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Hypothesis Testing

CO-6: Apply basic concepts of probability, random variation, and commonly used statistical probability distributions.

4b Learning Objectives

LO 6.26: Outline the logic and process of hypothesis testing.

4) Learning Objectives

LO 6.27: Explain what the p-value is and how it is used to draw conclusions.

Video: Hypothesis Testing (8:43)

Introduction
We are in the middle of the part of the course that has to do with inference for one variable.

So far, we talked about point estimation and learned how interval estimation enhances it by quantifying the magnitude of the
estimation error (with a certain level of confidence) in the form of the margin of error. The result is the confidence interval — an
interval that, with a certain confidence, we believe captures the unknown parameter.

We are now moving to the other kind of inference, hypothesis testing. We say that hypothesis testing is “the other kind” because,
unlike the inferential methods we presented so far, where the goal was estimating the unknown parameter, the idea, logic and goal
of hypothesis testing are quite different.

In the first two parts of this section we will discuss the idea behind hypothesis testing, explain how it works, and introduce new
terminology that emerges in this form of inference. The final two parts will be more specific and will discuss hypothesis testing for
the population proportion (p) and the population mean (¢, mu).

If this is your first statistics course, you will need to spend considerable time on this topic as there are many new ideas. Many
students find this process and its logic difficult to understand in the beginning.

In this section, we will use the hypothesis test for a population proportion to motivate our understanding of the process. We will
conduct these tests manually. For all future hypothesis test procedures, including problems involving means, we will use software
to obtain the results and focus on interpreting them in the context of our scenario.

General Idea and Logic of Hypothesis Testing

The purpose of this section is to gradually build your understanding about how statistical hypothesis testing works. We start by
explaining the general logic behind the process of hypothesis testing. Once we are confident that you understand this logic, we will
add some more details and terminology.

To start our discussion about the idea behind statistical hypothesis testing, consider the following example:

v EXAMPLE:

A case of suspected cheating on an exam is brought in front of the disciplinary committee at a certain university.
There are two opposing claims in this case:

e The student’s claim: I did not cheat on the exam.
¢ The instructor’s claim: The student did cheat on the exam.

Adbhering to the principle “innocent until proven guilty,” the committee asks the instructor for evidence to support his claim.
The instructor explains that the exam had two versions, and shows the committee members that on three separate exam
questions, the student used in his solution numbers that were given in the other version of the exam.
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The committee members all agree that it would be extremely unlikely to get evidence like that if the student’s claim of not
cheating had been true. In other words, the committee members all agree that the instructor brought forward strong enough
evidence to reject the student’s claim, and conclude that the student did cheat on the exam.

What does this example have to do with statistics?

While it is true that this story seems unrelated to statistics, it captures all the elements of hypothesis testing and the logic behind it.
Before you read on to understand why, it would be useful to read the example again. Please do so now.

Statistical hypothesis testing is defined as:

o Assessing evidence provided by the data against the null claim (the claim which is to be assumed true unless enough
evidence exists to reject it).

Here is how the process of statistical hypothesis testing works:

1. We have two claims about what is going on in the population. Let’s call them claim 1 (this will be the null claim or
hypothesis) and claim 2 (this will be the alternative). Much like the story above, where the student’s claim is challenged by
the instructor’s claim, the null claim 1 is challenged by the alternative claim 2. (For us, these claims are usually about the value
of population parameter(s) or about the existence or nonexistence of a relationship between two variables in the population).

2. We choose a sample, collect relevant data and summarize them (this is similar to the instructor collecting evidence from the
student’s exam). For statistical tests, this step will also involve checking any conditions or assumptions.

3. We figure out how likely it is to observe data like the data we obtained, if claim 1 is true. (Note that the wording “how likely
...” implies that this step requires some kind of probability calculation). In the story, the committee members assessed how
likely it is to observe evidence such as the instructor provided, had the student’s claim of not cheating been true.

4. Based on what we found in the previous step, we make our decision:

o If, after assuming claim 1 is true, we find that it would be extremely unlikely to observe data as strong as ours or stronger
in favor of claim 2, then we have strong evidence against claim 1, and we reject it in favor of claim 2. Later we will see this
corresponds to a small p-value.

o If, after assuming claim 1 is true, we find that observing data as strong as ours or stronger in favor of claim 2 is NOT VERY
UNLIKELY, then we do not have enough evidence against claim 1, and therefore we cannot reject it in favor of claim 2.
Later we will see this corresponds to a p-value which is not small.

In our story, the committee decided that it would be extremely unlikely to find the evidence that the instructor provided had the
student’s claim of not cheating been true. In other words, the members felt that it is extremely unlikely that it is just a coincidence
(random chance) that the student used the numbers from the other version of the exam on three separate problems. The committee
members therefore decided to reject the student’s claim and concluded that the student had, indeed, cheated on the exam. (Wouldn’t
you conclude the same?)

Hopefully this example helped you understand the logic behind hypothesis testing.

Interactive Applet: Reasoning of a Statistical Test

To strengthen your understanding of the process of hypothesis testing and the logic behind it, let’s look at three statistical examples.

v/ EXAMPLE:

A recent study estimated that 20% of all college students in the United States smoke. The head of Health Services at Goodheart
University (GU) suspects that the proportion of smokers may be lower at GU. In hopes of confirming her claim, the head of
Health Services chooses a random sample of 400 Goodheart students, and finds that 70 of them are smokers.

Let’s analyze this example using the 4 steps outlined above:
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1. Stating the claims: There are two claims here:

o claim 1: The proportion of smokers at Goodheart is 0.20.
o claim 2: The proportion of smokers at Goodheart is less than 0.20.

Claim 1 basically says “nothing special goes on at Goodheart University; the proportion of smokers there is no different
from the proportion in the entire country.” This claim is challenged by the head of Health Services, who suspects that the
proportion of smokers at Goodheart is lower.

2. Choosing a sample and collecting data: A sample of n = 400 was chosen, and summarizing the data revealed that the
sample proportion of smokers is p-hat = 70/400 = 0.175.While it is true that 0.175 is less than 0.20, it is not clear whether
this is strong enough evidence against claim 1. We must account for sampling variation.

3. Assessment of evidence: In order to assess whether the data provide strong enough evidence against claim 1, we need to
ask ourselves: How surprising is it to get a sample proportion as low as p-hat = 0.175 (or lower), assuming claim 1 is true?
In other words, we need to find how likely it is that in a random sample of size n = 400 taken from a population where the
proportion of smokers is p = 0.20 we’ll get a sample proportion as low as p-hat = 0.175 (or lower).It turns out that the
probability that we’ll get a sample proportion as low as p-hat = 0.175 (or lower) in such a sample is roughly 0.106 (do not
worry about how this was calculated at this point — however, if you think about it hopefully you can see that the key is the
sampling distribution of p-hat).

4. Conclusion: Well, we found that if claim 1 were true there is a probability of 0.106 of observing data like that observed or
more extreme. Now you have to decide ...Do you think that a probability of 0.106 makes our data rare enough (surprising
enough) under claim 1 so that the fact that we did observe it is enough evidence to reject claim 1? Or do you feel that a
probability of 0.106 means that data like we observed are not very likely when claim 1 is true, but they are not unlikely
enough to conclude that getting such data is sufficient evidence to reject claim 1. Basically, this is your decision. However,
it would be nice to have some kind of guideline about what is generally considered surprising enough.

v EXAMPLE:

A certain prescription allergy medicine is supposed to contain an average of 245 parts per million (ppm) of a certain chemical.
If the concentration is higher than 245 ppm, the drug will likely cause unpleasant side effects, and if the concentration is below
245 ppm, the drug may be ineffective. The manufacturer wants to check whether the mean concentration in a large shipment is
the required 245 ppm or not. To this end, a random sample of 64 portions from the large shipment is tested, and it is found that
the sample mean concentration is 250 ppm with a sample standard deviation of 12 ppm.

1. Stating the claims:

o Claim 1: The mean concentration in the shipment is the required 245 ppm.
o Claim 2: The mean concentration in the shipment is not the required 245 ppm.

Note that again, claim 1 basically says: “There is nothing unusual about this shipment, the mean concentration is the
required 245 ppm.” This claim is challenged by the manufacturer, who wants to check whether that is, indeed, the case or
not.

2. Choosing a sample and collecting data: A sample of n = 64 portions is chosen and after summarizing the data it is found
that the sample mean concentration is x-bar = 250 and the sample standard deviation is s = 12.Is the fact that x-bar = 250 is
different from 245 strong enough evidence to reject claim 1 and conclude that the mean concentration in the whole
shipment is not the required 245? In other words, do the data provide strong enough evidence to reject claim 1?

3. Assessing the evidence: In order to assess whether the data provide strong enough evidence against claim 1, we need to
ask ourselves the following question: If the mean concentration in the whole shipment were really the required 245 ppm
(i.e., if claim 1 were true), how surprising would it be to observe a sample of 64 portions where the sample mean
concentration is off by 5 ppm or more (as we did)? It turns out that it would be extremely unlikely to get such a result if the
mean concentration were really the required 245. There is only a probability of 0.0007 (i.e., 7 in 10,000) of that happening.
(Do not worry about how this was calculated at this point, but again, the key will be the sampling distribution.)
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4. Making conclusions: Here, it is pretty clear that a sample like the one we observed or more extreme is VERY rare (or
extremely unlikely) if the mean concentration in the shipment were really the required 245 ppm. The fact that we did
observe such a sample therefore provides strong evidence against claim 1, so we reject it and conclude with very little
doubt that the mean concentration in the shipment is not the required 245 ppm.

Do you think that you’re getting it? Let’s make sure, and look at another example.

v/ EXAMPLE:

Is there a relationship between gender and combined scores (Math + Verbal) on the SAT exam?

Following a report on the College Board website, which showed that in 2003, males scored generally higher than females on
the SAT exam, an educational researcher wanted to check whether this was also the case in her school district. The researcher
chose random samples of 150 males and 150 females from her school district, collected data on their SAT performance and
found the following:

Females Males
standard standard
n mean .. n mean ..
deviation deviation
150 1010 206 150 1025 212

Again, let’s see how the process of hypothesis testing works for this example:

1. Stating the claims:

o Claim 1: Performance on the SAT is not related to gender (males and females score the same).
o Claim 2: Performance on the SAT is related to gender — males score higher.

Note that again, claim 1 basically says: “There is nothing going on between the variables SAT and gender.” Claim 2
represents what the researcher wants to check, or suspects might actually be the case.

2. Choosing a sample and collecting data: Data were collected and summarized as given above. Is the fact that the sample
mean score of males (1,025) is higher than the sample mean score of females (1,010) by 15 points strong enough
information to reject claim 1 and conclude that in this researcher’s school district, males score higher on the SAT than
females?

3. Assessment of evidence: In order to assess whether the data provide strong enough evidence against claim 1, we need to
ask ourselves: If SAT scores are in fact not related to gender (claim 1 is true), how likely is it to get data like the data we
observed, in which the difference between the males’ average and females’ average score is as high as 15 points or higher?
It turns out that the probability of observing such a sample result if SAT score is not related to gender is approximately 0.29
(Again, do not worry about how this was calculated at this point).

4. Conclusion: Here, we have an example where observing a sample like the one we observed or more extreme is definitely
not surprising (roughly 30% chance) if claim 1 were true (i.e., if indeed there is no difference in SAT scores between males
and females). We therefore conclude that our data does not provide enough evidence for rejecting claim 1.

Comment:

o Go back and read the conclusion sections of the three examples, and pay attention to the wording. Note that there are two types
of conclusions:
o “The data provide enough evidence to reject claim 1 and accept claim 2”; or

o “The data do not provide enough evidence to reject claim 1.”

In particular, note that in the second type of conclusion we did not say: “I accept claim 1,” but only “I don’t have enough
evidence to reject claim 1.” We will come back to this issue later, but this is a good place to make you aware of this subtle
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difference.

Hopefully by now, you understand the logic behind the statistical hypothesis testing process. Here is a summary:

State Claim 1 and Claim 2. Claim 1
says "nothing special is going on"
and is challenged by Claim 2

J

Collect relevant data and summarize it
$

Assess how surprising it would be
to observe data like that observed
if Claim 1 is true

4

Draw conclusions in context

| Learn by Doing: [.ogic of Hypothesis Testing

Did I Get This?: Logic of Hypothesis Testing

Steps in Hypothesis Testing

CO-6: Apply basic concepts of probability, random variation, and commonly used statistical probability distributions.

4) Learning Objectives

LO 6.26: Outline the logic and process of hypothesis testing.

&) Learning Objectives

LO 6.27: Explain what the p-value is and how it is used to draw conclusions.

Video: Steps in Hypothesis Testing (16:02)

Now that we understand the general idea of how statistical hypothesis testing works, let’s go back to each of the steps and delve
slightly deeper, getting more details and learning some terminology.

Hypothesis Testing Step 1: State the Hypotheses

In all three examples, our aim is to decide between two opposing points of view, Claim 1 and Claim 2. In hypothesis testing, Claim
1 is called the null hypothesis (denoted “Ho“), and Claim 2 plays the role of the alternative hypothesis (denoted “Ha®). As we
saw in the three examples, the null hypothesis suggests nothing special is going on; in other words, there is no change from the
status quo, no difference from the traditional state of affairs, no relationship. In contrast, the alternative hypothesis disagrees with
this, stating that something is going on, or there is a change from the status quo, or there is a difference from the traditional state of
affairs. The alternative hypothesis, Ha, usually represents what we want to check or what we suspect is really going on.

Let’s go back to our three examples and apply the new notation:

In example 1:
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o Ho: The proportion of smokers at GU is 0.20.
e Ha: The proportion of smokers at GU is less than 0.20.

In example 2:

e Ho: The mean concentration in the shipment is the required 245 ppm.
e Ha: The mean concentration in the shipment is not the required 245 ppm.

In example 3:

e Ho: Performance on the SAT is not related to gender (males and females score the same).
e Ha: Performance on the SAT is related to gender — males score higher.

| Learn by Doing: State the Hypotheses

Did I Get This?: State the Hypotheses

Hypothesis Testing Step 2: Collect Data, Check Conditions and Summarize Data

This step is pretty obvious. This is what inference is all about. You look at sampled data in order to draw conclusions about the
entire population. In the case of hypothesis testing, based on the data, you draw conclusions about whether or not there is enough
evidence to reject Ho.

There is, however, one detail that we would like to add here. In this step we collect data and summarize it. Go back and look at the
second step in our three examples. Note that in order to summarize the data we used simple sample statistics such as the sample
proportion (p-hat), sample mean (x-bar) and the sample standard deviation (s).

In practice, you go a step further and use these sample statistics to summarize the data with what’s called a test statistic. We are not
going to go into any details right now, but we will discuss test statistics when we go through the specific tests.

This step will also involve checking any conditions or assumptions required to use the test.

Hypothesis Testing Step 3: Assess the Evidence

As we saw, this is the step where we calculate how likely is it to get data like that observed (or more extreme) when Ho is true. In a
sense, this is the heart of the process, since we draw our conclusions based on this probability.

o If this probability is very small (see example 2), then that means that it would be very surprising to get data like that observed
(or more extreme) if Ho were true. The fact that we did observe such data is therefore evidence against Ho, and we should
reject it.

¢ On the other hand, if this probability is not very small (see example 3) this means that observing data like that observed (or
more extreme) is not very surprising if Ho were true. The fact that we observed such data does not provide evidence against Ho.
This crucial probability, therefore, has a special name. It is called the p-value of the test.

In our three examples, the p-values were given to you (and you were reassured that you didn’t need to worry about how these were
derived yet):

o Example 1: p-value = 0.106
e Example 2: p-value = 0.0007
e Example 3: p-value = 0.29

Obviously, the smaller the p-value, the more surprising it is to get data like ours (or more extreme) when Ho is true, and therefore,
the stronger the evidence the data provide against Ho.

Looking at the three p-values of our three examples, we see that the data that we observed in example 2 provide the strongest
evidence against the null hypothesis, followed by example 1, while the data in example 3 provides the least evidence against Ho.

Comment:

¢ Right now we will not go into specific details about p-value calculations, but just mention that since the p-value is the
probability of getting data like those observed (or more extreme) when Ho is true, it would make sense that the calculation of
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the p-value will be based on the data summary, which, as we mentioned, is the test statistic. Indeed, this is the case. In practice,
we will mostly use software to provide the p-value for us.

Hypothesis Testing Step 4: Making Conclusions

Since our statistical conclusion is based on how small the p-value is, or in other words, how surprising our data are when Ho is
true, it would be nice to have some kind of guideline or cutoff that will help determine how small the p-value must be, or how
“rare” (unlikely) our data must be when Ho is true, for us to conclude that we have enough evidence to reject Ho.

This cutoff exists, and because it is so important, it has a special name. It is called the significance level of the test and is usually
denoted by the Greek letter a (alpha). The most commonly used significance level is o (alpha) = 0.05 (or 5%). This means that:

o if the p-value < a (alpha) (usually 0.05), then the data we obtained is considered to be “rare (or surprising) enough” under the
assumption that Ho is true, and we say that the data provide statistically significant evidence against Ho, so we reject Ho and
thus accept Ha.

o if the p-value > a (alpha)(usually 0.05), then our data are not considered to be “surprising enough” under the assumption that
Ho is true, and we say that our data do not provide enough evidence to reject Ho (or, equivalently, that the data do not provide
enough evidence to accept Ha).

Now that we have a cutoff to use, here are the appropriate conclusions for each of our examples based upon the p-values we were
given.

In Example 1:

o Using our cutoff of 0.05, we fail to reject Ho.

e Conclusion: There IS NOT enough evidence that the proportion of smokers at GU is less than 0.20

o Still we should consider: Does the evidence seen in the data provide any practical evidence towards our alternative
hypothesis?

In Example 2:

o Using our cutoff of 0.05, we reject Ho.

e Conclusion: There IS enough evidence that the mean concentration in the shipment is not the required 245 ppm.

 Still we should consider: Does the evidence seen in the data provide any practical evidence towards our alternative
hypothesis?

In Example 3:

o Using our cutoff of 0.05, we fail to reject Ho.

o Conclusion: There IS NOT enough evidence that males score higher on average than females on the SAT.

o Still we should consider: Does the evidence seen in the data provide any practical evidence towards our alternative
hypothesis?

Notice that all of the above conclusions are written in terms of the alternative hypothesis and are given in the context of the
situation. In no situation have we claimed the null hypothesis is true. Be very careful of this and other issues discussed in the
following comments.

Comments:

1. Although the significance level provides a good guideline for drawing our conclusions, it should not be treated as an
incontrovertible truth. There is a lot of room for personal interpretation. What if your p-value is 0.052? You might want to stick
to the rules and say “0.052 > 0.05 and therefore I don’t have enough evidence to reject Ho”, but you might decide that 0.052 is
small enough for you to believe that Ho should be rejected. It should be noted that scientific journals do consider 0.05 to be the
cutoff point for which any p-value below the cutoff indicates enough evidence against Ho, and any p-value above it, or even
equal to it, indicates there is not enough evidence against Ho. Although a p-value between 0.05 and 0.10 is often reported as
marginally statistically significant.

2. It is important to draw your conclusions in context. It is never enough to say: “p-value = ..., and therefore I have enough
evidence to reject Ho at the 0.05 significance level.” You should always word your conclusion in terms of the data.
Although we will use the terminology of “rejecting Ho” or “failing to reject Ho” — this is mostly due to the fact that we are
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instructing you in these concepts. In practice, this language is rarely used. We also suggest writing your conclusion in terms of
the alternative hypothesis.Is there or is there not enough evidence that the alternative hypothesis is true?

3. Let’s go back to the issue of the nature of the two types of conclusions that I can make.

o Either I reject Ho (when the p-value is smaller than the significance level)
o or I cannot reject Ho (when the p-value is larger than the significance level).

As we mentioned earlier, note that the second conclusion does not imply that I accept Ho, but just that I don’t have enough
evidence to reject it. Saying (by mistake) “I don’t have enough evidence to reject Ho so I accept it” indicates that the data provide
evidence that Ho is true, which is not necessarily the case. Consider the following slightly artificial yet effective example:

v EXAMPLE:

An employer claims to subscribe to an “equal opportunity” policy, not hiring men any more often than women for managerial
positions. Is this credible? You’re not sure, so you want to test the following two hypotheses:

o Ho: The proportion of male managers hired is 0.5
o Ha: The proportion of male managers hired is more than 0.5

Data: You choose at random three of the new managers who were hired in the last 5 years and find that all 3 are men.

Assessing Evidence: If the proportion of male managers hired is really 0.5 (Ho is true), then the probability that the random
selection of three managers will yield three males is therefore 0.5 * 0.5 * 0.5 = 0.125. This is the p-value (using the
multiplication rule for independent events).

Conclusion: Using 0.05 as the significance level, you conclude that since the p-value = 0.125 > 0.05, the fact that the three
randomly selected managers were all males is not enough evidence to reject the employer’s claim of subscribing to an equal
opportunity policy (Ho).

However, the data (all three selected are males) definitely does NOT provide evidence to accept the employer’s claim
(Ho).

| Learn By Doing: Using p-values

Did I Get This?: Using p-values

Comment about wording: Another common wording in scientific journals is:

e “The results are statistically significant” — when the p-value < a (alpha).
e “The results are not statistically significant” — when the p-value > « (alpha).

Often you will see significance levels reported with additional description to indicate the degree of statistical significance. A
general guideline (although not required in our course) is:

e If 0.01 < p-value < 0.05, then the results are (statistically) significant.

e If 0.001 < p-value < 0.01, then the results are highly statistically significant.

o If p-value < 0.001, then the results are very highly statistically significant.

o If p-value > 0.05, then the results are not statistically significant (NS).

e If 0.05 < p-value < 0.10, then the results are marginally statistically significant.

Let's summarize

We learned quite a lot about hypothesis testing. We learned the logic behind it, what the key elements are, and what types of
conclusions we can and cannot draw in hypothesis testing. Here is a quick recap:
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Video: Hypothesis Testing Overview (2:20)

Here are a few more activities if you need some additional practice.

Did I Get This?: Hypothesis Testing Overview

Comments:

o Notice that the p-value is an example of a conditional probability. We calculate the probability of obtaining results like those
of our data (or more extreme) GIVEN the null hypothesis is true. We could write P(Obtaining results like ours or more extreme |
Ho is True).

o Another common phrase used to define the p-value is: “The probability of obtaining a statistic as or more extreme than
your result given the null hypothesis is TRUE“.
o We could write P(Obtaining a test statistic as or more extreme than ours | Ho is True).
o In this case we are asking “Assuming the null hypothesis is true, how rare is it to observe something as or more extreme
than what I have found in my data?”
o If after assuming the null hypothesis is true, what we have found in our data is extremely rare (small p-value), this provides
evidence to reject our assumption that Ho is true in favor of Ha.

o The p-value can also be thought of as the probability, assuming the null hypothesis is true, that the result we have seen is
solely due to random error (or random chance). We have already seen that statistics from samples collected from a
population vary. There is random error or random chance involved when we sample from populations.

In this setting, if the p-value is very small, this implies, assuming the null hypothesis is true, that it is extremely unlikely that the
results we have obtained would have happened due to random error alone, and thus our assumption (Ho) is rejected in favor of the
alternative hypothesis (Ha).

o Itis EXTREMELY important that you find a definition of the p-value which makes sense to you. New students often
need to contemplate this idea repeatedly through a variety of examples and explanations before becoming comfortable
with this idea. It is one of the two most important concepts in statistics (the other being confidence intervals).

Remember:

o We infer that the alternative hypothesis is true ONLY by rejecting the null hypothesis.
o A statistically significant result is one that has a very low probability of occurring if the null hypothesis is true.
o Results which are statistically significant may or may not have practical significance and vice versa.

Error and Power

CO-6: Apply basic concepts of probability, random variation, and commonly used statistical probability distributions.

4d Learning Objectives

LO 6.28: Define a Type I and Type II error in general and in the context of specific scenarios.

&) Learning Objectives

LO 6.29: Explain the concept of the power of a statistical test including the relationship between power, sample size, and
effect size.
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Video: Errors and Power (12:03)

Type | and Type Il Errors in Hypothesis Tests

We have not yet discussed the fact that we are not guaranteed to make the correct decision by this process of hypothesis testing.
Maybe you are beginning to see that there is always some level of uncertainty in statistics.

Let’s think about what we know already and define the possible errors we can make in hypothesis testing. When we conduct a
hypothesis test, we choose one of two possible conclusions based upon our data.

If the p-value is smaller than your pre-specified significance level (a, alpha), you reject the null hypothesis and either
¢ You have made the correct decision since the null hypothesis is false

OR

¢ You have made an error (Type I) and rejected Ho when in fact Ho is true (your data happened to be a RARE EVENT under
Ho)

If the p-value is greater than (or equal to) your chosen significance level («, alpha), you fail to reject the null hypothesis
and either

¢ You have made the correct decision since the null hypothesis is true
OR

¢ You have made an error (Type II) and failed to reject Ho when in fact Ho is false (the alternative hypothesis, Ha, is true)

The following summarizes the four possible results which can be obtained from a hypothesis test. Notice the rows represent the
decision made in the hypothesis test and the columns represent the (usually unknown) truth in reality.

Although the truth is unknown in practice — or we would not be conducting the test — we know it must be the case that either the
null hypothesis is true or the null hypothesis is false. It is also the case that either decision we make in a hypothesis test can
result in an incorrect conclusion!

A TYPE I Error occurs when we Reject Ho when, in fact, Ho is True. In this case, we mistakenly reject a true null
hypothesis.

e P(TYPE I Error) = P(Reject Ho | Ho is True) = a = alpha = Significance Level

A TYPE 1II Error occurs when we fail to Reject Ho when, in fact, Ho is False. In this case we fail to reject a false null
hypothesis.

e P(TYPE II Error) = P(Fail to Reject Ho | Ho is False) = 3 = beta
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When our significance level is 5%, we are saying that we will allow ourselves to make a Type I error less than 5% of the time. In
the long run, if we repeat the process, 5% of the time we will find a p-value < 0.05 when in fact the null hypothesis was true.

In this case, our data represent a rare occurrence which is unlikely to happen but is still possible. For example, suppose we toss a
coin 10 times and obtain 10 heads, this is unlikely for a fair coin but not impossible. We might conclude the coin is unfair when in
fact we simply saw a very rare event for this fair coin.

Our testing procedure CONTROLS for the Type I error when we set a pre-determined value for the significance level.

Notice that these probabilities are conditional probabilities. This is one more reason why conditional probability is an important
concept in statistics.

Unfortunately, calculating the probability of a Type II error requires us to know the truth about the population. In practice we can
only calculate this probability using a series of “what if” calculations which depend upon the type of problem.

Comment: As you initially read through the examples below, focus on the broad concepts instead of the small details. It is not
important to understand how to calculate these values yourself at this point.

e Try to understand the pictures we present. Which pictures represent an assumed null hypothesis and which represent an
alternative?

o It may be useful to come back to this page (and the activities here) after you have reviewed the rest of the section on
hypothesis testing and have worked a few problems yourself.

Interactive Applet: Statistical Significance

Here are two examples of using an older version of this applet. It looks slightly different but the same settings and options are
available in the version above.

In both cases we will consider IQ scores.

Our null hypothesis is that the true mean is 100. Assume the standard deviation is 16 and we will specify a significance level of
5%.

v/ EXAMPLE:

In this example we will specify that the true mean is indeed 100 so that the null hypothesis is true. Most of the time (95%),
when we generate a sample, we should fail to reject the null hypothesis since the null hypothesis is indeed true.

Here is one sample that results in a correct decision:

@ H_tu= 100 n= 10
Update
Hpiw= 100 © Hyips 100 T= 16 2
- Reset
£ OH = 100 t= 005 =B
i=105.00
/
/
!
/
/ |
. -y " I L3

' '
a0.00 90,00 100,00 11000 12000
Mot significant at level 0.05

I have data, and the observed 2is &= o
oR

The truth about the population (s g = 100
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In the sample above, we obtain an x-bar of 105, which is drawn on the distribution which assumes p (mu) = 100 (the null
hypothesis is true). Notice the sample is shown as blue dots along the x-axis and the shaded region shows for which values of
x-bar we would reject the null hypothesis. In other words, we would reject Ho whenever the x-bar falls in the shaded region.

Enter the same values and generate samples until you obtain a Type I error (you falsely reject the null hypothesis). You should
see something like this:

& Hyiu= 100 n= 19

Update
Hye= 100 oM WE 100 o= 15 i’
Reset

[}

=

© OH W 100 0= 005

i=111.00

LN

80.00 90.00 100.00 110,00 120,00

Signiticant at level 0.05
I have gata, and the observed &isf= 0 Test I

OR

The truth about the population is p= 100

If you were to generate 100 samples, you should have around 5% where you rejected Ho. These would be samples which
would result in a Type I error.

The previous example illustrates a correct decision and a Type I error when the null hypothesis is true. The next example illustrates
a correct decision and Type II error when the null hypothesis is false. In this case, we must specify the true population mean.

v EXAMPLE:

Let’s suppose we are sampling from an honors program and that the true mean IQ for this population is 110. We do not know
the probability of a Type II error without more detailed calculations.

Let’s start with a sample which results in a correct decision.

@ Hyiu= 100 n= 10

Hp:u= 100 ©oHSuE 100 7= 1 u:dale
aset
© Hyw= 100 o= 00§ =
= 111.00
I _'—/I' I - \“.L_- L]
80,00 50,00 100.00 110,00 120.00

Significant at level 0.05

| have data, and the obgewved ki = g

OR

The truth about the population is p= 110

In the sample above, we obtain an x-bar of 111, which is drawn on the distribution which assumes p (mu) = 100 (the null
hypothesis is true).

Enter the same values and generate samples until you obtain a Type II error (you fail to reject the null hypothesis). You should
see something like this:
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@ Hyue 100 n= 10

Update
Hg U= 100 © Hyiws 100 r= 1 L
. @ Reset
o« Ha- B= 100 o= 005 =2
8000 490,00 100.00 11000 12000

Net significant at level 0.05

I have data, and the observed i is &= g
oR

The truth about the population s 0= 110

You should notice that in this case (when Ho is false), it is easier to obtain an incorrect decision (a Type II error) than it was in
the case where Ho is true. If you generate 100 samples, you can approximate the probability of a Type II error.

We can find the probability of a Type II error by visualizing both the assumed distribution and the true distribution together.
The image below is adapted from an applet we will use when we discuss the power of a statistical test.

& H_p>* 100
# n= 10 €= 005 3

Hg k= 100 © Hips 100
T= 15 alt p= 110

L Ha:u + 100

Must be above blue
line to reject Ho

To.80

Pi(Fail to Reject | j = 110) = 0.374

79.80 8990 100,00

Update | Reset

There is a 37.4% chance that, in the long run, we will make a Type II error and fail to reject the null hypothesis when in fact
the true mean IQ is 110 in the population from which we sample our 10 individuals.

Can you visualize what will happen if the true population mean is really 115 or 108? When will the Type II error increase?
When will it decrease? We will look at this idea again when we discuss the concept of power in hypothesis tests.

Comments:

o It is important to note that there is a trade-off between the probability of a Type I and a Type II error. If we decrease the
probability of one of these errors, the probability of the other will increase! The practical result of this is that if we require
stronger evidence to reject the null hypothesis (smaller significance level = probability of a Type I error), we will increase the
chance that we will be unable to reject the null hypothesis when in fact Ho is false (increases the probability of a Type II error).

e When o (alpha) = 0.05 we obtained a Type II error probability of 0.374 = 3 = beta
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@ Hou» 100
N LENT) €= 005 B

Hgip= 100 O H s 100
o= 1§ alt.p= 110

- Hau* 100

Must be above blue
line to reject Ho

7980

P(Fail to Reject | p=110) = 0374

7930 89.90 100.00 110,00 120,00

Update | Resel I

e When o (alpha) = 0.01 (smaller than before) we obtain a Type II error probability of 0.644 = 3 = beta (larger than before)

& Hou= 100
a n= 1 0= 001
Hpu= 100 © Hyu< 100
o= 18 alp= 110
© Hyw= 100
a=0.01

Must be above blue
line ta reject Ho

79.80 59.90 100.00 100

P(Fail to Reject | 1y = 110) = 0644

7a9.80 84.90 100.00 110.00

Update | Reset

e As the blue line in the picture moves farther right, the significance level (a, alpha) is decreasing and the Type II error
probability is increasing.

o As the blue line in the picture moves farther left, the significance level (, alpha) is increasing and the Type II error probability
is decreasing

Let’s return to our very first example and define these two errors in context.

v EXAMPLE:

A case of suspected cheating on an exam is brought in front of the disciplinary committee at a certain university.

There are two opposing claims in this case:

e Ho = The student’s claim: I did not cheat on the exam.

o Ha = The instructor’s claim: The student did cheat on the exam.

Adhering to the principle “innocent until proven guilty,” the committee asks the instructor for evidence to support his claim.
There are four possible outcomes of this process. There are two possible correct decisions:

e The student did cheat on the exam and the instructor brings enough evidence to reject Ho and conclude the student did
cheat on the exam. This is a CORRECT decision!
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e The student did not cheat on the exam and the instructor fails to provide enough evidence that the student did cheat on the
exam. This is a CORRECT decision!

Both the correct decisions and the possible errors are fairly easy to understand but with the errors, you must be careful to
identify and define the two types correctly.

TYPE I Error: Reject Ho when Ho is True

o The student did not cheat on the exam but the instructor brings enough evidence to reject Ho and conclude the student
cheated on the exam. This is a Type I Error.

TYPE II Error: Fail to Reject Ho when Ho is False

e The student did cheat on the exam but the instructor fails to provide enough evidence that the student cheated on the exam.
This is a Type II Error.

In most situations, including this one, it is more “acceptable” to have a Type II error than a Type I error. Although allowing a
student who cheats to go unpunished might be considered a very bad problem, punishing a student for something he or she did
not do is usually considered to be a more severe error. This is one reason we control for our Type I error in the process of
hypothesis testing.

Did I Get This?: Type I and Type II Errors (in context)

Comment:

o The probabilities of Type I and Type II errors are closely related to the concepts of sensitivity and specificity that we discussed
previously. Consider the following hypotheses:

Ho: The individual does not have diabetes (status quo, nothing special happening)
Ha: The individual does have diabetes (something is going on here)
In this setting:

When someone tests positive for diabetes we would reject the null hypothesis and conclude the person has diabetes (we may or
may not be correct!).

When someone tests negative for diabetes we would fail to reject the null hypothesis so that we fail to conclude the person has
diabetes (we may or may not be correct!)

Let’s take it one step further:

Sensitivity = P(Test + | Have Disease) which in this setting equals

P(Reject Ho | Ho is False) = 1 — P(Fail to Reject Ho | Ho is False) =1 — 3 = 1 — beta
Specificity = P(Test — | No Disease) which in this setting equals

P(Fail to Reject Ho | Ho is True) = 1 — P(Reject Ho | Ho is True) = 1 — o = 1 — alpha

Notice that sensitivity and specificity relate to the probability of making a correct decision whereas o (alpha) and 3 (beta) relate to
the probability of making an incorrect decision.

Usually o (alpha) = 0.05 so that the specificity listed above is 0.95 or 95%.

Next, we will see that the sensitivity listed above is the power of the hypothesis test!
Reasons for a Type | Error in Practice

Assuming that you have obtained a quality sample:

o The reason for a Type I error is random chance.
o When a Type I error occurs, our observed data represented a rare event which indicated evidence in favor of the alternative
hypothesis even though the null hypothesis was actually true.
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Reasons for a Type Il Error in Practice
Again, assuming that you have obtained a quality sample, now we have a few possibilities depending upon the true difference that
exists.

e The sample size is too small to detect an important difference. This is the worst case, you should have obtained a larger sample.
In this situation, you may notice that the effect seen in the sample seems PRACTICALLY significant and yet the p-value is not
small enough to reject the null hypothesis.

e The sample size is reasonable for the important difference but the true difference (which might be somewhat meaningful or
interesting) is smaller than your test was capable of detecting. This is tolerable as you were not interested in being able to detect
this difference when you began your study. In this situation, you may notice that the effect seen in the sample seems to have
some potential for practical significance.

o The sample size is more than adequate, the difference that was not detected is meaningless in practice. This is not a problem at

all and is in effect a “correct decision” since the difference you did not detect would have no practical meaning.
o Note: We will discuss the idea of practical significance later in more detail.

Power of a Hypothesis Test

It is often the case that we truly wish to prove the alternative hypothesis. It is reasonable that we would be interested in the
probability of correctly rejecting the null hypothesis. In other words, the probability of rejecting the null hypothesis, when in fact
the null hypothesis is false. This can also be thought of as the probability of being able to detect a (pre-specified) difference of
interest to the researcher.

Let’s begin with a realistic example of how power can be described in a study.

v EXAMPLE:

In a clinical trial to study two medications for weight loss, we have an 80% chance to detect a difference in the weight loss
between the two medications of 10 pounds. In other words, the power of the hypothesis test we will conduct is 80%.

In other words, if one medication comes from a population with an average weight loss of 25 pounds and the other comes from
a population with an average weight loss of 15 pounds, we will have an 80% chance to detect that difference using the sample
we have in our trial.

If we were to repeat this trial many times, 80% of the time we will be able to reject the null hypothesis (that there is no
difference between the medications) and 20% of the time we will fail to reject the null hypothesis (and make a Type II error!).

The difference of 10 pounds in the previous example, is often called the effect size. The measure of the effect differs depending on
the particular test you are conducting but is always some measure related to the true effect in the population. In this example, it is
the difference between two population means.

Recall the definition of a Type II error:

A TYPE 1II Error occurs when we fail to Reject Ho when, in fact, Ho is False. In this case we fail to reject a false null
hypothesis.

P(TYPE II Error) = P(Fail to Reject Ho | Ho is False) = § = beta
Notice that P(Reject Ho | Ho is False) = 1 — P(Fail to Reject Ho | Ho is False) = 1 — 8 = 1- beta.

The POWER of a hypothesis test is the probability of rejecting the null hypothesis when the null hypothesis is false. This
can also be stated as the probability of correctly rejecting the null hypothesis.

POWER = P(Reject Ho | Ho is False) =1 — B = 1 — beta

Power is the test’s ability to correctly reject the null hypothesis. A test with high power has a good chance of being able to
detect the difference of interest to us, if it exists.
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As we mentioned on the bottom of the previous page, this can be thought of as the sensitivity of the hypothesis test if you imagine
Ho = No disease and Ha = Disease.

Factors Affecting the Power of a Hypothesis Test
The power of a hypothesis test is affected by numerous quantities (similar to the margin of error in a confidence interval).
Assume that the null hypothesis is false for a given hypothesis test. All else being equal, we have the following:

o Larger samples result in a greater chance to reject the null hypothesis which means an increase in the power of the hypothesis
test.

o If the effect size is larger, it will become easier for us to detect. This results in a greater chance to reject the null hypothesis
which means an increase in the power of the hypothesis test. The effect size varies for each test and is usually closely related to
the difference between the hypothesized value and the true value of the parameter under study.

o From the relationship between the probability of a Type I and a Type II error (as o (alpha) decreases, 3 (beta) increases), we can
see that as a (alpha) decreases, Power = 1 — 3 = 1 — beta also decreases.

e There are other mathematical ways to change the power of a hypothesis test, such as changing the population standard
deviation; however, these are not quantities that we can usually control so we will not discuss them here.

In practice, we specify a significance level and a desired power to detect a difference which will have practical meaning
to us and this determines the sample size required for the experiment or study.

For most grants involving statistical analysis, power calculations must be completed to illustrate that the study will have a
reasonable chance to detect an important effect. Otherwise, the money spent on the study could be wasted. The goal is usually to
have a power close to 80%.

For example, if there is only a 5% chance to detect an important difference between two treatments in a clinical trial, this would
result in a waste of time, effort, and money on the study since, when the alternative hypothesis is true, the chance a treatment effect
can be found is very small.

Comment:

o In order to calculate the power of a hypothesis test, we must specify the “truth.” As we mentioned previously when discussing
Type II errors, in practice we can only calculate this probability using a series of “what if” calculations which depend upon the
type of problem.

The following activity involves working with an interactive applet to study power more carefully.
| Learn by Doing: Power of Hypothesis Tests
The following reading is an excellent discussion about Type I and Type II errors.

(Optional) Outside Reading: A Good Discussion of Power (% 2500 words)

We will not be asking you to perform power calculations manually. You may be asked to use online calculators and applets. Most
statistical software packages offer some ability to complete power calculations. There are also many online calculators for power
and sample size on the internet, for example, Russ Lenth’s power and sample-size page.

Proportions (Introduction & Step 1)

CO-4: Distinguish among different measurement scales, choose the appropriate descriptive and inferential statistical methods
based on these distinctions, and interpret the results.
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4} Learning Objectives

LO 4.33: In a given context, distinguish between situations involving a population proportion and a population mean and
specify the correct null and alternative hypothesis for the scenario.

4b Learning Objectives

LO 4.34: Carry out a complete hypothesis test for a population proportion by hand.

CO-6: Apply basic concepts of probability, random variation, and commonly used statistical probability distributions.

&) Learning Objectives

LO 6.26: Outline the logic and process of hypothesis testing.

Video: Proportions (Introduction & Step 1) (7:18)

Now that we understand the process of hypothesis testing and the logic behind it, we are ready to start learning about specific
statistical tests (also known as significance tests).

The first test we are going to learn is the test about the population proportion (p).
This test is widely known as the “z-test for the population proportion (p).”

Introduction
We will understand later where the “z-test” part is coming from.

This will be the only type of problem you will complete entirely “by-hand” in this course. Our goal is to use this example to give
you the tools you need to understand how this process works. After working a few problems, you should review the earlier material
again. You will likely need to review the terminology and concepts a few times before you fully understand the process.

In reality, you will often be conducting more complex statistical tests and allowing software to provide the p-value. In these settings
it will be important to know what test to apply for a given situation and to be able to explain the results in context.
Review: Types of Variables

When we conduct a test about a population proportion, we are working with a categorical variable. Later in the course, after we
have learned a variety of hypothesis tests, we will need to be able to identify which test is appropriate for which situation.
Identifying the variable as categorical or quantitative is an important component of choosing an appropriate hypothesis test.

Learn by Doing: Review Types of Variables

One Sample Z-Test for a Population Proportion

In this part of our discussion on hypothesis testing, we will go into details that we did not go into before. More specifically, we will
use this test to introduce the idea of a test statistic, and details about how p-values are calculated.

Let’s start by introducing the three examples, which will be the leading examples in our discussion. Each example is followed by a
figure illustrating the information provided, as well as the question of interest.
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A machine is known to produce 20% defective products, and is therefore sent for repair. After the machine is repaired, 400
products produced by the machine are chosen at random and 64 of them are found to be defective. Do the data provide enough
evidence that the proportion of defective products produced by the machine (p) has been reduced as a result of the repair?

The following figure displays the information, as well as the question of interest:

Products produced by the machine Sample (400 products)
(fulluv\fﬁf;tjéfpair) L "'\

T . (\ 64 defective |

Defective 47; P \ ~ _7_,_,./
/ i . i AY

/ Question:is p still

[ 0.20 or has it been

| reduced?

The question of interest helps us formulate the null and alternative hypotheses in terms of p, the proportion of defective
products produced by the machine following the repair:

Ho: p = 0.20 (No change; the repair did not help).

Ha: p < 0.20 (The repair was effective at reducing the proportion of defective parts).

v/ EXAMPLE:

There are rumors that students at a certain liberal arts college are more inclined to use drugs than U.S. college students in
general. Suppose that in a simple random sample of 100 students from the college, 19 admitted to marijuana use. Do the data
provide enough evidence to conclude that the proportion of marijuana users among the students in the college (p) is higher
than the national proportion, which is 0.157? (This number is reported by the Harvard School of Public Health.)

Again, the following figure displays the information as well as the question of interest:

Students at the college

TN /7 19use

Use marijuana P "\ marijuana ./
/ Question: is p 0.157 ", T

(like the national )

| figure) or higher?

Sample (100 students)

As before, we can formulate the null and alternative hypotheses in terms of p, the proportion of students in the college who use
marijuana:

Ho: p = 0.157 (same as among all college students in the country).

Ha: p > 0.157 (higher than the national figure).

v EXAMPLE:

Polls on certain topics are conducted routinely in order to monitor changes in the public’s opinions over time. One such topic is
the death penalty. In 2003 a poll estimated that 64% of U.S. adults support the death penalty for a person convicted of murder.
In a more recent poll, 675 out of 1,000 U.S. adults chosen at random were in favor of the death penalty for convicted
murderers. Do the results of this poll provide evidence that the proportion of U.S. adults who support the death penalty for
convicted murderers (p) changed between 2003 and the later poll?

Here is a figure that displays the information, as well as the question of interest:
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US adults Sample (1000 US adults)
Support the ~ ™
death penalty G \\.\
/’ Question: hasp )
| changed since 2003 |
(when it was 0.64)7

PN
L 675 in fa\mr//I

Again, we can formulate the null and alternative hypotheses in term of p, the proportion of U.S. adults who support the death
penalty for convicted murderers.

Ho: p = 0.64 (No change from 2003).
Ha: p # 0.64 (Some change since 2003).

| Learn by Doing: Proportions (Overview)

| Did I Get This?: Proportions (Overview)

Recall that there are basically 4 steps in the process of hypothesis testing:

e STEP 1: State the appropriate null and alternative hypotheses, Ho and Ha.

e STEP 2: Obtain a random sample, collect relevant data, and check whether the data meet the conditions under which the
test can be used. If the conditions are met, summarize the data using a test statistic.

e STEP 3: Find the p-value of the test.

o STEP 4: Based on the p-value, decide whether or not the results are statistically significant and draw your conclusions in
context.

¢ Note: In practice, we should always consider the practical significance of the results as well as the statistical significance.

We are now going to go through these steps as they apply to the hypothesis testing for the population proportion p. It should be
noted that even though the details will be specific to this particular test, some of the ideas that we will add apply to hypothesis
testing in general.

Step 1. Stating the Hypotheses

Here again are the three set of hypotheses that are being tested in each of our three examples:

v EXAMPLE:

Has the proportion of defective products been reduced as a result of the repair?
e Ho: p = 0.20 (No change; the repair did not help).

e Ha: p <0.20 (The repair was effective at reducing the proportion of defective parts).

v EXAMPLE:

Is the proportion of marijuana users in the college higher than the national figure?
e Ho: p =0.157 (same as among all college students in the country).

o Ha: p > 0.157 (higher than the national figure).

v EXAMPLE:

Did the proportion of U.S. adults who support the death penalty change between 2003 and a later poll?
e Ho: p = 0.64 (No change from 2003).
e Ha: p # 0.64 (Some change since 2003).
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The null hypothesis always takes the form:

o Ho: p = some value

and the alternative hypothesis takes one of the following three forms:
e Ha: p < that value (like in example 1) or

e Ha: p > that value (like in example 2) or

e Ha: p # that value (like in example 3).

Note that it was quite clear from the context which form of the alternative hypothesis would be appropriate. The value that is
specified in the null hypothesis is called the null value, and is generally denoted by p,. We can say, therefore, that in general the
null hypothesis about the population proportion (p) would take the form:

» Ho:p=po

We write Ho: p = pg to say that we are making the hypothesis that the population proportion has the value of py. In other words, p is
the unknown population proportion and pg is the number we think p might be for the given situation.

The alternative hypothesis takes one of the following three forms (depending on the context):
e Ha: p < pg (one-sided)
e Ha: p > pg (one-sided)
e Ha: p # py (two-sided)

The first two possible forms of the alternatives (where the = sign in Ho is challenged by < or >) are called one-sided alternatives,
and the third form of alternative (where the = sign in Ho is challenged by #) is called a two-sided alternative. To understand the
intuition behind these names let’s go back to our examples.

Example 3 (death penalty) is a case where we have a two-sided alternative:
e Ho: p = 0.64 (No change from 2003).
e Ha: p # 0.64 (Some change since 2003).

In this case, in order to reject Ho and accept Ha we will need to get a sample proportion of death penalty supporters which is very
different from 0.64 in either direction, either much larger or much smaller than 0.64.

In example 2 (marijuana use) we have a one-sided alternative:
e Ho: p =0.157 (same as among all college students in the country).
e Ha: p > 0.157 (higher than the national figure).

Here, in order to reject Ho and accept Ha we will need to get a sample proportion of marijuana users which is much higher than
0.157.

Similarly, in example 1 (defective products), where we are testing:
e Ho: p = 0.20 (No change; the repair did not help).
e Ha: p <0.20 (The repair was effective at reducing the proportion of defective parts).

in order to reject Ho and accept Ha, we will need to get a sample proportion of defective products which is much smaller than
0.20.

| Learn by Doing: State Hypotheses (Proportions)

Did I Get This?: State Hypotheses (Proportions)
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Proportions (Step 2)

CO-4: Distinguish among different measurement scales, choose the appropriate descriptive and inferential statistical methods
based on these distinctions, and interpret the results.

4) Learning Objectives

LO 4.33: In a given context, distinguish between situations involving a population proportion and a population mean and
specify the correct null and alternative hypothesis for the scenario.

4b Learning Objectives

LO 4.34: Carry out a complete hypothesis test for a population proportion by hand.

CO-6: Apply basic concepts of probability, random variation, and commonly used statistical probability distributions.

&) Learning Objectives

LO 6.26: Outline the logic and process of hypothesis testing.

Video: Proportions (Step 2) (12:38)

Step 2. Collect Data, Check Conditions, and Summarize Data

After the hypotheses have been stated, the next step is to obtain a sample (on which the inference will be based), collect relevant
data, and summarize them.

It is extremely important that our sample is representative of the population about which we want to draw conclusions. This is
ensured when the sample is chosen at random. Beyond the practical issue of ensuring representativeness, choosing a random
sample has theoretical importance that we will mention later.

In the case of hypothesis testing for the population proportion (p), we will collect data on the relevant categorical variable from the
individuals in the sample and start by calculating the sample proportion p-hat (the natural quantity to calculate when the parameter
of interest is p).

Let’s go back to our three examples and add this step to our figures.

v/ EXAMPLE:

Has the proportion of defective products been reduced as a result of the repair?
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Is the proportion of marijuana users in the college higher than the national figure?

Students at the college Sample (100 students)
) T T 77 1ouse
Use marijuana P ‘\\_Vmarijuana __/'

/ Question:is p 0.157

p=19/100=19

(like the national |
figure) or higher?
el

v/ EXAMPLE:

Did the proportion of U.S. adults who support the death penalty change between 2003 and a later poll?

As we mentioned earlier without going into details, when we summarize the data in hypothesis testing, we go a step beyond
calculating the sample statistic and summarize the data with a test statistic. Every test has a test statistic, which to some degree
captures the essence of the test. In fact, the p-value, which so far we have looked upon as “the king” (in the sense that everything is
determined by it), is actually determined by (or derived from) the test statistic. We will now introduce the test statistic.

The test statistic is a measure of how far the sample proportion p-hat is from the null value p,, the value that the null hypothesis
claims is the value of p. In other words, since p-hat is what the data estimates p to be, the test statistic can be viewed as a measure
of the “distance” between what the data tells us about p and what the null hypothesis claims p to be.

Let’s use our examples to understand this:

v/ EXAMPLE:

Has the proportion of defective products been reduced as a result of the repair?

Products produced by the machine Sample (400 products)
[follomlil_g t—himpalr) //- \
-~ T (_s4defective )
Defective 17@ p \ ~ i
/ Question:is pstill
[ 0.200orhasitbeen |

|
| reduced?

+|

The parameter of interest is p, the proportion of defective products following the repair.
The data estimate p to be p-hat = 0.16

The null hypothesis claims that p = 0.20

The data are therefore 0.04 (or 4 percentage points) below the null hypothesis value.

It is hard to evaluate whether this difference of 4% in defective products is enough evidence to say that the repair was effective
at reducing the proportion of defective products, but clearly, the larger the difference, the more evidence it is against the null
hypothesis. So if, for example, our sample proportion of defective products had been, say, 0.10 instead of 0.16, then I think you
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would all agree that cutting the proportion of defective products in half (from 20% to 10%) would be extremely strong
evidence that the repair was effective at reducing the proportion of defective products.

v EXAMPLE:

Is the proportion of marijuana users in the college higher than the national figure?

Students at the college Sample (100 stuclents)
) T |’/ 19use \
Use marijuana P N marijuana _/

/ Question:is p 0.157 "
(like the national |
| figure) or higher?

p=19/100=19

The parameter of interest is p, the proportion of students in a college who use marijuana.
The data estimate p to be p-hat = 0.19
The null hypothesis claims that p = 0.157

The data are therefore 0.033 (or 3.3. percentage points) above the null hypothesis value.

v/ EXAMPLE:

Did the proportion of U.S. adults who support the death penalty change between 2003 and a later poll?

Sample (1000 US adults)
US adults .
o ¢ ersinfaver D)
Support the : p \\ AN fn faver S

death penalty /’ Question: has p \\.

| changed since 2003 |
(when it was 0.64)7

The parameter of interest is p, the proportion of U.S. adults who support the death penalty for convicted murderers.
The data estimate p to be p-hat = 0.675
The null hypothesis claims that p = 0.64

There is a difference of 0.035 (or 3.5. percentage points) between the data and the null hypothesis value.

The problem with looking only at the difference between the sample proportion, p-hat, and the null value, p is that we have not
taken into account the variability of our estimator p-hat which, as we know from our study of sampling distributions, depends on
the sample size.

For this reason, the test statistic cannot simply be the difference between p-hat and p,, but must be some form of that formula that
accounts for the sample size. In other words, we need to somehow standardize the difference so that comparison between different
situations will be possible. We are very close to revealing the test statistic, but before we construct it, let’s be reminded of the
following two facts from probability:

Fact 1: When we take a random sample of size n from a population with population proportion p, then

p is normally distributed with a mean of iz = p

p(1—p)
n

and a standard deviation o =

aslongas np > 10and n(1—p) > 10
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Fact 2: The z-score of any normal value (a value that comes from a normal distribution) is calculated by finding the difference
between the value and the mean and then dividing that difference by the standard deviation (of the normal distribution associated
with the value). The z-score represents how many standard deviations below or above the mean the value is.

Thus, our test statistic should be a measure of how far the sample proportion p-hat is from the null value p, relative to the
variation of p-hat (as measured by the standard error of p-hat).

Recall that the standard error is the standard deviation of the sampling distribution for a given statistic. For p-hat, we know
the following:

Sampling Distribution
Variable Parameter Statistic Center | Spread | Shape
Categorical p = population p=sample |p [p(1=p) | Normal if np > 10
(example: proportion proportion Vo andn(1-p) = 10
left-handed or
not)

To find the p-value, we will need to determine how surprising our value is assuming the null hypothesis is true. We already have
the tools needed for this process from our study of sampling distributions as represented in the table above.

v/ EXAMPLE:

Has the proportion of defective products been reduced as a result of the repair?

Preducts produced by the machine Sample {400 products)
(following the repair) ——

e ™
T . (\ 64 defective /.
Defective 47’— p \ ~
/ Question:is p still
[ 0.20or hasitbeen
| reduced?

If we assume the null hypothesis is true, we can specify that the center of the distribution of all possible values of p-hat from
samples of size 400 would be 0.20 (our null value).

We can calculate the standard error, assuming p = 0.20 as
1-— 0.2(1-0.2
\/po( Po) :\/ ( D
n 400

The following picture represents the sampling distribution of all possible values of p-hat of samples of size 400, assuming the
true proportion p is 0.20 and our other requirements for the sampling distribution to be normal are met (we will review these
during the next step).

our result

01 0.2 0.3
sampling distribution of P

In order to calculate probabilities for the picture above, we would need to find the z-score associated with our result.

This z-score is the test statistic! In this example, the numerator of our z-score is the difference between p-hat (0.16) and null
value (0.20) which we found earlier to be -0.04. The denominator of our z-score is the standard error calculated above (0.02)
and thus quickly we find the z-score, our test statistic, to be -2.

The sample proportion based upon this data is 2 standard errors below the null value.
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Products produced by the machine Sample (400 products)
(following the repair) —

o RS
_ . [ 64 defective /

Defective 47; p \ ~— -
,/ Question: is p still ‘\.
.20 or has it been
| reduced?

Hopefully you now understand more about the reasons we need probability in statistics!!
Now we will formalize the definition and look at our remaining examples before moving on to the next step, which will be to

determine if a normal distribution applies and calculate the p-value.

Test Statistic for Hypothesis Tests for One Proportion is:
P —Po

2\/W

It represents the difference between the sample proportion and the null value, measured in standard deviations (standard error of p-

hat).
Sarmpling distribution Dfﬁ
assurming that p=

7 is the difference
between ﬁ andp g
measured in standard
desiations (with the
=sign of z indicating .
Whetherﬁ is below or

above pg ) /

The picture above is a representation of the sampling distribution of p-hat assuming p = pg. In other words, this is a model of how
p-hat behaves if we are drawing random samples from a population for which Ho is true.

Notice the center of the sampling distribution is at p,, which is the hypothesized proportion given in the null hypothesis (Ho: p =
Po-) We could also mark the axis in standard error units,

po (1 —po)
n

For example, if our null hypothesis claims that the proportion of U.S. adults supporting the death penalty is 0.64, then the sampling
distribution is drawn as if the null is true. We draw a normal distribution centered at 0.64 (po) with a standard error dependent on
sample size,

0.64(1—0.64)
—
Important Comment:
o Note that under the assumption that Ho is true (and if the conditions for the sampling distribution to be normal are satisfied) the
test statistic follows a N(0,1) (standard normal) distribution. Another way to say the same thing which is quite common is: “The
null distribution of the test statistic is N(0,1).”

By “null distribution,” we mean the distribution under the assumption that Ho is true. As we’ll see and stress again later, the null
distribution of the test statistic is what the calculation of the p-value is based on.

Let’s go back to our remaining two examples and find the test statistic in each case:

@ 0 e @ @ https://stats.libretexts.org/@go/page/31289



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/31289?pdf

lsgil.ﬂareﬂtzxtsm

Is the proportion of marijuana users in the college higher than the national figure?

Students at the college Sample {100 students)

) T 7 1ouse
Use marijuana 474 P \ "\ marijuana ./
/ Question:is p .157 B

(like the national *
\ v . / +

o

Since the null hypothesis is Ho: p = 0.157, the standardized (z) score of p-hat = 0.19 is
_ 0.19 —-0.157

= ~

\/0.157(1 —0.157)
100

This is the value of the test statistic for this example.

We interpret this to mean that, assuming that Ho is true, the sample proportion p-hat = 0.19 is 0.91 standard errors above the
null value (0.157).

v EXAMPLE:

Did the proportion of U.S. adults who support the death penalty change between 2003 and a later poll?

Sample (1000 US adults)
US adults e

h ¢ 675 in fe . \)
- = | in favor
Support the p N .
death penalty 47; — -

/’ Question:hasp +
[ changed since 2003 |
v / +
N

(when it was .64)?

Since the null hypothesis is Ho: p = 0.64, the standardized (z) score of p-hat = 0.675 is

L 0.675—0.64 ~2.31

~ [0.64(1—0.64)
V" 1000

This is the value of the test statistic for this example.

We interpret this to mean that, assuming that Ho is true, the sample proportion p-hat = 0.675 is 2.31 standard errors above the
null value (0.64).

Learn by Doing: Proportions (Step 2)

Comments about the Test Statistic:

o We mentioned earlier that to some degree, the test statistic captures the essence of the test. In this case, the test statistic
measures the difference between p-hat and p in standard errors. This is exactly what this test is about. Get data, and look at the
discrepancy between what the data estimates p to be (represented by p-hat) and what Ho claims about p (represented by p).

¢ You can think about this test statistic as a measure of evidence in the data against Ho. The larger the test statistic, the “further
the data are from Ho” and therefore the more evidence the data provide against Ho.

| Learn by Doing: Proportions (Step 2) Understanding the Test Statistic
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| Did I Get This?: Proportions (Step 2)

Comments:

o It should now be clear why this test is commonly known as the z-test for the population proportion. The name comes from
the fact that it is based on a test statistic that is a z-score.

o Recall fact 1 that we used for constructing the z-test statistic. Here is part of it again:

When we take a random sample of size n from a population with population proportion pg, the possible values of the sample
proportion p-hat (when certain conditions are met) have approximately a normal distribution with a mean of py... and a standard
deviation of

po(1 — po)
m

This result provides the theoretical justification for constructing the test statistic the way we did, and therefore the assumptions
under which this result holds (in bold, above) are the conditions that our data need to satisfy so that we can use this test. These two
conditions are:

i. The sample has to be random.
ii. The conditions under which the sampling distribution of p-hat is normal are met. In other words:

npy = 10

n(l —po) = 10

o Here we will pause to say more about condition (i.) above, the need for a random sample. In the Probability Unit we discussed
sampling plans based on probability (such as a simple random sample, cluster, or stratified sampling) that produce a non-biased
sample, which can be safely used in order to make inferences about a population. We noted in the Probability Unit that, in
practice, other (non-random) sampling techniques are sometimes used when random sampling is not feasible. It is important
though, when these techniques are used, to be aware of the type of bias that they introduce, and thus the limitations of the
conclusions that can be drawn from them. For our purpose here, we will focus on one such practice, the situation in which a
sample is not really chosen randomly, but in the context of the categorical variable that is being studied, the sample is regarded
as random. For example, say that you are interested in the proportion of students at a certain college who suffer from seasonal
allergies. For that purpose, the students in a large engineering class could be considered as a random sample, since there is
nothing about being in an engineering class that makes you more or less likely to suffer from seasonal allergies. Technically, the
engineering class is a convenience sample, but it is treated as a random sample in the context of this categorical variable. On the
other hand, if you are interested in the proportion of students in the college who have math anxiety, then the class of engineering
students clearly could not possibly be viewed as a random sample, since engineering students probably have a much lower
incidence of math anxiety than the college population overall.

Learn by Doing: Proportions (Step 2) Valid or Invalid Sampling?

Let’s check the conditions in our three examples.

v/ EXAMPLE:

Has the proportion of defective products been reduced as a result of the repair?
i. The 400 products were chosen at random.
ii. n = 400, po = 0.2 and therefore:
npy =400(0.2) =80 > 10
n(1—po) =400(1 —0.2) =320 > 10
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Is the proportion of marijuana users in the college higher than the national figure?
i. The 100 students were chosen at random.

ii. n = 100, py = 0.157 and therefore:

npo =100(0.157) = 15.7 > 10
n(1—po) =100(1 —0.157) = 84.3 > 10

v EXAMPLE:

Did the proportion of U.S. adults who support the death penalty change between 2003 and a later poll?
i. The 1000 adults were chosen at random.
ii. n = 1000, pp = 0.64 and therefore:

npo = 1000(0.64) = 640 > 10
n (1 —po) = 1000(1 —0.64) = 360 > 10

Learn by Doing: Proportions (Step 2) Verify Conditions

Checking that our data satisfy the conditions under which the test can be reliably used is a very important part of the hypothesis
testing process. Be sure to consider this for every hypothesis test you conduct in this course and certainly in practice.

The Four Steps in Hypothesis Testing

e STEP 1: State the appropriate null and alternative hypotheses, Ho and Ha.

e STEP 2: Obtain a random sample, collect relevant data, and check whether the data meet the conditions under which the
test can be used. If the conditions are met, summarize the data using a test statistic.

e STEP 3: Find the p-value of the test.

o STEP 4: Based on the p-value, decide whether or not the results are statistically significant and draw your conclusions in
context.

o Note: In practice, we should always consider the practical significance of the results as well as the statistical significance.

With respect to the z-test, the population proportion that we are currently discussing we have:
Step 1: Completed
Step 2: Completed

Step 3: This is what we will work on next.

Proportions (Step 3)

CO-4: Distinguish among different measurement scales, choose the appropriate descriptive and inferential statistical methods
based on these distinctions, and interpret the results.

&) Learning Objectives

LO 4.33: In a given context, distinguish between situations involving a population proportion and a population mean and
specify the correct null and alternative hypothesis for the scenario.
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4} Learning Objectives

LO 4.34: Carry out a complete hypothesis test for a population proportion by hand.

CO-6: Apply basic concepts of probability, random variation, and commonly used statistical probability distributions.

4b Learning Objectives

LO 6.26: Outline the logic and process of hypothesis testing.

4) Learning Objectives

LO 6.27: Explain what the p-value is and how it is used to draw conclusions.

Video: Proportions (Step 3) (14:46)

Calculators and Tables

Step 3. Finding the P-value of the Test

So far we’ve talked about the p-value at the intuitive level: understanding what it is (or what it measures) and how we use it to
draw conclusions about the statistical significance of our results. We will now go more deeply into how the p-value is calculated.

It should be mentioned that eventually we will rely on technology to calculate the p-value for us (as well as the test statistic), but in
order to make intelligent use of the output, it is important to first understand the details, and only then let the computer do the
calculations for us. Again, our goal is to use this simple example to give you the tools you need to understand the process entirely.
Let’s start.

Recall that so far we have said that the p-value is the probability of obtaining data like those observed assuming that Ho is true.
Like the test statistic, the p-value is, therefore, a measure of the evidence against Ho. In the case of the test statistic, the larger it is
in magnitude (positive or negative), the further p-hat is from pg, the more evidence we have against Ho. In the case of the p-
value, it is the opposite; the smaller it is, the more unlikely it is to get data like those observed when Ho is true, the more evidence
it is against Ho. One can actually draw conclusions in hypothesis testing just using the test statistic, and as we’ll see the p-value is,
in a sense, just another way of looking at the test statistic. The reason that we actually take the extra step in this course and derive
the p-value from the test statistic is that even though in this case (the test about the population proportion) and some other tests, the
value of the test statistic has a very clear and intuitive interpretation, there are some tests where its value is not as easy to interpret.
On the other hand, the p-value keeps its intuitive appeal across all statistical tests.

How is the p-value calculated?

Intuitively, the p-value is the probability of observing data like those observed assuming that Ho is true. Let’s be a bit more
formal:

o Since this is a probability question about the data, it makes sense that the calculation will involve the data summary, the test
statistic.
o What do we mean by “like” those observed? By “like” we mean “as extreme or even more extreme.”

Putting it all together, we get that in general:

The p-value is the probability of observing a test statistic as extreme as that observed (or even more extreme) assuming
that the null hypothesis is true.

By “extreme” we mean extreme in the direction(s) of the alternative hypothesis.
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Specifically, for the z-test for the population proportion:

1. If the alternative hypothesis is Ha: p < p, (less than), then “extreme” means small or less than, and the p-value is: The
probability of observing a test statistic as small as that observed or smaller if the null hypothesis is true.

2. If the alternative hypothesis is Ha: p > p, (greater than), then “extreme” means large or greater than, and the p-value is: The
probability of observing a test statistic as large as that observed or larger if the null hypothesis is true.

3. If the alternative is Ha: p # p (different from), then “extreme” means extreme in either direction either small or large (i.e.,
large in magnitude) or just different from, and the p-value therefore is: The probability of observing a test statistic as large
in magnitude as that observed or larger if the null hypothesis is true.(Examples: If z = -2.5: p-value = probability of
observing a test statistic as small as -2.5 or smaller or as large as 2.5 or larger. If z = 1.5: p-value = probability of observing a
test statistic as large as 1.5 or larger, or as small as -1.5 or smaller.)

OK, hopefully that makes (some) sense. But how do we actually calculate it?

Recall the important comment from our discussion about our test statistic,

p—7Po

pall=po)
n

Z =

which said that when the null hypothesis is true (i.e., when p = pg), the possible values of our test statistic follow a standard normal
(N(0,1), denoted by Z) distribution. Therefore, the p-value calculations (which assume that Ho is true) are simply standard normal
distribution calculations for the 3 possible alternative hypotheses.

Alternative Hypothesis is “Less Than”

The probability of observing a test statistic as small as that observed or smaller, assuming that the values of the test statistic
follow a standard normal distribution. We will now represent this probability in symbols and also using the normal distribution.

o Hap < py, = p-vakie= P(Z =z):
N(0.1)
oy
p-value kY
Opserved

Looking at the shaded region, you can see why this is often referred to as a left-tailed test. We shaded to the left of the test statistic,
since less than is to the left.

Alternative Hypothesis is “Greater Than”

The probability of observing a test statistic as large as that observed or larger, assuming that the values of the test statistic follow
a standard normal distribution. Again, we will represent this probability in symbols and using the normal distribution

s Haip > py = p-valwe=PZ z2z):
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p-value
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Observed
Test Statistic

Looking at the shaded region, you can see why this is often referred to as a right-tailed test. We shaded to the right of the test
statistic, since greater than is to the right.

Alternative Hypothesis is “Not Equal To”

The probability of observing a test statistic which is as large in magnitude as that observed or larger, assuming that the values of
the test statistic follow a standard normal distribution.

s HapEpy > p-valwe=FlZ=—|z|)+FP(Zz|z|)=2P(Z 2|z ):

+

-I?I o 2l
Observed f
Test Statistic

This is often referred to as a two-tailed test, since we shaded in both directions.

Next, we will apply this to our three examples. But first, work through the following activities, which should help your
understanding.

| Learn by Doing: Proportions (Step 3)

Did I Get This?: Proportions (Step 3)

v EXAMPLE:

Has the proportion of defective products been reduced as a result of the repair?

Sample (400 products)
Products produced by the machine B ___ ™
{following the repair) | 64 defective |
B N~
Defective p \ #
[ Hop=.20 B =64/400 = .16
. Hap<.20 il
\- /

The p-value in this case is:
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e The probability of observing a test statistic as small as -2 or smaller, assuming that Ho is true.
OR (recalling what the test statistic actually means in this case),

e The probability of observing a sample proportion that is 2 standard deviations or more below the null value (pg = 0.20),
assuming that py is the true population proportion.
OR, more specifically,

e The probability of observing a sample proportion of 0.16 or lower in a random sample of size 400, when the true population
proportion is pg =0.20

In either case, the p-value is found as shown in the following figure:

N(0,1)

T
p-value Y

.

.

.

.

.

.

kY
‘J ..\

To find P(Z < -2) we can either use the calculator or table we learned to use in the probability unit for normal random variables.
Eventually, after we understand the details, we will use software to run the test for us and the output will give us all the

that it is pretty unlikely (probability of 0.023) to get data like those observed (test statistic of -2 or less) assuming that Ho is
true.

v EXAMPLE:

information we need. The p-value that the statistical software provides for this specific example is 0.023. The p-value tells us

Is the proportion of marijuana users in the college higher than the national figure?

Sample (100 students)
ol N
Students at the college N 19 use marijuana )
Use marijuana 474 p +
[ Hep=. p=19/100=.19
L Hy:p +> . v
~

The p-value in this case is:

o The probability of observing a test statistic as large as 0.91 or larger, assuming that Ho is true.
OR (recalling what the test statistic actually means in this case),

o The probability of observing a sample proportion that is 0.91 standard deviations or more above the null value (pg = 0.157),
assuming that pg is the true population proportion.
OR, more specifically,

o The probability of observing a sample proportion of 0.19 or higher in a random sample of size 100, when the true
population proportion is pp=0.157

In either case, the p-value is found as shown in the following figure:
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Again, at this point we can either use the calculator or table to find that the p-value is 0.182, this is P(Z > 0.91).

0 9

The p-value tells us that it is not very surprising (probability of 0.182) to get data like those observed (which yield a test
statistic of 0.91 or higher) assuming that the null hypothesis is true.

v/ EXAMPLE:

Did the proportion of U.S. adults who support the death penalty change between 2003 and a later poll?

The p-value in this case is:

o The probability of observing a test statistic as large as 2.31 (or larger) or as small as -2.31 (or smaller), assuming that Ho is
true.

OR (recalling what the test statistic actually means in this case),

o The probability of observing a sample proportion that is 2.31 standard deviations or more away from the null value (pg =
0.64), assuming that pois the true population proportion.

OR, more specifically,

e The probability of observing a sample proportion as different as 0.675 is from 0.64, or even more different (i.e. as high as
0.675 or higher or as low as 0.605 or lower) in a random sample of size 1,000, when the true population proportion is py=
0.64

In either case, the p-value is found as shown in the following figure:

-2.31 0 2.31

Again, at this point we can either use the calculator or table to find that the p-value is 0.021, this is P(Z < -2.31) + P(Z > 2.31)
= 2*P(Z > 2.31])
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The p-value tells us that it is pretty unlikely (probability of 0.021) to get data like those observed (test statistic as high as 2.31
or higher or as low as -2.31 or lower) assuming that Ho is true.

Comment:

o We’ve just seen that finding p-values involves probability calculations about the value of the test statistic assuming that Ho is
true. In this case, when Ho is true, the values of the test statistic follow a standard normal distribution (i.e., the sampling
distribution of the test statistic when the null hypothesis is true is N(0,1)). Therefore, p-values correspond to areas
(probabilities) under the standard normal curve.

Similarly, in any test, p-values are found using the sampling distribution of the test statistic when the null hypothesis is true (also
known as the “null distribution” of the test statistic). In this case, it was relatively easy to argue that the null distribution of our test
statistic is N(0,1). As we’ll see, in other tests, other distributions come up (like the t-distribution and the F-distribution), which we
will just mention briefly, and rely heavily on the output of our statistical package for obtaining the p-values.

We’ve just completed our discussion about the p-value, and how it is calculated both in general and more specifically for the z-test
for the population proportion. Let’s go back to the four-step process of hypothesis testing and see what we’ve covered and what
still needs to be discussed.

The Four Steps in Hypothesis Testing
e STEP 1: State the appropriate null and alternative hypotheses, Ho and Ha.

e STEP 2: Obtain a random sample, collect relevant data, and check whether the data meet the conditions under which the
test can be used. If the conditions are met, summarize the data using a test statistic.

e STEP 3: Find the p-value of the test.

o STEP 4: Based on the p-value, decide whether or not the results are statistically significant and draw your conclusions in
context.

¢ Note: In practice, we should always consider the practical significance of the results as well as the statistical significance.
With respect to the z-test the population proportion:

Step 1: Completed

Step 2: Completed

Step 3: Completed

Step 4. This is what we will work on next.
Learn by Doing: Proportions (Step 3) Understanding P-values

Proportions (Step 4 & Summary)

CO-4: Distinguish among different measurement scales, choose the appropriate descriptive and inferential statistical methods
based on these distinctions, and interpret the results.

4b Learning Objectives

LO 4.33: In a given context, distinguish between situations involving a population proportion and a population mean and
specify the correct null and alternative hypothesis for the scenario.

&) Learning Objectives

LO 4.34: Carry out a complete hypothesis test for a population proportion by hand.
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l CO-6: Apply basic concepts of probability, random variation, and commonly used statistical probability distributions.

4) Learning Objectives

LO 6.26: Outline the logic and process of hypothesis testing.

4} Learning Objectives

LO 6.27: Explain what the p-value is and how it is used to draw conclusions.

Video: Proportions (Step 4 & Summary) (4:30)

Step 4. Drawing Conclusions Based on the P-Value

This last part of the four-step process of hypothesis testing is the same across all statistical tests, and actually, we’ve already said
basically everything there is to say about it, but it can’t hurt to say it again.

The p-value is a measure of how much evidence the data present against Ho. The smaller the p-value, the more evidence the data
present against Ho.

We already mentioned that what determines what constitutes enough evidence against Ho is the significance level (c, alpha), a
cutoff point below which the p-value is considered small enough to reject Ho in favor of Ha. The most commonly used significance
level is 0.05.

o If p-value < 0.05 then WE REJECT Ho
o Conclusion: There IS enough evidence that Ha is True
o If p-value > 0.05 then WE FAIL TO REJECT Ho
o Conclusion: There IS NOT enough evidence that Ha is True

Where instead of Ha is True, we write what this means in the words of the problem, in other words, in the context of the current
scenario.

It is important to mention again that this step has essentially two sub-steps:

o (i) Based on the p-value, determine whether or not the results are statistically significant (i.e., the data present enough evidence
to reject Ho).
o (ii) State your conclusions in the context of the problem.

Note: We always still must consider whether the results have any practical significance, particularly if they are statistically
significant as a statistically significant result which has not practical use is essentially meaningless!

Let’s go back to our three examples and draw conclusions.

v EXAMPLE:

Has the proportion of defective products been reduced as a result of the repair?

We found that the p-value for this test was 0.023.

Since 0.023 is small (in particular, 0.023 < 0.05), the data provide enough evidence to reject Ho.
Conclusion:

o There IS enough evidence that the proportion of defective products is less than 20% after the repair.

The following figure is the complete story of this example, and includes all the steps we went through, starting from stating the
hypotheses and ending with our conclusions:
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Sample (400 products)

Products produced by the machine s > - ~,
{following the repair) | 64defective |
T S~ " Conditions
Defective 474 p \\ * are met
/. Hgp=.20 P =64/400= 16

Hy:p<.20
v

,, v

p-value =.023
Conclusion: Hy can be rejected.

v/ EXAMPLE:

Is the proportion of marijuana users in the college higher than the national figure?

We found that the p-value for this test was 0.182.

Since .182 is not small (in particular, 0.182 > 0.05), the data do not provide enough evidence to reject Ho.
Conclusion:

o There IS NOT enough evidence that the proportion of students at the college who use marijuana is higher than the
national figure.

Here is the complete story of this example:

|+.A large circle represents the population Students at the college. We want to know p about this population, or what is the population proportion of students using marijuana. The hypotheses are H_0: p = .157 and
H_a:p

.157 . We take a sample of 100 students, represented by a smaller circle. We find that 19 use marijuana. p-hat = 19/100 = .19, z
= .91, and p-value = .182 . Since the p-value is too large we conclude that H_0 cannot be rejected." height="278"
loading="lazy" src="http://phhp-faculty-cantrell.sites.m...3/image276.gif" title="A large circle represents the population
Students at the college. We want to know p about this population, or what is the population proportion of students using
marijuana. The hypotheses are H_0: p =.157 and H_a: p > .157 . We take a sample of 100 students, represented by a smaller
circle. We find that 19 use marijuana. p-hat = 19/100 = .19, z = .91, and p-value = .182 . Since the p-value is too large we
conclude that H_0 cannot be rejected." width="564">

| Learn by Doing: Learn by Doing — Proportions (Step 4)

v EXAMPLE:

Did the proportion of U.S. adults who support the death penalty change between 2003 and a later poll?
We found that the p-value for this test was 0.021.

Since 0.021 is small (in particular, 0.021 < 0.05), the data provide enough evidence to reject Ho
Conclusion:

e There IS enough evidence that the proportion of adults who support the death penalty for convicted murderers has changed
since 2003.

Here is the complete story of this example:
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Sample (1000 US adults)

= .

p
{ 675 in favor
US adults \
— \\=.,____ ____,-—"/Conditions
Support the <7L p * are met
death penalty
/. Hep=. P =675/1000 = 675
Ha:p = .64 il
N z=231
p-value =.021

Conclusion: Hp can be rejected.

Did I Get This?: Proportions (Step 4)

Many Students Wonder: Hypothesis Testing for the Population Proportion

Many students wonder why 5% is often selected as the significance level in hypothesis testing, and why 1% is the next most
typical level. This is largely due to just convenience and tradition.

When Ronald Fisher (one of the founders of modern statistics) published one of his tables, he used a mathematically
convenient scale that included 5% and 1%. Later, these same 5% and 1% levels were used by other people, in part just because
Fisher was so highly esteemed. But mostly these are arbitrary levels.

The idea of selecting some sort of relatively small cutoff was historically important in the development of statistics; but it’s
important to remember that there is really a continuous range of increasing confidence towards the alternative hypothesis, not
a single all-or-nothing value. There isn’t much meaningful difference, for instance, between a p-value of .049 or .051, and it
would be foolish to declare one case definitely a “real” effect and to declare the other case definitely a “random” effect. In
either case, the study results were roughly 5% likely by chance if there’s no actual effect.

Whether such a p-value is sufficient for us to reject a particular null hypothesis ultimately depends on the risk of making the
wrong decision, and the extent to which the hypothesized effect might contradict our prior experience or previous studies.

Let's Summarize!!

We have now completed going through the four steps of hypothesis testing, and in particular we learned how they are applied to the
z-test for the population proportion. Here is a brief summary:

¢ Step 1: State the hypotheses
State the null hypothesis:
Ho: p = py
State the alternative hypothesis:
Ha: p < pp (one-sided)
Ha: p > py (one-sided)
Ha: p # po (two-sided)

where the choice of the appropriate alternative (out of the three) is usually quite clear from the context of the problem. If you
feel it is not clear, it is most likely a two-sided problem. Students are usually good at recognizing the “more than” and “less
than” terminology but differences can sometimes be more difficult to spot, sometimes this is because you have preconceived
ideas of how you think it should be! Use only the information given in the problem.

¢ Step 2: Obtain data, check conditions, and summarize data
Obtain data from a sample and:

(i) Check whether the data satisfy the conditions which allow you to use this test.
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random sample (or at least a sample that can be considered random in context)

the conditions under which the sampling distribution of p-hat is normal are met

(ii) Calculate the sample proportion p-hat, and summarize the data using the test statistic:

p—7Po

pall=po)
n

Zz =

(Recall: This standardized test statistic represents how many standard deviations above or below p, our sample proportion p-
hat is.)

o Step 3: Find the p-value of the test by using the test statistic as follows
IMPORTANT FACT: In all future tests, we will rely on software to obtain the p-value.

When the alternative hypothesis is “less than” the probability of observing a test statistic as small as that observed or
smaller, assuming that the values of the test statistic follow a standard normal distribution. We will now represent this
probability in symbols and also using the normal distribution.

o fHaip < py = p-value= P(Z =z):

Observed
Test Statistic

Looking at the shaded region, you can see why this is often referred to as a left-tailed test. We shaded to the left of the test
statistic, since less than is to the left.
When the alternative hypothesis is “greater than” the probability of observing a test statistic as large as that observed or

larger, assuming that the values of the test statistic follow a standard normal distribution. Again, we will represent this
probability in symbols and using the normal distribution

s Haip > py, = p-value=FZ zz)

\
v

Looking at the shaded region, you can see why this is often referred to as a right-tailed test. We shaded to the right of the
test statistic, since greater than is to the right.

When the alternative hypothesis is “not equal to” the probability of observing a test statistic which is as large in
magnitude as that observed or larger, assuming that the values of the test statistic follow a standard normal distribution.
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e HaipE p, s p-value=FlZ=—|z|)+FP(Zz|z|)=2P(Zz|z|):

+

o
This is often referred to as a two-tailed test, since we shaded in both directions.

o Step 4: Conclusion

Reach a conclusion first regarding the statistical significance of the results, and then determine what it means in the context
of the problem.

If p-value < 0.05 then WE REJECT Ho
Conclusion: There IS enough evidence that Ha is True

If p-value > 0.05 then WE FAIL TO REJECT Ho
Conclusion: There IS NOT enough evidence that Ha is True

Recall that: If the p-value is small (in particular, smaller than the significance level, which is usually 0.05), the results are
statistically significant (in the sense that there is a statistically significant difference between what was observed in the
sample and what was claimed in Ho), and so we reject Ho.

If the p-value is not small, we do not have enough statistical evidence to reject Ho, and so we continue to believe that Ho
may be true. (Remember: In hypothesis testing we never “accept” Ho).

Finally, in practice, we should always consider the practical significance of the results as well as the statistical significance.
Learn by Doing: Z-Test for a Population Proportion

What's next?

Before we move on to the next test, we are going to use the z-test for proportions to bring up and illustrate a few more very
important issues regarding hypothesis testing. This might also be a good time to review the concepts of Type I error, Type II error,
and Power before continuing on.

More about Hypothesis Testing

CO-1: Describe the roles biostatistics serves in the discipline of public health.

4b Learning Objectives

LO 1.11: Recognize the distinction between statistical significance and practical significance.

CO-6: Apply basic concepts of probability, random variation, and commonly used statistical probability distributions.

4b Learning Objectives

LO 6.26: Outline the logic and process of hypothesis testing.
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&) Learning Objectives

LO 6.30: Use a confidence interval to determine the correct conclusion to the associated two-sided hypothesis test.

Video: More about Hypothesis Testing (18:25)

The issues regarding hypothesis testing that we will discuss are:

1. The effect of sample size on hypothesis testing.
2. Statistical significance vs. practical importance.
3. Hypothesis testing and confidence intervals—how are they related?

Let’s begin.

1. The Effect of Sample Size on Hypothesis Testing

We have already seen the effect that the sample size has on inference, when we discussed point and interval estimation for the
population mean (p, mu) and population proportion (p). Intuitively ...

Larger sample sizes give us more information to pin down the true nature of the population. We can therefore expect the sample
mean and sample proportion obtained from a larger sample to be closer to the population mean and proportion, respectively. As a
result, for the same level of confidence, we can report a smaller margin of error, and get a narrower confidence interval. What
we’ve seen, then, is that larger sample size gives a boost to how much we trust our sample results.

In hypothesis testing, larger sample sizes have a similar effect. We have also discussed that the power of our test increases when the
sample size increases, all else remaining the same. This means, we have a better chance to detect the difference between the true
value and the null value for larger samples.

The following two examples will illustrate that a larger sample size provides more convincing evidence (the test has greater
power), and how the evidence manifests itself in hypothesis testing. Let’s go back to our example 2 (marijuana use at a certain
liberal arts college).

v/ EXAMPLE:

Is the proportion of marijuana users in the college higher than the national figure?

|.':iA large circle represents the population Students at the college. We want to know p about this population, or what is the population proportion of students using marijuana. The hypotheses are H_0: p =.157 and
H_a:p

.157 . We take a sample of 100 students, represented by a smaller circle. We find that 19 use marijuana. p-hat = 19/100 = .19, z
=.91, and p-value = .182 . Since the p-value is too large we conclude that H_0 cannot be rejected.” height="278"
loading="lazy" src="http://phhp-faculty-cantrell.sites.m...3/image276.gif" title="A large circle represents the population
Students at the college. We want to know p about this population, or what is the population proportion of students using
marijuana. The hypotheses are H_0: p =.157 and H_a: p > .157 . We take a sample of 100 students, represented by a smaller
circle. We find that 19 use marijuana. p-hat = 19/100 = .19, z = .91, and p-value = .182 . Since the p-value is too large we
conclude that H_0 cannot be rejected." width="564">

We do net have enough evidence to conclude that the proportion of students at the college who use marijuana is higher than
the national figure.

Now, let’s increase the sample size.

There are rumors that students in a certain liberal arts college are more inclined to use drugs than U.S. college students in
general. Suppose that in a simple random sample of 400 students from the college, 76 admitted to marijuana use. Do the
data provide enough evidence to conclude that the proportion of marijuana users among the students in the college (p) is
higher than the national proportion, which is 0.157? (Reported by the Harvard School of Public Health).

I.':iA large circle represents the population Students at the college. We want to know p about this population, or what is the population proportion of students using marijuana. The hypotheses are H_0: p = .157 and
H_a:p

.157 . We take a sample of 400 students, represented by a smaller circle, and find that 76 use marijuana. Conditions are met to
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use our method, so p-hat = 76/400 = .19, z = 1.81, and p-value = .035 . The p-value is low enough to let us conclude that we
can reject H_0." height="292" loading="lazy" src="http://phhp-faculty-cantrell.sites.m...3/image291.gif" title="A large circle
represents the population Students at the college. We want to know p about this population, or what is the population
proportion of students using marijuana. The hypotheses are H_0: p = .157 and H_a: p > .157 . We take a sample of 400
students, represented by a smaller circle, and find that 76 use marijuana. Conditions are met to use our method, so p-hat =
76/400 = .19, z = 1.81, and p-value = .035 . The p-value is low enough to let us conclude that we can reject H_0."
width="572">

Our results here are statistically significant. In other words, in example 2* the data provide enough evidence to reject Ho.

e Conclusion: There is enough evidence that the proportion of marijuana users at the college is higher than among all U.S.
students.

What do we learn from this?
We see that sample results that are based on a larger sample carry more weight (have greater power).

In example 2, we saw that a sample proportion of 0.19 based on a sample of size of 100 was not enough evidence that the
proportion of marijuana users in the college is higher than 0.157. Recall, from our general overview of hypothesis testing, that this
conclusion (not having enough evidence to reject the null hypothesis) doesn’t mean the null hypothesis is necessarily true (so, we
never “accept” the null); it only means that the particular study didn’t yield sufficient evidence to reject the null. It might be that
the sample size was simply too small to detect a statistically significant difference.

However, in example 2*, we saw that when the sample proportion of 0.19 is obtained from a sample of size 400, it carries much
more weight, and in particular, provides enough evidence that the proportion of marijuana users in the college is higher than 0.157
(the national figure). In this case, the sample size of 400 was large enough to detect a statistically significant difference.

The following activity will allow you to practice the ideas and terminology used in hypothesis testing when a result is not
statistically significant.

Learn by Doing: Interpreting Non-significant Results

2. Statistical significance vs. practical importance.
Now, we will address the issue of statistical significance versus practical importance (which also involves issues of sample size).

The following activity will let you explore the effect of the sample size on the statistical significance of the results yourself, and
more importantly will discuss issue 2: Statistical significance vs. practical importance.

Important Fact: In general, with a sufficiently large sample size you can make any result that has very little practical
importance statistically significant! A large sample size alone does NOT make a “good” study!!

This suggests that when interpreting the results of a test, you should always think not only about the statistical significance of the
results but also about their practical importance.

Learn by Doing: Statistical vs. Practical Significance

3. Hypothesis Testing and Confidence Intervals

The last topic we want to discuss is the relationship between hypothesis testing and confidence intervals. Even though the flavor of
these two forms of inference is different (confidence intervals estimate a parameter, and hypothesis testing assesses the evidence in
the data against one claim and in favor of another), there is a strong link between them.

We will explain this link (using the z-test and confidence interval for the population proportion), and then explain how confidence
intervals can be used after a test has been carried out.

Recall that a confidence interval gives us a set of plausible values for the unknown population parameter. We may therefore
examine a confidence interval to informally decide if a proposed value of population proportion seems plausible.
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For example, if a 95% confidence interval for p, the proportion of all U.S. adults already familiar with Viagra in May 1998, was
(0.61, 0.67), then it seems clear that we should be able to reject a claim that only 50% of all U.S. adults were familiar with the drug,
since based on the confidence interval, 0.50 is not one of the plausible values for p.

In fact, the information provided by a confidence interval can be formally related to the information provided by a hypothesis test.
(Comment: The relationship is more straightforward for two-sided alternatives, and so we will not present results for the one-sided

cases.)

Suppose we want to carry out the two-sided test:
e Ho:p=py

« Ha:p#p,

using a significance level of 0.05.

An alternative way to perform this test is to find a 95% confidence interval for p and check:

o If p, falls outside the confidence interval, reject Ho.
o If p, falls inside the confidence interval, do not reject Ho.

In other words,

o If pg is not one of the plausible values for p, we reject Ho.
o If py is a plausible value for p, we cannot reject Ho.

(Comment: Similarly, the results of a test using a significance level of 0.01 can be related to the 99% confidence interval.)

Let’s look at an example:

v EXAMPLE:

Recall example 3, where we wanted to know whether the proportion of U.S. adults who support the death penalty for convicted

murderers has changed since 2003, when it was 0.64.

Sample (1000 US adults)

Us adules T

s ~ T (" 675infavor b
upport the p \ A e

death penalty \ T —

v

P =675/1000 = 675

/’ Question: has p \\.
| changed since 2003 |
(when it was 0.64)?

We are testing:

e Ho: p = 0.64 (No change from 2003).

e Ha: p # 0.64 (Some change since 2003).

and as the figure reminds us, we took a sample of 1,000 U.S. adults, and the data told us that 675 supported the death penalty
for convicted murderers (p-hat = 0.675).

A 95% confidence interval for p, the proportion of all U.S. adults who support the death penalty, is:

0.675(1—0.675)
1000

Since the 95% confidence interval for p does not include 0.64 as a plausible value for p, we can reject Ho and conclude (as we

did before) that there is enough evidence that the proportion of U.S. adults who support the death penalty for convicted

murderers has changed since 2003.

0.675:&1.96\/ ~0.675+0.029 = (0.646,0.704)
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95% confidence

Can reject
Hop=.64

v EXAMPLE:

You and your roommate are arguing about whose turn it is to clean the apartment. Your roommate suggests that you settle this
by tossing a coin and takes one out of a locked box he has on the shelf. Suspecting that the coin might not be fair, you decide to
test it first. You toss the coin 80 times, thinking to yourself that if, indeed, the coin is fair, you should get around 40 heads.
Instead you get 48 heads. You are puzzled. You are not sure whether getting 48 heads out of 80 is enough evidence to conclude
that the coin is unbalanced, or whether this a result that could have happened just by chance when the coin is fair.

Statistics can help you answer this question.
Let p be the true proportion (probability) of heads. We want to test whether the coin is fair or not.
We are testing:

e Ho: p = 0.5 (the coin is fair).
e Ha: p # 0.5 (the coin is not fair).

The data we have are that out of n = 80 tosses, we got 48 heads, or that the sample proportion of heads is p-hat = 48/80 = 0.6.

A 95% confidence interval for p, the true proportion of heads for this coin, is:

0.6(1—0.6)
80

Since in this case 0.5 is one of the plausible values for p, we cannot reject Ho. In other words, the data do not provide enough
evidence to conclude that the coin is not fair.

0.6£1.96 ~0.6+0.11 =(0.49,0.71)

95% confidence
interval for p

Cannot reject
Ho:p=.5

Comment
The context of the last example is a good opportunity to bring up an important point that was discussed earlier.

Even though we use 0.05 as a cutoff to guide our decision about whether the results are statistically significant, we should not treat
it as inviolable and we should always add our own judgment. Let’s look at the last example again.

It turns out that the p-value of this test is 0.0734. In other words, it is maybe not extremely unlikely, but it is quite unlikely
(probability of 0.0734) that when you toss a fair coin 80 times you’ll get a sample proportion of heads of 48/80 = 0.6 (or even more
extreme). It is true that using the 0.05 significance level (cutoff), 0.0734 is not considered small enough to conclude that the coin is
not fair. However, if you really don’t want to clean the apartment, the p-value might be small enough for you to ask your roommate
to use a different coin, or to provide one yourself!
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| Did I Get This?: Connection between Confidence Intervals and Hypothesis Tests

| Did I Get This?: Hypothesis Tests for Proportions (Extra Practice)

Here is our final point on this subject:

When the data provide enough evidence to reject Ho, we can conclude (depending on the alternative hypothesis) that the population
proportion is either less than, greater than, or not equal to the null value p,. However, we do not get a more informative statement

about its actual value. It might be of interest, then, to follow the test with a 95% confidence interval that will give us more insight
into the actual value of p.

v/ EXAMPLE:

In our example 3,

Sample (1000 US adults)

o~ .

' .
US adults g 675 in favor
— T ~___ " Conditions
Support the p N # —
death penalty Hop= \ —
[p Hop=.64 p =675/1000 = 675

Ha:p = .64

|
p-value =.021
Conclusion: Hy can be rejected.

we concluded that the proportion of U.S. adults who support the death penalty for convicted murderers has changed since
2003, when it was 0.64. It is probably of interest not only to know that the proportion has changed, but also to estimate what it
has changed to. We’ve calculated the 95% confidence interval for p on the previous page and found that it is (0.646, 0.704).

We can combine our conclusions from the test and the confidence interval and say:

Data provide evidence that the proportion of U.S. adults who support the death penalty for convicted murderers has changed
since 2003, and we are 95% confident that it is now between 0.646 and 0.704. (i.e. between 64.6% and 70.4%).

v EXAMPLE:

Let’s look at our example 1 to see how a confidence interval following a test might be insightful in a different way.

Here is a summary of example 1:

Sample (400 products)

Products produced by the machine /--'/__ ) ""'m\
[following the repair) I‘\ 64 defective )
L . “—___ " Conditions
Defective 474 P ™ v are met

v

p-value =.023
Conclusion: Hy can be rejected.

We conclude that as a result of the repair, the proportion of defective products has been reduced to below 0.20 (which was the
proportion prior to the repair). It is probably of great interest to the company not only to know that the proportion of defective
has been reduced, but also estimate what it has been reduced to, to get a better sense of how effective the repair was. A 95%
confidence interval for p in this case is:

Hy:p < .20
v
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0.16(1—0.16)
400

We can therefore say that the data provide evidence that the proportion of defective products has been reduced, and we are
95% confident that it has been reduced to somewhere between 12.4% and 19.6%. This is very useful information, since it tells
us that even though the results were significant (i.e., the repair reduced the number of defective products), the repair might not
have been effective enough, if it managed to reduce the number of defective products only to the range provided by the
confidence interval. This, of course, ties back in to the idea of statistical significance vs. practical importance that we discussed
earlier. Even though the results are statistically significant (Ho was rejected), practically speaking, the repair might still be
considered ineffective.

0.16 £1.96 ~0.16 £0.036 = (0.124,0.196)

Learn by Doing: Hypothesis Tests and Confidence Intervals

Let’s summarize

Even though this portion of the current section is about the z-test for population proportion, it is loaded with very important ideas
that apply to hypothesis testing in general. We’ve already summarized the details that are specific to the z-test for proportions, so
the purpose of this summary is to highlight the general ideas.

The process of hypothesis testing has four steps:

I. Stating the null and alternative hypotheses (Ho and Ha).

I1. Obtaining a random sample (or at least one that can be considered random) and collecting data. Using the data:
Check that the conditions under which the test can be reliably used are met.

Summarize the data using a test statistic.

o The test statistic is a measure of the evidence in the data against Ho. The larger the test statistic is in magnitude, the more
evidence the data present against Ho.

II1. Finding the p-value of the test. The p-value is the probability of getting data like those observed (or even more extreme)
assuming that the null hypothesis is true, and is calculated using the null distribution of the test statistic. The p-value is a measure
of the evidence against Ho. The smaller the p-value, the more evidence the data present against Ho.

IV. Making conclusions.

Conclusions about the statistical significance of the results:

If the p-value is small, the data present enough evidence to reject Ho (and accept Ha).
If the p-value is not small, the data do not provide enough evidence to reject Ho.

To help guide our decision, we use the significance level as a cutoff for what is considered a small p-value. The significance cutoff
is usually set at 0.05.

Conclusions should then be provided in the context of the problem.
Additional Important Ideas about Hypothesis Testing

o Results that are based on a larger sample carry more weight, and therefore as the sample size increases, results become more
statistically significant.

e Even a very small and practically unimportant effect becomes statistically significant with a large enough sample size. The
distinction between statistical significance and practical importance should therefore always be considered.

o Confidence intervals can be used in order to carry out two-sided tests (95% confidence for the 0.05 significance level). If
the null value is not included in the confidence interval (i.e., is not one of the plausible values for the parameter), we have
enough evidence to reject Ho. Otherwise, we cannot reject Ho.

o If the results are statistically significant, it might be of interest to follow up the tests with a confidence interval in order to get
insight into the actual value of the parameter of interest.
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o Itis important to be aware that there are two types of errors in hypothesis testing (Type I and Type II) and that the power of a
statistical test is an important measure of how likely we are to be able to detect a difference of interest to us in a particular
problem.

Means (All Steps)

NOTE: Beginning on this page, the Learn By Doing and Did I Get This activities are presented as interactive PDF files. The
interactivity may not work on mobile devices or with certain PDF viewers. Use an official ADOBE product such as ADOBE
READER.

If you have any issues with the Learn By Doing or Did I Get This interactive PDF files, you can view all of the questions and
answers presented on this page in this document:

e QUESTION/Answer (SPOILER ALERTY)

e Tests About p (mu) When o (sigma) is Unknown — The t-test for a Population Mean
e Step 1: State the hypotheses

e Step 2: Obtain data, check conditions, and summarize data

¢ Step 3: Find the p-value of the test by using the test statistic as follows

¢ Step 4: Conclusion

e The t-Distribution

4) Learning Objectives

LO 4.33: In a given context, distinguish between situations involving a population proportion and a population mean and
specify the correct null and alternative hypothesis for the scenario.

CO-6: Apply basic concepts of probability, random variation, and commonly used statistical probability distributions.

4b Learning Objectives

LO 6.26: Outline the logic and process of hypothesis testing.

4) Learning Objectives

LO 6.27: Explain what the p-value is and how it is used to draw conclusions.

4} Learning Objectives

LO 6.30: Use a confidence interval to determine the correct conclusion to the associated two-sided hypothesis test.

Video: Means (All Steps) (13:11)

So far we have talked about the logic behind hypothesis testing and then illustrated how this process proceeds in practice, using the
z-test for the population proportion (p).

We are now moving on to discuss testing for the population mean (p, mu), which is the parameter of interest when the variable
of interest is quantitative.

A few comments about the structure of this section:

o The basic groundwork for carrying out hypothesis tests has already been laid in our general discussion and in our
presentation of tests about proportions.
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Therefore we can easily modify the four steps to carry out tests about means instead, without going into all of the details again.

We will use this approach for all future tests so be sure to go back to the discussion in general and for proportions to review
the concepts in more detail.

o In our discussion about confidence intervals for the population mean, we made the distinction between whether the population
standard deviation, o (sigma) was known or if we needed to estimate this value using the sample standard deviation, s.

In this section, we will only discuss the second case as in most realistic settings we do not know the population standard
deviation.

In this case we need to use the t-distribution instead of the standard normal distribution for the probability aspects of confidence
intervals (choosing table values) and hypothesis tests (finding p-values).

o Although we will discuss some theoretical or conceptual details for some of the analyses we will learn, from this point on we
will rely on software to conduct tests and calculate confidence intervals for us, while we focus on understanding which
methods are used for which situations and what the results say in context.

If you are interested in more information about the z-test, where we assume the population standard deviation o (sigma) is known,
you can review the Carnegie Mellon Open Learning Statistics Course (you will need to click “ENTER COURSE”).

Like any other tests, the t-test for the population mean follows the four-step process:
o STEP 1: Stating the hypotheses H,and H,.

e STEP 2: Collecting relevant data, checking that the data satisfy the conditions which allow us to use this test, and
summarizing the data using a test statistic.

o STEP 3: Finding the p-value of the test, the probability of obtaining data as extreme as those collected (or even more
extreme, in the direction of the alternative hypothesis), assuming that the null hypothesis is true. In other words, how likely
is it that the only reason for getting data like those observed is sampling variability (and not because H,is not true)?

o STEP 4: Drawing conclusions, assessing the statistical significance of the results based on the p-value, and stating our
conclusions in context. (Do we or don’t we have evidence to reject Hoand accept H,?)

o Note: In practice, we should also always consider the practical significance of the results as well as the statistical
significance.

We will now go through the four steps specifically for the t-test for the population mean and apply them to our two examples.

Tests About p (mu) When o (sigma) is Unknown — The t-test for a Population Mean

Only in a few cases is it reasonable to assume that the population standard deviation, ¢ (sigma), is known and so we will not cover
hypothesis tests in this case. We discussed both cases for confidence intervals so that we could still calculate some confidence
intervals by hand.

For this and all future tests we will rely on software to obtain our summary statistics, test statistics, and p-values for us.

The case where o (sigma) is unknown is much more common in practice. What can we use to replace o (sigma)? If you don’t know
the population standard deviation, the best you can do is find the sample standard deviation, s, and use it instead of o (sigma).
(Note that this is exactly what we did when we discussed confidence intervals).

Population of interest

Is that it? Can we just use s instead of o (sigma), and the rest is the same as the previous case? Unfortunately, it’s not that simple,
but not very complicated either.
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Here, when we use the sample standard deviation, s, as our estimate of ¢ (sigma) we can no longer use a normal distribution to find
the cutoff for confidence intervals or the p-values for hypothesis tests.

Instead we must use the t-distribution (with n-1 degrees of freedom) to obtain the p-value for this test.

We discussed this issue for confidence intervals. We will talk more about the t-distribution after we discuss the details of this test
for those who are interested in learning more.

It isn’t really necessary for us to understand this distribution but it is important that we use the correct distributions in practice via
our software.

We will wait until UNIT 4B to look at how to accomplish this test in the software. For now focus on understanding the process and
drawing the correct conclusions from the p-values given.

Now let’s go through the four steps in conducting the t-test for the population mean.

Step 1: State the hypotheses

The null and alternative hypotheses for the t-test for the population mean (p, mu) have exactly the same structure as the hypotheses
for z-test for the population proportion (p):

The null hypothesis has the form:

e Ho: p = pg(mu = mu_zero)

(where g (mu_zero) is often called the null value)

The alternative hypothesis takes one of the following three forms (depending on the context):

e Ha: p < pg (mu < mu_zero) (one-sided)
e Ha: p > pg (mu > mu_zero) (one-sided)
e Ha: p # pg (mu # mu_zero) (two-sided)

where the choice of the appropriate alternative (out of the three) is usually quite clear from the context of the problem.

If you feel it is not clear, it is most likely a two-sided problem. Students are usually good at recognizing the “more than”
and “less than” terminology but differences can sometimes be more difficult to spot, sometimes this is because you have
preconceived ideas of how you think it should be! You also cannot use the information from the sample to help you determine
the hypothesis. We would not know our data when we originally asked the question.

Now try it yourself. Here are a few exercises on stating the hypotheses for tests for a population mean.

Learn by Doing: State the Hypotheses for a test for a population mean

Here are a few more activities for practice.

Did I Get This?: State the Hypotheses for a test for a population mean

When setting up hypotheses, be sure to use only the information in the research question. We cannot use our sample data to help us
set up our hypotheses.

» <

For this test, it is still important to correctly choose the alternative hypothesis as “less than”, “greater than”, or “different” although
generally in practice two-sample tests are used.

Step 2: Obtain data, check conditions, and summarize data

Obtain data from a sample:

https://stats.libretexts.org/@go/page/31289


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/31289?pdf
http://media.news.health.ufl.edu/misc/bolt/Intro/pdfquizzes/0415-LBD1.pdf
http://media.news.health.ufl.edu/misc/bolt/Intro/pdfquizzes/0415-DIG1.pdf

LibreTextsw

o In this step we would obtain data from a sample. This is not something we do much of in courses but it is done very often in
practice!

Check the conditions:

e Then we check the conditions under which this test (the t-test for one population mean) can be safely carried out — which
are:

o The sample is random (or at least can be considered random in context).

o We are in one of the three situations marked with a green check mark in the following table (which ensure that x-bar is
at least approximately normal and the test statistic using the sample standard deviation, s, is therefore a t-distribution with
n-1 degrees of freedom — proving this is beyond the scope of this course):

Conditions: t-testfor| Small Large
a population mean | sample size | sample size

Variable varies \/ \/
normally in the population

Variable doesn'tvary >< \/
narmally in the population

o For large samples, we don’t need to check for normality in the population. We can rely on the sample size as the basis
for the validity of using this test.

o For small samples, we need to have data from a normal population in order for the p-values and confidence intervals to
be valid.

In practice, for small samples, it can be very difficult to determine if the population is normal. Here is a simulation to give you a
better understanding of the difficulties.

Video: Simulations — Are Samples from a Normal Population? (4:58)
Now try it yourself with a few activities.
Learn by Doing: Checking Conditions for Hypothesis Testing for the Population Mean

Comments:

o It is always a good idea to look at the data and get a sense of their pattern regardless of whether you actually need to do it in
order to assess whether the conditions are met.

o This idea of looking at the data is relevant to all tests in general. In the next module—inference for relationships—conducting
exploratory data analysis before inference will be an integral part of the process.

Here are a few more problems for extra practice.
Did I Get This?: Checking Conditions for Hypothesis Testing for the Population Mean

When setting up hypotheses, be sure to use only the information in the res
Calculate Test Statistic

Assuming that the conditions are met, we calculate the sample mean x-bar and the sample standard deviation, s (which estimates o
(sigma)), and summarize the data with a test statistic.

The test statistic for the t-test for the population mean is:
T Mo

=S/
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Recall that such a standardized test statistic represents how many standard deviations above or below pg (mu_zero) our sample
mean x-bar is.

Therefore our test statistic is a measure of how different our data are from what is claimed in the null hypothesis. This is an idea
that we mentioned in the previous test as well.

Again we will rely on the p-value to determine how unusual our data would be if the null hypothesis is true.

As we mentioned, the test statistic in the t-test for a population mean does not follow a standard normal distribution. Rather, it
follows another bell-shaped distribution called the t-distribution.

We will present the details of this distribution at the end for those interested but for now we will work on the process of the test.
Here are a few important facts.

o In statistical language we say that the null distribution of our test statistic is the t-distribution with (n-1) degrees of
freedom. In other words, when Ho is true (i.e., when p = |1y (mu = mu_zero)), our test statistic has a t-distribution with (n-1)
d.f., and this is the distribution under which we find p-values.

o For a large sample size (n), the null distribution of the test statistic is approximately Z, so whether we use t(n — 1) or Z to
calculate the p-values does not make a big difference. However, software will use the t-distribution regardless of the sample size
and so will we.

Although we will not calculate p-values by hand for this test, we can still easily calculate the test statistic.

Try it yourself:
Learn by Doing: Calculate the Test Statistic for a Test for a Population Mean

From this point in this course and certainly in practice we will allow the software to calculate our test statistics and we will use the
p-values provided to draw our conclusions.

Step 3: Find the p-value of the test by using the test statistic as follows

We will use software to obtain the p-value for this (and all future) tests but here are the images illustrating how the p-value is
calculated in each of the three cases corresponding to the three choices for our alternative hypothesis.

Note that due to the symmetry of the t distribution, for a given value of the test statistic t, the p-value for the two-sided test is twice
as large as the p-value of either of the one-sided tests. The same thing happens when p-values are calculated under the t distribution
as when they are calculated under the Z distribution.

| Top Graph for Ha: mu < mu_zero: A t(n-1) distribution with t-scores on its horizontal axis. T-scores of 0 and t have been marked, with t to the left of 0. t has been generated from a observed test statistic. The
area to the left of t under the curve is the p-value. Middle Graph for Ha: mu

mu_zero: A t(n-1) distribution with t-scores on its horizontal axis. T-scores of 0 and t have been marked, with t to the right of
0. t has been generated from a observed test statistic. The area to the right of t under the curve is the p-value. Bottom Graph for
Ha: mu not equal to mu_zero: A t(n-1) distribution with t-scores on its horizontal axis. T-scores of -|t|, 0, and |t| have been
marked. -|t| is to the left of 0, and [t| is to the right. t has been generated from a observed test statistic. The sum of the area
under the curve to the left of -|t| and to the right of |t| is the p-value." height="840" loading="lazy" src="http://phhp-faculty-
cantrell.sites.m...od12_means.png" title="Top Graph for Ha: mu < mu_zero: A t(n-1) distribution with t-scores on its
horizontal axis. T-scores of 0 and t have been marked, with t to the left of 0. t has been generated from a observed test statistic.
The area to the left of t under the curve is the p-value. Middle Graph for Ha: mu > mu_zero: A t(n-1) distribution with t-scores
on its horizontal axis. T-scores of 0 and t have been marked, with t to the right of 0. t has been generated from a observed test
statistic. The area to the right of t under the curve is the p-value. Bottom Graph for Ha: mu not equal to mu_zero: A t(n-1)
distribution with t-scores on its horizontal axis. T-scores of -|t|, 0, and |t| have been marked. -[t| is to the left of 0, and [t] is to the
right. t has been generated from a observed test statistic. The sum of the area under the curve to the left of -|t| and to the right
of [t| is the p-value." width="328">

We will show some examples of p-values obtained from software in our examples. For now let’s continue our summary of the
steps.
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Step 4: Conclusion

As usual, based on the p-value (and some significance level of choice) we assess the statistical significance of results, and draw our
conclusions in context.

To review what we have said before:

If p-value < 0.05 then WE REJECT Ho

o Conclusion: There ISenough evidence that Ha is True

If p-value > 0.05 then WE FAIL TO REJECT Ho

o Conclusion: There IS NOTenough evidence that Ha is True

Where instead of Ha is True, we write what this means in the words of the problem, in other words, in the context of the
current scenario.

This step has essentially two sub-steps:

(i) Based on the p-value, determine whether or not the results are statistically significant (i.e., the data present enough
evidence to reject Ho).

(ii) State your conclusions in the context of the problem.

We are now ready to look at two examples.

v EXAMPLE:

A certain prescription medicine is supposed to contain an average of 250 parts per million (ppm) of a certain chemical. If the
concentration is higher than this, the drug may cause harmful side effects; if it is lower, the drug may be ineffective.

The manufacturer runs a check to see if the mean concentration in a large shipment conforms to the target level of 250
ppm or not.

A simple random sample of 100 portions is tested, and the sample mean concentration is found to be 247 ppm with a
sample standard deviation of 12 ppm.

Here is a figure that represents this example:

Shipment
T Sample: n=100

- .

Concentration!% u \ e S "\\\

[/ Hptmean=250 \ | \

[ H,:mean is not 250 ‘ \ $=12 ‘/’
[ | o
i 7
N 7

L

1. The hypotheses being tested are:

e Ho: p = py (mu = mu_zero)
e Ha: p # py (mu # mu_zero)
e Where p = population mean part per million of the chemical in the entire shipment

2. The conditions that allow us to use the t-test are met since:

e The sample is random

o The sample size is large enough for the Central Limit Theorem to apply and ensure the normality of x-bar. We do not need
normality of the population in order to be able to conduct this test for the population mean. We are in the 2" column in the
table below.
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Conditions: t-test for Small Large
a population mean | sample size | sample size

Variable varies \/ \/
normally in the population

Variable doesn'tvary >< \/
normally in the population

o The test statistic is:
‘o T—po 247250 o
~os/y/m 12/4/100

o The data (represented by the sample mean) are 2.5 standard errors below the null value.

3. Finding the p-value.

o To find the p-value we use statistical software, and we calculate a p-value of 0.014.

4. Conclusions:

e The p-value is small (.014) indicating that at the 5% significance level, the results are significant.
e We reject the null hypothesis.

¢ OUR CONCLUSION IN CONTEXT:

o There is enough evidence to conclude that the mean concentration in entire shipment is not the required 250 ppm.
o It is difficult to comment on the practical significance of this result without more understanding of the practical
considerations of this problem.

Here is a summary:

Shipment
T Sample:n=100
Concentration 4% 1] \ Ve _ T ™~

/ yHp:mean=250 | H=E \
[ Ha:meanis not 250 ‘-l \ S=12 /"
| " Conditions
\ # are met
\ t=-25

~ T '

p-value =.014

Concdusion:H; can be rejected.
Comments:

e The 95% confidence interval for p (mu) can be used here in the same way as for proportions to conduct the two-sided test
(checking whether the null value falls inside or outside the confidence interval) or following a t-test where Ho was rejected
to get insight into the value of p (mu).

o We find the 95% confidence interval to be (244.619, 249.381). Since 250 is not in the interval we know we would reject
our null hypothesis that p (mu) = 250. The confidence interval gives additional information. By accounting for estimation
error, it estimates that the population mean is likely to be between 244.62 and 249.38. This is lower than the target
concentration and that information might help determine the seriousness and appropriate course of action in this situation.
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& Caution

In most situations in practice we use TWO-SIDED HYPOTHESIS TESTS, followed by confidence intervals to gain more
insight.

For completeness in covering one sample t-tests for a population mean, we still cover all three possible alternative hypotheses
here HOWEVER, this will be the last test for which we will do so.

v EXAMPLE:

A research study measured the pulse rates of 57 college men and found a mean pulse rate of 70 beats per minute with a
standard deviation of 9.85 beats per minute.

Researchers want to know if the mean pulse rate for all college men is different from the current standard of 72 beats per
minute.

1. The hypotheses being tested are:

e Ho:p=72
o Ha:p#72
e Where p = population mean heart rate among college men

2. The conditions that allow us to use the t-test are met since:

o The sample is random.
o The sample size is large (n = 57) so we do not need normality of the population in order to be able to conduct this test for
the population mean. We are in the 2" column in the table below.

Conditions: t-test for Small Large
a population mean | sample size | sample size

Variable varies \/ \/
normally in the population

Variable doesn't vary >< \/
normally in the population

o The test statistic is:
o z—p  70-72
s/v/m 9.85/4/57

o The data (represented by the sample mean) are 1.53 estimated standard errors below the null value.

—-1.53

3. Finding the p-value.

o Recall that in general the p-value is calculated under the null distribution of the test statistic, which, in the t-test case, is t(n-
1). In our case, in which n = 57, the p-value is calculated under the t(56) distribution. Using statistical software, we find that
the p-value is 0.132.

o Here is how we calculated the p-value. http://homepage.stat.uiowa.edu/~mbognar/applets/t.html.

Student’s t-Distribution
X ~ g
df =56

z =153 P> k)= v|/D131B4 TV

)
o
&
g

A A A o e Q- A
X

k=BX=0 o=3DX) =108 o= Var{X)=1.087

2018 Matt Bognar
Department of Statistics and Actuarisl Stience
Uriversity of lowa
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4. Making conclusions.

o The p-value (0.132) is not small, indicating that the results are not significant.
o We fail to reject the null hypothesis.
e OUR CONCLUSION IN CONTEXT:

o There is not enough evidence to conclude that the mean pulse rate for all college men is different from the current
standard of 72 beats per minute.

o The results from this sample do not appear to have any practical significance either with a mean pulse rate of 70, this is
very similar to the hypothesized value, relative to the variation expected in pulse rates.

Now try a few yourself.

Learn by Doing: Hypothesis Testing for the Population Mean

From this point in this course and certainly in practice we will allow the software to calculate our test statistic and p-value and we
will use the p-values provided to draw our conclusions.

That concludes our discussion of hypothesis tests in Unit 4A.

In the next unit we will continue to use both confidence intervals and hypothesis test to investigate the relationship between two
variables in the cases we covered in Unit 1 on exploratory data analysis — we will look at Case CQ, Case CC, and Case QQ.

Before moving on, we will discuss the details about the t-distribution as a general object.

The t-Distribution

We have seen that variables can be visually modeled by many different sorts of shapes, and we call these shapes distributions.
Several distributions arise so frequently that they have been given special names, and they have been studied mathematically.

So far in the course, the only one we’ve named, for continuous quantitative variables, is the normal distribution, but there are
others. One of them is called the t-distribution.

The t-distribution is another bell-shaped (unimodal and symmetric) distribution, like the normal distribution; and the center of the t-
distribution is standardized at zero, like the center of the standard normal distribution.

Like all distributions that are used as probability models, the normal and the t-distribution are both scaled, so the total area under
each of them is 1.

So how is the t-distribution fundamentally different from the normal distribution?

o The spread.

The following picture illustrates the fundamental difference between the normal distribution and the t-distribution:

standard normal, £

!
I
:
:
I
I
I
:
1
:
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Here we have an image which illustrates the fundamental difference between the normal distribution and the t-distribution:

You can see in the picture that the t-distribution has slightly less area near the expected central value than the normal distribution
does, and you can see that the t distribution has correspondingly more area in the “tails” than the normal distribution does. (It’s
often said that the t-distribution has “fatter tails” or “heavier tails” than the normal distribution.)
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This reflects the fact that the t-distribution has a larger spread than the normal distribution. The same total area of 1 is spread out
over a slightly wider range on the t-distribution, making it a bit lower near the center compared to the normal distribution, and
giving the t-distribution slightly more probability in the ‘tails’ compared to the normal distribution.

Therefore, the t-distribution ends up being the appropriate model in certain cases where there is more variability than would be
predicted by the normal distribution. One of these cases is stock values, which have more variability (or “volatility,” to use the
economic term) than would be predicted by the normal distribution.

There’s actually an entire family of t-distributions. They all have similar formulas (but the math is beyond the scope of this
introductory course in statistics), and they all have slightly “fatter tails” than the normal distribution. But some are closer to normal
than others.

The t-distributions that have higher “degrees of freedom” are closer to normal (degrees of freedom is a mathematical concept that
we won’t study in this course, beyond merely mentioning it here). So, there’s a t-distribution “with one degree of freedom,” another
t-distribution “with 2 degrees of freedom” which is slightly closer to normal, another t-distribution “with 3 degrees of freedom”
which is a bit closer to normal than the previous ones, and so on.

The following picture illustrates this idea with just a couple of t-distributions (note that “degrees of freedom” is abbreviated “d.f.”
on the picture):

standard normal, £

twith 5 df
(middle curve

T T T

The test statistic for our t-test for one population mean is a t-score which follows a t-distribution with (n — 1) degrees of freedom.
Recall that each t-distribution is indexed according to “degrees of freedom.” Notice that, in the context of a test for a mean, the
degrees of freedom depend on the sample size in the study.

Remember that we said that higher degrees of freedom indicate that the t-distribution is closer to normal. So in the context of a test
for the mean, the larger the sample size, the higher the degrees of freedom, and the closer the t-distribution is to a normal z
distribution.

As a result, in the context of a test for a mean, the effect of the t-distribution is mest important for a study with a relatively small
sample size.

one source of
wariation
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Z (standard normal) distribution: ‘,—-—-\ t distribution (with n-1 d.f)
*centered at 0 * bell shaped the larger the *centered at 0 * bell shaped
sample size n,

* standard deviation = 1 the closer the * larger spread

tho doser
We are now done introducing the t-distribution. What are implications of all of this?

o The null distribution of our t-test statistic is the t-distribution with (n-1) d.f. In other words, when Ho is true (i.e., when p = g
(mu = mu_zero)), our test statistic has a t-distribution with (n-1) d.f., and this is the distribution under which we find p-values.

o For a large sample size (n), the null distribution of the test statistic is approximately Z, so whether we use t(n — 1) or Z to
calculate the p-values does not make a big difference.
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