subscript  such that

We define the random variable  to be the subscript of the first maximum. We can now state the following theorem concerning
the random variable .

Let  be a symmetric continuous distribution function, and let  be a fixed real number strictly between 0 and 1. Then as 
, we have

 

A version of this theorem that holds for a symmetric random walk can also be found in Feller.

Exercises

8

 Theorem 

 Theorem 
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Exercise 

For a random walk of length , define  to equal 1 if , or if  and . Define  to equal -1 in all other
cases. Thus,  gives the side of the -axis that the random walk is on during the time interval . A “law of large numbers"
for the sequence  would say that for any , we would have

as . Even though the ’s are not independent, the above assertion certainly appears reasonable. Using Theorem
(\PageIndex{3}\), show that if , then

Exercise 

Given a random walk  of length , with summands

define the random walk to be the walk  with summands

a. Show that the th partial sum  satisfies the equation

where  is the th partial sum for the random walk .
b. Explain the geometric relationship between the graphs of a random walk and its reversal. (It is not in general true that one graph

is obtained from the other by reflecting in a vertical line.)
c. Use parts (a) and (b) to prove Theorem [thm 12.3.2].
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