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4.7: Chi-Squared Distributions
In this section, we introduce the chi-squared distributions, which are very useful in statistics.

Chi-Squared Distributions

Definition 

A random variable  has a chi-squared distribution with  degrees of freedom, where  is a positive integer, write 
, if  has pdf given by 

Figure 1: Graph of pdf for  distribution.

The chi-squared distributions are a special case of the gamma distributions with , which can be used to establish the
following properties of the chi-squared distribution.

Properties of Chi-Squared Distributions

If , then  has the following properties.

1. The mgf of  is given by 

2. The mean of  is , i.e., the degrees of freedom.
3. The variance of  is , i.e., twice the degrees of freedom.

Note that there is no closed form equation for the cdf of a chi-squared distribution in general. But most graphing calculators have a
built-in function to compute chi-squared probabilities. On the TI-84 or 89, this function is named " cdf''.
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The main applications of the chi-squared distributions relate to their importance in the field of statistics, which result from the
following relationships between the chi-squared distributions and the normal distributions.

Relationships of Chi-Squared Distributions
1. If  is a standard normal random variable, i.e., , then the distribution of  is chi-squared with  degree

of freedom.
2. If  is a collection of independent, chi-squared random variables each with 1 degree of freedom, i.e., 

, for each , then the sum  is also chi-squared with  degrees of freedom.
3. If  and  are independent random variables, then .
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