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8.2: Law of Large Numbers for Continuous Random Variables
In the previous section we discussed in some detail the Law of Large Numbers for discrete probability distributions. This law has a
natural analogue for continuous probability distributions, which we consider somewhat more briefly here.

Chebyshev Inequality
Just as in the discrete case, we begin our discussion with the Chebyshev Inequality.

Let  be a continuous random variable with density function . Suppose  has a finite expected value  and
finite variance . Then for any positive number  we have

The proof is completely analogous to the proof in the discrete case, and we omit it.

Note that this theorem says nothing if  is infinite.

Let  be any continuous random variable with  and . Then, if  standard deviations for some
integer , then

just as in the discrete case.

Law of Large Numbers

With the Chebyshev Inequality we can now state and prove the Law of Large Numbers for the continuous case.

Let  be an independent trials process with a continuous density function , finite expected value , and finite
variance . Let  be the sum of the . Then for any real number  we have

or equivalently,

Note that this theorem is not necessarily true if  is infinite (see Example 8.8).

As in the discrete case, the Law of Large Numbers says that the average value of  independent trials tends to the expected value as
, in the precise sense that, given , the probability that the average value and the expected value differ by more than 

tends to 0 as .

Once again, we suppress the proof, as it is identical to the proof in the discrete case.

Uniform Case

 Theorem   8.2.1

X f(x) X μ = E(X)
= V (X)σ2 ϵ > 0

P (|X−μ| ≥ ϵ) ≤
σ2

ϵ2
(8.2.1)

= V (X)σ2

 Example 8.2.1

X E(X) = μ V (X) = σ2 ϵ = kσ = k

k

P (|X−μ| ≥ kσ) ≤ =
σ2

k2σ2

1

k2
(8.2.2)

 Theorem  8.2.2
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Suppose we choose at random  numbers from the interval  with uniform distribution. Then if  describes the  th
choice, we have

Hence,

and for any ,

This says that if we choose  numbers at random from , then the chances are better than  that the
difference  is less than . Note that  plays the role of the amount of error we are willing to tolerate: If we choose 

, say, then the chances that  is less than 0.1 are better than . For , this is about .92
, but if , this is better than .99 and if , this is better than .999 .

We can illustrate what the Law of Large Numbers says for this example graphically. The density for  is determined by

We have seen in Section 7.2, that we can compute the density  for the sum of  uniform random variables. In Figure 8.2 we
have used this to plot the density for  for various values of . We have shaded in the area for which  would lie between .45
and .55 . We see that as we increase , we obtain more and more of the total area inside the shaded region. The Law of Large
Numbers tells us that we can obtain as much of the total area as we please inside the shaded region by choosing  large enough
(see also Figure 8.1). 
 

 Example 8.2.2
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(8.2.5)

n [0, 1] 1 −1/ (12n )ϵ2

| /n−1/2|Sn ϵ ϵ

ϵ = 0.1 | /n−1/2|Sn 1 −100/(12n) n = 100
n = 1000 n = 10, 000

= /nAn Sn

(x) = n (nx). fAn
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(8.2.6)
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Figure : Illustration of Law of Large Numbers — uniform case

Normal Case

Suppose we choose  real numbers at random, using a normal distribution with mean 0 and variance 1 . Then

Hence,

and, for any ,

In this case it is possible to compare the Chebyshev estimate for  in the Law of Large Numbers with exact
values, since we know the density function for  exactly (see Example 7.9). The comparison is shown in Table 8.1, for .
The data in this table was produced by the program LawContinuous. We see here that the Chebyshev estimates are in general not
very accurate.

Table : Chebyshev estimates.

n P\left(\left|S_n / n\right| \geq .1\right) Chebyshev

100 .31731 1.00000

200 .15730 .50000

300 .08326 .33333

400 .04550 .25000

8.2.1

 Example 8.2.3
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(8.2.7)

P (| /n−μ| ≥ ϵ)Sn
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n P\left(\left|S_n / n\right| \geq .1\right) Chebyshev

500 .02535 .20000

600 .01431 .16667

700 .00815 .14286

800 .00468 .12500

900 .00270 .11111

1000 .00157 .10000

Monte Carlo Method
Here is a somewhat more interesting example.

Let  be a continuous function defined for  with values in . In Section 2.1, we showed how to estimate the
area of the region under the graph of  by the Monte Carlo method, that is, by choosing a large number of random values
for  and  with uniform distribution and seeing what fraction of the points  fell inside the region under the graph (see
Example 2.2).

Here is a better way to estimate the same area (see Figure 8.3). Let us choose a large number of independent values  at
random from  with uniform density, set , and find the average value of the . Then this average is our
estimate for the area. To see this, note that if the density function for  is uniform,

while the variance is

since for all  in [0,1],  is in , hence  is in , and so . Now let 
. Then by Chebyshev's Inequality, we have

This says that to get within  of the true value for  with probability at least , we should choose  so that 
 (i.e., so that  ). Note that this method tells us how large to take  to get a desired accuracy.

 Example 8.2.4

g(x) x ∈ [0, 1] [0, 1]
g(x)

x y P (x, y)

Xn

[0, 1] = g ( )Yn Xn Yn
Xn

μ = E ( ) = g(x)f(x)dxYn ∫
1

0

= g(x)dx∫
1

0

=  average value of g(x),

= E ( ) = (g(x) −μ dx < 1σ2 ( −μ)Yn
2 ∫

1

0
)2 (8.2.8)

x g(x) [0, 1] μ [0, 1] |g(x) −μ| ≤ 1
= (1/n) ( + +⋯ + )An Y1 Y2 Yn

P (| −μ| ≥ ϵ) ≤ < .An

σ2

nϵ2

1

nϵ2
(8.2.9)

ϵ μ = g(x)dx∫ 1
0

p n

1/n ≤ 1 −pϵ2 n ≥ 1/ (1 −p)ϵ2 n
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Figure +Area problem.

 

The Law of Large Numbers requires that the variance  of the original underlying density be finite: . In cases where this
fails to hold, the Law of Large Numbers may fail, too. An example follows.

Cauchy Case

Suppose we choose  numbers from  with a Cauchy density with parameter . We know that for the Cauchy
density the expected value and variance are undefined (see Example 6.28). In this case, the density function for

is given by (see Example 7.6)

that is, the density function for  is the same for all . In this case, as  increases, the density function does not change at all,
and the Law of Large Numbers does not hold.

Exercises

Example :
Let  be a continuous random variable with mean  and variance . Using Chebyshev's Inequality, find an upper
bound for the following probabilities. (a) .

(b) .

(c) .

(d) .

σ2 < ∞σ2

 Example 8.2.1

n (−∞, +∞) a = 1

=An

Sn

n
(8.2.10)

(x) =fAn

1

π (1 + )x2
(8.2.11)

An n n

8.2.1

X μ = 10 = 100/3σ2

P (|X−10| ≥ 2)

P (|X−10| ≥ 5)

P (|X−10| ≥ 9)

P (|X−10| ≥ 20)
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Example :
Let  be a continuous random variable with values unformly distributed over the interval .

(a) Find the mean and variance of .

(b) Calculate , and  exactly. How do your answers
compare with those of Exercise 1? How good is Chebyshev's Inequality in this case?

Example :
Let  be the random variable of Exercise 2 .

(a) Calculate the function .

(b) Now graph the function , and on the same axes, graph the Chebyshev function . Show that 
 for all , but that  is not a very good approximation for .

Example :
Let  be a continuous random variable with values exponentially distributed over  with parameter .

(a) Find the mean and variance of .

(b) Using Chebyshev's Inequality, find an upper bound for the following probabilities: 
, and .

(c) Calculate these probabilities exactly, and compare with the bounds in (b).

Example :

Let  be a continuous random variable with values normally distributed over  with mean  and variance .

(a) Using Chebyshev's Inequality, find upper bounds for the following probabilities: , and .

(b) The area under the normal curve between -1 and 1 is .6827 , between -2 and 2 is .9545 , and between -3 and 3 it is .9973 (see
the table in Appendix A). Compare your bounds in (a) with these exact values. How good is Chebyshev's Inequality in this case?

Example :
If  is normally distributed, with mean  and variance , find an upper bound for the following probabilities, using Chebyshev's
Inequality.

(a) .

(b) .

(c) . (d) .

Now find the exact value using the program NormalArea or the normal table in Appendix A, and compare.

Example : 

If  is a random variable with mean  and variance , define the relative deviation  of  from its mean by

(a) Show that .

(b) If  is the random variable of Exercise 1, find an upper bound for  , and .

Example :
Let  be a continuous random variable and define the standardized version  of  by:

(a) Show that .

8.2.2

X [0, 20]

X

P (|X−10| ≥ 2),P (|X−10| ≥ 5),P (|X−10| ≥ 9) P (|X−10| ≥ 20)

8.2.3

X

f(x) = P (|X−10| ≥ x)

f(x) g(x) = 100/ (3 )x2

f(x) ≤ g(x) x > 0 g(x) f(x)

8.2.4

X [0, ∞) λ = 0.1

X

P (|X−10| ≥ 2),P (|X−10| ≥ 5),P (|X−10| ≥ 9) P (|X−10| ≥ 20)

8.2.5

X (−∞, +∞) μ = 0 = 1σ2

P (|X| ≥ 1),P (|X| ≥ 2) P (|X| ≥ 3)

8.2.6

X μ σ2

P (|X−μ| ≥ σ)

P (|X−μ| ≥ 2σ)

P (|X−μ| ≥ 3σ) P (|X−μ| ≥ 4σ)

8.2.7

X μ ≠ 0 σ2 D X

D =
∣

∣
∣
X−μ

μ

∣

∣
∣ (8.2.12)

P (D ≥ a) ≤ / ( )σ2 μ2a2

X P (D ≥ .2),P (D ≥ .5),P (D ≥ .9) P (D ≥ 2)

8.2.8

X X∗ X

= .X∗ X−μ

σ
(8.2.13)

P (| | ≥ a) ≤ 1/X∗ a2
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(b) If  is the random variable of Exercise 1, find bounds for , , and .

Example :

(a) Suppose a number  is chosen at random from  with uniform probability. Find a lower bound for the probability that 
lies between 8 and 12, using Chebyshev's Inequality.

(b) Now suppose 20 real numbers are chosen independently from  with uniform probability. Find a lower bound for the
probability that their average lies between 8 and 12 .

(c) Now suppose 100 real numbers are chosen independently from . Find a lower bound for the probability that their average
lies between 8 and 12.

Example :
A student's score on a particular calculus final is a random variable with values of , mean 70 , and variance 25 .

(a) Find a lower bound for the probability that the student's score will fall between 65 and 75 .

(b) If 100 students take the final, find a lower bound for the probability that the class average will fall between 65 and 75 .

Example :
The Pilsdorff beer company runs a fleet of trucks along the 100 mile road from Hangtown to Dry Gulch, and maintains a garage
halfway in between. Each of the trucks is apt to break down at a point  miles from Hangtown, where  is a random variable
uniformly distributed over .

(a) Find a lower bound for the probability . (b) Suppose that in one bad week, 20 trucks break down. Find a
lower bound for the probability , where  is the average of the distances from Hangtown at the time of
breakdown.

Example :
A share of common stock in the Pilsdorff beer company has a price  on the th business day of the year. Finn observes that the
price change   appears to be a random variable with mean  and variance . If , find a lower
bound for the following probabilities, under the assumption that the  's are mutually independent.

(a) .

(b) .

(c) .

Example :
Suppose one hundred numbers  are chosen independently at random from . Let 

 be the sum,  the average, and  the standardized sum. Find
lower bounds for the probabilities

(a) .

(b) .

(c) .

Example :
Let  be a continuous random variable normally distributed on  with mean 0 and variance 1 . Using the normal table
provided in Appendix A, or the program NormalArea, find values for the function  as  increases from 0 to 4.0
in steps of .25. Note that for  the table gives  and thus . Plot by
hand the graph of  using these values, and the graph of the Chebyshev function , and compare (see Exercise 3).

Example :
Repeat Exercise 14, but this time with mean 10 and variance 3. Note that the table in Appendix A presents values for a standard
normal variable. Find the standardized version  for , find values for  as in Exercise 14, and then
rescale these values for . Graph and compare this function with the Chebyshev function .

X P (| | ≥ 2)X∗ P (| | ≥ 5)X∗ P (| | ≥ 9)X∗

8.2.9

X [0, 20] X

[0, 20]

[0, 20]

8.2.10

[0, 100]

8.2.11

X X

[0, 100]

P (|X−50| ≤ 10)
P (| −50| ≤ 10)A20 A20

8.2.12

Yn n

=Xn −Yn+1 Yn μ = 0 = 1/4σ2 = 30Y1

Xn

P (25 ≤ ≤ 35)Y2

P (25 ≤ ≤ 35)Y11

P (25 ≤ ≤ 35)Y101

8.2.13

, , … ,X1 X2 X100 [0, 20]
S = + +⋯ +X1 X2 X100 A = S/100 = (S−1000)/(10/ )S∗ 3

–
√

P (|S−1000| ≤ 100)

P (|A−10| ≤ 1)

P (| | ≤ )S∗ 3
–

√

8.2.14

X (−∞, +∞)
f(x) = P (|X| ≥ x) x

x ≥ 0 NA(0, x) = P (0 ≤ X ≤ x) P (|X| ≥ x) = 2(.5 −NA(0, x)
f(x) g(x) = 1/x2

8.2.15

X∗ X (x) = P (| | ≥ x)f ∗ X∗

f(x) = P (|X−10| ≥ x) g(x) = 3/x2
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Example :
Let  where  and  have normal densities with mean 0 and standard deviation 1 . Then it can be shown that  has a
Cauchy density.

(a) Write a program to illustrate this result by plotting a bar graph of 1000 samples obtained by forming the ratio of two standard
normal outcomes. Compare your bar graph with the graph of the Cauchy density. Depending upon which computer language you
use, you may or may not need to tell the computer how to simulate a normal random variable. A method for doing this was
described in Section 5.2. (b) We have seen that the Law of Large Numbers does not apply to the Cauchy density (see Example 8.8).
Simulate a large number of experiments with Cauchy density and compute the average of your results. Do these averages seem to
be approaching a limit? If so can you explain why this might be?

Example :

Show that, if , then .

Example :
(Lamperti  ) Let  be a non-negative random variable. What is the best upper bound you can give for  if you know

(a) .

(b)  and .

(c) , and  is symmetric about its mean.
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X ≥ 0 P (X ≥ a) ≤ E(X)/a

8.2.18
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E(X) = 20 V (X) = 25
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