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6.3: Continuous Random Variables
In this section we consider the properties of the expected value and the variance of a continuous random variable. These quantities
are defined just as for discrete random variables and share the same properties.

Expected Value

Let  be a real-valued random variable with density function . The expected value  is defined by 

 
provided the integral 

 
is finite.

 
The reader should compare this definition with the corresponding one for discrete random variables in Section 6.1. Intuitively, we
can interpret , as we did in the previous sections, as the value that we should expect to obtain if we perform a large number of
independent experiments and average the resulting values of .

We can summarize the properties of  as follows (cf. Theorem 6.2).

If  and  are real-valued random variables and  is any constant, then 

  
The proof is very similar to the proof of Theorem 6.2 , and we omit it.

More generally, if  are  real-valued random variables, and ,  are  constants, then

Let  be uniformly distributed on the interval . Then 

 
It follows that if we choose a large number  of random numbers from  and take the average, then we can expect that this
average should be close to the expected value of .

 

 Definition: Term

X f(x) μ = E(X)

μ = E(X) = xf(x)dx,∫
+∞

−∞
(6.3.1)

|x|f(x)dx∫
+∞

−∞
(6.3.2)

E(X)
X

E(X)

 Theorem 6.3.1

X Y c

E(X+Y )

E(cX)

= E(X) +E(Y )

= cE(X).

, , … ,X1 X2 Xn n ,c1 c2 … , cn n

E ( + +⋯ + ) = E ( ) + E ( ) +⋯ + E ( ) .c1X1 c2X2 cnXn c1 X1 c2 X2 cn Xn (6.3.3)

 Example 6.3.1

X [0, 1]

E(X) = xdx = 1/2∫
1

0
(6.3.4)

N [0, 1]
1/2
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Let  denote a point chosen uniformly and randomly from the unit disk, as in the dart game in Example 2.8 and let 

 be the distance from  to the center of the disk. The density function of  can easily be shown to equal 
, so by the definition of expected value, 

 

In the example of the couple meeting at the Inn (Example 2.16), each person arrives at a time which is uniformly distributed
between 5:00 and 6:00 PM. The random variable  under consideration is the length of time the first person has to wait until
the second one arrives. It was shown that 

 
for . Hence, 

 
Expectation of a Function of a Random Variable

Suppose that  is a real-valued random variable and  is a continuous function from  to . The following theorem is the
continuous analogue of Theorem 6.1.

If  is a real-valued random variable and if  is a continuous real-valued function with domain , then 

 
provided the integral exists.

 
For a proof of this theorem, see Ross. 

Expectation of the Product of Two Random Variables

In general, it is not true that , since the integral of a product is not the product of integrals. But if  and 
are independent, then the expectations multiply.

 Example 6.3.2

Z = (x, y)

X = ( + )x2 y2 1/2
Z X

f(x) = 2x

E(X) = xf(x)dx∫
1

0

= x(2x)dx∫
1

0

= .
2

3

 Example 6.3.3

Z

(z) = 2(1 −z)fZ (6.3.5)

0 ≤ z ≤ 1

E(Z) = z (z)dz∫
1

0
fZ (6.3.6)

= 2z(1 −z)dz∫
1

0

= [ − ]z2 2
3
z3 1

0

= .1
3

(6.3.7)

X ϕ(x) R R

 Theorem 6.3.2

X ϕ : R → R [a, b]

E(ϕ(X)) = ϕ(x) (x)dx∫
+∞

−∞
fX (6.3.8)

1

E(XY ) = E(X)E(Y ) X Y
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Let  and  be independent real-valued continuous random variables with finite expected values. Then we have 

 
Proof. We will prove this only in the case that the ranges of  and  are contained in the intervals  and , respectively.
Let the density functions of  and  be denoted by  and , respectively. Since  and  are independent, the joint
density function of  and  is the product of the individual density functions. Hence 

 
The proof in the general case involves using sequences of bounded random variables that approach  and , and is somewhat
technical, so we will omit it.

In the same way, one can show that if  are  mutually independent real-valued random variables, then 

Let  be a point chosen at random in the unit square. Let  and . Then Theorem 4.3 implies that 
and  are independent. Using Theorem   , the expectations of  and  are easy to calculate: 

 
Using Theorem  , the expectation of  is just the product of  and , or . The usefulness of this
theorem is demonstrated by noting that it is quite a bit more difficult to calculate  from the definition of expectation.
One finds that the density function of  is 

 
so 

 

Again let  be a point chosen at random in the unit square, and let . Then  and  are not
independent, and we have 

 Theorem 6.3.3

X Y

E(XY ) = E(X)E(Y ). (6.3.9)

X Y [a, b] [c, d]
X Y (x)fX (y)fY X Y

X Y

E(XY ) = xy (x) (y)dydx∫
b

a

∫
d

c

fX fY

= x (x)dx y (y)dy∫
b

a

fX ∫
d

c

fY

= E(X)E(Y ).

X Y

, , … ,X1 X2 Xn n

E ( ⋯ ) = E ( )E ( ) ⋯E ( ) .X1X2 Xn X1 X2 Xn (6.3.10)

 Example 6.3.4

Z = (X,Y ) A = X2 B = Y 2 A

B 6.3.2 A B

E(A) = E(B) = dx∫
1

0
x2

= .
1

3

6.3.3 AB E(A) E(B) 1/9
E(AB)

AB

(t) = ,fAB
−log(t)

4 t√
(6.3.11)

E(AB) = t (t)dt∫
1

0
fAB

= .
1

9

 Example 6.3.4

Z = (X,Y ) W = X+Y Y W
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We turn now to the variance.

Variance

Let  be a real-valued random variable with density function . The variance  is defined by 

 

The next result follows easily from Theorem 6.1.1. There is another way to calculate the variance of a continuous random variable,
which is usually slightly easier. It is given in Theorem  .

If  is a real-valued random variable with , then 

 
The properties listed in the next three theorems are all proved in exactly the same way that the corresponding theorems for
discrete random variables were proved in Section 6.2.

 

If  is a real-valued random variable defined on  and  is any constant, then (cf. Theorem 6.2.7) 

 

If  is a real-valued random variable with , then (cf. Theorem 6.2.6) 

 

If  and  are independent real-valued random variables on , then (cf. Theorem 6.2.8) 

 

E(Y )

E(W )

E(YW )

= ,
1

2
= 1,

= E (XY + ) = E(X)E(Y ) + = ≠ E(Y )E(W ).Y 2 1

3

7

12

 Definition: Variance 

X f(x) = V (X)σ2

= V (X) = E ((X−μ ) .σ2 )2 (6.3.12)

6.3.6

 Theorem 6.3.4

X E(X) = μ

= (x−μ f(x)dx.σ2 ∫
∞

−∞
)2 (6.3.13)

 Theorem 6.3.5

X Ω c

V (cX)

V (X+c)

= V (X),c2

= V (X).

 Theorem 6.3.6

X E(X) = μ

V (X) = E ( )− .X2 μ2 (6.3.14)

 Theorem 6.3.7

X Y Ω

V (X+Y ) = V (X) +V (Y ). (6.3.15)
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If  is uniformly distributed on , then, using Theorem  , we have 

 

Let  be an exponentially distributed random variable with parameter . Then the density function of  is 

 
From the definition of expectation and integration by parts, we have

 
Similarly, using Theorems  and  , we have 

 
In this case, both  and  are finite if .

Let  be a standard normal random variable with density function 

 
Since this density function is symmetric with respect to the -axis, then it is easy to show that 

 
has value 0 . The reader should recall however, that the expectation is defined to be the above integral only if the integral 

 Example 6.3.5

X [0, 1] 6.3.6

V (X) = dx = .∫
1

0
(x− )

1

2

2
1

12
(6.3.16)

 Example 6.3.6

X λ X

(x) = λ .fX e−λx (6.3.17)

E(X) = x (x)dx∫
∞

0
fX

= λ x dx∫
∞

0
e−λx

= − + dxxe−λx ∣∣
∞

0
∫

∞

0
e−λx

= 0 + = .
e−λx

−λ

∣

∣
∣
∞

0

1

λ

6.3.1 6.3.6

V (X) = (x)dx−∫
∞

0
x2fX

1

λ2

= λ dx−∫
∞

0
x2e−λx 1

λ2

= − +2 x dx−x2e−λx ∣∣
∞

0
∫

∞

0
e−λx 1

λ2

= − − − − = − = .x2e−λx ∣∣
∞

0

2xe−λx

λ

∣

∣
∣
∞

0

2

λ2
e−λx ∣

∣
∣
∞

0

1

λ2

2

λ2

1

λ2

1

λ2

E(X) V (X) λ > 0

 Example 6.3.7

Z

(x) = .fZ
1

2π
−−

√
e− /2x2

(6.3.18)

y

x (x)dx∫
∞

−∞
fZ (6.3.19)
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is finite. This integral equals 

which one can easily show is finite. Thus, the expected value of  is 0 .

 
To calculate the variance of , we begin by applying Theorem : 

 
If we write  as , and integrate by parts, we obtain 

 
The first summand above can be shown to equal 0 , since as  gets small more quickly than  gets large. The
second summand is just the standard normal density integrated over its domain, so the value of this summand is 1 . Therefore, the
variance of the standard normal density equals 1 .

Now let  be a (not necessarily standard) normal random variable with parameters  and . Then the density function of  is 

 
We can write , where  is a standard normal random variable. Since  and  by the calculation
above, Theorems 6.10 and 6.14 imply that 

Let  be a continuous random variable with the Cauchy density function 

 
Then the expectation of  does not exist, because the integral 

 
diverges. Thus the variance of  also fails to exist. Densities whose variance is not defined, like the Cauchy density, behave
quite differently in a number of important respects from those whose variance is finite. We shall see one instance of this
difference in Section 8.2.

|x| (x)dx∫
∞

−∞
fZ (6.3.20)

2 x (x)dx∫
∞

0
fZ (6.3.21)

Z

Z 6.3.6

V (Z) = (x)dx−∫
+∞

−∞
x2fZ μ2 (6.3.22)

x2 x ⋅ x

+ dx.(−x )
1

2π
−−

√
e− /2x2 ∣

∣
∣
+∞

−∞

1

2π
−−

√
∫

+∞

−∞
e− /2x2

(6.3.23)

x → ±∞, e− /2x2

x

X μ σ X

(x) = .fX
1

σ2π
−−

√
e−(x−μ /2)2 σ2

(6.3.24)

X = σZ+μ Z E(Z) = 0 V (Z) = 1

E(X)

V (X)

= E(σZ+μ) = μ,

= V (σZ+μ) = .σ2

 Example 6.3.8

X

(x) = .fX
a

π

1

+a2 x2
(6.3.25)

X

a

π
∫

+∞

−∞

|x|dx

+a2 x2
(6.3.26)

X
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Independent Trials

If  is an independent trials process of real-valued random variables, with  and , and
if 

 
then 

 
It follows that if we set 

 
then 

 
We say that  is a standardized version of  (see Exercise 12 in Section 6.2).

 

 
Queues

Let us consider again the queueing problem, that is, the problem of the customers waiting in a queue for service (see Example
5.7). We suppose again that customers join the queue in such a way that the time between arrivals is an exponentially
distributed random variable  with density function 

 
Then the expected value of the time between arrivals is simply  (see Example 6.26), as was stated in Example 5.7. The
reciprocal  of this expected value is often referred to as the arrival rate. The service time of an individual who is first in line is
defined to be the amount of time that the person stays at the head of the line before leaving. We suppose that the customers are
served in such a way that the service time is another exponentially distributed random variable  with density function 

 
Then the expected value of the service time is 

 Corollary 6.3.1

, , … ,X1 X2 Xn E ( ) = μXi V ( ) =Xi σ2

= + +⋯ + ,Sn X1 X2 Xn

= ,An
Sn

n

(6.3.27)

E ( )Sn

E ( )An

V ( )Sn

V ( )An

= nμ,

= μ,

= n ,σ2

= .
σ2

n

= ,S∗
n

−nμSn

nσ2− −−
√

(6.3.28)

E ( ) = 0,S∗
n

V ( ) = 1.S∗
n

(6.3.29)

S∗
n Sn

 Example 6.3.1

X

(t) = λ .fX e−λt (6.3.30)

1/λ
λ

Y

(t) = μ .fX e−μt (6.3.31)
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The reciprocal  if this expected value is often referred to as the service rate

 

We expect on grounds of our everyday experience with queues that if the service rate is greater than the arrival rate, then the
average queue size will tend to stabilize, but if the service rate is less than the arrival rate, then the queue will tend to increase in
length without limit (see Figure 5.7). The simulations in Example 5.7 tend to bear out our everyday experience. We can make this
conclusion more precise if we introduce the traffic intensity as the product 

 
The traffic intensity is also the ratio of the average service time to the average time between arrivals. If the traffic intensity is less
than 1 the queue will perform reasonably, but if it is greater than 1 the queue will grow indefinitely large. In the critical case of 

, it can be shown that the queue will become large but there will always be times at which the queue is empty. 

In the case that the traffic intensity is less than 1 we can consider the length of the queue as a random variable  whose expected
value is finite, 

 
The time spent in the queue by a single customer can be considered as a random variable  whose expected value is finite, 

 
Then we can argue that, when a customer joins the queue, he expects to find  people ahead of him, and when he leaves the queue,
he expects to find  people behind him. Since, in equilibrium, these should be the same, we would expect to find that 

 
This last relationship is called Little's law for queues.  We will not prove it here. A proof may be found in Ross.  Note that in
this case we are counting the waiting time of all customers, even those that do not have to wait at all. In our simulation in Section
4.2, we did not consider these customers.

If we knew the expected queue length then we could use Little's law to obtain the expected waiting time, since 

 
The queue length is a random variable with a discrete distribution. We can estimate this distribution by simulation, keeping track of
the queue lengths at the times at which a customer arrives. We show the result of this simulation (using the program Queue) in
Figure .

E(X) = t (t)dt = .∫
∞

0
fX

1

μ
(6.3.32)

μ

ρ = ( arrival rate )( average service time ) = = .
λ

μ

1/μ

1/λ
(6.3.33)

ρ = 1 22

Z

E(Z) = N . (6.3.34)

W

E(W ) = T . (6.3.35)

N

λT

N = λT . (6.3.36)

23 24

T = .
N

λ
(6.3.37)

6.3.1
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Figure : Distribution of queue lengths.

 
We note that the distribution appears to be a geometric distribution. In the study of queueing theory it is shown that the distribution
for the queue length in equilibrium is indeed a geometric distribution with 

 
if . The expected value of a random variable with this distribution is 

 
(see Example 6.4). Thus by Little's result the expected waiting time is 

 
where  is the service rate,  the arrival rate, and  the traffic intensity. 
In our simulation, the arrival rate is 1 and the service rate is 1.1. Thus, the traffic intensity is , the expected queue
size is 

 
and the expected waiting time is 

 
In our simulation the average queue size was 8.19 and the average waiting time was 7.37. In Figure , we show the histogram
for the waiting times. This histogram suggests that the density for the waiting times is exponential with parameter , and this
is the case.

6.3.1

= (1 −ρ)  for j= 0, 1, 2, … ,sj ρj (6.3.38)

ρ < 1

N =
ρ

(1 −ρ)
(6.3.39)

T = = ,
ρ

λ(1 −ρ)

1

μ−λ
(6.3.40)

μ λ ρ

1/1.1 = 10/11

= 10
10/11

(1 −10/11)
(6.3.41)

= 10
1

1.1 −1
(6.3.42)

6.3.2
μ−λ
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Figure : Distribution of queue waiting times.

 

 Ross, A First Course in Probability, (New York: Macmillan, 1984), pgs. 241-245 
 L. Kleinrock, Queueing Systems, vol. 2 (New York: John Wiley and Sons, 1975). 
 ibid., p. 17. 
 S. M. Ross, Applied Probability Models with Optimization Applications, (San Francisco:Holden-Day, 1970)

Exercises

Let  be a random variable with range  and let  be the density function of . Find  and  if, for , 
(a) . 
(b) . 
(c) . 
(d) .

Let  be a random variable with range  and  its density function. Find  and  if, for , and
for , 
(a) . 
(b) . 
(c) . 
(d) .

The lifetime, measure in hours, of the ACME super light bulb is a random variable  with density function ,
where . What is the expected lifetime of this light bulb? What is its variance?

Let  be a random variable with range  and density function   if . 
(a) Show that if , then . 
(b) Show that if , then . 
(c) Show that , and hence that .

(d) Show that .

6.3.1

1

2

3

4

6.3.1

X [−1, 1] (x)fX X μ(X) (X)σ2 |x| < 1
(x) = 1/2fX
(x) = |x|fX
(x) = 1 −|x|fX
(x) = (3/2)fX x2

6.3.2

X [−1, 1] fX μ(X) (X)σ2 |x| > 1, (x) = 0fX
|x| < 1

(x) = (3/4)(1 − )fX x2

(x) = (π/4) cos(πx/2)fX
(x) = (x+1)/2fX
(x) = (3/8)(x+1fX )2

6.3.3

T (t) = tfT λ2 e−λt

λ = .05

6.3.4

X [−1, 1] (x) =fX ax+b |x| < 1

(x)dx = 1∫ +1
−1 fX b = 1/2

(x) ≥ 0fX −1/2 ≤ a ≤ 1/2
μ = (2/3)a −1/3 ≤ μ ≤ 1/3

(X) = (2/3)b−(4/9) = 1/3 −(4/9)σ2 a2 a2
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Let  be a random variable with range  and density function   if  and 0 otherwise. 
(a) Show that  (see Exercise 4). 
(b) Show that . 
(c) Show that . 
(d) Find , and  if , and sketch the graph of . 
(e) Find , and  if , and sketch the graph of .

Let  be a random variable with range  and  its density function. Find  and  if, for , and for 
, 

(a) . 
(b) . 
(c) .

Let  be a random variable with density function . Show, using elementary calculus, that the function 

 
takes its minimum value when , and in that case .

Let  be a random variable with mean  and variance . Let  . Find the expected value of .

Let , and  be independent random variables, each with mean  and variance . 
(a) Find the expected value and variance of . 
(b) Find the expected value and variance of . 
(c) Find the expected value of  and .

Let  and  be independent random variables with uniform density functions on . Find 
(a) . 
(b) . 
(c) . 
(d) . 
(e) .

The Pilsdorff Beer Company runs a fleet of trucks along the 100 mile road from Hangtown to Dry Gulch. The trucks are old, and
are apt to break down at any point along the road with equal probability. Where should the company locate a garage so as to
minimize the expected distance from a typical breakdown to the garage? In other words, if  is a random variable giving the
location of the breakdown, measured, say, from Hangtown, and  gives the location of the garage, what choice of  minimizes 

 ? Now suppose  is not distributed uniformly over , but instead has density function .
Then what choice of  minimizes  ?

Find , where  and  are independent random variables which are uniform on . Then verify your answer by
simulation.

6.3.5

X [−1, 1] (x) =fX a +bx+cx2 |x| < 1
2a/3 +2c = 1
2b/3 = μ(X)
2a/5 +2c/3 = (X)σ2

a, b c μ(X) = 0, (X) = 1/15σ2 fX
a, b c μ(X) = 0, (X) = 1/2σ2 fX

6.3.6

T [0, ∞] fT μ(T ) (T )σ2 t < 0, (t) = 0fT
t > 0

(t) = 3fT e−3t

(t) = 9tfT e−3t

(t) = 3/(1 + tfT )4

6.3.7

X fX

ϕ(a) = E ((X−a ))2 (6.3.43)

a = μ(X) ϕ(a) = (X)σ2

6.3.8

X μ σ2 Y = a +X2 bX+c Y

6.3.9

X,Y Z μ σ2

S = X+Y +Z

A = (1/3)(X+Y +Z)
S2 A2

6.3.10

X Y [0, 1]
E(|X−Y |)
E(max(X,Y ))
E(min(X,Y ))
E ( + )X2 Y 2

E ((X+Y ))2

6.3.11

X

b b

E(|X−b|) X [0, 100] (x) = 2x/10, 000fX
b E(|X−b|)

6.3.12

E ( )XY X Y [0, 1]

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://stats.libretexts.org/@go/page/3146?pdf


GNU Free Documentation License 6.3.12 https://stats.libretexts.org/@go/page/3146

Let  be a random variable that takes on nonnegative values and has distribution function . Show that 

 
Hint: Integrate by parts. 
Illustrate this result by calculating  by this method if  has an exponential distribution  for , and 

 otherwise.

Let  be a continuous random variable with density function . Show that if 

 
then 

 
Hint: Except on the interval , the first integrand is greater than the second integrand.

Let  be a random variable distributed uniformly over . Define a new random variable  by  (the greatest integer
in  ). Find the expected value of . Do the same for . Compute  and . (Note that  is the
value of  rounded off to the nearest smallest integer, while  is the value of  rounded off to the nearest integer. Which method
of rounding off is better? Why?)

Assume that the lifetime of a diesel engine part is a random variable  with density . When the part wears out, it is replaced by
another with the same density. Let  be the number of parts that are used in time . We want to study the random variable 

. Since parts are replaced on the average every  time units, we expect about  parts to be used in time . That
is, we expect that 

This result is correct but quite difficult to prove. Write a program that will allow you to specify the density , and the time , and
simulate this experiment to find . Have your program repeat the experiment 500 times and plot a bar graph for the random
outcomes of . From this data, estimate  and compare this with . In particular, do this for  with
the following two densities: 
(a) . 
(b) .

Let  and  be random variables. The covariance  is defined by (see Exercise 6.2.23) 

 
(a) Show that . 
(b) Using (a), show that , if  and  are independent. (Caution: the converse is not always true.) 
(c) Show that .

6.3.13

X F (x)

E(X) = (1 −F (x))dx.∫
∞

0
(6.3.44)

E(X) X F (x) = 1 −e−λx x ≥ 0
F (x) = 0

6.3.14

X (x)fX

(x)dx < ∞∫
+∞

−∞
x2fX (6.3.45)

|x| (x)dx < ∞.∫
+∞

−∞
fX (6.3.46)

[−1, 1]

6.3.15

X [0, 20] Y Y = ⌊X⌋

X Y Z = ⌊X+.5⌋ E(|X−Y |) E(|X−Z|) Y

X Z X

6.3.16

X fX
N(t) t

N(t)/t E(X) t/E(X) t

E( ) = .lim
t→∞

N(t)

t

1

E(X)
(6.3.47)

fX t

N(t)/t
N(t)/t E(N(t)/t) 1/E(X) t = 100

=fX e−t

= tfX e−t

6.3.17

X Y Cov(X, Y)

cov(X, Y) = E((X −μ(X))(Y −μ(Y))). (6.3.48)

cov(X, Y) = E(XY) −E(X)E(Y)
cov(X,Y ) = 0 X Y

V (X+Y ) = V (X) +V (Y ) +2 cov(X,Y )
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Let  and  be random variables with positive variance. The correlation of  and  is defined as

 
(a) Using Exercise 17(c), show that 

 
(b) Now show that 

 
(c) Using (a) and (b), show that 

Let  and  be independent random variables with uniform densities in . Let  and . Find 
(a)  (see Exercise 18). 
(b) . 
(c) . 
(d) .

When studying certain physiological data, such as heights of fathers and sons, it is often natural to assume that these data (e.g., the
heights of the fathers and the heights of the sons) are described by random variables with normal densities. These random variables,
however, are not independent but rather are correlated. For example, a two-dimensional standard normal density for correlated
random variables has the form 

 
(a) Show that  and  each have standard normal densities. 
(b) Show that the correlation of  and  (see Exercise 18) is .

For correlated random variables  and  it is natural to ask for the expected value for  given . For example, Galton calculated
the expected value of the height of a son given the height of the father. He used this to show that tall men can be expected to have
sons who are less tall on the average. Similarly, students who do very well on one exam can be expected to do less well on the next
exam, and so forth. This is called regression on the mean. To define this conditional expected value, we first define a conditional
density of  given  by 

 
where  is the joint density of  and , and  is the density for . Then the conditional expected value of  given  is 

6.3.18

X Y X Y

ρ(X,Y ) = .
cov(X,Y )

V (X)V (Y )
− −−−−−−−−

√
(6.3.49)

0 ≤ V ( + ) = 2(1 +ρ(X,Y )).
X

σ(X)

Y

σ(Y )
(6.3.50)

0 ≤ V ( − ) = 2(1 −ρ(X,Y )).
X

σ(X)

Y

σ(Y )
(6.3.51)

−1 ≤ ρ(X,Y ) ≤ 1. (6.3.52)

6.3.19

X Y [0, 1] Z = X+Y W = X−Y

ρ(X,Y )
ρ(X,Z)
ρ(Y ,W )
ρ(Z,W )

6.3.20

(x, y) = ⋅ .fX,Y
1

2π 1 −ρ2
− −−−−

√
e−( −2ρxy+ )/2(1− )x2 y2 ρ2

(6.3.53)

X Y

X Y ρ

6.3.21

X Y X Y

X Y = y

(x ∣ y) = ,fX∣Y

(x, y)fX,Y

(y)fY
(6.3.54)

(x, y)fX,Y X Y fY Y X Y

E(X ∣ Y = y) = x (x ∣ y)dx.∫
b

a

fX∣Y (6.3.55)
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For the normal density in Exercise 20, show that the conditional density of  is normal with mean  and variance 

. From this we see that if  and  are positively correlated , and if , then the expected value for 
given  will be less than  (i.e., we have regression on the mean).

A point  is chosen at random from . A second point  is then chosen from the interval . Find the density for . Hint:
Calculate  as in Exercise 21 and then use 

 
Can you also derive your result geometrically?

Let  and  be two standard normal random variables. Let  be a real number between -1 and 1 . 
(a) Let . Show that  and . We shall see later (see Example 7.5 and Example 10.17),
that the sum of two independent normal random variables is again normal. Thus, assuming this fact, we have shown that  is
standard normal.

(b) Using Exercises 17 and 18, show that the correlation of  and  is . 
(c) In Exercise 20, the joint density function  for the random variable  is given. Now suppose that we want to
know the set of points  in the -plane such that  for some constant . This set of points is called a set of
constant density. Roughly speaking, a set of constant density is a set of points where the outcomes  are equally likely to fall.
Show that for a given , the set of points of constant density is a curve whose equation is 

 
where  is a constant which depends upon . (This curve is an ellipse.) 
(d) One can plot the ellipse in part (c) by using the parametric equations 

 
Write a program to plot 1000 pairs  for . For each plot, have your program plot the above parametric
curves for .

 Following Galton, let us assume that the fathers and sons have heights that are dependent normal random variables. Assume that
the average height is 68 inches, standard deviation is 2.7 inches, and the correlation coefficient is .5 (see Exercises 20 and 21). That
is, assume that the heights of the fathers and sons have the form  and , respectively, where  and  are
correlated standardized normal random variables, with correlation coefficient .5. 
(a) What is the expected height for the son of a father whose height is 72 inches?
(b) Plot a scatter diagram of the heights of 1000 father and son pairs. Hint: You can choose standardized pairs as in Exercise 23 and
then plot  .

When we have pairs of data  that are outcomes of the pairs of dependent random variables  we can estimate the
coorelation coefficient  by 

(x ∣ y)fX∣Y ρy

1 −ρ2 X Y (0 < ρ < 1) y > E(Y ) X

Y = y y

6.3.22

Y [0, 1] X [0,Y ] X

fX∣Y

(x) = (x ∣ y) (y)dy.fX ∫
1

x

fX∣Y fY (6.3.56)

6.3.23

X V ρ

Y = ρX+ V1 −ρ2− −−−−
√ E(Y ) = 0 Var(Y ) = 1

Y

X Y ρ

(x, y)fX,Y (X,Y )
(x, y) xy (x, y) = CfX,Y C

(X,Y )
C

−2ρxy+ = D,x2 y2 (6.3.57)

D C

x = + ,r cos θ

2(1−ρ)√
r sin θ

2(1+ρ)√

y = − .r cos θ

2(1−ρ)√
r sin θ

2(1+ρ)√

(6.3.58)

(X,Y ) ρ = −1/2, 0, 1/2
r = 1, 2, 3

6.3.24

2.7X+68 2.7Y +68 X Y

(2.7X+ 68, 2.7Y +68)

6.3.25

( , )xi yi X,Y
ρ

= ,r̄
( − ) ( − )∑i xi x̄ yi ȳ

(n−1)sXsY
(6.3.59)
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where  and  are the sample means for  and , respectively, and  and  are the sample standard deviations for  and 
(see Exercise 6.2.17). Write a program to compute the sample means, variances, and correlation for such dependent data. Use your
program to compute these quantities for Galton's data on heights of parents and children given in Appendix B.

Plot the equal density ellipses as defined in Exercise 23 for , and 8 , and on the same graph print the values that appear in
the table at the appropriate points. For example, print 12 at the point , indicating that there were 12 cases where the
parent's height was 70.5 and the child's was 68.12. See if Galton's data is consistent with the equal density ellipses.

(from Hamming  ) Suppose you are standing on the bank of a straight river. 
(a) Choose, at random, a direction which will keep you on dry land, and walk  in that direction. Let  denote your position.
What is the expected distance from  to the river? 
(b) Now suppose you proceed as in part (a), but when you get to , you pick a random direction (from among all directions) and
walk . What is the probability that you will reach the river before the second walk is completed?

(from Hamming  ) A game is played as follows: A random number  is chosen uniformly from . Then a sequence 
 of random numbers is chosen independently and uniformly from . The game ends the first time that . You

are then paid  dollars. What is a fair entrance fee for this game?

A long needle of length  much bigger than 1 is dropped on a grid with horizontal and vertical lines one unit apart. Show that the
average number  of lines crossed is approximately 
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x̄ ȳ X Y sX sY X Y

r = 4, 6
(70.5, 68.2)

6.3.26

25

1 km P

P

P

1 km

6.3.27

26 X [0, 1]
, , …Y1 Y2 [0, 1] > XYi

(i−1)

6.3.28

L

a

a = .
4L

π
(6.3.60)
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