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7.2: Sums of Continuous Random Variables
In this section we consider the continuous version of the problem posed in the previous section: How are sums of independent
random variables distributed?

Let  and  be two continuous random variables with density functions  and , respectively. Assume that both 
and  are defined for all real numbers. Then the convolution  of  and  is the function given by

This definition is analogous to the definition, given in Section 7.1, of the convolution of two distribution functions. Thus it should
not be surprising that if X and Y are independent, then the density of their sum is the convolution of their densities. This fact is
stated as a theorem below, and its proof is left as an exercise (see Exercise 1).

Let X and Y be two independent random variables with density functions fX (x) and fY (y) defined for all x. Then the sum Z =
X + Y is a random variable with density function , where  is the convolution of  and 

To get a better understanding of this important result, we will look at some examples.

Sum of Two Independent Uniform Random Variables

Suppose we choose independently two numbers at random from the interval [0, 1] with uniform probability density. What is
the density of their sum? Let X and Y be random variables describing our choices and  their sum. Then we have

and the density function for the sum is given by

Since  and 0 otherwise, this becomes

Now the integrand is 0 unless 0 ≤ z − y ≤ 1 (i.e., unless z − 1 ≤ y ≤ z) and then it is 1. So if 0 ≤ z ≤ 1, we have

while if 1 < z ≤ 2, we have

and if  or  we have  (see Figure 7.2). Hence,

 Definition : convolution7.2.1

X Y f(x) g(y) f(x)
g(y) f ∗ g f g

(f ∗ g) = f(z−y)g(y)dy∫
∞

−∞

= g(z−x)f(x)dx∫
∞

−∞

 Theorem 7.2.1

(z)fZ fX fX fY

 Example : 7.2.1

Z = X+Y

(x) = (y) =fX fY
1

0

if 0 ≤ x ≤ 1

otherwise

(z) = (z−y) (y)dy.fZ ∫
∞

−∞
fX fY

(y) = 1if0 ≤ y ≤ 1fY

(z) = (z−y)dy.fZ ∫
1

0
fX

(z) = dy = z,fZ ∫
z

0

(z) = dy = 2 −z,fZ ∫
1

z−1

z < 0 z > 2 Z(z) = 0f
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Note that this result agrees with that of Example 2.4.

 Sum of Two Independent Exponential Random Variables

Suppose we choose two numbers at random from the interval [0, ∞) with an exponential density with parameter λ. What is the
density of their sum? Let X, Y , and Z = X + Y denote the relevant random variables, and and  their densities. Then

Figure : Convolution of two uniform densities

 

Figure : Convolution of two exponential densities with λ = 1.

and so, if z > 0,

(z) = {fZ

z

2 −z,

0,

if 0 ≤ z ≤ 1

if1 < z ≤ 2

otherwise

 Example :7.2.2

, ,fX fY fZ

(x) = (x) ={fX fY
λ ,e−λx

0,

if x ≥ 0

otherwise

7.2.1

7.2.2
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while if z < 0,  (see Figure 7.3). Hence,

Sum of Two Independent Normal Random Variables

It is an interesting and important fact that the convolution of two normal densities with means  and variances 
 is again a normal density, with mean  and variance . We will show this in the special case that both

random variables are standard normal. The general case can be done in the same way, but the calculation is messier. Another
way to show the general result is given in Example 10.17.

Suppose X and Y are two independent random variables, each with the standard normal density (see Example 5.8). We have

and so

The expression in the brackets equals 1, since it is the integral of the normal density function with  and  So, we
have

 Sum of Two Independent Cauchy Random Variables

Choose two numbers at random from the interval  with the Cauchy density with parameter  (see Example 5.10).
Then

and  has density

(z)fZ = (z−y) (y)dy∫
∞

−∞
fX fY

= λ λ dy∫
z

0
e−λ(z−y) e−λy

= dy∫
z

0
λ2e−λz

= zλ2 e−λz

(z) = 0fZ

(z) ={fZ
,λ2z−λz

0,

if z ≥ 0,

otherwise

 Example 7.2.3

andµ1 µ2

andσ1 σ2 +µ1 µ2 +σ2
1 σ2

2

(x) = (y) =fX fY
1

2π
−−

√
e− /2x2

(z)fZ = ∗ (z)fX fY

= dy
1

2π
∫

∞

−∞
e−(z−y /2)

2

e− /2y2

= dy
1

2π
e− /4z2

∫
∞

−∞
e−(y−z/2)2

= [ ]
1

2π
e− /4z2

π−−√
1

π−−√
∫

∞

−∞
e−(y−z/2 dy)

2

μ = 0 σ = 2
–

√

(z) =fZ
1

4π
−−

√
e− /4z2

 Example :7.2.4

(−∞, ∞ a = 1

(x) = (y) =fX fY
1

π(1 + )x2

Z = X+Y
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This integral requires some effort, and we give here only the result (see Section 10.3, or Dwass  ):

Now, suppose that we ask for the density function of the average

of X and Y . Then A = (1/2)Z. Exercise 5.2.19 shows that if U and V are two continuous random variables with density
functions  and , respectively, and if , then

Thus, we have

Hence, the density function for the average of two random variables, each having a Cauchy density, is again a random variable with
a Cauchy density; this remarkable property is a peculiarity of the Cauchy density. One consequence of this is if the error in a certain
measurement process had a Cauchy density and you averaged a number of measurements, the average could not be expected to be
any more accurate than any one of your individual measurements!

Rayleigh Density

Suppose X and Y are two independent standard normal random variables. Now suppose we locate a point  in the xy-plane
with coordinates (X, Y ) and ask: What is the density of the square of the distance of P from the origin? (We have already
simulated this problem in Example 5.9.) Here, with the preceding notation, we have

Moreover, if  denotes the square of , then (see Theorem 5.1 and the discussion following)

This is a gamma density with ,  (see Example 7.4). Now let 

Then

Hence,  has a gamma density with λ = 1/2, β = 1. We can interpret this result as giving the density for the square of the
distance of P from the center of a target if its coordinates are normally distributed. The density of the random variable R is

(z) = dy.fZ
1

π2
∫

∞

−∞

1

1 +(z−y)2

1

1 +y2

3

fZ(z) =
2

π(4 + )z2

A = (1/2)(X+Y )

(x)fU (x)fV V = aU

(x) =( ) ( ).fV
1

a
fU

x

a

(z) = 2 (2z) =fA fZ
1

π(1 + )z2

 Example :7.2.5

P

(x)fX = (x)fV

=
1

2π
−−

√
e− /2x2

X2 X

(r)fX2 =
( )

1

2πr
−−−

√
e−r/2

0

if r > 0

otherwise.

=
( ) + (− ))

1

2 r√
fX r√ fX r√

0

if r > 0

otherwise.

λ = 1/2 β = 1/2
= +R2 X2 Y 2

R2
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obtained from that of  in the usual way (see Theorem 5.1), and we find

Physicists will recognize this as a Rayleigh density. Our result here agrees with our simulation in Example 5.9.

Chi-Squared Density
More generally, the same method shows that the sum of the squares of n independent normally distributed random variables with
mean 0 and standard deviation 1 has a gamma density with λ = 1/2 and β = n/2. Such a density is called a chi-squared density with
n degrees of freedom. This density was introduced in Chapter 4.3. In Example 5.10, we used this density to test the hypothesis that
two traits were independent.

Another important use of the chi-squared density is in comparing experimental data with a theoretical discrete distribution, to see
whether the data supports the theoretical model. More specifically, suppose that we have an experiment with a finite set of
outcomes. If the set of outcomes is countable, we group them into finitely many sets of outcomes. We propose a theoretical
distribution that we think will model the experiment well. We obtain some data by repeating the experiment a number of times.
Now we wish to check how well the theoretical distribution fits the data.

Let  be the random variable that represents a theoretical outcome in the model of the experiment, and let  be the distribution
function of X. In a manner similar to what was done in Example 5.10, we calculate the value of the expression

where the sum runs over all possible outcomes x, n is the number of data points, and ox denotes the number of outcomes of type x
observed in the data. Then

Table : Observed data.

Outcome Observed Frequency

i 15

2 8

3 7

4 5

5 7

6 18

 

for moderate or large values of n, the quantity V is approximately chi-squared distributed, with ν−1 degrees of freedom, where ν
represents the number of possible outcomes. The proof of this is beyond the scope of this book, but we will illustrate the
reasonableness of this statement in the next example. If the value of V is very large, when compared with the appropriate chi-
squared density function, then we would tend to reject the hypothesis that the model is an appropriate one for the experiment at
hand. We now give an example of this procedure.

Suppose we are given a single die. We wish to test the hypothesis that the die is fair. Thus, our theoretical distribution is the
uniform distribution on the integers between 1 and 6. So, if we roll the die n times, the expected number of data points of each
type is n/6. Thus, if  denotes the actual number of data points of type , for , then the expression

R2

(r) = {fR
⋅ 2r = r ,1

2
e− /2r2

e− /2r2

0,

if r ≥ 0

otherwise

X m(x)

V =∑
x

( −n ⋅m(x)σx )2

n ⋅m(x)

7.2.1

 Example : DieTest7.2.6

oi i 1 ≤ i ≤ 6
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is approximately chi-squared distributed with 5 degrees of freedom.

Now suppose that we actually roll the die 60 times and obtain the data in Table 7.1. If we calculate V for this data, we obtain
the value 13.6. The graph of the chi-squared density with 5 degrees of freedom is shown in Figure 7.4. One sees that values as
large as 13.6 are rarely taken on by V if the die is fair, so we would reject the hypothesis that the die is fair. (When using this
test, a statistician will reject the hypothesis if the data gives a value of V which is larger than 95% of the values one would
expect to obtain if the hypothesis is true.)

In Figure 7.5, we show the results of rolling a die 60 times, then calculating V , and then repeating this experiment 1000 times.
The program that performs these calculations is called DieTest. We have superimposed the chi-squared density with 5 degrees
of freedom; one can see that the data values fit the curve fairly well, which supports the statement that the chi-squared density
is the correct one to use.

So far we have looked at several important special cases for which the convolution integral can be evaluated explicitly. In general,
the convolution of two continuous densities cannot be evaluated explicitly, and we must resort to numerical methods. Fortunately,
these prove to be remarkably effective, at least for bounded densities.

 

Figure : Chi-squared density with 5 degrees of freedom.

 

V =∑
i=1

6 ( −n/6σi )2

n/6

7.2.3
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Figure : : Rolling a fair die.

 

Figure : Convolution of n uniform densities.

Independent Trials

We now consider briefly the distribution of the sum of n independent random variables, all having the same density function. If 
 are these random variables and  is their sum, then we will have

where the right-hand side is an n-fold convolution. It is possible to calculate this density for general values of n in certain simple
cases.

7.2.4

7.2.5

, , . . . ,X1 X2 Xn = + +⋅ ⋅ ⋅ +Sn X1 X2 Xn

(x) = ( , × ×⋯ × (x),fSn fX fx2 fXn
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Suppose the  are uniformly distributed on the interval [0,1]. Then

and  is given by the formula 

The density  for  is shown in Figure 7.6.

If the Xi are distributed normally, with mean 0 and variance 1, then (cf. Example 7.5)

Figure : Convolution of n standard normal densities.

and

Here the density  for  is shown in Figure 7.7.

If the  are all exponentially distributed, with mean , then

and

In this case the density  for  is shown in Figure 7.8.

 Example 7.2.7

Xi

(x) = {fXi

1,

0,

if 0 ≤ x ≤ 1

otherwise

(x)fSn

4

(x) = {fSn

(−1 (( )(x−j ,1
(n−1)!

∑0≤j≤x )j n
j )n−1

0,

if 0 ≤ x ≤ n

otherwise

(x)fSn n = 2, 4, 6, 8, 10

(x) = ,fXi

1

2pi
−−−

√
e− /2x2

7.2.6

(x) =fSn

1

2πn
− −−

√
e− /2nx2

nfS n = 5, 10, 15, 20, 25

Xi 1/λ

(x) = λ .fXi e−λx

=fSn

λ (λxe−λx )n−1

(n−1)!

fSn
n = 2, 4, 6, 8, 10
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Exercises
Exercise : Let  and  be independent real-valued random variables with density functions  and , respectively.
Show that the density function of the sum  is the convolution of the functions  and . Hint: Let  be the joint
random variable . Then the joint density function of  is , since  and  are independent. Now compute the
probability that , by integrating the joint density function over the appropriate region in the plane. This gives the
cumulative distribution function of . Now differentiate this function with respect to  to obtain the density function of .

Exercise : Let  and  be independent random variables defined on the space , with density functions  and ,
respectively. Suppose that . Find the density  of  if

Figure : Convolution of  exponential densities with .

 

(a)

(b)

(c)

(d) What can you say about the set  in each case?

Exercise : Suppose again that . Find  if

(a)

7.2.1 X Y (x)fX (y)fY

X+Y (x)fX (y)fY X̄

(X,Y ) X̄ (x) (y)fX fY X Y

X+Y ≤ z

Z z z

7.2.2 X Y Ω fX fY
Z = X+Y fZ Z

7.2.7 n λ = 1

(x) = (x) ={fX fY
1/2,
0,

 if  −1 ≤ x ≤ +1
 otherwise 

(7.2.1)

(x) = (x) ={fX fY
1/2,
0,

 if 3 ≤ x ≤ 5
 otherwise 

(7.2.2)

(x) ={fX
1/2,
0,

 if  −1 ≤ x ≤ 1,
 otherwise 

(x) ={fY
1/2,
0,

 if 3 ≤ x ≤ 5
 otherwise 

E = {z : (z) > 0}fZ

7.2.3 Z = X+Y fZ
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(b)

(c)

(d) What can you say about the set  in each case?

Exercise : Let , and  be independent random variables with

Suppose that . Find  directly, and compare your answer with that given by the formula in Example 7.9. Hint:
See Example 7.3.

Exercise : Suppose that  and  are independent and . Find  if

(a)

(b)

Exercise : Suppose again that . Find  if

Exercise : Suppose that . Find  and  if

Exercise : Suppose that . Find  and  if

Exercise : Assume that the service time for a customer at a bank is exponentially distributed with mean service time 2
minutes. Let  be the total service time for 10 customers. Estimate the probability that  minutes.

(x) = (x) ={fX fY
x/2,
0,

 if 0 < x < 2
 otherwise. 

(7.2.3)

(x) = (x) ={fX fY
(1/2)(x−3),
0,

 if 3 < x < 5
 otherwise 

(7.2.4)

(x) ={fX
1/2,
0,

 if 0 < x < 2
 otherwise 

(7.2.5)

(x) ={fY
x/2,
0,

 if 0 < x < 2,
 otherwise. 

(7.2.6)

E = {z : (z) > 0}fZ

7.2.4 X,Y Z

(x) = (x) = (x) ={fX fY fZ
1,
0,

 if 0 < x < 1
 otherwise 

(7.2.7)

W = X+Y +Z fW

7.2.5 X Y Z = X+Y fZ

(x) ={fX
λ ,e−λx

0,
 if x > 0,
 otherwise. 

(x) ={fY
μ ,e−μx

0,
 if x > 0,
 otherwise. 

(x) ={fX
λ ,e−λx

0,
 if x > 0,
 otherwise. 

(x) ={fY
1,
0,

 if 0 < x < 1
 otherwise 

7.2.6 Z = X+Y fZ

(x) =fX
1

2π
−−

√ σ1

e− /2(x− )μ1
2 σ2

1

(x) = .fY
1

2π
−−

√ σ2

e− /2(x− )μ2
2 σ2

2

7.2.7 = +R2 X2 Y 2 fR2 fR

(x)fX

(x)fY

=
1

2π
−−

√ σ1

e− /2(x− )μ1
2 σ2

1

= .
1

2π
−−

√ σ2

e− /2(x− )μ2
2 σ2

2

7.2.8 = +R2 X2 Y 2 fR2 fR

(x) = (x) ={fX fY
1/2,
0,

 if  −1 ≤ x ≤ 1
 otherwise 

(7.2.8)

7.2.9

X X > 22
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Exercise : Let  be  independent random variables each of which has an exponential density with mean .
Let  be the minimum value of the . Show that the density for  is exponential with mean . Hint: Use cumulative
distribution functions.

Exercise : A company buys 100 lightbulbs, each of which has an exponential lifetime of 1000 hours. What is the expected
time for the first of these bulbs to burn out? (See Exercise 10.)

Exercise : An insurance company assumes that the time between claims from each of its homeowners' policies is
exponentially distributed with mean . It would like to estimate  by averaging the times for a number of policies, but this is not
very practical since the time between claims is about 30 years. At Galambos'5 suggestion the company puts its customers in groups
of 50 and observes the time of the first claim within each group. Show that this provides a practical way to estimate the value of .

Exercise : Particles are subject to collisions that cause them to split into two parts with each part a fraction of the parent.
Suppose that this fraction is uniformly distributed between 0 and 1. Following a single particle through several splittings we obtain
a fraction of the original particle  where each  is uniformly distributed between 0 and 1 . Show that the
density for the random variable  is

Hint: Show that  is exponentially distributed. Use this to find the density function for ,
and from this the cumulative distribution and density of .

Exercise : Assume that  and  are independent random variables, each having an exponential density with parameter 
. Show that  has density

Exercise : Suppose we want to test a coin for fairness. We flip the coin  times and record the number of times  that the
coin turns up tails and the number of times  that the coin turns up heads. Now we set

Then for a fair coin  has approximately a chi-squared distribution with  degree of freedom. Verify this by computer
simulation first for a fair coin  and then for a biased coin .

 J. Galambos, Introductory Probability Theory (New York: Marcel Dekker, 1984), p. 159.

Exercise : Verify your answers in Exercise 2(a) by computer simulation: Choose  and  from  with uniform
density and calculate . Repeat this experiment 500 times, recording the outcomes in a bar graph on  with 40
bars. Does the density  calculated in Exercise 2(a) describe the shape of your bar graph? Try this for Exercises 2(b) and Exercise
2(c), too.

Exercise : Verify your answers to Exercise 3 by computer simulation.

Exercise : Verify your answer to Exercise 4 by computer simulation.

Exercise : The support of a function  is defined to be the set

Suppose that  and  are two continuous random variables with density functions  and , respectively, and suppose
that the supports of these density functions are the intervals  and , respectively. Find the support of the density function
of the random variable .

Exercise : Let  be a sequence of independent random variables, all having a common density function 
with support  (see Exercise 19). Let , with density function . Show that the support of  is
the interval . Hint: Write . Now use Exercise 19 to establish the desired result by induction.

Exercise : Let  be a sequence of independent random variables, all having a common density function .
Let  be their average. Find  if

7.2.10 , , … ,X1 X2 Xn n μ

M Xj M μ/n

7.2.11

7.2.12

μ μ

μ

7.2.13

= ⋅ ⋅ … ⋅Zn X1 X2 Xn Xj

Zn

(z) = (−log zfn
1

(n−1)!
)n−1 (7.2.9)

= −logYk Xk = + +⋯ +Sn Y1 Y2 Yn
=Zn e−Sn

7.2.14 X1 X2

λ Z = −X1 X2

(z) = (1/2)λfZ e−λ|z| (7.2.10)

7.2.15 n X0

= n−X1 X0

Z = .∑
i=0

1 ( −n/2)Xi
2

n/2
(7.2.11)

Z 2 −1 = 1
(p = 1/2) (p = 1/3)

5

7.2.16 X Y [−1, 1]
Z = X+Y [−2, 2]
fZ

7.2.17

7.2.18

7.2.19 f(x)

{x : f(x) > 0}. (7.2.12)

X Y (x)fX (y)fY
[a, b] [c, d]

X+Y

7.2.20 , , … ,X1 X2 Xn fX
[a, b] = + +⋯ +Sn X1 X2 Xn fSn fSn

[na,nb] = ∗fSn fSn−1 fX

7.2.21 , , … ,X1 X2 Xn fX
A = /nSn fA
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(a)  (normal density).

(b)  (exponential density).

Hint: Write  in terms of . 
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