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4.2: Continuous Conditional Probability
In situations where the sample space is continuous we will follow the same procedure as in the previous section. Thus, for example,
if  is a continuous random variable with density function , and if  is an event with positive probability, we define a
conditional density function by the formula

Then for any event , we have

The expression  is called the conditional probability of  given . As in the previous section, it is easy to obtain an
alternative expression for this probability:

We can think of the conditional density function as being 0 except on , and normalized to have integral 1 over . Note that if the
original density is a uniform density corresponding to an experiment in which all events of equal size are then the same will be true
for the conditional density.

In the spinner experiment (cf. Example 2.1.1]), suppose we know that the spinner has stopped with head in the upper half of
the circle, . What is the probability that ?

Solution
Here , , and . Hence

which is reasonable, since  is 1/3 the size of . The conditional density function here is given by

Thus the conditional density function is nonzero only on , and is uniform there.

In the dart game (cf. Example  2.2.2), suppose we know that the dart lands in the upper half of the target. What is the
probability that its distance from the center is less than 1/2?

Solution
Here , and . Hence,

Here again, the size of  is 1/4 the size of . The conditional density function is

X f(x) E

f(x|E) ={
f(x)/P (E),

0,

if x ∈ E,

if x ∉ E.
(4.2.1)

F

P (F |E) = f(x|E)dx .∫
F

(4.2.2)

P (F |E) F E

P (F |E) = f(x|E)dx = dx =  .∫
F

∫
E∩F

f(x)

P (E)

P (E∩F )

P (E)
(4.2.3)

E E

 Example :4.2.1

0 ≤ x ≤ 1/2 1/6 ≤ x ≤ 1/3

E = [0, 1/2] F = [1/6, 1/3] F ∩E = F

P (F |E) =

=

=

P (F ∩E)

P (E)
1/6

1/2

 ,
1

3

F E

f(x|E) ={
2,

0,

if 0 ≤ x < 1/2,

if 1/2 ≤ x < 1.
(4.2.4)

[0, 1/2]

 Example :4.2.2

E = { (x, y) : y ≥ 0 } F = { (x, y) : + < (1/2 }x2 y2 )2

P (F |E) =

=

=
P (F ∩E)

P (E)

(1/π)[(1/2)(π/4)]

(1/π)(π/2)

1/4 .

F ∩E E
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We return to the exponential density (cf. Example 2.2.7). We suppose that we are observing a lump of plutonium-239. Our
experiment consists of waiting for an emission, then starting a clock, and recording the length of time  that passes until the
next emission. Experience has shown that  has an exponential density with some parameter , which depends upon the size
of the lump. Suppose that when we perform this experiment, we notice that the clock reads  seconds, and is still running.
What is the probability that there is no emission in a further  seconds?

Solution
Let  be the probability that the next particle is emitted after time . Then

Let  be the event “the next particle is emitted after time " and  the event “the next particle is emitted after time ."
Then

This tells us the rather surprising fact that the probability that we have to wait  seconds more for an emission, given that there
has been no emission in  seconds, is of the time . This property (called the memoryless property) was introduced in Example
2.17. When trying to model various phenomena, this property is helpful in deciding whether the exponential density is
appropriate.

The fact that the exponential density is memoryless means that it is reasonable to assume if one comes upon a lump of a
radioactive isotope at some random time, then the amount of time until the next emission has an exponential density with the
same parameter as the time between emissions. A well-known example, known as the “bus paradox," replaces the emissions by
buses. The apparent paradox arises from the following two facts: 1) If you know that, on the average, the buses come by every
30 minutes, then if you come to the bus stop at a random time, you should only have to wait, on the average, for 15 minutes for
a bus, and 2) Since the buses arrival times are being modelled by the exponential density, then no matter when you arrive, you
will have to wait, on the average, for 30 minutes for a bus.

The reader can now see that in Exercises 2.2.9, 2.2.10, and 2.2.11, we were asking for simulations of conditional probabilities,
under various assumptions on the distribution of the interarrival times. If one makes a reasonable assumption about this
distribution, such as the one in Exercise 2.2.10, then the average waiting time is more nearly one-half the average interarrival
time.

Independent Events

If  and  are two events with positive probability in a continuous sample space, then, as in the case of discrete sample spaces, we
define  and  to be independent if  and . As before, each of the above equations imply the
other, so that to see whether two events are independent, only one of these equations must be checked. It is also the case that, if 
and  are independent, then .

f((x, y)|E) ={
f(x, y)/P (E) = 2/π,

0,

if (x, y) ∈ E,

if (x, y) ∉ E.
(4.2.5)

 Example :4.2.3

X

X λ

r

s

G(t) t

G(t) =

=

λ dx∫
∞

t

e−λx

=  .−e−λx ∣∣
∞

t
e−λt

E r F r+s

P (F |E) =

=

=

=

P (F ∩E)

P (E)
G(r+s)

G(r)

e−λ(r+s)

e−λr

 .e−λs

s

r r

E F

E F P (E|F ) = P (E) P (F |E) = P (F )
E

F P (E∩F ) = P (E)P (F )
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In the dart game (see Example 4.1.12, let  be the event that the dart lands in the upper half of the target ( ) and  the
event that the dart lands in the right half of the target ( ). Then  is the probability that the dart lies in the first
quadrant of the target, and

so that  and  are independent. What makes this work is that the events  and  are described by restricting different
coordinates. This idea is made more precise below.

Joint Density and Cumulative Distribution Functions

In a manner analogous with discrete random variables, we can define joint density functions and cumulative distribution functions
for multi-dimensional continuous random variables.

Let  be continuous random variables associated with an experiment, and let . Then
the joint cumulative distribution function of  is defined by

The joint density function of  satisfies the following equation:

It is straightforward to show that, in the above notation,

Independent Random Variables

As with discrete random variables, we can define mutual independence of continuous random variables.

Let , , …,  be continuous random variables with cumulative distribution functions . Then
these random variables are if

for any choice of .

Thus, if  are mutually independent, then the joint cumulative distribution function of the random variable 
 is just the product of the individual cumulative distribution functions. When two random variables are

mutually independent, we shall say more briefly that they are

Using Equation 4.4, the following theorem can easily be shown to hold for mutually independent continuous random variables.

 Example :4.2.1

E y ≥ 0 F

x ≥ 0 P (E∩F )

P (E∩F ) =

=

=

=

=

1 dxdy
1

π
∫
E∩F

Area (E∩F )

Area (E) Area (F )

( 1 dxdy)( 1 dxdy)
1

π
∫
E

1

π
∫
F

P (E)P (F )

E F E F

 Definition 4.2.5

,   , … ,  X1 X2 Xn = ( ,   , … ,   )X̄ X1 X2 Xn

X̄

F ( , , … , ) = P ( ≤ , ≤ , … , ≤ ) .x1 x2 xn X1 x1 X2 x2 Xn xn (4.2.6)

X̄

F ( , , … , ) = ⋯ f( , , … )d d … d .x1 x2 xn ∫
x1

−∞
∫

x2

−∞
∫

xn

−∞
t1 t2 tn tn tn−1 t1 (4.2.7)

f( , , … … , ) =x1 x2 xn
F ( , , … … , )∂n x1 x2 xn

∂ ∂ ⋯ ∂ )x1 x2 xn
(4.2.8)

 Definition 4.2.6

X1 X2 Xn (x),   (x), … ,   (x)F1 F2 Fn

F ( , , … , ) = ( ) ( ) ⋯ ( )x1 x2 xn F1 x1 F2 x2 Fn xn (4.2.9)

, , … ,x1 x2 xn

,   , … ,  X1 X2 Xn

= ( , , … , )X̄ X1 X2 Xn
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Let , , …,  be continuous random variables with density functions . Then these random
variables are mutually independent if and only if

for any choice of 

Let’s look at some examples.

In this example, we define three random variables, , and . We will show that  and  are independent, and that 
 and  are not independent. Choose a point  at random from the unit square. Set , , and 

. Find the joint distributions  and .

Figure : X  and X  are independent.

We have already seen (see Example 2.13 that

and similarly,

if . Now we have (see Figure )

In this case  so that  and  are independent. On the other hand, if  and , then
(see Figure )

 Theorem 4.2.2

X1 X2 Xn (x),   (x), … ,   (x)f1 f2 fn

f( , , … , ) = ( ) ( ) ⋯ ( )x1 x2 xn f1 x1 f2 x2 fn xn (4.2.10)

, , … ,x1 x2 xn

 Example :4.2.5

,  X1 X2 X3 X1 X2

X1 X3 ω = ( , )ω1 ω2 =X1 ω2
1 =X2 ω2

2

= +X3 ω1 ω2 ( , )F12 r1 r2 ( , )F23 r2 r3

4.2.1 1 2

( )F1 r1 =

=

P (−∞ < ≤ )X1 r1

, if 0 ≤ ≤ 1 ,r1
−−

√ r1

( ) =  ,F2 r2 r2
−−

√ (4.2.11)

0 ≤ ≤ 1r2 4.2.1

( , )F12 r1 r2 =

=

=

=

=

P ( ≤ and ≤ )X1 r1 X2 r2

P ( ≤ and ≤ )ω1 r1
−−

√ ω2 r2
−−

√

Area ( )E1

r1
−−

√ r2
−−

√
( ) ( ) .F1 r1 F2 r2

( , ) = ( ) ( )F12 r1 r2 F1 r1 F2 r2 X1 X2 = 1/4r1 = 1r3

4.2.2

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://stats.libretexts.org/@go/page/3136?pdf


GNU Free Documentation License 4.2.5 https://stats.libretexts.org/@go/page/3136

Figure : X  and X  are not independent

Now recalling that

(see Example 2.14, we have . Hence,  and  are not independent random variables. A
similar calculation shows that  and  are not independent either.

Although we shall not prove it here, the following theorem is a useful one. The statement also holds for mutually independent
discrete random variables. A proof may be found in Rényi.

Let  be mutually independent continuous random variables and let  be continuous
functions. Then   are mutually independent.

Independent Trials
Using the notion of independence, we can now formulate for continuous sample spaces the notion of independent trials (see
Definition 4.5).

A sequence , , …,  of random variables  that are mutually independent and have the same density is called an
independent trials process

4.2.2 1 3

(1/4, 1)F13 =

=

=

=

P ( ≤ 1/4,   ≤ 1)X1 X3

P ( ≤ 1/2,   + ≤ 1)ω1 ω1 ω2

Area ( )E2

− =  .
1

2

1

8

3

8

( ) =F3 r3

⎧

⎩

⎨

⎪⎪⎪⎪

⎪⎪⎪⎪

0,

(1/2) ,r2
3

1 −(1/2)(2 − ,r3)2

1,

if < 0,r3

if 0 ≤ ≤ 1,r3

if 1 ≤ ≤ 2,r3

if 2 < ,r3

(4.2.12)

(1/4) (1) = (1/2)(1/2) = 1/4F1 F3 X1 X3

X2 X3

17

 Theorem 4.2.1

, , … ,X1 X2 Xn (x), (x), … , (x)ϕ1 ϕ2 ϕn

( ),ϕ1 X1 ( ), … , ( )ϕ2 X2 ϕn Xn

 Definition

X1 X2 Xn Xi
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As in the case of discrete random variables, these independent trials processes arise naturally in situations where an experiment
described by a single random variable is repeated  times.

Beta Density

Figure : Beta density for 

We consider next an example which involves a sample space with both discrete and continuous coordinates. For this example we
shall need a new density function called the beta density. This density has two parameters ,  and is defined by

Here  and  are any positive numbers, and the beta function  is given by the area under the graph of 
between 0 and 1:

Note that when  the beta density if the uniform density. When  and  are greater than 1 the density is bell-shaped, but
when they are less than 1 it is U-shaped as suggested by the examples in Figure 4.9.

We shall need the values of the beta function only for integer values of  and , and in this case

Example

In medical problems it is often assumed that a drug is effective with a probability  each time it is used and the various trials are
independent, so that one is, in effect, tossing a biased coin with probability  for heads. Before further experimentation, you do not
know the value  but past experience might give some information about its possible values. It is natural to represent this
information by sketching a density function to determine a distribution for . Thus, we are considering  to be a continuous
random variable, which takes on values between 0 and 1. If you have no knowledge at all, you would sketch the uniform density. If
past experience suggests that  is very likely to be near 2/3 you would sketch a density with maximum at 2/3 and a spread
reflecting your uncertainly in the estimate of 2/3. You would then want to find a density function that reasonably fits your sketch.
The beta densities provide a class of densities that can be fit to most sketches you might make. For example, for  and 
it is bell-shaped with the parameters  and  determining its peak and its spread.

Assume that the experimenter has chosen a beta density to describe the state of his knowledge about  before the experiment. Then
he gives the drug to  subjects and records the number  of successes. The number  is a discrete random variable, so we may

n

4.2.3 α = β = .5, 1, 2

α β

B(α, β, x) ={
(1/B(α, β)) (1 −x ,xα−1 )β−1

0,

if 0 ≤ x ≤ 1,

otherwise.
(4.2.13)

α β B(α, β) (1 −xxα−1 )β−1

B(α, β) = (1 −x dx .∫
1

0
xα−1 )β−1 (4.2.14)

α = β = 1 α β

α β

B(α, β) =  .
(α−1)! (β−1)!

(α+β−1)!
(4.2.15)

4.2.23

x

x

x

x x

x

α > 1 β > 1
α β

x

n i i
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conveniently describe the set of possible outcomes of this experiment by referring to the ordered pair .

We let  denote the probability that we observe  successes given the value of . By our assumptions,  is the binomial
distribution with probability  for success:

where .

If  is chosen at random from  with a beta density , then the density function for the outcome of the pair  is

Now let  be the probability that we observe  successes knowing the value of . Then

Hence, the probability density  for , given that  successes were observed, is

that is,  is another beta density. This says that if we observe  successes and  failures in  subjects, then the new density for
the probability that the drug is effective is again a beta density but with parameters , .

Now we assume that before the experiment we choose a beta density with parameters  and , and that in the experiment we
obtain  successes in  trials. We have just seen that in this case, the new density for  is a beta density with parameters  and 

.

Now we wish to calculate the probability that the drug is effective on the next subject. For any particular real number  between 0
and 1, the probability that  has the value  is given by the expression in Equation 4.5. Given that  has the value , the probability
that the drug is effective on the next subject is just . Thus, to obtain the probability that the drug is effective on the next subject,
we integrate the product of the expression in Equation 4.5 and  over all possible values of . We obtain:

If  is large, then our estimate for the probability of success after the experiment is approximately the proportion of successes
observed in the experiment, which is certainly a reasonable conclusion.

The next example is another in which the true probabilities are unknown and must be estimated based upon experimental data.

(x, i)

m(i|x) i x m(i|x)
x

m(i|x) = b(n, x, i) =( ) (1 −x  ,
n

i
xi )j (4.2.16)

j= n− i

x [0, 1] B(α, β, x) (x, i)

f(x, i) =

=

=

m(i|x)B(α, β, x)

( ) (1 −x (1 −x
n

i
xi )j

1

B(α, β)
xα−1 )β−1

( ) (1 −x  .
n

i

1

B(α, β)
xα+i−1 )β+j−1

m(i) i x

m(i) =

=

=

m(i|x)B(α, β, x)dx∫
1

0

( ) (1 −x dx
n

i

1

B(α, β)
∫

1

0
xα+i−1 )β+j−1

( )  .
n

i

B(α+ i, β+j)

B(α, β)

f(x|i) x i

f(x|i) =
f(x, i)

m(i)
(4.2.17)

                              =  ,
(1 −xxα+i−1 )β+j−1

B(α+ i, β+j)
(4.2.18)

f(x|i) i j n

α+ i β+j

α β

i n x α+ i

β+j

t

x t x t

t

t t

=

=

=

t ⋅ (1 − t dt
1

B(α+ i, β+j)
∫

1

0
dα+i−1 )β+j−1

B(α+ i+1, β+j)

B(α+ i, β+j)

⋅
(α+ i)!(β+j−1)!

(α+β+ i+j)!

(α+β+ i+j−1)!

(α+ i−1)!(β+j−1)!
α+ i

α+β+n

(4.2.19)

(4.2.20)

(4.2.21)

(4.2.22)

n
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You are in a casino and confronted by two slot machines. Each machine pays off either 1 dollar or nothing. The probability that
the first machine pays off a dollar is  and that the second machine pays off a dollar is . We assume that  and  are random
numbers chosen independently from the interval  and unknown to you. You are permitted to make a series of ten plays,
each time choosing one machine or the other. How should you choose to maximize the number of times that you win?

Figure : Play the best machine.

One strategy that sounds reasonable is to calculate, at every stage, the probability that each machine will pay off and choose the
machine with the higher probability. Let win( ), for  or 2, be the number of times that you have won on the th machine.
Similarly, let lose( ) be the number of times you have lost on the th machine. Then, from Example 4.16 the probability 
that you win if you choose the th machine is

Thus, if  you would play machine 1 and otherwise you would play machine 2. We have written a program
TwoArm to simulate this experiment. In the program, the user specifies the initial values for  and  (but these are unknown to
the experimenter). The program calculates at each stage the two conditional densities for  and , given the outcomes of the
previous trials, and then computes , for , 2. It then chooses the machine with the highest value for the probability of
winning for the next play. The program prints the machine chosen on each play and the outcome of this play. It also plots the
new densities for  (solid line) and  (dotted line), showing only the current densities. We have run the program for ten plays
for the case  and . The result is shown in Figure 4.7

The run of the program shows the weakness of this strategy. Our initial probability for winning on the better of the two
machines is .7. We start with the poorer machine and our outcomes are such that we always have a probability greater than .6
of winning and so we just keep playing this machine even though the other machine is better. If we had lost on the first play we
would have switched machines. Our final density for  is the same as our initial density, namely, the uniform density. Our final
density for  is different and reflects a much more accurate knowledge about . The computer did pretty well with this
strategy, winning seven out of the ten trials, but ten trials are not enough to judge whether this is a good strategy in the long
run.

Another popular strategy is the play-the-winner-strategy. As the name suggests, for this strategy we choose the same machine
when we win and switch machines when we lose. The program TwoArm will simulate this strategy as well. In Figure 4.11, we
show the results of running this program with the play-the-winner strategy and the same true probabilities of .6 and .7 for the
two machines. After ten plays our densities for the unknown probabilities of winning suggest to us that the second machine is
indeed the better of the two. We again won seven out of the ten trials.

 Example : (Two-armed bandit problem)4.2.7

x y x y

[0, 1]

4.2.4

i i = 1 i

i i p(i)
i

p(i) =  .
win(i) +1

win(i) +lose(i) +2
(4.2.23)

p(1) > p(2)
x y

x y

p(i) i = 1

x y

x = .6 y = .7

y

x x
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Figure : Play the winner

Neither of the strategies that we simulated is the best one in terms of maximizing our average winnings. This best strategy is
very complicated but is reasonably approximated by the play-the-winner strategy. Variations on this example have played an
important role in the problem of clinical tests of drugs where experimenters face a similar situation.

Exercises

Exercise 

Pick a point  at random (with uniform density) in the interval . Find the probability that , given that

a. .
b. .
c. .
d. .

Exercise 

A radioactive material emits -particles at a rate described by the density function

Find the probability that a particle is emitted in the first 10 seconds, given that

a. no particle is emitted in the first second.
b. no particle is emitted in the first 5 seconds.
c. a particle is emitted in the first 3 seconds.
d. a particle is emitted in the first 20 seconds.

Exercise 

The Acme Super light bulb is known to have a useful life described by the density function

where time  is measured in hours.

a. Find the failure rate of this bulb (see Exercise 2.2.6)
b. Find the reliability of this bulb after 20 hours.
c. Given that it lasts 20 hours, find the probability that the bulb lasts another 20 hours.
d. Find the probability that the bulb burns out in the forty-first hour, given that it lasts 40 hours.

4.2.5

4.2.1

x [0, 1] x > 1/2

x > 1/4
x < 3/4
|x−1/2| < 1/4

−x+2/9 < 0x2

4.2.2

α

f(t) = .1  .e−.1t (4.2.24)

4.2.3

f(t) = .01  ,e−.01t (4.2.25)

t
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Exercise 

Suppose you toss a dart at a circular target of radius 10 inches. Given that the dart lands in the upper half of the target, find the
probability that

a. it lands in the right half of the target.
b. its distance from the center is less than 5 inches.
c. its distance from the center is greater than 5 inches.
d. it lands within 5 inches of the point .

Exercise 

Suppose you choose two numbers  and , independently at random from the interval . Given that their sum lies in the
interval , find the probability that

a. .
b. .
c. .
d. .
e. .

Exercise 

Find the conditional density functions for the following experiments.

a. A number  is chosen at random in the interval , given that .
b. A number  is chosen at random in the interval  with exponential density , given that .
c. A dart is thrown at a circular target of radius 10 inches, given that it falls in the upper half of the target.
d. Two numbers  and  are chosen at random in the interval , given that .

Exercise 

Let  and  be chosen at random from the interval . Show that the events  and  are independent events.

Exercise 

Let  and  be chosen at random from the interval . Which pairs of the following events are independent?

a. .
b. .
c. .
d. .

Exercise 

Suppose that  and  are continuous random variables with density functions  and , respectively. Let  denote
the joint density function of . Show that

and

Exercise *

In Exercise 2.2.12 you proved the following: If you take a stick of unit length and break it into three pieces, choosing the breaks at
random (i.e., choosing two real numbers independently and uniformly from [0, 1]), then the probability that the three pieces form a
triangle is 1/4. Consider now a similar experiment: First break the stick at random, then break the longer piece at random. Show
that the two experiments are actually quite different, as follows:

a. Write a program which simulates both cases for a run of 1000 trials, prints out the proportion of successes for each run, and
repeats this process ten times. (Call a trial a success if the three pieces do form a triangle.) Have your program pick  at
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random in the unit square, and in each case use  and  to find the two breaks. For each experiment, have it plot  if 
gives a success.

b. Show that in the second experiment the theoretical probability of success is actually .

Exercise 

A coin has an unknown bias  that is assumed to be uniformly distributed between 0 and 1. The coin is tossed  times and heads
turns up  times and tails turns up  times. We have seen that the probability that heads turns up next time is

Show that this is the same as the probability that the next ball is black for the Polya urn model of Exercise 4.1.20 Use this result to
explain why, in the Polya urn model, the proportion of black balls does not tend to 0 or 1 as one might expect but rather to a
uniform distribution on the interval .

Exercise 

Previous experience with a drug suggests that the probability  that the drug is effective is a random quantity having a beta density
with parameters  and . The drug is used on ten subjects and found to be successful in four out of the ten patients. What
density should we now assign to the probability ? What is the probability that the drug will be successful the next time it is used?

Exercise 

Write a program to allow you to compare the strategies play-the-winner and play-the-best-machine for the two-armed bandit
problem of Example 4.17. Have your program determine the initial payoff probabilities for each machine by choosing a pair of
random numbers between 0 and 1. Have your program carry out 20 plays and keep track of the number of wins for each of the two
strategies. Finally, have your program make 1000 repetitions of the 20 plays and compute the average winning per 20 plays. Which
strategy seems to be the best? Repeat these simulations with 20 replaced by 100. Does your answer to the above question change?

Exercise 

Consider the two-armed bandit problem of Example 4.24 Bruce Barnes proposed the following strategy, which is a variation on the
play-the-best-machine strategy. The machine with the greatest probability of winning is played the following two conditions hold:
(a) the difference in the probabilities for winning is less than .08, and (b) the ratio of the number of times played on the more often
played machine to the number of times played on the less often played machine is greater than 1.4. If the above two conditions
hold, then the machine with the smaller probability of winning is played. Write a program to simulate this strategy. Have your
program choose the initial payoff probabilities at random from the unit interval , make 20 plays, and keep track of the number
of wins. Repeat this experiment 1000 times and obtain the average number of wins per 20 plays. Implement a second strategy—for
example, play-the-best-machine or one of your own choice, and see how this second strategy compares with Bruce’s on average
wins.
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