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CHAPTER OVERVIEW

1: What is Probability?
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1.1: Sample Spaces and Events

Introduction

We begin with a definition.

Definition 

Probability theory provides a mathematical model for chance (or random) phenomena.

While this is not a very informative definition, it does indicate the overall goal of this course, which is to develop a formal,
mathematical structure for the fairly intuitive concept of probability. While most everyone is familiar with the notion of "chance" -
- we informally talk about the chance of it raining tomorrow, or the chance of getting what you want for your birthday -- when it
comes to quantifying the chance of something happening, we need to develop a mathematical model to make things precise and
calculable.

Sample Spaces and Events
Before we can formally define what the mathematical model is that we will use to make probability precise, we first establish the
structure on which the model operates: sample spaces and events.

Definition 

The sample space for a probability experiment (i.e., an experiment with random outcomes) is the set of all possible outcomes.

The sample space is denoted .
An outcome is an element of , generally denoted .

Example 

Suppose we toss a coin twice and record the sequence of heads ( ) and tails ( ). A possible outcome of this experiment is then
given by

 
and the sample space is

Example 

Suppose we record the time ( ), in minutes, that a car spends waiting for a green light at a particular intersection. A possible
outcome of this experiment is then given by

indicating that a particular car waited one and a half minutes for the light to turn green. The sample space consists of all non-
negative numbers, since a measurement of time cannot be negative and, in theory, there is no limit on how a long a car could wait
for a green light. We can then write the sample space as follows: 

Definition 

An event is a particular subset of the sample space.

Example 

Continuing in the context of Example 1.1.1, define  to be the event that at least one heads is recorded. We can write event  as
the following subset of the sample space:

1.1.1

1.1.2

S

S s ∈ S

1.1.1

h t

s= ht

S = {hh,ht, th, tt}. (1.1.1)

1.1.2

t

t = 1.5,

S = {t ∈ R | t ≥ 0} = [0,∞). (1.1.2)

1.1.3

1.1.3

A A
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Note that  is a subset of  given in Equation .

Example 

Continuing in the context of Example 1.1.2, define  to be the event that a car waits at most 2 minutes for the light to turn green.
We can write the event  as the following interval, i.e., a subset of the sample space  given in Equation : 

https://youtu.be/Y_GAW22n1Ms

Set Theory: A Brief Review
As we see from the above definitions of sample spaces and events, sets play the primary role in the structure of probability
experiments. So, in this section, we review some of the basic definitions and notation from set theory. We do this in the context of
sample spaces, outcomes, and events.

Definition 
1. The union of two events  and , denoted , is the set of all outcomes in  or  (or both).
2. The intersection of two events  and , denoted , is the set of all outcomes in both  and .

What is probability?What is probability?

A= {hh,ht, th}.

A S 1.1.1

1.1.4

B

B S 1.1.2

B= [0, 2] = {t ∈ R | 0 ≤ t ≤ 2}.

1.1.4

A B A∪B A B

A B A∩B A B
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3. The complement of an event , denoted , is the set of all outcomes in the sample space that are not in . This may also
be written as follows:

4. The empty set, denoted , is the set containing no outcomes.
5. Two events  and  are disjoint (or mutually exclusive) if their intersection is the empty set, i.e., .

Example 

Continuing in the context of both Examples 1.1.1 & 1.1.3, define  to be the event that exactly one heads is recorded:

Now we can apply the set operations just defined to the events  and :

Note the relationship between events  and : every outcome in  is an outcome in . In this case, we say that  is a subset of 
, and write

Note also that events  and  are not disjoint, since their intersection is not the empty set. However, if we let  be the event that
no heads are recorded, then

and

Thus, events  and  are disjoint, and events  and  are disjoint.

Set Theory ReviewSet Theory Review

A A

c

A

= {s ∈ S | s ∉ A}.A

c

∅

A B A∩B=∅

1.1.5

B

B= {ht, th}.

A B

A∪B= {hh,ht, th} =A

A∩B= {ht, th} =B

= {tt}A

c

= {hh, tt}B

c

A B B A B

A

B⊆A.

A B C

C = {tt},

A∩C =∅

B∩C =∅.

A C B C
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1.2: Probability Measures
Now we are ready to formally define probability.

Definition 

A probability measure on the sample space  is a function, denoted , from subsets of  to the real numbers , such that the
following hold:

1. 
2. If  is any event in , then .
3. If events  and  are disjoint, then . 

More generally, if  is a sequence of pairwise disjoint events, i.e., , for every , then

So essentially, we are defining probability to be an operation on the events of a sample space, which assigns numbers to events in
such a way that the three properties stated in Definition 1.2.1 are satisfied.

 
Definition 1.2.1 is often referred to as the axiomatic definition of probability, where the three properties give the three axioms of
probability. These three axioms are all we need to assume about the operation of probability in order for many other desirable
properties of probability to hold, which we now state.

Properties of Probability Measures

Let  be a sample space with probability measure . Also, let  and  be any events in . Then the following hold.

1. 
2. 
3. If , then .
4. 
5. Addition Law: 

Exercise 

Can you prove the five properties of probability measures stated above using only the three axioms of probability
measures stated in Definition 1.2.1?

Answer

(1) For the first property, note that by definition of the complement of an event  we have

In other words, given any event , we can represent the sample space  as a disjoint union of  with its complement. 
Thus, by the first and third axioms, we derive the first property:

(2) For the second property, note that we can write , and that this is a disjoint union, since anything
intersected with the empty set will necessarily be empty.  So, using the first and third axioms, we derive the second
property:

1.2.1

S P S R

P (S) = 1

A S P (A) ≥ 0

A

1

A

2

P ( ∪ ) = P ( )+P ( )A

1

A

2

A

1

A

2

, ,… , ,…A

1

A

2

A

n

∩ =∅A

i

A

j

i ≠ j

P ( ∪ ∪⋯∪ ∪⋯)= P ( )+P ( )+⋯+P ( )+⋯ .A

1

A

2

A

n

A

1

A

2

A

n

S P A B S

P ( ) = 1−P (A)A

c

P (∅) = 0

A⊆B P (A) ≤ P (B)

P (A) ≤ 1

P (A∪B) = P (A)+P (B)−P (A∩B)

1.2.1

A

A∪ = S and A∩ =∅.A

c

A

c

A S A

1 = P (S) = P (A∪ ) = P (A)+P ( )A

c

A

c

⇒ P ( ) = 1−P (A)A

c

S = S∪∅

1 = P (S) = P (S∪∅) = P (S)+P (∅) = 1+P (∅)

⇒ P (∅) = 0
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(3) For the third property, note that we can write , and that this is a disjoint union, since  and 
are disjoint. By the third axiom, we have

By the second axiom, we know that .  Thus, if we remove it from the right-hand side of Equation 
, we are left with something smaller, which proves the third property:

(4) For the fourth property, we will use the third property that we just proved.  By definition, any event  is a subset
of the sample space , i.e., .  Thus, by the third property and the first axiom, we derive the fourth property:

(5) For the fifth property, note that we can write the union of events  and  as the union of the following
two disjoint events:

in other words, the union of  and  is given by the union of all the outcomes in  with all the outcomes in  that
are not in . Furthermore, note that event  can be written as the union the following two disjoint events:

in other words,  is written as the disjoint union of all the outcomes in  that are also in  with the outcomes in 
that are not in .  We can use this expression for  to find an expression for  to substitute in the
expression for  in order to derive the fifth property:

 

 
 

Note that the axiomatic definition (Definition 1.2.1) does not tell us how to compute probabilities. It simply defines a formal,
mathematical behavior of probability. In other words, the axiomatic definition describes how probability should
theoretically behave when applied to events. To compute probabilities, we use the properties stated above, as the next example
demonstrates.

Example 

Continuing in the context of Example 1.1.5, let's define a probability measure on . Assuming that the coin we toss is fair, then the
outcomes in  are equally likely, meaning that each outcome has the same probability of occurring. Since there are four outcomes,
and we know that probability of the sample space must be 1 (first axiom of probability in Definition 1.2.1), it follows that the
probability of each outcome is .

So, we can write

The reader can verify that this defines a probability measure satisfying the three axioms.

With this probability measure on the outcomes we can now compute the probability of any event in  by simply counting the
number of outcomes in the event. Thus, we find the probability of events  and  previously defined:

B=A∪ (B∩ )A

c

A A

c

P (B) = P (A∪ (B∩ )) = P (A)+P (B∩ ).A

c

A

c

(1.2.1)

P (B∩ ) ≥ 0A

c

1.2.1

P (B) = P (A)+P (B∩ ) ≥ P (A) ⇒ P (B) ≥ P (A)A

c

A

S A⊆ S

P (A) ≤ P (S) = 1 ⇒ P (A) ≤ 1

A B

A∪B=A∪ ( ∩B),A

c

A B A B

B B

B= (A∩B)∪ ( ∩B),A

c

B B A B

A B P ( ∩B)A

c

A∪B

P (B) = P (A∩B)+P ( ∩B) ⇒ P ( ∩B) = P (B)−P (A∩B)A

c

A

c

P (A∪B) = P (A)+P ( ∩B) ⇒ P (A∪B) = P (A)+P (B)−P (A∩B)A

c

1.2.1

S

S

= 0.25

1

4

P (hh) = P (ht) = P (th) = P (tt) = 0.25.

S

A B

P (A) = P ({hh,ht, th}) = = 0.75

3

4

P (B) = P ({ht, th}) = = 0.50.

2

4
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We consider the case of equally likely outcomes further in Section 2.1.

There is another, more empirical, approach to defining probability, given by using relative frequencies and a version of the Law of
Large Numbers.

Relative Frequency Approximation

To estimate the probability of an event , repeat the random experiment several times (each repetition is called a trial) and
count the number of times  occurred, i.e., the number of times the resulting outcome is in . Then, we approximate the
probability of  using relative frequency: 

Law of Large Numbers

As the number of trials increases, the relative frequency approximation approaches the theoretical value of .

This approach to defining probability is sometimes referred to as the frequentist definition of probability. Under this definition,
probability represents a long-run average. The two approaches to defining probability are equivalent. It can be shown that using
relative frequencies to define a probability measure satisfies the axiomatic definition.

https://youtu.be/Y_GAW22n1Ms
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2.1: Equally Likely Outcomes and Counting Techniques (Combinatorics)
In this chapter, we consider the problem of assigning specific probabilities to outcomes in a sample space. As we saw in Section
1.2, the axiomatic definition of probability (Definition 1.2.1) does not tell us how to compute probabilities. So in this section we
consider the commonly encountered scenario referred to as equally likely outcomes and develop methods for computing
probabilities in this special case.

Finite Sample Spaces
Before focusing on equally likely outcomes, we consider the more general case of finite sample spaces. In other words, suppose
that a sample space  has a finite number of outcomes, which we can denote as . In this case, we can represent the outcomes in 

 as follows:

Suppose further that we denote the probability assigned to each outcome in  as , for . Then the
probability of any event  in  is given by adding the probabilities corresponding to the outcomes contained in  and we can
write

This follows from the third axiom of probability (Definition 1.2.1), since we can write any event as a disjoint union of the
outcomes contained in the event. For example, if event  contains three outcomes, then we can write 

. So the probability of  is given by simply summing up the probabilities assigned to 
. This fact will be useful in the special case of equally likely outcomes, which we consider next.

Equally Likely Outcomes
First, let's state a formal definition of what it means for the outcomes in a sample space to be equally likely.

Definition 

The outcomes in a sample space  are equally likely if each outcome has the same probability of occurring.

In general, if outcomes in a sample space  are equally likely, then computing the probability of a single outcome or an event is
very straightforward, as the following exercise demonstrates.  You are encouraged to first try to answer the questions for yourself,
and then click "Answer" to see the solution.

Exercise 

Suppose that there are  outcomes in the sample space  and that the outcomes are equally likely.

a. What is the probability of a single outcome in ?
b. What is the probability of an event  in ?

Answer

First, note that we can represent the outcomes in  as follows:

For each outcome in , note that we can denote its probability as 

where  is some constant.  This follows from the fact that the outcomes of  are equally likely and so have the same
probability of occurring.  With this set-up and using the axioms of probability (Definition 1.2.1), we have the following:
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Thus, the probability of a single outcome is given by  divided by the number of outcomes in .

Now, for an event  in , suppose it has  outcomes, where  is an integer such that .  We can represent the
outcomes in  as follows:

Using Equation , we compute the probability of  as follows:

Thus, the probability of an event in  is equal to the number of outcomes in the event divided by the total number of
outcomes in .

We have already seen an example of a sample space with equally likely outcomes in Example 1.2.1. You are encouraged to revisit
that example and connect it to the results of Exercise 2.1.1.

In general, Exercise 2.1.1 shows that if a sample space  has equally likely outcomes, then the probability of an event  in the
sample space is given by

From this result, we see that in the context of equally likely outcomes calculating probabilities of events reduces to simply counting
the number of outcomes in the event and the sample space.  So, we take a break from our discussion of probability, and briefly
introduce some counting techniques.
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https://youtu.be/YdWaiH3oTq8

Counting Techniques

First, let's consider the general context of performing multi-step experiments.  The following tells us how to count the number of
outcomes in such scenarios.

Multiplication Principle

If one probability experiment has  outcomes and another has  outcomes, then there are  total outcomes for the two
experiments.

More generally, if there are  many probability experiments with the first experiment having  outcomes, the second with ,
etc., then there are  total outcomes for the  experiments.

Example 

To demonstrate the Multiplication Principle, consider again the example of tossing a coin twice (see Example 1.2.1). Each toss is a
probability experiment and on each toss, there are two possible outcomes:  or . Thus, for two tosses, there are  total
outcomes.

If we toss the coin a third time, there are  total outcomes.

Calculating ProbabilityCalculating Probability
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Next we define two commonly encountered situations, permutations and combinations, and consider how to count the number of
ways in which they can occur.

Definition 

A permutation is an ordered arrangement of objects. For example, "MATH'' is a permutation of four letters from the alphabet.

A combination is an unordered collection of  objects from  total objects. For example, a group of three students chosen from
a class of 10 students.

In order to count the number of possible permutations in a given setting, the Multiplication Principle is applied. For example, if we
want to know the number of possible permutations of the four letters in "MATH'', we compute 

 
since there are four letters to select for the first position, three letters for the second, two for the third, leaving only one letter for the
last. In other words, we treat each letter selection as an experiment in a multi-step process.

Counting Permutations

The number of permutations of  distinct objects is given by the following:

Counting combinations is a little more complicated, since we are not interested in the order in which objects are selected and so the
Multiplication Principle does not directly apply. Consider the example that a group of three students are chosen from a class of 10.
The group is the same regardless of the order in which the three students are selected. This implies that if we want to count the
number of possible combinations, we need to be careful not to include permutations, i.e., rearrangements, of a certain selection.
This leads to the following result that the number of possible combinations of size  selected from a total of  objects is given by
binomial coefficients.

Counting Combinations

The number of combinations of  objects selected without replacement from  distinct objects is given by 

 
Note that , read as "  choose ", is also referred to as a binomial coefficient, since it appears in the Binomial Theorem.

Using the above, we can compute the number of possible ways to select three students from a class of 10:

Example 

Consider the example of tossing a coin three times. Note that an outcome is a sequence of heads and tails. Suppose that we are
interested in the number of outcomes with exactly two heads, not in the actual sequence. To find the number of outcomes with
exactly two heads, we need to determine the number of ways to select positions in the sequence for the heads, then the remaining
position will be a tails. If we toss the coin three times, there are three positions to select from, and we want to select two. Since the
order that we make the selection of placements does not matter, we are counting the number of combinations of 2 positions from a
total of 3 positions, i.e., 
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Of course, this example is small enough that we could have arrived at the answer of 3 using brute force by just listing the
possibilities. However, if we toss the coin a higher number of times, say 50, then the brute force approach becomes infeasible and
we need to make use of binomial coefficients.

Strategies for Analyzing a Counting Problem

Before we return to our discussion of probability, the following outlines an approach for tackling problems in which we need to
count the number of possible outcomes.

Are there cases?  To describe all possible outcomes, must one consider specific ways the desired event can occur?

    If so, make a note of each case and add the number of possibilities for each case.

Example: How many ways can a hand of 5 cards have at least 3 hearts?

Solution: To examine the ways this can happen, we observe that there are 3 specific ways a hand could have at least 3 hearts:

        (i) a hand could have exactly 3 hearts and 2 other cards (that are not hearts) OR

        (ii) a hand could have exactly 4 hearts and 1 other card (that is not hearts) OR

        (iii) a hand could have exactly 5 hearts.

So there are 3 cases.  The total number of ways a hand of 5 cards has at least 3 hearts  the number of ways to have exactly 3
hearts and 2 other cards  the number of ways to have exactly 4 hearts and 1 other card  the number of ways to have 5 hearts.

Non-Example: How many groups of 10 students have 4 members from Indiana and 6 from Michigan?  This event is clearly
described and already very specific: 4 from one state and 6 from the other.  There are no other options, possibilities, or cases.

Are repetitions allowed?

    If the answer is yes, then use the Multiplication Rule.

Are there steps?

    If so, put a slot for each step and a dot (multiplication symbol) between the slots (Multiplication Principle).

Example: How many ways can a hand of 5 cards have exactly 3 hearts?

Solution: There are two steps:

        1. get 3 hearts AND

        2. get 2 other cards (that are not hearts).

Then the number of hands  # of ways to get 3 hearts  # of ways to get 2 other cards (not hearts)

Non-Example: How many different groups of 4 books can be selected from a shelf that has 12 books?  There is only one step:
grab the 4 books.

Does order matter?

    If so, use permutations or the Multiplication Rule.

Example: There are 4 distinct cleaning jobs: wash the windows, vacuum, dust, wash the kitchen floor.  In how many ways
could the jobs be assigned to 4 people from a set of 6?

Solution: Order matters.  A person is assigned a particular job.

Non-Example: See the next point.

If order doesn't matter and the end result is a clump or group, then you are counting combinations.

Example: How many ways can one choose 5 people from a set of 9 to help with some chores?

Solution: Order doesn't matter.  We are merely choosing the lucky folks who will help us get some work done.  We have NOT
assigned particular tasks.

=

+ +

= ⋅
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2.2: Conditional Probability and Bayes' Rule
In many situations, additional information about the result of a probability experiment is known (or at least assumed to be known)
and given that information the probability of some other event is desired. For this scenario, we compute what is referred to
as conditional probability.

Definition 

For events  and , with , the conditional probability of  given , denoted , is given by 

In computing a conditional probability we assume that we know the outcome of the experiment is in event  and then, given that
additional information, we calculate the probability that the outcome is also in event . This is useful in practice given that partial
information about the outcome of an experiment is often known, as the next example demonstrates.

Example 

Continuing in the context of Example 1.2.1, where we considered tossing a fair coin twice, define  to be the event that at least
one tails is recorded: 

 
Let's calculate the conditional probability of  given , i.e., the probability that at least one heads is recorded (event ) assuming
that at least one tails is recorded (event ). Recalling that outcomes in this sample space are equally likely, we apply the definition
of conditional probability (Definition 2.2.1) and find 

 
Note that in Example 1.2.1 we found the un-conditional probability of  to be . So, knowing that at least one tails
was recorded, i.e., assuming event  occurred, the conditional probability of  given  decreased. This is because, if event 
occurs, then the outcome  in  cannot occur, thereby decreasing the chances that event  occurs.

Exercise 

Suppose we randomly draw a card from a standard deck of 52 playing cards. 

a. If we know that the card is a King, what is the probability that the card is a club?
b. If we instead know that the card is black, what is the probability that the card is a club?

Answer

In order to compute the necessary probabilities, first note that the sample space is given by the set of cards in a
standard deck of playing cards. So the number of outcomes in the sample space is 52. Next, note that the outcomes are
equally likely, since we are randomly drawing the card from the deck.

For part (a), we are looking for the conditional probability that the randomly selected card is club, given that it is a
King.  If we let  denote the event that the card is a club and  the event that it is a King, then we are looking to
compute

To compute these probabilities, we count the number of outcomes in the following events:
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The probabilities in Equation  are then given by dividing the counts of outcomes in each event by the total
number of outcomes in the sample space (by the boxed Equation 2.1.8 in Section 2.1):

For part (b), we are looking for the conditional probability that the randomly selected card is club, given that it is
instead black.  If we let  denote the event that the card is black, then we are looking to compute

To compute these probabilities, we count the number of outcomes in the following events:

 

 

 
 

The probabilities in Equation  are then given by dividing the counts of outcomes in each event by the total
number of outcomes in the sample space:

Remark: Exercise 2.2.1 demonstrates the following fact. For sample spaces with equally likely outcomes, conditional probabilities
are calculated using

In other words, if we know that the outcome of the probability experiment is in the event , then we restrict our focus to the
outcomes in that event that are also in .  We can think of this as event  taking the place of the sample space, since we know the
outcome must lie in that event.

Properties of Conditional Probability
As with unconditional probability, we also have some useful properties for conditional probabilities.  The first property below,
referred to as the Multiplication Law, is simply a rearrangement of the probabilities used to define conditional probability.  The
Multiplication Law provides a way for computing the probability of an intersection of events when the conditional probabilities are
known.

# of outcomes in C = # of clubs in standard deck  = 13

# of outcomes in K = # of Kings in standard deck  = 4

# of outcomes in C ∩K = # of King of clubs in standard deck  = 1
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# of outcomes in B= # of black cards in standard deck  = 26
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Multiplication Law

The next two properties are useful when a partition of the sample space exists, where a partition is a way of dividing up the
outcomes in the sample space into non-overlapping sets.  A partition is formally defined in the Law of Total Probability below. In
many cases, when a partition exists, it is easy to compute the conditional probability of an event in the sample space given an event
in the partition. The Law of Total Probability then provides a way of using those conditional probabilities of an event, given the
partition to compute the unconditional probability of the event. Following the Law of Total Probability, we state Bayes' Rule, which
is really just an application of the Multiplication Law. Bayes' Rule is used to calculate what are informally referred to as "reverse
conditional probabilities", which are the conditional probabilities of an event in a partition of the sample space, given any other
event.

Law of Total Probability

Suppose events  satisfy the following:

1. 
2. , for every 
3. , for 

We say that the events  partition the sample space . Then for any event , we can write 

Bayes' Rule

Let  partition the sample space  and let  be an event with . Then, for , we have 

A common application of the Law of Total Probability and Bayes' Rule is in the context of medical diagnostic testing.

Example 

Consider a test that can diagnose kidney cancer. The test correctly detects when a patient has cancer 90% of the time. Also, if a
person does not have cancer, the test correctly indicates so 99.9% of the time. Finally, suppose it is known that 1 in every 10,000
individuals has kidney cancer. We find the probability that a patient has kidney cancer, given that the test indicates she does.

First, note that we are finding a conditional probability. If we let  denote the event that the patient tests positive for cancer, and
we let  denote the event that the patient actually has cancer, then we want 

 
If we let , then we have a partition of all patients (which is the sample space) given by  and .

In the first paragraph of this example, we are given the following probabilities:
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Since we have a partition of the sample space, we apply the Law of Total Probability to find : 

 
Next, we apply Bayes' Rule to find the desired conditional probability: 

 
This implies that only about 8% of patients that test positive under this particular test actually have kidney cancer, which is not very
good.

This page titled 2.2: Conditional Probability and Bayes' Rule is shared under a not declared license and was authored, remixed, and/or curated by
Kristin Kuter.

Conditional Probability & Bayes' RuleConditional Probability & Bayes' Rule
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2.3: Independent Events
In this section we consider a property of events that relates to conditional probability, namely independence. First, we define what
it means for a pair of events to be independent, and then we consider collections of more than two events. 

Independence for Pairs of Events
The following definition provides an intuitive definition of the concept of independence for two events, and then we look at an
example that provides a computational way for determining when events are independent.

Definition 

Events  and  are independent if knowing that one occurs does not affect the probability that the other occurs, i.e., 

Using the definition of conditional probability (Definition 2.2.1), we can derive an alternate way to the Equations 
 for determining when two events are independent, as the following example demonstrates.

Example 

Suppose that events  and  are independent. We rewrite Equations  using the definition of conditional probability:

 

 

 

 
 

In each of the expressions on the right-hand side above we isolate :

 

 

 

 
 

Both expressions result in . Thus, we have shown that if events  and  are independent, then the
probability of their intersection is equal to the product of their individual probabilities. We state this fact in the next definition.

2.3.1

A B

P (A | B) = P (A) and P (B | A) = P (B). (2.3.1)

2.3.1

2.3.1

A B 2.3.1
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P (A)

P (A∩B)

= P (A) ⇒ P (A∩B) = P (A)P (B)

P (A∩B)

P (B)
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= P (B) ⇒ P (A∩B) = P (A)P (B)

P (A∩B)

P (A)

P (A∩B) = P (A)P (B) A B
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Definition 

Events  and  are independent if

 

Generally speaking, Definition 2.3.2 tends to be an easier condition than Definition 2.3.1 to verify when checking whether two
events are independent.

Example 

Consider the context of Exercise 2.2.1, where we randomly draw a card from a standard deck of 52 and  denotes the event of
drawing a club,  the event of drawing a King, and  the event of drawing a black card.

Are  and  independent events? Recall that , and note that  and . Thus, we
have 

 
indicating that  and  are independent.

Are  and  independent events? Recall that , and note that . Thus, we have 

 
indicating that  and  are not independent.

Let's think about the results of this example intuitively.  To say that  and  are independent means that knowing that one of the
events occurs does not affect the probability of the other event occurring.  In other words, knowing that the card drawn is a King
does not influence the probability of the card being a club.  The proportion of clubs in the entire deck of 52 is the same as the
proportion of clubs in just the collection of Kings: .  On the other hand,  and  are not independent (AKA dependent)
because knowing that the card drawn is club indicates that the card must be black, i.e., the probability that the card is black is 1. 
Alternately, knowing that the card drawn is black increases the probability that the card is a club, since the proportion of clubs in
the entire deck is , but the proportion of clubs in the collection of black cards is .

Independence for 3 or More Events
For collections of 3 or more events, there are two different types of independence.

Definition 

Let , where , be a collection of events.

1. The events are pairwise independent if every pair of events in the collection is independent.
2. The events are mutually independent if every sub-collection of events, say , satisfy the following:

Mutually independent is a stronger type of independence, since it implies pairwise independent. But pairwise independence does
NOT imply mutual independence, as the following example will demonstrate.

 

Example 

Consider again the context of Example 1.1.1, i.e., tossing a fair coin twice, and define the following events:
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We show that this collection of events -  - is pairwise independent, but NOT mutually independent. First, we note that the
individual probabilities of each event are :

 

 

 

 
 

Next, we look at the probabilities of all pairwise intersections to establish pairwise independence:

 

 

 

 
 

However, note that the three events do not have any outcomes in common, i.e., . Thus, we have 

 
and so the events are not mutually independent.

This page titled 2.3: Independent Events is shared under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.

A = first toss is heads

B= second toss is heads

C = exactly one head is recorded

A,B,C

0.5

P (A) = P ({hh,ht}) = 0.5

P (B) = P ({hh, th}) = 0.5

P (C) = P ({ht, th}) = 0.5

P (A∩B) = P (hh) = 0.25 = P (A)P (B)

P (A∩C) = P (ht) = 0.25 = P (A)P (C)

P (B∩C) = P (th) = 0.25 = P (B)P (C)

A∩B∩C =∅

P (A∩B∩C) = 0 ≠ P (A)P (B)P (C),
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3.1: Introduction to Random Variables
Now that we have formally defined probability and the underlying structure, we add another layer: random variables. Random
variables allow characterization of outcomes, so that we do not need to focus on each outcome specifically. We begin with the
formal definition.

Definition 

A random variable is a function from a sample space  to the real numbers . We denote random variables with capital letters,
e.g.,

Informally, a random variable assigns numbers to outcomes in the sample space. So, instead of focusing on the outcomes
themselves, we highlight a specific characteristic of the outcomes.

Example 

Consider again the context of Example 1.1.1, where we recorded the sequence of heads and tails in two tosses of a fair coin. The
sample space for this random experiment is given by 

 
Suppose we are only interested in tosses that result in heads. We can define a random variable  that tracks the number of heads
obtained in an outcome. So, if outcome  is obtained, then  will equal 2. Formally, we denote this as follows:

Since there are only four outcomes in , we can list the value of  for each outcome individually:

We can also write the above as follows:

The advantage to defining the random variable  in this context is that the two outcomes  and  are both assigned a value of ,
meaning we are not focused on the actual sequence of heads and tails that resulted in obtaining one heads.

In Example 3.1.1, note that the random variable we defined only equals one of three possible values: . This is an example of
what we call a discrete random variable. We will also encounter another type of random variable: continuous. The next definitions
make precise what we mean by these two types.

Definition 

A discrete random variable is a random variable that has only a finite or countably infinite (think integers or whole numbers)
number of possible values.

Definition 

A continuous random variable is a random variable with infinitely many possible values (think an interval of real numbers,
e.g., ).

3.1.1
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In this chapter, we take a closer look at discrete random variables, then in Chapter 4 we consider continuous random variables.

This page titled 3.1: Introduction to Random Variables is shared under a not declared license and was authored, remixed, and/or curated by Kristin
Kuter.
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3.2: Probability Mass Functions (PMFs) and Cumulative Distribution Functions
(CDFs) for Discrete Random Variables
Since random variables simply assign values to outcomes in a sample space and we have defined probability measures on sample
spaces, we can also talk about probabilities for random variables. Specifically, we can compute the probability that a discrete
random variable equals a specific value (probability mass function) and the probability that a random variable is less than or equal
to a specific value (cumulative distribution function).

Probability Mass Functions (PMFs)
In the following example, we compute the probability that a discrete random variable equals a specific value.

Example 

Continuing in the context of Example 3.1.1, we compute the probability that the random variable  equals . There are two
outcomes that lead to  taking the value 1, namely  and . So, the probability that  is given by the probability of the
event , which is :

In Example 3.2.1, the probability that the random variable  equals 1, , is referred to as the probability mass function of 
 evaluated at 1. In other words, the specific value 1 of the random variable  is associated with the probability that  equals that

value, which we found to be 0.5. The process of assigning probabilities to specific values of a discrete random variable is what the
probability mass function is and the following definition formalizes this.

Definition 

The probability mass function (pmf) (or frequency function) of a discrete random variable  assigns probabilities to the
possible values of the random variable. More specifically, if  denote the possible values of a random variable , then
the probability mass function is denoted as  and we write 

Note that, in Equation ,  is shorthand for , which represents the probability of the event that the random
variable  equals .

As we can see in Definition 3.2.1, the probability mass function of a random variable  depends on the probability measure of the
underlying sample space . Thus, pmf's inherit some properties from the axioms of probability (Definition 1.2.1). In fact, in order
for a function to be a valid pmf it must satisfy the following properties.

Properties of Probability Mass Functions

Let  be a discrete random variable with possible values denoted . The probability mass function of ,
denoted , must satisfy the following:

1. 

2. , for all 

Furthermore, if  is a subset of the possible values of , then the probability that  takes a value in  is given by

Note that the first property of pmf's stated above follows from the first axiom of probability, namely that the probability of the
sample space equals : . The second property of pmf's follows from the second axiom of probability, which states that all
probabilities are non-negative.
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We now apply the formal definition of a pmf and verify the properties in a specific context.

Example 

Returning to Example 3.2.1, now using the notation of Definition 3.2.1, we found that the pmf for  at  is given by 

 
Similarly, we find the pmf for  at the other possible values of the random variable: 

 
Note that all the values of  are positive (second property of pmf's) and  (first property of pmf's). Also, we
can demonstrate the third property of pmf's (Equation ) by computing the probability that there is at least one heads, i.e., 

, which we could represent by setting  so that we want the probability that  takes a value in :

We can represent probability mass functions numerically with a table, graphically with a histogram, or analytically with a
formula. The following example demonstrates the numerical and graphical representations. In the next three sections, we will see
examples of pmf's defined analytically with a formula.

Example 

We represent the pmf we found in Example 3.2.2 in two ways below, numerically with a table on the left and graphically with a
histogram on the right.

In the histogram in Figure 1, note that we represent probabilities as areas of rectangles. More specifically, each rectangle in the
histogram has width  and height equal to the probability of the value of the random variable  that the rectangle is centered over.
For example, the leftmost rectangle in the histogram is centered at  and has height equal to , which is also the area of
the rectangle since the width is equal to . In this way, histograms provides a visualization of the distribution of the probabilities
assigned to the possible values of the random variable . This helps to explain where the common terminology of "probability
distribution" comes from when talking about random variables.

Cumulative Distribution Functions (CDFs)
There is one more important function related to random variables that we define next. This function is again related to the
probabilities of the random variable equalling specific values. It provides a shortcut for calculating many probabilities at once.

Definition 

The cumulative distribution function (cdf) of a random variable  is a function on the real numbers that is denoted as  and is
given by 

Before looking at an example of a cdf, we note a few things about the definition.
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F (x) = P (X ≤ x), for any x ∈ R. (3.2.3)
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First of all, note that we did not specify the random variable  to be discrete. CDFs are also defined for continuous random
variables (see Chapter 4) in exactly the same way.

Second, the cdf of a random variable is defined for all real numbers, unlike the pmf of a discrete random variable, which we only
define for the possible values of the random variable. Implicit in the definition of a pmf is the assumption that it equals 0 for all real
numbers that are not possible values of the discrete random variable, which should make sense since the random variable will never
equal that value. However, cdf's, for both discrete and continuous random variables, are defined for all real numbers. In looking
more closely at Equation , we see that a cdf  considers an upper bound, , on the random variable , and assigns that
value  to the probability that the random variable  is less than or equal to that upper bound . This type of probability is referred
to as a cumulative probability, since it could be thought of as the probability accumulated by the random variable up to the
specified upper bound. With this interpretation, we can represent Equation  as follows:

In the case that  is a discrete random variable, with possible values denoted , the cdf of  can be calculated
using the third property of pmf's (Equation ), since, for a fixed , if we let the set  contain the possible values of  that
are less than or equal to , i.e., , then the cdf of  evaluated at  is given by

 

Example 

Continuing with Examples 3.2.2 and 3.2.3, we find the cdf for . First, we find  for the possible values of the random
variable, : 

 
Now, if , then the cdf , since the random variable  will never be negative.

If , then the cdf , since the only value of the random variable  that is less than or equal to such a value 
is . For example, consider . The probability that  is less than or equal to  is the same as the probability that ,
since  is the only possible value of  less than :

Similarly, we have the following: 

Exercise 

For this random variable , compute the following values of the cdf:

a. 
b. 
c. 
d. 
e. 
f. 

Answer
a. 

X

3.2.3 F x ∈ R X

x X x

3.2.3

F : ⟶R

 

upper bounds on RV X

R

 

cumulative probabilities

(3.2.4)

X , , … , , …x

1

x

2

x

i

X

3.2.2 x ∈ R A X

x A = {  |  ≤ x}x

i

x

i

X x

F (x) = P (X ≤ x) = P (X ∈ A) = p( ).∑

≤xx

i

x

i

3.2.4

X F (x)

x = 0, 1, 2

F (0)

F (1)

F (2)

= P (X ≤ 0) = P (X = 0) = 0.25

= P (X ≤ 1) = P (X = 0 or 1) = p(0) +p(1) = 0.75

= P (X ≤ 2) = P (X = 0 or 1 or 2) = p(0) +p(1) +p(2) = 1

x < 0 F (x) = 0 X

0 < x < 1 F (x) = 0.25 X x

0 x = 0.5 X 0.5 X = 0

0 X 0.5

F (0.5) = P (X ≤ 0.5) = P (X = 0) = 0.25.

F (x)

F (x)

= F (1) = 0.75, for 1 < x < 2

= F (2) = 1, for x > 2

3.2.1

X

F (−3)

F (0.1)

F (0.9)

F (1.4)

F (2.3)

F (18)

F (−3) = P (X ≤ −3) = 0
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b. 
c. 
d. 

e. 

f. 

To summarize Example 3.2.4, we write the cdf  as a piecewise function and Figure 2 gives its graph: 

Figure 2: Graph of cdf in Example 3.2.4

Note that the cdf we found in Example 3.2.4 is a "step function", since its graph resembles a series of steps. This is the case for all
discrete random variables. Additionally, the value of the cdf for a discrete random variable will always "jump" at the possible
values of the random variable, and the size of the "jump" is given by the value of the pmf at that possible value of the random
variable. For example, the graph in Figure 2 "jumps" from  to  at , so the size of the "jump" is 
and note that . The pmf for any discrete random variable can be obtained from the cdf in this manner.

We end this section with a statement of the properties of cdf's.  The reader is encouraged to verify these properties hold for the cdf
derived in Example 3.2.4 and to provide an intuitive explanation (or formal explanation using the axioms of probability and the
properties of pmf's) for why these properties hold for cdf's in general.

Properties of Cumulative Distribution Functions

Let  be a random variable with cdf . Then  satisfies the following:

1.  is non-decreasing, i.e.,  may be constant, but otherwise it is increasing.
2.  and 

This page titled 3.2: Probability Mass Functions (PMFs) and Cumulative Distribution Functions (CDFs) for Discrete Random Variables is shared
under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.

F (0.1) = P (X ≤ 0.1) = P (X = 0) = 0.25

F (0.9) = P (X ≤ 0.9) = P (X = 0) = 0.25

F (1.4) = P (X ≤ 1.4) = p( ) = p(0)+p(1) = 0.25+0.5 = 0.75∑

≤1.4x

i

x

i

F (2.3) = P (X ≤ 2.3) = p( ) = p(0)+p(1)+p(2) = 0.25+0.5+0.25 = 1∑

≤2.3x

i

x

i

F (18) = P (X ≤ 18) = P (X ≤ 2) = 1

F

F (x) =

⎧

⎩

⎨

⎪

⎪

⎪

⎪

⎪

⎪

0,

0.25

0.75

1

for x < 0

for 0 ≤ x < 1

for 1 ≤ x < 2

for x ≥ 2.

0.25 0.75 x = 1 0.75−0.25 = 0.5

p(1) = P (X = 1) = 0.5

X F F

F F

F (x) = 0lim

x→−∞

F (x) = 1lim

x→∞
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3.3: Bernoulli and Binomial Distributions
In this section and the next two, we introduce families of common discrete probability distributions, i.e., probability distributions
for discrete random variables. We refer to these as "families" of distributions because in each case we will define a probability mass
function by specifying an explicit formula, and that formula will incorporate a constant (or set of constants) that are referred to
as parameters. By specifying values for the parameter(s) in the pmf, we define a specific probability distribution for a specific
random variable. For each family of distributions introduced, we will list a set of defining characteristics that will help determine
when to use a certain distribution in a given context.

Bernoulli Distribution
Consider the following example.

Example 

Let  be an event in a sample space . Suppose we are only interested in whether or not the outcome of the underlying probability
experiment is in the specified event . To track this we can define an indicator random variable, denoted , given by 

In other words, the random variable  will equal 1 if the resulting outcome is in event , and  equals 0 if the outcome is not in 
. Thus,  is a discrete random variable. We can state the probability mass function of  in terms of the probability that the

resulting outcome is in event , i.e., the probability that event  occurs, : 

In Example 3.3.1, the random variable  is a Bernoulli random variable because its pmf has the form of the Bernoulli probability
distribution, which we define next.

Definition 

A random variable  has a Bernoulli distribution with parameter , where , if it has only two possible values,
typically denoted  and . The probability mass function (pmf) of  is given by 

The cumulative distribution function (cdf) of  is given by 

In Definition 3.3.1, note that the defining characteristic of the Bernoulli distribution is that it models random variables that have
only two possible values. As noted in the definition, the two possible values of a Bernoulli random variable are usually 0 and 1. In
the typical application of the Bernoulli distribution, a value of 1 indicates a "success" and a value of 0 indicates a "failure", where
"success" refers that the event or outcome of interest. The parameter  in the Bernoulli distribution is given by the probability of a
"success". In Example 3.3.1, we were interested in tracking whether or not event  occurred, and so that is what a "success" would
be, which occurs with probability given by the probability of . Thus, the value of the parameter  for the Bernoulli distribution in
Example 3.3.1 is given by .

Exercise 

Derive the general formula for the cdf of the Bernoulli distribution given in Equation .

Hint
First find  and .

3.3.1

A S

A I

A

(s) ={I

A

1,
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if s ∈ A,

if s ∈ .A

c

I

A

A I

A

A I

A

I

A

A A P (A)

p(0)

p(1)

= P ( = 0) = P ( ) = 1−P (A)I

A

A

c

= P ( = 1) = P (A)I

A

I

A

3.3.1

X p 0 ≤ p ≤ 1

0 1 X

p(0)

p(1)

= P (X = 0) = 1−p,

= P (X = 1) = p.

X

F (x) =

⎧

⎩

⎨

⎪

⎪

0,

1−p,

1,

x < 0

0 ≤ x < 1,

x ≥ 1.

(3.3.1)
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Answer

Recall that the only two values of a Bernoulli random variable  are 0 and 1. So, first, we find the cdf at those two values: 

 
Now for the other values, a Bernoulli random variable will never be negative, so , for . Also, a Bernoulli
random variable will always be less than or equal to 1, so , for . Lastly, if  is in between 0 and 1, then the
cdf is given by 

Binomial Distribution
To introduce the next family of distributions, we use our continuing example of tossing a coin, adding another toss.

Example 

Suppose we toss a coin three times and record the sequence of heads ( ) and tails ( ). Supposing that the coin is fair, each toss
results in heads with probability , and tails with the same probability of . Since the three tosses are mutually independent, the
probability assigned to any outcome is . More specifically, consider the outcome . We could write the probability of this
outcome as  to emphasize the fact that two heads and one tails occurred. Note that there are two other outcomes with
two heads and one tails:  and . Recall from Example 2.1.2 in Section 2.1, that we can count the number of outcomes with
two heads and one tails by counting the number of ways to select positions for the two heads to occur in a sequence of three tosses,
which is given by . In general, note that  counts the number of possible sequences with exactly  heads, for .

We generalize the above by defining the discrete random variable  to be the number of heads in an outcome. The possible values
of  are . Using the above facts, the pmf of  is given as follows: 

In the above, the fractions in orange are found by calculating the probabilities directly using equally likely outcomes (note that the
sample space  has 8 outcomes, see Example 2.1.1). In each line, the value of  is highlighted in red so that we can see the pattern
forming. For example, when , we see in the expression on the right-hand side of Equation  that "2" appears in the
binomial coefficient , which gives the number of outcomes resulting in the random variable equaling 2, and "2" also appears in
the exponent on the first , which gives the probability of two heads occurring.

The pattern exhibited by the random variable  in Example 3.3.2 is referred to as the binomial distribution, which we formalize in
the next definition.

Definition 

Suppose that  independent trials of the same probability experiment are performed, where each trial results in either a
"success" (with probability ), or a "failure" (with probability ). If the random variable  denotes the total number of
successes in the  trials, then  has a binomial distribution with parameters  and , which we write .
The probability mass function of  is given by 

X

F (0)

F (1)

= P (X ≤ 0) = P (X = 0) = p(0) = 1−p

= P (X ≤ 1) = P (X = 0 or 1) = p(0)+p(1) = (1−p)+p = 1

F (x) = 0 x < 0

F (x) = 1 x ≥ 1 x

F (x) = P (X ≤ x) = P (X = 0) = p(0) = 1−p),  for 0 ≤ x < 1.
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x = 2 3.3.2
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X
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n
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X

p(x) = P (X = x) =( ) (1−p , for x = 0, 1,… ,n.

n
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p
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)
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In Example 3.3.2, the independent trials are the three tosses of the coin, so in this case we have parameter . Furthermore, we
were interested in counting the number of heads occurring in the three tosses, so a "success" is getting a heads on a toss, which
occurs with probability 0.5 and so parameter . Thus, the random variable  in this example has a binomial
distribution and applying the formula for the binomial pmf given in Equation  when  we get the same expression on the
right-hand side of Equation :

In general, we can connect binomial random variables to Bernoulli random variables. If  is a binomial random variable, with
parameters  and , then it can be written as the sum of  independent Bernoulli random variables, . (Note: We will
formally define independence for random variables later, in Chapter 5.) Specifically, if we define the random variable , for 

, to be 1 when the  trial is a "success", and 0 when it is a "failure", then the sum 

 
gives the total number of success in  trials. This connection between the binomial and Bernoulli distribution will be useful in a
later section.

 
One of the main applications of the binomial distribution is to model population characteristics as in the following example.

Example 

Consider a group of 100 voters. If  denotes the probability that a voter will vote for a specific candidate, and we let random
variable  denote the number of voters in the group that will vote for that candidate, then  follows a binomial distribution with
parameters  and .

This page titled 3.3: Bernoulli and Binomial Distributions is shared under a not declared license and was authored, remixed, and/or curated by
Kristin Kuter.
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3.4: Hypergeometric, Geometric, and Negative Binomial Distributions
In this section, we consider three more families of discrete probability distributions. There are some similarities between the three,
which can make them hard to distinguish at times. So throughout this section we will compare the three to each other and the
binomial distribution, and point out their differences.

Hypergeometric Distribution
Consider the following example.

Example 

An urn contains a total of  balls, where some number  of the balls are orange and the remaining  are grey. Suppose we
draw  balls from the urn without replacement, meaning once we select a ball we do not place it back in the urn before drawing out
the next one. Then some of the balls in our selection may be orange and some may be grey. We can define the discrete random
variable  to give the number of orange balls in our selection. The probability distribution of  is referred to as the
hypergeometric distribution, which we define next.

Definition 

Suppose in a collection of  objects,  are of type 1 and  are of another type 2. Furthermore, suppose that  objects are
randomly selected from the collection without replacement. Define the discrete random variable  to give the number of
selected objects that are of type 1. Then  has a hypergeometric distribution with parameters . The probability mass
function of  is given by 

In some sense, the hypergeometric distribution is similar to the binomial, except that the method of sampling is crucially different.
In each case, we are interested in the number of times a specific outcome occurs in a set number of repeated trials, where we could
consider each selection of an object in the hypergeometric case as a trial. In the binomial case we are interested in the number of
"successes" in the trials, and in the hypergeometric case we are interested in the number of a certain type of object being selected,
which could be considered a "success". However, the trials in a binomial distribution are independent, while the trials in a
hypergeometric distribution are not because the objects are selected without replacement. If, in Example 3.4.1, the balls were
drawn with replacement, then each draw would be an independent Bernoulli trial and the distribution of  would be binomial,
since the same number of balls in the urn would be the same each time another ball is drawn. However, when the balls are drawn
without replacement, each draw is not independent, since the number of balls in the urn decreases after each draw as well as the
number of balls of a given type.

Exercise 

Suppose your friend has 10 cookies, 3 of which are chocolate chip. Your friend randomly divides the cookies equally between
herself and you. What is the probability that you get all the chocolate chip cookies?

Answer

Let random variable  number of chocolate chip cookies you get. Then  is hypergeometric with  total cookies, 
 chocolate chip cookes, and  cookies selected by your friend to give to you. We want the probability that you

get all the chocolate chip cookies, i.e., , which is 
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Note that  has a hypergeometric distribution and not binomial because the cookies are being selected (or divided) without
replacement.

Geometric Distribution & Negative Binomial Distribution

The geometric and negative binomial distributions are related to the binomial distribution in that the underlying probability
experiment is the same, i.e., independent trials with two possible outcomes. However, the random variable defined in the geometric
and negative binomial case highlights a different aspect of the experiment, namely the number of trials needed to obtain a specific
number of "successes". We start with the geometric distribution.

Definition 

Suppose that a sequence of independent Bernoulli trials is performed, with  for each trial. Define the random
variable  to give the number of trial at which the first success occurs. Then  has a geometric distribution with parameter .
The probability mass function of  is given by 

Exercise 

Verify that the pmf for a geometric distribution (Equation ) satisfies the two properties for pmf's, i.e.,

1. , for 

2.   Hint: It's called "geometric" for a reason!

Answer
1. Note that , so that we also have  and , for . Thus, it follows

that .
2. Recall the formula for the sum of a geometric series: 

 
Note that the sum of the geometric pmf is a geometric series with  and . Thus, we have 

Example 

Each of the following is an example of a random variable with the geometric distribution.

1. Toss a fair coin until the first heads occurs. In this case, a "success" is getting a heads ("failure" is getting tails) and so the
parameter .

2. Buy lottery tickets until getting the first win. In this case, a "success" is getting a lottery ticket that wins money, and a "failure"
is not winning. The parameter  will depend on the odds of wining for a specific lottery.
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3. Roll a pair of fair dice until getting the first double 1's. In this case, a "success" is getting double 1's, and a "failure" is simply
not getting double 1's (so anything else). To find the parameter , note that the underlying sample space consists of all possible
rolls of a pair of fair dice, of which there are  because each die has 6 possible sides. Each of these rolls is equally
likely, so

The negative binomial distribution generalizes the geometric distribution by considering any number of successes.

Definition 

Suppose that a sequence of independent Bernoulli trials is performed, with  for each trial. Fix an integer  to
be greater than or equal to 2 and define the random variable  to give the number of trial at which the  success occurs. Then 

 has a negative binomial distribution with parameters  and . The probability mass function of  is given by 

 

Example 

For examples of the negative binomial distribution, we can alter the geometric examples given in Example 3.4.2.

1. Toss a fair coin until get 8 heads. In this case, the parameter  is still given by , but now we also have the
parameter , the number of desired "successes", i.e., heads.

2. Buy lottery tickets until win 5 times. In this case, the parameter  is still given by the odds of winning the lottery, but now we
also have the parameter , the number of desired wins.

3. Roll a pair of fair dice until get 100 double 1's. In this case, the parameter  is still given by , but now
we also have the parameter , the number of desired "successes".

In general, note that a geometric distribution can be thought of a negative binomial distribution with parameter .

Note that for both the geometric and negative binomial distributions the number of possible values the random variable can take is
infinite. These are still discrete distributions though, since we can "list" the values. In other words, the possible values are
countable. This is in contrast to the Bernoulli, binomial, and hypergeometric distributions, where the number of possible values is
finite.

We again note the distinction between the binomial distribution and the geometric and negative binomial distributions. In the
binomial distribution, the number of trials is fixed, and we count the number of "successes". Whereas, in the geometric and
negative binomial distributions, the number of "successes" is fixed, and we count the number of trials needed to obtain the desired
number of "successes".

This page titled 3.4: Hypergeometric, Geometric, and Negative Binomial Distributions is shared under a not declared license and was authored,
remixed, and/or curated by Kristin Kuter.
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3.5: Poisson Distribution
In this section, we consider our final family of discrete probability distributions. We begin with the definition.

Definition 

A random variable  has a Poisson distribution, with parameter , if its probability mass function is given by 

 
We write .

The main application of the Poisson distribution is to count the number of times some event occurs over a fixed interval of time or
space. More specifically, if the random variable  denotes the number of times the event occurs during an interval of length , and
 denotes the average rate at which the event occurs per unit interval, then  has a Poisson distribution with parameter .

Consider the following examples:

The number of customers arriving at McDonald's between 8 a.m. and 9 a.m.
The number of calls made to 911 in South Bend on a Saturday.
The number of accidents at a particular intersection during the month of June.

All of the examples above count the number of times something occurs over an interval of time. The next example gives an
example where the interval is in space.

Example 

Suppose typos occur at an average rate of  per page in the Friday edition of the New York Times, which is 45 pages long.
Let  denote the number of typos on the front page. Then  has a Poisson distribution with parameter 

 
since we are considering an interval of length one page ( ). Thus, the probability that there is at least one typo on the front
page is given by 

 
 
Now, if we let random variable  denote the number of typos in the entire paper, then  has a Poisson distribution with parameter 

 
since we are considering an interval of  pages. The probability that there are less than three typos in the entire paper is 

The Poisson distribution is similar to all previously considered families of discrete probability distributions in that it counts the
number of times something happens. However, the Poisson distribution is different in that there is not an act that is being
repeatedly performed. In other words, there are no set trials, but rather a set window of time or space to observe.

This page titled 3.5: Poisson Distribution is shared under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.
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3.6: Expected Value of Discrete Random Variables
In this section, and the next, we look at various numerical characteristics of discrete random variables. These give us a way of
classifying and comparing random variables.

Expected Value of Discrete Random Variables
We begin with the formal definition.

Definition 

If  is a discrete random variable with possible values , and probability mass function , then the
expected value (or mean) of  is denoted  and given by

The expected value of  may also be denoted as  or simply  if the context is clear.

The expected value of a random variable has many interpretations. First, looking at the formula in Definition 3.6.1 for computing
expected value (Equation ), note that it is essentially a weighted average. Specifically, for a discrete random variable, the
expected value is computed by "weighting'', or multiplying, each value of the random variable, , by the probability that the
random variable takes that value, , and then summing over all possible values. This interpretation of the expected value as a
weighted average explains why it is also referred to as the mean of the random variable.

The expected value of a random variable is also interpreted as the long-run value of the random variable. In other words, if we
repeat the underlying random experiment several times and take the average of the values of the random variable corresponding to
the outcomes, we would get the expected value, approximately. (Note: This interpretation of expected value is similar to the
relative frequency approximation for probability discussed in Section 1.2.) Again, we see that the expected value is related to an
average value of the random variable. Given the interpretation of the expected value as an average, either "weighted'' or "long-run'',
the expected value is often referred to as a measure of center of the random variable.

Finally, the expected value of a random variable has a graphical interpretation. The expected value gives the center of mass of the
probability mass function, which the following example demonstrates.

Example 

Consider again the context of Example 1.1.1, where we recorded the sequence of heads and tails in two tosses of a fair coin. In
Example 3.1.1 we defined the discrete random variable  to denote the number of heads obtained. In Example 3.2.2 we found the
pmf of . We now apply Equation  from Definition 3.6.1 and compute the expected value of :

Thus, we expect that the number of heads obtained in two tosses of a fair coin will be 1 in the long-run or on average. Figure 1
demonstrates the graphical representation of the expected value as the center of mass of the probability mass function.

Figure 1: Histogram of . The red arrow represents the center of mass, or the expected value of 
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Example 

Suppose we toss a fair coin three times and define the random variable  to be our winnings on a single play of a game where

we win $  if the first heads is on the  toss, for ,
and we lose $1 if we get no heads in all three tosses.

Then  is a discrete random variable, with possible values , and pmf given by the following table:

Applying Definition 3.6.1, we find

Thus, the expected winnings for a single play of the game is $1.25. In other words, if we played the game multiple times, we expect
the average winnings to be $1.25.

For many of the common probability distributions, the expected value is given by a parameter of the distribution as the next
exercise shows for the Poisson distribution.

Exercise 

Suppose the discrete random variable  has a Poisson distribution with parameter . Show that .

Hint

Recall from calculus the series expansion: 

Answer

First, recall that the pmf for Poisson distribution is , for . Then, we apply Definition 3.6.1,

giving us 

as needed.

3.6.2

X

x x

th

x = 1, 2, 3

X x = −1, 1, 2, 3

x p(x) = P (X = x)

−1

1

8

1

1

2

2

1

4

3

1

8

E[X] = ⋅ p( )∑

i

x

i

x

i

= (−1) ⋅ +1 ⋅ +2 ⋅ +3 ⋅ = = 1.25.

1

8

1

2

1

4

1

8

5

4

3.6.1

X λ E[X] = λ

=e

y

∑

x=1

∞

y

x−1

(x−1)!

p(x) =

e

−λ

λ

x

x!

x = 0, 1, …

E[X] = x ⋅ p(x)∑

x=0

∞

= x ⋅ (note that the x = 0 term is 0, so we drop it from the sum)∑

x=0

∞

e

−λ

λ

x

x!

= x ⋅ = x ⋅∑

x=1

∞

e

−λ

λ

x

x!

∑

x=1

∞

λ ⋅e

−λ

λ

x−1

x ⋅ (x−1)!

= ⋅λe

−λ

∑

x=1

∞

λ

x−1

(x−1)!

= ⋅λ ⋅ (here we used the series expansion of  )e

−λ

e

λ

e

y

= λ

https://libretexts.org/
https://stats.libretexts.org/@go/page/4372?pdf


3.6.3 https://stats.libretexts.org/@go/page/4372

The expected value may not be exactly equal to a parameter of the probability distribution, but rather it may be a function of the
parameters. The following table gives the expected value for each of the common discrete distributions we considered earlier. We
will see later (Section 3.8) how to derive these results using a technique involving moment-generating functions.

Expected Values for Discrete
Distributions

Distribution Expected Value

Bernoulli( )

binomial( )

hypergeometric( )

geometric( )

negative binomial( )

Poisson( )

Expected Value of Functions of Random Variables
In many applications, we may not be interested in the value of a random variable itself, but rather in a function applied to the
random variable or a collection of random variables. For example, we may be interested in the value of . The following
theorems, which we state without proof, demonstrate how to calculate the expected value of functions of random variables.

Theorem 

Let  be a random variable and let  be a real-valued function. Define the random variable .

If  is a discrete random variable with possible values , and probability mass function , then the
expected value of  is given by

To put it simply, Theorem 3.6.1 states that to find the expected value of a function of a random variable, just apply the function to
the possible values of the random variable in the definition of expected value. Before stating an important special case of Theorem
3.6.1, a word of caution regarding order of operations. Note that, in general, 

 
For example, , in general. However, as the next theorem states, there are exceptions to Equation .

Special Case of Theorem 3.6.1

Let  be a random variable. If  is a linear function, i.e., , then 

The above special case is referred to as the linearity of expected value, which implies the following properties of the expected
value.

Linearity of Expected Value

Let  be a random variable,  constants, and  real-valued functions. Then expectiation  satisfies the
following:

1. The expected value of a constant is constant:
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2. Constants can be factored out of expected values:

3. The expected value of a sum is equal to the sum of expected values:

This page titled 3.6: Expected Value of Discrete Random Variables is shared under a not declared license and was authored, remixed, and/or
curated by Kristin Kuter.
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3.7: Variance of Discrete Random Variables
We now look at our second numerical characteristic associated to random variables.

Definition 

The variance of a random variable  is given by 

 
where  denotes the expected value of . The standard deviation of  is given by 

In words, the variance of a random variable is the average of the squared deviations of the random variable from its mean (expected
value). Notice that the variance of a random variable will result in a number with units squared, but the standard deviation will have
the same units as the random variable. Thus, the standard deviation is easier to interpret, which is why we make a point to define it.

The variance and standard deviation give us a measure of spread for random variables. The standard deviation is interpreted as a
measure of how "spread out'' the possible values of  are with respect to the mean of , .

Example 

Consider the two random variables  and , whose probability mass functions are given by the histograms in Figure 1 below.
Note that  and  have the same mean. However, in looking at the histograms, we see that the possible values of  are more
"spread out" from the mean, indicating that the variance (and standard deviation) of  is larger.

Figure 1: Histograms for random variables  and , both with same expected value different variance.

Theorem 3.6.1 actually tells us how to compute variance, since it is given by finding the expected value of a function applied to the
random variable. First, if  is a discrete random variable with possible values , and probability mass function 

, then the variance of  is given by 
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The above formula follows directly from Definition 3.7.1. However, there is an alternate formula for calculating variance, given by
the following theorem, that is often easier to use.

Theorem 

Let  be any random variable, with mean . Then the variance of  is 

Proof

By the definition of variance (Definition 3.7.1) and the linearity of expectation, we have the following: 

Example 

Continuing in the context of Example 3.6.1, we calculate the variance and standard deviation of the random variable  denoting
the number of heads obtained in two tosses of a fair coin. Using the alternate formula for variance, we need to first calculate 

, for which we use Theorem 3.6.1: 

 
In Example 3.6.1, we found that . Thus, we find 

Exercise 

Consider the context of Example 3.6.2, where we defined the random variable  to be our winnings on a single play of game
involving flipping a fair coin three times. We found that . Now find the variance and standard deviation of .

Answer

First, find : 

Now, we use the alternate formula for calculating variance: 

Given that the variance of a random variable is defined to be the expected value of squared deviations from the mean, variance is
not linear as expected value is. We do have the following useful property of variance though.
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Theorem 

Let  be a random variable, and  be constants. Then the following holds: 

Exercise 

Prove Theorem 3.7.2.

Answer

First, let  and note that by the linearity of expectation we have 

Now, we use the alternate formula for variance given in Theorem 3.7.1 to prove the result: 

Theorem 3.7.2 easily follows from a little algebraic modification. Note that the " '' disappears in the formula. There is an
intuitive reason for this. Namely, the " '' corresponds to a horizontal shift of the probability mass function for the random
variable. Such a transformation to this function is not going to affect the spread, i.e., the variance will not change.

As with expected values, for many of the common probability distributions, the variance is given by a parameter or a function of
the parameters for the distribution.

Variance for Discrete Distributions

Distribution Variance

Bernoulli( )

binomial( )

hypergeometric( )

geometric( )

negative binomial( )

Poisson( )
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3.8: Moment-Generating Functions (MGFs) for Discrete Random Variables
The expected value and variance of a random variable are actually special cases of a more general class of numerical characteristics
for random variables given by moments.

Definition 

The r  moment of a random variable  is given by 

 
The r  central moment of a random variable  is given by 

 
where .

Note that the expected value of a random variable is given by the first moment, i.e., when . Also, the variance of a random
variable is given the second central moment.

As with expected value and variance, the moments of a random variable are used to characterize the distribution of the random
variable and to compare the distribution to that of other random variables. Moments can be calculated directly from the definition,
but, even for moderate values of , this approach becomes cumbersome. The next definition and theorem provide an easier way to
generate moments.

Definition 

The moment-generating function (mgf) of a random variable  is given by 

Theorem 

If random variable  has mgf , then 

 
In other words, the  derivative of the mgf evaluated at  gives the value of the  moment.

Theorem 3.8.1 tells us how to derive the mgf of a random variable, since the mgf is given by taking the expected value of a
function applied to the random variable: 

 
We can now derive the first moment of the Poisson distribution, i.e., derive the fact we mentioned in Section 3.6, but left as an
exercise, that the expected value is given by the parameter . We also find the variance.

Example 

Let . Then, the pmf of  is given by 

 
Before we derive the mgf for , we recall from calculus the Taylor series expansion of the exponential function : 
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Using this fact, we find 

 
Now we take the first and second derivatives of . Remember we are differentiating with respect to :

 
Next we evaluate the derivatives at  to find the first and second moments of : 

 
Finally, in order to find the variance, we use the alternate formula: 

 
Thus, we have shown that both the mean and variance for the Poisson  distribution is given by the parameter .

Note that the mgf of a random variable is a function of . The main application of mgf's is to find the moments of a random
variable, as the previous example demonstrated. There are more properties of mgf's that allow us to find moments for functions of
random variables.

Theorem 

Let  be a random variable with mgf , and let  be constants. If random variable , then the mgf of  is
given by 

Theorem 

If  are independent random variables with mgf's , respectively, then the mgf of random
variable  is given by 

Recall that a binomially distributed random variable can be written as a sum of independent Bernoulli random variables. We use
this and Theorem 3.8.3 to derive the mean and variance for a binomial distribution. First, we find the mean and variance of a
Bernoulli distribution.

Example 

Recall that  has a Bernoulli  distribution if it is assigned the value of 1 with probability  and the value of 0 with probability 
. Thus, the pmf of  is given by 
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In order to find the mean and variance of , we first derive the mgf: 

 
Now we differentiate  with respect to : 

 
Next we evaluate the derivatives at  to find the first and second moments: 

 
Thus, the expected value of  is . Finally, we use the alternate formula for calculating variance: 

Example 

Let . If  denote  independent Bernoulli  random variables, then we can write 

 
In Example 3.8.2, we found the mgf for a Bernoulli  random variable. Thus, we have 

 
Using Theorem 3.8.3, we derive the mgf for : 

 
Now we can use the mgf of  to find the moments: 

 
Thus, the expected value of  is , and the variance is 

 
We end with a final property of mgf's that relates to the comparison of the distribution of random variables.

Theorem 

The mgf  of random variable  uniquely determines the probability distribution of . In other words, if random
variables  and  have the same mgf, , then  and  have the same probability distribution.
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Exercise 

Suppose the random variable  has the following mgf: 

What is the distribution of ?

Hint
Use Theorem 3.8.4 and look at Example 3.8.3.

Answer

We found in Example 3.8.3 that the mgf for a binomial distribution is 

which is the mgf given with  and . Thus, .

This page titled 3.8: Moment-Generating Functions (MGFs) for Discrete Random Variables is shared under a not declared license and was
authored, remixed, and/or curated by Kristin Kuter.
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4.1: Probability Density Functions (PDFs) and Cumulative Distribution Functions
(CDFs) for Continuous Random Variables

Probability Density Functions (PDFs)

Recall that continuous random variables have uncountably many possible values (think of intervals of real numbers). Just as for
discrete random variables, we can talk about probabilities for continuous random variables using density functions.

Definition 

The probability density function (pdf), denoted , of a continuous random variable  satisfies the following:

1. , for all 
2.  is piecewise continuous

3. 

4. 

The first three conditions in the definition state the properties necessary for a function to be a valid pdf for a continuous random
variable. The fourth condition tells us how to use a pdf to calculate probabilities for continuous random variables, which are given
by integrals the continuous analog to sums.

Example 

Let the random variable  denote the time a person waits for an elevator to arrive. Suppose the longest one would need to wait for
the elevator is 2 minutes, so that the possible values of  (in minutes) are given by the interval . A possible pdf for  is given
by 

 
The graph of  is given below, and we verify that  satisfies the first three conditions in Definition 4.1.1:

1. From the graph, it is clear that , for all .
2. Since there are no holes, jumps, asymptotes, we see that  is (piecewise) continuous.
3. Finally we compute: 
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Figure 1: Graph of pdf for , 

So, if we wish to calculate the probability that a person waits less than 30 seconds (or 0.5 minutes) for the elevator to arrive, then
we calculate the following probability using the pdf and the fourth property in Definition 4.1.1: 

Note that, unlike discrete random variables, continuous random variables have zero point probabilities, i.e., the probability that a
continuous random variable equals a single value is always given by 0. Formally, this follows from properties of integrals: 

 
Informally, if we realize that probability for a continuous random variable is given by areas under pdf's, then, since there is no
area in a line, there is no probability assigned to a random variable taking on a single value. This does not mean that a continuous
random variable will never equal a single value, only that we do not assign any probability to single values for the random variable.
For this reason, we only talk about the probability of a continuous random variable taking a value in an INTERVAL, not at a point.
And whether or not the endpoints of the interval are included does not affect the probability. In fact, the following probabilities are
all equal: 

Cumulative Distribution Functions (CDFs)

Recall Definition 3.2.2, the definition of the cdf, which applies to both discrete and continuous random variables. For continuous
random variables we can further specify how to calculate the cdf with a formula as follows. Let  have pdf , then the cdf  is
given by 

 
In other words, the cdf for a continuous random variable is found by integrating the pdf. Note that the Fundamental Theorem of
Calculus implies that the pdf of a continuous random variable can be found by differentiating the cdf. This relationship between
the pdf and cdf for a continuous random variable is incredibly useful.
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Relationship between PDF and CDF for a Continuous Random Variable

Let  be a continuous random variable with pdf  and cdf .

By definition, the cdf is found by integrating the pdf: 

By the Fundamental Theorem of Calculus, the pdf can be found by differentiating the cdf: 

Example 

Continuing in the context of Example 4.1.1, we find the corresponding cdf. First, let's find the cdf at two possible values of , 
 and : 

 
Now we find  more generally, working over the intervals that  has different formulas: 

 
Putting this altogether, we write  as a piecewise function and Figure 2 gives its graph: 
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Figure 2: Graph of cdf in Example 4.1.2

Recall that the graph of the cdf for a discrete random variable is always a step function. Looking at Figure 2 above, we note that the
cdf for a continuous random variable is always a continuous function.

Percentiles of a Distribution

Definition 

The (100p)th percentile ( ) of a probability distribution with cdf  is the value  such that

To find the percentile  of a continuous random variable, which is a possible value of the random variable, we are specifying a
cumulative probability  and solving the following equation for : 

Special Cases: There are a few values of  for which the corresponding percentile has a special name.

Median or  percentile: , separates probability (area under pdf) into two equal halves
1st Quartile or  percentile: , separates  quarter (25%) of probability (area) from the rest
3rd Quartile or  percentile: , separates  quarter (75%) of probability (area) from the rest

Example 

Continuing in the context of Example 4.1.2, we find the median and quartiles.

median: find , such that  (from graph in Figure 1)
1st quartile: find , such that . For this, we use the formula and the graph of the cdf in Figure 2: 

3rd quartile: find , such that . Again, use the graph of the cdf: 

This page titled 4.1: Probability Density Functions (PDFs) and Cumulative Distribution Functions (CDFs) for Continuous Random Variables is
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4.2: Expected Value and Variance of Continuous Random Variables
We now consider the expected value and variance for continuous random variables. Note that the interpretation of each is the same
as in the discrete setting, but we now have a different method of calculating them in the continuous setting.

Definition 

If  is a continuous random variable with pdf , then the expected value (or mean) of  is given by

The formula for the expected value of a continuous random variable is the continuous analog of the expected value of a discrete
random variable, where instead of summing over all possible values we integrate (recall Sections 3.6 & 3.7).

For the variance of a continuous random variable, the definition is the same and we can still use the alternative formula given by
Theorem 3.7.1, only we now integrate to calculate the value: 

Example 

Consider again the context of Example 4.1.1, where we defined the continuous random variable  to denote the time a person
waits for an elevator to arrive. The pdf of  was given by 

 
Applying Definition 4.2.1, we compute the expected value of : 

 
Thus, we expect a person will wait 1 minute for the elevator on average. Figure 1 demonstrates the graphical representation of the
expected value as the center of mass of the pdf.

Figure 1: The red arrow represents the center of mass, or the expected value, of .

Now we calculate the variance and standard deviation of , by first finding the expected value of . 
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Thus, we have 

This page titled 4.2: Expected Value and Variance of Continuous Random Variables is shared under a not declared license and was authored,
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4.3: Uniform Distributions

Definition 

A random variable  has a uniform distribution on interval , write , if it has pdf given by 

The uniform distribution is also sometimes referred to as the box distribution, since the graph of its pdf looks like a box. See
Figure 1 below.

Figure 1: Graph of the pdf for a uniform distribution on interval 

Exercise 

Verify that the uniform pdf is a valid pdf, i.e., show that it satisfies the first three conditions of Definition 4.1.1.

Answer
1. In looking either at the formula in Definition 4.3.1 or the graph in Figure 1, we can see that the uniform pdf is always

non-negative, i.e., , for all .
2. Given that the uniform pdf is a piecewise constant function, it is also piecewise continuous.
3. Finally, we need to verify that the area under the uniform pdf is equal to 1. This is quickly seen from the graph in Figure

1, since we calculate the area of rectangle with width  and height . Thus, the area is 

A typical application of the uniform distribution is to model randomly generated numbers. In other words, it provides the
probability distribution for a random variable representing a randomly chosen number between numbers  and .

The uniform distribution assigns equal probabilities to intervals of equal lengths, since it is a constant function, on the interval it is
non-zero . This is the continuous analog to equally likely outcomes in the discrete setting.

We close the section by finding the expected value of the uniform distribution.

Example 

If  has a uniform distribution on the interval , then we apply Definition 4.2.1 and compute the expected value of : 
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Thus, the expected value of the uniform  distribution is given by the average of the parameters  and , or the midpoint of the
interval . This is readily apparent when looking at a graph of the pdf in Figure 1 and remembering the interpretation of
expected value as the center of mass. Since the pdf is constant over , the center of mass is simply given by the midpoint.
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4.4: Normal Distributions

Definition 

A random variable  has a normal distribution, with parameters  and , write , if it has pdf given by 

 
where  and .

If a continuous random variable  has a normal distribution with parameters  and , then  and .
These facts can be derived using Definition 4.2.1; however, the integral calculations require many tricks. Note that the normal case
is why the notation  is often used for the expected value, and  is used for the variance. So,  gives the center of the normal pdf,
and its graph is symmetric about , while  determines how spread out the graph is. Figure 1 below shows the graph of two
different normal pdf's.

Example 

Suppose  and . So,  and  are both normally distributed random variables with the
same mean, but  has a larger standard deviation. Given our interpretation of standard deviation, this implies that the possible
values of  are more "spread out'' from the mean. This is easily seen by looking at the graphs of the pdf's corresponding to 
and  given in Figure 1.

Figure 1: Graph of normal pdf's:  in blue,  in red

The normal distribution is arguably the most important probably distribution. It is used to model the distribution of population
characteristics such as weight, height, and IQ. The pdf is terribly tricky to work with, in fact integrals involving the normal pdf
cannot be solved exactly, but rather require numerical methods to approximate. Because of this, there is no closed form for the
corresponding cdf of a normal distribution. Given the importance of the normal distribution though, many software programs have
built in normal probability calculators. There are also many useful properties of the normal distribution that make it easy to work
with. We state these properties without proof below. Note that we also include the connection to expected value and variance given
by the parameters.

Properties of the Normal Distribution
1. If , then  also follows a normal distribution with parameters  and .

2. If , then  follows the standard normal distribution, i.e., the normal distribution with parameters 

 and .
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The first property says that any linear transformation of a normally distributed random variable is also normally distributed. The
second property is a special case of the first, since we can re-write the transformation on  as 

 
This transformation, subtracting the mean and dividing by the standard deviation, is referred to as standardizing , since the
resulting random variable will always have the standard normal distribution with mean 0 and standard deviation 1. In this way,
standardizing a normal random variable has the effect of removing the units. Before the prevalence of calculators and computer
software capable of calculating normal probabilities, people would apply the standardizing transformation to the normal random
variable and use a table of probabilities for the standard normal distribution.

This page titled 4.4: Normal Distributions is shared under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.
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4.5: Exponential and Gamma Distributions
In this section, we introduce two families of continuous probability distributions that are commonly used.

Exponential Distributions

Definition 

A random variable  has an exponential distribution with parameter , write , if  has pdf given by 

Figure 1: Graph of pdf for exponential( ) distribution.

Example 

A typical application of exponential distributions is to model waiting times or lifetimes. For example, each of the following gives
an application of an exponential distribution.

 lifetime of a radioactive particle
 how long you have to wait for an accident to occur at a given intersection
 length of interval between consecutive occurrences of Poisson distributed events

The parameter  is referred to as the rate parameter, it represents how quickly events occur.  For example, in the first case above
where  denotes the lifetime of a radioactive particle,  would give the rate at which such particles decay.

Properties of Exponential Distributions

If , then the following hold.

1. The cdf of  is given by 

2. For any , the  percentile is .

3. The mean of  is .

4.5.1
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4. The variance of  is .

5. The mgf of  is 

6.  satisfies the Memoryless Property, i.e., , for any .

Partial Proof

We prove Properties #1 & #3, the others are left as an exercise.

For the first property, we consider two cases based on the value of . First, if , then the pdf is constant and equal to 0,
which gives the following for the cdf: 

 
Second, if , then the pdf is , and the cdf is given by

For the third property, we Definition 4.2.1 to calculate the expected value of a continuous random variable: 

In words, the Memoryless Property of exponential distributions states that, given that you have already waited more than  units of
time ( , the conditional probability that you will have to wait  more ( ) is equal to the unconditional probability
you just have to wait more than  units of time. For example, suppose you are waiting for the bus and the amount of time you have
to wait is exponentially distributed. If you have already been waiting 5 minutes at the bus stop, the probability that you have to wait
4 more minutes (so more than 9 minutes total) is equal to the probability that you only had to wait more than 4 minutes once
arriving at the bus stop. In calculating the conditional probability, the exponential distribution "forgets" about the condition or the
time already spent waiting and you can just calculate the unconditional probability that you have to wait longer. Note that we saw
earlier that geometric distributions also have the Memoryless Property.

Gamma Distributions

Definition 

A random variable  has a gamma distribution with parameters , write , if  has pdf given by 

 
where  is a function (referred to as the gamma function) given by the following integral: 
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Figure 2: Graph of pdf's for various gamma distributions. On the left, for the purple pdf  and for the green pdf . On
the right, for the blue pdf  and for the orange pdf . For all pdf's, .

Note that the gamma function, , ensures that the gamma pdf is valid, i.e., that it integrates to , which you are asked to show
in the following exercise. The value of  depends on the value of the parameter , but for a given value of  it is just a number,
i.e., it is a constant value in the gamma pdf, given specific parameter values. In this case,  is referred to as a scaling constant,
since it "scales" the rest of the pdf, , which is referred to as the kernel of the distribution, so that the result integrates to

.

Exercise 

Show: 

Answer

In the integral, we can make the substitution: . Therefore, we have 

Properties of Gamma Distributions

If , then the following hold.

1. The mgf of  is 
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2. The mean of  is .

3. The variance of  is .

Notes about Gamma Distributions:
If , then the corresponding gamma distribution is given by the exponential distribution, i.e., 

. This is left as an exercise for the reader.
The parameter  is referred to as the shape parameter, and  is the rate parameter. Varying the value of  changes the shape
of the pdf, as is seen in Figure 2 above, whereas varying the value of  corresponds to changing the units (e.g., from inches to
centimeters) and does not alter the shape of the pdf.
A closed form does not exist for the cdf of a gamma distribution, computer software must be used to calculate gamma
probabilities. Here is a link to a gamma calculator online. (Note that different notation is used on this online calculator, namely, 

 is referred to as  instead.)

Example 

A typical application of gamma distributions is to model the time it takes for a given number of events to occur. For example, each
of the following gives an application of a gamma distribution.

 lifetime of 5 radioactive particles
 how long you have to wait for 3 accidents to occur at a given intersection

In these examples, the parameter  represents the rate at which the event occurs, and the parameter  is the number of events
desired. So, in the first example,  and  represents the rate at which particles decay.

This page titled 4.5: Exponential and Gamma Distributions is shared under a not declared license and was authored, remixed, and/or curated by
Kristin Kuter.
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4.6: Weibull Distributions
In this section, we introduce the Weibull distributions, which are very useful in the field of actuarial science.

Weibull Distributions

Definition 

A random variable  has a Weibull distribution with parameters , write , if  has pdf given by 

Figure 1: Graph of pdf for Weibull( ) distribution.

Example 

A typical application of Weibull distributions is to model lifetimes that are not “memoryless”. For example, each of the following
gives an application of the Weibull distribution.

modeling the lifetime of a car battery
modeling the probability that someone survives past the age of 80 years old

 

 

The parameter  is referred to as the shape parameter, and  is the scale parameter. When , the Weibull distribution is an
exponential distribution with , so the exponential distribution is a special case of both the Weibull distributions and the
gamma distributions. We can see the similarities between the Weibull and exponential distributions more readily when comparing
the cdf's of each. The cdf of the Weibull distribution is given below, with proof, along with other important properties, stated
without proof.

Properties of Weibull Distributions

If , then the following hold.

1. The cdf of  is given by 

4.6.1

X α, β > 0 X ∼Weibull(α, β) X

f(x) ={

,

α

β

α

x

α−1

e

−(x/β)

α
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for x ≥ 0,

otherwise.
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2. For any , the  percentile is .

3. The mean of  is .

4. The variance of  is .

Partial Proof

We prove Property #1, but leave #2 as an exercise. Properties #3 and #4 are rather tricky to prove, so we state them without
proof.

For the first property, we consider two cases based on the value of . First, if , then the pdf is constant and equal to 0,
which gives the following for the cdf: 

 
Second, if , then the pdf is , and the cdf is given by the following integral, which is solved by making

the substitution : 

4.6: Weibull Distributions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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4.7: Chi-Squared Distributions
In this section, we introduce the chi-squared distributions, which are very useful in statistics.

Chi-Squared Distributions

Definition 

A random variable  has a chi-squared distribution with  degrees of freedom, where  is a positive integer, write 
, if  has pdf given by 

Figure 1: Graph of pdf for  distribution.

The chi-squared distributions are a special case of the gamma distributions with , which can be used to establish the
following properties of the chi-squared distribution.

Properties of Chi-Squared Distributions

If , then  has the following properties.

1. The mgf of  is given by 

2. The mean of  is , i.e., the degrees of freedom.
3. The variance of  is , i.e., twice the degrees of freedom.

Note that there is no closed form equation for the cdf of a chi-squared distribution in general. But most graphing calculators have a
built-in function to compute chi-squared probabilities. On the TI-84 or 89, this function is named " cdf''.
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The main applications of the chi-squared distributions relate to their importance in the field of statistics, which result from the
following relationships between the chi-squared distributions and the normal distributions.

Relationships of Chi-Squared Distributions
1. If  is a standard normal random variable, i.e., , then the distribution of  is chi-squared with  degree

of freedom.
2. If  is a collection of independent, chi-squared random variables each with 1 degree of freedom, i.e., 

, for each , then the sum  is also chi-squared with  degrees of freedom.
3. If  and  are independent random variables, then .
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4.8: Beta Distributions
In this section, we introduce beta distributions, which are very useful in a branch of statistics known as Bayesian Statistics.

Beta Distributions

Definition 

A random variable  has a beta distribution with parameters , write , if  has pdf given by 

Note that the gamma function, , is defined in Definition 4.5.2.

In the formula for the pdf of the beta distribution given in Equation , note that the term with the gamma functions, i.e., 

 is the scaling constant so that the pdf is valid, i.e., integrates to 1. This is similar to the role the gamma function plays

for the gamma distribution introduced in Section 4.5. Ignoring the scaling constant for the beta distribution, we can focus on what
is referred to as the kernel of the distribution, which is given by 

 
The parameters,  and , are both shape parameters for the beta distribution, varying their values changes the shape of the pdf.

As is the case for the normal, gamma, and chi-squared distributions, there is no closed form equation for the cdf of the beta
distribution and computer software must be used to calculate beta probabilities. Here is a link to a beta calculator online.

Beta distributions are useful for modeling random variables that only take values on the unit interval . In fact, if both
parameters are equal to one, i.e., , the corresponding beta distribution is equal to the uniform  distribution. In
statistics, beta distributions are used to model proportions of random samples taken from a population that have a certain
characteristic of interest. For example, the proportion of surface area in a randomly selected urban neighborhood that is green
space, i.e., parks or garden area.

We state the following important properties of beta distributions without proof.

Properties of Beta Distributions

If , then:

1. the mean of  is ,

2. the variance of  is .
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5.1: Joint Distributions of Discrete Random Variables
In this chapter we consider two or more random variables defined on the same sample space and discuss how to model the
probability distribution of the random variables jointly. We will begin with the discrete case by looking at the joint probability mass
function for two discrete random variables. In the following section, we will consider continuous random variables.

Definition 

If discrete random variables  and  are defined on the same sample space , then their joint probability mass function (joint
pmf) is given by 

 
where  is a pair of possible values for the pair of random variables , and  satisfies the following conditions:

Note that conditions #1 and #2 in Definition 5.1.1 are required for  to be a valid joint pmf, while the third condition tells us
how to use the joint pmf to find probabilities for the pair of random variables .

In the discrete case, we can obtain the joint cumulative distribution function (joint cdf) of  and  by summing the joint pmf: 

 
where  denotes possible values of  and  denotes possible values of . From the joint pmf, we can also obtain the individual
probability distributions of  and  separately as shown in the next definition.

Definition 

Suppose that discrete random variables  and  have joint pmf . Let  denote the possible values of ,
and let  denote the possible values of . The marginal probability mass functions (marginal pmf's) of 
and  are respectively given by the following: 

 

Link to Video: Overview of Definitions 5.1.1 & 5.1.2

 

Example 

Consider again the probability experiment of Example 3.3.2, where we toss a fair coin three times and record the sequence of heads
 and tails . Again, we let random variable  denote the number of heads obtained. We also let random variable  denote the

winnings earned in a single play of a game with the following rules, based on the outcomes of the probability experiment (this is
the same as Example 3.6.2):

player wins $1 if first  occurs on the first toss
player wins $2 if first  occurs on the second toss

5.1.1
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player wins $3 if first  occurs on the third toss
player loses $1 if no  occur

Note that the possible values of  are , and the possible values of  are . We represent the joint
pmf using a table:

Table 1: joint pmf of  and 

0 1 2 3

-1 1/8 0 0 0

1 0 1/8 2/8 1/8

2 0 1/8 1/8 0

3 0 1/8 0 0

The values in Table 1 give the values of . For example, consider : 

 
Since the outcomes are equally likely, the values of  are found by counting the number of outcomes in the sample space 

 that result in the specified values of the random variables, and then dividing by , the total number of outcomes in . The sample
space is given below, color coded to help explain the values of : 

Given the joint pmf, we can now find the marginal pmf's. Note that the marginal pmf for  is found by computing sums of the
columns in Table 1, and the marginal pmf for  corresponds to the row sums. (Note that we found the pmf for  in Example
3.3.2 as well, it is a binomial random variable. We also found the pmf for  in Example 3.6.2.)

Table 2: marginal pmf's
for  and 

0 1/8 -1 1/8

1 3/8 1 1/2

2 3/8 2 1/4

3 1/8 3 1/8

Finally, we can find the joint cdf for  and  by summing over values of the joint frequency function. For example, consider 
: 

 
Again, we can represent the joint cdf using a table:
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Table 3: joint cdf of  and 

0 1 2 3

-1 1/8 1/8 1/8 1/8

1 1/8 1/4 1/2 5/8

2 1/8 3/8 3/4 7/8

3 1/8 1/2 7/8 1

 

Link to Video: Walkthrough of Example 5.1.1

 

Expectations of Functions of Jointly Distributed Discrete Random Variables

We now look at taking the expectation of jointly distributed discrete random variables. Because expected values are defined for a
single quantity, we will actually define the expected value of a combination of the pair of random variables, i.e., we look at the
expected value of a function applied to .

Theorem 

Suppose that  and  are jointly distributed discrete random variables with joint pmf .

If  is a function of these two random variables, then its expected value is given by the following: 

Example 

Consider again the discrete random variables we defined in Example 5.1.1 with joint pmf given in Table 1. We will find the
expected value of three different functions applied to .

1. First, we define , and compute the expected value of : 

 
 

2. Next, we define , and compute the expected value of : 

X Y
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Recall that , and that the expected value of a binomial random variable is given by . Thus,
we can verify the expected value of  that we calculated above using Theorem 5.1.1 using this fact for binomial distributions: 

. 
 

3. Lastly, we define , and calculate the expected value of : 

 
Again, we can verify this result by reviewing the calculations done in Example 3.6.2.

 

Link to Video: Walkthrough of Example 5.1.2

 

Independent Random Variables
In some cases, the probability distribution of one random variable will not be affected by the distribution of another random
variable defined on the same sample space. In those cases, the joint distribution functions have a very simple form, and we refer to
the random variables as independent.

Definition 

Discrete random variables  are independent if the joint pmf factors into a product of the marginal pmf's: 

 
It is equivalent to check that this condition holds for the cumulative distribution functions.

Recall the definition of independent events (Definition 2.3.2):  and  are independent events if . This
is the basis for the definition of independent random variables because we can write the pmf's in Equation  in terms of events
as follows: 
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In the above, we use the idea that if  and  are independent, then the event that  takes on a given value  is independent of the
event that  takes the value .

Example 

Consider yet again the discrete random variables defined in Example 5.1.1. According to the definition,  and  are independent
if 

 
for all pairs . Recall that the joint pmf for  is given in Table 1 and that the marginal pmf's for  and  are given in
Table 2. Note that, for , we have the following 

 
Thus,  and  are not independent, or in other words,  and  are dependent. This should make sense given the definition of 
and . The winnings earned depend on the number of heads obtained. So the probabilities assigned to the values of  will be
affected by the values of .

We also have the following very useful theorem about the expected value of a product of independent random variables, which is
simply given by the product of the expected values for the individual random variables.

Theorem 

If  and  are independent random variables, then .

Proof

Assume  and  are independent random variables. If we let  denote the joint pmf of , then, by Definition
5.1.3, , for all pairs . Using this fact and Theorem 5.1.1, we have 

Theorem 5.1.2 can be used to show that two random variables are not independent: if , then  and 
 cannot be independent. However, beware using Theorem 5.1.2 to show that random variables are independent. Note that

Theorem 5.1.2 assumes that  and  are independent and then the property about the expected value follows. The other direction
does not hold. In other words, if , then  and  may or may not be independent.

 

Link to Video: Independent Random Variables
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5.2: Joint Distributions of Continuous Random Variables
Having considered the discrete case, we now look at joint distributions for continuous random variables.

Definition 

If continuous random variables  and  are defined on the same sample space , then their joint probability density
function (joint pdf) is a piecewise continuous function, denoted , that satisfies the following.

1. , for all 

2. 

3. , for any 

The first two conditions in Definition 5.2.1 provide the requirements for a function to be a valid joint pdf. The third condition
indicates how to use a joint pdf to calculate probabilities. As an example of applying the third condition in Definition 5.2.1, the
joint cdf for continuous random variables  and  is obtained by integrating the joint density function over a set  of the form 

 
where  and  are constants. Specifically, if  is given as above, then the joint cdf of  and , at the point , is given by 

 
Note that probabilities for continuous jointly distributed random variables are now volumes instead of areas as in the case of a
single continuous random variable.

As in the discrete case, we can also obtain the individual, maginal pdf's of  and  from the joint pdf.

Definition 

Suppose that continuous random variables  and  have joint density function . The marginal pdf's of  and  are
respectively given by the following. 

 

Link to Video: Overview of Definitions 5.2.1 & 5.2.2

 

Example 

Suppose a radioactive particle is contained in a unit square. We can define random variables  and  to denote the - and -
coordinates of the particle's location in the unit square, with the bottom left corner placed at the origin. Radioactive particles follow
completely random behavior, meaning that the particle's location should be uniformly distributed over the unit square. This implies
that the joint density function of  and  should be constant over the unit square, which we can write as 
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where  is some unknown constant. We can find the value of  by using the first condition in Definition 5.2.1 and solving the
following: 

We can now use the joint pdf of  and  to compute probabilities that the particle is in some specific region of the unit square. For
example, consider the region 

 
which is graphed in Figure 1 below.

If we want the probability that the particle's location is in the lower right corner of the unit square that intersects with the region ,
then we integrate the joint density function over that portion of  in the unit square, which gives the following probability: 

 
 
Lastly, we apply Definition 5.2.2 to find the marginal pdf's of  and . 

 
Note that both  and  are individually uniform random variables, each over the interval . This should not be too surprising.
Given that the particle's location was uniformly distributed over the unit square, we should expect that the individual coordinates
would also be uniformly distributed over the unit intervals.
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Example 

At a particular gas station, gasoline is stocked in a bulk tank each week. Let random variable  denote the proportion of the tank's
capacity that is stocked in a given week, and let  denote the proportion of the tank's capacity that is sold in the same week. Note
that the gas station cannot sell more than what was stocked in a given week, which implies that the value of  cannot exceed the
value of . A possible joint pdf of  and  is given by 

 
Note that this function is only nonzero over the triangular region given by , which is graphed in Figure 2
below:

Figure 2: Region over which joint pdf  is nonzero.

 

Link to Video: Marginal PDFs for Example 5.2.2

 

We find the joint cdf of  and  at the point : 

 
Thus, there is a 10.65% chance that less than half the tank is stocked and less than a third of the tank is sold in a given week. Note
that in finding the above integral, we look at where the region given by  intersects the region over
which the joint pdf is nonzero, i.e., the region graphed in Figure 2. This tells us what the limits of integration are in the double
integral. Figure 3 below is a graph of the intersection made on desmos.com: 
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Figure 3: Intersection of  with the region over which joint pdf  is nonzero.

Next, we find the probability that the amount of gas sold is less than half the amount that is stocked in a given week. In other
words, we find . In order to find this probability, we need to find the region over which we will integrate the joint
pdf. To do this, look for the intersection of the region given by  with the region in Figure 2, which is graphed in
Figure 4 below:

Figure 4: Intersection of  with the region over which joint pdf  is nonzero.

The calculation is as follows: 

{(x, y) | x ≤ 1/2, y ≤ 1/3} f(x, y)

P (Y < 0.5X)

{(x, y) | y < 0.5x}

{(x, y) | y < 0.5x} f(x, y)
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Thus, there is a 50% chance that the amount of gas sold in a given week is less than half of the gas stocked.

Expectations of Functions of Jointly Distributed Continuous Random Variables
As we did in the discrete case of jointly distributed random variables, we can also look at the expected value of jointly distributed
continuous random variables. Again we focus on the expected value of functions applied to the pair , since expected value is
defined for a single quantity. At this point, it should not surprise you that the following theorem is similar to Theorem 5.1.1, the
result in the discrete setting, except the sums have been replaced by integrals.

Theorem 

Suppose that  and  are jointly distributed continuous random variables with joint pdf .

If  is a function of these two random variables, then its expected value is given by the following: 

We will give an example applying Theorem 5.2.1 in an example below.

Independent Random Variables
We can also define independent random variables in the continuous case, just as we did for discrete random variables.

Definition 

Continuous random variables  are independent if the joint pdf factors into a product of the marginal pdf's: 

 
It is equivalent to check that this condition holds for the cumulative distribution functions.

Example 

Consider the continuous random variables defined in Example 5.2.1, where the  and  gave the location of a radioactive particle.
We will show that  and  are independent and then verify that Theorem 5.1.2 also applies in the continuous setting.

Recall that we found the marginal pdf's to be the following: 

 
So, for  in the unit square, i.e.,  and , we have 

 
and outside the unit square, at least one of marginal pdf's will be , so 
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We have thus shown that , for all , and so by Definition 5.2.3,  and  are independent.

Now let's look at the expected value of the product of  and . To compute this we apply Theorem 5.2.1: 

Note that both  and  are uniform on the interval . Therefore, their expected values are both 1/2, the midpoint of .
Putting this all together, we have 

 
which is the conclusion to Theorem 5.1.2.

 

Link to Video: Independent Continuous Random Variables
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curated by Kristin Kuter.
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5.3: Conditional Probability Distributions
In this section, we consider the probability distribution of one random variable given information about the value of another
random variable.  As we will see in the formal definition, this kind of conditional distribution will involve the joint distribution of
the two random variables under consideration, which we introduced in the previous two sections. We begin with discrete random
variables, and the consider the continuous case.

Conditional Distributions of Discrete Random Variables
Recall the definition of conditional probability for events (Definition 2.2.1): the conditional probability of  given  is equal to 

 
We use this same concept for events to define conditional probabilities for random variables.

Definition 

If  and  are discrete random variables with joint pmf given by , then the conditional probability mass function of ,
given that , is denoted  and given by 

 
Note that if , then for that value of  the conditional pmf of  does not exist.

Similarly, the conditional probability mass function of , given that , is denoted  and given by 

 

Link to Video: Overview of Definition 5.3.1

 

Example 

For an example of conditional distributions for discrete random variables, we return to the context of Example 5.1.1, where the
underlying probability experiment was to flip a fair coin three times, and the random variable  denoted the number of heads
obtained and the random variable  denoted the winnings when betting on the placement of the first heads obtained in the three
flips.  We found the joint pmf for  and  in Table 1 of Section 5.1, and the marginal pmf's are given in Table 2. We now find the
conditional distributions of  and .

First, to find the conditional distribution of  given a value of , we can think of fixing a row in Table 1 and dividing the values of
the joint pmf in that row by the marginal pmf of  for the corresponding value. For example, to find , we divide each
entry in the  row by . Doing this for each row in Table 1, results in the conditional distributions of  given a
value of , which we represent in the following table.
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Note that every column in the above table sums to 1. This is because each row is a different probability mass function for  given
a value of . Specifically, if we look at the column for the conditional distribution of  given that , , this is the
distribution of probability for the number of heads obtained, knowing that the winnings of the game are $1. Recall that we win $1 if
the first heads is on the first toss. In that case, we know the outcome of the probability experiment must be one of 

. Working with this reduced sample space, we can see how the corresponding probabilities for the values of 
 arise.

Similar to the process for the conditional pmf's of  given , we can find the conditional pmf's of  given . This time, though,
we take a column in Table 1, giving the joint pmf for a fixed value of , and divide by the marginal pmf of  for the
corresponding value. The following table gives the results.

Conditional pmf's of  given 

Note again that every column in the above table sums to 1. A conditional pmf is a pmf, just found in a specific way.

Link to Video: Walkthrough of Example 5.3.1

Informally, we can think of a conditional probability distribution as a probability distribution for a sub-population.  In other words,
a conditional probability distribution describes the probability that a randomly selected person from a sub-population has a given
characteristic of interest.  In this context, the joint probability distribution is the probability that a randomly selected person from
the entire population has both characteristics of interest.  The following example demonstrates these interpretations in a specific
context.

Example 

Suppose we are interested in the relationship between an individual's hair and eye color. Based on a random sample of Saint Mary's
students, we have the following joint pmf, with marginal pmf's given in the margins:

Hair Color ( )  

Eye Color ( ) blonde (1) red (2) brown (3) black (4)

blue (1) 0.12 0.05 0.12 0.01 0.30

green (2) 0.12 0.07 0.09 0 0.28

brown (3) 0.16 0.07 0.16 0.03 0.42

0.40 0.19 0.37 0.04 1.00

The probabilities in the last row and column (orange cells) give the marginal pmf's for  and , while the probabilities in the
interior (white and grey cells) give the joint pmf for pairs . For instance,  indicates the joint probability that a
randomly selected SMC student has brown hair ( ) and green eyes ( ) is 9%,  indicates the marginal
probability that a randomly selected SMC student has brown hair is 37%, and  indicates the marginal probability that
a randomly selected SMC student has green eyes is 28%.
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Given this table of probabilities, we can calculate conditional pmf values:

First, let's find : 

 
Note that we can write . Here we are finding the probability that
an individual in the sub-population of individuals with blue eyes has red hair. Specifically, we found that  (or approximately
16.7%) of SMC students with blue eyes have red hair.

Now, let's reverse the order of  and , and find : 

 
Now the sub-population is individuals with blonde hair, and we find the probability that an individual in this sub-population has
green eyes. Specifically, we found that 30$ of SMC students with blonde hair have green eyes.

 

Link to Video: Interpretation of Joint & Conditional Probabilities (Example 5.3.2)

 

Properties of Conditional PMF's
1. Conditional pmf's are valid pmf's. In other words, the conditional pmf for , given , for a fixed , is a valid pmf

satisfying the following: 

 
Similarly, for a fixed , we also have the following for the conditional pmf of , given : 

 
 

2. In general, the conditional distribution of  given  does not equal the conditional distribution of  given , i.e., 

 
 

3. If  and  are independent, discrete random variables, then the following are true: 

 
In other words, if  and  are independent, then knowing the value of one random variable does not affect the probability
of the other one.
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Link to Video: Overview of Properties of Conditional PMF's

 

Now that we have defined conditional distributions, we define conditional expectation.

Definition 

For discrete random variables  and , the conditional expected value of , given , is given by 

 
and the conditional expected value of , given , is given by 

Similarly, we can define conditional variances. The conditional variance of , given , is given by 

 

Link to Video: Overview of Definition 5.3.2 & Example 5.3.3

 

Example 

Continuing in the context of Example 5.3.2, we calculate the conditional mean and variance of hair color ( ), given that a
randomly selected student has brown eyes ( ).

First, we derive the conditional pmf of , given , by taking the row for brown eyes in the joint pmf table and dividing each
by the marginal pmf for  at , i.e., . This gives the following:

1

2

3

4

Using the conditional probabilities in the table above, we calculate the following:

 
Thus, the expected hair color of a student with brown eyes is red.
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Conditional Distributions of Continuous Random Variables
We now turn to the continuous setting. Note that definitions and results in the discrete setting transfer to the continuous setting by
simply replacing sums with integrals and pmf's with pdf's. The following definition gives the formulas for conditional distributions
and expectations of continuous random variables.

Definition 

If  and  are continuous random variables with joint pdf given by , then the conditional probability density function
(pdf) of , given that , is denoted  and given by 

The conditional expected value of , given , is 

 
and the conditional variance of , given , is 

Similarly, we can define the conditional pdf, expected value, and variance of , given , by swapping the roles of  and 
 in the above.

Properties of Conditional PDF's
1. Conditional pdf's are valid pdf's. In other words, the conditional pdf for , given , for a fixed , is a valid pdf

satisfying the following: 

 
 

2. In general, the conditional distribution of  given  does not equal the conditional distribution of  given , i.e., 

 
 

3. If  and  are independent, discrete random variables, then the following are true: 

 
In other words, if  and  are independent, then knowing the value of one random variable does not affect the probability
of the other one.

 

Link to Video: Overview of Definition 5.3.3 & Properties of Conditional PDF's

 

Example 

We verify the third property of conditional pdf's for the radioactive particle example (Example 5.2.1). Recall that we had the
following joint pdf and marginal pdf's for  and : 
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We showed in Example 5.2.3 that  and  are independent. So, if we fix , the following shows that the conditional pdf of

, given , is equal to the marginal pdf of , as stated in the third property of conditional pdf's above: 

Example 

Continuing in the context of Example 5.2.2, where  gave the amount of gas stocked and  gave the amount of gas sold at a given
gas station in a given week, we find the conditional pdf of  given that . In other words, we find the conditional
probability distribution for the amount of gas sold in a given week, when only half of the tank was stocked.

First, we find the marginal pdf for : 

 
So, if , then , and the conditional pdf of  in this case is 

 
Note the  is the pdf for a uniform distribution on the interval . Thus, the conditional distribution of the amount
of gas sold in a week, given that only half of the tank is stocked, is uniformly distributed between  and . Recognizing this, we
can easily compute the conditional expected value of , given that : 

 
In other words, given that 50% of tank is stocked, we expect that 25% will be sold.

Link to Video: Walkthrough of Example 5.3.5

This page titled 5.3: Conditional Probability Distributions is shared under a not declared license and was authored, remixed, and/or curated by
Kristin Kuter.
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5.4: Finding Distributions of Functions of Continuous Random Variables

Single Variable Case

 

In addition to considering the probability distributions of random variables simultaneously using joint distribution functions, there
is also occasion to consider the probability distribution of functions applied to random variables as the following example
demonstrates.

 

Example 

Consider again the context of Example 5.2.2, where the random variable  represented the amount of gas stocked in a given week
at a specific gas station.  In Example 5.3.5, we showed that the pdf of  is given by 

 
Suppose that the storage tank at the gas station holds 10,000 gallons, then  gives the number of gallons stocked in a
week. If the current price of gas is $3/gallon and there are fixed delivery costs of $2000, then the total cost to stock 
gallons in a given week is given by the following 

 
where the random variable  denotes the total cost of delivery.

 

One approach to finding the probability distribution of a function of a random variable relies on the relationship between the pdf
and cdf for a continuous random variable: 

 
As we will see in the following examples, it is often easier to find the cdf of a function of a continuous random variable, and then
use the above relationship to derive the pdf.

 

Example 

Continuing with Example 5.4.1, we find the pdf of the total cost, . First, we derive the cdf for . If we let , i.e., select
a value of  where the pdf of  is nonzero, then we have 

 
For any , the cdf of  is necessarily 0, since  cannot be negative (we cannot stock a negative proportion of the tank). And
for any , the cdf of  is necessarily equal to 1, since the proportion of gas stocked will always be less than or equal to 100%
of the tank's capacity. Putting it all together, we have the cdf of  given as follows: 
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We can now use the cdf of  to find the cdf of . Let  denote a possible value for the random variable . We relate the cdf of 
to the cdf of  by substituting the expression of  in terms of  given in Equation , and then solving for , as follows: 

 
If , then, using the formula for the cdf of  we derived in Equation , we
find that the cdf of  is  

 
Note that  gives the possible values of .  cannot be less than $2,000 because of the fixed delivery costs, and 

 cannot be more than $32,000, which is the cost of stocking the entire tank. 

We now find the pdf of  by taking the derivative of the cdf in Equation :  

 

Video: Motivating Example (Walkthrough of Examples 5.4.1 & 5.4.2)

 

Example 5.4.2 demonstrates the general strategy to finding the probability distribution of a function of a random variable: we first
find the cdf of the random variable in terms of the random variable it is a function of (assuming we know the cdf of that random
variable), then we differentiate to find the pdf. Let's look at another example before formalizing the strategy.

 

Example 

Let  be uniform on .  We find the pdf of . 
 
Recall that the pdf for a uniform  random variable is  for , and that the cdf is 

 
Note that the possible values of  are .

First, we find the cdf of , for : 

Now we differentiate the cdf to get the pdf of : 

 

The following formalizes the strategy we took to find the cdf's in the previous examples.
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Change-of-Variable Technique

Suppose that  is a continuous random variable with pdf , which is nonzero on interval .

Further suppose that  is a differentiable function that is strictly monotonic on .

Then the pdf of  is given by 
   

 

Video: Change-of-Variable Technique & Walkthrough of Example 5.4.5

 

Returning to Example 5.4.2, we demonstrate the Change-of-Variable technique.

 

Example 

Recall that the random variable  denotes the amount of gas stocked. We now let  denote the total cost of delivery for the gas
stocked, i.e., . We know that the pdf of  is given by 

 
so that , using the notation of the Change-of-Variable technique. We also have that , and note
that  is increasing on the interval . Thus, the Change-of-Variable technique can be applied, and so we find the inverse of  and its
derivative: 

 
So, applying Change-of-Variable formula given in Equaton , we get  

 
which matches the result found in Example 5.4.2.

 

Informally, the Change-of-Variable technique can be restated as follows.

1. Find the cdf of  in terms of the cdf for  using the inverse of , i.e., isolate .
2. Take the derivative of the cdf of  to get the pdf of  using the chain rule.  An absolute value is needed if  is decreasing.

The advantage of the Change-of-Variable technique is that we do not have to find the cdf of  in order to find the pdf of , as the
next example demonstrates.

 

Example 

Let the random variable  have pdf given by , for , i.e., . Also, let . To find the
pdf for , we first find : 
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Now we can find the derivative of : 

 
Applying the Change-of-Variable formula we find the pdf of : 

 
 

 

The Change-of-Variable technique requires that a monotonic function  is applied. However, if that is not the case, we can just
consider the monotonic pieces separately, as in the next example.

 

Example 

Let  be uniform on . Then the pdf of  is 

 
and the cdf of  is 

 
We find the pdf for .

Following the general strategy, we first find the cdf of  in terms of : 

 
which gives 

Now we take the derivative of the cdf to get the pdf of :  
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In summary, the pdf of  is given by 

 

Video: Bonus Example

 

Special Case: Normal Distributions

 

Functions of normally distributed random variables are of particular importance in statistics.  In the next example, we derive the
probability distribution of the square of a standard normal random variable.

 

Example 

Let  be a standard normal random variable, i.e., .  We find the pdf of .

Let  denote the cdf of , i.e., .  We first find the cdf of  in terms of  (recall that there is no
closed form expression for ): 

 
Note that if , then , since it is not possible for  to be negative. In other words, the possible values of 

 are .

Next, we take the derivative of the cdf of  to find its pdf. Before doing so, we note that if  is the cdf for , then its derivative is
the pdf for , which is denoted . Since  is a standard normal random variable, we know that 

 
Using this, we now find the pdf of : 
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In summary, if , where , then the pdf for  is given by 

 
Note that the pdf for  is a gamma pdf with . This is also referred to as the chi-square distribution, denoted . See
below for a video walkthrough of this example.

 

 

Multivariate Case
 

We can extend the Change-of-Variable technique to the multivariate case as well.

 

Example 

Suppose that  and  have joint pdf given by 

 
The following figure shows the region (shaded in blue) over which the joint pdf of  and  is nonzero.

Let's define the random variable , and find the pdf of .
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for which we need to find where the region given by  intersects the region over which the joint pdf  is
nonzero. Note that if , then , since there is no intersection with where the joint pdf  is nonzero. If

, then  

 
In summary, we have found the following  

We then take derivative of cdf to find pdf:  

 
Note:  is exponential with .

 

Video: Walkthrough of Example 5.4.8

 

Using Moment-Generating Functions
 

There is another approach to finding the probability distribution of functions of random variables, which involves moment-
generating functions.  Recall the following properties of mgf's.

 

Theorem 3.8.4

The mgf  of random variable  uniquely determines the probability distribution of .  In other words, if random
variables  and  have the same mgf, , then  and  have the same probability distribution.
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Theorem 3.8.3

If  are independent random variables with mgf's , respectively, then the mgf of random
variable  is given by 
    

 

Theorem 3.8.4 states that mgf's are unique, and Theorems 3.8.2 & 3.8.3 combined provide a process for finding the mgf of a linear
combination of random variables.  All three theorems provide a Moment-Generating-Function technique for finding the probability
distribution of a function of random variable(s), which we demonstrate with the following examples involving the normal
distribution.

Example 

Suppose that .  It can be shown that the mgf of  is given by 
   

 

Using this mgf formula, we can show that  has the standard normal distribution.

1. Note that if , then the mgf is 

2. Also note that , so by Theorem 3.8.2, 

Thus, we have shown that  and  have the same mgf, which by Theorem 3.8.4, says that they have the same distribution.

Now suppose  are each independent normally distributed with means  and sd's , respectively.

Let's find the probability distribution of the sum  (  constants) using the mgf technique: 
 
By Theorem 3.8.2, we have 

and then by Theorem 3.8.3 we get the following: 

 
Thus, by Theorem 3.8.4, .

 

The second part of Example 5.4.9 proved the following.
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Sums of Independent Normal Random Variables

If  are mutually independent normal random variables with means  and standard deviations ,
respectively, then the linear combination 
   

 
is normally distributed with the following mean and variance: 
   

 

Video: Functions of Normal Random Variables

This page titled 5.4: Finding Distributions of Functions of Continuous Random Variables is shared under a not declared license and was authored,
remixed, and/or curated by Kristin Kuter.
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5.5: Sample Mean
Suppose we are interested in understanding the mean of some population of values, but do not have full information about the
entire population.  One approach to solving this problem is to obtain a random sample of a subset of values from the population and
consider the mean of the sample.  The mean of the sample is referred to as the sample mean.  Since the sample is randomly
selected, the sample mean may be thought of as a function applied to a collection of random variables.

Example 

Suppose we want to know the average SAT math score for girls in Indiana.  We could randomly select seniors from high schools in
the South Bend School Corporation as a sample from all IN girls, and use the mean SAT math score for the South Bend girls as an
estimate of the overall mean for IN girls.

 
The mean of SB girls depends on which sample we randomly select, therefore the sample mean is a random variable. 
 

The probability distribution of the sample mean is referred to as the sampling distribution of the sample mean.  The following
result, which is a corollary to Sums of Independent Normal Random Variables, indicates how to find the sampling distribution when
the population of values follows a normal distribution.

Corollary 

If  represent the values of a random sample from a  population, then the sample mean 
   

 
is normally distributed with mean  and standard deviation .  In other words, we can write 
   

Proof
1. Sample observations are independent when randomly selected. Furthermore, each observation has same distribution as

population.  represent the observations in the random sample  are independent and each 

2.  is the sum of independent normally distributed random variables:

3. By Sums of Independent Normal Random Variables: , where
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So .

Example 

Suppose that SAT math scores for girls in Indiana are assumed to be .

Find and compare the sampling distributions for the sample means from a sample of size  and a sample of size . 
 

For  sample mean 

For  sample mean 

Let's find the probability that each sample mean will be within 10 points of actual population mean ( ):

The following figure gives the plot of the pdf's for the sampling distributions of (blue) and (yellow). Note that the spread of the
pdf for  is larger than for .

 
 

The Central Limit Theorem

We saw that when "sampling'' from a normally distributed population, the sampling distribution of the sample mean is also normal. 
But what if the population does not follow a normal distribution?  What if it is skewed or uniform?

 
Example 

Suppose we are interested in the lifetime of a radioactive particle.  We saw in Section 4.5, that the probability distribution of such
lifetimes can be modeled with an exponential distribution.  If , for example, then the pdf is skewed right, because there is a
tail of values with very low probabilities off to the right.
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Central Limit Theorem

Let  be a random sample from any probability distribution with mean  and sd .  Then as the sample size ,
the probability distribution of the sample mean approaches the normal distribution.  We write:

   

 
In other words, if  is sufficiently large, we can approximate the sampling distribution of the sample mean as .

Furthermore,

The  above the arrow in Equation  above stands for distribution and indicates that, as the sample size increases without
bound, the limit of the probability distribution of  is given by the  distribution. This is referred to as convergence in
distribution.

What's "sufficiently large''?

If the distribution of the  is symmetric, unimodal or continuous, then a sample size  as small as 4 or 5 yields an adequate
approximation.
If the distribution of the  is skewed, then a sample size  of at least 25 or 30 yields an adequate approximation.
If the distribution of the  is extremely skewed, then you may need an even larger .

The following website provides a simulation of sampling distributions and demonstrates the Central Limit Theorem (link
available).

Example 

Continuing in the context of Example 5.5.3, suppose we sample  such radioactive particles.  Then the sampling distribution
of the mean of the sample is approximated as follows.

Letting  denote the random sample, we have that each . By the Properties of Exponential
Distributions, we know that the mean of an exponential(3) distribution is given by  and the sd is also .
Thus, the sampling distribution of the sample mean is
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What is the use of the Central Limit Theorem if we don't know , the mean of the population?  We can use the CLT to approximate
estimation error probabilities:

 the probability that  is within  units of . By the Central Limit Theorem and Equation , we know

From this fact, we can isolate  in the inequality in Equation  as follows:

Example 

Now suppose that we do not know the rate at which the radioactive particle of interest decays, i.e., we do not know the mean
lifetime of such particles.  We can develop a method for approximating the probability that the mean of a sample of size  is
within  unit of the mean lifetime.

In other words, we want .

By the Central Limit Theorem and Equation , we know that 

From this we derive a formula for the desired probability:

This page titled 5.5: Sample Mean is shared under a not declared license and was authored, remixed, and/or curated by Kristin Kuter.
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