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10.3: Generating Functions for Continuous Densities

In the previous section, we introduced the concepts of moments and moment generating functions for discrete random variables.
These concepts have natural analogues for continuous random variables, provided some care is taken in arguments involving

convergence.
Moments
If X is a continuous random variable defined on the probability space 2, with density function fx, then we define the nth moment
of X by the formula
+00
s = B(X™) :/ 2" fx(2) de (10.3.1)
—00

provided the integral

- |z|" fx(z) dz (10.3.2)

o =B(X") = [
is finite. Then, just as in the discrete case, we see that g =1, 1 = p, and pg — p? = o .

Moment Generating Functions
Now we define the g(¢) for X by the formula

00 k 00 k\1k

_ pit _ E(X )t
9(t) = Z K Z k!
k=0 k=0
“+o00o
= E(e%) :/ e fx(z)dz ,
—00
provided this series converges. Then, as before, we have
pn = g'"™(0) . (10.3.3)

Examples

v/ Example 10.3.1

Let X be a continuous random variable with range [0, 1] and density function fx(z) =1 for 0 <z <1 (uniform density).
Then

1
1
[ =/ 2" do = ——, (10.3.4)
0

and

k=0
_ el —1
B t
Here the series converges for all ¢. Alternatively, we have
+o00o
g(t) = / e fx(z)dz
—00

Then (by L’Hopital’s rule)
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et —1
= 0 = 1' —_— 1
Ho 9(0) =lim : )
tet —ef+1 1
= 4 0 :1' —_—
& 0=l =3
t3et — 2t2et + 2tet — 2t 1
= w 0 = 1 = o
He= g'(0)=lim 7 3

In particular, we verify that 4 = ¢g’(0) = 1/2 and

1 1
=== (10.3.5)
as before (see Example 6.1.5]).

v/ Example 10.3.2

Let X have range [ 0, co) and density function fx (z) = Ae™® (exponential density with parameter ). In this case

o0 dn o0
_ N\ p—AL _ _1\ —Az
My = /0 z" e dz = A(-1) d)\"/o e dx
, dar 1 n!
and
B o0 /Jfktk
g(t) = > e
k=0
_ i[i]k _ A
2N T

Here the series converges only for |¢| < A. Alternatively, we have

g(t) = / e xe ™ dx
0
)\e(t—)\)z €2 A
t—A 0 A—t
Now we can verify directly that
An! n!
_ ,(n) _ _ =
tn =g\ (0) = =—. (10.3.6)

()\ _ t)n+1 3 A\

v/ Example 10.3.3

Let X have range (—oo, +00) and density function

fx(z) =

= (10.3.7)

(normal density).

In this case we have
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= L /+°° e "2 dg
b vV 271' —00
_ { (3m)! ifn=2m,

2™m!?

0, ifn=2m+1.

(These moments are calculated by integrating once by parts to show that p,, = (n —1)p,—2 , and observing that gy =1 and
p1 =0.) Hence,

(o n
pnt
t) =
q(t) 2
B o0 t2m _et2/2
o Z 2Mml )

This series converges for all values of ¢. Again we can verify that g(”)(O) = fiy,.

Let X be a normal random variable with parameters p and o. It is easy to show that the moment generating function of X is given
by
ethte?/2)8 (10.3.8)
Now suppose that X and Y are two independent normal random variables with parameters p1, o1, and us, o2, respectively. Then,
the product of the moment generating functions of X and Y is
et(ﬂ1+ﬂz)+((012+‘722)/2)t2 . (1039)
This is the moment generating function for a normal random variable with mean p; + p2 and variance 0’% —|—a§ . Thus, the sum of

two independent normal random variables is again normal. (This was proved for the special case that both summands are standard
normal in Example 7.1.5.)

In general, the series defining g(¢) will not converge for all ¢. But in the important special case where X is bounded (i.e., where the
range of X is contained in a finite interval), we can show that the series does converge for all ¢.

& Theorem 10.3.1

Suppose X is a continuous random variable with range contained in the interval [—M, M]. Then the series

o0

g() :Z"Z—fk (10.3.10)

converges for all ¢ to an infinitely differentiable function g(t), and g™ (0) = p,, .

Proof. We have

+M
,ukZ/ " fx(z)de (10.3.11)
-M
SO
™Mo
ml < |l tx(a)da
-M
+M
< Mk/ fx(z)dz = M*
-M

Hence, for all NV we have
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pit*
k!

>

k=0

<

N k
M|t
( k|'|) <Mt (10.3.12)

k=0

which shows that the power series converges for all £. We know that the sum of a convergent power series is always differentiable.

Moment Problem

& Theorem 10.3.2

If X is a bounded random variable, then the moment generating function gx(t) of = determines the density function fx(z)
uniquely.

Sketch of the Proof. We know that

If we replace ¢ by ¢7, where 7 is real and ¢ = y/—1, then the series converges for all 7, and we can define the function

+o0
kx (1) =gx(it) = / e fx(z)de . (10.3.13)
The function kx (7) is called the of X, and is defined by the above equation even when the series for gx does not converge. This
equation says that kx is the of fx. It is known that the Fourier transform has an inverse, given by the formula

1 +o00 .
fx(x)==— e "kx(r)dr, (10.3.14)
27 J_o
suitably interpreted.® Here we see that the characteristic function ky, and hence the moment generating function gy, determines
the density function fx uniquely under our hypotheses.

Sketch of the Proof of the Central Limit Theorem

With the above result in mind, we can now sketch a proof of the Central Limit Theorem for bounded continuous random variables
(see Theorem 9.4.7). To this end, let X be a continuous random variable with density function fx, mean =0 and variance
o? =1, and moment generating function g(¢) defined by its series for all ¢. Let X, X3, ..., X,, be an independent trials process
with each X; having density fx, and let S, = X; + X5 +--- +X,, , and S = (S, —np)/vno® = Sn/+/m . Then each X; has
moment generating function g(¢), and since the X; are independent, the sum .S,,, just as in the discrete case (see Section 10.1), has
moment generating function

gn(t) = (g(t))", (10.3.15)

and the standardized sum S} has moment generating function

gn(t) = (g<#))n (10.3.16)

2 2
We now show that, as n — oo, gi(t) — et /2, where et /?

n(z) = (1/+/2x)e *"/? (see Example 10.3.3]).

is the moment generating function of the normal density

To show this, we set u(t) =log g(t), and
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and show that u}, (t) — t2/2 as n — oo . First we note that

u(0) = logg,(0) =0,
W (0) = % = % ~0,
«'(0) = g”(0)9820—))(29’(0))2

_ 2 Iu? I

Now by using L’Hépital’s rule twice, we get

"y
lim u}(t) = lim —u( /\1/5)
n—00 500 s~

o' (t//3)t
= Im =
= limu"(i_>ﬁ20'2ﬁ:ﬁ.

5—00 \/ S 2 2 2
Hence, g;;(t) — e’/2 as n — 0o. Now to complete the proof of the Central Limit Theorem, we must show that if gj;(¢) — et’/?,
then under our hypotheses the distribution functions F; () of the S} must converge to the distribution function Fy (z) of the

normal variable IN; that is, that
Fi(a) = P(S <a) > —— / /2 dg | (10.3.17)
V21 )
and furthermore, that the density functions £ (z) of the S must converge to the density function for N; that is, that

1 _p2 2
fi(z) — e, (10.3.18)
Vom

asn — oo.

Since the densities, and hence the distributions, of the S} are uniquely determined by their moment generating functions under our
hypotheses, these conclusions are certainly plausible, but their proofs involve a detailed examination of characteristic functions and
Fourier transforms, and we shall not attempt them here.

In the same way, we can prove the Central Limit Theorem for bounded discrete random variables with integer values (see Theorem
9.3.6). Let X be a discrete random variable with density function p(j), mean p = 0, variance o? = 1, and moment generating
function g(t), and let X5, X, ..., X,, form an independent trials process with common density p. Let S, = X1+ Xo+--- + X,

and S = S, /+/n, with densities p,, and p},, and moment generating functions g, (¢) and g;;(¢) = (g( Lﬁ)) " Then we have

%
2
gi(t) e/, (10.3.19)
just as in the continuous case, and this implies in the same way that the distribution functions F(z) converge to the normal
distribution; that is, that

Fi(a)=P(Si<a) > — [ e *dz, (10.3.20)

asn—oo.

The corresponding statement about the distribution functions pj,, however, requires a little extra care (see Theorem 9.3.5). The
trouble arises because the distribution p(z) is not defined for all z, but only for integer . It follows that the distribution pj, () is
defined only for x of the form j/,/n, and these values change as n changes.

We can fix this, however, by introducing the function p(z), defined by the formula

5@ = {p(j), ifj-1/2<a <j+1/2,

. (10.3.21)
0, otherwise.
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Then p(z) is defined for all z, p(j) = p(j) , and the graph of p(z) is the step function for the distribution p(j) (see Figure 3 of
Section 9.1).

In the same way we introduce the step function p,,(z) and p? () associated with the distributions p, and p},, and their moment

generating functions g,,(t) and g* (¢). If we can show that g% (t) — e'*/2, then we can conclude that
1 »
pr(z) > ——e'/?, (10.3.22)
V2T
as n — oo, for all z, a conclusion strongly suggested by Figure 9.1.2.
Now g(t) is given by
+00
a(t) - | b
+N  pjtl/2
S O A UL
j=—nNi-
= i p(j)e" e et
= 2t/2
_ oft) sinh(¢/2)
t/2
where we have put
el/2 _ e—t/2
sinh(t/2) = —— (10.3.23)
In the same way, we find that
_ sinh(t/2)
t) = ’
9x(t) gn(t)— 7
sinh(t/2+/n
= T2V,
t/24/n
Now, as n — 0o, we know that g;; (¢) — et’/2 | and, by L’Hépital’s rule,
inh(t/2
lim % ~1. (10.3.24)
n—00 n
It follows that
gr(t) —el'/?, (10.3.25)
and hence that
1
pi(z) > e /2 (10.3.26)

asn — oo.

The astute reader will note that in this sketch of the proof of Theorem [thm 9.3.5], we never made use of the hypothesis that the
greatest common divisor of the differences of all the values that the X; can take on is 1. This is a technical point that we choose to
ignore. A complete proof may be found in Gnedenko and Kolmogorov.1°

Cauchy Density

The characteristic function of a continuous density is a useful tool even in cases when the moment series does not converge, or
even in cases when the moments themselves are not finite. As an example, consider the Cauchy density with parameter a =1 (see
Example 5.20)
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1
. 10.3.27
@)=~ (10.3.27)
If X and Y are independent random variables with Cauchy density f(z), then the average Z = (X +7Y)/2 also has Cauchy
density f(z), that is,

fz(z)=f(z). (10.3.28)
This is hard to check directly, but easy to check by using characteristic functions. Note first that
+00 22
pe =E(X?) = /m i) dr = 0o (10.3.29)

so that ps is infinite. Nevertheless, we can define the characteristic function kx (7) of = by the formula

+oo 1
k = Tt dx. 10.3.30
() /_Oo oy (10.3.30)

This integral is easy to do by contour methods, and gives us

kx (1) =ky(r)=e ™. (10.3.31)
Hence,
kxiy(r)=(e M2 =2, (10.3.32)
and since
kz(T) =kxiv(7/2), (10.3.33)
we have
kz(r)=e 272l = eI (10.3.34)
This shows that k7 = kx = ky , and leads to the conclusions that f7 = fx = fy .
It follows from this that if X7, X5, ..., X}, is an independent trials process with common Cauchy density, and if
A, = ZtXate X (10.3.35)

n

is the average of the X;, then A, has the same density as do the X;. This means that the Law of Large Numbers fails for this
process; the distribution of the average A,, is exactly the same as for the individual terms. Our proof of the Law of Large Numbers
fails in this case because the variance of X; is not finite.

Exercises

Exercise 10.3.1

Let X be a continuous random variable with values in [ 0, 2] and density fx. Find the moment generating function g(t) for X if

a fx(z)=1/2.

b. fx(z) = (1/2)z.

¢ fx(z)=1—(1/2)z.
d fr(z)=|1-a].

e fx(z) = (3/8)z".

: Use the integral definition, as in Examples [exam 10.3.1] and [exam 10.3.2].

Exercise 10.3.2

For each of the densities in Exercise [exer 10.3.1] calculate the first and second moments, p; and us, directly from their definition
and verify that g(0) =1, ¢'(0) = u1, and g’ (0) = pa .
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Exercise 10.3.3

Let X be a continuous random variable with values in [0, c0) and density fx. Find the moment generating functions for X if

b. fx(z)=e 2z%(1/2)<a-z
c fx(z) =4ze™2®
d fx(z) =XAz)" e ™ /(n—1)..

Exercise 10.3.4

For each of the densities in Exercise [exer 10.3.3], calculate the first and second moments, p1 and p2, directly from their definition
and verify that g(0) =1, ¢'(0) = u1, and ¢’ (0) = psa..

Exercise 10.3.5

Find the characteristic function kx () for each of the random variables X of Exercise [exer 10.3.1].

Exercise 10.3.6

Let X be a continuous random variable whose characteristic function kx (7) is

kx(t)=e I, —00 < T < +00. (10.3.36)
Show directly that the density fx of X is
1
fx(z) = Tt (10.3.37)

Exercise 10.3.7

Let X be a continuous random variable with values in [ 0, 1], uniform density function fx(z) =1 and moment generating function
g(t) = (¢! —1)/t . Find in terms of g(t) the moment generating function for

a. —X.
b.14+X.
c 3X.
daX+b.

Exercise 10.3.8

Let X3, Xo, ..., X, be an independent trials process with uniform density. Find the moment generating function for
d. X1 .
b. Sy =X1+ X, .
¢S =X1+Xo+---+X, .
d A, =S,/n.

e. Si = (S, —nu)/vno? .
Exercise 10.3.9

Let X7, Xo, ..., X, be an independent trials process with normal density of mean 1 and variance 2. Find the moment generating
function for

d. X1 .

b.S=X1+X5.

¢S =X1+Xo+---+X, .

d A,=S,/n.

e. ¢ = (S, —np)/vno?.
Exercise 10.3.10

Let X3, Xo, ..., X, be an independent trials process with density

1
fl@)=ge,  —co<z<+oo. (10.3.38)
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a. Find the mean and variance of f(z).

b. Find the moment generating function for X1, S, 4,, and S;.

c. What can you say about the moment generating function of Sy as n — 0o ?
d. What can you say about the moment generating function of A4,, asn — 0o ?

This page titled 10.3: Generating Functions for Continuous Densities is shared under a GNU Free Documentation License 1.3 license and was
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to the style and standards of the LibreTexts platform.
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