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10.2: Branching Processes

Historical Background

In this section we apply the theory of generating functions to the study of an important chance process called a

Until recently it was thought that the theory of branching processes originated with the following problem posed by Francis Galton
in the in 1873.

Problem 4001: A large nation, of whom we will only concern ourselves with the adult
males,  in number, and who each bear separate surnames, colonise a district. Their law
of population is such that, in each generation,  per cent of the adult males have no male
children who reach adult life;  have one such male child;  have two; and so on up to 

 who have five.

Find (1) what proportion of the surnames will have become extinct after  generations;
and (2) how many instances there will be of the same surname being held by  persons.

The first attempt at a solution was given by Reverend H. W. Watson. Because of a mistake in algebra, he incorrectly concluded that
a family name would always die out with probability 1. However, the methods that he employed to solve the problems were, and
still are, the basis for obtaining the correct solution.

Heyde and Seneta discovered an earlier communication by Bienaymé (1845) that anticipated Galton and Watson by 28 years.
Bienaymé showed, in fact, that he was aware of the correct solution to Galton’s problem. Heyde and Seneta in their book  give the
following translation from Bienaymé’s paper:

If …the mean of the number of male children who replace the number of males of the
preceding generation were less than unity, it would be easily realized that families are
dying out due to the disappearance of the members of which they are composed. However,
the analysis shows further that when this mean is equal to unity families tend to
disappear, although less rapidly ….

The analysis also shows clearly that if the mean ratio is greater than unity, the probability
of the extinction of families with the passing of time no longer reduces to certainty. It only
approaches a finite limit, which is fairly simple to calculate and which has the singular
characteristic of being given by one of the roots of the equation (in which the number of
generations is made infinite) which is not relevant to the question when the mean ratio is
less than unity.

Although Bienaymé does not give his reasoning for these results, he did indicate that he intended to publish a special paper on the
problem. The paper was never written, or at least has never been found. In his communication Bienaymé indicated that he was
motivated by the same problem that occurred to Galton. The opening paragraph of his paper as translated by Heyde and Seneta
says,

A great deal of consideration has been given to the possible multiplication of the numbers
of mankind; and recently various very curious observations have been published on the
fate which allegedly hangs over the aristocrary and middle classes; the families of famous
men, etc. This fate, it is alleged, will inevitably bring about the disappearance of the so-
called 

A much more extensive discussion of the history of branching processes may be found in two papers by David G. Kendall.
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Branching processes have served not only as crude models for population growth but also as models for certain physical processes
such as chemical and nuclear chain reactions.

Problem of Extinction
We turn now to the first problem posed by Galton (i.e., the problem of finding the probability of extinction for a branching
process). We start in the 0th generation with 1 male parent. In the first generation we shall have 0, 1, 2, 3, … male offspring with
probabilities , , , , …. If in the first generation there are  offspring, then in the second generation there will be 

 offspring, where , , …,  are independent random variables, each with the common distribution , 
, , …. This description enables us to construct a tree, and a tree measure, for any number of generations.

Assume that , , and . Then the tree measure for the first two generations is shown in Figure 
.

Figure : Tree diagram for Example 10.3.2

Solution
Note that we use the theory of sums of independent random variables to assign branch probabilities. For example, if there are
two offspring in the first generation, the probability that there will be two in the second generation is

We now study the probability that our process dies out (i.e., that at some generation there are no offspring).

Let  be the probability that the process dies out by the th generation. Of course, . In our example,  and 
 (see Figure [fig  ]). Note that we must add the probabilities for all paths that lead

to 0 by the th generation. It is clear from the definition that

Hence,  converges to a limit , , and  is the probability that the process will ultimately die out. It is this value
that we wish to determine. We begin by expressing the value  in terms of all possible outcomes on the first generation. If
there are  offspring in the first generation, then to die out by the th generation, each of these lines must die out in 
generations. Since they proceed independently, this probability is . Therefore

Let  be the ordinary generating function for the :
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dm m = 0d0 = 1/2d1

= 1/2 +1/8 +1/16 = 11/16d2 10.2.1
m

0 = ≤ ≤ ≤ ⋯ ≤ 1 .d0 d1 d2 (10.2.1)

dm d 0 ≤ d ≤ 1 d

dm
j m m−1

(dm−1 )j

= + + ( + ( +⋯  .dm p0 p1dm−1 p2 dm−1 )2 p3 dm−1 )3 (10.2.2)

h(z) pi

h(z) = + z+ +⋯  .p0 p1 p2z
2 (10.2.3)
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Using this generating function, we can rewrite Equation   in the form

Since , by Equation   we see that the value  that we are looking for satisfies the equation

One solution of this equation is always , since

This is where Watson made his mistake. He assumed that 1 was the only solution to Equation [eq 10.2.3]. To examine this
question more carefully, we first note that solutions to Equation [eq 10.2.3] represent intersections of the graphs of

and

Thus we need to study the graph of . We note that . Also,

and

From this we see that for ,  and . Thus for nonnegative ,  is an increasing function and is
concave upward. Therefore the graph of  can intersect the line  in at most two points. Since we know it must
intersect the line  at , we know that there are just three possibilities, as shown in Figure  ].

 

Figure : Graphs of y = z and y = h(z)

In case (a) the equation  has roots  with . In the second case (b) it has only the one root . In
case (c) it has two roots  where . Since we are looking for a solution , we see in cases (b) and (c) that
our only solution is 1. In these cases we can conclude that the process will die out with probability 1. However in case (a) we
are in doubt. We must study this case more carefully.

From Equation  we see that

where  is the expected number of offspring produced by a single parent. In case (a) we have , in (b) , and
in (c) . Thus our three cases correspond to , , and . We assume now that . Recall that 

, , , …, and . We can construct these values geometrically, as shown in
Figure .

10.2.1

= h( ) .dm dm−1 (10.2.4)

→ ddm 10.2.2 d

d = h(d) . (10.2.5)

d = 1

1 = + + +⋯  .p0 p1 p2 (10.2.6)

y = z (10.2.7)

y = h(z) = + z+ +⋯  .p0 p1 p2z
2 (10.2.8)

y = h(z) h(0) = p0

(z) = +2 z+3 +⋯  ,h′ p1 p2 p3z
2 (10.2.9)

(z) = 2 +3 ⋅ 2 z+4 ⋅ 3 +⋯  .h′′ p2 p3 p4z
2 (10.2.10)

z ≥ 0 (z) ≥ 0h′ (z) ≥ 0h′′ z h(z)
y = h(z) y = z

y = z (1, 1) 10.2.2

10.2.2

d = h(d) {d, 1} 0 ≤ d < 1 d = 1
{1, d} 1 < d 0 ≤ d ≤ 1

10.2.4

(1) = +2 +3 +⋯ = m ,h′ p1 p2 p3 (10.2.11)

m (1) > 1h′ (1) = 1h′

(1) < 1h′ m > 1 m = 1 m < 1 m > 1
= 0d0 = h( ) =d1 d0 p0 = h( )d2 d1 = h( )dn dn−1

10.2.3

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://stats.libretexts.org/@go/page/3169?pdf


GNU Free Documentation License 10.2.4 https://stats.libretexts.org/@go/page/3169

Figure : Geometric determination of d.

 

We can see geometrically, as indicated for , , , and  in Figure , that the points  will always lie above the
line . Hence, they must converge to the first intersection of the curves  and  (i.e., to the root ). This leads
us to the following theorem.

Consider a branching process with generating function  for the number of offspring of a given parent. Let  be the
smallest root of the equation . If the mean number  of offspring produced by a single parent is , then  and
the process dies out with probability 1. If  then  and the process dies out with probability .

We shall often want to know the probability that a branching process dies out by a particular generation, as well as the limit of these
probabilities. Let  be the probability of dying out by the th generation. Then we know that . We know further that 

 where  is the generating function for the number of offspring produced by a single parent. This makes it easy to
compute these probabilities.

The program Branch calculates the values of . We have run this program for 12 generations for the case that a parent can
produce at most two offspring and the probabilities for the number produced are , , and . The results are
given in Table .

Table :Probability of dying out.

Generation Probaboility of dying out

1 .2

2 .312

3 .385203

4 .437116

5 .475879

6 .505878

10.2.3

d0 d1 d2 d3 10.2.3 ( ,h( ))di di
y = z y = z y = h(z) d < 1

 Theorem 10.2.1

h(z) d

z = h(z) m ≤ 1 d = 1
m > 1 d < 1 d

dn n =d1 p0

= h( )dn dn−1 h(z)

dn
= .2p0 = .5p1 = .3p2

10.2.1

10.2.1

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://stats.libretexts.org/@go/page/3169?pdf


GNU Free Documentation License 10.2.5 https://stats.libretexts.org/@go/page/3169

7 .529713

8 .549035

9 .564949

10 .578225

11 .589416

12 .598931

We see that the probability of dying out by 12 generations is about .6. We shall see in the next example that the probability of
eventually dying out is 2/3, so that even 12 generations is not enough to give an accurate estimate for this probability.

We now assume that at most two offspring can be produced. Then

In this simple case the condition  yields the equation

which is satisfied by  and . Thus, in addition to the root  we have the second root . The mean
number  of offspring produced by a single parent is

Thus, if ,  and the second root is . If , we have a double root . If ,  and the second
root  is less than 1 and represents the probability that the process will die out.

Keyfitz  compiled and analyzed data on the continuation of the female family line among Japanese women. His estimates at
the basic probability distribution for the number of female children born to Japanese women of ages 45–49 in 1960 are given in
Table .

Table  : Distribution of number of female children.

p    = .2584 
p  = .2360   
p    = .1593 
p    = .0828 
p    = .0357 
p   = .0133 
p   = .0042 
p   = .0011 
p   = .0002 
p  = .0000

 

 

The expected number of girls in a family is then 1.837 so the probability  of extinction is less than 1. If we run the program
Branch, we can estimate that  is in fact only about .324.

Distribution of Offspring

So far we have considered only the first of the two problems raised by Galton, namely the probability of extinction. We now
consider the second problem, that is, the distribution of the number  of offspring in the th generation. The exact form of the

h(z) = + z+  .p0 p1 p2z
2 (10.2.12)

z = h(z)

d = + d+  ,p0 p1 p2d
2 (10.2.13)

d = 1 d = /p0 p2 d = 1 d = /p0 p2

m

m = +2 = 1 − − +2 = 1 − +  .p1 p2 p0 p2 p2 p0 p2 (10.2.14)

>p0 p2 m < 1 > 1 =p0 p2 d = 1 <p0 p2 m > 1
d
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distribution is not known except in very special cases. We shall see, however, that we can describe the limiting behavior of  as 
.

We first show that the generating function  of the distribution of  can be obtained from  for any branching process.

We recall that the value of the generating function at the value  for any random variable  can be written as

That is,  is the expected value of an experiment which has outcome  with probability .

Let  where each  has the same integer-valued distribution  with generating function 
 Let  be the generating function of . Then using one of the properties of ordinary

generating functions discussed in Section [sec 10.1], we have

since the ’s are independent and all have the same distribution.

Consider now the branching process . Let  be the generating function of . Then

If , then  where , , …,  are independent random variables with common generating
function . Thus

and

But

Thus,

If we differentiate Equation [eq 10.2.5] and use the chain rule we have

Putting  and using the fact that , , and the mean number of offspring in the ’th
generation, we have

Thus, , , and in general

Thus, for a branching process with , the mean number of offspring grows exponentially at a rate .

For the branching process of Example   we have

Zn

n → ∞

(z)hn Zn h(z)

z X

h(z) = E( ) = + z+ +⋯  .zX p0 p1 p2z
2 (10.2.15)

h(z) zj pj

= + +⋯ +Sn X1 X2 Xn Xj ( )pj
k(z) = + z+ +⋯ .p0 p1 p2z

2 (z)kn Sn

(z) = (k(z)  ,kn )n (10.2.16)

Xj

Zn (z)hn Zn

(z)hn+1 =

=

E( )zZn+1

E( | = k)P ( = k) .∑
k

zZn+1 Zn Zn

= kZn = + +⋯ +Zn+1 X1 X2 Xk X1 X2 Xk

h(z)

E( | = k) = E( ) = (h(z)  ,zZn+1 Zn z + +⋯+X1 X2 Xk )k (10.2.17)

(z) = (h(z) P ( = k) .hn+1 ∑
k

)k Zn (10.2.18)

(z) = P ( = k)  .hn ∑
k

Zn zk (10.2.19)

(z) = (h(z)) .hn+1 hn (10.2.20)

(z) = (h(z)) (z).h′
n+1 h′

n h′ (10.2.21)

z = 1 h(1) = 1 (1) = mh′ (1) = =h′
n mn n

= ⋅m .mn+1 mn (10.2.22)

= m ⋅m =m2 m2 = ⋅m =m3 m2 m3

=  .mn mn (10.2.23)

m > 1 m
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The probabilities for the number of offspring in the second generation agree with those obtained directly from the tree measure
(see Figure  ).

 

It is clear that even in the simple case of at most two offspring, we cannot easily carry out the calculation of  by this method.
However, there is one special case in which this can be done.Example 

Assume that the probabilities , , … form a geometric series: , , 2, …, with  and 
. Then we have

The generating function  for this distribution is

From this we find

and

We know that if  the process will surely die out and . To find the probability  when  we must find a root 
 of the equation

or

This leads us to a quadratic equation. We know that  is one solution. The other is found to be

It is easy to verify that  just when .

It is possible in this case to find the distribution of . This is done by first finding the generating function .  The result
for  is:

h(z)

(z)h2

=

=

=

=

1/2 +(1/4)z+(1/4)  ,z2

h(h(z)) = 1/2 +(1/4)[1/2 +(1/4)z+(1/4) ]z2

+(1/4)[1/2 +(1/4)z+(1/4)z2]2

11/16 +(1/8)z+(9/64) +(1/32) +(1/64)  .z2 z3 z4

10.2.1

(z)hn
10.2.2
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1 −  .
b

1 −c

h(z)

h(z) =

=

=

+ z+ +⋯p0 p1 p2z
2

1 − +bz+bc +b +⋯
b

1 −c
z2 c2z3

1 − +  .
b

1 −c
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1 −cz

(z) = + =h′ bcz

(1 −cz)2

b

1 −cz

b

(1 −cz)2
(10.2.24)

m = (1) =  .h′ b

(1 −c)2
(10.2.25)

m ≤ 1 d = 1 d m > 1
d < 1

z = h(z) , (10.2.26)

z = 1 − + .
b

1 −c

bz

1 −cz
(10.2.27)

z = 1

d = .
1 −b−c

c(1 −c)
(10.2.28)

d < 1 m > 1
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The coefficients of the powers of  give the distribution for :

and

for .

 

Let us re-examine the Keyfitz data to see if a distribution of the type considered in Example   could reasonably be
used as a model for this population. We would have to estimate from the data the parameters  and  for the formula 

. Recall that

'

and the probability  that the process dies out is

Solving Equation   and   for  and  gives

and

We shall use the value 1.837 for  and .324 for  that we found in the Keyfitz example. Using these values, we obtain 
 and . Note that , as required. In Table [table 10.3] we give for comparison the

probabilities  through  as calculated by the geometric distribution versus the empirical values.

 

Table : Comparison of observed and expected frequencies.

  Geometric

Data Model

0 .2092 .1816

1 .2584 .3666

2 .2360 .2028

3 .1593 .1122

(z) = 1 − [ ]+  .hn mn 1 −d

−dmn

zmn[ ]1−d

−dmn

2

1 −[ ]z−1mn

−dmn

(10.2.29)

z Zn

P ( = 0) = 1 − =Zn mn 1 −d

−dmn

d( −1)mn

−dmn
(10.2.30)

P ( = j) = ( ⋅( ,Zn mn 1 −d

−dmn
)

2 −1mn

−dmn
)
j−1

(10.2.31)

j≥ 1

 Example 10.2.5

10.2.4
b c

= bpk ck−1

m =
b

(1 −c)2
(10.2.32)

d

d =  .
1 −b−c

c(1 −c)
(10.2.33)

10.2.7 10.2.8 b c

c =
m−1

m−d
(10.2.34)

b = m(  .
1 −d

m−d
)

2
(10.2.35)

m d

b = .3666 c = .5533 (1 −c < b < 1 −c)2

p0 p8
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pj

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://stats.libretexts.org/@go/page/3169?pdf


GNU Free Documentation License 10.2.9 https://stats.libretexts.org/@go/page/3169

4 .0828 .0621

5 .0357 .0344

6 .0133 .0190

7 .0042 .0105

8 .0011 .0058

9 .0002 .0032

10 .0000 .0018

The geometric model tends to favor the larger numbers of offspring but is similar enough to show that this modified geometric
distribution might be appropriate to use for studies of this kind.

Recall that if  is the sum of independent random variables with the same distribution then the Law of
Large Numbers states that  converges to a constant, namely . It is natural to ask if there is a similar limiting theorem
for branching processes.

Consider a branching process with  representing the number of offspring after  generations. Then we have seen that the
expected value of  is . Thus we can scale the random variable  to have expected value 1 by considering the random
variable

In the theory of branching processes it is proved that this random variable  will tend to a limit as  tends to infinity. However,
unlike the case of the Law of Large Numbers where this limit is a constant, for a branching process the limiting value of the
random variables  is itself a random variable.

Although we cannot prove this theorem here we can illustrate it by simulation. This requires a little care. When a branching process
survives, the number of offspring is apt to get very large. If in a given generation there are 1000 offspring, the offspring of the next
generation are the result of 1000 chance events, and it will take a while to simulate these 1000 experiments. However, since the
final result is the sum of 1000 independent experiments we can use the Central Limit Theorem to replace these 1000 experiments
by a single experiment with normal density having the appropriate mean and variance. The program BranchingSimulation carries
out this process.

We have run this program for the Keyfitz example, carrying out 10 simulations and graphing the results in Figure .

Figure : \text { Simulation of } Z_n / m^n \text { for the Keyfitz example. }

= + +⋯ +Sn X1 X2 Xn

/nSn E( )X1

Zn n

Zn mn Zn

=  .Wn

Zn

mn
(10.2.36)

Wn n

Wn
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The expected number of female offspring per female is 1.837, so that we are graphing the outcome for the random variables 
. For three of the simulations the process died out, which is consistent with the value  that we found for

this example. For the other seven simulations the value of  tends to a limiting value which is different for each simulation.

We now examine the random variable  more closely for the case  (see Example  ). Fix a value ; let 
 be the integer part of . Then

where . Thus, as ,

For ,

We can compare this result with the Central Limit Theorem for sums  of integer-valued independent random variables (see
Theorem 9.3.5), which states that if  is an integer and , then as ,

We see that the form of these statements are quite similar. It is possible to prove a limit theorem for a general class of
branching processes that states that under suitable hypotheses, as ,

for , and

However, unlike the Central Limit Theorem for sums of independent random variables, the function  will depend upon the
basic distribution that determines the process. Its form is known for only a very few examples similar to the one we have
considered here.

 

Chain Letter Problem

An interesting example of a branching process was suggested by Free Huizinga.  In 1978, a chain letter called the “Circle of
Gold," believed to have started in California, found its way across the country to the theater district of New York. The chain
required a participant to buy a letter containing a list of 12 names for 100 dollars. The buyer gives 50 dollars to the person from
whom the letter was purchased and then sends 50 dollars to the person whose name is at the top of the list. The buyer then
crosses off the name at the top of the list and adds her own name at the bottom in each letter before it is sold again.

Solution
Let us first assume that the buyer may sell the letter only to a single person. If you buy the letter you will want to compute your
expected winnings. (We are ignoring here the fact that the passing on of chain letters through the mail is a federal offense with
certain obvious resulting penalties.) Assume that each person involved has a probability  of selling the letter. Then you will
receive 50 dollars with probability  and another 50 dollars if the letter is sold to 12 people, since then your name would have

= /(1.837Wn Zn )n d = .3
Wn

 Example 10.2.6

Zn m < 1 10.2.4 t > 0
[t ]mn tmn

P ( = [t ])Zn mn =

=

( (mn 1 −d

−dmn
)2 −1mn

−dmn
)[t ]−1mn

( (  ,
1

mn

1 −d

1 −d/mn
)2 1 −1/mn

1 −d/mn
)t +amn

|a| ≤ 2 n → ∞

P ( = [t ]) → (1 −d = (1 −d  .mn Zn mn )2 e−t

e−td
)2e−t(1−d) (10.2.37)

t = 0

P ( = 0) → d .Zn (10.2.38)

Sn

t u = (t−nμ)/ nσ2
− −−

√ n → ∞

P ( = u +μn) →  .nσ2
− −−

√ Sn nσ2
− −−

√ 1

2π
−−

√
e− /2u2

(10.2.39)

n → ∞

P ( = [t ]) → k(t) ,mn Zn mn (10.2.40)

t > 0

P ( = 0) → d .Zn (10.2.41)

k(t)
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risen to the top of the list. This occurs with probability , and so your expected winnings are . Thus the
chain in this situation is a highly unfavorable game.

It would be more reasonable to allow each person involved to make a copy of the list and try to sell the letter to at least 2 other
people. Then you would have a chance of recovering your 100 dollars on these sales, and if any of the letters is sold 12 times
you will receive a bonus of 50 dollars for each of these cases. We can consider this as a branching process with 12 generations.
The members of the first generation are the letters you sell. The second generation consists of the letters sold by members of
the first generation, and so forth.

Let us assume that the probabilities that each individual sells letters to 0, 1, or 2 others are , , and , respectively. Let , 
, …,  be the number of letters in the first 12 generations of this branching process. Then your expected winnings are

where  is the expected number of letters you sold. Thus to be favorable we just have

or

But this will be true if and only if . We have seen that this will occur in the quadratic case if and only if . Let us
assume for example that , , and . Then  and the chain would be a favorable game. Your
expected profit would be

The probability that you receive at least one payment from the 12th generation is . We find from our program Branch
that . Thus,  is the probability that you receive some bonus. The maximum that you could receive
from the chain would be  if everyone were to successfully sell two letters. Of course you can not
always expect to be so lucky. (What is the probability of this happening?)

To simulate this game, we need only simulate a branching process for 12 generations. Using a slightly modified version of our
program BranchingSimulation we carried out twenty such simulations, giving the results shown in Table  .

Note that we were quite lucky on a few runs, but we came out ahead only a little less than half the time. The process died out
by the twelfth generation in 12 out of the 20 experiments, in good agreement with the probability  that we
calculated using the program Branch.

Table : Simulation of chain letter (finite distribution case).

Profit

1 0 0 0 0 0 0 0 0 0 0 0 -50

1 1 2 3 2 3 2 1 2 3 3 6 250

0 0 0 0 0 0 0 0 0 0 0 0 -100

2 4 4 2 3 4 4 3 2 2 1 1 50

1 2 3 5 4 3 3 3 5 8 6 6 250

0 0 0 0 0 0 0 0 0 0 0 0 -100

2 3 2 2 2 1 2 3 3 3 4 6 300

1 2 1 1 1 1 2 1 0 0 0 0 -50

0 0 0 0 0 0 0 0 0 0 0 0 -100

1 0 0 0 0 0 0 0 0 0 0 0 -50

p12 −100 +50p+50p12

p0 p1 p2 Z1

Z2 Z12

50(E( ) +E( )) = 50m+50  ,Z1 Z12 m12 (10.2.42)

m = +2p1 p2

50m+50 > 100 ,m12 (10.2.43)

m+ > 2 .m12 (10.2.44)

m > 1 >p2 p0

= .2p0 = .5p1 = .3p2 m = 1.1

50(1.1 + ) −100 ≈ 112 .1.112 (10.2.45)

1 −d12

= .599d12 1 − = .401d12

50(2 + ) = 204,900212

10.2.4

= .599d12

10.2.4
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Profit

2 3 2 3 3 3 5 9 12 12 13 15 750

1 1 1 0 0 0 0 0 0 0 0 0 -50

1 2 2 3 3 0 0 0 0 0 0 0 -50

1 1 1 1 2 2 3 4 4 6 4 5 200

1 1 0 0 0 0 0 0 0 0 0 0 -50

1 0 0 0 0 0 0 0 0 0 0 0 -50

1 0 0 0 0 0 0 0 0 0 0 0 -50

1 1 2 3 3 4 2 3 3 3 3 2 50

1 2 4 6 6 9 10 13 16 17 15 18 850

1 0 0 0 0 0 0 0 0 0 0 0 -50

Let us modify the assumptions about our chain letter to let the buyer sell the letter to as many people as she can instead of to a
maximum of two. We shall assume, in fact, that a person has a large number  of acquaintances and a small probability  of
persuading any one of them to buy the letter. Then the distribution for the number of letters that she sells will be a binomial
distribution with mean . Since  is large and  is small, we can assume that the probability  that an individual sells the
letter to  people is given by the Poisson distribution

The generating function for the Poisson distribution is

The expected number of letters that an individual passes on is , and again to be favorable we must have . Let us assume
again that . Then we can find again the probability  of a bonus from Branch. The result is .232. Although the
expected winnings are the same, the variance is larger in this case, and the buyer has a better chance for a reasonably large profit.
We again carried out 20 simulations using the Poisson distribution with mean 1.1. The results are shown in Table Table .

Table : Simulation of chain letter (Poisson case).

Profit

1 2 6 7 7 8 11 9 7 6 6 5 200

1 0 0 0 0 0 0 0 0 0 0 0 -50

1 0 0 0 0 0 0 0 0 0 0 0 -50

1 1 1 0 0 0 0 0 0 0 0 0 -50

0 0 0 0 0 0 0 0 0 0 0 0 -100

1 1 1 1 1 1 2 4 9 7 9 7 300

2 3 3 4 2 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 -50

N p

m = Np N p pj
j

=  .pj
e−mmj

j!
(10.2.46)

h(z) =

=

=

∑
j=0

∞ e−mmjzj

j!

e−m∑
j=0

∞ mjzj

j!

=  .e−memz em(z−1)

m m > 1
m = 1.1 1 −d12

10.2.5
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Profit

2 1 0 0 0 0 0 0 0 0 0 0 0

3 3 4 7 11 17 14 11 11 10 16 25 1300

0 0 0 0 0 0 0 0 0 0 0 0 -100

1 2 2 1 1 3 1 0 0 0 0 0 -50

0 0 0 0 0 0 0 0 0 0 0 0 -100

2 3 1 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0 0 50

1 0 0 0 0 0 0 0 0 0 0 0 -50

3 4 4 7 10 11 9 11 12 14 13 10 550

1 3 3 4 9 5 7 9 8 8 6 3 100

1 0 4 6 6 9 10 13 0 0 0 0 -50

1 0 0 0 0 0 0 0 0 0 0 0 -50

We note that, as before, we came out ahead less than half the time, but we also had one large profit. In only 6 of the 20 cases did we
receive any profit. This is again in reasonable agreement with our calculation of a probability .232 for this happening.

Exercises

Exercise 

Let , , …,  describe a branching process in which each parent has  offspring with probability . Find the probability 
that the process eventually dies out if

a. , , and .
b. , , and .
c. , , and .
d. , for , 1, 2, ….
e. , for , 1, 2, ….
f. , for , 1, 2, … (estimate  numerically).

Exercise 

Let , , …,  describe a branching process in which each parent has  offspring with probability . Find the probability 
that the process dies out if

a. , , and .
b. .
c. , , , and , where .

Exercise 

In the chain letter problem (see Example [exam 10.2.5]) find your expected profit if

a. , , and .
b. , , and .

Show that if , you cannot expect to make a profit.

Exercise 

Let , where the ’s are independent random variables with common distribution having generating
function . Assume that  is an integer valued random variable independent of all of the  and having generating function 

10.2.1

Z1 Z2 ZN j pj d

= 1/2p0 = 1/4p1 = 1/4p2

= 1/3p0 = 1/3p1 = 1/3p2

= 1/3p0 = 0p1 = 2/3p2

= 1/pj 2j+1 j= 0
= (1/3)(2/3pj )j j= 0
= /j!pj e−22j j= 0 d

10.2.2

Z1 Z2 ZN j pj d

= 1/2p0 = = 0p1 p2 = 1/2p3

= = = = 1/4p0 p1 p2 p3

= tp0 = 1 −2tp1 = 0p2 = tp3 t ≤ 1/2

10.2.3

= 1/2p0 = 0p1 = 1/2p2

= 1/6p0 = 1/2p1 = 1/3p2

> 1/2p0

10.2.4

= + +⋯ +SN X1 X2 XN Xi

f(z) N Xj
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. Show that the generating function for  is . : Use the fact that

Exercise 

We have seen that if the generating function for the offspring of a single parent is , then the generating function for the number
of offspring after two generations is given by . Explain how this follows from the result of Exercise [exer 10.2.4].

Exercise 

Consider a queueing process such that in each minute either 1 or 0 customers arrive with probabilities  or , respectively.
(The number  is called the .) When a customer starts service she finishes in the next minute with probability . The number  is
called the .) Thus when a customer begins being served she will finish being served in  minutes with probability , for 

, 2, 3, ….

Exercise 

Consider a by considering the offspring of a customer to be the customers who arrive while she is being served. Using Exercise
[exer 10.2.4], show that the generating function for our customer branching process is .

Exercise 

If we start the branching process with the arrival of the first customer, then the length of time until the branching process dies out
will be the for the server. Find a condition in terms of the arrival rate and service rate that will assure that the server will ultimately
have a time when he is not busy.

Exercise 

Let  be the expected total number of offspring in a branching process. Let  be the mean number of offspring of a single parent.
Show that

and hence that  is finite if and only if  and in that case .

Exercise 

Consider a branching process such that the number of offspring of a parent is  with probability  for , 1, 2, ….

a. Using the results of Example [exam 10.2.4] show that the probability that there are  offspring in the th generation is

b. Show that the probability that the process dies out exactly at the th generation is .
c. Show that the expected lifetime is infinite even though .
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g(z) SN h(z) = g(f(z))

h(z) = E( ) = E( |N = k)P (N = k) .zSN ∑
k

zSN (10.2.47)

10.2.5

f(z)
h(z) = f(f(z))

10.2.6

p q = 1 −p

p r r

j (1 −r r)j−1

j= 1

10.2.7

h(z) = g(f(z))

10.2.8

10.2.9

N m

N = 1 +(∑ ⋅ k)N = 1 +mNpk (10.2.48)

N m < 1 N = 1/(1 −m)

10.2.10

j 1/2j+1 j= 0

j n

= {p
(n)
j

( ,1
n(n+1)

n

n+1
)j

,n

n+1

if j≥ 1,

if j= 0.
(10.2.49)

n 1/n(n+1)
d = 1
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