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Lab 1: Getting Started with R and EDA

Objectives:
1. Use RStudio to read and examine a data set.
2. Become familiar with R Markdown files and create a PDF from one.

Definitions:
variable vs. observation
quantitative vs. categorical variables
bar chart, contingency table, histogram
center, shape, spread of a distribution
sample mean, sample variance, sample standard deviation, sample range
percentile (aka quantile); first, second, and third quartiles; median
5-number summary, boxplot

Introduction:
One of the goals of this course is to help you gain computational fluency with a statistical language. We will use the language R in
this class. R is a powerful, widely used statistical language that is free and open source. The purpose of this lab is to help you get
started with this language by performing exploratory data analysis (EDA). Exploratory data analysis is an approach to examining
and describing data to gain insight, discover structure, and detect anomalies and outliers.

Activities:
Getting Organized: The first goal is to get organized. If you haven't already done so, make a folder on your laptop or in your H:
drive (personal network drive on Saint Mary's campus, for info see http://sites.saintmarys.edu/~resnet/..._10resnet.html) that will
store all your materials for this class. Make a subfolder called "Labs", and within "Labs" make another subfolder called "Lab1".
Finally, download the lab notebook and data file for this lab into your "Lab1" folder. (The files are on the class Blackboard site.)

Configuring RStudio: The next step is to configure RStudio. Open RStudio by double clicking the RStudio icon. By default,
RStudio has four "panes", and these can be configured. Click on "RStudio > Preferences... > Pane Layout", and see what your
configuration is. I like to have the following configuration:

Upper Left: Source
Lower left: Console
Upper Right: Environment, History, etc.
Lower Right: Files, Plots, etc.

Set your pane configuration to match this, if it doesn't already. Once you have done so, find and click on the "Files" tab in the lower
right panel. Navigate to the "Lab1" folder you just created. Then click the "More" button in the file browser (i.e., the menu at the
top of the lower right panel in RStudio) and click "Set as working directory".

Open the Lab Notebook: Before you can start experimenting, you need to set up your "lab notebook" that will store your
conjectures, responses to reflections, and any results. You will be using R Markdown files to create your lab notebooks. I have
provided a template for you to use on this first lab, it is the "lab1_notebook.Rmd" file you have downloaded and saved in your
Lab1 folder. To open it, click on it in the file browser in the lower right pane of RStudio. The document will open in the upper-left
pane.

You will edit the "lab1_notebook.Rmd" file as you work through the lab. To start, add your name as the author in line 3 of the
document. Once you have completed the lab, you will "Knit" the .Rmd file which will render a PDF for you to turn in. You can try
this now by clicking the "Knit" button.

Running R By Command Line: Our next task is figure out how to "run" R. The simplest approach is to enter commands one at a
time on a command line. If you've configured your panes as above, there should be a "Console" tab in the lower left pane. Click on
it. You should see a ">" prompt. This is where you type commands and then hit "Enter" or "Return" to run them. Try the following:
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1 + 2 

 

## [1] 3

The answer "3" should materialize on the screen. In other words, you can use R like a calculator. Try something more advanced:

sqrt(3^2 + 4^2)/5 

 

## [1] 1

You can save the output of these calculations in variables. For example, try the following:

x = sqrt(3^2 + 4^2)/5 

Note that this time, you don't see any output when you run the above line. But if you type x in the Console, you will see that x=1.
In other words, you have defined a variable in the workspace and assigned it a value. If you look at the upper right pane in RStudio
and click on the "Environment" tab, you should see a list of all the variables in your workspace. (At the moment there should only
be one, namely x.)

_____________________________________________________

Pause for Reflection #1:
Suppose you didn't know that sqrt() was the square root function in R, but you needed to take a square root. How might you
figure out that this function existed? (Hint: How do you figure anything out in this day and age?) Type a sentence in your
"lab1_notebook.Rmd" file in RStudio that explains your approach. Then test your theory by trying to find the R function that gives
absolute value. Make a note in your lab notebook about the results of this attempt.

_____________________________________________________

Running R From Scripts: If you want to enter a lot of commands, it is easier to type them all in a single file and then tell R to
"run the script", i.e., execute the commands in sequence, one at a time. To generate a script in RStudio, click "File > New File > R
Script". In the upper left pane a new blank tab entitled "Untitled1" should materialize. The first thing to do is to give this document
a proper name. Click "File > Save As", and save it as "<YourFirstName>_lab1.R".

To test out your script, write the following lines in the document:

y=3 

z=2 

Then put your cursor on the y=3 line and click the "Run" button, which is in the right-hand corner of the pane. You should see the
command echoed in the Console pane, and the variable y will show up in the Environment tab. Now put your cursor on the z=2
line and repeat - once again, the new variable should be reflected in the Environment tab.

If you want to execute the two commands together, in one fell swoop, you can click the "Source" button. "Sourcing a script" sends
the entire script to the Console to be run. You can also select a portion of lines in a script with your mouse and then, with the lines
highlighted, click the "Source" button.

Running R in R Markdown Files: What if you would like to include some code in your lab notebook? Well you would be in luck!
One of the reasons I am having you use R Markdown files to create your lab notebooks is because they offer the flexibility to
combine text (including LaTeX!) and code in one place. To add code to an R Markdown file insert a *code chunk* either by typing
the chunk delimiters directly into the R Markdown file or by using one of the following shortcuts:

- keyboard shortcut: **Ctrl + Alt + I** (Mac **Cmd + Option + I**) 
- RStudio shortcut: click the "Add Chunk" button  in the editor toolbar of the .Rmd file
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When you "Knit" an R Markdown file, the code in any code chunks will be run and the results will be displayed in the resulting
document.

_____________________________________________________

Pause for Reflection #2:
The "lab1_notebook.Rmd" file already contains two code chunks in the Reflection #2 section. Each chunk has the same code, but
note that the second chunk has been customized with the additional argument in the chunk header, i.e., the echo=FALSE set in the
{ }. Knit the file and inspect the rendered PDF.

Add a third code chunk with the same code as the other two to your lab notebook and add the following argument:
include=FALSE. Knit the file again and inspect the rendered PDF.

Explain what the effects of the echo=FALSE and include=FALSE arguments are on the rendered PDF. Type your explanation
below the code chunks in the "lab1_notebook.Rmd" file.

_____________________________________________________

Loading Data: To do statistical analysis on a computer, you need to have some way of getting your computer to read and store
datasets. In R there are a number of ways to do this. It is often the case that you find data in a spreadsheet, or simply stored in a
regular text file. In fact, the data file for this lab is a .csv file. To load it, write the following command into your R script:

FlightDelays = read.csv("FlightDelays.csv", header = TRUE, sep = ",") 

and click the "Run" button. With any luck, you should see a new variable in your Workspace (i.e., Environment tab in upper right
pane) called "FlightDelays", along with a tagline that says "4029 obs. of 10 variables". Click on this data in the Environment tab,
and in the upper left pane you should be able to view the data.

_____________________________________________________

Pause for Reflection #3:
Note that the name of the data file is the same as the name of the variable used to store the data in RStudio. Suppose that you didn't
want to work with a variable called FlightDelays, and instead wanted to work with a variable simply called data. How can
you change the variable name? Write the commands in your lab1.R script, and execute them. (Hint: First copy it, then remove it.)

Create a code chunk in your "lab1_notebook.Rmd" file and add the code to change the name of the dataset to data.

_____________________________________________________

 

Examining Datasets: Some Key Terms Take another look at the dataset (click on it in the Environment tab to get it to display in a
new window). It describes information on 4029 departures of United Airlines and American Airlines from LaGuardia Airport
during May and June 2009.

Each row of the dataset is an observation. Each column represents a variable - some feature or characteristic obtained for each
observation. To view the names of the variables in a dataset, try the following:

names(data) 

There are two types of variables:

quantitative (aka numerical) - variables that have numerical values and arithmetic operations are meaningful
categorical (aka factor) - variables that have non-numerical values or numerical values but arithmetic operations are not
meaningful

_____________________________________________________
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Pause for Reflection #4:
Consider (with your partner) what these things are in terms of this dataset. Then in your lab notebook, respond to the following
questions:

1. How many observations are there?
2. How many quantitative variables are there?
3. and how many categorical ones?

_____________________________________________________

 

Tables and Bar Charts: The categorical variable Carrier in the dataset assigns each flight to one of the two airlines: UA for
United and AA for American. To obtain a summary of this variable, try the following:

table(data$Carrier) 

To visualize the distribution of the Carrier variable, create a bar chart:

barplot(table(data$Carrier)) 

We can also use the table() function to investigate the relationship between two categorical variables. The following creates a
contingency table to investigate the relationship between the airline (Carrier) and whether or not a flight was delayed more
than 30 minutes (Delayed30):

table(data$Carrier, data$Delayed30) 

_____________________________________________________

Pause for Reflection #5:
In your lab notebook, create a code chunk that will include the tables and bar chart that we just produced in your rendered PDF.
Comment on the distribution of the carrier data and its relationship with delays.

_____________________________________________________

 

Histograms, Numerical Summaries, and Boxplots: Now focus on the quantitative variable FlightLength in the dataset,
which gives the length of flight time in minutes. Because it is a bit cumbersome to use the syntax data$FlightLength each
time we want to work with the FlightLength variable, we can streamline things by giving it a new name:

fl = data$FlightLength 

To see the distribution of a numeric variable, we create a histogram:

hist(fl)

_____________________________________________________

Pause for Reflection #6:
In your lab notebook, create a code chunk that will include the histogram that we just produced in your rendered PDF.

Inspect the histogram and comment on the center, shape, and spread of the flight length data.

_____________________________________________________
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The histogram is great, but we'd like some hard numbers, too. We start with the definitions of some commonly used sample
statistics.

Definition 1.1: Let  be  data points, i.e., a set of quantitative data collected from a sample of the population.

1. sample mean: 

2. sample variance: 

3. sample standard deviation:  
4. sample range: 

Definition 1.2: Let . The th percentile of a set of quantitative data is a number, denoted , that is greater than 
 of the data values. In particular, we have:

first quartile (25th percentile): 
second quartile or median (50th percentile): 
third quartile (75th percentile): 

The 5-number summary of a quantitative data consists of the minimum value, and maximum.

The sample statistics defined above can be computed for the flight length data as follows:

mean(fl)

var(fl)                   # sample variance 

sd(fl)                    # sample standard deviation 

max(fl) 

min(fl) 

range(fl) 

median(fl) 

quantile(fl)              # quartiles 

quantile(fl, 0.3)         # 30th percentile 

summary(fl)               # 5-number summary & mean 

Boxplots provide a visualization of the 5-number summary. Try the following to generate a boxplot of the flight length data:

boxplot(fl, horizontal = FALSE) # change horizontal = TRUE to change orientation 

_____________________________________________________

Pause for Reflection #7:
In your lab notebook, copy the boxplot and write down the 5-number summary for the flight length data. Compare the two and
discuss with your neighbor how boxplots are constructed from the 5-number summary.

Can you tell just from the boxplot whether or not the data is skewed? Comment. Which is bigger, the mean or the median? In what
direction is the data skewed? With your neighbor, debate the claim that "if the data is skewed to the right, the mean is pulled to the
right of the median." Record your thoughts in your lab notebook.

_____________________________________________________

 

This page titled Lab 1: Getting Started with R and EDA is shared under a not declared license and was authored, remixed, and/or curated by
Kristin Kuter.
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Lab 10: Simple Linear Regression

Objectives:

1. Use R to create scatterplots and calculate covariance and correlation. 
2. Use linear functions to model relationships between quantitative variables.

Definitions:
response (dependent) variable
explanatory/predictor (independent) variable
scatterplot
covariance
correlation
residual
RSS: residual sum or squares
least squares line (or regression line)

Introduction:

Up to this point, our study of statistics has focused on using sample statistics to estimate population parameters. We have seen how
to use those estimates to test claims about population parameters. Another use for statistics is to make predictions about parameter
values. For example, suppose you find a footprint at the scene of a crime, can the corresponding shoe size be used to make a
prediction about the height of the person that left it? In this context, variables now have different roles. There is a
response variable, which is the variable that we want to predict (e.g., height), and a predictor variable (also called
an explanatory variable), which is used to make the prediction (e.g., shoe size). Furthermore, data come in pairs of observations for
both the response and predictor variables. The goal is to develop a model for the relationship between the predictor and response
variables. This model can then be used to make predictions. In this lab, we will see how to create a linear model from sample data
in order to make predictions. Before we look at developing a model, we review tools for visualizing and quantifying the
relationship between variables.

Activities:
Getting Organized: If you are already organized, and remember the basic protocol from previous labs, you can skip this section.

Navigate to your class folder structure. Within your "Labs" folder make a subfolder called "Lab10". Next, download the lab
notebook .Rmd file for this lab from Blackboard and save it in your "Lab10" folder. You will be working with the
BodyMeasures.csv data set on this lab. You should download the data file into your "Lab10" folder from Blackboard.

Within RStudio, navigate to your "Lab10" folder via the file browser in the lower right pane and then click "More > Set as working
directory". Get set to write your observations and R commands in an R Markdown file by opening the "lab10_notebook.Rmd" file
in RStudio. Remember to add your name as the author in line 3 of the document. For this lab, enter all of your commands into code
chunks in the lab notebook. You can still experiment with code in an R script, if you want. To set up an R Script in RStudio, in the
upper left corner click “File > New File > R script”. A new tab should open up in the upper left pane of RStudio.

 

Scatterplots: The simplest graph for displaying two quantitative variables simultaneously is a scatterplot, which uses the vertical
axis for one of the variables and the horizontal axis for the other variable. For each observational pair, a dot is placed at the point
with coordinates given by the pair of observations. The convention is to place the response variable on the vertical -axis and the
predictor variable on the horizontal -axis.

For example, consider the file BodyMeasures.csv, which contains that data we collected in class last week on shoe size and
height. Suppose we are interested in predicting an individual's height given their shoe size.

_____________________________________________________

y

x
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Pause for Reflection #1:
State the predictor ( ) and response ( ) variables in the BodyMeasures data set.

_____________________________________________________

The plot() function in R is used to make scatterplots. Type the following code in a code chunk in your notebook to create a
scatterplot of the BodyMeasures data. Note that the text() function is used to label points in the scatterplot, which
emphasizes that the data set consists of pairs of observations. You can comment it out if it makes the resulting plot difficult to
analyze.

_____________________________________________________

Pause for Reflection #2:
Use the scatterplot you created to answer the following:

How would you describe the direction and strength of the association between shoe size and height.
Does the relationship between shoe size and height appear to be linear?

_____________________________________________________

Covariance & Correlation: We defined two numeric measures in class last week that can be used to quantify the strength of a
linear relationship between two numeric variables:

covariance: Cov( ) = E[( ]

correlation: 

The above formulas give the theoretical values of covariance and correlation, i.e. the values if we knew the probability
distributions of variables  and , as well as the population means and standard deviations. Since we will most likely not have
such information, we estimate covariance and correlation using sample data.

The sample correlation, denoted , for data , is calculated using

Thankfully, there are functions in R to calculate the covariance and correlation for sample data:

cov(shoe, height)     # sample covariance 

cor(shoe, height)     # sample correlation 

_____________________________________________________

data = read.csv("BodyMeasures.csv") 

shoe = data$Shoe 

height = data$Height 

 

plot(shoe, height, xlab = "shoe size", ylab = "height (in.)", 

     main = "Scatterplot of shoe size vs. height") 

      

text(shoe, height, labels = data$ID, pos = 2)     # labels points in plot with ID numb

                                                  # pos = 2 places labels to left of p
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Pause for Reflection #3:
Convert the height measurements in BodyMeasures from inches to centimeters and recalculate covariance and correlation. (Note
that 1 in = 2.54 cm.)

How do the two covariance values compare? Specifically, is there a way to get the covariance value for the measurements in
centimeters from the covariance value in inches?
Did you get the same value for correlation?

_____________________________________________________

Least-Squares Regression: Whether or not you think the relationship between shoe size and height is linear, we will look at using
a linear equation to model it. First, let's see how to use R to construct a "line of best fit" and then we will talk about how that line is
actually calculated.

The function lm() in R is used to construct a linear model from sample data. Type the following code in your lab notebook:

lin.reg = lm(height ~ shoe) # list the response first, then the predictor 

Once the linear model is fit, we can visualize it in the scatterplot with the following:

plot(shoe, height, xlab = "shoe size", ylab = "height (in.)", 

     main = "Scatterplot of shoe size vs. height") 

abline(lin.reg, col="orange") # plot the line of best fit in orange 

 
The equation of a generic line can be written as , where  denotes the response variable and  denotes the
predictor variable. In this case,  represents shoe size and  represents height, and it is good form to use variable names in the
equation. The caret on the  (read as "y-hat") indicates that its values are predicted, not actual, heights. The symbol  represents
the value of the y-intercept of the line, and  represents the value of the slope of the line. The slope is the coefficient on  in the
linear model. Typing the stored linear model into R displays the value of  and  for the linear model fit to the
BodyMeasures data.

lin.reg 

_____________________________________________________

Pause for Reflection #4:
Identify the values of  and  for the line of best fit relating shoe size to height.
Write the equation of the line of best fit using the format , but replace  and  with the variable names.

_____________________________________________________

What do we mean by "best"? In most statistical applications, we pick the line  to make the vertical distances from
observations to the line as small as possible, as shown in Figure 1 below. The reason for using vertical distances is that we use ,
the predictor variable, to predict or explain , the response variable, and we try to make the prediction errors as small as possible.

The prediction errors are referred to as residuals. A residual is the difference between the observed  value and the  value
predicted by the linear model for the corresponding  value:

residual = 

The line of best fit is found by minimizing the residual sum of squares (RSS). The line that achieves the exact minimum value of
RSS is called the least squares line, or the regression line.

Figure 1: Least Squares Regression Line with Residuals

_____________________________________________________

= a+bxy

^

y x

x y

y a

b x

a b

a b

= a+bxŷ x y
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Pause for Reflection #5:
Calculate the residual for the observation labeled C in the BodyMeasures data set. To do this, first use the least squares
regression line to find the predicted height for C. Note that you found the equation of the least squares regression line in
Reflection #4.
In Figure 1, what is the ID with the largest residual? What is the ID of the smallest residual (in absolute value)?

_____________________________________________________

Pause for Reflection #6:
Use the least squares regression line to predict the height of someone whose shoe size is 8.
Use the least squares regression line to predict the height of someone whose shoe size is 9.
By how much do these predictions differ? Does this number look familiar? Explain.
What height would the least squares regression line predict for a person with a shoe size of 0? Does this make sense? Explain.

_____________________________________________________

Lab 10: Simple Linear Regression is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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Lab 11: More Regression

Objectives:
1. Understand how to interpret the correlation coefficient and determine when it indicates a significant linear relationship.
2. Understand the difference between causation and association.

Introduction:
In the last lab we saw how to use R to construct least squares regression lines in order to fit linear models to data for the purpose of
predicting the value of the response variable from values of the predictor variable. But before such a model is used in practice to
make predictions, we should first determine whether or not the model (which is estimated from sample data) can reasonably be
extended to the general population. In this lab, we further explore how to interpret correlation coefficients and how to determine
when their values indicate that the linear relationship between two variables is significant.

Activities:

Getting Organized: If you are already organized, and remember the basic protocol from previous labs, you can skip this section.

Navigate to your class folder structure. Within your "Labs" folder make a subfolder called "Lab11". Next, download the lab
notebook .Rmd file for this lab from Blackboard and save it in your "Lab11" folder. You will be working with the Cars.csv,
TVlife.csv, and KYDerby.csv data sets on this lab. You should download the data files into your "Lab11" folder from
Blackboard.

Within RStudio, navigate to your "Lab11" folder via the file browser in the lower right pane and then click "More > Set as working
directory". Get set to write your observations and R commands in an R Markdown file by opening the "lab11_notebook.Rmd" file
in RStudio. Remember to add your name as the author in line 3 of the document. For this lab, enter all of your commands into code
chunks in the lab notebook. You can still experiment with code in an R script, if you want. To set up an R Script in RStudio, in the
upper left corner click “File > New File > R script”. A new tab should open up in the upper left pane of RStudio.

 

Correlation Coefficient: A correlation coefficient for two variables will always be between -1 and +1, and it only equals one of
those values when the variables are perfectly correlated, which is evident when observations form a perfectly straight line in a
scatterplot. The sign of the correlation coefficient reflects the direction of the association (e.g., positive values of  correspond to a
positive linear association). When the form of the association is linear, the magnitude of the correlation coefficient indicates the
strength of the association, with values closer to -1 or +1, signifying a stronger linear association.

The nine scatterplots below pertain to models of cars described in Consumer Reports’ New Car Buying Guide. The eight variables
represented here are the following:

City MPG (in miles per gallon) rating
Highway MPG (in miles per gallon) rating
Weight (in pounds)
Percentage of weight in the front half of the car
Time to accelerate (in seconds) from 0 to 60 miles per hour
Time to cover 1/4 mile (in seconds)
Fuel capacity (in gallons)
Page number of the magazine on which the car was described

 

r
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Pause for Reflection #1:

Evaluate the direction and strength of the association between the variables in each scatterplot above. Do this by arranging the
scatterplots for those that reveal the most strongly negative association between the variables, to those that reveal virtually no
association, to those that reveal the most strongly positive association. Arrange them by number using the format of the following
table.

Furthermore, match the following correlation coefficients to each scatterplot:

https://libretexts.org/
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a. 0.888 
b. 0.51 
c. -0.89 
d. -0.157 
e. -0.45 
f. 0.222 
g. 0.994 
h. -0.094 
i. -0.69

_____________________________________________________

Pause for Reflection #2:

Comment on the results of the previous reflection. Specifically, reflect on why the strength and direction of the relationship
between specific variables makes sense given the context. For example, scatterplot II looks at the relationship between the time to
accelerate from 0 to 60 mph and the time to cover 1/4 mile. This scatterplot exhibits the strongest positive relationship. Why would
the two variables considered here have the strongest positive relationship amongst all variables considered?

_____________________________________________________

Significant Correlation: The slope, or steepness, of the points in a scatterplot is unrelated to the value of the correlation
coefficient. If the points fall on a perfectly straight line with a positive slope, then the correlation coefficient equals 1.0 whether that
slope is very steep or not steep at all. In other words, correlation can be +1 for points lying on a line with slope  or slope 

. What matters for the magnitude of the correlation is how closely the points concentrate around a line, not the steepness of
a line.

For example, look at scatterplots VI and IX above. The linear trend in each scatterplot is positive with a similar slope. However, the
points in VI are more tightly clustered along the line while the points in IX are more spread out. So we would say that the
association between the variables in VI (city and highway mpg rating) is stronger than the association between the variables in IX
(city mpg rating and time to cover 1/4 mile). Thus, we could more confidently conclude that there appears to be a linear
relationship between city mpg and highway mpg, i.e., make an inference about the population of cars based on the sample of cars
we have data for.

This begs the question, when does a sample correlation coefficient provide sufficient evidence of a linear relationship between two
variables? In other words, we are essentially asking when is a sample correlation coefficient significantly different from 0 (close
enough to -1 or +1) in order to conclude a relationship in the population based on sample data)? This is equivalent to testing
whether or not the slope of the least squares regression line is significantly different from 0. Let's demonstrate how to do this for
the correlation coefficient between city mpg and highway mpg for the cars data.

cars = read.csv("Cars.csv") 

lin.reg = lm(cars$HighwayMPG ~ cars$CityMPG)     # first, construct linear model 

summary(lin.reg)                                 # second, display a summary of the in

 

## 

## Call:

## lm(formula = cars$HighwayMPG ~ cars$CityMPG 

## 

## Residuals: 

##     Min         1Q    Median        3Q       Max 

## -3.6782    -0.9211    0.0181    0.9574    3.4433 

## 

## Coefficients: 

##              Estimate Std. Error t value Pr(>|t|) 

## (Intercept)   9.19659    1.22854   7.486  1.5e-10 ***  

m = 0.1

m = 10
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There is quite a bit of information displayed when calling the summary() function on the stored results of the linear model
function lm(). But the relevant information used for testing the significance of the linear relationship is the -value associated to
the test of whether the slope of the least squares regression line, i.e., the coefficient on the  variable (city mpg in this case), is
significantly different from 0, which is highlighted in yellow. As we can see, the -value is very small in this case (less than 2

), which indicates that the slope is significantly different from 0 and thus so is the correlation coefficient.

Pause for Reflection #3:

Determine if the correlation coefficients between the pairs of variables in the following scatterplots from above for the cars data are
significant.

scatterplot IX
scatterplot VIII

_____________________________________________________

Pause for Reflection #4:
Explain why it is equivalent to test whether the slope of the least squares line is significantly different from 0 in order to determine
if the corresponding correlation coefficient is significantly different from 0.

_____________________________________________________

Correlation vs. Causation: We have to be very careful when interpreting correlation coefficients, especially when we find that
they are significant. One of the major errors made in interpreting significant correlation between two variables is to conclude a
cause-and-effect relationship between the variables.

For example, the data set TVlife.csv provides information on the life expectancy and number of televisions per thousand
people in a sample of 22 countries, as reported by The World Almanac and Book of Facts. Suppose we are interested in
predicting life expectancy in a country from the number of TVs.

Pause for Reflection #5:

Using the data in TVlife.csv, create a scatterplot of life expectancy vs. number of TVs.

Additionally, estimate the correlation coefficient between life expectancy and number of TVs. Is it significant?

Because the association between the variables is so strong, you might conclude that simply sending televisions to the countries with
lower life expectancies would cause their inhabitants to live longer. Comment on this argument.

_____________________________________________________

This example illustrates the very important distinction between association and causation. Two variables might be strongly
associated without having a cause-and-effect relationship between them. Often with observational studies, both variables are
related to a third (confounding) variable.

Pause for Reflection #6:

In the case of life expectancy and television sets, suggest a confounding variable that is associated both with a country’s life
expectancy and with the prevalence of televisions in that country.

_____________________________________________________

## cars$CityMPG  0.93926    0.05781  16.247  < 2e-16 ***  

## ---  

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

## 

## Residual standard error: 1.421 on 71 degrees of freedom 

## Multiple R-squared:  0.788,    Adjusted R-squared:  0.785 

## F-statistic:   264 on 1 and 71 DF,  p-value: < 2.2e-16 

P

x

P

×10

−16
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Non-linear Relationships: Another common mistake when interpreting correlation coefficients is to conclude that the relationship
is linear. The correlation coefficient measures the degree of linear association between two quantitative variables. But even when
two variables display a nonlinear relationship, the correlation between them still might be quite close to  1. To demonstrate this
consider the KYDerby.csv data set.

The Kentucky Derby is the most famous horse race in the world, held annually on the first Saturday in May at Churchill Downs
race track in Louisville, Kentucky. This race has been called "The Most Exciting Two Minutes in Sports" because that’s about how
long it takes for a horse to run its 1.25-mile track. The file KYDerby.csv contains the winning time (in seconds) for every year
since 1896, when the track length was changed to 1.25 mile, along with the track condition (fast, good, or slow) on the day of the
race.

Pause for Reflection #7:

Create a scatterplot of winning time ( ) vs. year ( ). Comment on the shape of the relationship between the variables.

Additionally, calculate the correlation coefficient and determine if it is significant.

_____________________________________________________

With these data, the relationship is clearly curved and not linear, and yet the correlation is still close to -1. Do not assume from
a significant correlation coefficient that the relationship between the variables must be linear. Always look at a scatterplot, in
conjunction with the correlation coefficient, to assess the form (linear or not) of the association.

 

Lab 11: More Regression is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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Lab 2: Intro to Hypothesis Testing - Permutation Tests

Objective:
Understand how to use R to perform permutation tests.

Definitions
hypothesis testing, statistical significance
null vs. alternative hypothesis
test statistic, observed test statistic, P-value
permutation test: permutation resample, permutation distribution

Introduction:
Recall the question posed in class on Tuesday: "If you could stop time and live forever in good health at a particular age, at what
age would you like to live?"

Suppose we are interested in testing the claim that the average ideal age for women is greater than men. A random sample of 3
women and 3 men were asked this question resulting in the following responses:

 

         Women                                        Men  

 49 42 38                                    29 38 50  

The average response for the women is 43, and the average age response for the men is 39.

The difference in mean response between the women and men is 43 - 38 = 4 years.

In the observed sample, the average response for women is greater than men, but this result could be due to random chance alone,
rather than an actual difference between men and women. If there is no real difference, then the split of the 6 observations into the
two groups is essentially random. We could have just as easily observed:

         Women                                        Men  

 29 42 38                                    49 38 50  

Now the difference in mean response between the women and men is -9.3 years.

So how do we determine if the result we actually observe provides evidence of a claim? We use probability and determine how
easily pure random chance would produce a given result. This is the core idea of statistical significance or classical hypothesis
testing, to calculate the probability that pure random chance would give an effect as extreme as that observed in the data, in the
absence of any real effect. If that probability (referred to as the P-value) is small enough, we conclude that the data provide
convincing evidence of a real effect.

Activities:
Getting Started: Navigate to your class folder structure. Within your "Labs" folder make a subfolder called "Lab2".
Next, download the lab notebook for this lab from Blackboard and save it in your "Lab2" folder. You will again be working with
the FlightDelays dataset on this lab. You should either re-download the data file into your "Lab2" folder from Blackboard, or
just copy the file from your "Lab1" folder into the "Lab2" folder.
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Within RStudio, navigate to your "Lab2" folder via the file browser in the lower right pane and then click "More > Set as working
directory". Get set to write your observations and R commands in an R Markdown file by opening the "lab2_notebook.Rmd" file in
RStudio. Remember to add your name as the author in line 3 of the document. For this lab, enter all of your commands into code
chunks in the lab notebook. You can still experiment with code in an R script, if you want. To set up an R Script in RStudio, in the
upper left corner click “File > New File > R script”. A new tab should open up in the upper left pane of RStudio.

Ideal Age Example: If we let   denote the true mean response for women to the question posed above, and we let  denote
the true mean response for men, then we set up in class on Tuesday the following null and alternative hypotheses to test the claim
that the average ideal age for women is greater than men.

We also stated that the test statistic used to determine the result of the above test is given by the difference in the respective sample
means. So, if we let  denote the sample mean of the responses from the women, and  denotes the sample mean for the men,
the test statistic is . Given the above data, the observed test statistic in this case is .

To determine whether or not the observed difference of 4 indicates a real difference, we will compute the associated -value by
working out all possible splits of the 6 observed responses into two groups and calculating how many produce a test statistic as
large or larger than what was actually observed. Formally, the -value is given by

_____________________________________________________

Pause for Reflection #1:
How many different splits of the 6 numbers {29, 38, 38, 42, 49, 50} into two groups of 3 (ignoring ordering within each group) are
possible? (Hint: How did we count the number of unordered things in probability?)

With your neighbor, write out all the possible splits in your lab notebook and calculate the corresponding test statistic for each of
the possible splits. Then find the -value by calculating the proportion of splits that resulted in a difference in mean response
between women and men as large or larger than what was actually observed. Code has been started in the lab notebook for you to
do these calculations with R.

Based on the -value you find, do you think the true mean response from women is greater than men? Discuss this with your
neighbor.

_____________________________________________________

Statistically Significant: A result is considered statistically significant if it would rarely occur by chance. This begs the question,
"how rare does the result need to be?" The answer: It depends on the context! But, for example, a -value of 0.0002 would indicate
that assuming the null hypothesis is true, the observed outcome would occur just 2 out of 10000 times by chance alone, which is
most circumstances seems pretty rare and you would conclude that the evidence supports the alternative hypothesis.

 
Flight Delays Example: Recall the FlightDelays dataset from Lab 1, which contains information on 4029 departures of
United Airlines and American Airlines from LaGuardia Airport during May and June 2009. In this lab, you will focus on the
variable Delay, which gives the minutes that a flight was delayed (note that negative values indicate early departures). So, first
load the dataset and then create a new object for easy reference to the Delay variable:

FlightDelays = read.csv("FlightDelays.csv", header = TRUE, sep = ",") 

delay = FlightDelays$Delay 

Recall from Lab 1, that a higher proportion of United flights were delayed more than 30 minutes. So we are going to test the claim
that the mean delay for United flights is more than the mean delay for American flights. We can compute the average delay for the
two airlines using the tapply() function in R. The tapply() function allows you to compute numeric summaries of
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quantitative variables based on levels of a categorical variable. For instance, the following finds the sample mean flight delay
length by airline in the FlightDelays dataset:

tapply(delay, FlightDelays$Carrier, mean) 

 

##       AA         UA 

## 10.09738   15.98308 

The mean delay for the sample of United flights is  and the mean delay for American flights is . The
sample means are clearly different, but the difference (15.98 - 10.10 = 5.88 min) could have arisen by chance. Can the difference
easily be explained by chance alone? If not, we will conclude that there are genuine differences in the mean delay times for the two
airlines.

Hypotheses: In order to perform a hypothesis test of the stated claim, let  denote the true mean delay time for United flights,
and let  denote the true mean delay for American flights. We will use  as the test statistic, with an observed
value of  min.

_____________________________________________________

Pause for Reflection #2:
In your lab notebook, write the null and alternative hypotheses to test the claim that United flights have a longer mean delay than
American flights. Note that you can use LaTeX in R Markdown files, which will help you typeset the notation used in stating the
hypotheses. The syntax has been provided in the lab notebook.

_____________________________________________________

Permutation Resampling: Suppose there really is no difference in the mean delay between the two airlines. Then the 4029
observed delay times come from a single population, the way they were divided into two groups (by labeling some as American
flights and others as United) is essentially random, and any other division is equally likely. We could proceed, as in the ideal age
example, calculating the difference in means for every possible way to split the data into two samples. However, that would entail
looking at the number of ways to choose 1123 objects (the number of United flights in the dataset) from a total of 4029 objects (the
total number of observations). This number is astronomical! Instead, we use sampling.

We create a permutation resample by randomly drawing  observations without replacement from the pooled data to be
one sample (the United flights), leaving the remaining  observations to be the second sample (the American flights). We
then calculate the test statistic for the new samples. Repeating this process many times (1000 or more), we can then calculate the 

-value by finding the proportion of times the resulting test statistic equals or exceeds the original observed test statistic.

The distribution of the test statistic across all permutation resamples is the permutation distribution. This may be exact (i.e.,
calculated exhaustively as in the ideal age example) or approximate (i.e., implemented by sampling, as you will do next for the
flight delays).

Two-sample Permutation Test: The following code walks you through performing a permutation test of the claim that the mean
delay for United flights is longer than the mean delay for American flights.

Type each command below into the code chunk provided under the "Two-sample Permutation Test" heading in the lab notebook.

First, create an object to store the value of the observed test statistic:

observed = 15.98308 - 10.09738 

To draw a permutation resample, you will draw a random sample of size 1123 from the numbers 1 through 4029 (there are 4029
observations total). The times corresponding to these positions in the delay vector you created earlier will be values for the
United flights and the remaining ones for the American flights. The difference in means for this permutation will be stored in an
object called result. This will be repeated many times.
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To analyze the results, first create a histogram of the (approximate) permutation distribution and add a vertical line at the observed
test statistic.

hist(result, xlab = "xbarU - xbarA", main = "Permutation Distribution for delays") 

abline(v = observed, col = "blue")      # add line at observed mean difference 

Finally, compute the -value by finding how many times a permutation resample produced a test statistic as large or larger than the
observed value.

(sum(result >= observed) + 1)/(N + 1)      # P-value 

The code snippet result >= observed results in a vector of TRUE's and FALSE's depending on whether or not the mean
difference computed for a resample is greater than the observed mean difference. sum(result >= observed) then counts the
number of TRUE's.

_____________________________________________________

Pause for Reflection #3:
Consider the histogram and P-value that the above code produced. Is the result statistically significant? In other words, do you
think there is a real difference in the mean delay times between United and American flights? Type a response in your lab
notebook.

_____________________________________________________

Choice of Test Statistic: In the examples above, we used the difference in means. We could have equally well used a variety of
other test statistics, e.g., a difference in medians. It turns out, that if two statistics are monotonically related, i.e., one is always
larger than the other, then the choice of one or the other as test statistic will result in exactly the same -value. Let's explore this.

Repeat the permutation test of flight delays using (i) the difference in means, (ii) the mean of the United delay times, (iii) the sum
of United delay times, and (iv) the difference in medians. You want to compute these statistics for the same permutation resamples,
so find them all in the same for loop. The following code has already been added to the lab notebook:

result1 = numeric(N)               # space to save the differences in means 

result2 = numeric(N)               # space to save the United means 

result3 = numeric(N)               # space to save the sums of United delays 

result4 = numeric(N)               # space to save the differences in medians 

for (i in 1:N) 

{ # sample of size 1123, from 1 to 4029, without replacement 

  index = sample(4029, size = 1123, replace = FALSE) 

  result1[i] = mean(delay[index]) - mean(delay[-index]) 

  result2[i] = mean(delay[index]) 

  result3[i] = sum(delay[index]) 

N = 10^5 - 1                  # number of times to repeat this process 

result = numeric(N)           # space to save the random differences in each permutati

for (i in 1:N) 

{ # sample of size 1123, from 1 to 4029, without replacement 

  index = sample(4029, size = 1123, replace = FALSE) 

  result[i] = mean(delay[index]) - mean(delay[-index]) 

} 

P

P
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  result4[i] = median(delay[index]) - median(delay[-index]) 

} 

_____________________________________________________

Pause for Reflection #4:
Compute and compare the -values obtained for the four different test statistics used in your lab notebook. What do you observe?

Note: You will need to compute the corresponding observed test statistic for the three new test statistics. To do so, make use of the
tapply() function.

_____________________________________________________

Adding One: When computing the -value for the permutation test, we add one to both the numerator and denominator. This
corresponds to including the original data as an extra resample.

_____________________________________________________

Pause for Reflection #5:
Discuss with your neighbor why you should add one, and include the original data, when computing the -value. Record your
thoughts in your lab notebook.

_____________________________________________________

One- and Two-sided Tests: In the flight delays example, we had an initial hunch that United flights had a longer mean delay than
American, so we performed a one-sided permutation test for a claim of "increase". However, we could have also tested the claim as
a statement of "decrease", i.e., that American flights have a shorter mean delay than United. This would still be a one-sided test.

Instead of performing a one-sided test altogether though, we could have also performed a two-sided test, which would simply be a
test of no difference, not claiming that one airline's mean delay time is longer or shorter than the other. When performing a two-
sided permutation test, we calculate both one-sided -values, multiply the smaller by 2, and if necessary round down to 1.0.

Two-sided -values are the default in statistical practice: you should perform a two-sided test unless there is a clear reason to pick
a one-sided alternative hypothesis. It is not fair to look at the data before deciding to use a one-sided hypothesis.

_____________________________________________________

Pause for Relection #6:
Consider the one-sided permutation test for a claim of "decrease" in the flight delays example. Write down in your lab notebook
what the alternative hypothesis would be in this case and describe how you would calculate the -value. Also, comment on why
we multiply by 2 when calculating a two-sided -value.

_____________________________________________________

Lab 2: Intro to Hypothesis Testing - Permutation Tests is shared under a not declared license and was authored, remixed, and/or curated by
LibreTexts.
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Lab 3: Parameter Estimation

Objective
Explore properties of estimators and understand what makes an estimator preferred.

Definitions
estimator vs. estimate
maximum likelihood estimation: likelihood function, log-likelihood
method of moments estimation
bias, unbiased estimator
efficiency of estimators
mean square error (MSE)
bias-variance trade-off

Introduction
In class this week, we went over two procedures for estimating parameters: maximum likelihood estimation and method of
moments. There are other methods of estimation that may exist in a given context, including using "plug-in" estimators. This begs
the question of which method is best. In this lab, you will explore properties of estimators and using these properties learn what
criteria we think good estimators should satisfy. Each property provides a "sniff test": an estimator that fails these just doesn't smell
right.

Activities
Getting Started: Navigate to your class folder structure. Within your "Labs" folder make a subfolder called "Lab3".
Next, download the lab notebook .Rmd file for this lab from Blackboard and save it in your "Lab3" folder. There are no datasets
used in this lab.

Within RStudio, navigate to your "Lab3" folder via the file browser in the lower right pane and then click "More > Set as working
directory". Get set to write your observations and R commands in an R Markdown file by opening the "lab3_notebook.Rmd" file in
RStudio. Remember to add your name as the author in line 3 of the document. For this lab, enter all of your commands into code
chunks in the lab notebook. You can still experiment with code in an R script, if you want. To set up an R Script in RStudio, in the
upper left corner click “File > New File > R script”. A new tab should open up in the upper left pane of RStudio.

 

Maximum Likelihood Estimation: Before we get into the properties, let's revisit maximum likelihood estimation.

Likelihood Function, Maximum Likelihood Estimate
Suppose  represent a random sample from a probability distribution with associated parameter  and
pmf/pdf given by .  The likelihood function  gives the likelihood of , given the
observed sample values , and is calculated as follows:

The maximum likelihood estimate (MLE)  is a value of  that maximizes the likelihood function, or
equivalently that maximizes the log-likelihood function: ln .

So, the likelihood function  is a function of the unknown parameter , and we estimate  by maximizing . Remember that
we can use calculus to find the value of  that maximizes the likelihood by setting the derivative equal to 0, , and then
solving for  to find the MLE.

In practice, we usually maximize the log-likelihood, because taking the logarithm of a product results in a sum:
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=ln  ln  ln  ln

In most cases, we are able to find a closed-form expression for the MLE. However, this is not always possible, as the following
example demonstrates.

 

Example: Suppose  are a random sample from the Cauchy distribution, which has pdf given by 

, for , .  The likelihood function for  is

.             (1)

Thus,  will be maximized when  is minimized, or equivalently when  ln  is
minimized.  The value of  that minimizes this expression must be determined by numerical methods.

_____________________________________________________

Pause for Reflection #1:
1. On a separate piece of paper, write out the details for deriving the likelihood function  in Equation (1).
2. Next, explain why  will be maximized when the expression  ln(  is minimized. Type your response

directly into your lab notebook in RStudio.
3. Finally, on the same piece of paper you worked out step 1, take the derivative (with respect to ) of the sum expression given in

step 2 to see why the mathematical approach of setting the derivative equal to 0 will not work in this example.

Take a picture of your written work for steps 1 and 3 and upload it to your Lab3 folder in order to include in your lab notebook.

_____________________________________________________

Continuing with the Cauchy distribution, suppose you make the following observations for a random sample of size four: 
 and .  Then, to maximize , you need to minimize

ln .

Since we cannot find the minimum of the above analytically, you will use the optimize() function in R. Type the following in a
code chunk in your Lab 3 notebook and run each line:

x = c(1, 2, 2, 3) 

g = function(theta) sum(log(1 + (x-theta)^2)) 

optimize(g, interval = c(0,4)) 

_____________________________________________________

Pause for Reflection #2
1. In your lab notebook, describe what each of the three lines of code above are doing. You may find it helpful to type ?c,
help("function"), and ?optimize one at a time in the console window to pull up info in the Help window (lower right
pane) for each of these commands.

2. Based on the results of this code, what is the maximum likelihood estimate of  based on the given data?

_____________________________________________________

Unbiasedness: The first property of estimators that we will consider is bias. An estimator  is biased if, on average, it tends to be
too high or too low, relative to the true value of . Formally, this is defined using expected values:

Definition 3.1
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The bias of an estimator  is given by

Bias(  E .

In other words, Definition 3.1 states that a statistic used to estimate a parameter is biased when the mean of its sampling
distribution is not equal to the true value of the parameter. We will explore sampling distributions more in depth in next week. For
now, we will use R to approximate sampling distributions.

We like an estimator to be, on average, equal to the parameter it is estimating. That is, we like estimators that are unbiased, or
equivalently, Bias( ) = 0. You will show in the homework that the sample mean is always an unbiased estimator of the population
mean . It can also be shown that the sample proportion is also an unbiased estimator of the population proportion.

The case of the sample variance is less straightforward. Given a sample of values , the "plug-in" estimator of the
population variance  is

However, in Lab 1, we defined the sample variance as

which is computed in R using the function var(). Notice the difference between the two estimators, namely, the division by " "
versus " ". It turns out that the plug-in estimator  is biased, but the sample variance  is unbiased.

Let's explore this in the context of the standard normal distribution: . In this context, we know the value of the
parameter we are estimating, namely . So we know that in order for an estimator of  to be unbiased, its expected value
needs to equal 1. You will run a simulation in R to see how the two estimators,  and , perform. With the following code
(already added to the lab notebook for you), you will draw random samples of size 15 from . For each sample, you will
compute  and  and record the values. You will repeat this 1000 times.

We can now investigate the results of the simulation by finding the mean for the estimates of  based on the two estimators 
(plugin.var) and  (sample.var).  We can also visualize the results using histograms.

_____________________________________________________

Pause for Reflection #3
1. In your lab notebook, calculate the respective means for the 1000 samples of  and  you found with the simulation.
2. Code has been provided in your lab notebook to create histograms of the simulated values for  and . Run the code chunk

and answer the following: Do the results you found support the claim that  is a biased estimator of  and  is unbiased?
Why or why not?

_____________________________________________________

 

sample.var = numeric(1000)         # object to store sample variances 

plugin = numeric(1000)             # object to store plug-in estimates 

n = 15                             # set sample size 

for (i in 1:1000) 

{ 

  x = rnorm(n)                     # draw a random sample of size n from N(0,1) popula

  sample.var[i] = var(x)           # compute and store sample variance of ith sample 

  plugin[i] = ((n-1)/n)*var(x)     # compute and store plug-in estimate from ith sampl

} 
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Efficiency: What happens when you have two estimators that are both unbiased? Which one should you use? The next property we
consider, efficiency, provides a criterion for comparing unbiased estimators that depends on their variance.

Definition 3.2
If  and  are both unbiased estimators of  and , then  is said to be more efficient than .

We will again explore this property with a simulation, this time in the context of the uniform distribution on the closed interval [0,
].

At the start of lab, we will find the method of moments estimator for  to be , i.e., twice the mean of a given sample. It
can be shown that this estimator is unbiased (a fact we will prove later). Using maximum likelihood estimation, we can find
another unbiased estimator of  given by , where  denotes the largest value in a random sample (it is
referred to as the largest order statistic).

Use the following code (already provided in your lab notebook) to run a simulation to see how these two estimators perform in the
specific context of drawing random samples of size 25 from uniform [0,12].

_____________________________________________________

Pause for Reflection #4
1. Do the results support the claim that both  (beta.1hat) and  (beta.2hat) are unbiased estimators for ? Why or why

not?
2. Which estimator is more efficient, i.e., which estimator exhibits a smaller amount of variability?
3. Given these results, which estimator do you think you should use?

_____________________________________________________

 

Mean Square Error: The final criterion we consider combines both bias and variance. This is useful for comparing estimators that
are not both unbiased. We may prefer an estimator with small bias and small variance over one that is unbiased but with large
variance. The following definition provides a way to quantify the preference.

Definition 3.3
The mean square error (MSE) of an estimator is MSE(  E .

beta.1hat = numeric(1000) 

beta.2hat = numeric(1000) 

for (i in 1:1000) 

{ 

  x = runif(25, 0, 12)            # draw a random sample of size 25 from uniform[0,12

  beta.1hat[i] = 2 * mean(x) 

  beta.2hat[i] = ((25 + 1)/25) * max(x) 

} 

# descriptive statistics 

mean(beta.1hat) 

sd(beta.1hat) 

mean(beta.2hat) 

sd(beta.2hat) 

# graphical comparison 

hist(beta.1hat, xlim = c(8,16), ylim = c(0,650), xlab = "2*mean") 

hist(beta.2hat, xlim = c(8,16), ylim = c(0,650), xlab = "((25+1)/25)*max") 
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MSE measures the average squared difference between the estimator and the parameter; it takes both the variability and bias of the
estimator into account, as the following proposition shows.

Proposition 3.1
MSE(  Var(  [Bias(

It follows from Proposition 3.1 that if  is unbiased, then MSE  = Var . So, for unbiased estimators, one is more efficient than
a second if and only if its MSE is smaller. But, in general, when comparing two estimators  and  of , we are faced with a
trade-off between variability and bias.

Example: Let's explore this bias-variance trade-off in the context of the binomial distribution, where the number of trials $n$ is
known but the probability of "success"  is unknown. Let . The sample proportion  (the proportion of
"successes" in  observed trials) is an unbiased estimator of . Denote this estimator as , then

E  = E

Furthermore, the mean square error of the sample proportion is

MSE[ ] = Var  = Var .

Consider the alternative estimator of  given by

,

which adds one artificial success and one failure to the real data.

_____________________________________________________

Pause for Reflection #5
1. On a piece of paper, write out the details to derive the following:

E  and Var .

2. Then, using Proposition 3.1, show that the mean square error for  is given by

MSE .

Take a picture of your written work for steps 1 and 2 and upload it to your Lab3 folder to include in your lab notebook. Refer to the
code provided in the lab notebook for Reflection #1.

_____________________________________________________

We can compare the two estimators  and  for  by comparing their mean squared errors. Note that we have the MSE for both
estimators as a function of . Thus, we can graphically compare the MSE for  and  by plotting curves in R using the following
code. Note that we use  just to have a specific example to work with.

n = 16 

curve(x*(1-x)/n, from=0, to=1, xlab="p", ylab="MSE") 

curve((n*x*(1-x)+(1-2*x)^2)/(n+2)^2, add=TRUE, col="blue", lty=2) 

The MSE for  is in solid black, and the MSE for  is the dashed blue curve.

_____________________________________________________
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Pause for Reflection #6
Inspect the graphs of the MSE curves and answer the following:

1. For approximately what values of  does  have smaller MSE than ?
2. For the values identified in step 1, even though  is biased, it has a smaller MSE than . Comment on why  may be

preferred over  as an estimator of  for these values.
3. Now alter the code above to recreate the MSE graphs for the following sample sizes: . What

do you see is the effect of increasing the sample size?

_____________________________________________________

*Optional* Reflection #7
Prove Proposition 3.1.

_____________________________________________________

 

Lab 3: Parameter Estimation is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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Lab 4: Samping Distributions

Objectives
1. Understand the difference between the distribution of a population and the distribution of a sample. 
2. Understand how to use the Central Limit Theorem to approximate sampling distributions. 
3. Assess normality of a sample using normal quantile plots.

Definitions
random sample
estimator
sample mean
sampling distribution
normal quantile plot
Central Limit Theorem

Introduction
As we have seen, we obtain random samples from populations in order to understand characteristics of the population. Last week
we introduced methods for estimating parameters based on a random sample. These methods produced estimators, which are
functions of the random sample, and are more generally referred to as statistics. The values of an estimator (or statistic) depend on
the random sample and because of this they are random variables themselves. Thus, we can use probability theory to help analyze
estimators and statistics. In this lab, you will explore the sampling distribution of a statistic, which simply refers to the probability
distribution of the statistic.

Activities
Getting Organized: If you are already organized, and remember the basic protocol from previous labs, you can skip this section.

Navigate to your class folder structure. Within your "Labs" folder make a subfolder called "Lab4". Next, download the lab
notebook .Rmd file for this lab from Blackboard and save it in your "Lab4" folder. There are no datasets used in this lab.

Within RStudio, navigate to your "Lab4" folder via the file browser in the lower right pane and then click "More > Set as working
directory". Get set to write your observations and R commands in an R Markdown file by opening the "lab4_notebook.Rmd" file in
RStudio. Remember to add your name as the author in line 3 of the document. For this lab, enter all of your commands into code
chunks in the lab notebook. You can still experiment with code in an R script, if you want. To set up an R Script in RStudio, in the
upper left corner click “File > New File > R script”. A new tab should open up in the upper left pane of RStudio.

 

Random Samples: In this class, we model random samples using random variables. Formally, when we say that  is a
random sample from a population we are saying that each  is a random variable (in the probability sense from MATH 345 last
spring semester) with probability distribution given by the probability distribution of the population it came from. Furthermore, we
assume that the random variables in the sample are independent.

If we are interested in a population with unknown mean  and standard deviation , and we obtain a random sample 
from this population, then each of the 's have mean  and standard deviation . So we can write

    and        for .

Statistics/Estimators: In order to estimate population parameters like  and , we use functions of random samples, which we
refer to as statistics (or estimators). For example, we use the sample mean  to estimate the population mean . For a random
sample , the sample mean is given by the following function of the random sample:
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Sampling Distributions: Since statistics are functions of random variables, they are also random variables themselves and as such
have probability distributions, which we refer to as sampling distributions.

In Lab 3, you explored three properties of estimators, each of which has to do with a property of the sampling distribution:

Unbiased: center/mean of sampling distribution equals true parameter value, i.e.,  
Efficient: (only for unbiased estimators) small variability/spread in sampling distribution, i.e.,  is small
MSE: combines variance and bias, where bias is given by the difference between the mean of the estimator and the parameter it
is estimating, i.e., 

In the Week 3 Homework Assignment, you were asked to show that the sample mean is always an unbiased estimator for the
population mean, i.e., . This fact follows from the linear properties of expectation that we learned last spring in
probability.

_____________________________________________________

Pause for Reflection #1
Suppose that  is a random sample from a population with unknown variance , which means that Var , for
each . Using properties of variance that you learned in probability, show that the variance of the sample mean is ,
i.e., 
 

.

 

Upload a photo of your work to RStudio and include it in your lab notebook. (Make sure to save the image file in the "Lab4" folder,
i.e., the same folder your lab notebook is saved in.)

_____________________________________________________

 

There are essentially three approaches for finding sampling distributions of statistics:

1. Exact calculation by exhaustive calculation (like you did in the "Ideal Age" example in Lab 2) or formulas (which you will
explore in this lab) 
2. Simulation (like you did in Lab 3 when exploring properties of estimators) 
3. Formula approximations (which you will explore in this lab)

The "Ideal Age" example in Lab 2 was small enough to calculate the exact permutation distribution (i.e., sampling distribution of
test statistic used in the permutation test), but you approximated the flight delays permutation distribution using simulation. In
some cases, we can obtain exact answers by formulas rather than exhaustive calculation. We have already seen one such example
last spring in probability, in the case when sampling from a normal population.

 

Sampling Distribution of Sample Mean from Normal Population
If  are a random sample from a  population, then the sample mean  is normally distributed with mean 
and standard deviation .

 

We will explore this fact with simulation, but first a brief detour to explore how we can assess whether or not a random sample
does appear to come from a normally distributed population.

Normally Distributed Data: First, let's look at data that is genuinely normally distributed. R has a nice function called rnorm()
that produces pseudo-random samples from a normal distribution. For example, to generate a random sample of size  from a
standard normal distribution, enter the following into a code chunk in your lab notebook:
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data = rnorm(10, 0, 1)         #rnorm(size, mean, sd) 

data 

It's useful to look at this random data in a histogram form:

hist(data) 

_____________________________________________________

Pause for Reflection #2
Your data may or may not look particularly like a bell curve. Comment on why this data set might not look like a bell curve, even
though you presumably selected it from a  distribution.

_____________________________________________________

 

Let's increase the sample size. Modify the rnorm command to produce a random sample of size  from a 
distribution and form a histogram of the result.

data = rnorm(1000, 0, 1) 

hist(data) 

_____________________________________________________

Pause for Reflection #3
Does this histogram look more like a bell curve? Explain this phenomenon by writing out in your own words what it means to say
that "this data comes from a normal distribution with mean 0 and standard deviation 1."

_____________________________________________________

 

Recall the definition of percentiles from Lab 1: The 100 th percentile  is the number such that 100  of values fall below .
For example, the 50th percentile for a  distribution is , since half of the distribution fall below the mean, which is
equal to the median in this case.

We can use the function qnorm() to find any percentile we wish for a normal distribution. For example, enter the following in a
code chunk in your lab notebook to find the 10th percentile for a  distribution:

qnorm(0.1, 0, 1)         #qnorm(p, mean, sd) 

If we have a random sample of  data points, we can estimate percentiles of the population distribution by putting the data in order
from smallest to largest. Then the th data point, for , estimates the percentile of order .

_____________________________________________________

Pause for Reflection #4
Using the above logic, the percentile estimates for the simple data set {1, 3, 4, 7} are as follows:

 data point percentile  

 1 20  

N(0, 1)

n= 1000 N(0, 1)

p π

p

p% π

p

N(0, 1) = 0π

0.5

N(0, 1)

n

k k= 1,… ,n p =

k

n+1

https://libretexts.org/
https://stats.libretexts.org/@go/page/9031?pdf


Lab 4.4 https://stats.libretexts.org/@go/page/9031

 3 40  

 4 60  

 7 80  

Convince yourself that this is correct. Additionally, in your lab notebook, comment on whether the numbers in the right-hand
column have any bearing on the actual values of the data.

_____________________________________________________

 
Normal Quantile Plots: To determine whether it is valid to assume that a random sample came from a normally distributed
population, we compare the estimated percentiles from the sample to the corresponding percentiles of a standard normal
distribution. To make the comparison, we construct a normal quantile plot by graphing the pairs of actual percentiles and data
points. This is done in R using the qqnorm() function.

qqnorm(data)     #constructs quantile aka percentile plot 

If the pairs exhibit a linear relationship, i.e., approximately lie on a straight line, then we conclude that the sample supports the
assumption of normality for the population. You can add a reference line to the normal quantile plot using qqline() to help
judge whether or not a linear relationship exists.

qqline(data)     #adds reference line through 1st & 3rd quartiles 

So, in other words, if a data set is roughly normal, we expect the data percentiles and the distribution percentiles to be similar, and
the resulting plot will be a straight line. Let's check that this idea works by forming another random sample, this time from a 

 distribution, and then form a normal quantile plot.

data2 = rnorm(100, 85, 7) 

qqnorm(data2); qqline(data2)     #construct quantile plot & add reference line 

Your plot should look pretty much like a line, with small deviations, perhaps. Now let's look at a normal quantile plot for a data set
we know comes from a non-normal distribution.

Let's simulate drawing a random sample from an exponential distribution with mean 15. Recall that the mean of an exponential
distribution with parameter  is given by . Thus, in this example . Figure 1 below shows a graph of the pdf.

Figure 1: pdf of exponential(1/15)

 

We can use the rexp() function in R to draw a random sample from an exponential distribution.

N(85, 7)

λ

1

λ

λ =

1

15
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_____________________________________________________

Pause for Reflection #5
Why does the normal quantile plot for the exponential data indicate that it is not normal? Support this conclusion by looking at a
histogram of data.exp.

_____________________________________________________

 

Sample Mean from Normal Population: Let's now return to exploring the fact that when sampling from a normally distributed
population, the sample mean will also be normally distributed. The following code selects 1000 random samples of size 
from a  distribution, computes the mean of each sample, and stores this mean in the vector Xbar. It has been provided in
your lab notebook.

Xbar = numeric(1000) 

for (i in 1:1000) 

{ 

  x = rnorm(100, 85, 7) 

  Xbar[i] = mean(x) 

} 

hist(Xbar) 

qqnorm(Xbar); qqline(Xbar) 

_____________________________________________________

Pause for Reflection #6
See how close the simulation-based mean and standard deviation of the sampling distribution for the sample mean are to what the
above fact claims they are. In other words, compare the simulated values

mean(Xbar) 

sd(Xbar)

to the theoretical values (which you need to compute)

   and   

 
Note that the simulated data were random samples of size 100 drawn from a normal distribution with mean 85 and standard
deviation 7. Record the results in your lab notebook.

_____________________________________________________

 

Sample Mean from Non-Normal Population: It turns out that even if the distribution the random samples are taken from is not
normal, the sampling distribution of the sample mean is still approximately normal.

To demonstrate this, let's simulate the sampling distribution for the sample mean of random samples from an exponential
distribution with mean 15. We can simulate the sampling distribution of a sample mean from this exponential distribution in the

data.exp = rexp(100, rate = 1/15)     #draw random sample from exponential(lambda=1/15

qqnorm(data.exp); qqline(data.exp) 

n= 100

N(85, 7)

E[ ] = μX

¯

SD( ) = = .X

¯

σ

2

n

−−−

√

σ

n

−−

√
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same way as we did above for the normal distribution. The following code has been provided in your lab notebook.

Xbar.exp = numeric(1000) 

for (i in 1:1000) 

{ 

  x = rexp(100, rate = 1/15) 

  Xbar.exp[i] = mean(x) 

} 

hist(Xbar.exp) 

qqnorm(Xbar.exp); qqline(Xbar.exp) 

mean(Xbar.exp) 

sd(Xbar.exp) 

In contrast to the highly skewed distribution of the population (seen in Figure 1 above), the sampling distribution of  is nearly
bell shaped, with the normal quantile plot only indicating a hint of skewness.

_____________________________________________________

Pause for Reflection #7
We know that the mean of  should be equal to the mean of the population, which in this case we know to be 15. Does the mean
obtained by your simulation approximate this reasonably well?

Note that for an exponential distribution the standard deviation is also given by . Using this, compare the estimated standard
deviation of the sampling distribution for  to the theoretical standard deviation:

 .

Record the results of the above in your lab notebook.

_____________________________________________________

 

Central Limit Theorem (CLT): The reason that the sampling distribution of the sample mean for random samples from non-
normal distributions is approximately normal follows from the CLT.

 

Central Limit Theorem (CLT)
Let  be a random sample from a population with mean  and variance . Then, for any constant ,

 
where  denotes the cdf of the standard normal distribution.

 

The CLT means that for  "sufficiently large", the sampling distribution of  is approximately normal with mean  and standard
deviation , regardless of the distribution from which the sample was drawn. Thus, the standardized random variable

X

¯

X

¯

1/λ

X

¯

= = 1.5

σ

n

−−

√

15

100

−−−

√

,… ,X

1

X

n

μ σ

2

z ∈ R

P ( ≤ z) =Φ(z),lim

n→∞

−μX

¯

σ/ n

−−

√

Φ

n X

¯

μ

σ/ n

−−

√

Z = =

−μX

¯

σ/ n

−−

√

−E[ ]X

¯

X

¯

SD( )X

¯

https://libretexts.org/
https://stats.libretexts.org/@go/page/9031?pdf


Lab 4.7 https://stats.libretexts.org/@go/page/9031

 
is approximately normal with mean 0 and standard deviation 1.

_____________________________________________________

Pause for Reflection #8
Return to the simulated sampling distribution of for a sample from an exponential population with mean 15. We can now use the
CLT estimate the probability , as follows:

    where .

In your lab notebook, explain how the CLT is being used in the above equation.

We can calculate normal probabilities in R using the function pnorm(). So,  is given by

pnorm(2, 0, 1, lower.tail=FALSE) 

Compare this to the proportion of simulated sample means that were above 18 using the following:

sum(Xbar.exp > 18)/1000 

Are the probability given by the CLT and the proportion from the simulation close?

_____________________________________________________

Lab 4: Samping Distributions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

X

¯

P ( > 18)X

¯

P ( > 18) = P ( > ) ≈ P (Z > 2),X

¯
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1.5
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Lab 5: Confidence Intervals

Objectives:
1. Find confidence intervals for . 
2. Explore the  distribution.

Definitions:
point estimate vs. interval estimate
confidence intervals
confidence level
t distribution

Introduction:
In the past few weeks, we have learned how to find point estimates for population parameters, in other words, single value
estimates of an unknown parameter. But these point estimates are based on random samples and so are inherently variable and
uncertain. We can model that uncertainty with the sampling distribution of a statistic, and last week we focused on the sampling
distribution of the sample mean. This week, we use that sampling distribution to construct interval estimates for population
parameters. Interval estimates give a range of plausible values for a parameter based on a random sample, and incorporate the
variability of point estimates.

Activities:
Getting Organized: If you are already organized, and remember the basic protocol from previous labs, you can skip this section.

Navigate to your class folder structure. Within your "Labs" folder make a subfolder called "Lab5". Next, download the lab
notebook .Rmd file for this lab from Blackboard and save it in your "Lab5" folder. You will be working with the NCBirths2004
dataset on this lab. You should download the data file into your "Lab5" folder from Blackboard.

Within RStudio, navigate to your "Lab5" folder via the file browser in the lower right pane and then click "More > Set as working
directory". Get set to write your observations and R commands in an R Markdown file by opening the "lab5_notebook.Rmd" file in
RStudio. Remember to add your name as the author in line 3 of the document. For this lab, enter all of your commands into code
chunks in the lab notebook. You can still experiment with code in an R script, if you want. To set up an R Script in RStudio, in the
upper left corner click “File > New File > R script”. A new tab should open up in the upper left pane of RStudio.

 

Confidence Intervals for a Mean, Variance Known: At the end of class on Tuesday, we looked at estimating the mean birth
weight for girls born in South Bend. We assumed that the population of birth weights was normally distributed with unknown mean

, but known standard deviation . In that case, the sampling distribution of a sample mean birth weight for a random
sample of size  is normal with mean  and standard deviation . Given this, we then derived the following:

The random interval given by

    (1)

has a probability of 0.95 of containing the true value of the mean . Now, once the public health officials in South Bend have
drawn a random sample, the random variable  is replaced by the (observed) sample mean birth weight of  lb, giving the
specific interval

μ

t
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    (2)

 
 
which is no longer random. We interpret this interval by saying that we are 95% confident that the population mean birth weight of
girls born in South Bend is between 6.9 and 7.3 lb. In other words, if we repeated the same process of drawing samples and
computing intervals many times, then in the long run, 95% of the intervals would include .

_____________________________________________________

Pause for Reflection #1:
Explain in your own words why the interval in equation (1) is random, but the interval in equation (2) is not.

_____________________________________________________

 

In general, if a random sample of size  is drawn from a normal distribution with unknown mean  and known standard deviation 
, then a 95% confidence interval for  is

     (3)

 
If we repeatedly draw random samples from the population and compute the above 95% confidence interval for each sample, then
we expect about 95 of those intervals will contain the actual value of .

We can demonstrate the interpretation of confidence intervals with a simulation. The following code simulates drawing random
samples of size 30 from a  distribution. For each sample, we construct the 95% confidence interval and check to see if it
contains the population mean, . We do this 1000 times and keep track of the number of times the interval contains  using a
counter. We can also visualize the first 100 intervals computed. 
 

 

_____________________________________________________

counter = 0                                       # set counter to 0 

plot(x = c(22, 28), y = c(1, 100), type = "n",    # set up a blank plot 

     xlab = "", ylab = "")                        # with no axis labels 

for (i in 1:1000) 

{ 

  x = rnorm(30, 25, 4)                            # draw random sample of size 30 

  L = mean(x) - 1.96*4/sqrt(30)                   # lower endpoint of interval 

  U = mean(x) + 1.96*4/sqrt(30)                   # upper endpoint of interval 

  if (L < 25 && 25 < U)                           # check if 25 is in interval 

    counter = counter + 1                         # if yes, increase counter by 1 

  if (i <= 100)                                   # plot first 100 intervals 

    segments(L, i, U, i) 

} 

abline(v = 25, col = "red")                       # vertical line at mu 

counter/1000                                      # proportion of times mu in interval

(7.1−1.96 ,  7.1+1.96 ) ⇒ (6.884, 7.316),

1.1
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Pause for Reflection #2:
In your lab notebook, run the above simulation (code provided) and comment on the proportion of times the intervals in the
simulation contain . Is it close to 95%?

Explain in your own words what the plot produced by the simulation demonstrates.

_____________________________________________________

 

In the first example with birth weights and the above simulation, we constructed 95% confidence intervals. The formula in equation
(3) was derived starting from the fact that for the standard normal random variable , we have

 
This fact can be confirmed using the qnorm() function in R, which calculates quantiles for the normal distribution given a
probability. With 0.95 probability in the middle, that leaves 0.05/2 = 0.025 probability in each of the two tails, as Figure 1
demonstrates.

 

Figure 1: Standard normal density with shaded area 0.95

 
In this case, we also have that , which is found in R as follows:

 

_____________________________________________________

Pause for Reflection #3:
If we want 0.93 probability in the middle of a standard normal density curve, how much probability does that leave in each of the
two tail regions? Sketch a figure similar to Figure 1, but with 0.93 middle probability and upload the image to your lab notebook.
Use the qnorm() function to find the value of  satisfying .

 

_____________________________________________________

Pause for Reflection #4:
Redo the simulation above, but find 93% confidence intervals this time. You will need to use the value of  you found in Reflection
#3 and alter in some way the following two lines in the for loop of the simulation:

qnorm(0.025, lower.tail = FALSE)      # returns the value q such that P(Z > q) = 0.025

μ= 25

Z

0.95 = P (−1.96 <Z < 1.96).

0.025 = P (Z > 1.96)

q 0.93 = P (−q <Z < q)

q
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  L = mean(x) - 1.96*4/sqrt(30)                   # lower endpoint of interval 

  U = mean(x) + 1.96*4/sqrt(30)                   # upper endpoint of interval 

What is the proportion of times the intervals in the simulation contain  equal to now? Is it what you expected? Explain.

_____________________________________________________

 

In general, we let  denote the  quantile for the standard normal distribution. In other words,  is the value such
that . By symmetry then, the middle probability given by  falls between  and . (See Figure
2 below.) For example, in a 95% confidence interval,  and .

 

Figure 2: Standard normal density with shaded area (1-alpha)

 

We can now give a general formula for a % confidence interval of , when  is know.

 

Z Confidence Interval for a Normal Mean with Known Standard Deviation

If , for , with  known, then a % confidence interval for  is given by

 

_____________________________________________________

Pause for Reflection #5:
Return to the first example and find a 90% confidence interval for the mean birth weight of girls born in South Bend. How does
this interval compare to the 95% confidence interval we found? Which interval is wider?

_____________________________________________________

 

Confidence Intervals for a Mean, Variance Unknown: In practice, we will not know either the mean or the standard deviation of
the population we are interested in. As we have seen in previous weeks, if we want to know the value of a population parameter, we
can use a statistic computed from a random sample to estimate it. As we use  to estimate , we can use , the sample standard
deviation, to estimate . This leads to the question: does replacing  with  in the following change the distribution?
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It turns out that estimating  with  does indeed change the sampling distribution. As we have done many times already, we
explore this question with a simulation.

N = 10^4

z = numeric(N) 

t = numeric(N) 

n = 15                                # sample size 

for (i in 1:N) 

{ 

  x = rnorm(n, 25, 4)                 # draw 15 numbers from N(25, 4) 

  Xbar = mean(x)                      # calculate sample mean 

  S = sd(x)                           # calculate sample sd 

  z[i] = (Xbar - 25) / (4/sqrt(n))    # standardize sample mean using sigma 

  t[i] = (Xbar - 25) / (S/sqrt(n))    # standardize sample mean using sample sd 

} 

hist(z) 

hist(t) 

qqnorm(z); qqline(z)                  # assess normality for z 

qqnorm(t); qqline(t)                  # assess normality for 

_____________________________________________________

Pause for Reflection #6:
In your lab notebook, run the above simulation (code provided). Explain how the results of the simulation show that the
distribution of  is not normally distributed.

_____________________________________________________

 

The distribution of  is actually a Student's t distribution with  degrees of freedom, provided that the
population is normally distributed. The pdf of  distribution with  degrees of freedom is bell-shaped and symmetric about 0, like
the standard normal pdf. But, unlike the standard normal pdf, it has thicker tails. As  tends to infinity, the pdf of the  distribution
approaches the standard normal pdf. Figure 3 below shows the pdf's for the standard normal distribution and three  distributions.

Figure 3: Comparison of pdf's for standard normal and t distributions
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We derive the confidence interval for  when  is unknown in the same way as when  is know, except we use the  distribution to
find quantiles. We let  denote the  quantile for a  distribution with  degrees of freedom, i.e., the value such
that

 
where  has a  distribution with  degrees of freedom. The quantiles  replace the standard normal quantiles  in
the formula, and we arrive at the following.

 

T Confidence Interval for a Normal Mean with Unknown Standard Deviation

If , for , with  known, then a  confidence interval for  is given by

 

The functions pt() and qt() give probabilities and quantiles, respectively, for the  distribution. For example, to find 
 for the random variable  from a  distribution with 27 degrees of freedom, try the following:

pt(2.8, 27) 

And to find the quantile , try

qt(0.05, 27, lower.tail = FALSE) 

_____________________________________________________

Pause for Reflection #7:
Compare the quantile  to the corresponding standard normal quantile . Which one is larger? Can you explain why?
What effect on the width of a 90% confidence interval does using the  distribution quantile have? Can you explain why this makes
sense given that confidence intervals based on the  distribution are used when  is unknown?

 

_____________________________________________________

Pause for Reflection #8:
Suppose that the public health officials in South Bend are also interested the mean birth weight of boys in their city. They are
willing to again suppose that the distribution of boys weights in South Bend is normal, but they do not want to assume a value for
the standard deviation. Instead, they obtain a random sample of 28 boys, resulting a sample mean of 7.6 lb and a sample standard
deviation of 1.3 lb. Use their results to construct a 90% confidence interval for the true mean birth weight of boys born in South
Bend. Upload an image of any hand-written work.

_____________________________________________________

 

If you have the full data set of observations in a random sample available in R, then the function t.test() can calculate
confidence intervals quickly. We will demonstrate this with the NCBirths2004 data set, which contains information on a random
sample of 1009 babies born in North Carolina during 2004, and construct a 99% confidence interval for the mean birth weight (in
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grams) of girls born in North Carolina. 
 

 

Thus, the 99% confidence interval for the mean birth weight of girls born in North Carolina in 2004 is (3343.3, 3453.3) g.

_____________________________________________________

Pause for Reflection #9:
Alter the t.test() function and find 95% and 90% confidence intervals for the mean birth weight of girls born in North
Carolina in 2004. How do these intervals compare to each other and to the 99% confidence interval? Explain what the effect of
decreasing the confidence level (i.e., going from 99% to 90%) has on the width of the confidence interval.

_____________________________________________________

 

Pause for Reflection #10:
Note that in order to use the  distribution to construct confidence intervals, the population must be normally distributed. Assess
whether or not the population of birth weights for babies born in North Carolina in 2004 is normally distributed.

_____________________________________________________

 

 

Lab 5: Confidence Intervals is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

NCBirths2004 = read.csv("NCBirths2004.csv") 

girls = subset(NCBirths2004, select = Weight, subset = Gender == "Female", drop = TRUE

t.test(girls, conf.level = 0.99)$conf 

 

## [1] 3343.305 3453.328 

## attr(,"conf.level") 

## [1] 0.99 

t
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Lab 6: More Hypothesis Testing - Classical Approach

Objectives:
1. Understand how to perform hypothesis tests for means (one population and two populations) using the classical approach. 
2. Understand how to use the t.test() function in R to calculate -values

Definitions:
hypothesis testing
null vs. alternative hypothesis
left- vs. right- vs. two-tail test
test statistic
P-value
statistical significance
t-test
matched pairs vs. independent samples

Introduction:
In Lab 2, we introduced hypothesis testing, a formal procedure for testing the validity of a claim about a population or populations.
Specifically, we developed a procedure called permutation testing in the context of testing hypotheses about two population means.
Permutation testing does not make any assumptions about the distributions of the populations involved in the hypotheses. In this
lab, we consider the classical approach to hypothesis testing, where now we will make assumptions about the distribution of the
population or at least use a probability distribution to compute (approximate) -values. This builds on the work we did in Labs 4 &
5, where we used either the standard normal or  distributions.

We will still use the same framework for performing a hypothesis test that we established in Lab 2. Namely, we compute a test
statistic from the data and then a corresponding -value that tells us the probability of getting a value as extreme as or more
extreme than the observed test statistic assuming the null hypothesis is true. The smaller the -value, the more evidence we have
against the null hypothesis, because the observed result cannot be easily explained by chance alone.

Activities:
Getting Organized: If you are already organized, and remember the basic protocol from previous labs, you can skip this section.

Navigate to your class folder structure. Within your "Labs" folder make a subfolder called "Lab6". Next, download the lab
notebook .Rmd file for this lab from Blackboard and save it in your "Lab6" folder. You will be working with the SAT and
NCBirths2004 data sets on this lab. You should download the data files into your "Lab6" folder from Blackboard.

Within RStudio, navigate to your "Lab6" folder via the file browser in the lower right pane and then click "More > Set as working
directory". Get set to write your observations and R commands in an R Markdown file by opening the "lab6_notebook.Rmd" file in
RStudio. Remember to add your name as the author in line 3 of the document. For this lab, enter all of your commands into code
chunks in the lab notebook. You can still experiment with code in an R script, if you want. To set up an R Script in RStudio, in the
upper left corner click “File > New File > R script”. A new tab should open up in the upper left pane of RStudio.

 

_____________________________________________________

Pause for Reflection #1:
In Exercise #1 from Tuesday's class, we tested the claim that the mean dissolved oxygen content  in a certain stream is less than 5
mg per liter based on a sample of 45 specimens with a mean of 4.62 mg/l. We assumed that dissolved oxygen content varies among
locations in the stream according to a normal distribution with standard deviation  mg, and so calculated the -value as
follows:
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Comment on why we calculated the probability that a sample mean  would be "less than or equal to" the observed sample mean
4.62, instead of simply "equal to" or "greater than or equal to". Next, explain why we subtract 5 and divide by  in the
middle probability expression.

_____________________________________________________

 

One-Sided Tests: The claim we tested in Exercise #1 on Tuesday claimed that the actual population mean was less than a specific
number. In particular, the alternative hypothesis for Exercise #1 was  mg/l. Testing a claim of "less than" is a one-sided
test, specifically referred to as a left-tail test. We now consider an example of a claim of "greater than", i.e., a right-tail test.

SAT Example: We suspect that on average students will score higher on their second attempt at the SAT math exam than on their
first attempt.  The data set SAT gives the changes in score (second try minus first try) results for 46 randomly chosen high school
students. We will perform a hypothesis test to see if these data provide good evidence that the mean change in the population is
greater than zero.

 

_____________________________________________________

Pause for Reflection #2:
For the SAT example just introduced, state the null and alternative hypotheses being tested using appropriate parameter notation.

_____________________________________________________

 

We now load the SAT data and compute the sample mean and standard deviation:

SAT = read.csv("SAT.csv") 

xbar = mean(SAT$SAT.change) 

s = sd(SAT$SAT.change) 

If we assume that changes in SAT scores are normally distributed, then the test statistic

     (1)

has a  distribution with 45 degrees of freedom, since the population standard deviation is unknown.

 

_____________________________________________________

Pause for Reflection #3:
Calculate the -value associated with the observed SAT results and clearly state your conclusion for testing the hypotheses you
stated in Reflection #2. Remember that the -value is the probability of getting a value as extreme as or more extreme than the
observed test statistic assuming the null hypothesis is true.

 

_____________________________________________________
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Pause for Reflection #4:
Does the sample of changes in SAT scores support the assumption that the population is normally distributed?

 

_____________________________________________________

 

Pause for Reflection #5:
Comment on why you think the terminology left-tail test and right-tail test are used to describe one-sided tests. Specifically, why is
testing a claim of "less than" done with a left-tail test, and a claim of "greater than" with a right-tail test?

_____________________________________________________

 

Two-Sided Tests: Suppose that we were not sure whether on average students score higher or lower on their second attempt, and
instead we just want to test the claim that on average the scores are not the same. In this case, we are testing a claim of either "less
than" or "greater than". Simply put, we are testing a claim of "difference", which includes both cases. This type of test is referred to
as a two-sided test or a two-tail test.

SAT Example: For the change in SAT scores, the null hypothesis remains the same, but the alternative is now stated simply as the
mean change in SAT scores for all students  is not equal to zero:

We use the same test statistic given in equation (1), but to calculate the -value in a two-sided test we consider both less than and
greater than values as extreme, which is accomplished using absolute values:

where  denotes the observed value of the test statistic.

 

_____________________________________________________

Pause for Reflection #6:
Calculate the -value for the two-sided test. How does it compare to the -value you calculated in Reflection #3 for the one-sided,
right-tail test?

_____________________________________________________

 

 
The T-Test in General: Notice the general procedure we have followed in the water quality example and the change in SAT scores
example:

1. state the null and alternative hypotheses, 
2. calculate a test statistic from observed data, 
3. find or estimate a sampling distribution for the test statistic, assuming the null hypothesis is true, 
4. calculate a -value using that distribution, 
5. and finally state a conclusion of the test, rejecting  if -value is small.

In permutation testing, the sampling distribution found in step 3 is given by the permutation distribution obtained by permuting the
data. In the classical approach taken in the above examples, the sampling distributions are parametric, normal or  distributions.

We note that the second example is more likely, i.e., it is more likely that the population standard deviation is unknown and so the 
-value will be calculated using a  distribution. The following summarizes the classical approach for testing a claim about a

μ
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population mean when the population standard deviation is unknown, known as a t-test.

 

T-Test for a Normal Mean

Let  be a random sample from a normal population with unknown  and . Let  and  denote the sample mean
and standard deviation. For a null hypothesis given by

 
where  is a constant, we form the -test statistic

If the null hypothesis is true, then  has a  distribution with  degrees of freedom. The -value is the probability that
chance alone would produce a test statistic as extreme as or more extreme than the observed value of the test statistic 

, if the null hypothesis is true. What is considered "extreme'' depends on the alternative hypothesis: left-
tail, right-tail, or two-tail.

 

Note that the t-test is exact when the sample comes for a normally distributed population. If the population is not normal, then the t-
test provides an approximate -value, since by the Central Limit Theorem the sample mean  will be approximately normal even
though the population is not. So, in practice, the t-test is used to compute approximate -values when the sample size is large and
the sample is not too skewed. If the sample size is not large and/or the sample is severely skewed, then a permutation test should be
used.

 

Using R to do all the calculations: The t.test() function in R performs the t-test for a normal mean, provided that we have all
sample data and not just sample statistics (i.e., sample mean and standard deviation values). For the change in SAT scores example,
the following performs the two-sided test:

t.test(SAT$SAT.change) 

The default settings of t.test() are to perform a two-sided test that the population mean is zero. But the type of test can be
changed by adding the argument alternative = "less" for a left-tail test or alternative = "greater" for a right-
tail test. So, for the one-sided test that the change in SAT scores is greater than zero, try the following and compare to what you
found in Reflection #3:

t.test(SAT$SAT.change, alternative = "greater") 

We can also change the value of  claimed under the null hypothesis. For example, suppose that in the past it was determined that
on average students score 10 points higher on their second attempt at the SAT math test, and we want to test that the average
change is now more than 10 points. In this case, the null hypothesis is now , and we can test this with the data as
follows:

t.test(SAT$SAT.change, alternative = "greater", mu = 10) 

 

_____________________________________________________
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Pause for Reflection #7:
Comment on the effect that changing the null hypothesis to  had on the resulting test statistic and -value compared to
the corresponding values you found in Reflection #3 for the test that . Explain why the test statistic and -value changed in
this way.

_____________________________________________________

 

 
Tests Comparing Two Population Means: In Lab 2, we actually performed a permutation test for hypotheses concerning two
populations, women and men. There is also a -test for comparing two populations.

If  and  denote the two population means,  and  denote sample means for samples of size  and , respectively, taken
from the two populations, and  and  denote the sample standard deviations, then the test statistic

T = 

has approximately a  distribution. Notice that the test statistic involves differences in the means, and because of this hypotheses for
comparing two population means are typically stated in terms of the difference in the means. Furthermore, the null hypothesis is
almost always the claim that there is no difference, i.e., that . Let's look at an example.

 

Births Example: Consider again the NCBirths2004 data set from Lab 5, which contains information on a random sample
of babies born in North Carolina during 2004. In addition to the birth weights of the babies, the variable Tobacco in the data set
indicates whether or not the mothers of the babies smoked during the pregnancy. Using this data, we can test the claim that
smoking during pregnancy results in a lower birth weight than not smoking, on average.

 

_____________________________________________________

Pause for Reflection #8:
Let  and  denote the true mean weight of babies born to smoking and nonsmoking mothers, respectively. Using the difference 

, state the null and alternative hypotheses to test the claim that smoking during pregnancy results in a lower birth weight
than not smoking, on average.

_____________________________________________________

 

We can use R/RStudio to do all of the necessary calculations for us, so that we do not have to work with equation (2) directly. The
same t.test() function can be used to perform a two-sample test:

births = read.csv("NCBirths2004.csv") 

smoker = subset(births, select = Weight, subset = Tobacco == "Yes", drop = TRUE) 

nonsmoker = subset(births, select = Weight, subset = Tobacco == "No", drop = TRUE) 

t.test(smoker, nonsmoker, alternative = "less") 

 

_____________________________________________________

: μ= 10H

0

P

μ= 0 P

t

μ

1

μ

2

X

¯

1

X

¯

2

n

1

n

2

S

1

S

2

( − )−( − )X

¯

1

X

¯

2

μ

1

μ

2

( / )+( / )S

2

1

n

1

S

2

2

n

2

− −−−−−−−−−−−−−−

√

t

− = 0μ

1

μ

2

μ

1

μ

2

−μ

1

μ

2

https://libretexts.org/
https://stats.libretexts.org/@go/page/9045?pdf


Lab 6.6 https://stats.libretexts.org/@go/page/9045

Pause for Reflection #9:
Based on the -value for the above two-sample -test, is the result statistically significant? Write a conclusion to the test of the
hypotheses stated in Reflection #8.

Look at the output from the t.test() and locate the sample estimates. What is the mean birth weight for babies born to
smoking mothers and what is the mean for nonsmoking mothers?

_____________________________________________________

 

Assumptions of the Two-Sample T-Test: As with the one-sample -test, we need to check that the two populations being
compared in a two-sample -test are normally distributed. If this assumption is violated, in particular, if the distributions are
skewed and the sample sizes of the two samples are different, then the actual distribution of the test statistic given in equation (2)
may differ substantially from the  distribution. In that case, a permutation test would be more reliable.

 

_____________________________________________________

Pause for Reflection #10:
Check that the populations of birth weights for babies born to smokers and babies born to nonsmokers both appear to be normally
distributed.

_____________________________________________________

 

Matched Pairs: The two-sample -test also requires that the two samples be from two independent populations. If the two samples
are paired (not independent), then we need to perform a paired t-test, which is done with the same t.test() function by adding
the argument paired = TRUE. The change in SAT scores example can be performed as a paired -test, instead of a one-sample 
-test as we did previously.

 

SAT Example: Take a closer look at the SAT data set:

View(SAT) 

summary(SAT) 

Notice that in addition to the variable SAT.change, which contains the differences between the second attempt and first attempt
for each student, we also have the actual scores on the second attempt in variable SAT.2 and a list of scores on the first attempt in
variable SAT.1 for each student.

In this case, the two samples of scores for the first and second attempts are paired, consisting of pairs of SAT scores for the random
sample of students. In other words, the rows in the SAT data set correspond to a single student and so the values are related, not
independent. Thus, if we set up the test of the claim that on average students will score higher on their second attempt at the SAT
math exam than on their first attempt by comparing the two samples, we need to perform a paired -test.

Let  denote the true mean of SAT scores for the first attempt and let  denote the true mean for the second attempt. Following
the order we took the difference in earlier - second attempt minus first - we state the hypotheses being tested as follows:

We can use the t.test() function to calculate the test statistic and associated -value needed to perform the test:

t.test(SAT$SAT.2, SAT$SAT.1, alternative = "greater", paired = TRUE) 

Notice the order that the samples of SAT scores are listed in the argument of t.test(), it matches the order we that we took the
difference in population means when stating the hypotheses.
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_____________________________________________________

Pause for Reflection #11:
Compare the results of the paired -test to the results you found in Reflection #3. How do the test statistics and corresponding -
values compare? Can you provide an explanation for why?

_____________________________________________________

 

It is important to perform the paired -test when samples are paired, because the results of the test are often very different from the
results of the two-sample -test. For example, omit the argument paired = TRUE from the t.test() we ran on the SAT
scores:

t.test(SAT$SAT.2, SAT$SAT.1, alternative = "greater") 

 

_____________________________________________________

Pause for Reflection #12:
Now compare the results of the two-sample -test you just ran to the results of the paired -test. Again focus on the test statistics
and corresponding -values. What do you notice?

_____________________________________________________

 

Lab 6: More Hypothesis Testing - Classical Approach is shared under a not declared license and was authored, remixed, and/or curated by
LibreTexts.
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Lab 7: ANOVA

Objectives:
1. Understand how to perform ANOVA  test for comparing three or more population means.
2. Understand how to use the aov() function in R to construct ANOVA tables.

Definitions:
ANOVA (analysis of variance)
treatment groups
grand mean
MSTR (mean sum of squares for treatment)
MSE (mean sum of squares for error)

-distribution
 statistic,  test

Introduction:

In Labs 2 and 6, we considered methods for testing claims about two population means, namely, permutation tests and  tests. In
this lab, we consider a technique for testing claims about three or more population means known as analysis of variance (ANOVA).
The ANOVA procedure compares the variation in the means of samples taken from the populations. The idea is to partition the
variability in all the samples into the variability between each sample and the variability within each sample. If the population
means are indeed equal, then the variability between and within each sample should be roughly the same. The ratio of the between
and within variability provides a test statistic, and the classical approach, which we consider in this lab, uses a theoretical sampling
distribution. In the next lab, we will develop a permutation test approach for performing ANOVA.

 

Activities:
Getting Organized: If you are already organized, and remember the basic protocol from previous labs, you can skip this section.

Navigate to your class folder structure. Within your "Labs" folder make a subfolder called "Lab7". Next, download the lab
notebook .Rmd file for this lab from Blackboard and save it in your "Lab7" folder. There are no datasets used in this lab. You will
be working with the Zombies.csv data set on this lab. You should download the data file into your "Lab7" folder from
Blackboard.

Within RStudio, navigate to your "Lab7" folder via the file browser in the lower right pane and then click "More > Set as working
directory". Get set to write your observations and R commands in an R Markdown file by opening the "lab7_notebook.Rmd" file in
RStudio. Remember to add your name as the author in line 3 of the document. For this lab, enter all of your commands into code
chunks in the lab notebook. You can still experiment with code in an R script, if you want. To set up an R Script in RStudio, in the
upper left corner click “File > New File > R script”. A new tab should open up in the upper left pane of RStudio.

 

Notation: Before we see how to perform an ANOVA test in R/RStudio, let's formally set up the procedure, starting with defining
the notation:

 denotes the number of populations/samples
 denotes the number of observations in the  sample, 

 denotes the total number of observations
 denotes the  observation in the  sample, 
 denotes the mean of the  sample
 denotes the grand mean, i.e., the mean of all  observations in each sample

 
If we let  denote the mean of the  population, then we are testing the following hypotheses with the above sample data:
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As discussed in the introduction above, we test these hypotheses by comparing the variability between the sample means to the
variability within each sample. For the variability between the samples, we use the mean sum of squares for treatment (MSTR),
which is given by

MSTR = 

For the variability within the samples, we use the mean sum of squares for error (MSE), which is given by

MSE = 

Pause for Reflection #1:

Four chemical plants, producing the same products and owned by the same company, discharge liquid waste into streams in the
vicinity of their locations. To monitor the extent of pollution created by the liquid waste and determine whether this differs from
plant to plant, the company collected random samples of liquid waste from each plant, resulting in the following data.

Plant Polluting Effluents (lb/gal of waste) Sample Mean

A 1.65   1.72   1.50   1.37  1.60 1.568

B 1.70   1.85   1.46   2.05 1.765

C 1.40   1.75   1.38   1.65   1.55 1.546

D 2.10   1.95   1.65   1.88 1.895

State the hypotheses we will test to determine if there is a difference in the mean weight of polluting effluents per gallon in the
liquid waste discharged from the four plants. Be sure to define your notation.
Identify what the values of  and  are, and for each sample identify the values of  and  are.
Finally, find the values of the grand mean  and the variability between the samples' MSTR.

_____________________________________________________

The ANOVA F  Test: If  is true, i.e., the population means are all equal, then the variability between the samples should be
roughly the same as the variability within the samples (assuming also that the populations have equal variance). If  is false, then
the variability between the samples will be larger than the variability within the samples. Thus, we use the ratio of the between and
within variability measures as the test statistic,

which has a  distribution with  and  df. The observed test statistic based on the sample data obtained is denoted 
, and then its associated -value is calculated using the  distribution as follows:

Note that the -value is given by the probability of obtaining a test statistic as large or larger than what was observed, i.e., the -
value for an ANOVA  test is always a right-tail probability. This is because "more extreme" in this context would be sample data
that produced more between sample variability resulting in a larger ratio of MSTR to MSE.

Pause for Reflection #2:

Return to the pollution example and compute the observed  statistic using the value of MSTR you found in Reflection #1 and
given that MSE = 0.03336. Then use the following code (with the corresponding values of f, G-1, and n-G substituted in) to
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calculate the corresponding -value:

pf(f, G-1, n-G, lower.tail = FALSE) 

Based on the -value, do the data provide sufficient evidence to indicate a difference in the mean weight of polluting effluents per
gallon in the liquid waste discharged from the four plants?

_____________________________________________________

 
The ANOVA Table: As we can see, there are alot of calculations that go into performing ANOVA. The ANOVA table given below
is a tool that summarizes and organizes these calculations in an easy to use format.

 Df Sum Sq Mean Sq F value Pr(>F)

Factor G-1 MSTR MSTR/MSE P-value

Error n-G MSE   

Total n-1    

Notice how the ANOVA table is arranged:

The last two columns are the most useful, since they give the test statistic and its associated -value:

 the last column with heading Pr(>F) gives the -value, so it is easy to read off;
the second to last column with heading F value gives the observed  statistic, which the -value is based on.

The other columns give the supporting calculations used to find the test statistic and -value:

the first column provides labels for the source of variability, where Factor corresponds to the between samples variability
and Error corresponds to the within sample variability;
the second column gives the corresponding degrees of freedom within each row, note that the sum of the Factor and
Error df equals the Total df;
the third column with heading Sum Sq gives the sum of squares corresponding to each source, note that the sum of squares
for the Factor and Error add up to the Total sum of squares (this is where the partitioning of the variability occurs that
makes ANOVA possible);
the fourth column with heading Mean Sq gives the mean sum of squares corresponding to each source, note that these are
found by dividing the sum of squares in each row by the corresponding df.

Pause for Reflection #3:
Copy the following partial ANOVA table for the pollution example into your lab notebook and fill in the missing values, denoted
by ---. Upload an image of your work into your lab notebook.

 

 Df Sum Sq Mean Sq F value Pr(>F)

Factor --- --- --- --- ---

Error --- --- 0.03336   

Total --- ---    

_____________________________________________________
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Performing the ANOVA F  Test in R: Thankfully, there is a function in R that performs the extensive calculations needed to
perform ANOVA, given by aov(). Calling the aov() function on the data performs the calculations, and then using the
summary() function on the results constructs the ANOVA table. The following code demonstrates how this works in the
pollution example. The first step is to format the data in R. Notice that an object Plant is created to store labels for the observed
waste amounts so that we can sort the observations into the appropriate treatment groups corresponding to the four populations
given by the four plants.

# format the data in R 

Waste = c(1.65, 1.72, 1.50, 1.37, 1.60, 

          1.70, 1.85, 1.46, 2.05, 

          1.40, 1.75, 1.38, 1.65, 1.55, 

          2.10, 1.95, 1.65, 1.88) 

Plant = rep(c("A", "B", "C", "D"), c(5, 4, 5, 4)) 

 

# Perform the ANOVA: 

results = aov(Waste ~ Plant)     # store the ANOVA calculations in results 

summary(results)                 # construct the ANOVA table 

By running the above code for yourself (already provided in the Lab 7 Notebook), you can check your answers to Reflection #3.

Pause for Reflection #4:
In the above code, explain what the following line does:

Plant = rep(c("A", "B", "C", "D"), c(5, 4, 5, 4)) 

In particular, what does the function rep() do?

_____________________________________________________

Zombies: Let's look at another example to see how to use the aov() function given a data set. The Zombies.csv file contains
data about the number of zombies killed (killed) and by what household weapon (weapon) for a sample of 31 apocalypse
survivors. Load the data and view it:

Zombies = read.csv("Zombies.csv") 

View(Zombies) 

Pause for Reflection #5:
Conduct some EDA:

What are the mean and standard deviation of zombies killed across weapons (hint: the tapply() function will be useful)?
How many observations of zombies killed are there for each of the weapons (hint: the table() function will be useful)?
Create side-by-side boxplot to compare the distributions of zombies killed across weapons.

_____________________________________________________

From the EDA, it sure looks as though there are differences in the number of zombies killed by each weapon, but are these
differences due to sampling error, or do they represent real differences in zombie-killing effectiveness? To answer that question, we
need to run an ANOVA test.

aov = aov(killed ~ weapon, Zombies)     # store results of ANOVA test 

summary(aov)                            # view the ANOVA table 
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Pause for Reflection #6:
State the hypotheses being tested by the above ANOVA calculations. Report the -value you find and state the conclusion.

_____________________________________________________

Assumptions for the ANOVA F  Test: In performing the ANOVA  test, the following assumptions are made:

the samples are independent
the populations are normally distributed
the populations have equal variance

The independence assumption is critical, if the samples are related in some way then a different procedure is needed. Violations of
the assumptions of normality and equal variances are less important.

The big problem with non-normality in  tests is the effect of skewness on one‐sided tests. But ANOVA tests are inherently two
sided (we are testing for any differences between means, not differences in one direction) so non-normal distributions generally
have little effect as long as the sample sizes are reasonably large.

If the sample sizes  are roughly equal, then unequal variances do not have a great impact, but if the population variances differ,
then the actual sampling distribution of the  statistic could be very different from an  distribution. In particular, if there is a
small sample from a population with large variance, then the  statistic can explode.

We will run simulations to explore the assumptions for ANOVA: in particular, how does "un-balancedness" (sample sizes not the
same) and unequal population variances affect the outcome? We consider the hypotheses

 at least one mean is different.

The code below simulates drawing three random samples from populations (called ) with the same mean ( ) and
standard deviation ( ) and then performs an ANOVA test. Using a significance level of 0.05, the object counter keeps track
of how many times the null hypothesis is incorrectly rejected (false positive) and then corresponding proportion is computed.

n.A = 50                                          # set sample sizes 

n.B = 50

n.C = 50

 

Group = rep(c("A","B","C"), c(n.A, n.B, n.C))     # create group labels 

 

counter = 0 

N = 10^4

 

for (i in 1:N) 

{ 

 a = rnorm(n.A, 20, 3)                            # Draw samples from N(20,3) pop 

 b = rnorm(n.B, 20, 3) 

 c = rnorm(n.C, 20, 3) 

 X = c(a, b, c)                                   # Combine into one vector 

  

 Pvalue = summary(aov(X ~ Group))[1,5]            # Extract P-value from ANOVA table 

 if (Pvalue < 0.05)                               # Reject H0, at 0.05 sig level? 

  counter = counter + 1                           # If yes, increase counter 

} 

  

counter/N                                         # proportion of times H0 rejected 

P

F

t

n

i

F F

F

: = = vs. :H

0

μ

A

μ

B

μ

C

H

A

A,B,C μ= 20

σ = 3

https://libretexts.org/
https://stats.libretexts.org/@go/page/9047?pdf


Lab 7.6 https://stats.libretexts.org/@go/page/9047

Pause for Reflection #7:
What type of error is counter keeping track of? Is the proportion given by counter/N close to what you would expect the
probability of making that type of error to be?

_____________________________________________________

Pause for Reflection #8:
Alter the code so that the sample size from  is 10 (n.A = 10) and redo the simulation. What happens to the proportion of times 

 is rejected?

_____________________________________________________

Pause for Reflection #9:
Alter the code again by increasing the standard deviation of population  to 9 and trying samples of size 50 and 10 (keeping the
other sample sizes to 50). What proportion of times do you reject the null hypothesis in each case?

_____________________________________________________

Pause for Reflection #10:

Explore other scenarios: What if the population means are all different, but the population variances are the same? How do sample
sizes affect the outcome? Try with all sample sizes the same and then unequal. Now try different variances and again, with
balanced and unbalanced samples.

Record in your lab notebook what scenarios you tried and what results you found, i.e., how the proportion of times  was rejected
is impacted.

_____________________________________________________

 

Lab 7: ANOVA is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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Lab 8: More ANOVA

Objective:
1. Understand when and how to perform post hoc analysis of a significant ANOVA  test for comparing three or more population
means. 
2. Understand how to perform ANOVA using a permutation test.

Definitions:
pairwise comparisons
post hoc test
Tukey's HSD method
classes (produced by post hoc analysis of ANOVA results)

Introduction:
In Lab 7, we considered a technique for testing claims about three or more population means known as analysis of variance
(ANOVA). In particular, we used the classical approach to performing ANOVA based on the  distribution. The classical approach
requires that the populations being compared are normally distributed with equal variances. In this lab, we will see how to use the
permutation test procedure, introduced in Lab 2, to perform ANOVA when these requirements do not appear to be met.

Before developing the permutation test for ANOVA, we will discuss what to do after obtaining a significant result for the ANOVA 
 test.

Activities:
Getting Organized: If you are already organized, and remember the basic protocol from previous labs, you can skip this section.

Navigate to your class folder structure. Within your "Labs" folder make a subfolder called "Lab8". Next, download the lab
notebook .Rmd file for this lab from Blackboard and save it in your "Lab8" folder. You will again be working with the
Zombies.csv data set on this lab. You should either re-download the data file into your "Lab8" folder from Blackboard, or just
copy the file from your "Lab7" folder into the "Lab8" folder.

Within RStudio, navigate to your "Lab8" folder via the file browser in the lower right pane and then click "More > Set as working
directory". Get set to write your observations and R commands in an R Markdown file by opening the "lab8_notebook.Rmd" file in
RStudio. Remember to add your name as the author in line 3 of the document. For this lab, enter all of your commands into code
chunks in the lab notebook. You can still experiment with code in an R script, if you want. To set up an R Script in RStudio, in the
upper left corner click “File > New File > R script”. A new tab should open up in the upper left pane of RStudio.

 

After ANOVA: If an ANOVA test is significant, then all we know is that there is a difference, but we don't know exactly what the
difference is. For example, let's revisit the four chemical plants we considered in Lab 7. Recall that we analyzed the amount of
polluting effluents per gallon in samples of liquid waste discharged from the four plants. We used the following code to perform an
ANOVA  test to determine if there is a significant difference between the mean weight of polluting effluents discharged by the
four plants (note that the data below are slightly different than the data used in Lab 7):

Waste = c(1.65, 1.72, 1.50, 1.37, 1.60, 

          1.70, 1.85, 1.56, 2.05, 

          1.40, 1.75, 1.38, 1.65, 1.55, 

          2.10, 1.95, 1.75, 1.88) 

Plant = rep(c("A", "B", "C", "D"), c(5, 4, 5, 4)) 

aov.pollution = aov(Waste ~ Plant) 

summary(aov.pollution) 

 

F

F

F

F
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##                Df  Sum Sq  Mean Sq   F value  Pr(>F) 

## Plant           3  0.4297  0.14323      5.39  0.0112 * 

## Residuals      14  0.3720  0.02657 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

From the ANOVA table, we see that the -value is significant at the  level, so we conclude that there is sufficient
evidence that the mean weight of polluting effluents discharged by the four plants is not equal. However, this result alone says
nothing about which plant or plants have the largest mean or the smallest.

If we look at side-by-side boxplots of the sample waste amounts across the four plants, we can see that the sample from plant D
appears to have the highest mean and plant C the lowest. But is the mean for plant D significantly higher than the mean for plant B?
In other words, when we make pairwise comparisons between the plant means are the differences significant? To answer this
question, we need to run more hypothesis tests.

_____________________________________________________

Pause for Reflection #1:
Why do we need to run more hypothesis tests to determine whether the differences in the means between the pairs are significant?
Why isn't it enough to just look at the side-by-side boxplots?

_____________________________________________________

Post Hoc Tests: As we discussed in class, we cannot simply perform a series of independent samples  tests for each pairwise
comparison because it is not efficient and it inflates the possibility of committing a Type I error. Instead, we will perform a post hoc
test. Generally speaking, a post hoc test is a test of significance that decreases the probability of making a Type I error. In
particular, we will look at using the post hoc test given by Tukey's HSD (honestly significant difference).

The method of Tukey's HSD is to simultaneously construct confidence intervals for all differences ) that collectively hold
at the desired confidence level. The pairwise comparisons are then made as follows:

If the confidence interval for ( ) includes 0, then  and  are not significantly different.
If the confidence interval for ( ) does not include 0, then  and  are significantly different.

Tukey's method is performed in R by calling the function TukeyHSD() on the results of the ANOVA  test. For the pollution
example, try the following:

TukeyHSD(aov.pollution, conf.level = 0.95)     # default conf.level is 95% 

In the table produced by the above code, the diff column gives the difference in the observed sample means, lwr gives the lower
end point of the confidence interval, upr gives the upper end point and p adj gives the p-value after adjustment for the multiple
comparisons. Note that we can also visualize the results of Tukey's method by calling the plot() function on the results:
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plot(TukeyHSD(aov.pollution)) 

_____________________________________________________

Pause for Reflection #2:
Using the results of Tukey's method, identify which pairs of chemical plants appear to have significantly different means. Then sort
the plants into classes, where each class contains plants that have similar means (i.e., means that were determined to not be
significantly different). It may be helpful to redo the side-by-side boxplot so that the plots are placed in order of decreasing means
(the default ordering is alphabetical):

Plant = factor(Plant, levels = c("D", "B", "A", "C")) # reorder the labels 

boxplot(Waste ~ Plant) 

_____________________________________________________

Permutation Test for ANOVA: In Lab 7 and in class on Tuesday, we explored using simulation to see what happens when the
assumptions required for the ANOVA  test are not met. Specifically, we saw that when the data do not support the assumption of
equal variance for the populations, the risk of making a Type I error increases.

For example, let's revisit the data set in the Zombies.csv file, containing data about the number of zombies killed (killed)
and by what household weapon (weapon) for a sample of 31 apocalypse survivors. Using the tapply() function, we can
compute the variances for the samples across the weapons:

Zombies = read.csv("Zombies.csv") 

tapply(Zombies$killed, Zombies$weapon, var) 

 

## baseball bat        chainsaw        golf club 

##     6.454545        6.011111         2.322222 

Based on these results, we may question the validity of assuming that the population variances are equal, which then calls into
question the reliability of an ANOVA performed using the  test approach.

In the case that the assumptions of the  test do not appear to be met, we can use the ideas presented in Lab 2 to form a
permutation distribution of the test statistic, rather than using the  distribution. Specifically, the permutation test approach for
performing ANOVA uses the following steps:

1. randomly permute the group labels on the observations; 
2. compute the test statistic given by the ratio of the between group variability to the within group variability (i.e., MSTR/MSE) for
the new groups using the permuted labels; 
3. repeat steps 1 & 2 many times storing the resulting test statistic; 
4. compute the -value by finding the proportion of times the resulting test statistics from steps 1 & 2 exceed the original observed
test statistic.

The following code implements the permutation test approach to ANOVA for the Zombie example:

observed = summary(aov(Zombies$killed ~ Zombies$weapon))[[1]][1,4]     #original obser

 

n = length(Zombies$killed)                                             #total number o

N = 10^4 - 1                                                           #number of time

results = numeric(N) 

 

for (i in 1:N) 

{ 

F

F

F

F

P
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_____________________________________________________

Pause for Reflection #3:
Run the above code to perform the permutation test. Record the -value you find in your lab notebook and compare the results to
what you found in Lab 7 when performing the ANOVA  test. Comment on whether you think that a permutation test was
necessary.

_____________________________________________________

Pause for Reflection #4:
Comment on why the -value of the permutation test for ANOVA is given by the proportion of times the resulting test statistics for
the permutations exceed the original observed test statistic. In particular, explain why a test statistic for a permutation that is as
large or larger than what was originally observed is considered more extreme in this context.

_____________________________________________________

 

 

Lab 8: More ANOVA is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

  index = sample(n)                                                    #create permuta

  killed.perm = Zombies$killed[index]                                  #reorder observ

  results[i] = summary(aov(killed.perm ~ Zombies$weapon))[[1]][1,4]    #store new valu

} 

 

(sum(results >= observed) + 1) / (N + 1)                          #P-value 

P

F

P
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Lab 9: Categorical Data

Objectives:

1. Understand how to analyze categorical data 
2. Understand how to perform chi-square tests in R.

Definitions:
categorical (qualitative) data
chi-square distribution
observed vs. expected counts
goodness-of-fit test
contingency table
test of homogeneity
test of independence

Introduction:
Recall that categorical data is data based on some attribute or characteristic. The observations fall into categories. Up to this point,
we have performed hypothesis tests primarily about population means. But if we are interested in testing claims about categorical
data, then we need a new approach, since we cannot compute means for categorical variables. Instead we focus on proportions, and
we have only developed tests for comparing two proportions at a time. In this lab, we will look at methods to analyze relationships
between categorical variables and to check how well a probability model fits a single categorical variable.

Activities:

Getting Organized: If you are already organized, and remember the basic protocol from previous labs, you can skip this section.

Navigate to your class folder structure. Within your "Labs" folder make a subfolder called "Lab9". Next, download the lab
notebook .Rmd file for this lab from Blackboard and save it in your "Lab9" folder. There are no datasets used in this lab.

Within RStudio, navigate to your "Lab9" folder via the file browser in the lower right pane and then click "More > Set as working
directory". Get set to write your observations and R commands in an R Markdown file by opening the "lab9_notebook.Rmd" file in
RStudio. Remember to add your name as the author in line 3 of the document. For this lab, enter all of your commands into code
chunks in the lab notebook. You can still experiment with code in an R script, if you want. To set up an R Script in RStudio, in the
upper left corner click “File > New File > R script”. A new tab should open up in the upper left pane of RStudio.

 

Goodness-of-Fit Tests: In class on Tuesday, we considered whether any one day of the week is more or less likely to be a person’s
birthday than any other day of the week. Let  denote the proportion of all people that were born on a Monday, or equivalently,
the probability that a randomly selected person was born on a Monday. Similarly, define , , , , , and  We are
testing the following hypotheses:

 
 for at least one day of the week

In other words, we are testing whether the probability model stated in the null hypothesis fits the data well.

To test these hypotheses, you created a version of the following table:

 

 Days of the Week

 
Mon            Tues            Wed              Thu 
             Fri               Sat             Sun

Total: 
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Observed counts: 
17                26               22                 23     
          19               15               25

147

Expected counts: 
21                21               21                 21     
          21               21               21

147

0.76            1.19             0.05              0.19 
            0.19            1.71           0.76

4.86

 

The test statistic in this case, 4.86, follows a chi-square distribution, with degrees of freedom equal to the number of categories
(i.e., days of the week) minus one, and so the -value is calculated in R as follows:

pchisq(4.86, df = 6, lower.tail = FALSE) 

 

## [1]    0.5618907 

Pause for Reflection #1:

Suppose we suspect that weekend days are less likely to be a birthday, perhaps because doctors want the weekend off and so do not
schedule Caesarean deliveries for weekends. Let’s test whether the data provide evidence against the hypothesis that weekend days
are half as likely as other days to be someone’s birthday and that all weekdays are equally likely.

State the hypotheses being tested in this case. The null hypothesis should give the proposed probability model for the data. Note
that not all the days of the week will have the same probabilities, but we will still need the probabilities to add up to 1.
Redo the table above to calculate the test statistic in this case. Note that we are using the same data, so the observed counts stay
the same, but the expected counts will change.
 Alter the R code above to calculate the corresponding -value and state the conclusion of the test.
Which category (day) has the largest contribution to the test statistic? Explain what this reveals.

_____________________________________________________

 
Chi-Square Test in R: As you may have already guessed, there is a function in R, chisq.test(), that performs the
calculations you just did. To use this function, store the observed counts in a list:

birthdays = c(17, 26, 22, 23, 19, 15, 25) 

 
For the test that each day of the week is equally likely, all we have to do is call the chisq.test() function on the object
containing the observed counts as follows, since by default R tests the data against the null hypothesis that all probabilities are
equal:

chisq.test(birthdays) 

 

## 

## Chi-squared test for given probabilities 

## 

## data: birthdays 

## X-squared = 4.8571, df = 6, p-value = 0.5623 
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The output above gives the value of the observed test statistic X-squared and the degrees of freedom df for the chi-square
distribution used to calculate the corresponding p-value.

For the test that weekend days are half as likely as other days, we need to specify the probabilities stated in the null hypothesis in
the chisq.test() function as follows:

probs = c(rep(1/6, 5), 1/12, 1/12) 

chisq.test(birthdays, p = probs) 

Pause for Reflection #2:

Explain the code above, specifically the line defining the object probs. Does the output of the chisq.test match the results
you found in Reflection #1?

_____________________________________________________

 
Newspaper Reading: Are Americans today less likely to read a newspaper every day than in previous years? The General Social
Survey (GSS) interviews a random sample of adult Americans every two years, and one of the questions asks respondents,"How
often do you read the newspaper?" Sample results for the years 1978, 1988, 1998, 2008, and 2018 are given in the contingency
table below.

 

 
  1978                          1988                         
  1998                             2008                     
       2018

total

Every day
Not every day

   874                           500                          
    805                              431                       
       321
   654                           488                           
  1065                             898                       
      1247

2922
4352

total
  1528                          988                           
  1870                            1329                       
     1559

7274

 

In asking whether or not these sample data provide evidence that the proportion of Americans who read the newspaper every day
differed among the five populations for these years, we have to ask how likely it is to have observed such sample data if, in fact, the
"every day" proportions were the same for all five populations (years). However, it’s a little harder to quantify this now that we are
comparing more than two groups.

We adopt a strategy similar to the goodness-of-fit test: Compare the observed counts in the table with the counts expected under the
null hypothesis of equal population proportions/distributions. The farther the observed counts are from the expected counts, the
more extreme we will consider the data to be.

Pause for Reflection #3:
Use appropriate symbols to state the null hypothesis that the population proportion of adult Americans who read the newspaper
every day was the same for these five years: 1978, 1988, 1998, 2008, and 2018.

_____________________________________________________
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Pause for Reflection #4:
For the five years combined, what proportion of respondents read the newspaper every day? If this same proportion of the 1528
respondents in the year 1978 had read the newspaper every day, how many people would this represent? Record your answer with
two decimal places, and repeat for the other four years.

_____________________________________________________

 
We have now calculated the expected counts under the null hypothesis that the population proportion of adult Americans who read
the paper every day was the same for these four years (and consequently also the population proportions who did not read the paper
every day). A more general technique for calculating the expected count of cell  is to take the marginal total for that row times the
marginal total for that column, divided by the grand total (sample size of the study, ):

 

Pause for Reflection #5:
Use the general formula in Equation (9.1) to calculate the expected count of "not every day" people in the year 1988 and complete
the following table:

 

 
 1978                    1988                           
1998                            2008                     
2018

total

 
Every day

 874                      500                             
805                             431                       
 312
(613.80)                (396.88)                     
 (751.19)                      (533.87)               
  (626.26)

 
2922

 
Not every day

654                       488                         
   1065                             898                       
1247
(914.20)                (    )                           
(1118.81)                     (795.13)                 
(932.74)

 
4352

total
  1528                    988                           
1870                            1329                        
1559

7274

_____________________________________________________

Now that we have the observed counts and the expected counted calculated, we need to find a test statistic to measure how far the
observed counts deviate from the expected counts. To do this, we do the same calculation as with the goodness-of-fit test:
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Pause for Reflection #6:
Calculate the value of  for the "not every day" people in 1988 (i.e., for the second cell in the second row of the
table). Add this value to other contributions to the test statistic calculation provided below and compute the test statistic:

 =   110.30     +    26.79    +    3.85    +    19.82    +    157.70  
               + 74.06     +      ??       +   2.59     +    13.31    +    105.88    = ??

What kind of values (e.g., large or small) of the test statistic provide evidence against the null hypothesis that the five populations
(years) have the same proportion of Americans reading the newspaper every day? Explain.

_____________________________________________________

Again in this case, the test statistic follows a chi-square distribution. However, in this case, the degrees of freedom are equal to 
, where  is the number of rows and  is the number of columns in the contingency table.

Pause for Reflection #7:
Calculate the degrees of freedom for the test statistic found in Reflection #6 and then use the pchisq() function to find the
corresponding -value. Based on the -value, state your conclusion.

_____________________________________________________

Tests of Homogeneity: The test we just performed is called a chi-square test of equal proportions (homogeneity). It is used to
test whether the proportions for independent samples from three or more populations are the same. And the calculations can also be
done in R with the chisq.test() function. First, we need to format the observed counts in R, which can be done using the
rbind() command:

years = rbind(c(874, 500, 805, 431, 312), c(654, 488, 1065, 898, 1247)) 

years 

 

##         [,1]   [,2]   [,3]   [,4]   [,5] 

## [1,]    874    500    805    431    312 

## [2,]    654    488    1065   898    1247 

Then, we simply call the chisq.test() function on the table of observed counts years:

chisq.test(years) 

 

## 

## Pearson's Chi-squared test 

## 

## data: years 

## X-squared = 532.28, df = 4, p-value < 2.2e-16 

We can see the expected counts in R with the following code:

chisq.test(years)$expected 

 

##             [,1]        [,2]        [,3]         [,4]        [,5] 

## [1,]    613.8048    396.8842     751.187     533.8655    626.2876 

## [2,]    914.1952    591.1158    1118.8122    795.1345    932.7424 

Tests of Independence: We continue to consider the GSS survey. But this time, we use only the year 2018 with another variable:
the respondent’s political inclination, classified as liberal, moderate, or conservative. The sample results are summarized in the
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table:

 Liberal                                    Moderate                                        
Conservative

Every day
Few times a week
Once a week
Less than once a week
Never

  109                                          153                                             
 160
   85                                           109                                               
95
   52                                            82                                               
 63
   56                                            68                                               
 64
   52                                            65                                               
 63

Notice how this data is different from the data used in the previous example regarding newspaper reading. In this case, we have
one random sample of individuals (2018 respondents) that are classified according to two variables (political inclination and how
often they read the newspaper). Previously, we had five separate random samples (for the five years) that were classified on just
one variable.

It turns out that the same chi-square test applies to two-way tables where the data are one random sample from a population
classified on two variables. The difference in the null hypothesis being tested is that, in the population, the two variables are
independent, and the alternative hypothesis is that there is a relationship between the variables.

For the above data, we perform a chi-square test of independence for the following hypotheses:

 : political inclination and how often someone reads the paper are independent

 : political inclination is related to how often someone reads the paper 
 

Pause for Reflection #8:
Format the data in R using the rbind() function. Then call the chisq.test() function on the data to perform the calculations
for the test of independence. Record your conclusion in your lab notebook. If the test indicates strong evidence of a relationship
between the variables, examine the table cells that contribute most to the value of the test statistic in order to describe the
relationship.

_____________________________________________________

Lab 9: Categorical Data is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

H

0

H

A

https://libretexts.org/
https://stats.libretexts.org/@go/page/9051?pdf
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_9%3A_Categorical_Data
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_9%3A_Categorical_Data?no-cache


Index

https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/zz%3A_Back_Matter/10%3A_Index


Glossary
Sample Word 1 | Sample Definition 1

https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/zz%3A_Back_Matter/20%3A_Glossary


1 https://stats.libretexts.org/@go/page/32649

Detailed Licensing

Overview

Title: MATH 346 - Statistics (Kuter)

Webpages: 22

All licenses found:

Undeclared: 100% (22 pages)

By Page

 

MATH 346 - Statistics (Kuter) - Undeclared
Front Matter - Undeclared

TitlePage - Undeclared
InfoPage - Undeclared
Table of Contents - Undeclared
Licensing - Undeclared

Labs - Undeclared
Lab 1: Getting Started with R and EDA - Undeclared
Lab 2: Intro to Hypothesis Testing - Permutation
Tests - Undeclared
Lab 3: Parameter Estimation - Undeclared
Lab 4: Samping Distributions - Undeclared

Lab 5: Confidence Intervals - Undeclared
Lab 6: More Hypothesis Testing - Classical Approach
- Undeclared
Lab 7: ANOVA - Undeclared
Lab 8: More ANOVA - Undeclared
Lab 9: Categorical Data - Undeclared
Lab 10: Simple Linear Regression - Undeclared
Lab 11: More Regression - Undeclared

Back Matter - Undeclared
Index - Undeclared
Glossary - Undeclared
Detailed Licensing - Undeclared

https://libretexts.org/
https://stats.libretexts.org/@go/page/32649?pdf
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/zz%3A_Back_Matter/30%3A_Detailed_Licensing
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/00%3A_Front_Matter
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/00%3A_Front_Matter/01%3A_TitlePage
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/00%3A_Front_Matter/02%3A_InfoPage
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/00%3A_Front_Matter/03%3A_Table_of_Contents
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/00%3A_Front_Matter/04%3A_Licensing
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_1%3A_Getting_Started_with_R_and_EDA
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_2%3A_Intro_to_Hypothesis_Testing_-_Permutation_Tests
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_3%3A_Parameter_Estimation
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_4%3A_Samping_Distributions
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_5%3A_Confidence_Intervals
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_6%3A_More_Hypothesis_Testing_-_Classical_Approach
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_7%3A_ANOVA
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_8%3A_More_ANOVA
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_9%3A_Categorical_Data
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_10%3A_Simple_Linear_Regression
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/Labs/Lab_11%3A_More_Regression
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/zz%3A_Back_Matter
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/zz%3A_Back_Matter/10%3A_Index
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/zz%3A_Back_Matter/20%3A_Glossary
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/MATH_346_-_Statistics_(Kuter)/zz%3A_Back_Matter/30%3A_Detailed_Licensing

