
GNU Free Documentation License 12.1.1 https://stats.libretexts.org/@go/page/3178

12.1: Random Walks in Euclidean Space**
In the last several chapters, we have studied sums of random variables with the goal being to describe the distribution and density
functions of the sum. In this chapter, we shall look at sums of discrete random variables from a different perspective. We shall be
concerned with properties which can be associated with the sequence of partial sums, such as the number of sign changes of this
sequence, the number of terms in the sequence which equal 0, and the expected size of the maximum term in the sequence.

We begin with the following definition.

Let  be a sequence of independent, identically distributed discrete random variables. For each positive integer , we
let  denote the sum . The sequence  is called a If the common range of the ’s is , then
we say that  is a random walk in .

 

We view the sequence of ’s as being the outcomes of independent experiments. Since the ’s are independent, the probability
of any particular (finite) sequence of outcomes can be obtained by multiplying the probabilities that each  takes on the specified
value in the sequence. Of course, these individual probabilities are given by the common distribution of the ’s. We will typically
be interested in finding probabilities for events involving the related sequence of ’s. Such events can be described in terms of the

’s, so their probabilities can be calculated using the above idea.

There are several ways to visualize a random walk. One can imagine that a particle is placed at the origin in  at time .
The sum  represents the position of the particle at the end of  seconds. Thus, in the time interval , the particle moves
(or jumps) from position  to . The vector representing this motion is just , which equals . This means that in a
random walk, the jumps are independent and identically distributed. If , for example, then one can imagine a particle on the
real line that starts at the origin, and at the end of each second, jumps one unit to the right or the left, with probabilities given by the
distribution of the ’s. If , one can visualize the process as taking place in a city in which the streets form square city
blocks. A person starts at one corner (i.e., at an intersection of two streets) and goes in one of the four possible directions according
to the distribution of the ’s. If , one might imagine being in a jungle gym, where one is free to move in any one of six
directions (left, right, forward, backward, up, and down). Once again, the probabilities of these movements are given by the
distribution of the ’s.

Another model of a random walk (used mostly in the case where the range is ) is a game, involving two people, which consists
of a sequence of independent, identically distributed moves. The sum  represents the score of the first person, say, after  moves,
with the assumption that the score of the second person is . For example, two people might be flipping coins, with a match or
non-match representing  or , respectively, for the first player. Or, perhaps one coin is being flipped, with a head or tail
representing  or , respectively, for the first player.

Random Walks on the Real Line

We shall first consider the simplest non-trivial case of a random walk in , namely the case where the common distribution
function of the random variables  is given by

This situation corresponds to a fair coin being flipped, with  representing the number of heads minus the number of tails which
occur in the first  flips. We note that in this situation, all paths of length  have the same probability, namely .

It is sometimes instructive to represent a random walk as a polygonal line, or path, in the plane, where the horizontal axis
represents time and the vertical axis represents the value of . Given a sequence  of partial sums, we first plot the points 

, and then for each , we connect  and  with a straight line segment. The length of a path is just
the difference in the time values of the beginning and ending points on the path. The reader is referred to Figure [fig 12.1]. This
figure, and the process it illustrates, are identical with the example, given in Chapter 1, of two people playing heads or tails.
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Returns and First Returns
We say that an equalization has occurred, or there is a at time , if . We note that this can only occur if  is an even integer.
To calculate the probability of an equalization at time , we need only count the number of paths of length  which begin and
end at the origin. The number of such paths is clearly

Since each path has probability , we have the following theorem.

The probability of a return to the origin at time  is given by

The probability of a return to the origin at an odd time is 0.

 

Figure : A random walk of length 40

A random walk is said to have a first return to the origin at time  if , and  for all . In Figure , the
first return occurs at time 2. We define  to be the probability of this event. (We also define .) One can think of the
expression  as the number of paths of length  between the points  and  that do not touch the horizontal axis
except at the endpoints. Using this idea, it is easy to prove the following theorem.

For , the probabilities  and  are related by the equation

Proof. There are  paths of length  which have endpoints  and . The collection of such paths can be
partitioned into  sets, depending upon the time of the first return to the origin. A path in this collection which has a first return to
the origin at time  consists of an initial segment from  to , in which no interior points are on the horizontal axis, and
a terminal segment from  to , with no further restrictions on this segment. Thus, the number of paths in the collection
which have a first return to the origin at time  is given by
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If we sum over , we obtain the equation

Dividing both sides of this equation by  completes the proof.

The expression in the right-hand side of the above theorem should remind the reader of a sum that appeared in Definition  7.1.1 of
the convolution of two distributions. The convolution of two sequences is defined in a similar manner. The above theorem says that
the sequence  is the convolution of itself and the sequence . Thus, if we represent each of these sequences by an
ordinary generating function, then we can use the above relationship to determine the value .

For , the probability of a first return to the origin at time  is given by

Proof. We begin by defining the generating functions

and

Theorem  says that

(The presence of the 1 on the right-hand side is due to the fact that  is defined to be 1, but Theorem  only holds for 
.) We note that both generating functions certainly converge on the interval , since all of the coefficients are at most 1

in absolute value. Thus, we can solve the above equation for , obtaining

\[F(x) = \dfrac{{U(x) - 1}{U(x)}\ .\]

Now, if we can find a closed-form expression for the function , we will also have a closed-form expression for . From
Theorem , we have

In Wilf,  we find that

The reader is asked to prove this statement in Exercise . If we replace  by  in the last equation, we see that

Therefore, we have
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Although it is possible to compute the value of  using the Binomial Theorem, it is easier to note that , so that
the coefficients  can be found by integrating the series for . We obtain, for ,

since

This completes the proof of the theorem.

Probability of Eventual Return

In the symmetric random walk process in , what is the probability that the particle eventually returns to the origin? We first
examine this question in the case that , and then we consider the general case. The results in the next two examples are due
to Pólya.

(Eventual Return in ) One has to approach the idea of eventual return with some care, since the sample space seems to be
the set of all walks of infinite length, and this set is non-denumerable. To avoid difficulties, we will define  to be the
probability that a first return has occurred no later than time . Thus,  concerns the sample space of all walks of length ,
which is a finite set. In terms of the ’s, it is reasonable to define the probability that the particle eventually returns to the
origin to be

This limit clearly exists and is at most one, since the sequence  is an increasing sequence, and all of its terms are at
most one.

In terms of the  probabilities, we see that

Thus,

In the proof of Theorem , the generating function

F (x) =
U(x) −1

U(x)

=
(1 −x −1)−1/2

(1 −x)−1/2

= 1 −(1 −x .)1/2

f2m (x) = U(x)/2F ′

f2m U(x) m ≥ 1

f2m =
u2m−2

2m

=

( )
2m −2

m −1

m22m−1

=

( )
2m

m

(2m −1)22m

= ,
u2m

2m −1

( ) = ( ) .
2m −2

m −1

m

2(2m −1)

2m

m
(12.1.14)

R
m

m = 1
2

 Example   12.1.1

R
1

wn

n wn n

wn

=  .w∗ lim
n→∞

wn (12.1.15)

{wn}∞
n=1

fn

=  .w2n ∑
i=1

n

f2i (12.1.16)

=  .w∗ ∑
i=1

∞

f2i (12.1.17)

12.1.3

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://stats.libretexts.org/@go/page/3178?pdf


GNU Free Documentation License 12.1.5 https://stats.libretexts.org/@go/page/3178

was introduced. There it was noted that this series converges for . In fact, it is possible to show that this series also
converges for  by using Exercise , together with the fact that

(This fact was proved in the proof of Theorem .) Since we also know that

we see that

Thus, with probability one, the particle returns to the origin.

An alternative proof of the fact that  can be obtained by using the results in Exercise .

 

(Eventual Return in ) We now turn our attention to the case that the random walk takes place in more than one dimension.
We define  to be the probability that the first return to the origin in  occurs at time . The quantity  is defined in
a similar manner. Thus,  and  equal  and , which were defined earlier. If, in addition, we define  and 

, then one can mimic the proof of Theorem , and show that for all ,

 

We continue to generalize previous work by defining

and

Then, by using Equation ], we see that

as before. These functions will always converge in the interval , since all of their coefficients are at most one in magnitude.
In fact, since

for all , the series for  converges at  as well, and  is left-continuous at , i.e.,

Thus, we have
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so to determine , it suffices to determine

We let  denote this limit.

We claim that

(This claim is reasonable; it says that to find out what happens to the function  at , just let  in the power series
for .) To prove the claim, we note that the coefficients  are non-negative, so  increases monotonically on the
interval . Thus, for each , we have

By letting , we see that

This establishes the claim.

From Equation , we see that if , then the probability of an eventual return is

while if , then the probability of eventual return is 1.

To complete the example, we must estimate the sum

In Exercise , the reader is asked to show that

Using Stirling’s Formula, it is easy to show that (see Exercise )

so

From this it follows easily that

diverges, so , i.e., in , the probability of an eventual return is 1.
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When , Exercise [ shows that

Let  denote the largest value of

over all non-negative values of  and  with . It is easy, using Stirling’s Formula, to show that

for some constant . Thus, we have

Using Exercise , one can show that the right-hand expression is at most

where  is a constant. Thus,

converges, so  is strictly less than one. This means that in , the probability of an eventual return to the origin is strictly less
than one (in fact, it is approximately .34).

One may summarize these results by stating that one should not get drunk in more than two dimensions.

Expected Number of Equalizations
We now give another example of the use of generating functions to find a general formula for terms in a sequence, where the
sequence is related by recursion relations to other sequences. Exercise [exer 12.1.9] gives still another example.

(Expected Number of Equalizations) In this example, we will derive a formula for the expected number of equalizations in a
random walk of length . As in the proof of Theorem , the method has four main parts. First, a recursion is found
which relates the th term in the unknown sequence to earlier terms in the same sequence and to terms in other (known)
sequences. An example of such a recursion is given in Theorem . Second, the recursion is used to derive a functional
equation involving the generating functions of the unknown sequence and one or more known sequences. Equation  is an
example of such a functional equation. Third, the functional equation is solved for the unknown generating function. Last,
using a device such as the Binomial Theorem, integration, or differentiation, a formula for the th coefficient of the unknown
generating function is found.

We begin by defining  to be the number of equalizations among all of the random walks of length . (For each random
walk, we disregard the equalization at time 0.) We define . Since the number of walks of length  equals , the
expected number of equalizations among all such random walks is . Next, we define the generating function :

Now we need to find a recursion which relates the sequence  to one or both of the known sequences  and .
We consider  to be a fixed positive integer, and consider the set of all paths of length  as the disjoint union
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where  is the set of all paths of length  with first equalization at time , and  is the set of all paths of length  with
no equalization. It is easy to show (see Exercise ) that

We claim that the number of equalizations among all paths belonging to the set  is equal to

Each path in  has one equalization at time , so the total number of such equalizations is just . This is the first
summand in expression Equation . There are  different initial segments of length  among the paths in . Each
of these initial segments can be augmented to a path of length  in  ways, by adjoining all possible paths of length 

. The number of equalizations obtained by adjoining all of these paths to any one initial segment is , by
definition. This gives the second summand in Equation . Since  can range from 1 to , we obtain the recursion

The second summand in the typical term above should remind the reader of a convolution. In fact, if we multiply the
generating function  by the generating function

the coefficient of  equals

Thus, the product  is part of the functional equation that we are seeking. The first summand in the typical term in
Equation  gives rise to the sum

From Exercise , we see that this sum is just . Thus, we need to create a generating function whose th
coefficient is this term; this generating function is

or

The first sum is just , and the second sum is . So, the functional equation which we have been seeking is

If we solve this recursion for , and simplify, we obtain

We now need to find a formula for the coefficient of . The first summand in Equation  is , so the
coefficient of  in this function is
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The second summand in Equation  is the sum of a geometric series with common ratio , so the coefficient of  is 
. Thus, we obtain

We recall that the quotient  is the expected number of equalizations among all paths of length . Using Exercise 
, it is easy to show that

In particular, this means that the average number of equalizations among all paths of length  is not twice the average
number of equalizations among all paths of length . In order for the average number of equalizations to double, one must
quadruple the lengths of the random walks.

It is interesting to note that if we define

then we have

This means that the expected number of equalizations and the expected maximum value for random walks of length  are
asymptotically equal as . (In fact, it can be shown that the two expected values differ by at most  for all positive
integers . See Exercise .)

Exercises

Exercise 

Using the Binomial Theorem, show that

What is the interval of convergence of this power series?

Exercise 
a. Show that for ,

b. Using part (a), find a closed-form expression for the sum

c. Using part (b), show that

(One can also obtain this statement from the fact that

d. Using parts (a) and (b), show that the probability of no equalization in the first  outcomes equals the probability of an
equalization at time .
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m ≥ 1

= −  .f2m u2m−2 u2m (12.1.62)

+ +⋯ +  .f2 f4 f2m (12.1.63)

= 1 .∑
m=1

∞

f2m (12.1.64)

F (x) = 1 −(1 −x  . ))1/2 (12.1.65)
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Exercise 

Using the notation of Example [exam 12.1.1], show that

Exercise 

Using Stirling’s Formula, show that

Exercise 

A in a random walk occurs at time  if  and  are of opposite sign.

a. Give a rigorous argument which proves that among all walks of length  that have an equalization at time , exactly half
have a lead change at time .

b. Deduce that the total number of lead changes among all walks of length  equals

c. Find an asymptotic expression for the average number of lead changes in a random walk of length .

Exercise 
a. Show that the probability that a random walk of length  has a last return to the origin at time , where , equals \

[ = u_{2k}u_{2m - 2k}\ .\] (The case  consists of all paths that do not return to the origin at any positive time.) : A path
whose last return to the origin occurs at time  consists of two paths glued together, one path of which is of length  and
which begins and ends at the origin, and the other path of which is of length  and which begins at the origin but never
returns to the origin. Both types of paths can be counted using quantities which appear in this section.

b. Using part (a), show that if  is odd, the probability that a walk of length  has no equalization in the last  outcomes is
equal to , regardless of the value of . : The answer to part a) is symmetric in  and .

Exercise 

Show that the probability of no equalization in a walk of length  equals .

Exercise 

Show that

: First explain why

Then use Exercise [exer 12.1.7], together with the observation that if no equalization occurs in the first  outcomes, then the path
goes through the point  and remains on or above the horizontal line .

Exercise 

In Feller,  one finds the following theorem: Let  be the random variable which gives the maximum value of , for .
Define

\[p_{n, r} = {n\choose

}2^{-n}\ .\] If ,

then

12.1.3

| | =  .E2k f2k22m (12.1.66)

12.1.4

∼  .u2m

1

πm−−−
√

(12.1.67)

12.1.5

2k S2k−1 S2k+1

2m 2k

2k

2m

( − ) .
1

2
g2m u2m (12.1.68)

2m

12.1.6

2m 2k 0 ≤ k ≤ m

k = 0
2k 2k

2m −2k

m 2m m

1/2 m k m −k

12.1.7

2m u2m

12.1.8

P ( ≥ 0,   ≥ 0,   … ,   ≥ 0) =  .S1 S2 S2m u2m (12.1.69)

P ( > 0,   > 0,   … ,   > 0)S1 S2 S2m

= P ( ≠ 0,   ≠ 0,   … ,   ≠ 0) .
1

2
S1 S2 S2m

2m

(1, 1) x = 1

12.1.9

3 Mn Sk 1 ≤ k ≤ n

r ≥ 0

P ( = r) ={Mn

,pn,r

,pn,r+1

if r ≡ n (mod 2),

if r ≢ n (mod 2).
(12.1.70)
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a. Using this theorem, show that

and if , then

b. For , define

and

By using the identity

show that

and

if .
c. Define the generating functions

and

Show that

and

d. Show that

and

E( ) = (4k −1)( ) ,M2m

1

22m
∑
k=1

m 2m

m +k
(12.1.71)

n = 2m +1

E( ) = (4k +1)( ) .M2m+1
1

22m+1
∑
k=0

m 2m +1

m +k +1
(12.1.72)

m ≥ 1

= k( )rm ∑
k=1

m 2m

m +k
(12.1.73)

= k( ) .sm ∑
k=1

m 2m +1

m +k +1
(12.1.74)

( ) =( )+( ) ,
n

k

n −1

k −1

n −1

k
(12.1.75)

= 2 − ( −( ))sm rm

1

2
22m 2m

m
(12.1.76)

= 2 +  ,rm sm−1
1

2
22m−1 (12.1.77)

m ≥ 2

R(x) =∑
k=1

∞

rkxk (12.1.78)

S(x) =  .∑
k=1

∞

skxk (12.1.79)

S(x) = 2R(x) − ( )+ ( )
1

2

1

1 −4x

1

2
1 −4x
− −−−−

√ (12.1.80)

R(x) = 2xS(x) +x( ) .
1

1 −4x
(12.1.81)

R(x) =  ,
x

(1 −4x)3/2
(12.1.82)
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e. Show that

and

f. Show that

and \[E(M_{2m+1}) = {2m+2\choose m+1} - {1\over 2}\ .\] The reader should compare these formulas with the expression for 
 in Example [exam 12.1.1].

Exercise 

(from K. Levasseur ) A parent and his child play the following game. A deck of  cards,  red and  black, is shuffled. The cards
are turned up one at a time. Before each card is turned up, the parent and the child guess whether it will be red or black. Whoever
makes more correct guesses wins the game. The child is assumed to guess each color with the same probability, so she will have a
score of , on average. The parent keeps track of how many cards of each color have already been turned up. If more black cards,
say, than red cards remain in the deck, then the parent will guess black, while if an equal number of each color remain, then the
parent guesses each color with probability 1/2. What is the expected number of correct guesses that will be made by the parent? :
Each of the  possible orderings of red and black cards corresponds to a random walk of length  that returns to the origin at
time . Show that between each pair of successive equalizations, the parent will be right exactly once more than he will be wrong.
Explain why this means that the average number of correct guesses by the parent is greater than  by exactly one-half the average
number of equalizations. Now define the random variable  to be 1 if there is an equalization at time , and 0 otherwise. Then,
among all relevant paths, we have

\[E(X_i) = P(X_i = 1) = \frac

\ .\]

Thus, the expected number of equalizations equals

\[E\biggl(\sum_{i = 1}^n X_i\biggr) = \frac 1

\sum_{i = 1}^n \ .\]

One can now use generating functions to find the value of the sum.

It should be noted that in a game such as this, a more interesting question than the one asked above is what is the probability that
the parent wins the game? For this game, this question was answered by D. Zagier.  He showed that the probability of winning is
asymptotic (for large ) to the quantity

Exercise 

Prove that

and

S(x) = ( )− ( ) .
1

2

1

(1 −4x)3/2

1

2

1

1 −4x
(12.1.83)

= m( ) ,rm

2m −1

m −1
(12.1.84)

= (m +1)( )− ( ) .sm

1

2

2m +1

m

1

2
22m (12.1.85)

E( ) = ( )+ ( )−  ,M2m

m

22m−1

2m

m

1

22m+1

2m

m

1

2
(12.1.86)

/g2m 2(2m)

12.1.10

4 2n n n

n

( )2n

n
2n

2n

n

Xi 2i

5

n

+  .
1

2

1

2 2
–

√
(12.1.87)

12.1.11

=  ,u
(2)
2n

1

42n
∑
k=0

n (2n)!

k!k!(n −k)!(n −k)!
(12.1.88)
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where the last sum extends over all non-negative  and  with . Also show that this last expression may be rewritten as

Exercise 

Prove that if , then

Write the sum as

and explain why this is a coefficient in the product

Use this, together with Exercise [exer 12.1.11], to show that

\[u^{(2)}_{2n} = \frac 1{4^{2n}}

{{2n}\choose n}^2\ .\]

Exercise 

Using Stirling’s Formula, prove that

\[

{\sqrt {\pi n}}\ .\]

Exercise 

Prove that

where the sum extends over all non-negative  and  such that . : Count how many ways one can place  labelled balls
in 3 labelled urns.

Exercise 

Using the result proved for the random walk in  in Example [exam 12.1.0.6], explain why the probability of an eventual return
in  is strictly less than one, for all . : Consider a random walk in  and disregard all but the first three coordinates of the
particle’s position.
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=  ,u
(3)
2n

1

62n
∑
j,k

(2n)!

j!j!k!k!(n −j−k)!(n −j−k)!
(12.1.89)

j k j+k ≤ n

( ) (  .
1

22n

2n

n
∑
j,k

1

3n

n!

j!k!(n −j−k)!
)

2
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12.1.12

n ≥ 0

=( ) .∑
k=0

n

( )
n

k

2 2n

n
(12.1.91)

( )( )∑
k=0

n n

k

n

n −k
(12.1.92)

(1 +x (1 +x  .)n )n (12.1.93)

12.1.13

12.1.14

( ) = 1 ,∑
j,k

1

3n

n!

j!k!(n −j−k)!
(12.1.94)

j k j+k ≤ n n

12.1.15

R
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n n ≥ 3 R

n
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