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Case C→C

CO-4: Distinguish among different measurement scales, choose the appropriate descriptive and inferential statistical methods
based on these distinctions, and interpret the results.

LO 4.35: For a data analysis situation involving two variables, choose the appropriate inferential method for examining the
relationship between the variables and justify the choice.

LO 4.36: For a data analysis situation involving two variables, carry out the appropriate inferential method for examining
relationships between the variables and draw the correct conclusions in context.

CO-5: Determine preferred methodological alternatives to commonly used statistical methods when assumptions are not met.

Review: Unit 1 Case C-C

Video: Case C→C (47:09)

Related SAS Tutorials

6A – (3:07) Two-Way (Contingency) Tables – EDA
6B – (9:41) Two-Way (Contingency) Tables – Inference

Related SPSS Tutorials

6A – (7:57) Two-Way (Contingency) Tables – EDA
6B – (9:19) Two-Way (Contingency) Tables – Inference

Introduction
The last procedures we studied (two-sample t, paired t, ANOVA, and their non-parametric alternatives) all involve the relationship
between a categorical explanatory variable and a quantitative response variable (case C→Q).In all of these procedures, the result is
a comparison of the quantitative response variable (Y) among the groups defined by the categorical explanatory variable (X).The
standard tests result in a comparison of the population means of Y within each group defined by X.

Next, we will consider inferences about the relationships between two categorical variables, corresponding to case C→C.

For case C→C, we will learn the following tests:
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Independent Samples (Only Emphasis) Dependent Samples (Not Discussed)

Standard Tests
Continuity Corrected Chi-square Test for Independence
(2×2 case)
Chi-square Test for Independence (RxC case)

Non-Parametric Test
Fisher’s exact test

Standard Test
McNemar’s Test – 2×2 Case

In the Exploratory Data Analysis unit of the course, we summarized the relationship between two categorical variables for a given
data set (using a two-way table and conditional percents), without trying to generalize beyond the sample data.

Now we will perform statistical inference for two categorical variables, using the sample data to draw conclusions about whether or
not we have evidence that the variables are related in the larger population from which the sample was drawn.

In other words, we would like to assess whether the relationship between X and Y that we observed in the data is due to a real
relationship between X and Y in the population, or if it is something that could have happened just by chance due to
sampling variability.

Before moving into the statistical tests, let’s look at a few (fake) examples.

RxC Tables

Suppose our explanatory variable X has r levels and our response variable Y has c levels. We usually arrange our table with the
explanatory variable in the rows and the response variable in the columns.

Suppose we have the following partial (fake) data summarized in a two-way table using X = BMI category (r = 4 levels) and Y
= Diabetes Status (c = 3 levels).

 No Diabetes Pre-Diabetes Diabetes Total

Underweight    100

Normal    400

Overweight    300

Obese    200

Total 700 200 100 1000

From our study of probability we can determine:

P(No Diabetes) = 700/1000 = 0.7
P(Pre-Diabetes) = 200/1000 = 0.20
P(Diabetes) = 100/1000 = 0.10

 EXAMPLE: RxC Table

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/31303?pdf


3 https://stats.libretexts.org/@go/page/31303

In the test we are going to use, our null hypothesis will be:

Ho: There is no relationship between X and Y.

Which in this case would be:

Ho: There is no relationship between BMI category (X) and diabetes status (Y).

If there were no relationship between X and Y, this would imply that the distribution of diabetes status is the same for each
BMI category.

In this case (C→C), the distribution of diabetes status consists of the probability of each diabetes status group and the null
hypothesis becomes:

Ho: BMI category (X) and diabetes status (Y) are INDEPENDENT.

Since the probability of “No Diabetes” is 0.7 in the entire dataset, if there were no differences in the distribution of diabetes
status between BMI categories, we would obtain the same proportion in each row. Using the row totals we can find the
EXPECTED counts as follows.

Notice the formula used below is simply the formula for the mean or expected value of a binomial random variable with n
“trials” and probability of “success” p which was μ = E(X) = np where X = number of successes for a sample of size n.

 No Diabetes Pre-Diabetes Diabetes Total

Underweight 100(0.7) = 70   100

Normal 400(0.7) = 280   400

Overweight 300(0.7) = 210   300

Obese 200(0.7) = 140   200

Total 700 200 100 1000

Notice that these do indeed add to 700.

Similarly we can determine the EXPECTED counts for the remaining two columns since 20% of our sample were classified
as having pre-diabetes and 10% were classified as having diabetes.

 No Diabetes Pre-Diabetes Diabetes Total

Underweight 70 100(0.2) = 20 100(0.1) = 10 100

Normal 280 400(0.2) = 80 400(0.1) = 40 400

Overweight 210 300(0.2) = 60 300(0.1) = 30 300

Obese 140 200(0.2) = 40 200(0.1) = 20 200

Total 700 200 100 1000

What we have created, using only the row totals, column totals, and column percents, is a table of what we would expect to
happen if the null hypothesis of no relationship between X and Y were true. Here is the final result.

 No Diabetes Pre-Diabetes Diabetes Total

Underweight 70 20 10 100

Normal 280 80 40 400

Overweight 210 60 30 300

Obese 140 40 20 200

Total 700 200 100 1000
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Suppose we gather data and find the following (expected counts are in parentheses for easy comparison):

 No Diabetes Pre-Diabetes Diabetes Total

Underweight 65 (70) 22 (20) 13 (10) 100

Normal 285 (280) 78 (80) 37 (40) 400

Overweight 216 (210) 53 (60) 31 (30) 300

Obese 134 (140) 47 (40) 19 (20) 200

Total 700 200 100 1000

If we compare our counts to the expected counts they are fairly close. This data would not give much evidence of a difference
in the distribution of diabetes status among the levels of BMI categories. In other words, this data would not give much
evidence of a relationship (or association) between BMI categories and diabetes status.

The standard test we will learn in case C→C is based upon comparing the OBSERVED cell counts (our data) to the
EXPECTED cell counts (using the method discussed above).

We want you to see how the expected cell counts are created so that you will understand what kind of evidence is being used to
reject the null hypothesis in case C→C.

Suppose instead that we gather data and we obtain the following counts (expected counts are in parentheses and row
percentages are provided):

 No Diabetes Pre-Diabetes Diabetes Total

Underweight
90 (70) 

90%
7 (20) 

7%
3 (10) 

3%
100

Normal
340 (280) 

85%
40 (80) 

10%
20 (40) 

5%
400

Overweight
180 (210) 

60%
90 (60) 

30%
30 (30) 

10%
300

Obese
90 (140) 

45%
63 (40) 
31.5%

47 (20) 
23.5%

200

Total 700 200 100 1000

In this case, most of the differences are drastic and there seems to be clear evidence that the distribution of diabetes status is
not the same among the four BMI categories.

Although this data is entirely fabricated, it illustrates the kind of evidence we need to reject the null hypothesis in case C→C.

2×2 Tables
One special case occurs when we have two categorical variables where both of these variables have two levels. Two-level
categorical variables are often called binary variables or dichotomous variables and when possible are usually coded as 1 for
“Yes” or “Success” and 0 for “No” or “Failure.”

Here is another (fake) example.

Suppose we have the following partial (fake) data summarized in a two-way table using X = treatment and Y = significant
improvement in symptoms.

 No Improvement Improvement Total

 EXAMPLE: 2x2 Table
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Control   100

Treatment   100

Total 120 80 200

From our study of probability we can determine:

P(No Improvement) = 120/200 = 0.6
P(Improvement) = 80/200 = 0.4

Since the probability of “No Improvement” is 0.6 in the entire dataset and the probability for “Improvement” is 0.4, if there
was no difference we would obtain the same proportion in each row. Using the row totals we can find the EXPECTED counts
as follows.

 No Improvement Improvement Total

Control 100(0.6) = 60 100(0.4) = 40 100

Treatment 100(0.6) = 60 100(0.4) = 40 100

Total 120 80 200

Suppose we obtain the following data:

 No Improvement Improvement Total

Control 80 20 100

Treatment 40 60 100

Total 120 80 200

In this example we are interested in the probability of improvement and the above data seem to indicate the treatment provides
a greater chance for improvement than the control.

We use this example to mention two ways of comparing probability (sometimes “risk”) in 2×2 tables. Many of you may
remember these topics from Epidemiology or may see these topics again in Epidemiology courses in the future!

Risk Difference:

For this data, a larger proportion of subjects in the treatment group showed improvement compared to the control group. In
fact, the estimated probability of improvement is 0.4 higher for the treatment group than the control group.

This value (0.4) is called a risk-difference and is one common measure in 2×2 tables. Estimates and confidence intervals can
be obtained.

For a fixed sample size, the larger this difference, the more evidence against our null hypothesis (no relationship between X
and Y).

The population risk-difference is often denoted p  – p , and is the difference between two population proportions. We estimate
these proportions in the same manner as Unit 1, once for each sample.

For the current example, we obtain

and

from which we find the risk difference

1 2

= = = 0.60p̂1 p̂TRT

60

100

= = = 0.20p̂2 p̂Control 

20

100

− = 0.60 −0.20 = 0.40p̂TRT  p̂Control 
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Odds Ratio:

Another common measure in 2×2 tables is the odds ratio, which is defined as the odds of the event occurring in one group
divided by the odds of the event occurring in another group.

In this case, the odds of improvement in the treatment group is

and the odds of improvement in the control group is

so the odds ratio to compare the treatment group to the control group is

This value means that the odds of improvement are 6 times higher in the treatment group than in the control group.

Properties of Odds Ratios:

The odds ratio is always larger than 0.
An odds ratio of 1 implies the odds are equal in the two groups.
Values much larger than 1 indicate the event is more likely in the treatment group (numerator group) than the control group
(denominator group). This would give evidence that our null hypothesis is false.
Values much smaller than 1 (closer to zero) would indicate the event is much less likely in the treatment group than the
control group. This would also give evidence that our null hypothesis is false.

Notice: if we compared control to treatment (instead of treatment to control) we would obtain an odds ratio of 1/6
which would say that the odds of improvement in the control group is 1/6 the odds of improvement in the treatment
group which leads us to exactly the same conclusion, worded in an opposite manner.

Chi-square Test for Independence

LO 4.43: In a given context, determine the appropriate standard method for examining the relationship between two
categorical variables. Given the appropriate software output choose the correct p-value and provide the correct conclusions in
context.

LO 4.44: In a given context, set up the appropriate null and alternative hypotheses for examining the relationship between two
categorical variables.

Step 1: State the hypothesesThe hypotheses are:

Ho: There is no relationship between the two categorical variables. (They are independent.)

Ha: There is a relationship between the two categorical variables. (They are not independent.)

Note: for 2×2 tables, these hypotheses can be formulated the same as for population means except using population
proportions. This can be done for RxC tables as well but is not common as it requires more notation to compare multiple group
proportions.

Ho: p  – p  = 0 (which is the same as p  = p )
Ha: p  – p  ≠ 0 (which is the same as p  ≠ p ) (two-sided)

Step 2: Obtain data, check conditions, and summarize data

= = = 1.5ODDSTRT

P ( Improvement  ∣ TRT)

P ( No Improvement  ∣ TRT)

0.6

0.4

= = = 0.25ODDSControl 

P ( Improvement  ∣  Control )

P ( No Improvement  ∣  Control )

0.2

0.8

 Odds Ratio  = = = 6
 ODDS  TRT

ODDSControl

1.5

0.25
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(i) The sample should be random with independent observations (all observations are independent of all other observations).

(ii) In general, the larger the sample, the more precise and reliable the test results are. There are different versions of what the
conditions are that will ensure reliable use of the test, all of which involve the expected counts. One version of the conditions
says that all expected counts need to be greater than 1, and at least 80% of expected counts need to be greater than 5. A more
conservative version requires that all expected counts are larger than 5. Some software packages will provide a warning if the
sample size is “too small.”

Test Statistic of the Chi-square Test for Independence:

The single number that summarizes the overall difference between observed and expected counts is the chi-square
statistic, which tells us in a standardized way how far what we observed (data) is from what would be expected if Ho
were true.

Here it is:

Step 3: Find the p-value of the test by using the test statistic as followsWe will rely on software to obtain this value for us.
We can also request the expected counts using software.

The p-values are calculated using a chi-square distribution with (r-1)(c-1) degrees of freedom (where r = number of levels of
the row variable and c = number of levels of the column variable). We will rely on software to obtain the p-value for this test.

IMPORTANT NOTE

Use Continuity Correction for 2×2 Tables: For 2×2 tables, a continuity correction is used to improve the approximation
of the p-value. This value will only be calculated by the software for 2×2 tables where both variables are binary – have
only two levels.

Step 4: Conclusion

As usual, we use the magnitude of the p-value to draw our conclusions. A small p-value indicates that the evidence provided
by the data is strong enough to reject Ho and conclude (beyond a reasonable doubt) that the two variables are related. In
particular, if a significance level of 0.05 is used, we will reject Ho if the p-value is less than 0.05.

Non-Parametric Alternative: Fisher’s Exact Test

LO 5.1: For a data analysis situation involving two variables, determine the appropriate alternative (non-parametric) method
when assumptions of our standard methods are not met.

We will look at one non-parametric test in case C→C. Fisher’s exact test is an exact method of obtaining a p-value for the
hypotheses tested in a standard chi-square test for independence. This test is often used when the sample size requirement of the
chi-square test is not satisfied and can be used for 2×2 and RxC tables.

Step 1: State the hypothesesThe hypotheses are:

Ho: There is no relationship between the two categorical variables. (They are independent.)

Ha: There is a relationship between the two categorical variables. (They are not independent, they are dependent.)

Step 2: Obtain data, check conditions, and summarize data

The sample should be random with independent observations (all observations are independent of all other observations).

Step 3: Find the p-value of the test by using the test statistic as follows

The p-values are calculated using a distribution specific to this test. We will rely on software to obtain the p-value for this test.
The p-value measures the chance of obtaining a table as or more extreme (against the null hypothesis) than our table.

=χ2 ∑all cells 

( observed count  −  expected count )2

 expected count 
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Step 4: Conclusion

As usual, we use the magnitude of the p-value to draw our conclusions. A small p-value indicates that the evidence provided
by the data is strong enough to reject Ho and conclude (beyond a reasonable doubt) that the two variables are related. In
particular, if a significance level of 0.05 is used, we will reject Ho if the p-value is less than 0.05.

Now let’s look at a some examples with real data.

Low birth weight is an outcome of concern due to the fact that infant mortality rates and birth defect rates are very high for
babies with low birth weight. A woman’s behavior during pregnancy (including diet, smoking habits, and obtaining prenatal
care) can greatly alter her chances of carrying the baby to term and, consequently, of delivering a baby of normal birth weight.

In this example, we will use a 1986 study (Hosmer and Lemeshow (2000), Applied Logistic Regression: Second Edition) in
which data were collected from 189 women (of whom 59 had low birth weight infants) at the Baystate Medical Center in
Springfield, MA. The goal of the study was to identify risk factors associated with giving birth to a low birth weight baby.

Data: SPSS format, SAS format, Excel format

Response Variable:

LOW – Low birth weight

0=No (birth weight >= 2500 g)
1=Yes (birth weight < 2500 g)

Possible Explanatory Variables (variables we will use in this example are in bold):

RACE – Race of mother (1=White, 2=Black, 3=Other)
SMOKE – Smoking status during pregnancy (0=No, 1=Yes)
PTL – History of premature labor (0=None, 1=One, etc.)
HT – History of hypertension (0=No, 1=Yes)
UI – Presence of uterine irritability (0=No, 1=Yes)
FTV – Number of physician visits during the first trimester
BWT – The actual birth weight (in grams)
AGE – Age of mother (in years)
LWT – Weight of mother at the last menstrual period (in pounds)

Results:

Step 1: State the hypotheses

The hypotheses are:

Ho: There is no relationship between the categorical explanatory variable and presence of low birth weight. (They are
independent.)

Ha: There is a relationship between the categorical explanatory variable and presence of low birth weight.(They are not
independent, they are dependent.)

Steps 2 & 3: Obtain data, check conditions, summarize data, and find the p-value

Explanatory Variable Which Test is Appropriate? P-value Decision

RACE

Min. Expected Count = 8.12 
3×2 table 

Use Pearson Chi-square (since
RxC)

0.0819 (Chi-square – SAS) 
0.082 (Chi-square – SPSS)

Fail to Reject Ho

 EXAMPLE: Risk Factor for Low Birth Weight
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SMOKE

Min. Expected Count = 23.1 
2×2 table 

Use Continuity Correction
(since 2×2)

0.040 (Continuity Correction –
SPSS) 

0.0396 (Continuity Adj –
SAS)

Reject Ho

PTL

Min. Expected Count = 0.31 
4×2 table 

Fisher’s Exact test is more
appropriate

3.106 E-04 = 0.0003106
(Fisher’s – SAS) 

0.000 (Fisher’s – SPSS) 
0.0008 (Chi-square – SAS) 
0.001 (Chi-square – SPSS)

Reject Ho

HT

Min. Expected Count = 3.75 
2×2 table 

Fisher’s Exact test may be
more appropriate

0.0516 (Fisher’s – SAS) 
0.052 (Fisher’s – SPSS)

Fail to Reject Ho 
(Barely)

UI
Min. Expected Count = 8.74 

2×2 table 
Use Continuity Correction

0.0355 (Continuity Adj. –
SAS) 

0.035 (Continuity Correction –
SPSS)

Reject Ho

Step 4: Conclusion

When considered individually, presence of uterine irritability, history of premature labor, and smoking during pregnancy are all
significantly associated (p-value < 0.05) with the presence/absence of a low birth weight infant whereas history of
hypertension and race were only marginally significant (0.05 ≤ p-value < 0.10).

Practical Significance:

Explanatory Variable Comparison of Conditional Percentages of Low Birth Weight

RACE
Race = White: 23.96% 
Race = Black: 42.31% 
Race = Other: 37.31%

SMOKE
Smoke = No: 25.22% 
Smoke = Yes: 40.54%

PTL

History of Premature Labor = 0: 25.79% 
History of Premature Labor = 1: 66.67% 

History of Premature Labor = 2: 40.00% (Note small sample
size of 5 for this row) 

History of Premature Labor = 3: 0.00% (Note small sample size
of 1 for this row)

HT
Hypertension = No: 29.38% 

Hypertension = Yes: 58.33% (Note small sample size of 12 for
this row)

UI
Presence of uterine irritability = No: 27.95% 
Presence of uterine irritability = Yes: 50.00%

Despite our failing to reject the null in two of the five tests, all of these results seem to have some practical significance
although the small sample sizes for some portions of the results may be producing misleading information and likely would
require further study to confirm the results seen here.

SPSS Output for tests

SAS Output, SAS Code
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If, instead of simply analyzing the “looks vs. personality” rating scale, we categorized the responses into groups then we would
be in case C→C instead of case C→Q (see previous example in Case C-Q for Two Independent Samples).

Recall the rating score was from 1 to 25 with 1 = personality most important (looks not important at all) and 25 = looks most
important (personality not important at all). A score of 13 would be equally important and scores around 13 should indicate
looks and personality are nearly equal in importance.

For our purposes we will use a rating of 16 or larger to indicate that looks were indeed more important than personality
(by enough to matter).

Data: SPSS format, SAS format

Response Variable:

Looks – “Looks were (much) more important?”

0=No (Less than 16 on the looks vs. personality rating)
1=Yes (16 or higher on the looks vs. personality rating)

Results:

Step 1: State the hypotheses

The hypotheses are:

Ho: The proportion of college students who find looks more important than personality is the same for males and
females. (The two variables are independent)

Ha: The proportion of college students who find looks more important than personality is different for males and
females. (The two variables are dependent)

Steps 2 & 3: Obtain data, check conditions, summarize data, and find the p-value

The minimum expected cell count is 13.38. This is a 2×2 table so we will use the continuity corrected chi-square statistic.

The p-value is found to be 0.001 (SPSS) or 0.0007 (SAS).

Step 4: Conclusion

There is a significant association between gender and whether or not the individual rated looks more important than
personality.

Among males, 27.1% rated looks higher than personality while among females this value was only 9.3%.

For fun: The odds ratio here is

which means, based upon our data, we estimate that the odds of rating looks more important than personality is 3.6 times
higher among males than among females.

Practical Significance:

It seems clear that the difference between 27.1% and 9.3% is practically significant as well as statistically significant. This
difference is large and likely represents a meaningful difference in the views of males and females regarding the importance of
looks compared to personality.

SPSS Output

SAS Output, SAS Code

Case C→C is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

 EXAMPLE: 2x2 Table - Revisting "Looks vs. Personality" with Binary Categorized Response

Odds Ratio = = = 3.63
0.271/(1 −0.271)

0.093/(1 −0.093)

0.37174

0.10254
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