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10.3: Generating Functions for Continuous Densities
In the previous section, we introduced the concepts of moments and moment generating functions for discrete random variables.
These concepts have natural analogues for continuous random variables, provided some care is taken in arguments involving
convergence.

Moments
If  is a continuous random variable defined on the probability space , with density function , then we define the th moment
of  by the formula

provided the integral

is finite. Then, just as in the discrete case, we see that , , and .

Moment Generating Functions
Now we define the  for  by the formula

provided this series converges. Then, as before, we have

Examples

Let  be a continuous random variable with range  and density function  for  (uniform density).
Then

and

Here the series converges for all . Alternatively, we have

Then (by L’Hôpital’s rule)
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In particular, we verify that  and

as before (see Example 6.1.5]).

 

Let  have range  and density function  (exponential density with parameter ). In this case

and

Here the series converges only for . Alternatively, we have

Now we can verify directly that

 

Let  have range  and density function

(normal density).

In this case we have
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 Example 10.3.2
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 Example 10.3.3
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(These moments are calculated by integrating once by parts to show that , and observing that  and 
.) Hence,

This series converges for all values of . Again we can verify that .

 

Let  be a normal random variable with parameters  and . It is easy to show that the moment generating function of  is given
by

Now suppose that  and  are two independent normal random variables with parameters , , and , , respectively. Then,
the product of the moment generating functions of  and  is

This is the moment generating function for a normal random variable with mean  and variance . Thus, the sum of
two independent normal random variables is again normal. (This was proved for the special case that both summands are standard
normal in Example 7.1.5.)

In general, the series defining  will not converge for all . But in the important special case where  is bounded (i.e., where the
range of  is contained in a finite interval), we can show that the series does converge for all .

Suppose  is a continuous random variable with range contained in the interval . Then the series

converges for all  to an infinitely differentiable function , and .

Proof. We have

so

Hence, for all  we have
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which shows that the power series converges for all . We know that the sum of a convergent power series is always differentiable.

Moment Problem

If  is a bounded random variable, then the moment generating function  of  determines the density function 
uniquely.

 

Sketch of the Proof. We know that

If we replace  by , where  is real and , then the series converges for all , and we can define the function

The function  is called the of , and is defined by the above equation even when the series for  does not converge. This
equation says that  is the of . It is known that the Fourier transform has an inverse, given by the formula

suitably interpreted.  Here we see that the characteristic function , and hence the moment generating function , determines
the density function  uniquely under our hypotheses.

Sketch of the Proof of the Central Limit Theorem

With the above result in mind, we can now sketch a proof of the Central Limit Theorem for bounded continuous random variables
(see Theorem 9.4.7). To this end, let  be a continuous random variable with density function , mean  and variance 

, and moment generating function  defined by its series for all . Let , , …,  be an independent trials process
with each  having density , and let , and . Then each  has
moment generating function , and since the  are independent, the sum , just as in the discrete case (see Section 10.1), has
moment generating function

and the standardized sum  has moment generating function

We now show that, as , , where  is the moment generating function of the normal density 
 (see Example ]).

To show this, we set , and
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and show that  as . First we note that

Now by using L’Hôpital’s rule twice, we get

Hence,  as . Now to complete the proof of the Central Limit Theorem, we must show that if ,
then under our hypotheses the distribution functions  of the  must converge to the distribution function  of the
normal variable ; that is, that

and furthermore, that the density functions  of the  must converge to the density function for ; that is, that

as .

Since the densities, and hence the distributions, of the  are uniquely determined by their moment generating functions under our
hypotheses, these conclusions are certainly plausible, but their proofs involve a detailed examination of characteristic functions and
Fourier transforms, and we shall not attempt them here.

In the same way, we can prove the Central Limit Theorem for bounded discrete random variables with integer values (see Theorem
9.3.6). Let  be a discrete random variable with density function , mean , variance , and moment generating
function , and let , , …,  form an independent trials process with common density . Let 

and , with densities  and , and moment generating functions  and  Then we have

just as in the continuous case, and this implies in the same way that the distribution functions  converge to the normal
distribution; that is, that

as .

The corresponding statement about the distribution functions , however, requires a little extra care (see Theorem 9.3.5). The
trouble arises because the distribution  is not defined for all , but only for integer . It follows that the distribution  is
defined only for  of the form , and these values change as  changes.

We can fix this, however, by introducing the function , defined by the formula
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Then  is defined for all , , and the graph of  is the step function for the distribution  (see Figure 3 of
Section 9.1).

In the same way we introduce the step function  and  associated with the distributions  and , and their moment
generating functions  and . If we can show that , then we can conclude that

as , for all , a conclusion strongly suggested by Figure 9.1.2.

Now  is given by

where we have put

In the same way, we find that

Now, as , we know that , and, by L’Hôpital’s rule,

It follows that

and hence that

as .

The astute reader will note that in this sketch of the proof of Theorem [thm 9.3.5], we never made use of the hypothesis that the
greatest common divisor of the differences of all the values that the  can take on is 1. This is a technical point that we choose to
ignore. A complete proof may be found in Gnedenko and Kolmogorov.

Cauchy Density

The characteristic function of a continuous density is a useful tool even in cases when the moment series does not converge, or
even in cases when the moments themselves are not finite. As an example, consider the Cauchy density with parameter  (see
Example 5.20)
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If  and  are independent random variables with Cauchy density , then the average  also has Cauchy
density , that is,

This is hard to check directly, but easy to check by using characteristic functions. Note first that

so that  is infinite. Nevertheless, we can define the characteristic function  of  by the formula

This integral is easy to do by contour methods, and gives us

Hence,

and since

we have

This shows that , and leads to the conclusions that .

It follows from this that if , , …,  is an independent trials process with common Cauchy density, and if

is the average of the , then  has the same density as do the . This means that the Law of Large Numbers fails for this
process; the distribution of the average  is exactly the same as for the individual terms. Our proof of the Law of Large Numbers
fails in this case because the variance of  is not finite.

Exercises

Exercise 

Let  be a continuous random variable with values in  and density . Find the moment generating function  for  if

a. .
b. .
c. .
d. .
e. .

: Use the integral definition, as in Examples [exam 10.3.1] and [exam 10.3.2].

Exercise 

For each of the densities in Exercise [exer 10.3.1] calculate the first and second moments,  and , directly from their definition
and verify that , , and .
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Exercise 

Let  be a continuous random variable with values in  and density . Find the moment generating functions for  if

a. .
b. .
c. .
d. .

Exercise 

For each of the densities in Exercise [exer 10.3.3], calculate the first and second moments,  and , directly from their definition
and verify that , , and .

Exercise 

Find the characteristic function  for each of the random variables  of Exercise [exer 10.3.1].

Exercise 

Let  be a continuous random variable whose characteristic function  is

Show directly that the density  of  is

Exercise 

Let  be a continuous random variable with values in , uniform density function  and moment generating function
. Find in terms of  the moment generating function for

a. .
b. .
c. .
d. .

Exercise 

Let , , …,  be an independent trials process with uniform density. Find the moment generating function for

a. .
b. .
c. .
d. .
e. .

Exercise 

Let , , …,  be an independent trials process with normal density of mean 1 and variance 2. Find the moment generating
function for

a. .
b. .
c. .
d. .
e. .

Exercise 

Let , , …,  be an independent trials process with density
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a. Find the mean and variance of .
b. Find the moment generating function for , , , and .
c. What can you say about the moment generating function of  as ?
d. What can you say about the moment generating function of  as ?
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