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12.1: Random Walks in Euclidean Space**

In the last several chapters, we have studied sums of random variables with the goal being to describe the distribution and density
functions of the sum. In this chapter, we shall look at sums of discrete random variables from a different perspective. We shall be
concerned with properties which can be associated with the sequence of partial sums, such as the number of sign changes of this
sequence, the number of terms in the sequence which equal 0, and the expected size of the maximum term in the sequence.

We begin with the following definition.

& Definition: 12.1.1

Let { X}, }7°, be a sequence of independent, identically distributed discrete random variables. For each positive integer n, we
let S,, denote the sum X; + X5 +--- +X,, . The sequence {5, }>° ; is called a If the common range of the X}’s is R™, then
we say that { S, } is a random walk in R™.

We view the sequence of X}.’s as being the outcomes of independent experiments. Since the X}’s are independent, the probability
of any particular (finite) sequence of outcomes can be obtained by multiplying the probabilities that each X}, takes on the specified
value in the sequence. Of course, these individual probabilities are given by the common distribution of the X}’s. We will typically
be interested in finding probabilities for events involving the related sequence of S,,’s. Such events can be described in terms of the
X4’s, so their probabilities can be calculated using the above idea.

There are several ways to visualize a random walk. One can imagine that a particle is placed at the origin in R™ at time n =0.
The sum .S, represents the position of the particle at the end of n seconds. Thus, in the time interval [n — 1, n|, the particle moves
(or jumps) from position S,,_; to S,,. The vector representing this motion is just .S,, —S,,_1, which equals X,,. This means that in a
random walk, the jumps are independent and identically distributed. If m = 1, for example, then one can imagine a particle on the
real line that starts at the origin, and at the end of each second, jumps one unit to the right or the left, with probabilities given by the
distribution of the X}’s. If m = 2, one can visualize the process as taking place in a city in which the streets form square city
blocks. A person starts at one corner (i.e., at an intersection of two streets) and goes in one of the four possible directions according
to the distribution of the X}’s. If m = 3, one might imagine being in a jungle gym, where one is free to move in any one of six
directions (left, right, forward, backward, up, and down). Once again, the probabilities of these movements are given by the
distribution of the X}’s.

Another model of a random walk (used mostly in the case where the range is R') is a game, involving two people, which consists
of a sequence of independent, identically distributed moves. The sum S,, represents the score of the first person, say, after n moves,
with the assumption that the score of the second person is —S5,,. For example, two people might be flipping coins, with a match or
non-match representing +1 or —1, respectively, for the first player. Or, perhaps one coin is being flipped, with a head or tail
representing +1 or —1, respectively, for the first player.

Random Walks on the Real Line
We shall first consider the simplest non-trivial case of a random walk in R!, namely the case where the common distribution
function of the random variables X, is given by

1/2, ifz =41,

(12.1.1)
0, otherwise.

fx(@) :{

This situation corresponds to a fair coin being flipped, with S,, representing the number of heads minus the number of tails which
occur in the first n flips. We note that in this situation, all paths of length n have the same probability, namely 27".

It is sometimes instructive to represent a random walk as a polygonal line, or path, in the plane, where the horizontal axis
represents time and the vertical axis represents the value of S,,. Given a sequence {S, } of partial sums, we first plot the points
(n, Sy), and then for each k < n, we connect (k, Sy) and (k+1, S.1) with a straight line segment. The length of a path is just
the difference in the time values of the beginning and ending points on the path. The reader is referred to Figure [fig 12.1]. This
figure, and the process it illustrates, are identical with the example, given in Chapter 1, of two people playing heads or tails.
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Returns and First Returns

We say that an equalization has occurred, or there is a at time n, if S,, = 0. We note that this can only occur if n is an even integer.
To calculate the probability of an equalization at time 2m, we need only count the number of paths of length 2m which begin and
end at the origin. The number of such paths is clearly
2
( m) . (12.1.2)
m

Since each path has probability 272™ we have the following theorem.

& Theorem 12.1.1

The probability of a return to the origin at time 2m is given by

2
o = ( m) 9-2m (12.1.3)
m

The probability of a return to the origin at an odd time is 0.
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Figure 12.1.1: A random walk of length 40

A random walk is said to have a first return to the origin at time 2m if m > 0, and Sa;, # 0 for all £ < m. In Figure 12.1.1, the
first return occurs at time 2. We define fo,, to be the probability of this event. (We also define fy =0.) One can think of the
expression fa,,22™ as the number of paths of length 2m between the points (0, 0) and (2m, 0) that do not touch the horizontal axis
except at the endpoints. Using this idea, it is easy to prove the following theorem.

& Theorem 12.1.2

For n > 1, the probabilities {usy } and { for} are related by the equation

Uzp = fouon + fotzn—2+- - + fonuo - (12.1.4)

Proof. There are uy,2?" paths of length 2n which have endpoints (0,0) and (2n,0). The collection of such paths can be
partitioned into n sets, depending upon the time of the first return to the origin. A path in this collection which has a first return to
the origin at time 2k consists of an initial segment from (0, 0) to (2k, 0), in which no interior points are on the horizontal axis, and
a terminal segment from (2k, 0) to (2n, 0), with no further restrictions on this segment. Thus, the number of paths in the collection
which have a first return to the origin at time 2k is given by
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If we sum over k, we obtain the equation

For2uzn 0k2”" 7 = foruzn 2™ . (12.1.5)

222" = fouan2®" + foton_222" + - + fonug22" . (12.1.6)
Dividing both sides of this equation by 22" completes the proof.

The expression in the right-hand side of the above theorem should remind the reader of a sum that appeared in Definition 7.1.1 of
the convolution of two distributions. The convolution of two sequences is defined in a similar manner. The above theorem says that
the sequence {ug,} is the convolution of itself and the sequence {fa,}. Thus, if we represent each of these sequences by an
ordinary generating function, then we can use the above relationship to determine the value f,,.

& Theorem 12.1.3

For m > 1, the probability of a first return to the origin at time 2m is given by

<2m)

Uam m

o - 12.1.7
T S P (12.1.7)

Proof. We begin by defining the generating functions

Uz) = iumem (12.1.8)
m=0
and
F(z)= i Jomaz™ . (12.1.9)
m=0
Theorem 12.1.2says that
Ulx)=1+U(z)F(z). (12.1.10)

(The presence of the 1 on the right-hand side is due to the fact that ug is defined to be 1, but Theorem 12.1.1 only holds for
m > 1.) We note that both generating functions certainly converge on the interval (—1, 1), since all of the coefficients are at most 1
in absolute value. Thus, we can solve the above equation for F'(x), obtaining

\[F(x) = \dfrac{ {U(x) - 1}{UE)} \]

Now, if we can find a closed-form expression for the function U(z), we will also have a closed-form expression for F(z). From
Theorem 12.1.1, we have

U(z) = i (2m> 9 2mgm (12.1.11)

m=0 m
In Wilf,! we find that
1 >\ (2
_:Z( m)w. (12.1.12)
Vi—dz = \m
The reader is asked to prove this statement in Exercise 12.1.1 If we replace = by /4 in the last equation, we see that
1
U(z) = . (12.1.13)
11—z

Therefore, we have
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_Uz)—-1
U(z)
(1—-2z)2-1
(1 —w)‘1/2
=1-(1—x)2

Although it is possible to compute the value of f5,, using the Binomial Theorem, it is easier to note that F/(z) = U(z)/2, so that
the coefficients fs,, can be found by integrating the series for U(z). We obtain, form > 1,
U2m—2

f2m - om
(2m—2)
_Am-1/
- m22m-1
()
_\m/
(2m —1)22m

_ U2m
2m—1’

(21:?—_12) :%@:) (12.1.14)

since

This completes the proof of the theorem.

Probability of Eventual Return

In the symmetric random walk process in R™, what is the probability that the particle eventually returns to the origin? We first
examine this question in the case that m = 1, and then we consider the general case. The results in the next two examples are due
to Pélya.?

v/ Example 12.1.1

(Eventual Return in R!) One has to approach the idea of eventual return with some care, since the sample space seems to be
the set of all walks of infinite length, and this set is non-denumerable. To avoid difficulties, we will define w,, to be the
probability that a first return has occurred no later than time n. Thus, w,, concerns the sample space of all walks of length n,
which is a finite set. In terms of the w,,’s, it is reasonable to define the probability that the particle eventually returns to the
origin to be

wy = lim w, . (12.1.15)

n—oo

This limit clearly exists and is at most one, since the sequence {wy, }>° ; is an increasing sequence, and all of its terms are at
most one.

In terms of the f,, probabilities, we see that

n

Wan =Y foi - (12.1.16)
=1
Thus,
w, = fai- (12.1.17)
i=1

In the proof of Theorem 12.1.3 the generating function
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F(z)= i foma™ (12.1.18)
m=0

was introduced. There it was noted that this series converges for # € (—1,1). In fact, it is possible to show that this series also
converges for x = +1 by using Exercise 12.1.4 together with the fact that

U2m
= . 12.1.19
fom =507 ( )

(This fact was proved in the proof of Theorem 12.1.3) Since we also know that
F(z)=1—(1—-z)"2, (12.1.20)
we see that
w,=F(1)=1. (12.1.21)
Thus, with probability one, the particle returns to the origin.

An alternative proof of the fact that w, =1 can be obtained by using the results in Exercise 12.1.12

v/ Example 12.1.2

(Eventual Return in R"™) We now turn our attention to the case that the random walk takes place in more than one dimension.

We define fz(;") to be the probability that the first return to the origin in R™ occurs at time 2n. The quantity ug'z) is defined in

a similar manner. Thus, fé;) and ugl) equal fo, and wus,, which were defined earlier. If, in addition, we define u(()m) =1 and

fém) =0, then one can mimic the proof of Theorem 12.1.2 and show that for all m > 1,

ul) = Pl + Ul o+ i ug™ (12.1.22)

We continue to generalize previous work by defining

U™ (z) =Y ugan (12.1.23)
n=0
and
FM(z)=3" fiam . (12.1.24)
n=0
Then, by using Equation 12.1.2], we see that
UM (z) =1+U™ (2)F™ (z), (12.1.25)

as before. These functions will always converge in the interval (—1, 1), since all of their coefficients are at most one in magnitude.
In fact, since

wi™ = Zf‘z(;n) <1 (12.1.26)
n=0
for all m, the series for F(™ (z) converges at z = 1 as well, and F'(™)(z) is left-continuous at z = 1, i.e.,

liTr?F(m)(z) =F™1). (12.1.27)

Thus, we have
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(m)(p)—1
W™ = lim FOm) () = Tim @) =1 (12.1.28)
o1 atl UM (z)
so to determine w,(km), it suffices to determine
liglU(m)(m). (12.1.29)
We let u(™ denote this limit.
We claim that
o0
:Zugjy, (12.1.30)
n=0

(This claim is reasonable; it says that to find out what happens to the function U (™ (z)atz =1, justlet z =1 in the power series
for U(™)(z).) To prove the claim, we note that the coefficients ’U,;T,:) are non-negative, so U (™) (z) increases monotonically on the
interval [0, 1). Thus, for each K, we have

K

Z <11mU i (m) (12.1.31)

=0 n=0

By letting K — 0o, we see that

=Y ugr. (12.1.32)
2n

This establishes the claim.

From Equation 12.1.3 we see that if u(™ < oo, then the probability of an eventual return is

(m) _1
i (12.1.33)
u(m)
while if u(™ = oo, then the probability of eventual return is 1.
To complete the example, we must estimate the sum
o0
S ui (12.1.34)
n=0
In Exercise 12.1.12 the reader is asked to show that
) 1 /2n)>
Using Stirling’s Formula, it is easy to show that (see Exercise 12.1.13)
2 22n
( ") ~ (12.1.36)
n VTN
so
@ 1
From this it follows easily that
o (2
ul?) (12.1.38)
n=0

(2)

diverges, so w,

=1, ie., in R?, the probability of an eventual return is 1.
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When m = 3, Exercise [12.1.1%hows that
2
3 1 <2n) ( 1 n! )
¥ = — —_— ) . 12.1.39
o om \ ]EI; 3" kN (n—j—k)! ( )
Let M denote the largest value of

1 n!

_- 12.1.40
3" jlkl(n—j7—k)! ( )

over all non-negative values of j and k with 7+ k& < n . It is easy, using Stirling’s Formula, to show that
M~Z, (12.1.41)

n

for some constant c¢. Thus, we have
(3)<L 2n %L 12.1.42
Using Exercise 12.1.14 one can show that the right-hand expression is at most

/

c
—_— (12.1.43)
n3/2’

where ¢ is a constant. Thus,

o0
> ul (12.1.44)
n=0

converges, so wf’) is strictly less than one. This means that in R?, the probability of an eventual return to the origin is strictly less

than one (in fact, it is approximately .34).

One may summarize these results by stating that one should not get drunk in more than two dimensions.

Expected Number of Equalizations

We now give another example of the use of generating functions to find a general formula for terms in a sequence, where the
sequence is related by recursion relations to other sequences. Exercise [exer 12.1.9] gives still another example.

v/ Example 12.1.3

(Expected Number of Equalizations) In this example, we will derive a formula for the expected number of equalizations in a
random walk of length 2m. As in the proof of Theorem 12.1.3 the method has four main parts. First, a recursion is found
which relates the mth term in the unknown sequence to earlier terms in the same sequence and to terms in other (known)
sequences. An example of such a recursion is given in Theorem 12.1.2 Second, the recursion is used to derive a functional
equation involving the generating functions of the unknown sequence and one or more known sequences. Equation12.1.1is an
example of such a functional equation. Third, the functional equation is solved for the unknown generating function. Last,
using a device such as the Binomial Theorem, integration, or differentiation, a formula for the mth coefficient of the unknown
generating function is found.

We begin by defining gs,,, to be the number of equalizations among all of the random walks of length 2m. (For each random
walk, we disregard the equalization at time 0.) We define gy = 0. Since the number of walks of length 2m equals 22™, the
expected number of equalizations among all such random walks is ga,, /2°™. Next, we define the generating function G(z):

Gx) =) gua". (12.1.45)
k=0

Now we need to find a recursion which relates the sequence {gox} to one or both of the known sequences { far, } and {uay}.
We consider m to be a fixed positive integer, and consider the set of all paths of length 2m as the disjoint union
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where sy, is the set of all paths of length 2m with first equalization at time 2k, and H is the set of all paths of length 2m with
no equalization. It is easy to show (see Exercise 12.1.3) that

EyUE4U-+-UBy, UH, (12.1.46)

| Bax| = far2”™ . (12.1.47)
We claim that the number of equalizations among all paths belonging to the set Eyy, is equal to

| Bak| +2°* forgom-—2k - (12.1.48)

Each path in Esy, has one equalization at time 2k, so the total number of such equalizations is just | Eog|. This is the first
summand in expression Equation 12.1.4 There are 2%k far different initial segments of length 2k among the paths in Es. Each
of these initial segments can be augmented to a path of length 2m in 222 ways, by adjoining all possible paths of length
2m — 2k. The number of equalizations obtained by adjoining all of these paths to any one initial segment is go,—2k, by
definition. This gives the second summand in Equation 12.1.4 Since k can range from 1 to m, we obtain the recursion

9om = Z (|E2k| + 22kf2kg2m72k) : (12.1.49)
=1

The second summand in the typical term above should remind the reader of a convolution. In fact, if we multiply the
generating function G(z) by the generating function

F(4z)=> 2" fya”, (12.1.50)
k=0
the coefficient of ™ equals
m
Z22kf2kggm_2k. (12.1.51)
k=0

Thus, the product G(x)F(4z) is part of the functional equation that we are seeking. The first summand in the typical term in
Equation 12.1.5gives rise to the sum

m
22" for, . (12.1.52)
k=1

From Exercise 12.1.2 we see that this sum is just (1 —ug,,)2*™. Thus, we need to create a generating function whose mth
coefficient is this term; this generating function is

> (1 —ugy)2*" 2™, (12.1.53)
m=0
or
> 2tmam =N " uy, 22 (12.1.54)
m=0 =0
The first sum is just (1 —4z)~!, and the second sum is U(4z). So, the functional equation which we have been seeking is
1
G(z) = F(4z)G(z) + T —-U(4z) . (12.1.55)
—4z
If we solve this recursion for G(z), and simplify, we obtain
1 1
G(z) = = (12.1.56)

(1—4z)32 (1—4z)

We now need to find a formula for the coefficient of ™. The first summand in Equation 12.1.6is (1/2)U’(4z) so the
coefficient of ™ in this function is

Ugm 222 (m +1) . (12.1.57)
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The second summand in Equation 12.1.6is the sum of a geometric series with common ratio 4z, so the coefficient of ™ is
22™_Thus, we obtain

Gom = U2 2" (m+1) — 277

1 (2m—|—2) (m1) 22

:E m+1

We recall that the quotient ga,,/ 22™ is the expected number of equalizations among all paths of length 2m. Using Exercise
12.1.4 it is easy to show that

Pm /%m (12.1.58)

22m

In particular, this means that the average number of equalizations among all paths of length 4m is not twice the average
number of equalizations among all paths of length 2m. In order for the average number of equalizations to double, one must
quadruple the lengths of the random walks.

It is interesting to note that if we define

M,, = max S, (12.1.59)

0<k<n

then we have

E(M,) ~ \/E\/ﬁ (12.1.60)

This means that the expected number of equalizations and the expected maximum value for random walks of length n are
asymptotically equal as n — oo. (In fact, it can be shown that the two expected values differ by at most 1/2 for all positive
integers n. See Exercise 12.1.9)

Exercises

Exercise 12.1.1

Using the Binomial Theorem, show that
1 > (2m> m
—_— = z" . (12.1.61)
Vv1—4x n;) m

What is the interval of convergence of this power series?

Exercise 12.1.2
a. Show that form >1,

fom = Uom—2 — Ugm, - (12.1.62)

b. Using part (a), find a closed-form expression for the sum

fotfat-+ fom . (12.1.63)
c¢. Using part (b), show that
oo
> fom=1. (12.1.64)
m=1

(One can also obtain this statement from the fact that

F(z)=1-(1-z)2.) (12.1.65)

d. Using parts (a) and (b), show that the probability of no equalization in the first 2m outcomes equals the probability of an
equalization at time 2m.
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Exercise 12.1.3
Using the notation of Example [exam 12.1.1], show that

| Bor| = fox2"™ . (12.1.66)
Exercise 12.1.4
Using Stirling’s Formula, show that
1
Ugm ~ N (12.1.67)

Exercise 12.1.5
A in a random walk occurs at time 2k if Sa;_1 and Sax. 1 are of opposite sign.

a. Give a rigorous argument which proves that among all walks of length 2m that have an equalization at time 2k, exactly half
have a lead change at time 2k.
b. Deduce that the total number of lead changes among all walks of length 2m equals

1

5 (92m — zm) (12.1.68)

c. Find an asymptotic expression for the average number of lead changes in a random walk of length 2m.

Exercise 12.1.6

a. Show that the probability that a random walk of length 2m has a last return to the origin at time 2k, where 0 < k < m , equals \
[ =u_{2k}u_{2m - 2k}\ .\] (The case k = 0 consists of all paths that do not return to the origin at any positive time.) : A path
whose last return to the origin occurs at time 2k consists of two paths glued together, one path of which is of length 2k and
which begins and ends at the origin, and the other path of which is of length 2m — 2k and which begins at the origin but never
returns to the origin. Both types of paths can be counted using quantities which appear in this section.

b. Using part (a), show that if m is odd, the probability that a walk of length 2m has no equalization in the last m outcomes is
equal to 1/2, regardless of the value of m. : The answer to part a) is symmetric in k and m — k.

Exercise 12.1.7

Show that the probability of no equalization in a walk of length 2m equals uay,.

Exercise 12.1.8

Show that
P(5 >0, 8 >0, ..., Som >0) =ugy . (12.1.69)
: First explain why
P(S; >0, 5 >0, ..., Sy, >0)
= %P(Sl #0, 8, #0, ..., Som #0).

Then use Exercise [exer 12.1.7], together with the observation that if no equalization occurs in the first 2m outcomes, then the path
goes through the point (1, 1) and remains on or above the horizontal line z = 1.

Exercise 12.1.9
In Feller,® one finds the following theorem: Let M, be the random variable which gives the maximum value of Sy, for 1 <k <m.
Define

\[p_{n, r} = {n\choose
RA{-np\ N\ Ifr >0,

then

Dnrs if r =n (mod 2),
P+l ifr -7_é n (IIIOd 2)

P(M, =r)= { (12.1.70)
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a. Using this theorem, show that

1 & 2m
E(Ms,,) = — 4k—1 , 12.1.71
) = 35 >k 77 ) (12.1.71)
and if n =2m +1, then
1 & 2m+1
E(Mypmyy) = 22’"_“2(4k+1)(m+k+1> : (12.1.72)
b. Form > 1, define
o 2m
— k 12.1.73
m kz:; (m—i—k) ( )
and
uu 2m+1
Sm —;k<m+k+1) . (12.1.74)
By using the identity
n n—1 n—1
(- () (7). -
show that
1 2m
Sm =2rm — (22“"— <m>> (12.1.76)
and
1
Pon = 28m_1 + 522’"‘1 , (12.1.77)
ifm > 2.
c. Define the generating functions
o0
R(z) =) " (12.1.78)
k=1
and
o0
S@)=> siz’. (12.1.79)
k=1
Show that
S()=2R(@) -~ (—— )+ (vi—dz (12.1.80)
A To\T 42 ) T 2 v -
and
R(z) =2zS(z) + ! (12.1.81)
v)=22S(@)+a| T - 1.
d. Show that
T
R(z) = , 12.1.82
and
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S(x) :%(W) %(ﬁ) (12.1.83)

e. Show that
2m—1
rm:m(m—l) , (12.1.84)
and
1 2m+1 1, o
m == 1 ——=(2 . 12.1.
s =g m ) () - S (12.1.85)
f. Show that
m 2m 1 2m 1
E(May,) = o (m) + P (m) -3 (12.1.86)

and \[E(M_{2m+1}) = {2m+2\choose m+1} - {1\over 2}\ .\] The reader should compare these formulas with the expression for
g2m/2(2m) in Example [exam 12.1.1].

Exercise 12.1.10

(from K. Levasseur?) A parent and his child play the following game. A deck of 2n cards, n red and n black, is shuffled. The cards
are turned up one at a time. Before each card is turned up, the parent and the child guess whether it will be red or black. Whoever
makes more correct guesses wins the game. The child is assumed to guess each color with the same probability, so she will have a
score of n, on average. The parent keeps track of how many cards of each color have already been turned up. If more black cards,
say, than red cards remain in the deck, then the parent will guess black, while if an equal number of each color remain, then the
parent guesses each color with probability 1/2. What is the expected number of correct guesses that will be made by the parent? :
Each of the (2:) possible orderings of red and black cards corresponds to a random walk of length 2n that returns to the origin at
time 2n. Show that between each pair of successive equalizations, the parent will be right exactly once more than he will be wrong.
Explain why this means that the average number of correct guesses by the parent is greater than n by exactly one-half the average
number of equalizations. Now define the random variable X; to be 1 if there is an equalization at time 24, and 0 otherwise. Then,
among all relevant paths, we have

\[E(X_i) = P(X_i = 1) = \frac

\ ]

Thus, the expected number of equalizations equals
\[E\biggl(\sum_{i = 1}/n X_i\biggr) = \frac 1

\sum_{i=1}"n\.\]

One can now use generating functions to find the value of the sum.

It should be noted that in a game such as this, a more interesting question than the one asked above is what is the probability that
the parent wins the game? For this game, this question was answered by D. Zagier.> He showed that the probability of winning is
asymptotic (for large n) to the quantity

1 1

-+ —. 12.1.87
Exercise 12.1.11
Prove that
(2) _ L - (2n)! 12.1
“an = g k; Rl (n—R)\(n—Fk)! (12.1.88)
and
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3) 1 (2n)!
L 12.1.89
fon = o Jz; FIKKN (n—j— k) (n—j—k)! ( )

where the last sum extends over all non-negative j and k with j+ k& < n . Also show that this last expression may be rewritten as
2
1 <2n) ( 1 n! )
=5 —_—— . (12.1.90)
22"\ n sz 3" jlkl(n—j—k)!
Exercise 12.1.12
Prove that if n > 0, then

Zn: (Z)Z - (2:) . (12.1.91)

,:0 (Z) (nr—Lk) (12.1.92)

(1+z)"(14+2z)". (12.1.93)
Use this, together with Exercise [exer 12.1.11], to show that
\[uM{(2)}_{2n} = \frac 1{4/{2n}}
{{2n}\choose n}"2\ .\]

Write the sum as

and explain why this is a coefficient in the product

Exercise 12.1.13

Using Stirling’s Formula, prove that
\[

{\sqrt {\pi n}}\ .\]

Exercise 12.1.14

Prove that
1 !
Z(-ﬂ ”—) —1, (12.1.94)
7 \3 Jkl(n—7—k)!
where the sum extends over all non-negative j and k such that j+ k& <n . : Count how many ways one can place n labelled balls
in 3 labelled urns.

Exercise 12.1.15

Using the result proved for the random walk in R? in Example [exam 12.1.0.6], explain why the probability of an eventual return
in R" is strictly less than one, for all n > 3. : Consider a random walk in R" and disregard all but the first three coordinates of the
particle’s position.

This page titled 12.1: Random Walks in Euclidean Space** is shared under a GNU Free Documentation License 1.3 license and was authored,
remixed, and/or curated by Charles M. Grinstead & J. Laurie Snell (American Mathematical Society) via source content that was edited to the

style and standards of the LibreTexts platform.
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