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5.5: Sample Mean
Suppose we are interested in understanding the mean of some population of values, but do not have full information about the
entire population.  One approach to solving this problem is to obtain a random sample of a subset of values from the population and
consider the mean of the sample.  The mean of the sample is referred to as the sample mean.  Since the sample is randomly
selected, the sample mean may be thought of as a function applied to a collection of random variables.

Example 

Suppose we want to know the average SAT math score for girls in Indiana.  We could randomly select seniors from high schools in
the South Bend School Corporation as a sample from all IN girls, and use the mean SAT math score for the South Bend girls as an
estimate of the overall mean for IN girls.

 
The mean of SB girls depends on which sample we randomly select, therefore the sample mean is a random variable. 
 

The probability distribution of the sample mean is referred to as the sampling distribution of the sample mean.  The following
result, which is a corollary to Sums of Independent Normal Random Variables, indicates how to find the sampling distribution when
the population of values follows a normal distribution.

Corollary 

If  represent the values of a random sample from a  population, then the sample mean 
   

 
is normally distributed with mean  and standard deviation .  In other words, we can write 
   

Proof
1. Sample observations are independent when randomly selected. Furthermore, each observation has same distribution as

population.  represent the observations in the random sample  are independent and each 

2.  is the sum of independent normally distributed random variables:

3. By Sums of Independent Normal Random Variables: , where
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So .

Example 

Suppose that SAT math scores for girls in Indiana are assumed to be .

Find and compare the sampling distributions for the sample means from a sample of size  and a sample of size . 
 

For  sample mean 

For  sample mean 

Let's find the probability that each sample mean will be within 10 points of actual population mean ( ):

The following figure gives the plot of the pdf's for the sampling distributions of (blue) and (yellow). Note that the spread of the
pdf for  is larger than for .

 
 

The Central Limit Theorem

We saw that when "sampling'' from a normally distributed population, the sampling distribution of the sample mean is also normal. 
But what if the population does not follow a normal distribution?  What if it is skewed or uniform?

 
Example 

Suppose we are interested in the lifetime of a radioactive particle.  We saw in Section 4.5, that the probability distribution of such
lifetimes can be modeled with an exponential distribution.  If , for example, then the pdf is skewed right, because there is a
tail of values with very low probabilities off to the right.
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Central Limit Theorem

Let  be a random sample from any probability distribution with mean  and sd .  Then as the sample size ,
the probability distribution of the sample mean approaches the normal distribution.  We write:

   

 
In other words, if  is sufficiently large, we can approximate the sampling distribution of the sample mean as .

Furthermore,

The  above the arrow in Equation  above stands for distribution and indicates that, as the sample size increases without
bound, the limit of the probability distribution of  is given by the  distribution. This is referred to as convergence in
distribution.

What's "sufficiently large''?

If the distribution of the  is symmetric, unimodal or continuous, then a sample size  as small as 4 or 5 yields an adequate
approximation.
If the distribution of the  is skewed, then a sample size  of at least 25 or 30 yields an adequate approximation.
If the distribution of the  is extremely skewed, then you may need an even larger .

The following website provides a simulation of sampling distributions and demonstrates the Central Limit Theorem (link
available).

Example 

Continuing in the context of Example 5.5.3, suppose we sample  such radioactive particles.  Then the sampling distribution
of the mean of the sample is approximated as follows.

Letting  denote the random sample, we have that each . By the Properties of Exponential
Distributions, we know that the mean of an exponential(3) distribution is given by  and the sd is also .
Thus, the sampling distribution of the sample mean is
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What is the use of the Central Limit Theorem if we don't know , the mean of the population?  We can use the CLT to approximate
estimation error probabilities:

 the probability that  is within  units of . By the Central Limit Theorem and Equation , we know

From this fact, we can isolate  in the inequality in Equation  as follows:

Example 

Now suppose that we do not know the rate at which the radioactive particle of interest decays, i.e., we do not know the mean
lifetime of such particles.  We can develop a method for approximating the probability that the mean of a sample of size  is
within  unit of the mean lifetime.

In other words, we want .

By the Central Limit Theorem and Equation , we know that 

From this we derive a formula for the desired probability:
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