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11.2: Absorbing Markov Chains**
The subject \mathbfof Markov chains is best studied by considering special types of Markov chains. The first type that we shall
study is called an absorbing Markov chain.

A state  of a Markov chain is called absorbing if it is impossible to leave it (i.e., ). A Markov chain is if it has at least one
absorbing state, and if from every state it is possible to go to an absorbing state (not necessarily in one step).

In an absorbing Markov chain, a state which is not absorbing is called transient

Drunkard’s Walk

A man walks along a four-block stretch of Park Avenue (see Figure 11.1.3). If he is at corner 1, 2, or 3, then he walks to the left
or right with equal probability. He continues until he reaches corner 4, which is a bar, or corner 0, which is his home. If he
reaches either home or the bar, he stays there.

We form a Markov chain with states 0, 1, 2, 3, and 4. States 0 and 4 are absorbing states. The transition matrix is then

The states 1, 2, and 3 are transient states, and from any of these it is possible to reach the absorbing states 0 and 4. Hence the
chain is an absorbing chain. When a process reaches an absorbing state, we shall say that it is absorbed.

 

The most obvious question that can be asked about such a chain is: What is the probability that the process will eventually reach an
absorbing state? Other interesting questions include: (a) What is the probability that the process will end up in a given absorbing
state? (b) On the average, how long will it take for the process to be absorbed? (c) On the average, how many times will the process
be in each transient state? The answers to all these questions depend, in general, on the state from which the process starts as well
as the transition probabilities.

Canonical Form

Consider an arbitrary absorbing Markov chain. Renumber the states so that the transient states come first. If there are  absorbing
states and  transient states, the transition matrix will have the following canonical form

Figure : Drunkard's walk
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Here  is an -by-  indentity matrix,  is an -by-  zero matrix,  is a nonzero -by-  matrix, and  is an -by-  matrix. The first 
 states are transient and the last  states are absorbing.

In Section 11.1, we saw that the entry  of the matrix  is the probability of being in the state  after  steps, when the chain
is started in state . A standard matrix algebra argument shows that  is of the form

TR. ABS. 

where the asterisk  stands for the -by-  matrix in the upper right-hand corner of  (This submatrix can be written in terms of 
 and , but the expression is complicated and is not needed at this time.) The form of  shows that the entries of  give the

probabilities for being in each of the transient states after  steps for each possible transient starting state. For our first theorem we
prove that the probability of being in the transient states after  steps approaches zero. Thus every entry of  must approach zero
as  approaches infinity (i.e, ).

Probability of Absorption

In an absorbing Markov chain, the probability that the process will be absorbed is 1 (i.e.,  as ).

Proof. From each nonabsorbing state  it is possible to reach an absorbing state. Let  be the minimum number of steps required
to reach an absorbing state, starting from . Let  be the probability that, starting from , the process will not reach an absorbing
state in  steps. Then . Let  be the largest of the  and let  be the largest of . The probability of not being absorbed
in  steps is less than or equal to , in  steps less than or equal to , etc. Since  these probabilities tend to 0. Since the
probability of not being absorbed in  steps is monotone decreasing, these probabilities also tend to 0, hence 

The Fundamental Matrix

For an absorbing Markov chain the matrix I - Q has an inverse  and . The -entry  of the matrix
 is the expected number of times the chain is in state , given that it starts in state . The initial state is counted if .

 

Proof. Let  that is  Then, iterating this we see that  Since , we have , so 
. Thus  exists. Note next that

Thus multiplying both sides by  gives

Letting  tend to infinity we have

Let  and  be two transient states, and assume throughout the remainder of the proof that  and  are fixed. Let  be a random
variable which equals 1 if the chain is in state  after  steps, and equals 0 otherwise. For each , this random variable depends
upon both  and ; we choose not to explicitly show this dependence in the interest of clarity. We have
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and

where  is the th entry of . These equations hold for  since . Therefore, since  is a 0-1 random variable, 

.

The expected number of times the chain is in state  in the first  steps, given that it starts in state , is clearly

Letting  tend to infinity we have

For an absorbing Markov chain , the matrix  is called the fundamental matrix for . The entry  of 
gives the expected number of times that the process is in the transient state  if it is started in the transient state .

 

(Example continued) In the Drunkard’s Walk example, the transition matrix in canonical form is

From this we see that the matrix  is \

and

Computing , we find

From the middle row of , we see that if we start in state 2, then the expected number of times in states 1, 2, and 3 before
being absorbed are 1, 2, and 1.

Time to Absorption

We now consider the question: Given that the chain starts in state , what is the expected number of steps before the chain is
absorbed? The answer is given in the next theorem.
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Let  be the expected number of steps before the chain is absorbed, given that the chain starts in state , and let  be the
column vector whose th entry is . Then

where  is a column vector all of whose entries are 1.

 

Proof. If we add all the entries in the th row of , we will have the expected number of times in any of the transient states for a
given starting state , that is, the expected time required before being absorbed. Thus,  is the sum of the entries in the th row of 

. If we write this statement in matrix form, we obtain the theorem.

Absorption Probabilities

Let  be the probability that an absorbing chain will be absorbed in the absorbing state  if it starts in the transient state .
Let  be the matrix with entries . Then  is an -by-  matrix, and

where  is the fundamental matrix and  is as in the canonical form.

Proof. We have

This completes the proof.

Another proof of this is given in Exercise .

(Example  continued) In the Drunkard’s Walk example, we found that

Hence,

Thus, starting in states 1, 2, and 3, the expected times to absorption are 3, 4, and 3, respectively.
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From the canonical form,

 
Hence,

 

Here the first row tells us that, starting from state , there is probability 3/4 of absorption in state  and 1/4 of absorption in state .

Computation

The fact that we have been able to obtain these three descriptive quantities in matrix form makes it very easy to write a computer
program that determines these quantities for a given absorbing chain matrix.

The program AbsorbingChain calculates the basic descriptive quantities of an absorbing Markov chain.

We have run the program AbsorbingChain for the example of the drunkard’s walk (Example [exam 11.2.1]) with 5 blocks. The
results are as follows:
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1 0 4

\mathbf{Q}}= \begin{matrix} & \begin{matrix}1&&2&&3&&4\end{matrix} \\\begin{matrix}1\\2\\3\\4\end{matrix} &  \begin{pmatrix}  
.00 & .50 & .00 & .00 \\  
.50 & .00 & .50 & .00  \\  
.00 & .50 & .00 & .50 \\  
.00 & .00 & .50 & .00  \\  
\end{pmatrix}\\\end{matrix}
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Note that the probability of reaching the bar before reaching home, starting at , is  (i.e., proportional to the distance of home
from the starting point). (See Exercise 

Exercises

Exercise 

In Example 11.1.4, for what values of  and  do we obtain an absorbing Markov chain?

Exercise 

Show that Example 11.1.7 is an absorbing Markov chain.

Exercise 

Which of the genetics examples (Examples 11.1.9, 11.1.10, and 11.1.11) are absorbing?

Exercise 

Find the fundamental matrix  for Example 11.1.10.

Exercise 

For Example 11.1.11, verify that the following matrix is the inverse of  and hence is the fundamental matrix .

Find  and . Interpret the results.

Exercise 

In the Land of Oz example (Example 11.1.1), change the transition matrix by making R an absorbing state. This gives

 
 

Find the fundamental matrix , and also  and . Interpret the results.

Exercise 

In Example 11.1.8, make states 0 and 4 into absorbing states. Find the fundamental matrix , and also  and , for the
resulting absorbing chain. Interpret the results.

Exercise 

In Example  (Drunkard’s Walk) of this section, assume that the probability of a step to the right is 2/3, and a step to the left is
1/3. Find , and . Compare these with the results of Example .
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Exercise 

A process moves on the integers 1, 2, 3, 4, and 5. It starts at 1 and, on each successive step, moves to an integer greater than its
present position, moving with equal probability to each of the remaining larger integers. State five is an absorbing state. Find the
expected number of steps to reach state five.

Exercise 

 Using the result of Exercise , make a conjecture for the form of the fundamental matrix if the process moves as in that
exercise, except that it now moves on the integers from 1 to . Test your conjecture for several different values of . Can you
conjecture an estimate for the expected number of steps to reach state , for large ? (See Exercise  for a method of
determining this expected number of steps.)

Exercise 

Let  denote the expected number of steps to reach  from , in the process described in Exercise .

a. Define . Show that for , we have

b. Let

Using the recursion in part (a), show that  satisfies the differential equation

c. Show that the general solution of the differential equation in part (b) is

where  is a constant.

Use part (c) to show that

Exercise 

Three tanks fight a three-way duel. Tank A has probability 1/2 of destroying the tank at which it fires, tank B has probability 1/3 of
destroying the tank at which it fires, and tank C has probability 1/6 of destroying the tank at which it fires. The tanks fire together
and each tank fires at the strongest opponent not yet destroyed. Form a Markov chain by taking as states the subsets of the set of
tanks. Find , and , and interpret your results. : Take as states ABC, AC, BC, A, B, C, and none, indicating the tanks that
could survive starting in state ABC. You can omit AB because this state cannot be reached from ABC.

Exercise 

Smith is in jail and has 3 dollars; he can get out on bail if he has 8 dollars. A guard agrees to make a series of bets with him. If
Smith bets  dollars, he wins  dollars with probability .4 and loses  dollars with probability .6. Find the probability that he
wins 8 dollars before losing all of his money if

a. he bets 1 dollar each time (timid strategy).
b. he bets, each time, as much as possible but not more than necessary to bring his fortune up to 8 dollars (bold strategy).
c. Which strategy gives Smith the better chance of getting out of jail?

Exercise 

With the situation in Exercise , consider the strategy such that for , Smith bets , and for , he bets
according to the bold strategy, where  is his current fortune. Find the probability that he gets out of jail using this strategy. How
does this probability compare with that obtained for the bold strategy?
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Exercise 

Consider the game of tennis when is reached. If a player wins the next point, he has On the following point, he either wins the
game or the game returns to Assume that for any point, player A has probability .6 of winning the point and player B has
probability .4 of winning the point.

a. Set this up as a Markov chain with state 1: A wins; 2: B wins; 3: advantage A; 4: deuce; 5: advantage B.
b. Find the absorption probabilities.
c. At deuce, find the expected duration of the game and the probability that B will win.

Exercises  and  concern the inheritance of color-blindness, which is a sex-linked characteristic. There is a pair of
genes, g and G, of which the former tends to produce color-blindness, the latter normal vision. The G gene is dominant. But a man
has only one gene, and if this is g, he is color-blind. A man inherits one of his mother’s two genes, while a woman inherits one
gene from each parent. Thus a man may be of type G or g, while a woman may be type GG or Gg or gg. We will study a process of
inbreeding similar to that of Example [exam 11.1.9] by constructing a Markov chain.

Exercise 

List the states of the chain. : There are six. Compute the transition probabilities. Find the fundamental matrix , , and .

Exercise 

Show that in both Example 11.1.11 and the example just given, the probability of absorption in a state having genes of a particular
type is equal to the proportion of genes of that type in the starting state. Show that this can be explained by the fact that a game in
which your fortune is the number of genes of a particular type in the state of the Markov chain is a fair game.

Exercise 

Assume that a student going to a certain four-year medical school in northern New England has, each year, a probability  of
flunking out, a probability  of having to repeat the year, and a probability  of moving on to the next year (in the fourth year,
moving on means graduating).

a. Form a transition matrix for this process taking as states F, 1, 2, 3, 4, and G where F stands for flunking out and G for
graduating, and the other states represent the year of study.

b. For the case , , and  find the time a beginning student can expect to be in the second year. How long should
this student expect to be in medical school?

Find the probability that this beginning student will graduate.

Exercise 

(E. Brown ) Mary and John are playing the following game: They have a three-card deck marked with the numbers 1, 2, and 3 and
a spinner with the numbers 1, 2, and 3 on it. The game begins by dealing the cards out so that the dealer gets one card and the other
person gets two. A move in the game consists of a spin of the spinner. The person having the card with the number that comes up
on the spinner hands that card to the other person. The game ends when someone has all the cards.

a. Set up the transition matrix for this absorbing Markov chain, where the states correspond to the number of cards that Mary has.
b. Find the fundamental matrix.
c. On the average, how many moves will the game last?

If Mary deals, what is the probability that John will win the game?

Exercise 

Assume that an experiment has  equally probable outcomes. Show that the expected number of independent trials before the first
occurrence of  consecutive occurrences of one of these outcomes is . : Form an absorbing Markov chain with
states 1, 2, …,  with state  representing the length of the current run. The expected time until a run of  is 1 more than the
expected time until absorption for the chain started in state 1. It has been found that, in the decimal expansion of pi, starting with
the 24,658,601st digit, there is a run of nine 7’s. What would your result say about the expected number of digits necessary to find
such a run if the digits are produced randomly?i[exer 11.2.20] (Roberts ) A city is divided into 3 areas 1, 2, and 3. It is estimated
that amounts , , and  of pollution are emitted each day from these three areas. A fraction  of the pollution from region 
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ends up the next day at region . A fraction  goes into the atmosphere and escapes. Let  be the amount of
pollution in area  after  days.

a. Show that .
b. Show that , and show how to compute from .

The government wants to limit pollution levels to a prescribed level by prescribing  Show how to determine the levels of
pollution  which would result in a prescribed limiting value .

Exercise 

 Roberts  ) A city is divided into 3 areas 1,2 , and 3 . It is estimated that amounts , and  of pollution are emitted each day
from these three areas. A fraction  of the pollution from region  ends up the next day at region . A fraction 

 goes into the atmosphere and escapes. Let  be the amount of pollution in area  after  days.

(a) Show that . 
(b) Show that , and show how to compute  from . 
(c) The government wants to limit pollution levels to a prescribed level by prescribing w. Show how to determine the levels of
pollution  which would result in a prescribed limiting value .

 

Exercise 

In the Leontief economic model,  there are  industries 1, 2, …, . The th industry requires an amount  of goods (in
dollar value) from company  to produce 1 dollar’s worth of goods. The outside demand on the industries, in dollar value, is given
by the vector . Let  be the matrix with entries .

a. Show that if the industries produce total amounts given by the vector  then the amounts of goods of each
type that the industries will need just to meet their internal demands is given by the vector .

b. Show that in order to meet the outside demand  and the internal demands the industries must produce total amounts given by a
vector  which satisfies the equation .

c. Show that if  is the -matrix for an absorbing Markov chain, then it is possible to meet any outside demand .
d. Assume that the row sums of  are less than or equal to 1. Give an economic interpretation of this condition. Form a Markov

chain by taking the states to be the industries and the transition probabilites to be the . Add one absorbing state 0. Define

Show that this chain will be absorbing if every company is either making a profit or ultimately depends upon a profit-making
company.

e. Define  to be the gross national product. Find an expression for the gross national product in terms of the demand vector 
and the vector  giving the expected time to absorption.

Exercise 

A gambler plays a game in which on each play he wins one dollar with probability  and loses one dollar with probability 
. The is the problem of finding the probability  of winning an amount  before losing everything, starting with state 

. Show that this problem may be considered to be an absorbing Markov chain with states 0, 1, 2, …,  with 0 and  absorbing
states. Suppose that a gambler has probability  of winning on each play. Suppose, in addition, that the gambler starts with
50 dollars and that  dollars. Simulate this game 100 times and see how often the gambler is ruined. This estimates .

Exercise 

Show that  of Exercise [exer 11.2.22] satisfies the following conditions:

a.  for , 2, …, .
b. .
c. .

Show that these conditions determine . Show that, if , then

j = 1 − > 0qi ∑j qij w
(n)
i

i n

= u +uQ+⋯ +uw(n) Qn−1

→ ww(n)

w.
u w

11.2.21

( 7 ,u1 u2 u3

qij i j

= 1 − > 0qi ∑j qij w
(n)
i i n

= u +uQ+⋯ +uw(n) Qn−1

→ ww(n) w u

u w
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8 n n i 0 ≤ ≤ 1qij
j

d = ( , , … , )d1 d2 dn Q qij

x = ( , , … , )x1 x2 xn
xQ

d

x = ( , , … , )x1 x2 xn x = xQ+d

Q Q d

Q

qij

= 1 −  .qi0 ∑
j

qij (11.2.32)
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satisfies (a), (b), and (c) and hence is the solution. If , show that

satisfies these conditions and hence gives the probability of the gambler winning.

Exercise 

Write a program to compute the probability  of Exercise [exer 11.2.23] for given values of , , and . Study the probability
that the gambler will ruin the bank in a game that is only slightly unfavorable, say , if the bank has significantly more
money than the gambler.

Exercise 

We considered the two examples of the Drunkard’s Walk corresponding to the cases  and  blocks (see Example 
). Verify that in these two examples the expected time to absorption, starting at , is equal to . See if you can prove

that this is true in general. : Show that if  is the expected time to absorption then  and

for . Show that if  and  are two solutions, then their difference  is a solution of the equation

Also, . Show that it is not possible for  to have a strict maximum or a strict minimum at the point , where 
. Use this to show that  for all i. This shows that there is at most one solution. Then verify that the function 

 is a solution.

Exercise 

Consider an absorbing Markov chain with state space . Let  be a function defined on  with the property that

or in vector form

Then  is called a for . If you imagine a game in which your fortune is  when you are in state , then the harmonic condition
means that the game is in the sense that your expected fortune after one step is the same as it was before the step.

1. Show that for  harmonic

for all .
2. Show, using (a), that for  harmonic

where \[\mathbf{P}^\infty = \lim_{n \to \infty} \mathbf{P}^n = \pmatrix{\]

 

  

Using (b), prove that when you start in a transient state  your expected final fortune

=wx

x

T
(11.2.33)

p ≠ q

=wx

(q/p −1)x

(q/p −1)T
(11.2.34)
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is equal to your starting fortune . In other words, a fair game on a finite state space remains fair to the end. (Fair games in
general are called Fair games on infinite state spaces need not remain fair with an unlimited number of plays allowed. For example,
consider the game of Heads or Tails (see Example [exam 1.3]). Let Peter start with 1 penny and play until he has 2. Then Peter will
be sure to end up 1 penny ahead.)

Exercise 

A coin is tossed repeatedly. We are interested in finding the expected number of tosses until a particular pattern, say B = HTH,
occurs for the first time. If, for example, the outcomes of the tosses are HHTTHTH we say that the pattern B has occurred for the
first time after 7 tosses. Let  be the time to obtain pattern B for the first time. Li  gives the following method for determining 

.

We are in a casino and, before each toss of the coin, a gambler enters, pays 1 dollar to play, and bets that the pattern B = HTH will
occur on the next three tosses. If H occurs, he wins 2 dollars and bets this amount that the next outcome will be T. If he wins, he
wins 4 dollars and bets this amount that H will come up next time. If he wins, he wins 8 dollars and the pattern has occurred. If at
any time he loses, he leaves with no winnings.

Let A and B be two patterns. Let AB be the amount the gamblers win who arrive while the pattern A occurs and bet that B will
occur. For example, if A = HT and B = HTH then AB = 2 + 4 = 6 since the first gambler bet on H and won 2 dollars and then bet
on T and won 4 dollars more. The second gambler bet on H and lost. If A = HH and B = HTH, then AB = 2 since the first gambler
bet on H and won but then bet on T and lost and the second gambler bet on H and won. If A = B = HTH then AB = BB = 8 + 2 =
10.

Now for each gambler coming in, the casino takes in 1 dollar. Thus the casino takes in  dollars. How much does it pay out? The
only gamblers who go off with any money are those who arrive during the time the pattern B occurs and they win the amount BB.
But since all the bets made are perfectly fair bets, it seems quite intuitive that the expected amount the casino takes in should equal
the expected amount that it pays out. That is,  = BB.

Since we have seen that for B = HTH, BB = 10, the expected time to reach the pattern HTH for the first time is 10. If we had been
trying to get the pattern B = HHH, then BB  since all the last three gamblers are paid off in this case. Thus the
expected time to get the pattern HHH is 14. To justify this argument, Li used a theorem from the theory of martingales (fair games).

We can obtain these expectations by considering a Markov chain whose states are the possible initial segments of the sequence
HTH; these states are HTH, HT, H, and , where  is the empty set. Then, for this example, the transition matrix is

Show, using the associated Markov chain, that the values  = 10 and  = 14 are correct for the expected time to reach
the patterns HTH and HHH, respectively.

Exercise 

We can use the gambling interpretation given in Exercise  to find the expected number of tosses required to reach pattern B
when we start with pattern A. To be a meaningful problem, we assume that pattern A does not have pattern B as a subpattern. Let 

 be the expected time to reach pattern B starting with pattern A. We use our gambling scheme and assume that the first k
coin tosses produced the pattern A. During this time, the gamblers made an amount AB. The total amount the gamblers will have
made when the pattern B occurs is BB. Thus, the amount that the gamblers made after the pattern A has occurred is BB - AB.
Again by the fair game argument,  = BB-AB.

For example, suppose that we start with pattern A = HT and are trying to get the pattern B = HTH. Then we saw in Exercise [exer
11.2.26] that AB = 4 and BB = 10 so  = BB-AB= 6.

Verify that this gambling interpretation leads to the correct answer for all starting states in the examples that you worked in
Exercise [exer 11.2.26].
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Exercise 

Here is an elegant method due to Guibas and Odlyzko  to obtain the expected time to reach a pattern, say HTH, for the first time.
Let  be the number of sequences of length  which do not have the pattern HTH. Let  be the number of sequences that
have the pattern for the first time after  tosses. To each element of , add the pattern HTH. Then divide the resulting sequences
into three subsets: the set where HTH occurs for the first time at time  (for this, the original sequence must have ended with
HT); the set where HTH occurs for the first time at time  (cannot happen for this pattern); and the set where the sequence
HTH occurs for the first time at time  (the original sequence ended with anything except HT). Doing this, we have

Thus,

If  is the time that the pattern occurs for the first time, this equality states that

Show that if you sum this equality over all  you obtain

Show that for any integer-valued random variable

and conclude that . Note that this method of proof makes very clear that  is, in general, equal to the expected
amount the casino pays out and avoids the martingale system theorem used by Li.

Exercise 

In Example [exam 11.1.9], define  to be the proportion of G genes in state . Show that  is a harmonic function (see Exercise
[exer 11.2.29]). Why does this show that the probability of being absorbed in state  is equal to the proportion of G genes
in the starting state? (See Exercise .)

Exercise 

Show that the stepping stone model (Example 11.1.12) is an absorbing Markov chain. Assume that you are playing a game with red
and green squares, in which your fortune at any time is equal to the proportion of red squares at that time. Give an argument to
show that this is a fair game in the sense that your expected winning after each step is just what it was before this step.: Show that
for every possible outcome in which your fortune will decrease by one there is another outcome of exactly the same probability
where it will increase by one.

Use this fact and the results of Exercise  to show that the probability that a particular color wins out is equal to the
proportion of squares that are initially of this color.

Exercise 

Consider a random walker who moves on the integers 0, 1, …, , moving one step to the right with probability  and one step to
the left with probability . If the walker ever reaches 0 or  he stays there. (This is the Gambler’s Ruin problem of
Exercise .) If  show that the function

is a harmonic function (see Exercise ), and if  then
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is a harmonic function. Use this and the result of Exercise  to show that the probability  of being absorbed in state 
starting in state  is

For an alternative derivation of these results see Exercise .

Exercise 

Complete the following alternate proof of Theorem [thm 11.2.3]. Let  be a transient state and  be an absorbing state. If we
compute  in terms of the possibilities on the outcome of the first step, then we have the equation

where the summation is carried out over all transient states . Write this in matrix form, and derive from this equation the
statement

Exercise 

In Monte Carlo roulette (see Example [exam 6.1.5]), under option (c), there are six states ( , , , , , and ). The reader is
referred to Figure [fig 6.1.5], which contains a tree for this option. Form a Markov chain for this option, and use the program
AbsorbingChain to find the probabilities that you win, lose, or break even for a 1 franc bet on red. Using these probabilities, find
the expected winnings for this bet. For a more general discussion of Markov chains applied to roulette, see the article of H. Sagan
referred to in Example [exam 6.7].

Exercise 

We consider next a game called by its inventor W. Penney.  There are two players; the first player picks a pattern A of H’s and T’s,
and then the second player, knowing the choice of the first player, picks a different pattern B. We assume that neither pattern is a
subpattern of the other pattern. A coin is tossed a sequence of times, and the player whose pattern comes up first is the winner. To
analyze the game, we need to find the probability  that pattern A will occur before pattern B and the probability 
that pattern B occurs before pattern A. To determine these probabilities we use the results of Exercises [exer 11.2.26] and [exer
11.2.27]. Here you were asked to show that, the expected time to reach a pattern B for the first time is,

and, starting with pattern A, the expected time to reach pattern B is

a. and thus

Interchange A and B to find a similar equation involving the . Finally, note that

Use these equations to solve for  and .
b. Assume that both players choose a pattern of the same length k. Show that, if , this is a fair game, but, if , the

second player has an advantage no matter what choice the first player makes. (It has been shown that, for , if the first
player chooses , , …, , then the optimal strategy for the second player is of the form , , …,  where  is the better
of the two choices H or T. )
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