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1.1: Research Designs

Research Designs

In the early 1970’s, a man named Uri Geller tricked the world: he convinced hundreds of thousands of people that he could bend
spoons and slow watches using only the power of his mind. In fact, if you were in the audience, you would have likely believed he
had psychic powers. Everything looked authentic—this man had to have paranormal abilities! So, why have you probably never
heard of him before? Because when Uri was asked to perform his miracles in line with scientific experimentation, he was no longer
able to do them. That is, even though it seemed like he was doing the impossible, when he was tested by science, he proved to be
nothing more than a clever magician.

When we look at dinosaur bones to make educated guesses about extinct life, or systematically chart the heavens to learn about the
relationships between stars and planets, or study magicians to figure out how they perform their tricks, we are forming observations
—the foundation of science. Although we are all familiar with the saying “seeing is believing,” conducting science is more than
just what your eyes perceive. Science is the result of systematic and intentional study of the natural world. And soical science is no
different. In the movie Jerry Maguire, Cuba Gooding, Jr. became famous for using the phrase, “Show me the money!” In
education, as in all sciences, we might say, “Show me the data!”

One of the important steps in scientific inquiry is to test our research questions, otherwise known as hypotheses. However, there are
many ways to test hypotheses in educational research. Which method you choose will depend on the type of questions you are
asking, as well as what resources are available to you. All methods have limitations, which is why the best research uses a variety
of methods.

Experimental Research

If somebody gave you $20 that absolutely had to be spent today, how would you choose to spend it? Would you spend it on an item
you’ve been eyeing for weeks, or would you donate the money to charity? Which option do you think would bring you the most
happiness? If you’re like most people, you’d choose to spend the money on yourself (duh, right?). Our intuition is that we’d be
happier if we spent the money on ourselves.

Knowing that our intuition can sometimes be wrong, Professor Elizabeth Dunn (2008) at the University of British Columbia set out
to conduct an experiment on spending and happiness. She gave each of the participants in her experiment $20 and then told them
they had to spend the money by the end of the day. Some of the participants were told they must spend the money on themselves,
and some were told they must spend the money on others (either charity or a gift for someone). At the end of the day she measured
participants’ levels of happiness using a self-report questionnaire.

In an experiment, researchers manipulate, or cause changes, in the independent variable, and observe or measure any impact of
those changes in the dependent variable. The independent variable is the one under the researcher’s control, or the variable that is
intentionally altered between groups. In the case of Dunn’s experiment, the independent variable was whether participants spent the
money on themselves or on others. The dependent variable is the variable that is not manipulated at all, or the one where the effect
happens. One way to help remember this is that the dependent variable “depends” on what happens to the independent variable. In
our example, the participants’ happiness (the dependent variable in this experiment) depends on how the participants spend their
money (the independent variable). Thus, any observed changes or group differences in happiness can be attributed to whom the
money was spent on. What Dunn and her colleagues found was that, after all the spending had been done, the people who had spent
the money on others were happier than those who had spent the money on themselves. In other words, spending on others causes us
to be happier than spending on ourselves. Do you find this surprising?

But wait! Doesn’t happiness depend on a lot of different factors—for instance, a person’s upbringing or life circumstances? What if
some people had happy childhoods and that’s why they’re happier? Or what if some people dropped their toast that morning and it
fell jam-side down and ruined their whole day? It is correct to recognize that these factors and many more can easily affect a
person’s level of happiness. So how can we accurately conclude that spending money on others causes happiness, as in the case of
Dunn’s experiment?

The most important thing about experiments is random assignment. Participants don’t get to pick which condition they are in
(e.g., participants didn’t choose whether they were supposed to spend the money on themselves versus others). The experimenter
assigns them to a particular condition based on the flip of a coin or the roll of a die or any other random method. Why do
researchers do this? With Dunn’s study, there is the obvious reason: you can imagine which condition most people would choose to
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be in, if given the choice. But another equally important reason is that random assignment makes it so the groups, on average, are
similar on all characteristics except what the experimenter manipulates.

By randomly assigning people to conditions (self-spending versus other-spending), some people with happy childhoods should end
up in each condition. Likewise, some people who had dropped their toast that morning (or experienced some other disappointment)
should end up in each condition. As a result, the distribution of all these factors will generally be consistent across the two groups,
and this means that on average the two groups will be relatively equivalent on all these factors. Random assignment is critical to
experimentation because if the only difference between the two groups is the independent variable, we can infer that the
independent variable is the cause of any observable difference (e.g., in the amount of happiness they feel at the end of the day).

Here’s another example of the importance of random assignment: Let’s say your class is going to form two basketball teams, and
you get to be the captain of one team. The class is to be divided evenly between the two teams. If you get to pick the players for
your team first, whom will you pick? You’ll probably pick the tallest members of the class or the most athletic. You probably won’t
pick the short, uncoordinated people, unless there are no other options. As a result, your team will be taller and more athletic than
the other team. But what if we want the teams to be fair? How can we do this when we have people of varying height and ability?
All we have to do is randomly assign players to the two teams. Most likely, some tall and some short people will end up on your
team, and some tall and some short people will end up on the other team. The average height of the teams will be approximately the
same. That is the power of random assignment!

Other considerations

In addition to using random assignment, you should avoid introducing confounding variables into your experiments. Confounding
variables are things that could undermine your ability to draw causal inferences. For example, if you wanted to test if a new happy
pill will make people happier, you could randomly assign participants to take the happy pill or not (the independent variable) and
compare these two groups on their self-reported happiness (the dependent variable). However, if some participants know they are
getting the happy pill, they might develop expectations that influence their self-reported happiness. This is sometimes known as a
placebo effect. Sometimes a person just knowing that he or she is receiving special treatment or something new is enough to
actually cause changes in behavior or perception: In other words, even if the participants in the happy pill condition were to report
being happier, we wouldn’t know if the pill was actually making them happier or if it was the placebo effect—an example of a
confound. Even experimenter expectations can influence the outcome of a study. For example, if the experimenter knows who
took the happy pill and who did not, and the dependent variable is the experimenter’s observations of people’s happiness, then the
experimenter might perceive improvements in the happy pill group that are not really there.

One way to prevent these confounds from affecting the results of a study is to use a double-blind procedure. In a double-blind
procedure, neither the participant nor the experimenter knows which condition the participant is in. For example, when participants
are given the happy pill or the fake pill, they don’t know which one they are receiving. This way the participants shouldn’t
experience the placebo effect, and will be unable to behave as the researcher expects (participant demand). Likewise, the researcher
doesn’t know which pill each participant is taking (at least in the beginning—later, the researcher will get the results for data-
analysis purposes), which means the researcher’s expectations can’t influence his or her observations. Therefore, because both
parties are “blind” to the condition, neither will be able to behave in a way that introduces a confound. At the end of the day, the
only difference between groups will be which pills the participants received, allowing the researcher to determine if the happy pill
actually caused people to be happier.

Quasi-Experimental Designs
What if you want to study the effects of marriage on a variable? For example, does marriage make people happier? Can you
randomly assign some people to get married and others to remain single? Of course not. So how can you study these important
variables? You can use a quasi-experimental design. A quasi-experimental design is similar to experimental research, except that
random assignment to conditions is not used. Instead, we rely on existing group memberships (e.g., married vs. single). We treat
these as the independent variables, even though we don’t assign people to the conditions and don’t manipulate the variables. As a
result, with quasi-experimental designs causal inference is more difficult. For example, married people might differ on a variety of
characteristics from unmarried people. If we find that married participants are happier than single participants, it will be hard to say
that marriage causes happiness, because the people who got married might have already been happier than the people who have
remained single.

Because experimental and quasi-experimental designs can seem pretty similar, let’s take another example to distinguish them.
Imagine you want to know who is a better professor: Dr. Smith or Dr. Khan. To judge their ability, you’re going to look at their
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students’ final grades. Here, the independent variable is the professor (Dr. Smith vs. Dr. Khan) and the dependent variable is the
students’ grades. In an experimental design, you would randomly assign students to one of the two professors and then compare the
students’ final grades. However, in real life, researchers can’t randomly force students to take one professor over the other; instead,
the researchers would just have to use the preexisting classes and study them as-is (quasi-experimental design). Again, the key
difference is random assignment to the conditions of the independent variable. Although the quasi-experimental design (where the
students choose which professor they want) may seem random, it’s most likely not. For example, maybe students heard Dr. Smith
sets low expectations, so slackers prefer this class, whereas Dr. Khan sets higher expectations, so smarter students prefer that one.
This now introduces a confounding variable (student intelligence) that will almost certainly have an effect on students’ final grades,
regardless of how skilled the professor is. So, even though a quasi-experimental design is similar to an experimental design (i.e., it
has a manipulated independent variable), because there’s no random assignment, you can’t reasonably draw the same conclusions
that you would with an experimental design.

Non-Experimental Studies
When scientists passively observe and measure phenomena it is called non-experimental research. Here, we do not intervene and
change behavior, as we do in experiments. In non-experimental research, we identify patterns of relationships, but we usually
cannot infer what causes what. Importantly, with non-experimental research, you can examine only two variables at a time, no
more and no less.

So, what if you wanted to test whether spending on others is related to happiness, but you don’t have $20 to give to each
participant? You could use a non-experimental research — which is exactly what Professor Dunn did, too. She asked people how
much of their income they spent on others or donated to charity, and later she asked them how happy they were. Do you think these
two variables were related? Yes, they were! The more money people reported spending on others, the happier they were. This
indicates a positive correlation!

If generosity and happiness are positively correlated, should we conclude that being generous causes happiness? Similarly, if height
and pathogen prevalence are negatively correlated, should we conclude that disease causes shortness? From a correlation alone, we
can’t be certain. For example, in the first case it may be that happiness causes generosity, or that generosity causes happiness. Or, a
third variable might cause both happiness and generosity, creating the illusion of a direct link between the two. For example,
wealth could be the third variable that causes both greater happiness and greater generosity. This is why correlation does not
mean causation—an often repeated phrase among psychologists.

One particular type of non-experimental research is the longitudinal study. Longitudinal studies are typically observational in
nature. They track the same people over time. Some longitudinal studies last a few weeks, some a few months, some a year or
more. Some studies that have contributed a lot to a given topic by following the same people over decades. For example, one study
followed more than 20,000 Germans for two decades. From these longitudinal data, psychologist Rich Lucas (2003) was able to
determine that people who end up getting married indeed start off a bit happier than their peers who never marry. Longitudinal
studies like this provide valuable evidence for testing many theories in social sciences, but they can be quite costly to conduct,
especially if they follow many people for many years.

Tradeoffs in Research
Even though there are serious limitations to non-experimental and quasi-experimental research, they are not poor cousins to
experiments designs. In addition to selecting a method that is appropriate to the question, many practical concerns may influence
the decision to use one method over another. One of these factors is simply resource availability—how much time and money do
you have to invest in the research? Often, we survey people even though it would be more precise—but much more difficult—to
track them longitudinally. Especially in the case of exploratory research, it may make sense to opt for a cheaper and faster method
first. Then, if results from the initial study are promising, the researcher can follow up with a more intensive method.

Beyond these practical concerns, another consideration in selecting a research design is the ethics of the study. For example, in
cases of brain injury or other neurological abnormalities, it would be unethical for researchers to inflict these impairments on
healthy participants. Nonetheless, studying people with these injuries can provide great insight into human mind (e.g., if we learn
that damage to a particular region of the brain interferes with emotions, we may be able to develop treatments for emotional
irregularities). In addition to brain injuries, there are numerous other areas of research that could be useful in understanding the
human mind but which pose challenges to a true experimental design — such as the experiences of war, long-term isolation,
abusive parenting, or prolonged drug use. However, none of these are conditions we could ethically experimentally manipulate and
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randomly assign people to. Therefore, ethical considerations are another crucial factor in determining an appropriate research
design.

Research Methods: Why You Need Them
Just look at any major news outlet and you’ll find research routinely being reported. Sometimes the journalist understands the
research methodology, sometimes not (e.g., correlational evidence is often incorrectly represented as causal evidence). Often, the
media are quick to draw a conclusion for you. After reading this module, you should recognize that the strength of a scientific
finding lies in the strength of its methodology. Therefore, in order to be a savvy producer and/or consumer of research, you need to
understand the pros and cons of different methods and the distinctions among them.
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1.2: Internal and External Validity

Internal and External Validity

Developing a research design should be more than just a matter of convenience (although practicality is an important element,
which we touched on in the last section). Not all designs are created equally and there are trade-offs we make when opting for one
type of design over another. The two major components of an assessment of a research design are its internal validity and its
external validity. Internal validity basically means we can make a causal statement within the context of our study. We have
internal validity if, for our study, we can say our independent variable caused our dependent variable. Often times, the major
challenge is the issue of spuriousness. We have to ask if our design allows us to say our independent variable makes our dependent
variable vary systematically as it changes and that those changes in the dependent variable are not due to some third or extraneous
variable/factor.

The second basis for evaluating your research design is to assess its external validity. External validity means that we can
generalize the results of our study. It asks whether our findings are applicable in other settings. Here we consider what population
we are interested in generalizing to. We might be interested in adult Americans, but if we have studied a sample of first-year
college students then we might not be able to generalize to our target population. As you can see here, the sampling method is the
key. The quality of the sampling method you choose is directly tied to your ability to generalize the findings of one particular study
to the entire population. Typically a representative sampling method gives us the best chance to generalize the findings to our target
population, thus gives the study high external validity. By contrast, when a non-representative sampling methods is used, it reduces
generalizability, i.e., the external validity of the study.
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1.3: Threats to Internal Validity and Different Control Techniques
Internal validity is often the focus from a research design perspective. To understand the pros and cons of various designs and to be
able to better judge specific designs, we identify specific threats to internal validity. Before we do so, it is important to note that
the primary challenge to establishing internal validity in social sciences is the fact that most of the phenomena we care about have
multiple causes and are often a result of some complex set of interactions. For example, X may be only a partial cause of Y or X
may cause Y, but only when Z is present. Multiple causation and interactive effects make it very difficult to demonstrate causality.
Turning now to more specific threats, Figure 1.3.1 below identifies common threats to internal validity.

Figure : Common Threats to Internal Validity

Threat

History
Any event that occurs while the experiment is in progress might be

an alternation; using a control group mitigates this concern.

Maturation
Normal changes over time (e.g., fatigue or aging) might affect the
dependent variable; using a control group mitigates this concern

Selection Bias
If randomization is not used to assign participants, the groups may

not be equivalent

Experimental Mortality
If groups lost participants (e.g., due to dropping out of the

experiment) they may not be equivalent.

Testing
A pre-test may confound the influence of the experimental

treatment; using a control group mitigates this concern

Instrumentation
Changes or difference in the process of measurements might

alternatively account for differences

Statistical Regression
The natural tendency for extreme scores to regress or move

towards the mean

Different Control Techniques

All of the common threats mentioned above can introduce extraneous variables into your research design, which will potentially
confound your research findings. In other words, we won't be able to tell whether it is the independent variable (i.e., the treatment
we give participants), or the extraneous variable, that causes the changes in the dependent variable. Controlling for extraneous
variables reduces its threats on the research design and gives us a better chance to claim the independent variable causes the
changes in the dependent variable, i.e., internal validity. There are different techniques we can use to control for extraneous
variables.

Random assignment
Random assignment is the single most powerful control technique we can use to minimize the potential threats of the confounding
variables in research design. As we have seen in Dunn and her colleagues' study earlier, participants are not allowed to self select
into either conditions (spend $20 on self or spend on others). Instead, they are randomly assigned into either group by the
researcher(s). By doing so, the two groups are likely to be similar on all other factors except the independent variable itself. One
confounding variable mentioned earlier is whether individuals had a happy childhood to begin with. Using random assignment,
those who had a happy childhood will likely end up in each condition group. Similarly, those who didn't have a happy childhood
will likely end up in each condition group too. As a consequence, we can expect the two condition groups to be very similar on this
confounding variable. Applying the same logic, we can use random assignment to minimize all potential confounding variables
(assuming your sample size is large enough!). With that, the only difference between the two groups is the condition participants
are assigned to, which is the independent variable, then we are confident to infer that the independent variable actually causes the
differences in the dependent variables.

It is critical to emphasize that random assignment is the only control technique to control for both known and unknown
confounding variables. With all other control techniques mentioned below, we must first know what the confounding variable is
before controlling it. Random assignment does not. With the simple act of randomly assigning participants into different conditions,
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we take care both the confounding variables we know of and the ones we don't even know that could threat the internal validity of
our studies. As the saying goes, "what you don't know will hurt you." Random assignment take cares of it.

Matching

Matching is another technique we can use to control for extraneous variables. We must first identify the extraneous variable that
can potentially confound the research design. Then we want to rank order the participants on this extraneous variable or list the
participants in a ascending or descending order. Participants who are similar on the extraneous variable will be placed into different
treatment groups. In other words, they are "matched" on the extraneous variable. Then we can carry out the intervention/treatment
as usual. If different treatment groups do show differences on the dependent variable, we would know it is not the extraneous
variables because participants are "matched" or equivalent on the extraneous variable. Rather it is more likely to the independent
variable (i.e., the treatments) that causes the changes in the dependent variable. Use the example above (self-spending vs. others-
spending on happiness) with the same extraneous variable of whether individuals had a happy childhood to begin with. Once we
identify this extraneous variable, we do need to first collect some kind of data from the participants to measure how happy their
childhood was. Or sometimes, data on the extraneous variables we plan to use may be already available (for example, you want to
examine the effect of different types of tutoring on students' performance in Calculus I course and you plan to match them on this
extraneous variable: college entrance test scores, which is already collected by the Admissions Office). In either case, getting the
data on the identified extraneous variable is a typical step we need to do before matching. So going back to whether individuals had
a happy childhood to begin with. Once we have data, we'd sort it in a certain order, for example, from the highest score (meaning
participants reporting the happiest childhood) to the lowest score (meaning participants reporting the least happy childhood). We
will then identify/match participants with the highest levels of childhood happiness and place them into different treatment groups.
Then we go down the scale and match participants with relative high levels of childhood happiness and place them into different
treatment groups. We repeat on the descending order until we match participants with the lowest levels of childhood happiness and
place them into different treatment groups. By now, each treatment group will have participants with a full range of levels on
childhood happiness (which is a strength...thinking about the variation, the representativeness of the sample). The two treatment
groups will be similar or equivalent on this extraneous variable. If the treatments, self-spending vs. other-spending, eventually
shows the differences on individual happiness, then we know it's not due to how happy their childhood was. We will be more
confident it is due to the independent variable.

You may be thinking, but wait we have only taken care of one extraneous variable. What about other extraneous variables? Good
thinking.That's exactly correct. We mentioned a few extraneous variables but have only matched them on one. This is the main
limitation of matching. You can match participants on more than one extraneous variables, but it's cumbersome, if not impossible,
to match them on 10 or 20 extraneous variables. More importantly, the more variables we try to match participants on, the less
likely we will have a similar match. In other words, it may be easy to find/match participants on one particular extraneous variable
(similar level of childhood happiness), but it's much harder to find/match participants to be similar on 10 different extraneous
variables at once.

Holding Extraneous Variable Constant

Holding extraneous variable constant control technique is self-explanatory. We will use participants at one level of extraneous
variable only, in other words, holding the extraneous variable constant. Using the same example above, for example we only want
to study participants with the low level of childhood happiness. We do need to go through the same steps as in Matching:
identifying the extraneous variable that can potentially confound the research design and getting the data on the identified
extraneous variable. Once we have the data on childhood happiness scores, we will only include participants on the lower end of
childhood happiness scores, then place them into different treatment groups and carry out the study as before. If the condition
groups, self-spending vs. other-spending, eventually shows the differences on individual happiness, then we know it's not due to
how happy their childhood was (since we already picked those on the lower end of childhood happiness only). We will be more
confident it is due to the independent variable.

Similarly to Matching, we have to do this one extraneous variable at a time. As we increase the number of extraneous variables to
be held constant, the more difficult it gets. The other limitation is by holding extraneous variable constant, we are excluding a big
chunk of participants, in this case, anyone who are NOT low on childhood happiness. This is a major weakness, as we reduce the
variability on the spectrum of childhood happiness levels, we decreases the representativeness of the sample and generalizabiliy
suffers.
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Building Extraneous Variables into Design
The last control technique building extraneous variables into research design is widely used. Like the name suggests, we would
identify the extraneous variable that can potentially confound the research design, and include it into the research design by treating
it as an independent variable. This control technique takes care of the limitation the previous control technique, holding extraneous
variable constant, has. We don't need to excluding participants based on where they stand on the extraneous variable(s). Instead we
can include participants with a wide range of levels on the extraneous variable(s). You can include multiple extraneous variables
into the design at once. However, the more variables you include in the design, the large the sample size it requires for statistical
analyses, which may be difficult to obtain due to limitations of time, staff, cost, access, etc.
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1.4: Common Experimental Designs

Post-Test Only Control Group Design

In this section we look at some common research designs, the notation used to symbolize them, and then consider the internal
validity of the designs. We start with the most basic experimental design, the Post-test Control Group Design (Figure ). In this
design, subjects are randomly assigned to one of two groups with one group receiving the experimental treatment. This type of
design is called between-subjects design because different participants/subjects are assigned into different groups. In the figure
below, the symbol R means there is a random assignment to the group. X symbolizes exposure to experimental treatment. O is an
observation or measurement. There are advantages to this design in that it is relatively inexpensive and eliminates the threats
associated with pre-testing. If randomization worked the (unobserved) pre-test measures would be the same so any differences in
the observations would be due to the experimental treatment. The problem is that randomization could fail us, especially if the
sample size is small.

Figure : Post-test Only (with a Control Group) Experimental Design

Pretest-Posttest Control Group Design

Many experimental groups are small and many researchers are not comfortable relying on randomization without empirical
verification that the groups are the same, so another common between-subjects design is the Pre-test, Post-test Control Group
Design (Figure ). By conducting a pre-test, we can be sure that the groups are identical when the experiment begins. The
disadvantages are that adding groups drives the cost up (and/or decreases the size of the groups).

Figure : Pre-test, Post-Test (with a Control Group) Experimental Design

This brief discussion illustrates common research designs and the challenges to maximize internal validity. The designs mentioned
above involves random assignment. Therefore they are considered strong experimental designs. With these experimental designs,
we worry about external validity, but since we have said we seek the ability to make causal statements, the preference is given to
research via experimental designs.
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1.5: Common Quasi-Experimental Designs
Recall that when participants in a between-subjects designs are randomly assigned to treatment conditions, the resulting groups are
likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to
conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be
non-equivalent. A non-equivalent comparison group design , then, is a between-subjects design in which participants have not
been randomly assigned to conditions. There are several types of nonequivalent groups designs we will consider.

Posttest Only Non-equivalent Comparison Group Design
The first non-equivalent groups design we will consider is the posttest only non-equivalent comparison group design. In this
design, participants in one group are exposed to a treatment, a nonequivalent group is not exposed to the treatment, and then the
two groups are compared. Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third
graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a
comparison group consisting of another class of third-grade students. This design would be a nonequivalent groups design because
the students are not randomly assigned to classes by the researcher, which means there could be important differences between
them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their
children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because
he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments might be very different and
might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in
the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might
have been caused by any of these confounding variables.

Of course, researchers using a posttest only nonequivalent groups design can take steps to ensure that their groups are as similar as
possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two
classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar
teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most
important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of
other important confounding variables that the researcher was not able to control.

Pretest-Posttest Non-equivalent Comparison Group Design

Another way to improve upon the posttest only nonequivalent groups design is to add a pretest. In the pretest-posttest non-
equivalent comparison group design, there is a treatment group that is given a pretest, receives a treatment, and then is given a
posttest. But at the same time there is a non-equivalent comparison group that is given a pretest, does not receive the treatment, and
then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve, but whether they
change more than participants who do not receive the treatment.

Imagine, for example, that students in one school are given a pretest on their attitudes toward drugs, then are exposed to an anti-
drug program, and finally, are given a posttest. Students in a similar school are given the pretest, not exposed to an anti-drug
program, and finally, are given a posttest. Again, if students in the treatment condition become more negative toward drugs, this
change in attitude could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of
the treatment, then students in the treatment condition should become more negative than students in the comparison condition. But
if it is a matter of history (e.g., news of a celebrity drug overdose) or maturation (e.g., improved reasoning), then students in the
two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the
possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a student drug
overdose), so students at the first school would be affected by it while students at the other school would not.

Returning to the example of evaluating a new measure of teaching third graders, this study could be improved by adding a pretest
of students’ knowledge of fractions. The changes in scores from pretest to posttest would then be evaluated and compared across
conditions to determine whether one group demonstrated a bigger improvement in knowledge of fractions than another. Of course,
the teachers’ styles, and even the classroom environments might still be very different and might cause different levels of
achievement or motivation among the students that are independent of the teaching intervention. Once again, differential history
also represents a potential threat to internal validity. If extremely high level of radon is found in one of the schools causing it to be
shut down for a month, then this interruption in teaching could produce differences across groups on posttest scores.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/32917?pdf
https://stats.libretexts.org/Courses/Kansas_State_University/EDCEP_917%3A_Experimental_Design_(Yang)/01%3A_Introduction_to_Research_Designs/1.05%3A_Common_Quasi-Experimental_Designs


1.5.2 https://stats.libretexts.org/@go/page/32917

Pretest-Posttest Design With Switching Replication
Some of these non-equivalent comparison group designs can be further improved by adding a switching replication. Using a
pretest-posttest design with switching replication design, non-equivalent comparison groups are administered a pretest of the
dependent variable, then one group receives a treatment while a nonequivalent comparison group does not receive a treatment, the
dependent variable is assessed again, and then the treatment is added to the control group, and finally the dependent variable is
assessed one last time.

As a concrete example, let’s say we wanted to introduce an exercise intervention for the treatment of depression. We recruit one
group of patients experiencing depression and a nonequivalent control group of students experiencing depression. We first measure
depression levels in both groups, and then we introduce the exercise intervention to the patients experiencing depression, but we
hold off on introducing the treatment to the students. We then measure depression levels in both groups. If the treatment is effective
we should see a reduction in the depression levels of the patients (who received the treatment) but not in the students (who have not
yet received the treatment). Finally, while the group of patients continues to engage in the treatment, we would introduce the
treatment to the students with depression. Now and only now should we see the students’ levels of depression decrease.

One of the strengths of this design is that it includes a built in replication. In the example given, we would get evidence for the
efficacy of the treatment in two different samples (patients and students). Another strength of this design is that it provides more
control over history effects. It becomes rather unlikely that some outside event would perfectly coincide with the introduction of
the treatment in the first group and with the delayed introduction of the treatment in the second group. For instance, if a change in
the weather occurred when we first introduced the treatment to the patients, and this explained their reductions in depression the
second time that depression was measured, then we would see depression levels decrease in both the groups. Similarly, the
switching replication helps to control for maturation and instrumentation. Both groups would be expected to show the same rates of
spontaneous remission of depression and if the instrument for assessing depression happened to change at some point in the study
the change would be consistent across both of the groups.
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1.6: Non-Experimental Research

What Is Non-Experimental Research?

Non-experimental research is research that lacks the manipulation of an independent variable. Rather than manipulating an
independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the
lab or real world).

Most researchers in social sciences consider the distinction between experimental and non-experimental research to be an
extremely important one. This is because although experimental research can provide strong evidence that changes in an
independent variable cause differences in a dependent variable, non-experimental research generally cannot. As we will see,
however, this inability to make causal conclusions does not mean that non-experimental research is less important than
experimental research. It is simply used in cases where experimental research is not able to be carried out.

When to Use Non-Experimental Research
As we saw earlier, experimental research is appropriate when the researcher has a specific research question or hypothesis about a
causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable. It stands
to reason, therefore, that non-experimental research is appropriate—even necessary—when these conditions are not met. There are
many times in which non-experimental research is preferred, including when:

the research question or hypothesis relates to a single variable rather than a statistical relationship between two variables (e.g.,
how accurate are people’s first impressions?).
the research question pertains to a non-causal statistical relationship between variables (e.g., is there a correlation between
verbal intelligence and mathematical intelligence?).
the research question is about a causal relationship, but the independent variable cannot be manipulated or participants cannot
be randomly assigned to conditions or orders of conditions for practical or ethical reasons (e.g., does damage to a person’s
hippocampus impair the formation of long-term memory traces?).

Again, the choice between the experimental and non-experimental approaches is generally dictated by the nature of the research
question(s).

Types of Non-Experimental Research

The most common type of non-experimental research conducted in social sciences is correlational research. Correlational research
is considered non-experimental because it focuses on the statistical relationship between two variables but does not include the
manipulation of an independent variable. More specifically, in correlational research, the researcher measures two variables with
little or no attempt to control extraneous variables and then assesses the relationship between them. As an example, a researcher
interested in the relationship between self-esteem and school achievement could collect data on students’ self-esteem and their
GPAs to see if the two variables are statistically related. Another example is a researcher interested in the relationship between
education levels and annual income can collect data on individuals highest education levels and their annual income to see if the
two variables are statistically related. In the first example, both variables are interval (continuous). In the second example, one
variable is categorical (educational levels) and one is continuous. In either case, we are studying the variables as they naturally
occur or have occurred.

Cross-Sectional, Longitudinal, and Cross-Sequential Studies

When social scientists wish to study change over time (for example, when developmental psychologists wish to study aging) they
usually take one of three non-experimental approaches: cross-sectional, longitudinal, or cross-sequential. Cross-sectional studies
involve comparing two or more pre-existing groups of people (e.g., children at different stages of development). What makes this
approach non-experimental is that there is no manipulation of an independent variable and no random assignment of participants to
groups. Using this design, developmental psychologists compare groups of people of different ages (e.g., young adults spanning
from 18-25 years of age versus older adults spanning 60-75 years of age) on various dependent variables (e.g., memory, depression,
life satisfaction). Of course, the primary limitation of using this design to study the effects of aging is that differences between the
groups other than age may account for differences in the dependent variable. For instance, differences between the groups may
reflect the generation that people come from (a cohort effect) rather than a direct effect of age. For this reason, longitudinal
studies, in which one group of people is followed over time as they age, offer a superior means of studying the effects of aging.
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However, longitudinal studies are by definition more time consuming and so require a much greater investment on the part of the
researcher and the participants. A third approach, known as cross-sequential studies, combines elements of both cross-sectional
and longitudinal studies. Rather than measuring differences between people in different age groups or following the same people
over a long period of time, researchers adopting this approach choose a smaller period of time during which they follow people in
different age groups. For example, they might measure changes over a ten year period among participants who at the start of the
study fall into the following age groups: 20 years old, 30 years old, 40 years old, 50 years old, and 60 years old. This design is
advantageous because the researcher reaps the immediate benefits of being able to compare the age groups after the first
assessment. Further, by following the different age groups over time they can subsequently determine whether the original
differences they found across the age groups are due to true age effects or cohort effects.

Internal Validity Revisited
Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent
variable caused any observed differences in the dependent variable. Figure  shows how experimental, quasi-experimental, and
non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal
validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out
alternative explanations for the observed relationships. If the average score on the dependent variable in an experiment differs
across conditions, it is quite likely that the independent variable is responsible for that difference. Non-experimental (correlational)
research is lowest in internal validity because these designs fail to use manipulation or control. Quasi-experimental research falls in
the middle because it contains some, but not all, of the features of a true experiment. For instance, it may fail to use random
assignment to assign participants to groups. Imagine, for example, that a researcher finds two similar schools, starts an anti-
bullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” While a
comparison is being made with a control condition, the inability to randomly assign children to schools could still mean that
students in the treatment school differed from students in the control school in some other way that could explain the difference in
bullying (e.g., there may be a selection effect).

Figure : Internal Validity of Correlation, Quasi-Experimental, and Experimental Studies. Experiments are generally high in
internal validity, quasi-experiments lower, and correlation (non-experimental) studies lower still.

Notice also in Figure  that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational
(non-experimental) studies. For example, a poorly designed experiment that includes many confounding variables can be lower in
internal validity than a well-designed quasi-experiment with no obvious confounding variables.
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2.1: Between-Subjects Design

Between-Subjects Design

One way to differentiate different research designs is based on how many treatment(s) or condition(s) a participant receives. In a
between-subjects design, each participant is tested in only one condition. When each participant is tested in more than one
treatment or condition, it is considered a different type of research design, within-subjects design, which we will look at later on.
Going back to between-subjects design, as an example, a researcher with a sample of 100 university students might assign half of
them to write about a traumatic event and the other half write about a neutral event. Or a researcher with a sample of 60 people
with severe agoraphobia (fear of open spaces) might assign 20 of them to receive each of three different treatments for that
disorder. In both examples, there is only one independent variable, or a single factor. These are called between-subjects single
factor design.

Random Assignment

Like as we have seen earlier, the primary way that researchers control for extraneous variables across conditions is called random
assignment , which means using a random process to decide which participants are tested in which conditions. Do not confuse
random assignment with random sampling. Random sampling is a method for selecting a sample from a population. Random
assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all
experimental research.

In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being
assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is
assigned to a condition independently of other participants. Thus one way to assign participants to two conditions would be to flip a
coin for each one. If the coin lands heads, the participant is assigned to Condition A, and if it lands tails, the participant is assigned
to Condition B. For three conditions, one could use a computer to generate a random integer from 1 to 3 for each participant. If the
integer is 1, the participant is assigned to Condition A; if it is 2, the participant is assigned to Condition B; and if it is 3, the
participant is assigned to Condition C. In practice, a full sequence of conditions—one for each participant expected to be in the
experiment—is usually created ahead of time, and each new participant is assigned to the next condition in the sequence as they are
tested. When the procedure is computerized, the computer program often handles the random assignment.

Random assignment is not guaranteed to control all extraneous variables across conditions. The process is random, so it is always
possible that just by chance, the participants in one condition might turn out to be substantially older, less tired, more motivated, or
less depressed on average than the participants in another condition. However, there are some reasons that this possibility is not a
major concern. One is that random assignment works much better than one might expect, especially for large samples. Another
reason is that even if random assignment does result in a confounding variable and therefore produces misleading results, this
confound is likely to be detected when the experiment is replicated. The upshot is that random assignment to conditions—although
not infallible in terms of controlling extraneous variables—is always considered a strength of a research design.

This page titled 2.1: Between-Subjects Design is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Yang
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2.2: One-Way ANOVA
The one-way ANOVA is sometimes also called a between-subjects ANOVA, or an independent factor ANOVA. The critical
ingredient for a one-way between-subjects ANOVA, is that you have one independent variable, with at least two-levels. When you
have one IV with two levels, you can run a -test. You can also run an ANOVA. Interestingly, they give you almost the exact same
results. You will get a -value from both tests that is identical (they are really doing the same thing under the hood). The -test
gives a -value as the important sample statistic. The ANOVA gives you the -value (for Fisher, the inventor of the test, who is
one of the most important statisticians in the history of the field) as the important sample statistic. It turns out that  equals ,
when there are only two groups in the design.

 is computed directly from the data. In fact, the idea behind  is the same basic idea that goes into making . Here is the general
idea behind the formula, it is again a ratio of the effect we are measuring (in the numerator), and the variation associated with the
effect (in the denominator).

The difference with , is that we use variances to describe both the measure of the effect and the measure of error. So,  is a ratio
of two variances.

When the variance associated with the effect is the same size as the variance associated with sampling error, we will get two of the
same numbers, this will result in an -value of 1. When the variance due to the effect is larger than the variance associated with
sampling error, then  will be greater than 1. When the variance associated with the effect is smaller than the variance associated
with sampling error,  will be less than one.

Let’s rewrite in plainer English. We are talking about two concepts that we would like to measure from our data. 1) A measure of
what we can explain, and 2) a measure of error, or stuff about our data we can’t explain. So, the  formula looks like this:

When we can explain as much as we can’t explain,  = 1. This isn’t that great of a situation for us to be in. It means we have a lot
of uncertainty. When we can explain much more than we can’t we are doing a good job,  will be greater than 1. When we can
explain less than what we can’t, we really can’t explain very much,  will be less than 1. That’s the concept behind making .

If you saw an  in the wild, and it was .6. Then you would automatically know the researchers couldn’t explain much of their data.
If you saw an  of 5, then you would know the researchers could explain 5 times more than the couldn’t, that’s pretty good. And
the point of this is to give you an intuition about the meaning of an -value, even before you know how to compute it.

This page titled 2.2: One-Way ANOVA is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Yang Lydia
Yang via source content that was edited to the style and standards of the LibreTexts platform.
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2.3: Computing the F statistics

Computing the -value

Fisher’s ANOVA is very elegant in my opinion. It starts us off with a big problem we always have with data. We have a lot of
numbers, and there is a lot of variation in the numbers, what to do? Wouldn’t it be nice to split up the variation into to kinds, or
sources. If we could know what parts of the variation were being caused by our experimental manipulation (i.e., the independent
variable we choose as researchers), and what parts were being caused by sampling error, we would be making really good progress.
We would be able to know if our experimental manipulation was causing more change in the data than sampling error, or chance
alone. If we could measure those two parts of the total variation, we could make a ratio, and then we would have an  value. This
is what the ANOVA does. It splits the total variation in the data into two parts. The formula is:

Total Variation = Variation due to Manipulation + Variation due to sampling error

This is a nice idea, but it is also vague. We haven’t specified our measure of variation. What should we use?

Remember the sums of squares that we used to make the variance and the standard deviation? That’s what we’ll use. Let’s take
another look at the formula, using sums of squares for the measure of variation:

SS Total
The total sums of squares, or  is a way of thinking about all of the variation in a set of data. It’s pretty straightforward to
measure. No tricky business. All we do is find the difference between each score and the grand mean, then we square the
differences and add them all up.

Let’s imagine we had some data in three groups, A, B, and C. For example, we might have 3 scores in each group. The data could
look like this:

groups scores diff diff_squared

A 20 13 169

A 11 4 16

A 2 -5 25

B 6 -1 1

B 2 -5 25

B 7 0 0

C 2 -5 25

C 11 4 16

C 2 -5 25

Sums 63 0 302

Means 7 0 33.5555555555556

The data is organized in long format, so that each row is a single score. There are three scores for the A, B, and C groups. The
mean of all of the scores is called the Grand Mean. It’s calculated in the table, the Grand Mean = 7.

We also calculated all of the difference scores from the Grand Mean. The difference scores are in the column titled diff .
Next, we squared the difference scores, and those are in the next column called diff_squared .

Remember, the difference scores are a way of measuring variation. They represent how far each number is from the Grand Mean. If
the Grand Mean represents our best guess at summarizing the data, the difference scores represent the error between the guess and
each actual data point. The only problem with the difference scores is that they sum to zero (because the mean is the balancing
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point in the data). So, it is convenient to square the difference scores, which gets rid of the negative signs (or values) and turns all
of them into positive numbers. The size of the squared difference scores still represents error between the mean and each score.
And, the squaring operation exacerbates the differences as the error grows larger (squaring a big number makes a really big
number, squaring a small number still makes a smallish number).

OK fine! We have the squared deviations from the grand mean, we know that they represent the error between the grand mean and
each score. What next? SUM THEM UP!

When you add up all of the individual squared deviations (difference scores) you get the sums of squares. That’s why it’s called the
sums of squares (SS).

Now, we have the first part of our answer:

and

What next? If you think back to what you learned about algebra, and solving for X, you might notice that we don’t really need to
find the answers to both missing parts of the equation. We only need one, and we can solve for the other. For example, if we found 

, then we could solve for .

SS Effect
 gave us a number representing all of the change in our data, how all the scores are different from the grand mean.

What we want to do next is estimate how much of the total change in the data might be due to the experimental manipulation. For
example, if we ran an experiment that causes causes change in the measurement, then the means for each group will be different
from other. As a result, the manipulation forces change onto the numbers, and this will naturally mean that some part of the total
variation in the numbers is caused by the manipulation.

The way to isolate the variation due to the manipulation (also called effect) is to look at the means in each group, and calculate the
difference scores between each group mean and the grand mean, and then sum the squared deviations to find .

Consider this table, showing the calculations for .

groups scores means diff diff_squared

A 20 11 4 16

A 11 11 4 16

A 2 11 4 16

B 6 5 -2 4

B 2 5 -2 4

B 7 5 -2 4

C 2 5 -2 4

C 11 5 -2 4

C 2 5 -2 4

Sums 63 63 0 72

Means 7 7 0 8

Notice we created a new column called means . For example, the mean for group A was 11. You can see there are three 11s, one
for each observation in row A. The means for group B and C happen to both be 5. So, the rest of the numbers in the means column
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are 5s.

What we are doing here is thinking of each score in the data from the viewpoint of the group means. The group means are our best
attempt to summarize the data in those groups. From the point of view of the mean, all of the numbers are treated as the same. The
mean doesn’t know how far off it is from each score, it just knows that all of the scores are centered on the mean.

Now that we have converted each score to it’s mean value we can find the differences between each mean score and the grand
mean, then square them, then sum them up. We did that, and found that the .

 represents the amount of variation that is caused by differences between the means. I also refer to this as the amount of
variation that the researcher can explain (by the means, which represent differences between groups or conditions that were
manipulated by the researcher).

Notice also that , and that 72 is smaller than . That is very important.  by definition can never
be larger than .

SS Error
Great, we made it to SS Error. We already found SS Total, and SS Effect, so now we can solve for SS Error just like this:

switching around:

We could stop here and show you the rest of the ANOVA, we’re almost there. But, the next step might not make sense unless we
show you how to calculate  directly from the data, rather than just solving for it. We should do this just to double-check our
work anyway.

groups scores means diff diff_squared

A 20 11 -9 81

A 11 11 0 0

A 2 11 9 81

B 6 5 -1 1

B 2 5 3 9

B 7 5 -2 4

C 2 5 3 9

C 11 5 -6 36

C 2 5 3 9

Sums 63 63 0 230

Means 7 7 0 25.5555555555556

Alright, we did almost the same thing as we did to find . Can you spot the difference? This time for each score we first
found the group mean, then we found the error in the group mean estimate for each score. In other words, the values in the 
column are the differences between each score and it’s group mean. The values in the diff_squared  column are the
squared deviations. When we sum up the squared deviations, we get another Sums of Squares, this time it’s the . This is an
appropriate name, because these deviations are the ones that the group means can’t explain!
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Degrees of freedom
Degrees of freedom come into play again with ANOVA. This time, their purpose is a little bit more clear. s can be fairly simple
when we are doing a relatively simple ANOVA like this one, but they can become complicated when designs get more
complicated.

Let’s talk about the degrees of freedom for the  and .

The formula for the degrees of freedom for  is

, where Groups is the number of groups in the design.

In our example, there are 3 groups, so the df is 3-1 = 2. You can think of the df for the effect this way. When we estimate the grand
mean (the overall mean), we are taking away a degree of freedom for the group means. Two of the group means can be anything
they want (they have complete freedom), but in order for all three to be consistent with the Grand Mean, the last group mean has to
be fixed.

The formula for the degrees of freedom for  is

, or the number of scores minus the number of groups. We have 9 scores and 3 groups, so our  for the
error term is 9-3 = 6. Remember, when we computed the difference score between each score and its group mean, we had to
compute three means (one for each group) to do that. So, that reduces the degrees of freedom by 3. 6 of the difference scores could
be anything they want, but the last 3 have to be fixed to match the means from the groups.

Mean Squares
OK, so we have the degrees of freedom. What’s next? There are two steps left. First we divide the es by their respective degrees
of freedom to create something new called Mean Squared deviations or Mean Squares. Let’s talk about why we do this.

First of all, remember we are trying to accomplish this goal:

We want to build a ratio that divides a measure of an effect by a measure of error. Perhaps you noticed that we already have a
measure of an effect and error! How about the  and . They both represent the variation due to the effect, and the
leftover variation that is unexplained. Why don’t we just do this?

Well, of course you could do that. What would happen is you can get some really big and small numbers for your inferential
statistic. And, the kind of number you would get wouldn’t be readily interpretable like a  value or a  score.

The solution is to normalize the  terms. Don’t worry, normalize is just a fancy word for taking the average, or finding the mean.
Remember, the SS terms are all sums. And, each sum represents a different number of underlying properties.

For example, the SS effect represents the sum of variation for three means in our study. We might ask the question, well, what is the
average amount of variation for each mean…You might think to divide SS effect by 3, because there are three means, but because
we are estimating this property, we divide by the degrees of freedom instead (# groups - 1 = 3-1 = 2). Now we have created
something new, it’s called the .

This might look alien and seem a bit complicated. But, it’s just another mean. It’s the mean of the sums of squares for the effect. It
shows the change in the data due to changes in the means (which are tied to the experimental conditions).

The  represents the sum of variation for nine scores in our study. That’s a lot more scores, so the  is often way
bigger than than . If we left our SS error this way and divided them, we would almost always get numbers less than one,
because the  is so big. What we need to do is bring it down to the average size. So, we might want to divide our  by
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9, after all there were nine scores. However, because we are estimating this property, we divide by the degrees of freedom instead
(scores-groups) = 9-3 = 6). Now we have created something new, it’s called the .

Calculate F

Now that we have done all of the hard work, calculating  is easy:

Once we have the F statistics, we can find the corresponding significance or p value (the statistics program you use for calculation
will likely present this value in the output automatically), and compare it to the pre-determined p critical value to make a decision
about the null hypothesis.

This page titled 2.3: Computing the F statistics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Yang
Lydia Yang via source content that was edited to the style and standards of the LibreTexts platform.
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2.4 Post Hoc Tests
If we are able to reject the null hypothesis in the ANOVA F test, it tells us not all group means are equal. In other words, there are
some differences among group means. But we don't know where the difference is. This is where post hoc tests come in.

A post hoc test is used only after we find a statistically significant result and need to determine where our differences truly came
from. The term “post hoc” comes from the Latin for “after the event”. There are many different post hoc tests that have been
developed, and most of them will give us similar answers. We will only focus here on the most commonly used ones. We will also
only discuss the concepts behind each and will not worry about calculations.

Bonferroni Test
A Bonferroni test is perhaps the simplest post hoc analysis. A Bonferroni test is a series of -tests performed on each pair of groups.
As we discussed earlier, the number of groups quickly grows the number of comparisons, which inflates Type I error rates. To
avoid this, a Bonferroni test divides our significance level α by the number of comparisons we are making so that when they are all
run, they sum back up to our original Type I error rate. Once we have our new significance level, we simply run independent
samples t-tests to look for difference between our pairs of groups. This adjustment is sometimes called a Bonferroni Correction,
and it is easy to do with statistical program as we compare obtained p-values to our the α level.

Tukey’s Honest Significant Difference

Tukey’s Honest Significant Difference (HSD) is a very popular post hoc analysis. This analysis, like Bonferroni’s, makes
adjustments based on the number of comparisons, but it makes adjustments to the test statistic when running the comparisons of
two groups. These comparisons give us an estimate of the difference between the groups and a confidence interval for the estimate.
We use this confidence interval in the same way that we use a confidence interval for a regular independent samples t-test: if it
contains 0.00, the groups are not different, but if it does not contain 0.00 then the groups are different.

Games-Howell Post Hoc Tests
Bonferroni and Tukey HSD post hoc tests can be used when the assumption of homogeneity of variance can be assumed across
comparison groups. However, when the assumption of homogeneity of variance is violated, Games-Howell test is the typical post
hoc analysis. Like the analyses mentioned above, it makes appropriate adjustments based on the number of tests when comparing
differences of each pair of means. Games-Howell tests also provide confidence interval for group mean differences and show
whether each pairwise comparison is statistically significant. If the confidence interval contains 0, then the groups are similar. If it
doens't contain 0, then the groups are statistically different.
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3.1: Factorial Designs
Just as it is common for studies in education (or social sciences in general) to include multiple levels of a single independent
variable (new teaching method, old teaching method), it is also common for them to include multiple independent variables. Just as
including multiple levels of a single independent variable allows one to answer more sophisticated research questions, so too does
including multiple independent variables in the same experiment. But including multiple independent variables also allows the
researcher to answer questions about whether the effect of one independent variable depends on the level of another. This is
referred to as an interaction between the independent variables. As we will see, interactions are often among the most interesting
results in empirical research.

Factorial Designs

Overview

By far the most common approach to including multiple independent variables (which are also called factors or ways) in an
experiment is the factorial design. In a between-subjects factorial design, each level of one independent variable is combined with
each level of the others to produce all possible combinations. Each combination, then, becomes a condition in the experiment.
Imagine, for example, an experiment on the effect of cell phone use (yes vs. no) and time of day (day vs. night) on driving ability.
This is shown in the factorial design table in Figure . The columns of the table represent cell phone use, and the rows
represent time of day. The four cells of the table represent the four possible combinations or conditions: using a cell phone during
the day, not using a cell phone during the day, using a cell phone at night, and not using a cell phone at night. This particular design
is referred to as a 2 × 2 (read “two-by-two”) factorial design because it combines two variables, each of which has two levels.

If one of the independent variables had a third level (e.g., using a handheld cell phone, using a hands-free cell phone, and not using
a cell phone), then it would be a 3 × 2 factorial design, and there would be six distinct conditions. Notice that the number of
possible conditions is the product of the numbers of levels. A 2 × 2 factorial design has four conditions, a 3 × 2 factorial design has
six conditions, a 4 × 5 factorial design would have 20 conditions, and so on. Also notice that each number in the notation represents
one factor, one independent variable. So by looking at how many numbers are in the notation, you can determine how many
independent variables there are in the experiment. 2 x 2, 3 x 3, and 2 x 3 designs all have two numbers in the notation and therefore
all have two independent variables. Some people refer to these are two-way factorial ANOVA. The numerical value of each of the
numbers represents the number of levels of each independent variable. A 2 means that the independent variable has two levels, a 3
means that the independent variable has three levels, a 4 means it has four levels, etc. To illustrate, a 3 x 3 design has two
independent variables, each with three levels, while a 2 x 2 x 2 design has three independent variables, each with two levels.

Figure : Factorial Design Table Representing a 2 × 2 Factorial Design
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In principle, factorial designs can include any number of independent variables with any number of levels. For example, an
experiment could include the type of psychotherapy (cognitive vs. behavioral), the length of the psychotherapy (2 weeks vs. 2
months), and the sex of the psychotherapist (female vs. male). This would be a 2 × 2 × 2 factorial design and would have eight
conditions. Figure  shows one way to represent this design. In practice, it is unusual for there to be more than three
independent variables with more than two or three levels each. This is for at least two reasons: For one, the number of conditions
can quickly become unmanageable. For example, adding a fourth independent variable with three levels (e.g., therapist experience:
low vs. medium vs. high) to the current example would make it a 2 × 2 × 2 × 3 factorial design with 24 distinct conditions. Second,
the number of participants required to populate all of these conditions (while maintaining a reasonable ability to detect a real
underlying effect) can render the design unfeasible. As a result, in the remainder of this section, we will focus on designs with two
independent variables. The general principles discussed here extend in a straightforward way to more complex factorial designs.

Figure : Factorial Design Table Representing a 2 × 2 × 2 Factorial Design

Assigning Participants to Conditions

Recall that in a between-subjects single factor design, each participant is tested in only one condition. In a between-subjects
factorial design, all of the independent variables are manipulated between subjects. For example, all participants could be tested
either while using a cell phone or while not using a cell phone and either during the day or during the night. This would mean that
each participant would be tested in one and only one condition.

Since factorial designs have more than one independent variable, it is also possible to manipulate one independent variable between
subjects and another within subjects. This is called a mixed factorial design. For example, a researcher might choose to treat cell
phone use as a within-subjects factor by testing the same participants both while using a cell phone and while not using a cell
phone. But they might choose to treat time of day as a between-subjects factor by testing each participant either during the day or
during the night (perhaps because this only requires them to come in for testing once). Thus each participant in this mixed design
would be tested in two of the four conditions. This is a complex design with complex statistical analyses. In the remainder of this
section, we will focus on between-subjects factorial designs only. Also, regardless of the design, the actual assignment of
participants to conditions is typically done randomly.

Non-Manipulated Independent Variables
In many factorial designs, one of the independent variables is a non-manipulated independent variable. The researcher measures
it but does not manipulate it. An example is a study by Halle Brown and colleagues in which participants were exposed to several
words that they were later asked to recall (Brown, Kosslyn, Delamater, Fama, & Barsky, 1999) . The manipulated independent
variable was the type of word. Some were negative health-related words (e.g., tumor, coronary), and others were not health related

3.1.2

3.1.2

[1]

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/32925?pdf


3.1.3 https://stats.libretexts.org/@go/page/32925

(e.g., election, geometry). The non-manipulated independent variable was whether participants were high or low in hypochondriasis
(excessive concern with ordinary bodily symptoms). The result of this study was that the participants high in hypochondriasis were
better than those low in hypochondriasis at recalling the health-related words, but they were no better at recalling the non-health-
related words.

Such studies are extremely common, and there are several points worth making about them. First, non-manipulated independent
variables are usually participant background variables (self-esteem, gender, and so on), and as such, they are by definition between-
subjects factors. For example, people are either low in self-esteem or high in self-esteem; they cannot be tested in both of these
conditions. Second, such studies are generally considered to be experiments as long as at least one independent variable is
manipulated, regardless of how many non-manipulated independent variables are included. Third, it is important to remember that
causal conclusions can only be drawn about the manipulated independent variable. Thus it is important to be aware of which
variables in a study are manipulated and which are not.

Non-Experimental Studies With Factorial Designs

Thus far we have seen that factorial experiments can include manipulated independent variables or a combination of manipulated
and non-manipulated independent variables. But factorial designs can also include only non-manipulated independent variables, in
which case they are no longer experiment designs, but are instead non-experimental in nature. Consider a hypothetical study in
which a researcher simply measures both the moods and the self-esteem of several participants—categorizing them as having either
a positive or negative mood and as being either high or low in self-esteem—along with their willingness to have unprotected sex.
This can be conceptualized as a 2 × 2 factorial design with mood (positive vs. negative) and self-esteem (high vs. low) as non-
manipulated between-subjects factors. Willingness to have unprotected sex is the dependent variable.

Again, because neither independent variable in this example was manipulated, it is a non-experimental study rather than an
experimental design. This is important because, as always, one must be cautious about inferring causality from non-experimental
studies because of the threats of potential confounding variables. For example, an effect of participants’ moods on their willingness
to have unprotected sex might be caused by any other variable that happens to be correlated with their moods.

References
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3.2: Factorial ANOVA - Main Effects

Graphing the Results of Factorial Designs

The results of between-subjects factorial designs with two independent variables can be graphed by representing one independent
variable on the x-axis and representing the other by using different colored bars or lines. (The y-axis is always reserved for the
dependent variable.) Figure  shows results for two hypothetical factorial experiments. The top panel shows the results of a 2 ×
2 design. Time of day (day vs. night) is represented by different locations on the x-axis, and cell phone use (no vs. yes) is
represented by different-colored bars. (It would also be possible to represent cell phone use on the x-axis and time of day as
different-colored bars. The choice comes down to which way seems to communicate the results most clearly.) The bottom panel of
Figure  shows the results of a 4 × 2 design in which one of the variables is quantitative. This variable, psychotherapy length, is
represented along the x-axis, and the other variable (psychotherapy type) is represented by differently formatted lines. This is a line
graph rather than a bar graph because the variable on the x-axis is quantitative with a small number of distinct levels. Line graphs
are also appropriate when representing measurements made over a time interval on the x-axis.

Figure : Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables

Main Effects
In factorial designs, there are three kinds of results that are of interest: main effects, interaction effects, and simple effects. A main
effect is the effect of one independent variable on the dependent variable—averaging across the levels of the other independent
variable. Thus there is one main effect to consider for each independent variable in the study. The top panel of Figure  shows a
main effect of cell phone use because driving performance was better, on average, when participants were not using cell phones
than when they were. The blue bars are, on average, higher than the red bars. It also shows a main effect of time of day because
driving performance was better during the day than during the night—both when participants were using cell phones and when they
were not. Main effects are independent of each other in the sense that whether or not there is a main effect of one independent
variable says nothing about whether or not there is a main effect of the other. The bottom panel of Figure , for example, shows
a clear main effect of psychotherapy length. The longer the psychotherapy, the better it worked.
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3.3: Factorial ANOVA - Interaction Effects

Interaction Effects

There is an interaction effect (or just “interaction”) when the effect of one independent variable depends on the level of another.
Although this might seem complicated, you already have an intuitive understanding of interactions. As an everyday example,
assume your friend asks you to go to a movie with another friend. Your response to her is, “well it depends on which movie you are
going to see and who else is coming.” You really want to see the big blockbuster summer hit but have little interest in seeing the
cheesy romantic comedy. In other words, there is a main effect of type of movie on your decision. If your decision to go to see
either of these movies further depends on who she is bringing with her then there is an interaction. For instance, if you will go to
see the big blockbuster summer hit if she brings her cool friend you get along with, but you will not go to this movie if she brings
her boring friend, then there is an interaction.

Let’s now consider some examples of interactions from research. It probably would not surprise you to hear that the effect of
receiving psychotherapy is stronger among people who are highly motivated to change than among people who are not motivated
to change. This is an interaction because the effect of one independent variable (whether or not one receives psychotherapy)
depends on the level of another (motivation to change).

In many studies, the primary research question is about an interaction. The study by Brown and her colleagues was inspired by the
idea that people with hypochondriasis are especially attentive to any negative health-related information. This led to the hypothesis
that people high in hypochondriasis would recall negative health-related words more accurately than people low in hypochondriasis
but recall non-health-related words about the same as people low in hypochondriasis. And of course, this is exactly what happened
in this study.

Types of Interactions

The effect of one independent variable can depend on the level of the other in several different ways. Note that these different types
of interactions are simply nice to know in case you read about them in the manuscripts. But the ultimate goal is to understand what
interaction means (when the effect of one IV on DV depends on the level of another IV) and what it looks like (see the panels and
bars below). Here we go.

First, there can be spreading interactions. Examples of spreading interactions are shown in the top two panels of Figure . In
the top panel, independent variable “B” has an effect at level 1 of independent variable “A” (there is a difference in the height of
the blue and red bars on the left side of the graph) but no effect at level 2 of independent variable “A.” (there is no difference in the
height of the blue and red bars on the right side of the graph). In the middle panel, independent variable “B” has a stronger effect at
level 1 of independent variable “A” than at level 2 (there is a larger difference in the height of the blue and red bars on the left side
of the graph and a smaller difference in the height of the blue and red bars on the right side of the graph). So to summarize, for
spreading interactions there is an effect of one independent variable at one level of the other independent variable and there is either
a weak effect or no effect of that independent variable at the other level of the other independent variable.

The second type of interaction that can be found is a cross-over interaction. A cross-over interaction is depicted in the bottom
panel of Figure , independent variable “B” again has an effect at both levels of independent variable “A,” but the effects are in
opposite directions. An example of a crossover interaction comes from a study by Kathy Gilliland on the effect of caffeine on the
verbal test scores of introverts and extraverts (Gilliland, 1980). Introverts perform better than extraverts when they have not
ingested any caffeine. But extraverts perform better than introverts when they have ingested 4 mg of caffeine per kilogram of body
weight.
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Figure : Bar Graphs Showing Three Types of Interactions. In the top panel, one independent variable has an effect at one level
of the second independent variable but not at the other. In the middle panel, one independent variable has a stronger effect at one
level of the second independent variable than at the other. In the bottom panel, one independent variable has the opposite effect at
one level of the second independent variable than at the other.

Figure  shows examples of these same kinds of interactions when one of the independent variables is quantitative and the
results are plotted in a line graph. Note that the top two figures depict the two kinds of spreading interactions that can be found
while the bottom figure depicts a crossover interaction (the two lines literally “cross over” each other).
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Figure : Line Graphs Showing Different Types of Interactions. In the top panel, one independent variable has an effect at one
level of the second independent variable but not at the other. In the middle panel, one independent variable has a stronger effect at
one level of the second independent variable than at the other. In the bottom panel, one independent variable has the opposite effect
at one level of the second independent variable than at the other.
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3.4: Factorial ANOVA - Simple Effects

Simple Effects

When researchers find an interaction it suggests that the main effects may be a bit misleading. Still using Gilliland's study (1980)
mentioned on the last page, think of the example of a crossover interaction where introverts were found to perform better on a test
of verbal test performance than extraverts when they had not ingested any caffeine, but extraverts were found to perform better than
introverts when they had ingested 4 mg of caffeine per kilogram of body weight. To examine the main effect of caffeine
consumption, the researchers would have averaged across introversion and extraversion and simply looked at whether overall those
who ingested caffeine had better or worse verbal memory test performance. Because the positive effect of caffeine on extraverts
would be wiped out by the negative effects of caffeine on the introverts, no main effect of caffeine consumption would have been
found. Similarly, to examine the main effect of personality, the researchers would have averaged across the levels of the caffeine
variable to look at the effects of personality (introversion vs. extraversion) independent of caffeine. In this case, the positive effects
extraversion in the caffeine condition would be wiped out by the negative effects of extraversion in the no caffeine condition. Does
the absence of any main effects mean that there is no effect of caffeine and no effect of personality? No of course not.

The presence of the interaction indicates that the story is more complicated, that the effects of caffeine on verbal test performance
depend on personality. This is where simple effects come into play. Simple effects are a way of breaking down the interaction to
figure out precisely what is going on. An interaction simply informs us that the effects of at least one independent variable depend
on the level of another independent variable. Whenever an interaction is detected, researchers need to conduct additional analyses
to determine where that interaction is coming from. Of course one may be able to visualize and interpret the interaction on a graph
but a simple effects analysis provides researchers with a more sophisticated means of breaking down the interaction. Specifically, a
simple effects analysis allows researchers to determine the effects of each independent variable at each level of the other
independent variable. So while the researchers would average across the two levels of the personality variable to examine the
effects of caffeine on verbal test performance in a main effects analysis, for a simple effects analysis the researchers would examine
the effects of caffeine in introverts and then examine the effects of caffeine in extraverts. As we saw previously, the researchers also
examined the effects of personality in the no caffeine condition and found that in this condition introverts performed better than
extraverts. Finally, they examined the effects of personality in the caffeine condition and found that extraverts performed better
than introverts in this condition. For a 2 x 2 design like this, there will be two main effects the researchers can explore and four
simple effects.

As described previously, Brown and colleagues found an interaction between type of words (health related or not health related)
and hypochondriasis (high or low) on word recall. To break down this interaction using simple effects analyses they examined the
effect of hypochondriasis at each level of word type. Specifically, they examined the effect of hypochondriasis on recall of health-
related words and then they subsequently examined the effect of hypochondriasis on recall of non-health related words. They found
that people high in hypochondriasis were able to recall more health-related words than people low in hypochondriasis. In contrast,
there was no effect of hypochondriasis on the recall of non-health related words.

Once again examining simple effects provides a means of breaking down the interaction and therefore it is only necessary to
conduct these analyses when an interaction is present. When there is no interaction then the main effects will tell the complete and
accurate story. To summarize, rather than averaging across the levels of the other independent variable, as is done in a main effects
analysis, simple effects analyses are used to examine the effects of each independent variable at each level of the other independent
variable(s). So a researcher using a 2×2 design with four conditions would need to look at 2 main effects and 4 simple effects. A
researcher using a 2×3 design with six conditions would need to look at 2 main effects and 5 simple effects, while a researcher
using a 3×3 design with nine conditions would need to look at 2 main effects and 6 simple effects. As you can see, while the
number of main effects depends simply on the number of independent variables included (one main effect can be explored for each
independent variable), the number of simple effects analyses depends on the number of levels of the independent variables
(because a separate analysis of each independent variable is conducted at each level of the other independent variable).

This page titled 3.4: Factorial ANOVA - Simple Effects is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Yang Lydia Yang.
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3.5: Partioning the Sum of Squares
While we are not going into calculating the ANOVA table in factorial ANOVA, we will look at how to partition the sums of
squares. ANOVAs are all about partitioning the sums of squares. We already did some partitioning in the last chapter. What do we
mean by partitioning?

Imagine you had a big empty house with no rooms in it. What would happen if you partitioned the house? What would you be
doing? One way to partition the house is to split it up into different rooms. You can do this by adding new walls and making little
rooms everywhere. That’s what partitioning means, to split up.

The act of partitioning, or splitting up, is the core idea of ANOVA. To use the house analogy. Our total sums of squares (SS Total)
is our big empty house. We want to split it up into little rooms. Before we partitioned SS Total using this formula:

Remember, the  was the variance we could attribute to the means of the different groups, and  was the leftover
variance that we couldn’t explain.  and  are the partitions of , they are the little rooms.

Now let's see how we can split up the house in factorial ANOVA. We will still use the example in section 3.1, the experiment on
the effect of cell phone use (yes vs. no) and time of day (day vs. night) on driving ability. This is a 2 x 2 ANOVA. Cell phone use is
IV1. Time of day is IV2. Remember the logic of the ANOVA is to partition the variance into different parts. The SS formula for the
between-subjects 2 x 2 ANOVA looks like this:

Now we split up the house into a lot more little rooms, , , , and .

SS Total
We calculate the grand mean (mean of all of the score). Then, we calculate the differences between each score and the grand mean.
We square the difference scores, and sum them up. That is , as always.

SS Cell Phone Use (IV1)
We need to compute the SS for the main effect for cell phone use. This step is essentially the same as how we calculated the SS
effect in single-factor between-subjects ANOVA. the key is when we calculate the main effect of cell phone use, we ignore the
other IV time of day. We calculate the grand mean (mean of all of the scores). Then, we calculate the means for the two cell phone
use conditions (yes vs. no). Then we treat each score as if it was the mean for it’s respective cell phone use condition. We find the
differences between each cell phone use condition mean and the grand mean. Then we square the differences and sum them up.
That is . Again, the key is when we calculate the main effect of one independent variable, we ignore the other
independent variable or pretend it doesn't exist.

SS Time of Day (IV2)

We need to compute the SS for the main effect for time of day. Similarly, when we calculate the main effect of time of day, we
ignore the other IV cell phone use. We calculate the grand mean (mean of all of the scores). Then, we calculate the means for the
two time of day conditions (day vs. night). Then we treat each score as if it was the mean for it’s respective time of day condition.
We find the differences between each time of day condition mean and the grand mean. Then we square the differences and sum
them up. That is . Again, this step is essentially the same as how we calculated the SS effect in single-factor between-
subjects ANOVA. The key is when we calculate the main effect of one independent variable, we ignore the other independent
variable or pretend it doesn't exist.

SS Cell Phone Use by Time
We need to compute the SS for the interaction effect between cell phone use and time of day. This is the new thing that we do in an
ANOVA with more than one IV. How do we calculate the variation explained by the interaction?

The heart of the question is something like this. Do the individual means for each of the four conditions do something a little bit
different than the group means for both of the independent variables.
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For example, let's say the overall mean for all of the scores in the no cell phone group to be 6.6. Now, was the mean for each no cell
phone group in the whole design a 6.6? For example, in the day group, was the mean for no cell phone condition also 6.6? Let's say
the answer is no, it was 9.6. How about the night group? Was the mean for the night condition in the no cell phone group 6.6? Let's
say the answer is no, it was 3.6. The mean of 9.6 and 3.6 is 6.6. If there was no hint of an interaction, we would expect that the
means for the no cell phone condition in both levels of the time of day group would be the same, they would both be 6.6. However,
when there is an interaction, the means for the no cell phone group will depend on the levels of the group from another IV. In this
case, it looks like there is an interaction because the means are different from 6.6, they are 9.6 for the day condition and 3.6 for the
night conditions. This is extra-variance that is not explained by the mean for the no cell phone condition. We want to capture this
extra variance and sum it up. Then we will have measure of the portion of the variance that is due to the interaction between the
cell phone use and time of day conditions.

What we will do is this. We will find the four condition means. Then we will see how much additional variation they explain
beyond the group means for cell phone use and time of day. To do this we treat each score as the condition mean for that score.
Then we subtract the mean for the cell phone use group, and the mean for the time of day group, and then we add the grand mean.
This gives us the unique variation that is due to the interaction.

Here is a formula to describe the process for each score:

We would apply this formula to the calculation of each of the differences scores. We then square the difference scores, and sum
them up to get .

SS Error
The last thing we need to find is the SS Error. We can solve for that because we found everything else in this formula:

Even though this textbook meant to explain things in a step by step way, you are probably tired from reading how to work out the
2x2 ANOVA by hand. I have already shown you how to compute the SS for error before, so we will not do the full example here.
In essence, not every score in a particular condition group is the same. We subtract each score (from a particular condition) and
from the condition mean, square the differences, and add them up. Then we do this same step for each condition group, and
combined, we will get SS Error.

Like mentioned earlier, we are not going into details of ANOVA calculations here. Please refer to the lecture for those. The key is
to know the difference between one-way ANOVA and factorial ANOVA. The advantage of factorial ANOVA over multiple one-
way ANOVA is its ability to examine the potential Interaction effects.

This page titled 3.5: Partioning the Sum of Squares is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Yang Lydia Yang via source content that was edited to the style and standards of the LibreTexts platform.
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4.1: Overview of the Control Variable
In the first chapter, we talked about many different threats to internal validity of a research design and one of the control techniques
is to build the extraneous variable into our research design. In this chapter, we will extend between-subjects design by looking at
different ways to add in an extraneous or a control variable. Why do we need to add control variables? And what criteria should we
use when selecting control variables? The main reason we want to include control variables is that the control variables are having
an effect on the dependent variable we are studying. Since control variables are not the independent variables in our research, they
could potentially confound the results of the study if left unattended. In other words, they can impose threats to the internal validity
of the research design. By taking some measures to include the control variables, we are minimizing their effect on the dependent
variable, which gives us more confidence to claim it is the independent variable, not the control variable, that causes changes in the
dependent variable.

Using the example from the previous chapter, let's say we are conducting an experiment on the effect of cell phone use (yes vs. no)
on driving ability. The independent variable is cell phone use with two treatment conditions (yes or no) and the dependent variable
is driving ability. A potential control variable would be driving experience as driving experience is most likely to have an impact on
driving ability. In order to reduce the potential threat driving experience has on driving ability, we can add it into our study as a
control variable. Although it is not the focus of the study, control variable IS a part of your study as we know it influences the
outcome variable. By including driving experience into our study, we can minimizing its effect on our research design, and be more
confident it is the cell phone use, not driving experience, that leads to changes in driving ability. Therefore adding control variables
can increase the internal validity of the research design.

How do we select control variables? Any variables can be potential control variables as long as there is good theoretical or
empirical evidence(s) to show they influence the outcome variables. The nature of the variable is not a concern. The control
variable can be categorical or continuous. Using the same example above, to measure driving experience, we can ask participants to
identify which following level of driving experience represents them the best - seasoned, intermediate, or inexperienced. Or we can
ask participants to identify how many months they have driven. Or if you are concerned about the accuracy of participants' own
estimation, you can ask participants the age they received their driving license and do the calculation yourself. Regardless how you
measure it, as long as the control variable is solid, as in it indeed influences the outcome variable, it can be included in the research
study.

Then how do we use different types of control variables? There are two major ways to use control variables. One is randomized
block design, which uses control variables at the design stage when we actively set up the experiment. Randomized block design
typically uses categorical control variables. The other one is analysis of covariance, which uses control variables at the data
analysis stage when we analyze the statistical data. Analysis of covariance typically uses continuous variables. We will look at each
of them closely in the following sections.

This page titled 4.1: Overview of the Control Variable is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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4.2: Radomized Block Design
In randomized block design, the control technique is done through the design itself. First the researchers need to identify a potential
control variable that most likely has an effect on the dependent variable. Researchers will group participants who are similar on this
control variable together into blocks. This control variable is called a blocking variable in the randomized block design. The
purpose of the randomized block design is to form groups that are homogeneous on the blocking variable, and thus can be
compared with each other based on the independent variable.

How to Carry Out a Randomized Block Design
Using the example from the last section, we are conducting an experiment on the effect of cell phone use (yes vs. no) on driving
ability. The independent variable is cell phone use and the dependent variable is driving ability. A potential control variable would
be driving experience as it most likely has an effect on driving ability. Driving experience in this case can be used as a blocking
variable. We will then divide up the participants into multiple groups or blocks, so that those in each block share similar driving
experiences. For example, let's say we decide to place them into three blocks based on driving experience - seasoned; intermediate;
inexperienced. You may wonder how we decide on three blocks. We will get to this in a little bit.

Once the participants are placed into blocks based on the blocking variable, we would carry out the experiment to examine the
effect of cell phone use (yes vs. no) on driving ability. Those in each block will be randomly assigned into either treatment
conditions of the independent variable, cell phone use (yes vs. no). As we carry out the study, participants' driving ability will be
assessed. We can determine whether cell phone use has an effet on driving ability after controlling for driving experience. Again,
since seasoned drivers are randomly assigned into both cell phone use conditions, as well as those with intermediate driving
experience, and little driving experience, we already took care of the effect of the blocking variable, driving experience; so we are
confident varied driving experience is not competing with the independent variable, cell phone use, in explaining the outcome
variable, driving ability.

No Blocking Variable vs. Having a Blocking Variable

Randomized block design still uses ANOVA analysis, called randomized block ANOVA. When participants are placed into a block,
we anticipate them to be homogeneous on the control variable, or the blocking variable. In other words, there should be less
variability within each block on the control variable, compared to the variability in the entire sample if there were no control
variable. Again going back to the same example, seasoned drivers may still vary in their driving experiences, but they are more
similar to each other, thus as a subgroup would have less variability in driving experience than that of the entire sample. This is the
key advantage of randomized block design. Less within-block variability reduces the error term and makes estimate of the
treatment effect more robust or efficient, compared to without the blocking variable.

Without the blocking variable, ANOVA has two parts of variance, SS intervention and SS error. All variance that can't be explained
by the independent variable is considered error. By adding the blocking variable, we partition out some of the error variance and
attribute it to the blocking variable. As a results, there will be three parts of the variance in randomized block ANOVA, SS
intervention, SS block, and SS error, and together they make up SS total. In doing so, the error variance will be reduced since part
of the error variance is now explained by the blocking variable. In F tests, we look at the ratio of effect and error. When the
numerator (i.e., error) decreases, the calculated F is going to be larger. We will achieve a smaller P obtained value, and are more
likely to reject the null hypothesis. In other words, good blocking variables decreases error, which increases statistical power.

While it is true randomized block design could be more powerful than single-factor between-subjects randomized design, this
comes with an important condition. That is we must select good blocking variables. As you have seen from the procedure described
above, it shouldn't come as a surprise that it is very difficult to include many blocking variables. For one, the procedure becomes
cumbersome. Also, as the number of blocking variables increases, we need to create more blocks. Each block has to have a
sufficient group size for statistical analysis, therefore, the sample size can increase rather quickly. The selection of blocking
variables should be based on previous literature.

Furthermore, as mentioned early, researchers have to decide how many blocks should there be, once you have selected the blocking
variable. We want to carefully consider whether the blocks are homogeneous. In the case of driving experience as a blocking
variable, are three groups sufficient? Can we reasonably believe that seasoned drivers are more similar to each other than they are
to those with intermediate or little driving experience? It is a subjective decision left up to the researchers. If the blocks aren't
homogeneous, their variability will not be less than that of the entire sample. In that situation, randomized block design can
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decreases the statistical power and thus be worse than a simple single-factor between-subjects randomized design. Again, your best
bet on finding an optimal number of blocks is from theoretical and/or empirical evidences.

Assumptions of Randomized Block Design/ANOVA
Randomized block ANOVA shares all assumptions of regular ANOVA. There are two additional assumptions unique to
randomized block ANOVA.

First, the blocking variable should have an effect on the dependent variable. Just like in the example above, driving experience has
an impact on driving ability. This is why we picked this particular variable as the blocking variable in the first place. Even though
we are not interested in the blocking variable, we know based on the theoretical and/or empirical evidence that the blocking
variable has an impact on the dependent variable. By adding it into the model, we reduce its likelihood to confound the effect of the
treatment (independent variable) on the dependent variable. If the blocking variable (or the groupings of the block) has little effect
on the dependent variable, the results will be biased and inaccurate. We are less likely to detect an effect of the treatment on the
outcome variable if there is one.

Second, the blocking variable cannot interact with the independent variable. In the example above, the cell phone use treatment
(yes vs. no) cannot interact with driving experience. This means the effect of cell phone use treatment (yes vs. no) on the dependent
variable, driving ability, should not be influenced by the level of driving experience (seasoned, intermediate, inexperienced). In
other words, the impact of cell phone use treatment (yes vs. no) on the dependent variable should be similar regardless of the level
of driving experience. If this assumption is violated, randomized block ANOVA should not performed. One possible alternative is
to treat it like a factorial ANOVA where the independent variables are allowed to interact with each other.
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4.4: Analysis of Covariance (ANCOVA)
As mentioned earlier this chapter, there are two ways to add control variables into a research study. One is through design, such as
randomized block design. The other is through statistical control, known as analysis of covariance. The control variables are called
covariates. Covariates usually have an impact on the dependent variable and thus can be included into an ANOVA analysis. We can
this technique analysis of covariance (ANCOVA).

Analysis of Covariance (ANCOVA)
Recall in randomized block design/ANOVA, we would utilize the control variable in the design stage by sorting participants and
grouping them into different blocks based on the control variable. By doing that, the participants will be similar on the control
variable before they are assigned into different treatment or intervention groups. However, in ANCOVA, we don't do anything with
the control variable, or the covariate, in the design stage. Instead, we simply collect the data on the covariate along with other data
we would collect from participants, and analyze the covariate during the data analysis stage. That's why this is considered a
statistical control technique.

Still using the same example as used in randomized block design, we are conducting an experiment on the effect of cell phone use
(yes vs. no) on driving ability and include driving experience (as measured by months of driving) as a control variable. Instead of
grouping participants into different blocks based on their driving experience, in ANCOVA, we would treat driving experience as a
covariate and simply collect data on it and analyze it using ANCOVA technique. Or another example is, say we want to test the
impact of different teaching methods on students' performance in an introductory calculus course. Previous research has established
that math scores on college entrance test impacts students' performance in calculus courses. Therefore, we would include ACT
math scores as the covariate. Notice that, in both cases, driving experience (as measured by months of driving) and ACT math
scores, are intervally scaled variables. This is typically the expectations of ANCOVA, to have the covariate on an interval scale. As
a matter of fact, we would expect there to be a linear relationship between the covariate and the dependent variable. More on this in
a little bit.

ANCOVA is an extension of ANOVA. The main advantage of using ANCOVA over using ANOVA is that by adding covariates
into the study/model, we are minimizing the effect of the covariates on the dependent variable. Recall, the covariates are known to
have an influence on the dependent variable, which is why they are included in the study in the first place. By controlling for the
effect of covariate, we are reducing its threat to confound the results, and this gives us more confidence to establish that the
intervention, or the independent variable, causes the change in the dependent variable. In the example above, by controlling for the
effect of driving experience on driving ability, we are more certain it is the cell phone use that causes the change in driving ability.

How to Use ANCOVA
The analyses of ANCOVA is fairly complex. Without getting into the details of computations, this section provides a brief
overview of how to use ANCOVA.

Just like ANOVA, ANCOVA uses Fisher's F test. Therefore, the key to understand ANCOVA is still partitioning of the variance.
When adding a covariate into the study, it essentially becomes another predictor in the model, even though it is not the researchers'
main focus or interest. So we will partition out the variance that can be explained by this variable. As a results, there will be three
parts of the variance in ANCOVA, SS intervention, SS covariate, and SS error, and together they make up SS total. If we were to
compare this to ANOVA, the difference is SS covariate. Without the covariate, ANOVA has two parts of variance, SS intervention
and SS error. By adding the covariate, we partition out some of the error variance and attribute it to the covariate. In doing so, the
error variance will be reduced. As we have seen many times, in F tests, we look at the ratio of effect and error. When the numerator
(i.e., error) decreases, the calculated F is going to be larger. We will achieve a smaller P obtained value, and are more likely to
reject the null hypothesis. In other words, good covariates decreases error, which increases statistical power. This is another main
advantage of ANCOVA (besides control mentioned above), assuming the covariate we selected is a decent one based on
theoretical/empirical evidences.

As mentioned above, covariates should be either interval or ratio. That's because ANCOVA essentially uses a linear regression
model. With the linear model, the computation can be rather complicated. But conceptually, by including the covariate into the
model, ANCOVA adjusts each group mean on the outcome variable. Using the same example of studying the effect of cell phone
use (yes vs. no) on driving ability with driving experience as a covariate, it is possible that one of the treatment group (the no cell
phone use) happens to be higher on the covariate, that is, have more driving experience than the other treatment group (cell phone
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use). Accounting for that, ANCOVA will lower the no-cell-phone-use group's average score on the dependent variable, driving
ability. You probably have guessed, since the other group (cell phone use) is lower on the covariate, that is, less driving experience,
ANCOVA will increase its group average score on the dependent variable, driving ability. Mathematically, this allows us to
compare the means of the treatment groups at the mean/average value of the covariate. In other words, the treatment groups in the
study will be "adjusted" for the linear model, so that the "playing field is leveled". By doing so, ANCOVA allows us to find the best
estimates of how different treatment groups would have scored on the dependent variable if they all had statistically equivalent
means on the covariate.

Assumptions of ANCOVA
ANCOVA shares the assumptions of ANOVA. In addition, there are three assumptions that are unique to ANCOVA.

First, in ANCOVA, the independent variable and the covariate must be independent from each other. In other words, the levels or
groups of the intervention/treatment should have no influence on the covariate. In the example above, this means cell phone use
treatment groups (yes vs. no) should be independent of, or have no influence on, driving experience. When this assumption is
violated, the effect of the independent variable (treatment) and the effect of the covariate overlaps. Translate that into statistical
calculations, the treatment and the covariate would share some of the variance. This will skew the analysis and make the results
biased. When covariate driving experience is affected by the independent variable cell phone use treatments (yes vs. no), adding
driving experience into the model as a covariate does not control for the differences between treatment groups on the dependent
variable driving ability. The ANCOVA results will be inaccurate.

Second, the relationship between the covariate and the dependent variable must be linear. In the example above, this means driving
experience and driving ability is expected to have a linear relationship. It is critical to first examine the nature of the relationship
between the covariate and the dependent variable, for example through scatter plots, before performing ANCOVA. If the
relationship is not linear, the adjustments ANCOVA makes will be biased and the results will be inaccurate.

In addition, these regression lines (on the covariate and the dependent variable) from different treatment groups
must be parallel to each other. In other words, different treatment groups should have similar slopes. In
the above example, this mean for both groups (cell phone use and no cell phone use), the slope for the
relationship between driving experience and driving ability should be similar. This assumption is called
homogeneity of regression slopes. This is one of the most important assumptions of ANCOVA as it
allows us to "adjust" for the group means. If this assumption is violated, it means there is an interaction
between the independent variable and the covariate. In this case, ANCOVA will be biased and the results
will be inaccurate.
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5.1: Within-Subjects Design
The designs we have covered so far in the book are all between-subjects designs, meaning each participant is assigned into one
condition and being tested under one condition only. When we compare whether the treatments yield different outcomes, we are
compare between participants or subjects from different treatment conditions, thus the name between-subjects design. In this
chapter, we will look at a different type of design, where each participants will be assigned into multiple treatments. It is called
within-subjects design.

Within-Subjects Design
In a within-subjects design, each participant is tested under all conditions. Consider an experiment on the effect of a defendant’s
physical attractiveness on judgments of his guilt. Again, in a between-subjects experiment, one group of participants would be
shown an attractive defendant and asked to judge his guilt, and another group of participants would be shown an unattractive
defendant and asked to judge his guilt. In a within-subjects experiment, however, the same group of participants would judge the
guilt of both an attractive and an unattractive defendant.

The primary advantage of this approach is that it provides maximum control of extraneous participant variables. Participants in all
conditions have the same mean IQ, same socioeconomic status, same number of siblings, and so on—because they are the very
same people. Within-subjects design also makes it possible to use statistical procedures that remove the effect of these extraneous
participant variables on the dependent variable and therefore make the data less “noisy” and the effect of the independent variable
easier to detect. We will look more closely at this idea later shortly. However, not all experiments can use a within-subjects design
nor would it be desirable to do so.

Carryover Effects and Counterbalancing

Remember in the first chapter, we talked about different common threats that can jeopardize the internal validity of our research
designs. There are certain threats that are associated with within-subject design. The primary one in within-subjects designs is order
effects. An order effect occurs when participants’ responses in the various conditions are affected by the order of conditions to
which they were exposed. One type of order effect is a carryover effect. A carryover effect is an effect of being tested in one
condition on participants’ behavior in later conditions. For example, participants may perform a task better in later conditions
because they have had a chance to practice it. Or it could be the opposite where participants may perform a task worse in later
conditions because they become tired or bored. Being tested in one condition can also change how participants perceive stimuli or
interpret their task in later conditions. This type of effect is called a context effect (or contrast effect). For example, an average-
looking defendant might be judged more harshly when participants have just judged an attractive defendant than when they have
just judged an unattractive defendant. Within-subjects experiments also make it easier for participants to guess the hypothesis. For
example, a participant who is asked to judge the guilt of an attractive defendant and then is asked to judge the guilt of an
unattractive defendant is likely to guess that the hypothesis is that defendant attractiveness affects judgments of guilt. This
knowledge could lead the participant to judge the unattractive defendant more harshly because he thinks this is what he is expected
to do. Or it could make participants judge the two defendants similarly in an effort to be “fair.”

Carryover effects can be interesting in their own right. (Does the attractiveness of one person depend on the attractiveness of other
people that we have seen recently?) But when they are not the focus of the research, carryover effects can be problematic. Imagine,
for example, that participants judge the guilt of an attractive defendant and then judge the guilt of an unattractive defendant. If they
judge the unattractive defendant more harshly, this might be because of his unattractiveness. But it could be instead that they judge
him more harshly because they are becoming bored or tired. In other words, the order of the conditions is a confounding variable.
The attractive condition is always the first condition and the unattractive condition the second. Thus any difference between the
conditions in terms of the dependent variable could be caused by the order of the conditions and not the independent variable itself.

There is a solution to the problem of order effects that can be used in many situations. It is counterbalancing, which means testing
different participants in different orders. Using counterbalancing, the researcher(s) can have an equal or similar number of
participants complete each possible order of conditions. For example, half of the participants would be tested in the attractive
defendant condition followed by the unattractive defendant condition, and others half would be tested in the unattractive condition
followed by the attractive condition. With three conditions (A, B, C), there would be six different orders (ABC, ACB, BAC, BCA,
CAB, and CBA), so some participants would be tested in each of the six orders. With four conditions, there would be 24 different
orders; with five conditions there would be 120 possible orders. With counterbalancing, participants are assigned to orders
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randomly, using the techniques we have already discussed. Here, instead of randomly assigning to conditions, they are randomly
assigned to different orders of conditions.

There are two ways to think about what counterbalancing accomplishes. One is that it controls the order of conditions so that it is
no longer a confounding variable. Instead of the attractive condition always being first and the unattractive condition always being
second, the attractive condition comes first for some participants and second for others. Likewise, the unattractive condition comes
first for some participants and second for others. Thus any overall difference in the dependent variable between the two conditions
cannot have been caused by the order of conditions. A second way to think about what counterbalancing accomplishes is that if
there are carryover effects, it makes it possible to detect them. One can analyze the data separately for each order to see whether it
had an effect.

Between-Subjects or Within-Subjects?

Now you have seen both between-subjects designs and within-subjects designs. Which one should we use? Almost every
experiment can be conducted using either a between-subjects design or a within-subjects design. This possibility means that
researchers must choose between the two approaches based on their relative merits for the particular situation.

Between-subjects designs have the advantage of being conceptually simpler and requiring less testing time per participant. They
also avoid carryover effects without the need for counterbalancing. Within-subjects designs have the advantage of controlling
extraneous participant variables, which generally reduces noise in the data and makes it easier to detect any effect of the
independent variable upon the dependent variable. Within-subjects designs also require fewer participants than between-subjects
designs to detect an effect of the same size.

A good rule of thumb, then, is that if it is possible to conduct a within-subjects experiment (with proper counterbalancing) in the
time that is available per participant—and you have no serious concerns about carryover effects—this design is probably the best
option. If a within-subjects design would be difficult or impossible to carry out, then you should consider a between-subjects
design instead. For example, if you were testing participants in a doctor’s waiting room or shoppers in line at a grocery store, you
might not have enough time to test each participant in all conditions and therefore would opt for a between-subjects design. Or
imagine you were trying to reduce people’s level of prejudice by having them interact with someone of another race. A within-
subjects design with counterbalancing would require testing some participants in the treatment condition first and then in a control
condition. But if the treatment works and reduces people’s level of prejudice, then they would no longer be suitable for testing in
the control condition. This difficulty is true for many designs that involve a treatment meant to produce long-term change in
participants’ behavior (e.g., studies testing the effectiveness of new teaching/advising/counseling techniques). Clearly, a between-
subjects design would be necessary here.

Remember also that using one type of design does not preclude using the other type in a different study. There is no reason that a
researcher could not use both a between-subjects design and a within-subjects design to answer the same research question. In fact,
professional researchers often take exactly this type of mixed methods approach.

This page titled 5.1: Within-Subjects Design is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Yang
Lydia Yang.

5.3: Experimental Design by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed CC BY-NC-SA 4.0.
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5.2: Partioning the Sums of Squares
Time to partition the sums of squares again. Remember the act of partitioning, or splitting up, the variance is the core idea of
ANOVA. To continue using the house analogy, our total sums of squares (SS Total) is our big empty house. We want to split it up
into little rooms. Before in the between-subjects ANOVA, we partitioned SS Total using this formula:

The  was the variance we could attribute to the means of the different groups, and  was the leftover variance that we
couldn’t explain.  and  are the partitions of , they are the little rooms.

In the between-subjects ANOVA above, we got to split  into two parts. What is most interesting about the repeated-
measures design, is that we get to split  into three parts, there’s one more partition. Can you guess what the new partition
is? Hint: whenever we have a new way to calculate means in our design, we can always create a partition for those new means.
What are the new means in the repeated measures design?

Here is the formula for partitioning  in a repeated-measures ANOVA:

We’ve added  as the new idea in the formula. What’s the idea here? Well, because each subject or participant was
measured in each condition, we have a new set of means. These are the means for each subject or participant, collapsed across the
conditions. For example, subject 1 has a mean (mean of their scores in conditions A, B, and C); subject 2 has a mean (mean of their
scores in conditions A, B, and C); and subject 3 has a mean (mean of their scores in conditions A, B, and C). There are three
subject means, one for each subject, collapsed across the conditions. And, we can now estimate the portion of the total variance that
is explained by these subject means.

Before we go into the calculations, it's important to pause and compare the differences of how the sum of squares are partitioned in
between-subjects ANOVA vs. within-subjects ANOVA.

Recall, in between-subjects ANOVA, we use different words to describe parts of the ANOVA (which can be really confusing). For
example, we described the SS formula for a between-subjects ANOVA like this:

The very same formula is often written differently, using the words between and within in place of effect and error, it looks like
this:

Here,  (which we have been calling ) refers to variation between the group means, that’s why it is called 
. Second, and most important,  (which we have been calling ), refers to the leftover variation within each

group mean. Specifically, it is the variation between each group mean and each score within that group. Remember, for each group
mean, every score is probably off a little bit from the mean. So, the scores within each group have some variation. This is the
within group variation, and it is why the leftover error that we can’t explain is often called .

Perhaps a picture will help to clear things up.
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Figure : Illustration showing how the total sums of squares are partitioned differently for a between versus repeated-measures
design.

The figure lines up the partitioning of the Sums of Squares for both between-subjects and repeated-measures designs. In both
designs,  is first split up into two pieces  and . At this point, both ANOVAs are
the same. In the repeated measures case we split the  into two more littler parts, which we call 

 and .

The critical feature of the repeated-measures ANOVA, is that the  that we will later use to compute the MS (Mean Squared)
in the denominator for the -value, is smaller in a repeated-measures design, compared to a between subjects design. This is
because the  is split into two parts,  and 

.

To make this more clear, here is another figure:
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Figure : Close-up showing that the Error term is split into two parts in the repeated measures design.

As we point out, the  in the green circle will be a smaller number than the . That’s because we
are able to subtract out the  part of the . This can have the effect of producing larger F-values when
using a repeated-measures design compared to a between-subjects design, which is more likely to yield smaller P obtained values
and allow us to reject the null hypothesis.

This page titled 5.2: Partioning the Sums of Squares is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Yang Lydia Yang via source content that was edited to the style and standards of the LibreTexts platform.
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5.3: Repeated Measures ANOVA
Let's take a look at the things we need to find out to make the ANOVA table. What we need to do is calculate all the es that we
did before for the between-subjects ANOVA. That means the next three steps are identical to the ones you did before. In fact, I will
just basically copy the next three steps to find , , and . After that we will talk about
splitting up  into two parts, this is the new thing for this chapter. Here we go!

SS Total
The total sums of squares, or  measures the total variation in a set of data. All we do is find the difference between each
score and the grand mean, then we square the differences and add them all up.

subjects conditions scores diff diff_squared

1 A 20 13 169

2 A 11 4 16

3 A 2 -5 25

1 B 6 -1 1

2 B 2 -5 25

3 B 7 0 0

1 C 2 -5 25

2 C 11 4 16

3 C 2 -5 25

Sums  63 0 302

Means  7 0 33.5555555555556

The mean of all of the scores is called the Grand Mean. It’s calculated in the table, the Grand Mean = 7.

We also calculated all of the difference scores from the Grand Mean. The difference scores are in the column titled diff .
Next, we squared the difference scores, and those are in the next column called diff_squared .

When you add up all of the individual squared deviations (difference scores) you get the sums of squares. That’s why it’s called the
sums of squares (SS).

Now, we have the first part of our answer:

and

SS Effect

 gave us a number representing all of the change in our data, how they all are different from the grand mean.

What we want to do next is estimate how much of the total change in the data might be due to the experimental
intervention/treatment. For example, if we ran an experiment that causes change in the measurement, then the means for each group
will be different from other, and the scores in each group will be different from the other groups. As a result, the
intervention/treatment forces change onto the numbers, and this will naturally mean that some part of the total variation in the
numbers is caused by the intervention.

SS
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The way to isolate the variation due to the treatment conditions (also called effect) is to look at the means in each group, and the
calculate the difference scores between each group mean and the grand mean, and then the squared deviations to find the sum for 

.

Consider this table, showing the calculations for .

subjects conditions scores means diff diff_squared

1 A 20 11 4 16

2 A 11 11 4 16

3 A 2 11 4 16

1 B 6 5 -2 4

2 B 2 5 -2 4

3 B 7 5 -2 4

1 C 2 5 -2 4

2 C 11 5 -2 4

3 C 2 5 -2 4

Sums  63 63 0 72

Means  7 7 0 8

Notice we created a new column called means , these are the means for each condition, A, B, and C.

 represents the amount of variation that is caused by differences between the means. The diff  column is the difference
between each condition mean and the grand mean, so for the first row, we have 11-7 = 4, and so on.

We found that .

SS Error (within-conditions)
Great, we made it to SS Error. We already found SS Total, and SS Effect, so now we can solve for SS Error just like this:

switching around:

Or, we could compute  directly from the data:

subjects conditions scores means diff diff_squared

1 A 20 11 -9 81

2 A 11 11 0 0

3 A 2 11 9 81

1 B 6 5 -1 1

2 B 2 5 3 9

3 B 7 5 -2 4

1 C 2 5 3 9

2 C 11 5 -6 36

SS
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S = 72S
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S = 302 −72 = 230S

Error (within conditions)

SS

Error (within conditions)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/32936?pdf


5.3.3 https://stats.libretexts.org/@go/page/32936

subjects conditions scores means diff diff_squared

3 C 2 5 3 9

Sums  63 63 0 230

Means  7 7 0 25.5555555555556

When we compute  directly, we find the difference between each score and the condition mean for that
score. This gives us the remaining error variation around the condition mean, that the condition mean does not explain.

SS Subjects

Now we are ready to calculate new partition, called . We first find the means for each subject. For subject 1, this is the
mean of their scores across Conditions A, B, and C. The mean for subject 1 is 9.33 (repeating). Notice there is going to be some
rounding error here, that’s OK for now.

The means  column now shows all of the subject means. We then find the difference between each subject mean and the grand
mean. These deviations are shown in the diff  column. Then we square the deviations, and sum them up.

subjects conditions scores means diff diff_squared

1 A 20 9.33 2.33 5.4289

2 A 11 8 1 1

3 A 2 3.66 -3.34 11.1556

1 B 6 9.33 2.33 5.4289

2 B 2 8 1 1

3 B 7 3.66 -3.34 11.1556

1 C 2 9.33 2.33 5.4289

2 C 11 8 1 1

3 C 2 3.66 -3.34 11.1556

Sums  63 62.97
-0.02999999999999
94

52.7535

Means  7 6.99666666666667
-0.00333333333333
326

5.8615

We found that the sum of the squared deviations  = 52.75. Note again, this has some small rounding error because some
of the subject means had repeating decimal places, and did not divide evenly.

We can see the effect of the rounding error if we look at the sum and mean in the diff  column. We know these should be both
zero, because the Grand mean is the balancing point in the data. The sum and mean are both very close to zero, but they are not
zero because of rounding error.

SS Error (left-over)
Now we can do the last thing. Remember we wanted to split up the  into two parts,  and 

. Because we have already calculate  and , we can solve for :

We have finished our job of computing the sums of squares that we need in order to do the next steps, which include computing the
MS (mean squared) for the effect and the error term. Once we do that, we can find the F-value, which is the ratio of the two MS's.
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Compute the MS
Calculating the MS's (mean squares) that we need for the -value involves the same general steps as last time. We divide each SS
by the degrees of freedom for the SS.

The degrees of freedom for  are the same as before, the number of conditions - 1. We have three conditions, so the df is 2.
Now we can compute the .

The degrees of freedom for  are the number of subjects - 1. We have three participants, so the df is 2. Now we can
compute the .

The degrees of freedom for  are different than before, they are the (number of subjects - 1) multiplied by the
(number of conditions -1). We have 3 subjects and three conditions, so . Or you can go the easy way,
it is the difference of degrees of freedom between Total, Effect/Treatment, and Subjects.

Regardless, now we can compute the .

Compute F
We just found the two MS's that we need to compute . We went through all of this to compute  for our data, so let’s do it:

And, there we have it!

p-value
We already conducted the repeated-measures ANOVA using statistical program and found the -value associated with our -value
is 0.505. We might write up the results of our experiment and say that the main effect condition was not significant, F(2, 4) = 0.812,
p = 0.505.

What does this statement mean? Remember, that the -value represents the probability of getting the  value we observed or larger
under the null (assuming that the samples come from the same distribution, the assumption of no differences). So, we know that an 

-value of 0.812 or larger happens fairly often by chance (when there are no real differences), in fact it happens 50.5% of the time.
As a result, we do not reject the idea that any differences in the means we have observed could have been produced by chance.

This page titled 5.3: Repeated Measures ANOVA is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Yang
Lydia Yang via source content that was edited to the style and standards of the LibreTexts platform.
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5.4: More Notes on Repeated Measures ANOVA
Repeated Measures ANOVAs have some special properties that are worth knowing about. The main special property is that the
error term used to for the -value (the MS in the denominator) will always be smaller than the error term used for the -value the
ANOVA for a between-subjects design. We discussed this earlier. It is smaller, because we subtract out the error associated with the
subject means.

This can have the consequence of generally making -values in repeated measures designs larger than -values in between-
subjects designs. When the number in the bottom of the  formula is generally smaller, it will generally make the resulting ratio a
larger number. That’s what happens when you make the number in the bottom smaller.

Because big  values usually let us reject the idea that differences in our means are due to chance, the repeated-measures ANOVA
becomes a more sensitive test of the differences (its -values are usually larger). This is a major advantage of using repeated-
measures ANOVA, and within-subjects designs. The other advantage we have already mentioned before is that within-subjects
design requires a smaller sample size.

This page titled 5.4: More Notes on Repeated Measures ANOVA is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Yang Lydia Yang via source content that was edited to the style and standards of the LibreTexts platform.
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6.1: Simple Linear Equation Refresher
This chapter is all about regression. If you recall, linear regression for two variables is based on a linear equation with one
independent variable. Both variables are intervally scaled. The equation has the form:

where  and  are constant numbers.

The variable  is the independent variable, and  is the dependent variable. Another way to think about this equation is a
statement of cause and effect. The  variable is the cause and the  variable is the hypothesized effect. Typically, you choose a
value to substitute for the independent variable and then solve for the dependent variable. Be aware that the words of "cause and
effect" here are used strictly in a statistical sense. It by no means indicates a causal relationship from the research design
perspective.

The following examples are linear equations.

The graph of a linear equation of the form  is a straight line. Any line that is not vertical can be described by this
equation

Graph the equation .

Figure 

Aaron's Word Processing Service (AWPS) does word processing. The rate for services is $32 per hour plus a $31.50 one-time
charge. The total cost to a customer depends on the number of hours it takes to complete the job.

Find the equation that expresses the total cost in terms of the number of hours required to complete the job.

Answer

Solution 13.3

Let  = the number of hours it takes to get the job done. 
Let  = the total cost to the customer.

The $31.50 is a fixed cost. If it takes  hours to complete the job, then (32)( ) is the cost of the word processing only. The
total cost is: 

y = a+bx

a b

x y

X Y

 Example 6.1.1

y = 3+2x

y =– 0.01+1.2x

y = a+bx

 Example 6.1.2

y =– 1+2x

6.1.3

 Example 6.1.3

x

y

x x

y = 31.50+32x
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Slope and Y-Intercept of a Linear Equation
For the linear equation ,  = slope and -intercept. From algebra recall that the slope is a number that describes the
steepness of a line, and the -intercept is the  coordinate of the point  where the line crosses the y-axis.

Svetlana tutors to make extra money for college. For each tutoring session, she charges a one-time fee of $25 plus $15 per hour
of tutoring. A linear equation that expresses the total amount of money Svetlana earns for each session she tutors is 

.

What are the independent and dependent variables? What is the y-intercept and what is the slope?

Answer

The independent variable ( ) is the number of hours Svetlana tutors each session. The dependent variable ( ) is the
amount, in dollars, Svetlana earns for each session.

The y-intercept is ). At the start of the tutoring session, Svetlana charges a one-time fee of $25 (this is when 
). The slope is . For each session, Svetlana earns $15 for each hour she tutors.

This page titled 6.1: Simple Linear Equation Refresher is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Yang Lydia Yang via source content that was edited to the style and standards of the LibreTexts platform.
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6.2: Multiple Regression

Different Methods of Multiple Regression

Before we go into the statistical details of multiple regression, I want to first introduce three common methods of multiple
regression: forced entry regression, hierarchical regression, and stepwise regression. The differences between these methods of
multiple regression lies in how the variables are entered into a regression model. Let's look at each of them.

In forced entry regression, we choose independent variables, or predictors, based on theories and/or empirical literature to include
in the regression model. Like the name suggests, we will force enter all chosen independent variables into the regression model
simultaneously and study them altogether. In this case, all the predictors are treated equally. In other words, we don't have a
preference or hold more interest in one predictor over the other predictors.

In hierarchical regression, just like in forced entry regression, we rely on previous theoretical and/or empirical evidence to select
the independent variables to be included. But unlike forced entry regression, the predictors are not entered simultaneously. Instead,
we, the researchers, determine in which order the predictors are entered. This is where the hierarchy comes in. It is essentially the
order how the predictors are entered. Each step is considered a block, and one or multiple predictors can be included/entered in
each block. Each block is considered a model. So hierarchical regression typically include multiple models. For example, if you
enter two predictors (IV1, IV2) in block 1, and then enter another predictor (IV3) in block 2, then you will have two models, model
1 from block 1, and model 2 from block 2. In model 1, there are two predictors: IV1 and IV2. In model 2, there are three predictors
(IV1 and IV2 from model 1, plus IV3 we just added). Keep in mind, each predictor can be entered only once. Once a predictor is
entered into a block, it stays there for all the following blocks and you can't take the predictor(s) out once they are in. That's why
IV1 and IV2 remain in model 2 above.

So how do we decide which order to enter the predictors? Generally speaking, in the first model, we would include demographic
variables, such as gender, ethnicity, education levels, etc. These predictors likely will influence the dependent variables even
though they may not be the focus of our research study. In the next model (model 2), we would include any variables that are
known predictors for the dependent variable(s). In the next model (model 3), we will add in new predictors we are particularly
interested in. Often times, our goal is to determine if newly added variables could better explain the dependent variable(s), or
whether newly added variables could explain significantly more variance in the dependent variable above and beyond the other
variables included in the models.

Lastly, unlike the first two methods of regression, stepwise regression doesn't rely on theories or empirical literature at all. It is a
purely mathematically based model. All you need to do is throwing in a bunch of IVs, and the software program will sift through
all the IVs you entered to identify the ones that best predict the dependent variable(s) by selecting the predictor(s) that has the
highest correlation with the dependent variable. It can be done using either forward method or backward method. Regardless, the
decision is purely based on mathematical criterion, not on theories. If you know one thing about stepwise regression, that is to
avoid it at all cost. As researchers, we want to make sure we choose the predictors based on theories and/or empirical literature.

Multiple Regression

Regression analysis is a statistical technique that can test the hypothesis that a variable is dependent upon one or more other
variables. Further, regression analysis can provide an estimate of the magnitude of the impact of a change in one variable on
another. This last feature, of course, is all important in predicting future values.

Regression analysis is based upon a functional relationship among variables and further, assumes that the relationship is linear. This
linearity assumption is required because, for the most part, the theoretical statistical properties of non-linear estimation are not well
worked out yet by the mathematicians and statisticians. There are techniques for overcoming some of these difficulties, exponential
and logarithmic transformation of the data for example, but at the outset we must recognize that standard ordinary least squares
(OLS) regression analysis will always use a linear function to estimate what might be a nonlinear relationship.

The general linear regression model can be stated by the equation:

where  is the intercept, 's are the slope between  and the appropriate , and , is the error term that captures errors in
measurement of  and the effect on  of any variables missing from the equation that would contribute to explaining variations in 
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This model works only if certain assumptions hold. We'll look at this next.

Assumptions of the Ordinary Least Squares Regression Model
There are several assumptions of OLS regression. If one of these assumptions fails to be true, then it will have an effect on the
quality of the estimates. Some of the failures of these assumptions can be fixed while others result in estimates that quite simply
provide no insight into the questions the model is trying to answer or worse, give biased estimates.

1. The error term is a normally distributed with a mean of zero and a constant variance. The meaning of this is that the variances
of the independent variables are independent of the value of the variable. Consider the relationship between personal income
and the quantity of a good purchased, which is an example of a case where the variance is dependent upon the value of the
independent variable, income. It is plausible that as income increases, the variation around the amount purchased will also
increase simply because of the flexibility provided with higher levels of income. The assumption is for constant variance with
respect to the magnitude of the independent variable called homoscedasticity. If the assumption fails, then it is called
heteroscedasticity. Figure 13.6 shows the case of homoscedasticity where all three distributions have the same variance around
the predicted value of  regardless of the magnitude of .

2. The independent variables are all from a probability distribution that is normally distributed. This can be seen in Figure 13.6 by
the shape of the distributions placed on the predicted line at the expected value of the relevant value of .

3. The independent variables are independent of , but are also assumed to be independent of the other  variables, or other
independent variables. The model is designed to estimate the effects of independent variables on some dependent variable in
accordance with a proposed theory. The case where some or more of the independent variables are correlated is not unusual.
There may be no cause and effect relationship among the independent variables, but nevertheless they move together. For
example, you have two variables, household income and socio-economic status (SES), and they are theoretically related to each
other. If you want to use both of them as predictors in one model, it would violate this assumption of regression analysis. This
condition is called multicollinearity, which will be taken up in detail later.

Figure 13.6 does not show all the assumptions of the regression model, but it helps visualize these important ones.

Figure 13.6

Figure 13.7

Going back to the general linear regression model stated earlier:

Y X

Y

Y X
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This is the general form that is most often called the multiple regression model. So-called "simple" regression analysis has only one
independent variable rather than many independent variables. Simple regression is just a special case of multiple regression. There
is some value in beginning with simple regression: it is easy to graph in two dimensions, difficult to graph in three dimensions, and
impossible to graph in more than three dimensions. Consequently, our graphs will be for the simple regression case. Figure 13.7
presents the regression problem in the form of a scatter plot graph of the data set where it is hypothesized that  is dependent upon
the single independent variable .

Let's look at an example. The theoretical relationship states that as a person's income rises, their consumption rises, but by a smaller
amount than the rise in income. If  is consumption and  is income in the equation below Figure 13.7, the regression problem is,
first, to establish that this relationship exists, and second, to determine the impact of a change in income on a person's consumption.
Each "dot" in Figure 13.7 represents the consumption and income of different individuals at some point in time.

Regression analysis is often called "ordinary least squares" (OLS) analysis because the method of determining which line best
"fits" the data is to minimize the sum of the squared residuals or erros of a line put through the data.

Figure 13.8 
 
Estimated Equation: 

Figure 13.8 shows the assumed relationship between consumption and income based on the theory. Here the data are plotted as a
scatter plot and an estimated straight line has been drawn. From this graph we can see an error term, . Each data point also has an
error term. Again, the error term is put into the equation to capture effects on consumption that are not caused by income changes.
Such other effects might be a person’s savings or wealth, or periods of unemployment. We will see how by minimizing the sum of
these errors we can get an estimate for the slope and intercept of this line.

Consider the graph below. The notation has returned to that for the more general model rather than the specific example of the
consumption and income.
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Figure 13.9

The  is read "  hat" and is the estimated value of . (In Figure 13.8  represents the estimated value of consumption because it
is on the estimated line.) It is the value of  obtained using the regression line.  is not generally equal to  from the data.

The term  is called the "error" or residual. The error term was put into the estimating equation to capture missing
variables and errors in measurement that may have occurred in the dependent variables. The absolute value of a residual measures
the vertical distance between the actual value of  and the estimated value of . In other words, it measures the vertical distance
between the actual data point and the predicted point on the line as can be seen on the graph at point .

If the observed data point lies above the line, the residual is positive, and the line underestimates the actual data value for .

If the observed data point lies below the line, the residual is negative, and the line overestimates that actual data value for .

In the graph,  is the residual for the point shown. Here the point lies above the line and the residual is positive. For
each data point the residuals, or errors, are calculated  for  where  is the sample size. Each  is a
vertical distance.

The sum of the errors squared is the term obviously called Sum of Squared Errors (SS Error).

Using calculation, you can determine the straight line that has the parameter values of  and  that minimizes the SS Error.
When you make the SS Error a minimum, you have determined the points that are on the line of best fit. We can further calculate
the variance of the squared errors, e :

where  is the predicted value of  and  is the observed value, and thus the term  is the squared errors that are to be
minimized to find the regression line. One important note is that here we are dividing by , which is the degrees of freedom.
The degrees of freedom of a regression equation will be the number of observations, , reduced by the number of estimated
parameters, which includes the intercept as a parameter.

The variance of the errors is fundamental in testing hypotheses for a regression. It tells us just how “tight” the dispersion is about
the line. The greater the dispersion about the line, meaning the larger the variance of the errors, the less probable that the
hypothesized independent variable will be found to have a significant effect on the dependent variable. In short, the theory being
tested will more likely fail if the variance of the error term is high. Upon reflection this should not be a surprise. As we tested
hypotheses about a mean we observed that large variances reduced the calculated test statistics and thus it failed to reach the tail of
the distribution. In those cases, the null hypotheses could not be rejected. If we cannot reject the null hypothesis in a regression
problem, we must conclude that the hypothesized independent variable has no effect on the dependent variable.

A way to visualize this concept is to draw two scatter plots of  and  data along a predetermined line. The first will have little
variance of the errors, meaning that all the data points will move close to the line. Now do the same except the data points will have
a large estimate of the error variance, meaning that the data points are scattered widely along the line. Clearly the confidence about
a relationship between  and  is affected by this difference between the error variances.
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6.3: Regression Coefficients
The whole goal of the regression analysis was to test the hypothesis that the dependent variable, , was in fact dependent upon the
values of the independent variables as asserted by some theory, such as the consumption and income example. Looking at the
estimated equation under Figure 13.8, we see that this amounts to determining the values of  and .

The regression analysis output provided by the computer software will produce an estimate of  and , and any other 's for other
independent variables that were included in the estimated equation. The issue is how good are these estimates? In order to test a
hypothesis concerning any estimate, we have found that we need to know the underlying sampling distribution. It should come as
no surprise by now in the course that the answer is going to be the normal distribution. This can be seen by remembering the
assumption that the error term in the population is normally distributed. If the error term is normally distributed and the variance of
the estimates of the equation parameters,  and , are determined by the variance of the error term, it follows that the variances of
the parameter estimates are also normally distributed. And indeed this is just the case.

To test whether or not  does indeed depend upon , or in our example, that whether consumption depends upon income, we need
only test the hypothesis that  equals zero. This hypothesis would be stated formally as:

If we cannot reject the null hypothesis, we must conclude that our theory has no validity. If we cannot reject the null hypothesis that
 then , the coefficient of Income, is zero and zero times anything is zero. Therefore the effect of Income on Consumption

is zero. There is no relationship as our theory had suggested.

Notice that as before, we have set up the presumption, the null hypothesis, as "no relationship". This puts the burden of proof on
the alternative hypothesis. In other words, if we are to validate our claim of finding a relationship, we must do so with a level of
significance greater than 95 percent typically. No relationship exists, and to be able to make the claim that we have actually added
to our body of knowledge we must do so with significant probability of being correct.

The test statistic for this test comes directly from our old friend, the t-test formula:

where  is the estimated value of the slope of the regression line,  is the hypothesized value of slope of the regression line,
which is always zero, and  is the standard deviation of the estimate of . In this case we are asking how many standard
deviations is the estimated slope away from the hypothesized slope. This is exactly the same question we asked before with respect
to a hypothesis about a mean: how many standard deviations is the estimated mean, the sample mean, from the hypothesized
population mean?

The decision rule for acceptance or rejection of the null hypothesis follows exactly the same form as in all our previous test of
hypothesis. Namely, if the calculated value of  (or ) falls into the tails of the distribution, where the tails are defined by , the
required significance level in the test, we have enough evidence to reject the null hypothesis. If on the other hand, the calculated
value of the test statistic is within the critical region, we fail to reject the null hypothesis.

If we conclude that we reject the null hypothesis, we are able to state with  level of confidence that the slope of the line is
given by . This is an extremely important conclusion. Regression analysis not only allows us to test if a cause and effect
relationship exists, we can also determine the magnitude of that relationship, if one is found to exist. It is this feature of regression
analysis that makes it so valuable. If models can be developed that have statistical validity, we are then able to simulate the effects
of changes in variables that may be under our control with some degree of probability, of course. For example, if intentional
advising is demonstrated to affect student retention, we can determine the effects of changing to intentional advising and decide if
the increased retention are worth the added expense.

This page titled 6.3: Regression Coefficients is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Yang
Lydia Yang via source content that was edited to the style and standards of the LibreTexts platform.
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6.4.1 https://stats.libretexts.org/@go/page/32942

6.4: Effect Size
In the last section we concerned ourselves with testing the hypothesis that the dependent variable did indeed depend upon the
hypothesized independent variable or variables. It may be that we find an independent variable that has some effect on the
dependent variable, but it may not be the only one, and it may not even be the most important one. Remember that the error term
was placed in the model to capture the effects of any missing independent variables. It follows that the error term may be used to
give a measure of the "goodness of fit" of the equation taken as a whole in explaining the variation of the dependent variable, .

The effect size is given by the formula:

where SS Reg (or SSR) is the regression sum of squares, the squared deviation of the predicted value of  from the mean value of 
, and SS Total (or SST) is the total sum Figure 13.9 shows how the total deviation of the dependent variable, y, is

partitioned into these two pieces.

Figure 13.9

Figure 13.9 shows the estimated regression line and a single observation, . Regression analysis tries to explain the variation of
the data about the mean value of the dependent variable, . The question is, why do the observations of y vary from the average
level of ? The value of y at observation  varies from the mean of  by the difference . The sum of these differences
squared is SST, the sum of squares total. The actual value of  at  deviates from the estimated value, , by the difference
between the estimated value and the actual value, . We recall that this is the error term, e, and the sum of these errors is
SSE, sum of squared errors. The deviation of the predicted value of , , from the mean value of  is  and is the SS Reg,
sum of squares regression. It is called “regression” because it is the deviation explained by the regression. (Sometimes the SS Reg
is called SS Model for sum of squares model because it measures the change from using the mean value of the dependent variable
to using the model, the line of best fit. In other words, it measures the deviation of the model from the mean value of the dependent
variable, y, as shown in the graph.).

Because SS Total = SS Reg + SS Error, we see that the effect size is the percent of the variance, or deviation in  from its mean
value, that is explained by the equation when taken as a whole.  will vary between 0 and 1, with 0 indicating that none of the
variation in  was explained by the equation and a value of 1 indicating that 100% of the variation in  was explained by the
equation.

While a high  is desirable, remember that it is the tests of the hypothesis concerning the existence of a relationship between a set
of independent variables and a particular dependent variable that was the motivating factor in using the regression model. The goal
of choosing the regression analysis is to validate a statistical relationship developed by some theory. Increasing the number of
independent variables will have the effect of increasing . But the goal is not to add as many independent variables as you
possibly can; instead it is to select robust independent variables as informed by theories and/or empirical literature.

This page titled 6.4: Effect Size is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Yang Lydia Yang via
source content that was edited to the style and standards of the LibreTexts platform.
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6.5.1 https://stats.libretexts.org/@go/page/32943

6.5: Multicollinearity

Multicollinearity

Our discussion earlier indicated that like all statistical models, the OLS regression model has important assumptions attached. Each
assumption, if violated, has an effect on the ability of the model to provide useful and meaningful estimates. Here we will look at
the effects on OLS estimates if the independent variables are correlated. We take up multicollinearity because it is so often
prevalent in social sciences studies and it often leads to frustrating results.

The OLS model assumes that all the independent variables are independent of each other. This assumption is easy to test for a
particular sample of data with simple correlation coefficients. Correlation, like much in statistics, is a matter of degree: a little is not
good, and a lot is terrible.

The goal of the regression technique is to tease out the independent impacts of each of a set of independent variables on some
hypothesized dependent variable. If two independent variables are interrelated, that is, correlated, then we cannot isolate the effects
on  of one from the other. In an extreme case where  is a linear combination of , correlation equal to one, both variables
move in identical ways with . In this case it is impossible to determine the variable that is the true cause of the effect on .

The correlation has the same effect on the regression coefficients of both these two variables. In essence, each variable is “taking”
part of the effect on Y that should be attributed to the collinear variable. This results in biased estimates.

Furthermore, multicollinearity often results in failing to reject the null hypothesis that the  variable has no impact on  when in
fact  does have a statistically significant impact on . Said another way, the large standard errors of the estimated coefficient
created by multicollinearity suggest statistical insignificance even when the hypothesized relationship is strong.

This page titled 6.5: Multicollinearity is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Yang Lydia
Yang via source content that was edited to the style and standards of the LibreTexts platform.
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