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7.2: Sums of Continuous Random Variables

In this section we consider the continuous version of the problem posed in the previous section: How are sums of independent
random variables distributed?

# Definition 7.2.1: convolution

Let X and Y be two continuous random variables with density functions f(z) and g(y), respectively. Assume that both f(x)
and g(y) are defined for all real numbers. Then the convolution f * g of f and g is the function given by

(9 = [ O

=/ _d—2)f(@)ie

This definition is analogous to the definition, given in Section 7.1, of the convolution of two distribution functions. Thus it should
not be surprising that if X and Y are independent, then the density of their sum is the convolution of their densities. This fact is
stated as a theorem below, and its proof is left as an exercise (see Exercise 1).

# Theorem 7.2.1

Let X and Y be two independent random variables with density functions fX (x) and fY (y) defined for all x. Then the sum Z =
X +Y is a random variable with density function fz(z), where fx is the convolution of fx and fy

To get a better understanding of this important result, we will look at some examples.

Sum of Two Independent Uniform Random Variables

v/ Example 7.2.1:

Suppose we choose independently two numbers at random from the interval [0, 1] with uniform probability density. What is
the density of their sum? Let X and Y be random variables describing our choices and Z = X +Y their sum. Then we have

1 if0<z<1

0 otherwise

fx(z)=fr(y) =

and the density function for the sum is given by

fat)= [ " =i

Since fy(y) =140 <y <1 and 0 otherwise, this becomes

f2(2) = /0 de—)n

Now the integrand is 0 unless 0 <z —y <1 (i.e.,, unless z — 1 <y < z) and then it is 1. So if 0 <z < 1, we have

o) = [ dy==

while if 1 <z < 2, we have

1
j"z(z):/i1 dy=2—z,

and if z < 0 or z > 2 we have ;Z(z) =0 (see Figure 7.2). Hence,
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fz(2) =

2—2z ifl<z<2

{ z if0<z<1
0, otherwise

Note that this result agrees with that of Example 2.4.

Sum of Two Independent Exponential Random Variables

v/ Example 7.2.2:

Suppose we choose two numbers at random from the interval [0, ) with an exponential density with parameter A. What is the
density of their sum? Let X, Y , and Z = X + Y denote the relevant random variables, and fx, fy,and fz their densities. Then
e ifx >0
fx(x) = fr(z) = { ’ -
(=) (=) 0, otherwise
1 E
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Figure 7.2.1: Convolution of two uniform densities
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Figure 7.2.2: Convolution of two exponential densities with A = 1.
and so, if z > 0,

GNU Free Documentation License https://stats.libretexts.org/@go/page/3150


https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://stats.libretexts.org/@go/page/3150?pdf

LibreTextsm

f2(2) = / " fxe—v) )iy

:/Z/\e”\(z’y) e Mdy
0

_ / /\267/\1 dy
0

= Nz
while if z < 0, fz(z) =0 (see Figure 7.3). Hence,

Nz ifz>0,

0, otherwise

fz(2) :{

Sum of Two Independent Normal Random Variables

v/ Example 7.2.3

It is an interesting and important fact that the convolution of two normal densities with means p;andp, and variances
o1andoy is again a normal density, with mean p; +p, and variance 0% + cr% . We will show this in the special case that both
random variables are standard normal. The general case can be done in the same way, but the calculation is messier. Another
way to show the general result is given in Example 10.17.

Suppose X and Y are two independent random variables, each with the standard normal density (see Example 5.8). We have
1 —z2 /2
x\T)=Jy = ——€
fx(@) = fr(y) Vo
and so
fz(2) = fx * fr(2)
1 o0
= % .

]. 2 o0 2
_ L o / =12 g
2w s

_Lern s [L_ / b e(yszdy]
27 VT )
The expression in the brackets equals 1, since it is the integral of the normal density function with =0 and o = /2 So, we
have

e (1) /26-v' /2 gy

__1 on
fz(2) \/Ee

Sum of Two Independent Cauchy Random Variables

v/ Example 7.2.4:

Choose two numbers at random from the interval (—oo, oo with the Cauchy density with parameter @ = 1 (see Example 5.10).
Then

1
fx(@)=fr(y) = TAta?)

and Z = X +Y has density
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1 o 1 1
= — d
e e [00 1+ (2—y)* 1+y?

This integral requires some effort, and we give here only the result (see Section 10.3, or Dwass® ):

2

)

Now, suppose that we ask for the density function of the average
A=(1/2)(X+Y)

of X and Y . Then A = (1/2)Z. Exercise 5.2.19 shows that if U and V are two continuous random variables with density
functions fy(z) and fy (z), respectively, and if V' = aU , then

fole) = (%)h(f)

1
m(1+ 22)

Thus, we have

fa(z) =2f2(22) =

Hence, the density function for the average of two random variables, each having a Cauchy density, is again a random variable with
a Cauchy density; this remarkable property is a peculiarity of the Cauchy density. One consequence of this is if the error in a certain
measurement process had a Cauchy density and you averaged a number of measurements, the average could not be expected to be
any more accurate than any one of your individual measurements!

Rayleigh Density

v/ Example 7.2.5:

Suppose X and Y are two independent standard normal random variables. Now suppose we locate a point P in the xy-plane
with coordinates (X, Y ) and ask: What is the density of the square of the distance of P from the origin? (We have already
simulated this problem in Example 5.9.) Here, with the preceding notation, we have

fx(z) = fv(z)

_ Le—zzﬂ
V2r
Moreover, if X2 denotes the square of X, then (see Theorem 5.1 and the discussion following)
1
(") ifr>0
fx2(r) = V2mr
0 otherwise.
1 _ .
5 = xvr) + fx(=yr))  ifr>0
= 24/r

0 otherwise.

This is a gamma density with A =1/2, 5=1/2 (see Example 7.4). Now let
R2 — X2 + Y2
Then

Hence, R? has a gamma density with A = 1/2, B = 1. We can interpret this result as giving the density for the square of the
distance of P from the center of a target if its coordinates are normally distributed. The density of the random variable R is
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obtained from that of R? in the usual way (see Theorem 5.1), and we find

fR(T):{ 2®

Physicists will recognize this as a Rayleigh density. Our result here agrees with our simulation in Example 5.9.

2 op=pe /2 ifr>0

0, otherwise

Chi-Squared Density

More generally, the same method shows that the sum of the squares of n independent normally distributed random variables with
mean 0 and standard deviation 1 has a gamma density with A = 1/2 and § = n/2. Such a density is called a chi-squared density with
n degrees of freedom. This density was introduced in Chapter 4.3. In Example 5.10, we used this density to test the hypothesis that
two traits were independent.

Another important use of the chi-squared density is in comparing experimental data with a theoretical discrete distribution, to see
whether the data supports the theoretical model. More specifically, suppose that we have an experiment with a finite set of
outcomes. If the set of outcomes is countable, we group them into finitely many sets of outcomes. We propose a theoretical
distribution that we think will model the experiment well. We obtain some data by repeating the experiment a number of times.
Now we wish to check how well the theoretical distribution fits the data.

Let X be the random variable that represents a theoretical outcome in the model of the experiment, and let m(z) be the distribution
function of X. In a manner similar to what was done in Example 5.10, we calculate the value of the expression

2
oz —n-m(x
vyl nm)
~" nom@)
where the sum runs over all possible outcomes x, n is the number of data points, and ox denotes the number of outcomes of type x

observed in the data. Then

Table 7.2.1: Observed data.

Outcome Observed Frequency
i 15

2 8

3 7

4 5

5 7

6 18

for moderate or large values of n, the quantity V is approximately chi-squared distributed, with v—1 degrees of freedom, where v
represents the number of possible outcomes. The proof of this is beyond the scope of this book, but we will illustrate the
reasonableness of this statement in the next example. If the value of V is very large, when compared with the appropriate chi-
squared density function, then we would tend to reject the hypothesis that the model is an appropriate one for the experiment at
hand. We now give an example of this procedure.

v/ Example 7.2.6: DieTest

Suppose we are given a single die. We wish to test the hypothesis that the die is fair. Thus, our theoretical distribution is the
uniform distribution on the integers between 1 and 6. So, if we roll the die n times, the expected number of data points of each
type is n/6. Thus, if o; denotes the actual number of data points of type ¢, for 1 <7 < 6, then the expression
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—n/6

6
V= Z n/6

i=
is approximately chi-squared distributed with 5 degrees of freedom.

Now suppose that we actually roll the die 60 times and obtain the data in Table 7.1. If we calculate V for this data, we obtain
the value 13.6. The graph of the chi-squared density with 5 degrees of freedom is shown in Figure 7.4. One sees that values as
large as 13.6 are rarely taken on by V if the die is fair, so we would reject the hypothesis that the die is fair. (When using this
test, a statistician will reject the hypothesis if the data gives a value of V which is larger than 95% of the values one would
expect to obtain if the hypothesis is true.)

In Figure 7.5, we show the results of rolling a die 60 times, then calculating V , and then repeating this experiment 1000 times.
The program that performs these calculations is called DieTest. We have superimposed the chi-squared density with 5 degrees
of freedom; one can see that the data values fit the curve fairly well, which supports the statement that the chi-squared density
is the correct one to use.

So far we have looked at several important special cases for which the convolution integral can be evaluated explicitly. In general,
the convolution of two continuous densities cannot be evaluated explicitly, and we must resort to numerical methods. Fortunately,
these prove to be remarkably effective, at least for bounded densities.

5 10 15 20

Figure 7.2.3: Chi-squared density with 5 degrees of freedom.
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Figure 7.2.4: : Rolling a fair die.

1 2 3 4 5 6 7 8

Figure 7.2.5: Convolution of n uniform densities.

Independent Trials

We now consider briefly the distribution of the sum of n independent random variables, all having the same density function. If
X1, X, ..., X, are these random variables and S,, = X; + X5 +---+ X,, is their sum, then we will have

fgn($) :(fXa X.fwz Xoee Xan($)7

where the right-hand side is an n-fold convolution. It is possible to calculate this density for general values of n in certain simple
cases.

https://stats.libretexts.org/@go/page/3150
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Suppose the X; are uniformly distributed on the interval [0,1]. Then

1, if0<z<1
0, otherwise

fx,(z)= {

and fs, (z) is given by the formula 4
1 1 (T An—1 .
oy TS Ve, H0se<n
0, otherwise

The density fs, (z) forn = 2,4, 6,8, 10is shown in Figure 7.6.

If the Xi are distributed normally, with mean 0 and variance 1, then (cf. Example 7.5)

1
in (ZL') = 67w2/2’

\/2pi

n=5

-15 -10 -5 S 10 15

Figure 7.2.6: Convolution of n standard normal densities.

and
1 2
fo (@)= el

Here the density fsn forn =5, 10, 15, 20, 25is shown in Figure 7.7.
If the X are all exponentially distributed, with mean 1/, then

fx.(z) =Xe ™.
and

e ™ (Az)" !

fs. = (n—1)!

In this case the density fs forn =2,4,6,8,10is shown in Figure 7.8.
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Exercises

Exercise 7.2.1: Let X and Y be independent real-valued random variables with density functions fx(z) and fy (y), respectively.
Show that the density function of the sum X +Y is the convolution of the functions fx (z) and fy(y). Hint: Let X be the joint
random variable (X, Y"). Then the joint density function of X is fx(z)fy (y), since X and Y are independent. Now compute the
probability that X +Y < z, by integrating the joint density function over the appropriate region in the plane. This gives the
cumulative distribution function of Z. Now differentiate this function with respect to z to obtain the density function of z.

Exercise 7.2.2: Let X and Y be independent random variables defined on the space 2, with density functions fx and fy,
respectively. Suppose that Z = X +Y . Find the density fz of Z if

n=2

5 10 15 20

Figure 7.2.7: Convolution of n exponential densities with A = 1.

(a)
_ _J1/2, f-1<z<+1
fx(@) = fr(@) = { 0, otherwise (7.-2.1)
(b)
if
e a
©

C(1/2, if-1<z<1,
fx(@) = { 0, otherwise

fy(m):{l/za if3<z<5

0, otherwise
(d) What can you say about the set E = {z: fz(z) >0} in each case?

Exercise 7.2.3: Suppose again that Z = X +Y . Find fz if
(a)
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z/2, if0<z<2

fx(@)=friz)= { 0, otherwise. (7.2.3)
(b)
felo) = fr()={ /D@ 8w <D (1.2.4
©
C[1/2, if0<z<2
fx(@) = { 0, otherwise (7.2:5)
_Jz/2, f0<z<2,
fr(@) = { 0, otherwise. (7.2.6)

(d) What can you say about the set E = {z: fz(z) > 0} in each case?
Exercise 7.2.4: Let X, Y, and Z be independent random variables with

Fx(@) = fr (@) = fa(x) = { L, if0<z <1 (7.2.7)

0, otherwise

Suppose that W = X +Y + Z . Find f directly, and compare your answer with that given by the formula in Example 7.9. Hint:

See Example 7.3.
Exercise 7.2.5: Suppose that X and Y are independent and Z = X +Y . Find fy if
(a)
e, ifz>o0,
fx(@) = { 0, otherwise.
| per®, ifx >0,
fr(@) = { 0, otherwise.
(b)

fx(@) = Ae ™ ifz >0,
X 0, otherwise.

1, ifo<z<1
fr(@) = {0, otherwise
Exercise 7.2.6: Suppose again that Z = X +Y . Find f if
1
V2moy

1 2 /9.2

_ —(z—py)° /203

x) = e .
fr(z) Bros

Exercise 7.2.7: Suppose that R? = X2+ Y2 . Find fp. and fp if

1

V2moq
1

V2moy
Exercise 7.2.8: Suppose that R? = X2 + Y2 . Find fg. and fg if

1/2, if-1<z<1
0, otherwise

67(17“1)2/2512

e_(z_/‘l)2/2‘712

fx(z) =

(213" /203

fr(z) =

fe(o) = fr()={ (7.2.8)

Exercise 7.2.9: Assume that the service time for a customer at a bank is exponentially distributed with mean service time 2
minutes. Let X be the total service time for 10 customers. Estimate the probability that X > 22 minutes.
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Exercise 7.2.10: Let X1, X, ..., X, be n independent random variables each of which has an exponential density with mean p.
Let M be the minimum value of the X;. Show that the density for M is exponential with mean p/n. Hint: Use cumulative
distribution functions.

Exercise 7.2.11: A company buys 100 lightbulbs, each of which has an exponential lifetime of 1000 hours. What is the expected
time for the first of these bulbs to burn out? (See Exercise 10.)

Exercise 7.2.12: An insurance company assumes that the time between claims from each of its homeowners' policies is
exponentially distributed with mean p. It would like to estimate p by averaging the times for a number of policies, but this is not
very practical since the time between claims is about 30 years. At Galambos'5 suggestion the company puts its customers in groups
of 50 and observes the time of the first claim within each group. Show that this provides a practical way to estimate the value of p.

Exercise 7.2.13: Particles are subject to collisions that cause them to split into two parts with each part a fraction of the parent.
Suppose that this fraction is uniformly distributed between 0 and 1. Following a single particle through several splittings we obtain
a fraction of the original particle Z,, = X; - X5-...- X;, where each Xj is uniformly distributed between 0 and 1 . Show that the
density for the random variable Z,, is

1
(n—1)

Hint: Show that Y, = —log X}, is exponentially distributed. Use this to find the density function for S, =Y +Y2+---4+Y, ,
and from this the cumulative distribution and density of Z, = e .

fa(2) = (—log z)"71 (7.2.9)

Exercise 7.2.14: Assume that X; and X, are independent random variables, each having an exponential density with parameter
A. Show that Z = X7 — X> has density

f2(2) = (1/2)Ae N (7.2.10)

Exercise 7.2.15: Suppose we want to test a coin for fairness. We flip the coin n times and record the number of times X that the
coin turns up tails and the number of times X; =n — X that the coin turns up heads. Now we set

Z:i(Xin—/"Q/z)Q. (7.2.11)

Then for a fair coin Z has approximately a chi-squared distribution with 2 —1 =1 degree of freedom. Verify this by computer
simulation first for a fair coin (p = 1/2) and then for a biased coin (p =1/3).

% J. Galambos, Introductory Probability Theory (New York: Marcel Dekker, 1984), p. 159.

Exercise 7.2.16: Verify your answers in Exercise 2(a) by computer simulation: Choose X and Y from [—1, 1] with uniform
density and calculate Z = X +Y . Repeat this experiment 500 times, recording the outcomes in a bar graph on [—2, 2] with 40
bars. Does the density fz calculated in Exercise 2(a) describe the shape of your bar graph? Try this for Exercises 2(b) and Exercise
2(c), too.

Exercise 7.2.17: Verify your answers to Exercise 3 by computer simulation.
Exercise 7.2.18: Verify your answer to Exercise 4 by computer simulation.
Exercise 7.2.19: The support of a function f(z) is defined to be the set
{z: f(z) > 0}. (7.2.12)

Suppose that X and Y are two continuous random variables with density functions fx(z) and fy (y), respectively, and suppose
that the supports of these density functions are the intervals [a, b] and [c, d], respectively. Find the support of the density function
of the random variable X +Y .

Exercise 7.2.20: Let X7, X, ..., X, be a sequence of independent random variables, all having a common density function fx
with support [a, b] (see Exercise 19). Let S,, = X3 + X5+ - -+ X,, , with density function fg,. Show that the support of fg, is
the interval [na, nb]. Hint: Write fg, = fs, , * fx . Now use Exercise 19 to establish the desired result by induction.

Exercise 7.2.21: Let X7, X, ..., X, be a sequence of independent random variables, all having a common density function fx.
Let A =5,,/n be their average. Find f if
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(a) fx(z) = (1/+/27)e=="/2 (normal density).
(b) fx(xz) =e ™ (exponential density).

Hint: Write f4 () in terms of fg (z).

This page titled 7.2: Sums of Continuous Random Variables is shared under a GNU Free Documentation License 1.3 license and was authored,
remixed, and/or curated by Charles M. Grinstead & J. Laurie Snell (American Mathematical Society) via source content that was edited to the
style and standards of the LibreTexts platform.
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