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1

CHAPTER OVERVIEW

1: Overview of ANOVA

Upon completion of this lesson, you should be able to:

Become familiar with the standard ANOVA basics.
Apply the Exploratory Data Analysis (EDA) basics for ANOVA appropriate data.

In previous statistics courses analysis of variance (ANOVA) has been applied in very simple settings, mainly involving one group
or factor as the explanatory variable. In this course, ANOVA models are extended to more complex situations involving several
explanatory variables. The experimental design aspects are discussed as well. Even though the ANOVA methodology developed in
the course is for data obtained from designed experimental settings, the same methods may be used to analyze data from
observational studies as well. However, let us keep in mind that the conclusions made may not be as sound because observational
studies do not satisfy the rigorous conditions that the designed experiments are subjected to.

If you aren't familiar with the difference between observational and experimental studies, you should be reviewing introductory
statistical concepts which are essential for success in this course!

"Classic" analysis of variance (ANOVA) is a method to compare average (mean) responses to experimental manipulations in
controlled environments. For example, if people who want to lose weight are randomly selected to participate in a weight-loss
study, each person might be randomly assigned to a dieting group, an exercise group, and a "control" group (for which there is no
intervention). The mean weight loss for each group is compared to every other group.

Recall that a fundamental tenet of the scientific method is that results should be reproducible. A designed experiment provides this
through replication and generates data that requires the calculation of mean (average) responses.

1.1: The Working Hypothesis
1.2: The 7-Step Process of Statistical Hypothesis Testing
1.3: Chapter 1 Summary

This page titled 1: Overview of ANOVA is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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1.1: The Working Hypothesis
Using the scientific method, before any statistical analysis can be conducted, a researcher must generate a guess, or hypothesis
about what is going on. The process begins with a Working Hypothesis. This is a direct statement of the research idea. For
example, a plant biologist may think that plant height may be affected by applying different fertilizers. So they might say: "Plants
with different fertilizers will grow to different heights".

But according to the Popperian Principle of Falsification, we can't conclusively affirm a hypothesis, but we can conclusively negate
a hypothesis. So we need to translate the working hypothesis into a framework wherein we state a null hypothesis that the average
height (or mean height) for plants with the different fertilizers will all be the same. The alternative hypothesis (which the biologist
hopes to show) is that they are not all equal, but rather some of the fertilizer treatments have produced plants with different mean
heights. The strength of the data will determine whether the null hypothesis can be rejected with a specified level of confidence.

Pictured in the graph below, we can imagine testing three kinds of fertilizer and also one group of plants that are untreated (the
control). The plant biologist kept all the plants under controlled conditions in the greenhouse, to focus on the effect of the fertilizer,
the only thing we know to differ among the plants. At the end of the experiment, the biologist measured the height of each plant.
Plant height is the dependent or response variable and is plotted on the vertical ( ) axis. The biologist used a simple boxplot to plot
the difference in the heights.

Figure : Boxplot of plant height distribution by fertilizer.

This boxplot is a customary way to show treatment (or factor) level differences. In this case, there was only one treatment:
fertilizer. The fertilizer treatment had four levels that included the control, which received no fertilizer. Using this language
convention is important because later on we will be using ANOVA to handle multi-factor studies (for example if the biologist
manipulated the amount of water AND the type of fertilizer) and we will need to be able to refer to different treatments, each with
their own set of levels.

Another alternative for viewing the differences in the heights is with a means plot (a scatter or interval plot):

y
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Figure : Means plot for fertilizer with 95% confidence limits.

This second method to plot the difference in the means of the treatments provides essentially the same information. However, this
plot illustrates the variability in the data with 'error bars' that are the 95% confidence interval limits around the means.

In between the statement of a Working Hypothesis and the creation of the 95% confidence intervals used to create this means plot
is a 7-step process of statistical hypothesis testing, presented in the following section.

This page titled 1.1: The Working Hypothesis is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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1.2: The 7-Step Process of Statistical Hypothesis Testing
We will cover the seven steps one by one.

Step 1: State the Null Hypothesis
The null hypothesis can be thought of as the opposite of the "guess" the researchers made: in this example, the biologist thinks the
plant height will be different for the fertilizers. So the null would be that there will be no difference among the groups of plants.
Specifically, in more statistical language the null for an ANOVA is that the means are the same. We state the null hypothesis as:

for  levels of an experimental treatment.

Why do we do this? Why not simply test the working hypothesis directly? The answer lies in the Popperian Principle of
Falsification. Karl Popper (a philosopher) discovered that we can't conclusively confirm a hypothesis, but we can conclusively
negate one. So we set up a null hypothesis which is effectively the opposite of the working hypothesis. The hope is that based
on the strength of the data, we will be able to negate or reject the null hypothesis and accept an alternative hypothesis. In other
words, we usually see the working hypothesis in .

Step 2: State the Alternative Hypothesis

The reason we state the alternative hypothesis this way is that if the null is rejected, there are many possibilities.

For example,  is one possibility, as is . Many people make the mistake of stating
the alternative hypothesis as , which says that every mean differs from every other mean. This is a
possibility, but only one of many possibilities. To cover all alternative outcomes, we resort to a verbal statement of "not all equal"
and then follow up with mean comparisons to find out where differences among means exist. In our example, this means that
fertilizer 1 may result in plants that are really tall, but fertilizers 2, 3, and the plants with no fertilizers don't differ from one another.
A simpler way of thinking about this is that at least one mean is different from all others.

Step 3: Set 
If we look at what can happen in a hypothesis test, we can construct the following contingency table:

 
 
Decision

In Reality

 is TRUE  is FALSE

Accept correct
Type II Error 

 = probability of Type II Error

Reject 
Type I Error 

 = probability of Type I Error
correct

You should be familiar with type I and type II errors from your introductory course. It is important to note that we want to set 
before the experiment (a priori) because the Type I error is the more grievous error to make. The typical value of  is 0.05,
establishing a 95% confidence level. For this course, we will assume =0.05, unless stated otherwise.

Step 4: Collect Data
Remember the importance of recognizing whether data is collected through an experimental design or observational study.
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Step 5: Calculate a test statistic
For categorical treatment level means, we use an  statistic, named after R.A. Fisher. We will explore the mechanics of computing
the  statistic beginning in Chapter 2. The  value we get from the data is labeled .

Step 6: Construct Acceptance / Rejection regions
As with all other test statistics, a threshold (critical) value of  is established. This  value can be obtained from statistical tables
or software and is referred to as  or . As a reminder, this critical value is the minimum value for the test statistic (in this
case the F test) for us to be able to reject the null.

The  distribution, , and the location of acceptance and rejection regions are shown in the graph below:

Figure : The F distribution, with  and acceptance and rejection regions.

Step 7: Based on steps 5 and 6, draw a conclusion about H0
If the  from the data is larger than the , then you are in the rejection region and you can reject the null hypothesis with

 level of confidence.

Note that modern statistical software condenses steps 6 and 7 by providing a -value. The -value here is the probability of getting
an  even greater than what you observe assuming the null hypothesis is true. If by chance, the , then the 

-value would exactly equal . With larger  values, we move further into the rejection region and the -value becomes
less than . So the decision rule is as follows:

If the -value obtained from the ANOVA is less than , then reject  and accept .

If you are not familiar with this material, we suggest that you review course materials from your basic statistics course.

This page titled 1.2: The 7-Step Process of Statistical Hypothesis Testing is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Penn State's Department of Statistics.
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1.3: Chapter 1 Summary
The emphasis of this lesson was to reinforce the basics of ANOVA, which perhaps you may have seen in other courses. Using the
greenhouse example, the seven important steps of hypothesis testing in a single factor ANOVA setting were explored. Step 2
highlighted the correct way to state and also interpret the alternative hypothesis , while Step 3 discusses the Truth Table that
includes possible errors in hypothesis testing. Step 6 discusses in detail the rejection region of the null hypothesis .

The lesson also introduced us to some basics in ANOVA-related explanatory data analysis (EDA). The graphics such as side-by-
side boxplots and mean plots are useful tools in producing a visual summary of the raw data and ANOVA results. These will serve
as stepping stones to more elaborate graphical techniques we will learn throughout the course.

The concepts and methodology learned in this lesson, though seem straight forward will help us navigate more complex topics
addressed in future lessons. The keywords and phrases learned in this lesson are:

null and alternative hypotheses (  and )
Type 1 and Type II errors
significance level 
rejection region

 statistic and its critical and calculated values.

This page titled 1.3: Chapter 1 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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1

CHAPTER OVERVIEW

2: ANOVA Foundations

Upon completion of this chapter, you should be able to:

Perform basic computations for Single Factor ANOVA and interpret the results.
Carry out the Tukey pairwise mean comparison method.
Learn about other pairwise mean comparison methods.
Conduct a contrast analysis that accommodates the comparison of group means.

In this chapter, we will begin to learn the notation and the formulas to compute the fundamental quantities necessary for ANOVA-
related hypothesis testing as well as mean comparison procedures. The application of these statistical procedures will be illustrated
using the Greenhouse example from Chapter 1.

2.1: Building the ANOVA Table - Notation
2.2: Computing Quantities for the ANOVA Table
2.3: Tukey Test for Pairwise Mean Comparisons
2.4: Other Pairwise Mean Comparison Methods
2.5: Contrast Analysis
2.6: Try It!
2.7: Chapter 2 Summary

This page titled 2: ANOVA Foundations is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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2.1: Building the ANOVA Table - Notation
The idea of ANOVA is to compare different sources of variability: between sample variability and within sample variability.

As a point of review, the alternative hypothesis is what we think is going on (or what we need to conclude). Typically we are
looking to find differences among at least one pair of our treatment means. Because of this, the null hypothesis (the opposite of the
alternative) states that there are no differences among the group means (or that they are all equal).

To test the Null hypothesis (which is traditionally written as , we need to compute the test  statistic
that compares the between sample variability to within sample variability.

To see how we compute this statistic it is helpful to look at the ANOVA table. The table below is an ANOVA table (here presented
blank, with no entries yet):

Figure : Blank ANCOVA table.

To define the elements of the table and fill in these quantities, let’s return to our example data (Lesson 1 Data) for the hypothetical
greenhouse experiment:

Control F1 F2 F3

21 32 22.5 28

19.5 30.5 26 27.5

22.5 25 28 31

21.5 27.5 27 29.5

20.5 28 26.5 30

21 28.6 25.2 29.2

Notation
Each observation in the dataset can be referenced by two indicator subscripts,  and , as .

For those of you not familiar with this notation, we use  to indicate that it is a response variable. The subscript  refers to the 
level of the treatment; our example has 4 treatments, so  will take on the values  and .) The subscript  refers to the 
observation (again, our example has 6 observations for each treatment so  takes the values  and ). It is important to
note that the  observation is occurring within the  treatment level.

subscripts
Control F1 F2 F3

21 32 22.5 28
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19.5 30.5 26 27.5

22.5 25 28 31

21.5 27.5 27 29.5

20.5 28 26.5 30

21 28.6 25.2 29.2

For example, .

We now can define the various means explicitly using these subscripts. The overall or Grand Mean is given by

where the dots indicate that the quantity has been averaged over that subscript. For the Grand Mean, we have averaged over all 
observations in all  treatment levels. The treatment means are given by

indicating that we have averaged over the  observations in each of the  treatment levels.

We can find these in the output from the summary procedure that can be generated in SAS and the coding details are discussed in
Chapter 3:

Summary Output for Lesson 1 Data

Fert _Type_ _FREQ_ mean

 0 24 26.1667

Control 1 6 21.0000

F1 1 6 28.6000

F2 1 6 25.8667

F3 1 6 29.2000

In the output we see the column heading _TYPE_. The summary procedure in SAS calculates all possible means when specified,
and so the _TYPE_ indicates what mean is being computed. _TYPE_ = 0 is the Grand Mean, and we can see this from the number
of observations (given by _FREQ_) of 24. Each of the treatment level means is listed as _TYPE_ = 1 and we confirm that 6
replications were made for each treatment level (remember that j took on values 1 through 6).

Note that SAS automatically has ordered the treatment levels alphabetically.

The grand mean and treatment means are all we need in this example to compute the quantities for the ANOVA table.

This page titled 2.1: Building the ANOVA Table - Notation is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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2.2: Computing Quantities for the ANOVA Table
When working with ANOVA, we start with the total variability in the response variable and divide or "partition" it into different
parts: the between sample variability (i.e. variability due to our treatment) and the within sample variability (i.e. residual
variability). The variability that is due to our treatment we of course hope is significantly large and variability in the response that
is leftover can be thought of as the nuisance, "error", or "residual" variability.

To help you imagine this a bit more, think about the data storage capacity of a computer. If you have 8GB of storage total, you can
ask your computer to show the types of files that are occupying the storage. The ANOVA model is (in a very elementary fashion)
going to compare the variability due to the treatment to the variability left over.

From elementary statistics, when we think of computing a variance of a random variable (say ), we use the expression:

The numerator of this expression is referred to as the Sum of Squares, or Sum of Squared deviations from the mean, or simply SS.
(If you don't recognize this, then we suggest you sharpen your introductory statistics skills!) The denominator is the degrees of
freedom, , or .

1. Total SS = sum of the SS of all Sources (i.e., Total SS = Treatment SS + Error SS)
2. Total df = sum of df of all Sources
3. MS = SS/df

4.  with numerator df = number of treatments - 1 and denominator df = error df

The ANOVA table is set up to generate quantities analogous to the simple variance calculation above. In our greenhouse
experiment example:

1. We start by considering the TOTAL variability in the response variable. This is done by calculating the 

The degrees of freedom for the Total SS is , where  is the total sample size.
2. Our next step determines how much of the variability in  is accounted for by our treatment. We now calculate  or 

:

The sum of squares for the treatment is the deviation of the group mean from the grand mean. So in some sense, we are
"aggregating" all of the responses from that group and representing the "group effect" as the group mean.

and for our example:

Note that in this case we have equal numbers of observations (6) per treatment level, and it is, therefore, a balanced ANOVA.

3. Finally, we need to determine how much variability is "left over". This is the Error or Residual sums of squares by subtraction:
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Note here that the "leftover" is really the deviation of any score from its group mean.

We can now fill in the following columns of the table:

ANOVA

Source df SS MS F

Treatment T - 1 = 3 251.44

Error 23-3=20 61.033  

Total N - 1 =23 312.47   

We have  treatment levels and so we use  for the  for the treatment. In our example, there are 4 treatment levels (the
control and the 3 fertilizers) so  and . Finally, we obtain the error  by subtraction as we did with the
SS.

The Mean Squares (MS) can now be calculated as:

and

NOTE:  will sometimes be referred as  and we don’t need to calculate the .

ANOVA

Source df SS MS F

Treatment 3 251.44 83.813

Error 20 61.033 3.052  

Total 23 312.47   

Finally, we can compute the  statistic for our ANOVA. Conceptually we are comparing the ratio of the variability due to our
treatment (remember we expect this to be relatively large) to the variability leftover, or due to error (and of course, since this is an
error we want this to be small). Following this logic, we expect our  to be a large number. If we go back and think about the
computer storage space we can picture most of the storage space taken up by our treatment, and less of it taken up by error. In our
example, the  is calculated as:

Source df SS MS F

Treatment 3 251.44 83.813 27.46

Error 20 61.033 3.052  

Total 23 312.47   

So how do we know if the  is large enough to conclude we have a significant amount of variability due to our treatment? We look
up the critical value of  and compare it to the value we calculated. Specifically, the critical  is . The
critical value can be found using tables or technology.

T T −1 df

T = 4 T −1 = 4−1 = 3 df

M = = = 83.813S

Trt

SS

Trt

df

Trt

251.44

3

(2.2.6)

M = = = 3.052S

Error

SS

Error

df

Error

61.033

20

(2.2.7)

MS

Error

MSE MS

Total

F

F

F

F = = = 27.46

MS

Trt

MS

Error

83.813

3.052

(2.2.8)

F

F F = = 3.10F

α

F

(0.05,3,20)
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Using a Table:
Appendix Table B4

Using SAS:

data Fvalue; 

    q=finv(0.95, 3, 20); 

    put q=; 

run; 

 

proc print data=work.Fvalue; 

    run;

The Print Procedure

Data Set WORK.FVALUE

Obs q

1 3.09839

Most F tables actually index this value as 

Figure : The  distribution.

The  so we reject  and accept the alternative . The -value (which we don't typically calculate by hand) is
the area under the curve to the right of the  and is the way the process is reported in statistical software. Note that in the
unlikely event that the  is exactly equal to the  then the . As the calculated  statistic increases beyond
the  and we go further into the rejection region, the area under the curve (hence the -value) gets smaller and smaller. This leads
us to the decisions rule: If the -value is  then we reject .

This page titled 2.2: Computing Quantities for the ANOVA Table is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.

 Finding a Critical Value of F

1−α = .95
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F

α

p-value = α F

F

α

p

p < α H
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2.3: Tukey Test for Pairwise Mean Comparisons
If (and only if) we reject the null hypothesis, we then conclude at least one group is different from one other (importantly, we do
not conclude that all the groups are different).

If it is the case that we reject the null, then we will want to know which group or groups are different. In our example we are not
satisfied knowing at least one treatment level is different, we want to know where the difference is and the nature of the difference.
To answer this question, we can follow up the ANOVA with a mean comparison procedure to find out which means differ from
each other and which ones don’t.

You might think we could not bother with the ANOVA and proceed with a series of t-tests to compare the groups. While that is
intuitively simple, it creates inflation of the type I error. How does this inflation of type I error happen? For a single test,

The probability of committing a type I error (by random chance) for two simultaneous tests follows from the Multiplication Rule
for independent events in probability. Recall that, for two independent events  and  the probability of  and  both occurring is

. So for two tests, we have

which is now larger than the α that we originally set. For our example, we have 6 comparisons, so  which
is a much larger (inflated) probability of committing a type I error than we originally set.

The multiple comparison procedures compensate for the type I error inflation (although each does so in a slightly different way).

There are several comparison procedures that can be employed, but we will start with the one most commonly used, the Tukey
procedure. In the Tukey procedure, we compute a "yardstick" value based on the  and the number of means being
compared. If any two means differ by more than the Tukey  value, then they are significantly different.

Step 1: Compute Tukey's  value

Show Tukey  Values Table

df for
Error
Term

 = Number of Treatments

2 3 4 5 6 7 3 9 10

5
0.05 
0.01

3.64 
5.70

4.6 
6.98

5.22 
7.80

5.67 
8.42

6.03 
8.91

6.33 
9.32

6.58 
9.67

6.80 
9.97

6.99 
10.24

6
0.05 
0.01

3.46 
5.24

4.34 
6.33

4.90 
7.03

5.30 
7.56

5.63 
7.97

5.90 
8.32

6.12 
8.61

6.32 
8.87

6.49 
9.10

7
0.05 
0.01

3.34 
4.95

4.16 
5.92

4.68 
6.54

5.06 
7.01

5.36 
7.37

5.61 
7.68

5.82 
7.94

6.00 
8.17

6.16 
8.37

8
0.05 
0.01

3.26 
4.75

4.04 
5.64

4.53 
6.20

4.89 
6.62

5.17 
6.96

5.40 
7.24

5.60 
7.47

5.77 
7.68

5.92 
7.86

9
0.05 
0.01

3.20 
4.60

3.95 
5.43

4.41 
5.96

4.76 
6.35

5.02 
6.66

5.24 
6.91

5.43 
7.13

5.59 
7.33

5.74 
7.49

α = 1 −(.95) (2.3.1)

A B A B

P (A and B) = P (A) ∗P (B)

α = 1 −((.95) ∗ (.95)) = 0.0975 (2.3.2)

α = 1 −( ) = 0.2649.95

6

MS

Error

w

w

w = ⋅q

α(p,d )f

Error

s

Y

¯

(2.3.3)

where   is obtained from a table of Tukey q valuesq

α

p = the number of treatment levels

= standard error of a treatment mean =s

Y

¯

M /rS

Error

− −−−−−−−

√

r = number of replications

q

α

p
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df for
Error
Term

 = Number of Treatments

2 3 4 5 6 7 3 9 10

10
0.05 
0.01

3.15 
4.48

3.88 
5.27

4.33 
5.77

4.65 
6.14

4.91 
6.43

5.12 
6.67

5.30 
6.87

5.46 
7.05

5.60 
7.21

11
0.05 
0.01

3.11 
4.39

3.82 
5.15

4.26 
5.62

4.57 
5.97

4.82 
6.25

5.03 
6.48

5.20 
6.67

5.35 
6.84

5.49 
6.99

12
0.05 
0.01

3.08 
4.32

3.77 
5.05

4.20 
5.50

4.51 
5.84

4.75 
6.10

4.95 
6.32

5.12 
6.51

5.27 
6.67

5.39 
6.81

13
0.05 
0.01

3.06 
4.26

3.73 
4.96

4.15 
5.40

4.45 
5.73

4.69 
5.98

4.88 
6.19

5.05 
6.37

5.19 
6.53

5.32 
6.67

14
0.05 
0.01

3.03 
4.21

3.70 
4.89

4.11 
5.32

4.41 
5.63

4.64 
5.88

4.83 
6.08

4.99 
6.26

5.13 
6.41

5.25 
6.54

15
0.05 
0.01

3.01 
4.17

3.67 
4.84

4.08 
5.25

4.37 
5.56

4.59 
5.80

4.78 
5.99

4.94 
6.16

5.08 
6.31

5.20 
6.44

16
0.05 
0.01

3.00 
4.13

3.65 
4.79

4.05 
5.19

4.33 
5.49

4.56 
5.72

4.74 
5.92

4.90 
6.08

5.03 
6.22

5.15 
6.35

17
0.05 
0.01

2.98 
4.10

3.63 
4.74

4.02 
5.14

4.30 
5.43

4.52 
5.66

4.70 
5.85

4.86 
6.01

4.99 
6.15

5.11 
6.27

18
0.05 
0.01

2.97 
4.07

3.61 
4.70

4.00 
5.09

4.28 
5.38

4.49 
5.60

4.67 
5.79

4.82 
5.94

4.96 
6.08

5.07 
6.20

19
0.05 
0.01

2.96 
4.05

3.59 
4.67

3.98 
5.05

4.25 
5.33

4.47 
5.55

4.65 
5.73

4.79 
5.89

4.92 
6.02

5.04 
6.14

20
0.05 
0.01

2.95 
4.02

3.58 
4.64

3.96 
5.02

4.23 
5.29

4.45 
5.51

4.62 
5.69

4.77 
5.84

4.90 
5.97

5.01 
6.09

24
0.05 
0.01

2.92 
3.96

3.53 
4.55

3.90 
4.91

4.17 
5.17

4.37 
5.37

4.54 
5.54

4.68 
5.69

4.81 
5.81

4.92 
5.92

30
0.05 
0.01

2.89 
3.89

3.49 
4.45

3.84 
4.80

4.10 
5.05

4.30 
5.24

4.46 
5.40

4.60 
5.54

4.72 
5.65

4.83 
5.76

40
0.05 
0.01

2.86 
3.82

3.44 
4.37

3.79 
4.70

4.04 
4.93

4.23 
5.11

4.39 
5.27

4.52 
5.39

4.63 
5.50

4.74 
5.60

For our greenhouse example we get: 

Step 2: Rank the means, calculate differences

For the greenhouse example, we rank the means as:

29.20 28.6 25.87 21.00

Start with the largest and second-largest means and calculate the difference, , which is less than our  of
2.824, so we indicate there is no significant difference between these two means by placing the letter "a" under each:

29.20 28.6 25.87 21.00

a a

α

p

w = = 3.96(0.7132) = 2.824q

.05(4,20)

(3.052/6)

− −−−−−−−

√

29.20−28.60 = 0.60 w
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Then calculate the difference between the largest and third-largest means, , which exceeds the critical  of
2.824, so we can label these with a "b" to show this difference is significant:

29.20 28.6 25.87 21.00

a a b

Now we have to consider whether or not the second-largest and third-largest differ significantly. This is a step that sets up a back-
and-forth process. Here , less than the critical  of 2.824, so these two means do not differ significantly. We
need to add a factor of "b" to show this:

29.20 28.6 25.87 21.00

a ab b

Continuing down the line, we now calculate the next difference: , exceeding the critical , so we now add a
"c":

29.20 28.6 25.87 21.00

a ab b c

Again, we need to go back and check to see if the third-largest also differs from the smallest: , which it does.
So we are done.

These letters can be added to figures summarizing the results of the ANOVA.

The Tukey procedure explained above is valid only with equal sample sizes for each treatment level. In the presence of unequal
sample sizes, more appropriate is the Tukey-Cramer Method, which calculates the standard deviation for each pairwise comparison
separately. This method is available in SAS, R, and most other statistical softwares.

This page titled 2.3: Tukey Test for Pairwise Mean Comparisons is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.

29.20−25.87 = 3.33 w

28.6−25.87 = 2.73 w

28.60−21.00 = 7.60 w

25.87−21.00 = 4.87

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33183?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/02%3A_ANOVA_Foundations/2.03%3A_Tukey_Test_for_Pairwise_Mean_Comparisons
https://creativecommons.org/licenses/by-nc/4.0
https://science.psu.edu/stat
https://online.stat.psu.edu/stat502_fa21/


2.4.1 https://stats.libretexts.org/@go/page/33184

2.4: Other Pairwise Mean Comparison Methods
Although the Tukey procedure is the most widely used multiple comparison procedure, there are many other multiple comparison
techniques.

An older approach, no longer offered in many statistical computing packages, is Fisher’s Protected Least Significant Difference
(LSD). This is a method to compare all possible means, two at a time, as -tests. Unlike an ordinary two-sample -test, however,
the method does rely on the experiment-wide error (the MSE). The LSD is calculated as:

where  is based on  and  error degrees of freedom from the ANOVA table. The standard error for the difference between
two treatment means (  or SE) is calculated as:

where  is the number of observations per treatment mean (replications) and  is the MSE from the ANOVA. As in the Tukey
method, any pair of means that differ by more than the LSD value differ significantly. The major drawback of this method is that it
does not control  over for an entire set of pair-wise comparisons (the experiment-wise error rate) and hence is associated with
Type 1 inflation.

The following multiple comparison procedures are much more assertive in dealing with Type 1 inflation. In theory, while we can
set  for a single test, the fact that we have  treatment levels means there are  tests (the number of pairs of possible
comparisons), and so we need to adjust  to have the desired confidence level for the set of tests. The Tukey, Bonferroni, and
Scheffé methods control the experiment-wise error, but in different ways. All three use a  form, but differ in the
form of the multiplier.

Contrasts are comparisons involving two or more factor level means (discussed more in the following section). Mean comparisons
can be thought of as a subset of possible contrasts among the means. If only pairwise comparisons are made, the Tukey method will
produce the narrowest confidence intervals and is the recommended method. The Bonferroni and Scheffé methods are used for
general tests of possible contrasts. The Bonferroni method is better when the number of contrasts being tested is about the same as
the number of factor levels. The Scheffé method covers all possible contrasts, and as a result, is the most conservative of all the
methods. The drawback for such a highly conservative test, however, is that it becomes more difficult to resolve differences among
means, even though the ANOVA would indicate that they exist.

When treatment levels include a control and mean comparisons are restricted to only comparing treatment levels against a control
level, Dunnett’s mean comparison method is appropriate. Because there are fewer comparisons made in this case, the test provides
more power compared to a test (see Section 3.7) using the full set of all pairwise comparisons.

To illustrate these methods, the following output was obtained (as we will see later on in the course) for the hypothetical
greenhouse data of our example. We will be running these types of analyses later.

Fisher’s Least Significant Difference (LSD)

t t

LSD(α) = t

α,df

s

d

¯

(2.4.1)

t

α

α df =

s

d

¯

=s

d

¯

2s

2

r

− −−−

√

(2.4.2)

r s

2

α

α T T (T −1)/2

α

"multiplier" ∗SE
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Figure : LSD height groupings for fertilizer treatments.

Since the estimated means for F1 and F3 are covered by the same colored bar, they are not significantly different using the LSD
approach.

Tukey

Figure : Tukey height groupings for fertilizer treatments.

Since the estimated means for F1 and F3 are covered by the same colored bar (red bar), they are not significantly different using
Tukey's approach. Similarly, since F1 and F2 are covered by the same colored bar (blue bar) they are not significantly different

2.4.1

2.4.2
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using Tukey's approach.

Bonferroni

Figure : Bonferroni height groupings for fertilizer treatments.

Observations from the Bonferroni approach are similar to the ones from Tukey's approach.

Scheffé

Figure : Scheffé height groupings for fertilizer treatments.

Observations from the Scheffé approach are similar to the ones from Tukey's and Bonferroni's approaches.

2.4.3

2.4.4
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Dunnett
Comparisons significant at the 0.05 level are indicated by ***.

Fertilizer 
Comparison

Difference 
Between 

Means
Simultaneous 95% Confidence Limits ***

F3 - Control 8.200 5.638 10.762 ***

F1 - Control 7.600 5.038 10.162 ***

F2 - Control 4.867 2.305 7.429 ***

We can see that the LSD method was the most liberal, that is, it indicated the largest number of significant differences between
means. In this example, Tukey, Bonferroni, and Scheffé produced the same results. The Dunnett test was consistent with the other 4
methods, and this is not surprising given the small value of the control mean compared to the other treatment levels.

To get a closer look at the results of employing the different methods, we can focus on the differences between the means for each
possible pair:

Comparison Difference between means

Control F1 7.6000

Control F2 4.8667

Control F3 8.2000

F1 F2 2.7333

F1 F3 0.6000

F2 F3 3.3333

and compare the 95% confidence intervals produced:

Type LSD Tukey Bonferroni Scheffé Dunnett

Comparison Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

Control F1 5.496 9.704 4.777 10.423 4.648 10.552 4.525 10.675 5.038 10.162

Control F2 2.763 6.971 2.044 7.690 1.914 7.819 1.792 7.942 2.305 7.429

Control F3 6.096 10.304 5.377 11.023 5.248 11.152 5.125 11.275 5.638 10.762

F1 F2 0.629 4.837 -0.090 5.556 -0.2189 5.686 -0.342 5.808 X X

F1 F3 -1.504 2.704 -2.223 3.423 -2.352 3.552 -2.475 3.675 X X

F2 F3 1.229 5.437 0.510 6.156 0.3811 6.286 0.258 6.408 X X

You can see that the LSD produced the narrowest confidence intervals for the differences between means. Dunnett’s test had the
next most narrow intervals, but only compares treatment levels to the control. The Tukey method produced intervals that were
similar to those obtained for the LSD, and the Scheffé method produced the broadest confidence intervals.

What does this mean? When we need to be REALLY sure about our results, we should use conservative tests. If you are working in
life-and-death situations, such as in most clinical trials or bridge building, you might want to be surer. If the consequences are less
severe you can use a more liberal test, understanding there is more of a chance you might be incorrect (but still able to detect
differences). In reality, you need to be consistent with the rigor used in your discipline. While we can't tell you which comparison
to use, we can tell you the differences among the tests and the trade-offs for each one.
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2.5: Contrast Analysis
The paired comparisons discussed in sections 2.2 and 2.3 have the limitation that the comparisons are made only between treatment
mean pairs. The contrast analysis procedure can be used to carry out comparisons of a much wider context such as comparisons of
treatment level groups or even testing of trends prompting regression modeling to express the response vs. treatment relationship
with treatment as a numerical predictor. In the context of a single factor ANOVA model, a linear contrast can be defined as a linear
combination of the treatment means such that their numerical coefficients add to zero. Mathematically, a contrast can be
represented by...

where  represent the sample treatment means and . The quantity  is a sample statistic and serves as an
estimate for the population contrast . By choosing the numerical coefficients appropriately, linear contrasts can be used
to make different comparisons among groups of treatment means but not limited to only mean pairs. The table below gives 4 linear
contrasts defined in terms of the 3 fertilizer levels F1, F2, F3, and the Control in the greenhouse example.

Table: Greenhouse example contrasts

Ex Contrast

1 1 -1 0 0 F1-F2

2 1 1 1 -3 F1+F2+F3-3C

3 1 1 -2 0 F1+F2-2F3

4 0 1 -1 0 F2-F3

Notice that values of each list of  ( ) add to zero. The first contrast compares the first two fertilizer types in terms of
their means, and the second compares the means of the 3 fertilizer types with the Control mean. The third is a comparison between
the combined effect of fertilizer types 1 and 2 with fertilizer type 3, while the last contrast compares the second and third fertilizer
types.

A pair of contrasts  and  is orthogonal if the products of their numerical coefficients add to zero.
This can be expressed mathematically as

A set of contrasts is said to be orthogonal if every pair of contrasts in the set is orthogonal. Two orthogonal contrasts are not
correlated which means that if  and  are orthogonal, then . Furthermore, the sum of squares of the
treatment usually displayed in the ANOVA table can be partitioned into a set of (  orthogonal contrasts each with 1 degree of
freedom. Note that the maximal number of orthogonal contrasts associated with a treatment of  levels is  and each of
them would be associated with one specific comparison independent of each other. In the table above, contrasts 1, 2, and 3 form an
orthogonal set of contrasts and contrast 4 cannot be admitted into this set.

The statistical significance of a linear contrast, which can be equated to testing for the zero contrast value can be formulated using
the null and alternative hypotheses:

and can be tested using either,

A =∑

i=1

T

a

i

ȳ

i

(2.5.1)
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with numerator and denominator degrees of freedom equal to  and  respectively.

Note that MSE can be obtained from the ANOVA table. Applying the above formula, the -statistic for testing contrast 2 above is...

with  and has a -value of .0028, indicating that the average plant height due to the combined treatment of the 3 fertilizer
types differs significantly from the average plant height yielded by the control.

The above testing procedure is applicable to non-orthogonal contrasts as well. But, as non-orthogonal contrasts are not guaranteed
to be uncorrelated, the conclusions arrived at may be "overlapping" and lead to redundancies. In Chapter 3, examples are provided
to illustrate how software can be used to conduct contrast testing. The hypothesis testing for trends using contrasts will be
discussed in Chapter 10: ANCOVA II.

This page titled 2.5: Contrast Analysis is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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2.6: Try It!

To compare the teaching effectiveness of 3 teaching methods, the semester average based on 4 midterm exams from five
randomly selected students enrolled in each teaching method were used.

1. What is the response in this study?
2. How many replicates are there?
3. Write the appropriate null and alternative hypotheses.
4. Complete the partially filled ANOVA table given below. Round your answers to 4 decimal places.

Source df SS MS F p-value

teach_mtd 245

error   

total 345.1    

5. Find the critical value at 
6. Make your conclusion.
7. From the ANOVA analysis, you performed, can you detect the teaching method which yields the highest semester average?

If not, suggest a technique that will.

Solution
1. Average of 4 mid-terms
2. 5
3. , where  are the actual semester average of a student enrolled in teaching method

1, method 2, and method 3 respectively. Ha: Not all semester averages are equal. (This means that there are at least two
teaching methods that differ in their actual semester averages)

4. Source df SS MS F p-value

teach_mtd 2 245 122.5000 14.6853 0.0006

error 12 100.1 8.3417   

total 14 345.1    

5. 6.925
6. As the calculated -statistic value = 14.6853 is more than the critical value of 6.925,  should be rejected. Therefore,

we can conclude that all 3 teaching methods do not have the same semester average, indicating that at least 2 teaching
methods differ in their actual semester average.

7. The ANOVA conclusion indicated that not all 3 teaching methods are equally effective, but did not indicate which one
yields the highest mean score. The Tukey comparison method is one procedure that shows the teaching method that
yields the significantly highest average semester score.

In a local commuter bus service, the number of daily passengers for 50 weeks was recorded. The purpose was to determine if
the passenger volume is significantly less during weekends compared to workdays. Below are summary statistics for each day
of the week. The partially filled ANOVA table, along with a Tukey plot, is shown below.

Statistics

Day N Mean SE Mean Std Dev

 Exercise : Teaching Effectiveness2.6.1
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Day N Mean SE Mean Std Dev

Sun 50 486.500 9.003 63.661

Mon 50 514.600 6.891 48.724

Tue 50 501.340 7.922 56.018

Wed 50 520.640 7.055 49.886

Thu 50 512.880 10.258 72.532

Fri 50 512.600 8.086 57.174

Sat 50 469.860 8.988 63.555

a) State the appropriate null and alternative hypotheses for this test.

Solution

\(H_{A}: \ \text{At least one } \mu_{day \ i} \neq \mu_{day \ j}, \text{ for some\) i, j = 1, 2, \ldots, 7 \text{ OR not all
means are equal}\)

b) Complete the partially filled ANOVA table given below. Use two decimal places in the  statistic.

Source df SS MS F p-value

Groups 100391

Error  

Total 1306887    

Solution

Source df SS MS F p-value

Day 6 100391 16731.8 4.76 0.0001

Error 343 1206496 3517.5   

Total 349 1306887    

c) Use the appropriate -distribution cumulative probabilities to verify that the -value for the test is approximately zero.

Solution

-value  (from the -distribution with 6 and 343 degrees of freedom)

d) Use  to test if the mean passenger volume differs significantly by day of the week.

Solution

Since the -value , we reject . There is strong evidence to indicate that the mean passenger volume differs
significantly by day of the week (i.e., for some days of the week, the average number of commuters is more than others, but
this test does not indicate which days have a higher passenger volume).
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Figure : Grouping information using the tukey method and 95% confidence.

e) Use the output to make a statement about how the mean daily passenger volume differs significantly by day of the week.

Solution

The passenger volume on Sundays is not statistically different from Saturdays and also from Tuesdays. The mean passenger
volume on Saturdays is significantly lower than on workdays other than Tuesdays.

f) The management would like to know if the overall number of commuters is significantly more during workdays than during
weekends. An appropriate comparison to respond to their query would be to compare the average number of commuters
between workdays (Monday through Friday) and the weekend. Write the weight (coefficients) for a linear contrast to make this
comparison. Test the hypothesis that the average commuter volume during the weekends is less.

Solution

The weights (coefficients) for the appropriate contrast are given below.

Day Mon Tue Wed Thu Fri Sat Sun

weight 1 1 1 1 1 -2.5 -2.5

Under the null hypothesis, this test statistic has a -distribution with 343 degrees of freedom. You can obtain the -value
using statistical software. Recall this is a one-tailed test.

Student's t distribution with 343 DF

This -value indicates that the difference in the average number of passengers is
statistically significant between workdays and weekends.
See the table below for computations:
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Factor N Mean weights product weightFactor N Mean weights product weight

Mon 50 514.6 1.0 514.6 1.00

Tue 50 501.34 1.0 501.34 1.00

Wed 50 520.64 1.0 520.64 1.00

Thu 50 512.88 1.0 512.88 1.00

Fri 50 512.6 1.0 512.6 1.00

Sat 50 469.86 -2.5 -1174.65 6.25

Sun 50 486.5 -2.5 -1216.25 6.25

Recall that the MSE (error mean squares) is 3517.5 with .

This page titled 2.6: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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2.7: Chapter 2 Summary
In this lesson, we became familiar with the ANOVA methodology to test for equality among treatment means. As follow-up
procedures, we were also exposed to the Tukey method for paired mean comparisons which helped to identify significantly
different treatment (factor) levels. The contrast analysis was also discussed as a means to compare differences among group means.

This page titled 2.7: Chapter 2 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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1

CHAPTER OVERVIEW

3: ANOVA Models Part I
In Chapter 2 we learned that ANOVA is based on testing the effect of the treatment relative to the amount of random error. In
statistics, we call this the partitioning of variability (due to treatment and due to random variability in the measurements). This
partitioning of the deviations can be written mathematically as:

Thus, the total deviation  in  can be viewed as the sum of two components:

 Deviation of estimated factor level mean around overall mean, and

 Deviation of the  response of the  factor around the estimated factor level mean.

These two deviations are also called variability between groups, a reflection of differences between treatment levels and the
variability within groups that serves as a proxy for the error variability among individual observations. A practitioner would
however be more interested in the variability between groups as it is the indicator of treatment level differences and may have little
interest in the within-group variability, expecting it to be in fact small. However, it will be seen that both these variability measures
will play an important role in statistical procedures.

There are several mathematically equivalent forms of ANOVA models describing the relationship between the response and the
treatment. In this chapter we will focus on the effects model, and in the next chapter three other alternative models will be
introduced.

This lesson will also cover the topic of model assumptions needed to employ the ANOVA. Model diagnostics, which deal with
verifying the validity of model assumptions, are also discussed, along with power analysis techniques to assess the power
associated with a statistical study. How software can be used to analyze data using the statistical techniques discussed will also be
presented.

3.1: The Model
3.2: Assumptions and Diagnostics
3.3: Anatomy of SAS Programming for ANOVA
3.4: Greenhouse Example in SAS
3.5: SAS Output for ANOVA
3.6: One-Way ANOVA Greenhouse Example in Minitab
3.7: One-Way ANOVA Greenhouse Example in R
3.8: Power Analysis
3.9: Try It!
3.10: Chapter 3 Summary

This page titled 3: ANOVA Models Part I is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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3.1: The Model
The effects model for one way ANOVA is a linear additive statistical model which relates the response to the treatment and can be
expressed as

where  is the grand mean,  are the deviations from the grand mean due to the treatment levels and  are the
error terms. The quantities  which add to zero, are also referred to as the treatment level effects and the errors
show the amount "left over" after considering the grand mean and the effect of being in a particular treatment level.

Here’s the analogy in terms of the greenhouse experiment. Think of someone who is not aware that different fertilizers have been
used walking into the greenhouse to simply inquire about plant heights in general. The overall sample mean, an estimate of the
grand mean, will be a suitable response to this inquiry. On the other hand, the overall mean would not be satisfactory to the
experimenter of the study, who obviously suspects that there will be height differences among different fertilizer types. Instead,
what is more acceptable to the experimenter are the plant height estimates after including the effect of the treatment .

The actual plant height can never be known because there is an unknown measurement error associated with any observation.
This unknown error is associated with the ith treatment level, and the jth observation is denoted 

 is a random component (noise) that reflects the unexplained variability among plants
within treatment levels.

Under the null hypothesis where the treatment effect is zero, the reduced model can be written .

Under the alternative hypothesis, where the treatment effects are not zero, the full model for at least one treatment level can be
written .

If  denotes the error sums of squares associated with the reduced model and  denotes the error sums of squares
associated with the full model, we can utilize the General Linear Test approach to test the null hypothesis by using the test statistic:

which under the null hypothesis has an  distribution with the numerator and denominator degrees of freedom equal to 
and  respectively, where  is the degrees of freedom associated with  and  is the degree of freedom associated
with . It is easy to see that  and  where . Also,
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Note that this is the same test statistic derived in Section 2.2 for testing the treatment significance. If the null hypothesis is true,
then the treatment effect is not significant. If we reject the null hypothesis, then we conclude that the treatment effect is significant,
which leads to the conclusion that at least one treatment level is better than the others!

This page titled 3.1: The Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department
of Statistics.
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3.2: Assumptions and Diagnostics
Before we draw any conclusions about the significance of the model, we need to make sure we have a "valid" model. Like any other statistical procedure, the ANOVA has assumptions
that must be met. Failure to meet these assumptions means any conclusions drawn from the model are not to be trusted.

Assumptions
So what are these assumptions being made to employ the ANOVA model? The errors are assumed to be independent and identically distributed (iid) with a normal distribution having a
mean of 0 and unknown equal variance.

As the model residuals serve as estimates of the unknown error, diagnostic tests to check for validity of model assumptions are based on residual plots, and thus, the implementation of
diagnostic tests is also called Residual Analysis.

Diagnostic Tests
Most useful is the residual vs. predicted value plot, which identifies the violations of zero mean and equal variance. Residuals are also plotted against the treatment levels to examine if
the residual behavior differs among treatments.

The normality assumption is checked by using a normal probability plot.

Residual plots can help identify potential outliers, and the pattern of residuals vs. fitted values or treatments may suggest a transformation of the response variable.

Lesson 4: SLR Model Assumptions of STAT 501 online notes discuss various diagnostic procedures in more detail.

There are various statistical tests to check the validity of these assumptions, but some may not be that useful. For example, Bartlett’s test for homogeneity is too sensitive and indicates
that problems exist when they really don’t. It turns out that the ANOVA is very robust and is not badly affected by minor violations of these assumptions. In practice, a good deal of
common sense and the visual inspection of the residual plots are sufficient to determine if serious problems exist.

We will employ statistical software such as SAS to conduct the residual analysis. Here are common patterns that you may encounter in the residual analysis (i.e. plotting residuals, ,
against the predicted values, ).

Figure  shows the prototype plot when the ANOVA model is appropriate for data. The residuals are scattered randomly around mean zero and variability is constant (i.e. within
the horizontal bands) for all groups.

Figure : Common patterns in residual analysis.

Figure  suggests that although the variance is constant, there are some trends in the response that is not explained by a linear model. Using Figure , we can depict that the
linear model is appropriate as the central trend in data is a line. However, the megaphone patterns in Figure  suggest that variance is not constant.

A common problem encountered in ANOVA is when the variance of treatment levels is not equal (heterogeneity of variance). If the variance is increasing in proportion to the mean
(panel (c) in Figure ), a logarithmic transformation of Y can "stabilize" the variances. If the residuals vs. predicted values instead show a curvilinear trend (panel (b) in Figure 

), then a quadratic or other transformation may help. Since finding the correct transformation can be challenging, the Box-Cox method is often used to identify the appropriate
transformation, given in terms of  as shown below.

Some  values result some common transformations.

transformations.

Transformation

2 Square

1 Original (No transform)

1/2 Square Root

0 Logarithm
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To run the Box-Cox procedure in Minitab, set up the data (Simulated Data), as a stacked format (a column with treatment (or trt combination) levels, and the second column with
the response variable.

Treatment Response Variable

A 12

A 23

A 34

B 45

B 56

B 67

C 14

C 25

C 36

Steps in Minitab
1. On the Minitab toolbar, choose Stat > Control Charts > Box-Cox Transformation

Figure : Selecting Box-Cox Transformation stat option.

2. Place "Response Variable" and "Treatment" in the boxes as shown below.

Figure : Inputting "Response Variable" and "Treatment" in pop-up window.

3. Click OK to finish. You will get an output like this:

Figure : Minitab Box-Cox plot output.

In the upper right-hand box, the rounded value for  is given from which the appropriate transformation of the response variable can be found using the chart above. Note, with
a  of 1, no transformation is recommended.

 Using Minitab

3.2.2

3.2.3

3.2.4
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The Box-Cox procedure in SAS is more complicated in a general setting. It is done through the Transreg procedure, by obtaining the ANOVA solution with regression which first
requires coding the treatment levels with effect coding discussed in Chapter 4.

However, for one-way ANOVA (ANOVA with only one factor) we can use the SAS Transreg procedure without much hassle.

Steps in SAS

Suppose we have SAS data as follows.

Obs Treatment ResponseVariable

1 A 12

2 A 23

3 A 34

4 B 45

5 B 56

6 B 67

7 C 14

8 C 25

9 C 36

We can use the following SAS commands to run the Box-Cox analysis.

proc transreg data=boxcoxSimData; 

model boxcox(ResponseVariable)=class(Treatment); 

run; 

This would generate an output as follows, which suggests a transformation using  (i.e. no transformation).

Figure : SAS Box-cox plot output.

Steps in R

Load the simulated data and perform the Box-Cox transformation. Note that simulated data are in the stacked format (a column with treatment levels and a column with the
response variable)

setwd("~/path-to-folder/) 

simulated_data<-read.table("simulated_data.txt",header=T) 

attach(simulated_data) 

library(AID)#Load package AID so that we can use the Box-Cox Procedure 

boxcoxfr(Response_Variable,Treatment)#Box-Cox command for One-Way ANOVA 

Output
Box-Cox power transformation

data: Response_Variable and Treatment

lambda.hat: 0.93

 Using SAS

λ = 1

3.2.5

 Using R
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Shapiro-Wilk normality test for transformed data (alpha = 0.05)

Level statistic p.value Normality

Shapiro-Wilk normality test for transformed data (alpha = 0.05)

Level statistic p.value Normality

1 A 0.9998983 0.9807382 YES

2 B 0.9999840 0.9923681 YES

3 C 0.9999151 0.9824033 YES

Bartlett's homogeneity test for transformed data (alpha = 0.05)

Level statistic p.value Homogeneity

1 All 0.008271728 0.9958727 YES

From the output, we can see that the lambda value for the transformation is 0.93 (the same value as Minitab suggested). Since this value is very close to 1 we can use  (no
transformation).

In addition, from the output, we can see that normality exists in all 3 levels (Shapiro-Wilk test) and we have the same variance (Bartlett's test).

Alternative:

We can use the command boxcox  from package MASS

library(MASS) 

Box_Cox_Plot<-boxcox(aov(Response_Variable~Treatment),lambda=seq(-3,3,0.01)) 

Figure : R-generated plot of log-likelihood vs .

From the plot, we can see the 95% CL. Since  is within the interval there is no need for transformation.

#Exact lambda 

lambda<-Box_Cox_Plot$x[which.max(Box_Cox_Plot$y)] #0.93 

detach(simulated_data) 

This page titled 3.2: Assumptions and Diagnostics is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of Statistics.
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λ = 1
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3.3: Anatomy of SAS Programming for ANOVA
The statistical software SAS is widely used in this course, and in previous sections we came across outputs generated through SAS
programs. In this section, we begin to delve further into SAS programming with a special focus on ANOVA-related statistical
procedures. The STAT 480-course series is also a useful resource for additional help.

Here is the program used to generate the summary output in Section 2.1:

data greenhouse;  

input Fert $ Height; 

The first line begins with the word data  and invokes the data step. Notice that the end of each SAS statement has a semicolon.
This is essential. In the dataset, the data to be used and its variables are named. Note that SAS assumes variables are numeric in the
input statement, so if we are going to use a variable with alpha-numeric values (e.g. F1 or Control), then we have to follow the
name of the variable in the input statement with a $  sign.

A simple way to input small datasets is shown in this code, wherein we embed the data in the program. This is done with the word 
datalines .

datalines;  

Control     21  

Control     19.5  

Control     22.5  

Control     21.5  

Control     20.5  

Control     21  

F1     32  

F1     30.5  

F1     25  

F1     27.5  

F1     28  

F1     28.6  

F2     22.5  

F2     26  

F2     28  

F2     27  

F2     26.5  

F2     25.2  

F3     28  

F3     27.5  

F3     31  

F3     29.5  

F3     30  

F3     29.2  

; 

The semicolon here ends the dataset.

SAS then produces an output of interest using proc  statements, short for “procedure”. You only need to use the first four letters,
so SAS code is full of proc  statements to do various tasks. Here we just wanted to print the data to be sure it read it in OK.
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proc print data= greenhouse;  

title 'Raw Data for Greenhouse Data'; run; 

Notice that the data set to be printed is specified in the proc print command. This is an important habit to develop because if not
specified, SAS will use the last created data set, out of both input data sets, and output datasets that may have been generated as a
result of any SAS procedures run up to that point.

The summary procedure which was then run can be very useful in both EDA (exploratory data analysis) and obtaining descriptive
statistics such as mean, variance, minimum, maximum, etc. SAS procedures including the summary procedure categorical variables
are specified in the class statement. Any variable NOT listed in the class statement is treated as a continuous variable. The target
variable for which the summary will be made is specified by the var  (for variable) statement.

The output  statement creates an output dataset and the out=  part assigns a name of your choice to the output. Descriptive
statistics also can be named. For example, in the output  statement below, mean=mean  and stderr=se  have named the
mean of the variable fert  as mean  and standard error as se . The output data sets of any SAS procedure will not be
automatically printed. As illustrated in the code below, the print procedure would then have to be used to print the generated output.
In the proc print command a title can be included as a means of identifying and describing the output contents.

proc summary data= greenhouse;  

class fert;  

var height;  

output out=output1 mean=mean stderr=se;  

run;  

proc print data=output1;  

title 'Summary Output for Greenhouse Data';  

run; 

The two commands title ; run; right after will erase the title assignment. This prevents the same title to be used in every
output generated thereafter, which is a default feature in SAS.

title; run; 

Summary Output for Greenhouse Data
Obs Fert TYPE FREQ mean se

1 0 24 26.1667 0.75238

2 Control 1 6 21.0000 0.40825

3 F1 1 6 28.6000 0.99499

4 F2 1 6 25.8667 0.77531

5 F3 1 6 29.2000 0.52599

This page titled 3.3: Anatomy of SAS Programming for ANOVA is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics.
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3.4: Greenhouse Example in SAS
In this section we will modify our previous program for greenhouse data to run the ANOVA model. The two SAS procedures that
are commonly used are: proc glm  and proc mixed .

data greenhouse; 

input fert $ Height; 

datalines; 

Control     21 

Control     19.5 

Control     22.5 

Control     21.5 

Control     20.5 

Control     21 

F1     32 

F1     30.5 

F1     25 

F1     27.5 

F1     28 

F1     28.6 

F2     22.5 

F2     26 

F2     28 

F2     27 

F2     26.5 

F2     25.2 

F3     28 

F3     27.5 

F3     31 

F3     29.5 

F3     30 

F3     29.2 

; 

 

/* 

Any lines enclosed between starting with "/*" & ending with "*/" will be ignored by SA

*/ 

 

/* Recall how to print the data and obtain summary statistics. See section 3.3*/ 

 

/*To run the ANOVA model, use proc mixed procedure*/ 

 

proc mixed data=greenhouse method=type3 plots=all; 

class fert; 

model height=fert; 

store myresults; /*myresults is an user defined object that stores results*/ 

title 'ANOVA of Greenhouse Data'; 
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This page titled 3.4: Greenhouse Example in SAS is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics.

run; 

 

/*To conduct the pairwise comparisons using Tukey adjustment*/ 

/*lsmeans statement below outputs the estimates means, 

performs the Tukey paired comparisons, plots the data. */ 

/*Use proc plm procedure for post estimation analysis*/ 

proc plm restore=myresults; 

lsmeans fert / adjust=tukey plot=meanplot cl lines; 

run; 

 

/* Testing for contrasts of interest with Bonferroni adjustment*/ 

proc plm restore=myresults; 

lsmeans fert / adjust=tukey plot=meanplot cl lines; 

estimate 'Compare control + F3 with F1 and F2 ' fert 1 -1 -1 1, 

                 'Compare control + F2 with F1' fert 1 -2 1 0/ adjust=bon; 

run; 
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3.5: SAS Output for ANOVA
The first output of the ANOVA procedure as shown below, gives useful details about the model.

ANOVA of Greenhouse Data: The Mixed Procedure

Model Information

Data Set WORK.GREENHOUSE

Dependent Variable Height

Covariance Structure Diagonal

Estimation Method Type 3

Residual Variance Method Factor

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Residual

Class Level Information

Class Levels Values

fert 4 Control F1 F2 F3

Dimensions

Covariance Parameters 1

Columns in X 5

Columns in Z 0

Subjects 0

Max Obs Per Subject 24

The output below titled ‘Type 3 Analysis of Variance’ is similar to the ANOVA table we are already familiar with. Note that it
does not include the Total SS, however it can be computed as the sum of all SS values in the table.

Type 3 Analysis of Variance

Sources DF
Sum of
Squares

Mean Square
Expected
Mean Square

Error Term Error DF F Value Pr > F

fert 3 251.440000 83.813333
Var(Residua
l)+Q(fert)

MS(Residua
l)

20 27.46 <.0001

Residual 20 61.033333 3.051667
Var(Residua
l)

Covariance Parameter Estimates

Cov Parm Estimate

Residual 3.0517
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Fit Statistics

-2 Res Log Likelihood 86.2

AIC (smaller is better) 88.2

AICC (smaller is better) 88.5

BIC (smaller is better) 89.2

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

fert 3 20 27.46 <.0001

The output above titled “Type 3 Tests of Fixed Effects” will display the  and p-value for the test of any variables that are
specified in the model statement. Additional information can also be requested. For example, the method = type 3 option
will include the Expected Mean Squares for each source, which will prove to be useful and will be seen in Chapter 6.

The Mixed Procedure also produces the following diagnostic plots:

Figure : Diagnostic plots for residuals for height.

Figure : Box plots for distribution of residuals for height.

F

calculated

3.5.1

3.5.2
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The following display is a result of the LSmeans statement in the PLM procedure which was included in the programming code.

Differences of fert Least Squares Means

fert Estimate
Standard
Error

DF t Value Pr > |t| Alpha Lower Upper

Control 21.0000 0.7132 20 29.45 <.0001 0.05 19.5124 22.4876

F1 28.6000 0.7132 20 40.10 <.0001 0.05 27.1124 30.0876

F2 25.8667 0.7132 20 36.27 <.0001 0.05 24.3790 27.3543

F3 29.2000 0.7132 20 40.94 <.001 0.05 27.7124 30.6876

In the "Least Squares Means" table above, note that the -value and  are testing null hypotheses that each group mean= 0.
(These tests usually do not provide any useful information). The Lower and Upper values are the 95% confidence limits for the
group means. Note also that the least square means are the same as the original arithmetic means that were generated in the
Summary procedure in Section 3.3 because all 4 groups have the same sample sizes. With unequal sample sizes or if there is a
covariate present, the least square means can differ from the original sample means.

Next, the Plot= mean plot option in the LSmeans statement yields a mean plot and also a diffogram, shown below. The confidence
intervals in the mean plot are commonly used to identify the significantly different treatment levels or groups. If two confidence
intervals do not overlap, then the difference between the two associated means is statistically significant, which is a valid
conclusion. However, if they overlap, it may be the case that the difference might still be significant. Consequently, conclusions
made based on the visual inspection of the mean plot may not match with those arrived at using the table of "Difference of Least
Square Means", another output of the Tukey procedure, and is displayed below.

Notice that this is different from the previous table because it displays the results of each pairwise comparison. For example, the
first row shows the comparison between the control and F1. The interpretation of these results is similar to any other confidence
interval for the difference in two means—if the confidence interval does not contain zero, then the difference between the two
associated means is statistically significant.

Differences of fert Least Squares Means
Adjustment for Multiple Comparisons: Tukey

fert _fert
Estimat
e

Standar
d Error

DF t Value Pr > |t| Adj P Alpha Lower Upper
Adj
Lower

Adj
Upper

Control F1 -7.6000 1.0086 20 -7.54 <.0001 <.0001 0.05 -9.7038 -5.4962
-10.422

9
-4.7771

Control F2 -4.8667 1.0086 20 -4.83 0.0001 0.0006 0.05 -6.9705 -2.7628 -7.6896 -2.0438

Control F3 -8.2000 1.0086 20 -8.13 <.0001 <.0001 0.05
-10.303

8
-6.0962

-11.022
9

-5.3771

F1 F2 2.7333 1.0086 20 2.71 0.0135 0.0599 0.05 0.6295 4.8372
-0.0895

7
5.5562

F1 F3 -0.6000 1.0086 20 -0.59 0.5586 0.9324 0.05 -2.7038 1.5038 -3.4229 2.2229

F2 F3 -3.3333 1.0086 20 -3.30 0.0035 .0171 0.05 -5.4372 -1.2295 -6.1562 -0.5104

This discrepancy between the mean plot and the "Difference of Least Square Means" results occurs because the testing is done in
terms of the difference of two means, using the standard error of the difference of the two-sample means, but the confidence
intervals of the mean plot are computed for the individual means which are in terms of the standard error of individual sample
means. Consistent results can be achieved by using the diffogram as discussed below or the confidence intervals displayed in the
"difference in mean plot" available in SAS 14, but not included here.

t Pr> |t|
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The diffogram has two useful features. It allows one to identify the significant mean pairs and also gives estimates of the individual
means. The diagonal line shown in the diffogram is used as a reference line. Each group (or factor level) is marked on the
horizontal and vertical axes and has vertical and horizontal reference lines with their intersection point falling on the diagonal
reference line. The  or the  coordinates of this intersection point which are equal is the sample mean of that group. For example,
the sample mean for the Control group is about 21, which matches with the estimate provided in the "Least Squares Means" table
displayed above. Furthermore, each slanted line represents a mean pair. Start with any group label from the horizontal axis and run
your cursor up, along the associated vertical line until it meets a slanted line, and then go across the intersecting horizontal line to
identify the other group (or factor level). For example, the lowermost solid line (colored blue) represents the Control and F2. As
stated at the bottom of the chart, the solid (or blue) lines indicate significant pairs, and the broken (or red) lines correspond to the
non-significant pairs. Furthermore, a line corresponding to a nonsignificant pair will cross the diagonal reference line.

Figure : LS-Means plot.

Figure : Diffogram.

The non-overlapping confidence intervals in the mean plot above indicate that the average plant height due to control is
significantly different from those of the other 3 fertilizer levels and that the F2 fertilizer type yields a statistically different average
plant height from F3. The diffogram also delivers the same conclusions and so, in this example, conclusions are not contradictory.
In general, the diffogram always provides the same conclusions as derived from the confidence intervals of difference of least-
square means shown in the "Difference of Least Square Means" table, but the conclusions based on the mean plot may differ.

There are two contrasts of interest: contrast to compare the control and F3 with F1 (i.e. ) and the
contrast to compare control and F2 with F1 (i.e., ). Since we are testing for two contrasts, we should adjust
for multiple comparisons. We use Bonferroni adjustment. In SAS, we can use the estimate  command under proc plm to
make these computations.

In general, the estimate command estimates linear combinations of model parameters and performs t-tests on them. Contrasts
are linear combinations that satisfy a special condition. We will discuss the model parameters in Chapter 4.

x y
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Estimates 
Adjustment for Multiplicity: Bonferroni

Label Estimate Standard Error DF t Value Pr > |t| Adj P

Estimates 
Adjustment for Multiplicity: Bonferroni

Label Estimate Standard Error DF t Value Pr > |t| Adj P

Compare control
+ F3 with F1 and
F2

-4.2667 1.4263 20 -2.99 0.0072 0.0144

Compare control
+ F2 with F1

-10.3333 1.7469 20 -5.92 <.0001 <.0001

SAS returns both unadjusted and adjusted -values. Suppose we wanted to make the comparisons at 1% level. If we ignored the
multiple comparisons (i.e. using unadjusted -values), the both comparisons are statistically significant. However, if we consider
the adjusted -values, we will fail to reject the hypothesis corresponding to the first contrast at the 1% level.

This page titled 3.5: SAS Output for ANOVA is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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3.6: One-Way ANOVA Greenhouse Example in Minitab

Step 1: Import the data
The data (Lesson 1 Data) can be copied and pasted from a word processor into a worksheet in Minitab:

Figure : Worksheet in Minitab of Lesson 1 data.

Step 2: Run the ANOVA
To run the ANOVA, we use the sequence of tool-bar tabs: Stat > ANOVA > One-way…

Figure : Selecting toolbar tabs in Minitab.

You then get the pop-up box seen below. Be sure to select from the drop-down in the upper right, "Response data are in a separate
column for each factor level":

3.6.1

3.6.2
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Figure : ANOVA pop-up window in Minitab.

Then we double-click from the left-hand list of factor levels to the input box labeled "Responses", and then click on the box labeled
Comparisons.

Figure : ANOVA: Comparisons pop-up window in Minitab.

We check the box for Tukey and then exit by clicking on OK. To generate the Diagnostics, we then click on the box for Graphs
and select the "Three in one" option:

3.6.3

3.6.4
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Figure : ANOVA: Graphs pop-up window in Minitab.

You can now "back out" by clicking on OK in each nested panel.

Step 3: Results
Now in the Session Window, we see the ANOVA table along with the results of the Tukey Mean Comparison:

One-Way ANOVA: Control, F1, F2, F3

Method

Null Hypothesis: All means are equal

Alternative Hypothesis: Not all means are equal

Significance Level: 

Equal variances were assumed for the analysis.

Factor Information
Factor Levels Values

Factor 4 Control, F1, F2, F3

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value

Factor 3 251.44 83.813 27.46 0.000

Error 20 61.03 3.052

Total 23 312.47

(Extracted from the output that follows from above.)

Grouping Information Using Tukey Method

3.6.5

α = 0.05
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N Mean Grouping

F3 6 29.200 A

F1 6 28.600 A B

F2 6 25.867 B

Control 6 21.000 C

Means that do not share a letter are significantly different.

Figure : Minitab difference in means plot.

As can be seen, Minitab provides a difference in means plot, which can be conveniently used to identify the significantly different
means by following the rule: if the confidence interval does not cross the vertical zero line, then the difference between the two
associated means is statistically significant.

The diagnostic (residual) plots, as we asked for them, are in one figure:

Figure : Residual plots generated by Minitab.

Note that the Normal Probability plot is reversed (i.e, the axes are switched) compared to the SAS output. Assessing straight line
adherence is the same, and the residual analysis provided is comparable to SAS output.

This page titled 3.6: One-Way ANOVA Greenhouse Example in Minitab is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Penn State's Department of Statistics.
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3.7: One-Way ANOVA Greenhouse Example in R

R Instructions: Code for the Greenhouse Data
Load the greenhouse data.
Calculate the overall mean, standard deviation, and standard error.
Calculate the mean, standard deviation, and standard error for each group.
Produce a boxplot to plot the differences in heights for each fertilizer.
Produce a "means plot" (interval plot) to view the differences in heights for each fertilizer.
Obtain the ANOVA table.
Obtain Tukey’s multiple comparisons CIs and difference in means plot.
Produce diagnostic (residuals) plots.
Power analysis.

setwd("~/path-to-folder/") 

greenhouse_data<-read.table("greenhouse_data.txt",header=T) 

Note that greenhouse data are in separate columns.

attach(greenhouse_data) 

my_data<-stack(greenhouse_data) 

With this command, we put our data in a stacked format (the first column has the response variable (values) and the second column
has the treatment levels (ind).

To calculate the overall mean, standard deviation, and standard error we can use the following commands:

overall_mean<-mean(my_data$values) #26.16667 

overall_sd<-sd(my_data$values) #3.685892 

overall_standard_error<-overall_sd/sqrt(length(my_data$values)) #0.7523795 

To calculate the group means we can use the following command:

group_means<-aggregate(my_data[, 1],list(my_data$ind),mean) 

#  group_means 

#  Group.1        x 

# 1 Control 21.00000 

# 2      F1 28.60000 

# 3      F2 25.86667 

# 4      F3 29.20000 

To calculate the group standard deviations and standard errors we can use the following commands:

group_sd<-aggregate(my_data[, 1],list(my_data$ind),sd) 

# group_sd  Group.1        x 

# 1 Control 1.000000 

# 2      F1 2.437212 

# 3      F2 1.899123 

# 4      F3 1.288410 
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group_standard_error<-group_sd$x/sqrt(length(my_data$ind)/4) 

# group_standard_error 

# 0.4082483 0.9949874 0.7753136 0.5259911 

To produce the Boxplot we can use the following commands:

library("ggpubr")        

boxplot(values~ind,data=my_data, 

xlab="Fertilizer",ylab="Plant Height", 

main="Distribution of Plant Heights by Fertilizer", 

frame=TRUE) 

Figure : Box plot for distribution of plant heights by fertilizer.

To produce the means plot (interval plot) we can use the following commands:

library("gplots") 

plotmeans(values~ind,data=my_data,connect=FALSE, 

xlab="Fertilizer",ylab="Plant Height", 

main="Means Plot with 95% CI") 

3.7.1
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Figure : Means plot with 95% confidence interval.

To obtain the ANOVA table we can use the following commands:

anova<-aov(values~ind,my_data) 

summary(anova) 

The command summary (anova) will give you the following output:

summary(anova) 

Df Sum Sq Mean Sq F value   Pr(>F)     

ind          3 251.44   83.81   27.46 2.71e-07 *** 

Residuals   20  61.03    3.05                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

We can see the degrees of freedom in the first column, the sum of squares in the second column, the mean sum of squares in the
third column, the -test statistic in the fourth column, and finally, we can see the -value.

Note that the output doesn't give the . To find it, use the identity . Similarly, for the  associated
with , add the  of  and .

For our example, 

To obtain Tukey multiple comparisons of means with a 95% family-wise confidence level we use the following command:

library(multcomp) 

library(multcompView) 

tukey_multiple_comparisons<-TukeyHSD(anova,conf.level=0.95) 

plot(tukey_multiple_comparisons) 

tukey_multiple_comparisons 

Tukey multiple comparisons of means 

95% family-wise confidence level 

Fit: aov(formula = values ~ ind, data = my_data) 

3.7.2

F p

SSTO SSTO= SSR+SSE df

SSTO df SSR SSE

SSTO= 251.44+61.03 = 312.47
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$ind 

diff        lwr         upr     p adj 

F1-Control  7.600000  4.7770648 10.42293521 0.0000016 

F2-Control  4.866667  2.0437315  7.68960188 0.0005509 

F3-Control  8.200000  5.3770648 11.02293521 0.0000005 

F2-F1      -2.733333 -5.5562685  0.08960188 0.0598655 

F3-F1       0.600000 -2.2229352  3.42293521 0.9324380 

F3-F2       3.333333  0.5103981  6.15626854 0.0171033 

Based on this output, the Control group is significantly different from the 3 treatment groups and F3 is significantly different from
F2.

Figure : 95% famil-wise confidence level plot.

To produce diagnostic (residuals) plots we use the following commands:

#Residuals vs Fits plot 

plot(anova,1) 

3.7.3
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Figure : Residuals vs fitted values plot.

#QQ plot

plot(anova,2) 

Figure : Normal Q-Q plot.

#Histogram of residuals 

residuals<-anova$res #with this command we get the residuals from ANOVA 

hist(residuals) 

3.7.6

3.7.7
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Figure : Histogram of residuals.

This page titled 3.7: One-Way ANOVA Greenhouse Example in R is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics.
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3.8: Power Analysis
After completing a statistical test, conclusions are drawn about the null hypothesis. In cases where the null hypothesis is not
rejected, a researcher may still feel that the treatment did have an effect. Let's say that three weight loss treatments are conducted.
At the end of the study, the researcher analyzes the data and finds there are no differences among the treatments. The researcher
believes that there really are differences. While you might think this is just wishful thinking on the part of the researcher, there
MAY be a statistical reason for the lack of significant findings.

At this point, the researcher can run a power analysis. Recall from your introductory text or course that power is the ability to
reject the null when the null is really false. The factors that impact power are sample size (larger samples lead to more power), the
effect size (treatments that result in larger differences between groups will have differences that are more readily found), the
variability of the experiment, and the significance of the type 1 error.

As a note, the most common type of power analysis are those that calculate needed sample sizes for experimental designs. These
analyses take advantage of pilot data or previous research. When power analysis is done ahead of time, it is a PROSPECTIVE
power analysis. This example is a retrospective power analysis, as it is done after the experiment is completed.

So back to our greenhouse example. Typically we want power to be at 80%. Again, power represents our ability to reject the null
when it is false, so a power of 80% means that 80% of the time our test identifies a difference in at least one of the means correctly.
The converse of this is that 20% of the time we risk not rejecting the null when we really should be rejecting the null.

Using our greenhouse example, we can run a retrospective power analysis (just a reminder, we typically don't do this unless we
have some reason to suspect the power of our test was very low).

This is one analysis where Minitab is much easier and still just as accurate as SAS, so we will use Minitab to illustrate this simple
power analysis in detail and follow up the analysis with SAS.

Power Analysis Techniques

Steps in SAS

Let us now consider running the power analysis in SAS. In our greenhouse example with 4 treatments (control, F1, F2, and
F3), the estimated means were  respectively. Using ANOVA, the estimated standard deviation of
errors was 1.747 (which is obtained by . There are 6 replicates for each treatment. Using these values,
we could employ SAS POWER procedure to compute the power of our study retrospectively.

proc power; 

onewayanova alpha=.05 test=overall 

groupmeans=(21 28.6 25.87, 29.2) 

npergroup=6 stddev=1.747 

power=.; 

run; 

 Using SAS

21, 28.6, 25.877, 29.2

=MSE

− −−−−

√ 3.0517

− −−−−

√

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33441?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/03%3A_ANOVA_Models_Part_I/3.08%3A_Power_Analysis


3.8.2 https://stats.libretexts.org/@go/page/33441

Fixed Scenario Elements

Method Exact

Alpha 0.05

Group Means 21 28.6 25.87 29.2

Standard Deviation 1.747

Sample Size per Group 6

Computed Power

Power

>.999

As with MINITAB, we see that the retrospective power analysis for our greenhouse example yields a power of 1. If we re-
do the analysis ignoring the CONTROL treatment group, then we only have 3 treatment groups: F1, F2, and F3. The
ANOVA with only these three treatments yields an MSE of . Therefore the estimated standard deviation of errors
would be . We will have a power of 0.731 in this modified scenario, as shown in the below output.

Fixed Scenario Elements

Method Exact

Alpha 0.05

Group Means 28.6 25.87 29.2

Standard Deviation 1.933

Sample Size per Group 6

Computed Power

Power

0.731

Suppose, we ask the question of how many replicates we would need to obtain at least 80% power to detect a difference in
the means of our greenhouse example with the same group means but with different variability in data (i.e. standard
deviations should be different). We can use SAS POWER to answer this question.

3.735556

1.933
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Figure : Plot for overall -test.

We can see that with a standard deviation of 1.747, if we have only 2 replicates in each of the four treatments we can detect
the differences in greenhouse example means with more than 80% power. However, as the data get noisier (i.e. as standard
deviation increases) we need more replicates to achieve 80% power in the same example.

Steps in Minitab

In Minitab select STAT > Power and Sample Size > One-Way ANOVA

3.8.a1 F

 Using Minitab

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33441?pdf


3.8.4 https://stats.libretexts.org/@go/page/33441

Figure : Selecting the One-Way ANOVA tab in Minitab.

Since we have a one-way ANOVA we select this test (you can see there are power analyses for many different tests, and
SAS will allow even more complicated options).

Figure : Entering values in the Power and Sample Size pop-up window.

3.8.b1

3.8.b2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33441?pdf


3.8.5 https://stats.libretexts.org/@go/page/33441

When you look at our filled-in dialogue box, you will notice we have not entered a value for power. This is because
Minitab will calculate whichever box you leave blank (so if we needed sample size we would leave sample size blank and
fill in a value for power). From our example, we know the number of levels is 4 because we have four treatments. We have
six observations for each treatment so the sample size is 6. The value for the maximum difference in the means is 8.2 (we
simply subtracted the smallest mean from the largest mean, and the standard deviation is 1.747. Where did this come from?
The MSE, available from the ANOVA table, is about 3, and hence the standard deviation is ).

After we click OK we get the following output:

Figure : Power curve for greenhouse data one-way ANOVA, with 4 treatment levels.

If you follow this graph you see that power is on the y-axis and the power for the specific setting is indicated by a red dot. It
is hard to find, but if you look carefully the red dot corresponds to a power of 1. In practice, this is very unusual, but can be
easily explained given that the greenhouse data was constructed to show differences.

We can ask the question, what about differences among the treatment groups, not considering the control? All we need to
do is modify some of the input in Minitab.

Figure : Entering modified values in the Power and Sample Size window.

= 1.7473

–

√
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3.8.b4

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33441?pdf


3.8.6 https://stats.libretexts.org/@go/page/33441

Note the differences here as in the previous screenshot. We now have 3 levels because we are only considering the three
treatments. The maximum differences among the means and also the standard deviation are also different.

The output now is much easier to see:

Figure : Power curve for greenhouse data one-way ANOVA, with 3 treatment levels (control omitted).

Here we can see the power is lower than when including the control. The main reason for this decrease is that the difference
between the means is smaller.

You can experiment with the power function in Minitab to provide you with sample sizes, etc. for various powers. Below is
some sample output when we ask for various power curves for various sample sizes, a kind of "what if" scenario.

Figure : Power curves for greenhouse data, with varying sample sizes.

Just as a reminder, power analyses are most often performed BEFORE an experiment is conducted, but occasionally, a
power analysis can provide some evidence as to why significant differences were not found.

Steps in R

With the following commands we will get the power analysis for the greenhouse example:

3.8.b5

3.8.b6

 Using R
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NOTE: n  is the number in each group.

If we want to produce a power plot by increasing the sample size and the variance (like the one produced by SAS) we can
use the following commands:

groupmeans<-c(21,28.6,25.87,29.2) 

power.anova.test(groups=4,n=6,between.var=var(groupmeans),within.var=3.05,sig.le

Balanced one-way analysis of variance power calculation 

groups = 4 

n = 6 

between.var = 13.96823 

within.var = 3.05 

sig.level = 0.05 

power = 1 

groupmeans<-c(21,28.6,25.87,29.2) 

n<-c(seq(2,8,by=1)) 

p<power.anova.test(groups=4,n=n,between.var=var(groupmeans),within.var=3.05,sig.

p1<power.anova.test(groups=4,n=n,between.var=var(groupmeans),within.var=4,sig.le

p2<power.anova.test(groups=4,n=n,between.var=var(groupmeans),within.var=6.25,sig

p3<power.anova.test(groups=4,n=n,between.var=var(groupmeans),within.var=9,sig.le

p4<power.anova.test(groups=4,n=n,between.var=var(groupmeans),within.var=16.05,si

p5<power.anova.test(groups=4,n=n,between.var=var(groupmeans),within.var=25,sig.l

plot(n,p$power,ylab="Power",xlab="Sample size per group",main="Overall F test fo

lines(n,p$power, col = "blue") 

abline(h=0.80) 

par(new=TRUE) 

plot(n,p1$power,ylab="Power",xlab="Sample size per group",main="Overall F test f

lines(n,p1$power, col = "red") 

par(new=TRUE) 

plot(n,p2$power,ylab="Power",xlab="Sample size per group",main="Overall F test f

lines(n,p2$power, col = "green") 

par(new=TRUE) 

plot(n,p3$power,ylab="Power",xlab="Sample size per group",main="Overall F test f

lines(n,p3$power, col = "brown") 

par(new=TRUE) 

plot(n,p4$power,ylab="Power",xlab="Sample size per group",main="Overall F test f

lines(n,p4$power, col = "purple") 

par(new=TRUE) 

plot(n,p5$power,ylab="Power",xlab="Sample size per group",main="Overall F test f

lines(n,p5$power, col = "gray") 

text(locator(1),"var=3.05",col="blue") 

text(locator(1),"var=4",col="red") 

text(locator(1),"var=6.25",col="green") 

text(locator(1),"var=9",col="brown") 

text(locator(1),"var=16",col="purple") 

text(locator(1),"var=25",col="gray") 

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33441?pdf


3.8.8 https://stats.libretexts.org/@go/page/33441

Figure : Plot of overall -test for one-way ANOVA of greenhouse data.

This page titled 3.8: Power Analysis is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.

3.8.c1 F

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33441?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/03%3A_ANOVA_Models_Part_I/3.08%3A_Power_Analysis
https://creativecommons.org/licenses/by-nc/4.0
https://science.psu.edu/stat


3.9.1 https://stats.libretexts.org/@go/page/33442

3.9: Try It!

The weight gain due to 4 different diets given to 24 calves is shown below.

diet1 diet2 diet3 diet4

12 18 10 19

10 19 12 20

13 18 13 18

11 18 16 19

12 19 14 18

09 19 13 19

a) Write the appropriate null and alternative hypotheses to test if the weight gain differs significantly among the 4 diets.

Solution

 vs.  OR "Not all means are equal"

Note: Here,  are the actual mean weight gains due to diet1, diet2, diet3, and diet4, respectively.

b) Analyze the data and write your conclusion.

Solution

Using SAS...

data Lesson3_ex1; 

input diet $ wt_gain; 

datalines; 

diet1 12 

diet1 10 

diet1 13 

diet1 11 

diet1 12 

diet1 09 

diet2 18 

diet2 19 

diet2 18 

diet2 18 

diet2 19 

diet2 19 

diet3 10 

diet3 12 

diet3 13 

diet3 16 

diet3 14 

diet3 13 

diet4 19 

diet4 20 

diet4 18 

diet4 19 

diet4 18 

diet4 19 

; 

ods graphics on; 

proc mixed data= Lesson3_ex1 plots=all; class diet; 

model wt_gain = diet; 

contrast 'Compare diet1 with diets 2,3,4 combined ' diet 3 -1 -1 -1; 

store result1; 

title 'ANOVA of Weight Gain Data'; 

run; 

ods html style=statistical sge=on; 

proc plm restore=result1; 

lsmeans diet/ adjust=tukey plot=meanplot cl lines; 

run; 

The ANOVA results shown below indicate that the diet effect is significant with an -value of 51.27 ( -value <.0001). This means that not all diets provide the same mean weight gain. The
diffogram below indicates the significant different pairs of diets identified by solid blue lines. The estimated mean weight gains from diets 1, 3, 2, and 4 are 11, 13, 18.1, and 19 units
respectively. The diet pairs that have significantly different mean weight gains are (1,2), (1,4), (3,2), and (3,4).
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Partial Output:
Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

diet 3 20 51.27 <.0001

diet Least Squares Means

diet Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper

diet1 11.1667 0.5413 20 20.63 <.0001 0.05 10.0374 12.2959

diet2 18.5000 0.5413 20 34.17 <.0001 0.05 17.3708 19.6292

diet3 13.0000 0.5413 20 24.01 <.0001 0.05 11.8708 14.1292

diet4 18.8333 0.5413 20 34.79 <.0001 0.05 17.7041 19.9626

Differences of diet Least Squares Means 
Adjustment for Multiple Comparisons: Tukey

diet _diet Estimate
Standard
Error

DF t Value Pr > |t| Adj P Alpha Lower Upper Adj Lower Adj Upper

diet1 diet2 -7.3333 0.7656 20 -9.58 <.0001 <.0001 0.05 -8.9303 -5.7364 -9.4761 -5.1906

diet1 diet3 -1.8333 0.7656 20 -2.39 0.0265 0.1105 0.05 -3.4303 -0.2364 -3.9761 0.3094

diet1 diet4 -7.6667 0.7656 20 -10.01 <.0001 <.0001 0.05 -9.2636 -6.0697 -9.8094 -5.5239

diet2 diet3 5.5000 0.7656 20 7.18 <.0001 <.0001 0.05 3.9030 7.0970 3.3572 7.6428

diet2 diet4 -0.3333 0.7656 20 -0.44 0.6679 0.9716 0.05 -1.9303 1.2636 -2.4761 1.8094

diet3 diet4 -5.8333 0.7656 20 -7.62 <.0001 <.0001 0.05 -7.4303 -4.2364 -7.9761 -3.6906

Figure : SAS-generated diffogram for weight gain comparisons by diet.

Figure : SAS-generated Tukey grouping of weight gains for diet LS-means.

3.9.a1

3.9.a2

 Exercise : Commuter Times3.9.2
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Figure : Commute time comparisons in hours by region.

Above is a diffogram depicting the differences in daily commuter time (in hours) among regions of a metropolitan city. Answer the following.

a) Name the regions included in the study.

Solution

SOUT, MIDW, NORT, and WEST

b) How many red or blue lines are to be expected?

Solution

4 choose 2 = 6 red or blue lines

c) Which pairs of regions have significantly different average commuter times?

Solution

(SOUT and NORT), (SOUT and WEST), (MIDW and NORT), and (MIDW and WEST) have significantly different mean commuter times.

d) Write down the estimated mean daily commuter time for each region.

Solution

Region SOUT MIDW NORT

Estimated mean commuter time in hours 8.7 10.5 16

This page titled 3.9: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of Statistics.
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3.10: Chapter 3 Summary
The primary focus in this chapter was to establish the foundation for developing mathematical models for a one-way ANOVA
setting. The effects model was then discussed along with the ANOVA model assumptions and diagnostics. The other focus was to
illustrate, using the greenhouse example, how SAS and Minitab can be utilized to run an ANOVA model. Sections 3.3-3.6 were
devoted to this purpose and include details on SAS and Minitab ANOVA basics, together with guidance in the interpretation of the
outputs. Software-based diagnostics tests to detect the validity of model assumptions were also discussed, along with the power
analysis procedure which computes any one of the four quantities of sample size, power, effect size, and the significance level,
given the other three.

The next chapter will be a continuation of this lesson. Three more different versions of ANOVA model equations that represent a
single factor experiment will be discussed. These are known as Overall Mean, Cell Means, and Dummy Variable Regression
models.

This page titled 3.10: Chapter 3 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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1

CHAPTER OVERVIEW

4: ANOVA Models Part II

By the end of this chapter, students will be able to:

Apply the overall mean, cell means, and dummy variable regression models for a one-way ANOVA and interpret the
results.
Identify the design matrix and the parameter vector for each ANOVA model studied.
Recognize aspects of ANOVA programming computations.

This is a continuation of the previous lesson, and in this lesson, three more alternative ANOVA models are introduced. ANOVA
models are derived under the assumption of linearity of model parameters and additivity of model terms so that every model will
follow the general linear model (GLM): . In later sections of this lesson, we will see that the appropriate choice of ,
the design matrix, will result in a different ANOVA model. This lesson will also shed insight into the similarities of how ANOVA
calculations are done by most software, regardless of which model is being used. Finally, the concept of a study diagram is also
discussed, demonstrating its usefulness when building a statistical model and designing an experiment.

4.1: How is ANOVA Calculated?
4.2: The Overall Mean Model
4.3: Cell Means Model
4.4: Dummy Variable Regression
4.5: Computational Aspects of the Effects Model
4.6: The Study Diagram
4.7: Try It!
4.8: Chapter 4 Summary

This page titled 4: ANOVA Models Part II is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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4.1: How is ANOVA Calculated?
In the past lessons, we carried out the ANOVA computations conceptually in terms of deviations from means. For the calculation of
total variance, we used the deviations of the individual observations from the overall mean, while the treatment SS was calculated
using the deviations of treatment level means from the overall mean, and the residual or error SS was calculated using the
deviations of individual observations from treatment level means. In practice, however, to achieve higher computational efficiency,
SS for ANOVA is computed utilizing the following mathematical identity:

This identity is commonly called the working formula or machine formula. The second term on the right-hand side is often
referred to as the correction factor (CF).

For computing the SS for the total variance of the responses, the formula above can be used as it is, but modifications need be made
for others. For example, to compute the treatment SS, the above equation has to be modified as:

We will examine three new ANOVA models (Models 1, 2, 3), as well as the effects model (Model 4) from the previous lesson,
defined as follows:

which simply fits an overall or "grand" mean'. This model reflects the situation where  is true, implying that 
.

where  are the factor level means. Note that in this model, there is no overall mean being fitted.

where  are regression coefficients for  indicator-coded regression "dummy" variables that
are correspond to the  categorical factor levels. The  factor level mean is given by the regression intercept .

where  are the the deviations of each factor level mean from the overall mean so that .

Each of these four models can be written as a general linear model (GLM):  simply by changing the design matrix 
. Thus to perform the data analysis, in terms of the computer coding instructions, the appropriate numerical values for the 

matrix elements will need to be inputted.

This page titled 4.1: How is ANOVA Calculated? is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics.
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4.2: The Overall Mean Model

which simply fits an overall or "grand" mean. This model reflects the situation where  is true, implying that 
.

To understand how various facades of the model relate to each other, let us look at a toy example with 3 treatments (or factor
levels) and 2 replicates of each treatment.

We have 6 observations, which means that  is a column vector of dimension 6 and so is the error vector  where its elements are
the random error values associated with the 6 observations. In the GLM model of , the design matrix  for the
overall mean model turns out to be a 6-dimensional column vector of ones. The parameter vector, , is a scalar equal to , the
overall population mean.

That is,

Using the method of least squares, the estimates of the parameters in  are obtained as:

Using the estimate , the  predicted response  can be computed as , where  denotes the  row vector of the
design matrix.

In this simplest of cases, we can see how the matrix algebra works. The term  would be:

The term  would be:

So in this case, the estimate  as expected is simply the overall mean 

Note that the exponent of  in the formula above indicates arithmetic division as  is a scalar increase in this case. In the
more general setting, the superscript of '-1 ' indicates the inverse operation in matrix algebra.

To perform these matrix operations in SAS IML, we will open a regular SAS editor window, and then copy and paste three
components from the file (IML Design Matrices) as shown below.

 Model 1 - The Overall Mean Model
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Steps in SAS

Step 1
Procedure initiation, and specification of the dependent variable vector, .

For our example we have:

/* Initiate IML, define response variable */ 

proc iml; 

y={ 

2, 

1, 

3, 

4, 

6, 

5}; 

Step 2

We then enter a design matrix . For the Overall Mean model and our example data, we have:

x={ 

1, 

1, 

1, 

1, 

1, 

1}; 

Step 3

We can now copy and paste a program for the matrix computations to generate results (regression
coefficients and ANOVA output):

beta=inv(x`*x)*x`*y; 

beta_label={"Beta_0","Beta_1","Beta_2","Beta_3"}; 

print beta [label="Regression Coefficients" 

                        rowname=beta_label]; 

n=nrow(y); 

p=ncol(x); 

j=j(n,n,1); 

ss_tot = (y`*y) - (1/n)*(y`*j)*y; 

ss_trt = (beta`*(x`*y)) - (1/n)*(y`*j)*y; 

ss_error = ss_tot - ss_trt; 

total_df=n-1; 

trt_df=p-1; 

error_df=n-p; 

ms_trt = ss_trt/(p-1); 

 SAS: Overall Mean Model
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ms_error = ss_error / error_df; 

F=ms_trt/ms_error; 

 

empty={.}; 

row_label= {"Treatment", "Error", "Total"}; 

col_label={"df" "SS" "MS" "F"}; 

trt_row= trt_df || ss_trt || ms_trt || F; 

error_row= error_df || ss_error || ms_error || empty; 

tot_row=total_df || ss_tot || empty || empty; 

aov = trt_row // error_row // tot_row; 

print aov [label="ANOVA" 

                        rowname=row_label 

                        colname=col_label]; 

Here is a quick video walk-through to show you the process for how you can do this in SAS. (Right-click and select "Show
All" if your browser does not display the entire screencast window.)

Video : Walkthrough for ANOVA using the SAS overall mean model.

The program can then be run to produce the following output:

Regression Coefficients

Beta_0 3.5

ANOVA

Treatment
DF SS MS F

0 0  

Error 5 17.5 3.5

Total 5 17.5  

We see the estimate of the regression coefficient for  equals 3.5, which indeed is the overall mean of the response
variable, and is also the same value we obtained above using "by-hand" calculations. In this simple case, where the
treatment factor has not entered the model, the only item of interest from the ANOVA table would be the  for later
use in the General Linear -test.

502 SAS Overall Mean model502 SAS Overall Mean model
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If you like to see the internal calculations further, you may optionally add the following few lines, to the end of the
calculation code.

/* (Optional) Intermediates in the matrix computations */ 

xprimex=x`*x; print xprimex; 

xprimey=x` 

*y; print xprimey; 

xprimexinv=inv(x`*x); print xprimexinv; 

check=xprimexinv*xprimex; print check; 

SumY2=beta` 

*(x`*y); print SumY2; 

CF=(1/n)*(y` 

*j)*y; print CF; 

This additional code produces the following output:

xprimex xprimey xprimeinv

6 21 0.1666667

check SumY2 CF

1 73.5 73.5

From this we can verify the computations for the .

The "check" calculation confirms that , which in fact defines the matrix division operation. In this
simple case, it amounts to simple division by , but in other models that we will work with, the matrix division process is
more complicated and is explained here. In general, the inverse of a matrix , denoted , is defined by the matrix
identity , where  is the identity matrix (a diagonal matrix of ’s). In this example,  is replaced by ,
which is a scalar and equals 6.

Steps in R
1. Define response variable and design matrix

y<-matrix(c(2,1,3,4,6,5), ncol=1) 

x<-matrix(c(1,1,1,1,1,1), ncol=1) 

2. Regression coefficients

beta<-solve(t(x)%*%x)%*%(t(x)%*%y) #3.5 

3. Calculate the entries of the ANOVA Table

n<-nrow(y) 

p<-ncol(x) 

J<-matrix(1,n,n) 

ss_tot = (t(y)%*%y) - (1/n)*(t(y)%*%J)%*%y #17.5 
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ss_trt = t(beta)%*%(t(x)%*%y) - (1/n)*(t(y)%*%J)%*%y #0 

ss_error = ss_tot - ss_trt #17.5 

total_df=n-1 #5 

trt_df=p-1 #0 

error_df=n-p #5 

MS_trt = ss_trt/(p-1) 

MS_error = ss_error / error_df #3.5 

F=MS_trt/MS_error 

4. Creating the ANOVA table

ANOVA <- data.frame( 

c ("","Treatment","Error", "Total"), 

c("DF", trt_df,error_df,total_df), 

c("SS", ss_trt, ss_error, ss_tot), 

c("MS", "", MS_error, ""), 

c("F","","",""), 

stringsAsFactors = FALSE) 

names(ANOVA) <- c(" ", "  ", " ","","") 

5. Print the ANOVA table

print(ANOVA) 

# 1           DF   SS  MS F 

# 2 Treatment  0    0       

# 3     Error  5 17.5 3.5   

# 4     Total  5 17.5       

6. Intermediates in the matrix computations

xprimex<-t(x)%*%x # 6 

xprimey<-t(x)%*%y # 21 

xprimexinv<-solve(t(x)%*%x) # 0.1666667 

check<-xprimexinv*xprimex # 1 

SumY2<-t(beta)%*%(t(x)%*%y) # 73.5 

CF<-(1/n)*(t(y)%*%J)%*%y # 73.5

This page titled 4.2: The Overall Mean Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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4.3: Cell Means Model

where  are the factor level means. Note that in this model, there is no overall mean being fitted.

The cell means model does not fit an overall mean, but instead fits an individual mean for each of the treatment levels. Let us run
this model for the same data assuming that each pair of observations arise from one treatment level, so that T, the number of
treatment levels equals 3. We then have to replace the design matrix in the IML code with:

/* The Cell Means Model */ 

x={ 

1    0    0, 

1    0    0, 

0    1    0, 

0    1    0, 

0    0    1, 

0    0    1}; 

Notice that each column represents a specific treatment level and is using indicator coding:  for the rows corresponding to the
observations receiving the specified treatment level, and  for the other rows. It can be seen that  is the number of replicates
for each treatment level. Observe that column 1 generates the mean for treatment level 1, column 2 for treatment level 2, and
column 3 for treatment level 3.

To write the cell means model as a GLM, let

where  is the  row vector of the design matrix.

The parameter vector  is a 3-dimensional column vector and is defined by

The parameter estimates  can again be found using the least squares method. One can verify that , the  treatment mean,
for . Using this estimate, the resulting estimated regression equation for the cell means model is,

which produces .

We then re-run the program with the new design matrix to get the following output:

Regression Coefficients

 Model 2 - The Cell Means Model
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Beta_0 1.5

Beta_1 3.5

Beta_2 5.5

Regression Coefficients

Beta_0 1.5

Beta_1 3.5

Beta_2 5.5ANOVA

Treatment
dF SS MS F

2 16 8 16

Error 3 1.5 0.5  

Total 5 17.5   

The regression coefficients , , and  are now the means for each treatment level, and in the ANOVA table, we see that the 
 is 1.5. This reduction in the  is the . Notice that the error SS of the Overall Mean model is the sum of

the SS values for Treatment and Error term in this model, which means that by not including the treatment effect in that model, its
error SS has been unduly inflated.

Adding the optional code given in Section 4.2 to compute additional Internal computations, we can obtain:

xprimex

2 0 0

0 2 0

0 0 2

check

1 0 0

0 1 0

0 0 1

xprimey

3

7

11

SumY2

89.5

CF

73.5

xprimexinv

0.5 0 0

0 0.5 0

0 0 0.5

Here we can see that  now contains diagonal elements that are the  = number of observations for each treatment level mean
being computed. In addition, we can verify that , or the working formula equals the treatment .

We can now test for the significance of the treatment by using the General Linear  test:

The Overall Mean model is the "Reduced" model, and the Cell Means model is the "Full" model. From the ANOVA tables, we get:

which can be compared to .

Steps in R - Cell Means Model

1. Define response variable and design matrix
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y<-matrix(c(2,1,3,4,6,5), ncol=1) 

x<matrix(c(1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1),ncol=3,nrow=6,byrow=TRUE) 

2. Regression coefficients

beta<-solve(t(x)%*%x)%*%(t(x)%*%y) 

#  beta 

#      [,1] 

# [1,]  1.5 

# [2,]  3.5 

# [3,]  5.5 

3. Calculate the entries of the ANOVA Table

n<-nrow(y) 

p<-ncol(x) 

J<-matrix(1,n,n) 

ss_tot = (t(y)%*%y) - (1/n)*(t(y)%*%J)%*%y #17.5 

ss_trt = t(beta)%*%(t(x)%*%y) - (1/n)*(t(y)%*%J)%*%y #16 

ss_error = ss_tot - ss_trt #1.5 

total_df=n-1 #5 

trt_df=p-1 #2 

error_df=n-p #3 

MS_trt = ss_trt/(p-1) #8 

MS_error = ss_error / error_df #0.5 

F=MS_trt/MS_error #16 

4. Creating the ANOVA table

ANOVA <- data.frame( 

c ("","Treatment","Error", "Total"), 

c("DF", trt_df,error_df,total_df), 

c("SS", ss_trt, ss_error, ss_tot), 

c("MS", MS_trt, MS_error, ""), 

c("F",F,"",""), 

stringsAsFactors = FALSE) 

names(ANOVA) <- c(" ", "  ", " ","","") 

5. Print the ANOVA table

print(ANOVA) 

# 1           DF   SS  MS  F 

# 2 Treatment  2   16   8 16 

# 3     Error  3  1.5 0.5    

# 4     Total  5 17.5   

6. Intermediates in the matrix computations
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xprimex<-t(x)%*%x 

#  xprimex 

#      [,1] [,2] [,3] 

# [1,]    2    0    0 

# [2,]    0    2    0 

# [3,]    0    0    2 

xprimey<-t(x)%*%y 

#  xprimey 

#      [,1] 

# [1,]    3 

# [2,]    7 

# [3,]   11 

xprimexinv<-solve(t(x)%*%x) 

#  xprimexinv 

#      [,1] [,2] [,3] 

# [1,]  0.5  0.0  0.0 

# [2,]  0.0  0.5  0.0 

# [3,]  0.0  0.0  0.5 

check<-xprimexinv%*%xprimex 

#  check 

#      [,1] [,2] [,3] 

# [1,]    1    0    0 

# [2,]    0    1    0 

# [3,]    0    0    1 

SumY2<-t(beta)%*%(t(x)%*%y) #89.5 

CF<-(1/n)*(t(y)%*%J)%*%y #73.5 

This page titled 4.3: Cell Means Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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4.4: Dummy Variable Regression

where  are regression coefficients for  indicator-coded regression "dummy" variables that
are correspond to the  categorical factor levels. The  factor level mean is given by the regression intercept .

The General Linear Model (GLM) applied to data with categorical predictors can be viewed from a regression modeling
perspective as an ordinary multiple linear regression (MLR) with "dummy" coding, also known as indicator coding, for the
categorical treatment levels. Typically, software performing the MLR will automatically include an intercept, which corresponds to
the first column of the design matrix and is a column of 's. This automatic inclusion of the intercept can lead to complications
when interpreting the regression coefficients.

The SAS Mixed procedure, and also the GLM procedure which we may encounter later, use the "Dummy Variable Regression"
model. For the  data used in sections 4.2 and 4.3, the design matrix for this model can be entered into IML as:

/* Dummy Variable Regression Model */ 

x = { 

1    1    0, 

1    1    0, 

1    0    1, 

1    0    1, 

1    0    0, 

1    0    0}; 

Notice that in the above design matrix, there are only two indicator columns even though there are three treatment levels in the
study. It is because, similar to the matrix below, if we were to have a design matrix with another indicator column representing the
third treatment level, the resulting 4 columns would form a set of linearly dependent columns, a mathematical condition that will
hinder the computation process any further as explained below.

The above matrix containing all 4 columns has the property that the sum of columns 2-4 will equal the first column representing the
intercept. As a result, a mathematical condition called singularity is created and the matrix computations will not run. So one of the
treatment levels is omitted from the coding in the design matrix above for IML and the eliminated level is called the ‘reference’
level. In SAS, typically, the treatment level with the highest label is defined as the reference level and so, in this study, it is
treatment level 3.

Note that the parameter vector for the dummy variable regression model is

.

Running IML, with the design matrix for the dummy variable regression model, we get the following output;

 Model 3 - Dummy Variable Regression

= μ+ + ,  fitted as  = + + +… + +Y
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Regression CoefficientsRegression Coefficients

Beta_0 5.5

Beta_1 -4

Beta_2 -2

The coefficient  is the mean for treatment level 3. The mean for treatment level 1 is then calculated from .
Likewise, the mean for treatment level 2 is calculated as .

Notice that the  statistic calculated from this model is the same as that produced from the Cell Means model.

ANOVA

Treatment
df SS MS F

2 16 8 16

Error 3 1.5 0.5  

Total 5 17.5   

Using Technology

We can confirm our ANOVA table now by running the analysis in software such as Minitab.

Steps in Minitab

First input the data:

Figure : Inputting data.

In Minitab, different coding options allow the choice of the design matrix which can be done as follows:

Stat > ANOVA > General Linear Model > Fit General Linear Model and place the variables in the
appropriate boxes:

β

0

+ = 1.5β

^

0

β

^

1

+ = 3.5β

^

0

β

^

2

F

 Minitab Example

4.4.a1
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Figure : Placing variables in the General Linear Model pop-up window.

Then select Coding… and choose the (1,0) coding as shown below:

Figure : Selecting options in the General Linear Model: Coding window.

Select OK to exit the nested windows. This produces the regular ANOVA output:

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value

trt 2 16.000 8.0000 16.00 0.025

Error 3 1.500 0.5000   

Total 5 17.500    

And also the Regression Equation:

Regression Equation
y = 5.500 - 4.000 trt_level1 - 2.000 trt_level2 + 0.0 trt_level3

4.4.a2

4.4.a3
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Steps in SAS

In SAS, the default coding is indicator coding, so when you specify the option

model y=trt / solution; 

Copy code

you get the regression coefficients:

Solution for Fixed Effects

Effect trt Estimate Standard Error DF t Value Pr > |t|

Intercept 5.5000 0.5000 3 11.00 0.0016

trt level1 -4.0000 0.7071 3 -5.66 0.0109

trt level2 -2.0000 0.7071 3 -2.83 0.0663

trt level3 0     

And the same ANOVA table:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

Error Term Error DF F Value Pr > F

trt 2 16.000000 8.000000
Var(Residu

al)+Q(trt)
MS(Residu

al)
3 16.00 0.0251

Residual 3 1.500000 0.500000
Var(Residu

al)
    

The Intermediate calculations for this model are:

xprimex

6 2 2

2 2 0

2 0 2

check

1 -2.22E-16 0

3.331E-16 1 0

0 0 1

xprimey

21

3

7

SumY2

89.5

CF

73.5

xprimexinv

0.5 -0.5 -0.5

-0.5 1 0.5

-0.5 0.5 1

 SAS Example
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Steps in R

1. Define response variable and design matrix

y<-matrix(c(2,1,3,4,6,5), ncol=1) 

x = matrix(c(1,1,0,1,1,0,1,0,1,1,0,1,1,0,0,1,0,0),ncol=3,nrow=6,byrow=TRUE) 

2. Regression coefficients

beta<-solve(t(x)%*%x)%*%(t(x)%*%y) 

#  beta 

#      [,1] 

# [1,]  5.5 

# [2,] -4.0 

# [3,] -2.0 

3. Calculate the entries of the ANOVA Table

n<-nrow(y) 

p<-ncol(x) 

J<-matrix(1,n,n) 

ss_tot = (t(y)%*%y) - (1/n)*(t(y)%*%J)%*%y #17.5 

ss_trt = t(beta)%*%(t(x)%*%y) - (1/n)*(t(y)%*%J)%*%y #16 

ss_error = ss_tot - ss_trt #1.5 

total_df=n-1 #5 

trt_df=p-1 #2 

error_df=n-p #3 

MS_trt = ss_trt/(p-1) #8 

MS_error = ss_error / error_df #0.5 

F=MS_trt/MS_error #16 

4. Creating the ANOVA table

ANOVA <- data.frame( 

c ("","Treatment","Error", "Total"), 

c("DF", trt_df,error_df,total_df), 

c("SS", ss_trt, ss_error, ss_tot), 

c("MS", MS_trt, MS_error, ""), 

c("F",F,"",""), 

stringsAsFactors = FALSE) 

names(ANOVA) <- c(" ", "  ", " ","","") 

5. Print the ANOVA table

print(ANOVA)     

# 1           DF   SS  MS  F 

# 2 Treatment  2   16   8 16 

 R Example
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# 3     Error  3  1.5 0.5    

# 4     Total  5 17.5    

6. Intermediates in the matrix computations

xprimex<-t(x)%*%x 

#  xprimex 

#      [,1] [,2] [,3] 

# [1,]    6    2    2 

# [2,]    2    2    0 

# [3,]    2    0    2 

xprimey<-t(x)%*%y 

#   xprimey 

#      [,1] 

# [1,]   21 

# [2,]    3 

# [3,]    7 

xprimexinv<-solve(t(x)%*%x) 

#  xprimexinv 

#      [,1] [,2] [,3] 

# [1,]  0.5 -0.5 -0.5 

# [2,] -0.5  1.0  0.5 

# [3,] -0.5  0.5  1.0 

check<-xprimexinv%*%xprimex 

#  check 

#               [,1]          [,2] [,3] 

# [1,]  1.000000e+00  0.000000e+00    0 

# [2,] -1.110223e-16  1.000000e+00    0 

# [3,]  0.000000e+00 -1.110223e-16    1 

SumY2<-t(beta)%*%(t(x)%*%y) # 89.5 

CF<-(1/n)*(t(y)%*%J)%*%y # 73.5 

7. Regression Equation and ANOVA table

trt_level1<-x[,2] 

trt_level2<-x[,3] 

model<-lm(y~trt_level1+trt_level2) 

8. With the command summary(model) we can get the following output:

Call: 

lm(formula = y ~ trt_level1 + trt_level2) 

Residuals: 

1    2    3    4    5    6 

0.5 -0.5 -0.5  0.5  0.5 -0.5 

Coefficients: 

Estimate Std. Error t value Pr(>|t|)    

(Intercept)   5.5000     0.5000  11.000  0.00161 ** 
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trt_level1   -4.0000     0.7071  -5.657  0.01094 * 

trt_level2   -2.0000     0.7071  -2.828  0.06628 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.7071 on 3 degrees of freedom 

Multiple R-squared:  0.9143,    Adjusted R-squared:  0.8571 

F-statistic:    16 on 2 and 3 DF,  p-value: 0.02509 

From the output, we can see the estimates for the coefficients are b0=5.5, b1=-4, b2=-2 and the F-statistic is 16 with a p-
value of 0.02509.

By using the estimates we can write the regression equation:

y=5.5-4 trt_level1-2 trt_level2+0 trt_level3

9. With the command anova(model) we can get the following output

Analysis of Variance Table 

Response: y            

Df Sum Sq Mean Sq F value  Pr(>F)   

trt_level1  1   12.0    12.0      24 0.01628 * 

trt_level2  1    4.0     4.0       8 0.06628 . 

Residuals   3    1.5     0.5                   --- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Note: R is giving the sequential sum of squares in the ANOVA table.

This page titled 4.4: Dummy Variable Regression is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics.
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4.5: Computational Aspects of the Effects Model

where  are the the deviations of each factor level mean from the overall mean so that .

In the effects model that we discussed in chapter 3, the treatment means were not estimated but instead, the 's, or the deviations of
treatment means from the overall mean, were estimated. The model must include the overall mean, which is estimated by the
intercept, and hence the design matrix to be inputted for IML is:

/* The Effects Model */ 

x={ 

1    1    0, 

1    1    0, 

1    0    1, 

1    0    1, 

1    -1    -1, 

1    -1    -1}; 

Here we have another omission of a treatment level, but for a different reason. In the effects model, we have the constraint 
. As a result, coding for one treatment level can be omitted.

Running the IML program with this design matrix yields:

Regression Coefficients

Beta_0 3.5

Beta_1 -2

Beta_2 0

ANOVA

Treatment
dF SS MS F

2 16 8 16

Error 3 1.5 0.5

Total 5 17.5

The regression coefficient Beta_0 is the overall mean and the coefficients  and  are  and , respectively. The estimate for 
is obtained as .

In Minitab, if we change the coding now to be Effect coding (-1,0,+1), which is the default setting, we get the following:

Regression Equation

y = 3.500 - 2.000 trt_A - 0.000 trt_B + 2.000 trt_C

The ANOVA table is the same as for the dummy-variable regression model above. We can also observe that the factor level means
and General Linear F Statistics values obtained for all 3 representations (cell means, dummy coded regression and effects coded
regression) are identical, confirming that the 3 representations are identical.

The intermediates were:

 Model 4 - The Effects Model

= μ+ +Y
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xprimex

6 0 0

0 4 2

0 2 4

check

1 0 0

0 1 0

0 0 1

xprimey

21

-8

-4

SumY2

89.5

CF

73.5

xprimexinv

0.1666667 0 0

0 0.3333333 -0.166667

0 -0.166667 0.3333333

By coding treatment or factor levels into numerical terms, we can use regression methods to perform the ANOVA.

To state the effects model

as a regression model, we need to include  as elements in the parameter vector  of the GLM model. Note that, in the
case of equal replication at each factor level, the deviations satisfy the following constraint:

This implies one of the  parameters is not needed since it can be expressed in terms of the other  parameters and need not
be included in the  parameter vector. We shall drop the parameter  from the regression equation, as it can be expressed in terms
of the other  parameters  as follows:

Thus, the  vector of the GLM is a  vector containing only the parameters  for the linear model.

To illustrate how a linear model is developed with this approach, consider a single-factor study with  factor levels when 
. The , , , and  matrices for this case are as follows:

where , , and  correspond to , , and  respectively.

Note that the vector of expected values  yields the following:
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Since , as shown above, we see that . Thus, the above  matrix and  vector
representation provides the appropriate expected values for all factor levels as expressed below:

Steps in R

1. Define response variable and design matrix

2. Regression coefficients

beta<-solve(t(x)%*%x)%*%(t(x)%*%y) 

#  beta 

#     [,1] 

# [1,]  3.5 

# [2,] -2.0 

# [3,]  0.0 

3. Calculate the entries of the ANOVA Table

n<-nrow(y) 

p<-ncol(x) 

J<-matrix(1,n,n) 

ss_tot = (t(y)%*%y) - (1/n)*(t(y)%*%J)%*%y #17.5 

ss_trt = t(beta)%*%(t(x)%*%y) - (1/n)*(t(y)%*%J)%*%y #16 

ss_error = ss_tot - ss_trt #1.5 

total_df=n-1 #5 

trt_df=p-1 #2 

error_df=n-p #3 

MS_trt = ss_trt/(p-1) #8 

MS_error = ss_error / error_df #0.5 

F=MS_trt/MS_error #16 

y<-matrix(c(2,1,3,4,6,5), ncol=1) 

x = matrix(c(1,1,0,1,1,0,1,0,1,1,0,1,1,-1,-1,1,-1,-1),ncol=3,nrow=6,byrow=TRUE) 
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4. Creating the ANOVA table

ANOVA <- data.frame( 

c ("","Treatment","Error", "Total"), 

c("DF", trt_df,error_df,total_df), 

c("SS", ss_trt, ss_error, ss_tot), 

c("MS", MS_trt, MS_error, ""), 

c("F",F,"",""), 

stringsAsFactors = FALSE) 

names(ANOVA) <- c(" ", "  ", " ","","") 

5. Print the ANOVA table

print(ANOVA)                  

# 1           DF   SS  MS  F 

# 2 Treatment  2   16   8 16 

# 3     Error  3  1.5 0.5    

# 4     Total  5 17.5     

Copy code

6. Intermediates in the matrix computations

xprimex<-t(x)%*%x 

#  xprimex 

#      [,1] [,2] [,3] 

# [1,]    6    0    0 

# [2,]    0    4    2 

# [3,]    0    2    4 

xprimey<-t(x)%*%y 

#  xprimey 

#      [,1] 

# [1,]   21 

# [2,]   -8 

# [3,]   -4 

xprimexinv<-solve(t(x)%*%x) 

#  xprimexinv 

#           [,1]       [,2]       [,3] 

# [1,] 0.1666667  0.0000000  0.0000000 

# [2,] 0.0000000  0.3333333 -0.1666667 

# [3,] 0.0000000 -0.1666667  0.3333333 

check<-xprimexinv%*%xprimex 

# check 

#      [,1] [,2] [,3] 

# [1,]    1    0    0 

# [2,]    0    1    0 

# [3,]    0    0    1 
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SumY2<-t(beta)%*%(t(x)%*%y) #89.5 

CF<-(1/n)*(t(y)%*%J)%*%y # 73.5 

7. Regression Equation and ANOVA table

trt_level1<-x[,2] 

trt_level2<-x[,3] 

model<-lm(y~trt_level1+trt_level2) 

8. With the command summary(model) we can get the following output:

Call: 

lm(formula = y ~ trt_level1 + trt_level2) 

Residuals: 

1    2    3    4    5    6 

0.5 -0.5 -0.5  0.5  0.5 -0.5 

Coefficients: 

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  3.500e+00  2.887e-01  12.124  0.00121 ** 

trt_level1  -2.000e+00  4.082e-01  -4.899  0.01628 * 

trt_level2  -1.282e-16  4.082e-01   0.000  1.00000    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.7071 on 3 degrees of freedom 

Multiple R-squared:  0.9143,    Adjusted R-squared:  0.8571 

F-statistic:    16 on 2 and 3 DF,  p-value: 0.02509 

From the output we can see the estimates for the coefficients are b0=3.5, b1=-2, b2=0 and the F-statistic is 16 with a p-
value of 0.02509.

By using the estimates we can write the regression equation:

y=3.5-2 trt_level1-0 trt_level2+2 trt_level3

The estimator  is obtained as 

9. With the command anova(model) we can get the following output:

Analysis of Variance Table 

Response: y 

Df Sum Sq Mean Sq F value  Pr(>F)   

trt_level1  1   16.0    16.0      32 0.01094 * 

trt_level2  1    0.0     0.0       0 1.00000   

Residuals   3    1.5     0.5                   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Note that R is giving the sequential sum of squares in the ANOVA table.
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4.6: The Study Diagram
In Section 1.1 we encountered a brief description of an experiment. The description of an experiment provides a context for
understanding how to build an appropriate statistical model. All too often, mistakes are made in statistical analyses because of a
lack of understanding of the setting and procedures in which a designed experiment is conducted. Creating a study diagram is one
of the best ways to address this, in addition to being intuitive. A study diagram is a schematic diagram that captures the essential
features of the experimental design. Here, as we explore the computations for a single factor ANOVA in a simple experimental
setting, the study diagram may seem trivial. However, in practice and in lessons to follow in this course, the ability to create
accurate study diagrams usually makes a substantial difference in getting the model right.

In our example, as described in Section 1.1, a plant biologist thinks that plant height may be affected by the fertilizer type and three
types of fertilizer were chosen to investigate this claim. Next, 24 plants were randomly chosen and 4 batches, with 6 plants in each,
were assigned individually to the 3 fertilizer types; the last batch was left untreated, constituting the Control group. The researchers
kept all the plants under controlled conditions in the greenhouse. The individual containerized plants were randomly assigned the
fertilizer treatment levels to produce 6 replications of each of the fertilizer applications.

Here is the data from the example that we were using in this lesson:

Control F1 F2 F3

21 32 22.5 28

19.5 30.5 26 27.5

22.5 25 28 31

21.5 27.5 27 29.5

20.5 28 26.5 30

21 28.6 25.2 29.2

So we have a description of the treatment levels and how they were assigned to individual experimental units (the potted plant), and
we see the data organized in a table. But what are we missing? A key question is: how was the experiment conducted? This
question is a practical one and is answered with a study diagram. These are usually hand-drawn depictions of a real setting,
indicating the treatments, levels of treatments, and how the experiment was laid out. They are not typically works of art and no one
should ever feel embarrassed by a lack of artistic ability to draw one. For this example, we need to draw a greenhouse bench,
capable of holding the 4 × 6 = 24 experimental units:

Figure : Study diagram for response variable of height, showing 4 treatment levels with 6 units in each.

The diagram identified the response variable, listed the treatment levels, and indicated the random assignment of treatment levels to
these 24 experimental units on the greenhouse bench.
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This randomization and the subsequent experimental layout we would identify as a Completely Randomized Design (CRD). We
know from this schematic diagram that we need a statistical model that is appropriate for a one-way ANOVA in a Completely
Randomized Design (CRD).

Furthermore, once the plant heights are recorded at the end of the study, the experimenter may observe that the variability in the
growth may possibly be influenced by a second factor besides the fertilizer level. A careful examination of the layout of the plants
in the study diagram may perhaps reveal this additional factor. For example, if the growth is higher in the plants placed on the row
nearer to the windows, it is reasonable to assume that sunlight also plays a role and to redesign the experiment as a randomized
completely block design (RCBD) with rows as a blocking factor. Note that design aspects of experiments are covered in Chapters 7
and 8.

Being able to draw and reproduce a study diagram is very useful in identifying the components of the ANOVA models.

This page titled 4.6: The Study Diagram is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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4.7: Try It!

Below is a design matrix for a data set of a recent study.

a) Identify the number of treatment levels and replicates.

Solution

4 treatment levels and 3 replicates

b) Name the model and write its equation.

Solution

This design matrix corresponds to the effects model, and the model equation is , where , 
, and .

c) Write the equation and the design matrix that corresponds to the cell means model.

Solution

The equation for the cell means model is: , where  and . The design matrix
corresponding to the cell means model is:

d) Write the equation and the design matrix that corresponds to the dummy variable regressions model.

Solution

 Exercise : Design Matrix4.7.1
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The equation for the 'dummy variable regression' model is:  for  and . 

The design matrix is given below. Note that the last 3 rows correspond to the 4th treatment level which is the reference
category and its effect is estimated by the model intercept.

This page titled 4.7: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
Statistics.

= μ+ +Y

ij

μ

i

ϵ

ij

i = 1, 2, 3 j= 1, 2, 3

= μ+Y

4j

ϵ

4j

⎡

⎣

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

⎤

⎦

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33495?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/04%3A_ANOVA_Models_Part_II/4.07%3A_Try_It
https://creativecommons.org/licenses/by-nc/4.0
https://science.psu.edu/stat


4.8.1 https://stats.libretexts.org/@go/page/33496

4.8: Chapter 4 Summary
This chapter, together with Chapter 3, covered four different versions of single-factor ANOVA models. They are: Overall Mean,
Cell Means, Dummy Variable Regression, and Effects Coded Regression models. This lesson also provided the coding compatible
with the SAS IML procedure, which facilitates the ANOVA computations using Matrix Algebra in a GLM setting. The method of
least squares was used to estimate model parameters yielding a prediction equation for the response in terms of the treatment level.
This prediction tool will show to be more useful in ANCOVA settings where model predictors are both categorical and numerical
(more details on ANCOVA in Chapters 9 and 10). The prediction process can be utilized effectively only with a sound knowledge
of the parameterization process for each ANOVA model, which we have been able to acquire as the design matrix was an input
resource for running the IML code and the knowledge of the parameter vector was useful in interpreting the prediction (regression)
equations.

Finally, using the greenhouse example, the concept of a study diagram was discussed. Though a simple visual tool, a study diagram
may play an important role in identifying new predictors so that perhaps a pre-determined ANOVA model can be extended to
include additional factors to create a multi-factor model discussed in Chapters 5 and 6. In addition to identifying the treatment
design, the study diagram also helps in choosing an appropriate randomization design, a topic discussed in Chapters 7 and 8.

This page titled 4.8: Chapter 4 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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CHAPTER OVERVIEW

5: Multi-Factor ANOVA

Upon completion of this lesson, you should be able to:

1. Identify factorial, nested, and cross-nested treatment designs.
2. Use main effects and interaction effects in factorial designs.
3. Create nested designs and identify the nesting effects.
4. Use statistical software to analyze data from different treatment designs via ANOVA and mean comparison procedures.

Researchers often identify more than one experimental factor of interest. One alternative is to set up separate, independent
experiments in which a single treatment (or factor) is used in each experiment, and data from each experiment to be analyzed as we
have done using a one-way ANOVA. This approach might have the advantage of a concentrated focus on the single treatment of
interest and the simplicity of computations. However, there are several disadvantages as well.

First, environmental factors or experimental material conditions may change during the process. This could distort the
assessment of the relative importance of different treatments on the response variable.
Second, it is inefficient. Setting up and running multiple separate experiments usually will involve more work and resources.
Last, and probably the most important, this one-at-a-time approach does not allow the examination of how several treatments
jointly impact the response.

ANOVA methodology can be extended to accommodate this multi-factor setting. Here are Dr. Rosenberger and Dr. Shumway
talking about some of the things to look out for as you work your way through this lesson.

Video : Experimental design drives analysis.

To put it into perspective, let’s take a look at the phrase "Experimental Design" a term that you often hear. We are going to take this
colloquial phrase and divide it into two formal components:

A. The Treatment Design
B. The Randomization Design

We will use the treatment design component to address the nature of the experimental factors under study and the randomization
design component to address how treatments are assigned to experimental units. An experimental unit is defined to be that which
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receives a specific treatment level and in a multi-factor setting, a specific treatment or factor combination. In the single-factor
greenhouse example, which is an experiment, the experimental unit is a single plant receiving one specific fertilizer level. Note that
the ANOVA model pertaining to a given study depends on both the treatment design and the randomization process.

The following figure illustrates the conceptual division between the treatment design and the randomization design. The terms that
are in boldface type will be addressed in detail in this or future lessons.

Figure : Concepts to consider in experimental design, for treatment design and randomization design.

5.1: Factorial or Crossed Treatment Designs

5.1.1: Two-Factor Factorial - Greenhouse Example (SAS)
5.1.1a: The Additive Model (No Interaction)

5.1.2: Two-Factor Factorial - Greenhouse Example (Minitab)
5.1.3: Two-Factor Factorial - Greenhouse Example (R)
5.1.3a: The Additive Model

5.2: Nested Treatment Design

5.2.1: Nested Model in SAS
5.2.2: Nested Model in Minitab
5.2.3: Nested Model in R

5.3: Crossed-Nested Designs
5.4: Try It!
5.5: Chapter 5 Summary
5.6: Treatment Design Summary (Optional Enrichment Material)
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5.1: Factorial or Crossed Treatment Designs
In multi-factor experiments, combinations of factor levels are applied to experimental units. The single-factor greenhouse
experiment discussed in previous lessons can be extended to a multi-factor study by including plant species as an additional factor
along with fertilizer type. This addition of another factor may prove to be useful, as one fertilizer type may be most effective on
one specific plant species! In other words, the optimal height growth is perhaps attainable by a unique combination of fertilizer
type and plant species. A treatment design that provides the opportunity to determine this best combination is a factorial design,
where responses are observed at each level of a given factor combined with each level of all other factors. In this setting, factors are
said to be crossed.

A factorial design with  factors is identified using the  notation, where  is the number of levels of factor  
. For example, a factorial design with 2 factors A and B, where A has 4 levels and B has 3 levels, will have the 

 notation.

One complete replication of a factorial design with  factors requires  experimental units, and this quantity is
called the replicate size. If  is the number of complete replicates, then , the total number of observations, equals 

.

It is easy to see that with the addition of more and more crossed factors, the replicate size will increase rapidly and design
modifications have to be made to make the experiment more manageable.

In a factorial experiment, as combinations of different factor levels play an important role, it is important to differentiate between
the lone (or main) effects of a factor on the response and the combined effects of a group of factors on the response.

The main effect of factor A is the effect of A on the response ignoring the effect of all other factors. The main effect of a given
factor is equivalent to the factor effect associated with the single-factor experiment using only that particular factor.

The combined effect of a specific combination of  different factors is called the interaction effect (more details later). The
interaction effect of most interest is the two-way interaction effect and is denoted by the product of the two letters assigned to the
two factors. For example, the two-way interaction effects of a factorial design with 3 factors A, B, C are denoted AB, AC, and BC.
Likewise, the three-way interaction effect of these 3 factors is denoted by ABC.

Let us now examine how the degrees of freedom ( ) values of a single-factor ANOVA can be extended to the ANOVA of a two-
factor factorial design. Note that the interaction effects are additional terms that need to be included in a multi-factor ANOVA, but
the ANOVA rules studied in Chapter 2 for single-factor situations still apply for the main effect of each factor. If the two factors of
the design are denoted by A and B with  and  as their number of levels respectively, then the  values of the two main effects
are  and . The  value for the two-way interaction effect is , the product of  values for A and B.
The ANOVA table below gives the layout of the df values for a  factorial design with 5 complete replications. Note that in
this experiment,  equals 5, and  is equal to 20.

Source d.f.

Factor A

Factor B

Factor A × Factor B

Error

Total

If in the single-factor model of

 is effectively replaced with , then the resulting equation shown below will represent the model equation of a
two-factor factorial design.
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where  is the main effect of factor A,  is the main effect of factor B, and  is the interaction effect 
.

This reflects the following partitioning of treatment deviations from the grand mean:

The main effects for Factor A and Factor B are straightforward to interpret, but what is an interaction? Delving more, an interaction
can be defined as the failure of the response to one factor to be the same at different levels of another factor. Notice that , the
interaction term in the model, is multiplicative, and as a result may have a large and important impact on the response variable.
Interactions go by different names in various fields. In medicine, for example, physicians most times ask what medication you are
on before prescribing a new medication. They do this out of a concern for interaction effects of either interference (a canceling
effect) or synergism (a compounding effect).

Graphically, in a two-factor factorial with each factor having 2 levels, the interaction can be represented by two non-parallel lines
connecting means (adapted from Zar, H. Biostatistical Analysis, 5th Ed., 1999). It is because the interaction reflects the failure of
the difference in response between the two different levels of one factor to be the same, for both levels of the other factor. So, if
there is no interaction, then this difference in response will be the same, which will graphically result in two parallel lines. In the
interaction plots below, parallel lines are a consistent feature in all settings with no interaction. In plots depicting interaction, the
lines do cross (or would cross if the lines kept going).

Graph 1

In graph 1 there is no effect of Factor A, a small effect of Factor B
(and if there were no effect of Factor B the two lines would
coincide), and no interaction between Factor A and Factor B.

Graph 2

Graph 2 shows a large effect of Factor A, small effect of Factor B,
and no interaction. 
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Graph 3

Graph 3 shows no effect of Factor A, larger effect of Factor B,
and no interaction.

Graph 4

In graph 4 there is a large effect of Factor A, a large effect of
Factor B , and no interaction.

Graph 5

In graph 5 there is no effect of Factor A and no effect of Factor B,
but an interaction between A and B.

Graph 6

In graph 6 there is a large effect of Factor A and no effect of Factor
B, with a slight interaction between A and B.

Graph 7

In graph 7 there is no effect of Factor A and a large effect of
Factor B, with a very large interaction.

Graph 8

In graph 8 there is a small effect of Factor A and a large effect of
Factor B, with a large interaction.
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In the presence of multiple factors with their interactions, multiple hypotheses can be tested and for a two-factor factorial design.
They are:

Main Effect of Factor A:

Main Effect of Factor B:

A × B Interaction:

When testing these hypotheses, it is important to test for the significance of the interaction effect first. If the interaction is
significant, the main effects are of no consequence; rather, the differences among different factor level combinations should be
looked into. The greenhouse example, extended to include a second (crossed) factor, will illustrate the steps.

This page titled 5.1: Factorial or Crossed Treatment Designs is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Penn State's Department of Statistics.
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5.1.1: Two-Factor Factorial - Greenhouse Example (SAS)
Let's return to the greenhouse example with plant species also as a predictive factor, in addition to fertilizer type. The study then
becomes a 2×4 factorial as 2 types of plant species and 4 types of fertilizers are investigated. The total number of experimental
units (plants) that are needed now is 48, as r=6 and there are 8 plant species and fertilizer type combinations.

The data might look like this:

Fertilizer Treatment

Control F1 F2 F3

Species

A 21.0 32.0 22.5 28.0

19.5 30.5 26.0 27.5

22.5 25.0 28.0 31.0

21.5 27.5 27.0 29.5

20.5 28.0 26.5 30.0

21.0 28.6 25.2 29.2

 

B 23.7 30.1 30.6 36.1

23.8 28.9 31.1 36.6

23.7 34.4 34.9 37.1

22.8 32.7 30.1 36.8

22.8 32.7 30.1 36.8

24.4 32.7 25.5 37.1

The ANOVA table would now be constructed as follows:

Source df SS MS F

Fertilizer

Species

Fertilizer × Species

Error

Total

The data presented in the table above are in unstacked format. One needs to convert this into a stacked format when attempting to
use statistical software. The SAS code is as follows.

The data presented in the table above are in unstacked format. One needs to convert this into a stacked format when attempting to
use statistical software. The SAS code is as follows.

data greenhouse_2way;  

input fert $ species $ height;  

datalines;  

 

(4− 1) = 3

(2− 1) = 1

(2− 1)(4− 1) = 3

47−7 = 40

N−1= 47
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control SppA     21.0  

control SppA     19.5  

control SppA     22.5  

control SppA     21.5  

control SppA     20.5  

control SppA     21.0  

control SppB     23.7  

control SppB     23.8  

control SppB     23.8  

control SppB     23.7  

control SppB     22.8  

control SppB     24.4  

f1      SppA     32.0  

f1      SppA     30.5  

f1      SppA     25.0  

f1      SppA     27.5  

f1      SppA     28.0  

f1      SppA     28.6  

f1      SppB     30.1 

f1      SppB     28.9  

f1      SppB     30.9  

f1      SppB     34.4  

f1      SppB     32.7  

f1      SppB     32.7  

f2      SppA     22.5  

f2      SppA     26.0  

f2      SppA     28.0  

f2      SppA     27.0  

f2      SppA     26.5  

f2      SppA     25.2  

f2      SppB     30.6  

f2      SppB     31.1  

f2      SppB     28.1  

f2      SppB     34.9  

f2      SppB     30.1  

f2      SppB     25.5  

f3      SppA     28.0  

f3      SppA     27.5  

f3      SppA     31.0  

f3      SppA     29.5  

f3      SppA     30.0  

f3      SppA     29.2  

f3      SppB     36.1  

f3      SppB     36.6  

f3      SppB     38.7  

f3      SppB     37.1  

f3      SppB     36.8  
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f3      SppB     37.1  

;  

run;  

/*The code to generate the boxplot  

for distribution of height by species organized by fertilizer  

in Figure 5.1*/  

 

proc sort data=greenhouse_2way; by fert species;  

proc boxplot data=greenhouse_2way;  

plot height*species (fert);  

run; 

As a preliminary step in Exploratory Data Analysis (EDA), a side-by-side boxplot display of height vs. species organized by
fertilizer type would be an ideal graphic. As the plot shows, the height differences between species are variable among fertilizer
types (see for example the difference in height between SppA and SppB for Control is much less than that for F3). This indicates
that fert*species could be a significant interaction prompting a factorial model with interaction.

Figure : Boxplot for distribution of height by species organized by fertilizer.

To run the two-factor factorial model with interaction in SAS proc mixed , we can use:

/*Runs the two-factor factorial model with interaction*/  

proc mixed data=greenhouse_2way method=type3;  

class fert species;  

model height = fert species fert*species;  

store out2way;  

run; 

In the proc mixed  procedure, similar to when running the single factor ANOVA. The name of the data set is specified in the 
proc mixed  statement and so is the method=type 3  option that specifies the way the F test is calculated. The fert

and species  factors that are both categorical are included in the class statement. The terms (or effects) in the model statement
are consistent with the source effects in the layout of the "theoretical" ANOVA table illustrated in 5.1. Finally, the store
command stores the elements necessary for the generation of the LS-Means interval plot.

5.1.1.1
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Recall the two ANOVA rules, applicable to any model: (a). the df values add up to total df and (b). the sums of squares add up to
total sums of squares. As seen by the output below, the df values and also the sums of squares follow these rules. (It is easy to
confirm that the total sum of squares = 1168.732500, by the 2  ANOVA rule.)

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean Square
Expected
Mean Square

Error Term Error DF F Value Pr > F

fert 3 745.437500 248.479167
Var(Residua
l)+Q(fert,fer
t*species)

MS(Residua
l)

40 73.10 <.0001

species 1 236.740833 236.740833

Var(Residua
l)+Q(species
,fert*species
)

MS(Residua
l)

40 69.65 <.0001

fert*species 3 50.584167 16.861389
Var(Residua
l)+Q(fert*sp
ecies)

MS(Residua
l)

40 4.96 0.0051

Residual 40 135.970000 3.399250
Var(Residua
l)

    

In a model with the interaction effect, the interaction term should be interpreted first. If the interaction effect is significant, then
do NOT interpret the main effects individually. Instead, compare the mean response differences among the different factor
level combinations.

In general, a significant interaction effect indicates that the impact of the levels of Factor A on the response depends upon the
level of Factor B and vice versa. In other words, in the presence of a significant interaction, a stand-alone main effect is of no
consequence. In the case where an interaction is not significant, the interaction term can be dropped and a model without the
interaction should be run. See Section 5.1.1a: The Additive Model (No Interaction)).

Now applying the above rule for this example, the small p-value of 0.0051 displayed in the table above indicates that the
interaction effect is significant, which means that the main effects of either fert or species should not be considered individually. It
is the average response differences among the fert and species combinations that matter. In order to determine the statistically
significant fert and species combinations, a suitable multiple comparison procedure, such as Tukey and Kramer procedure can be
performed on the LS-Means of the interaction effect (i.e.: the treatment combinations).

The necessary follow-up SAS code to perform this procedure is given below.

SAS Output for the LSmeans:

fert*species Least Squares Means

ods graphics on;  

proc plm restore=out2way;  

lsmeans fert*species / adjust=tukey plot=(diffplot(center) meanplot(cl ascending)) cl 

/* Because the 2-factor interaction is significant, we work with  

   the means for treatment combination*/  

run; 

nd

 Rule
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fert*species Least Squares Means

fert species Estimate
Standard
Error

DF t Value Pr > |t| Alpha Lower Upper

control SppA 21.0000 0.7527 40 27.90 <.0001 0.05 19.4788 22.5212

control SppB 32.7000 0.7527 40 31.49 <.0001 0.05 22.1788 25.2212

f1 SppA 28.6000 0.7527 40 38.00 <.0001 0.05 27.0788 30.1212

f1 SppB 31.6167 0.7527 40 42.00 <.0001 0.05 30.0954 33.1379

f2 SppA 25.8667 0.7527 40 34.37 <.0001 0.05 24.3454 27.3879

f2 SppB 30.0500 0.7527 40 39.92 <.0001 0.05 28.5288 31.5712

f3 SppA 29.2000 0.7527 40 38.79 <.0001 0.05 27.6788 30.7212

f3 SppB 37.0667 0.7527 40 49.25 <.0001 0.05 35.5454 38.5879

Note that the -values here (Pr > t) are testing the hypotheses that the fert and species combination means = 0. This may be of very
little interest. However, a comparison of mean response values for different species and fertilizer combinations may prove to be
more beneficial and can be derived from the diffogram shown in Figure . Again recall that, if the confidence interval does
not contain zero, then the difference between the two associated means is statistically significant.

Notice also that we see a single value for the standard error based on the MSE from the ANOVA, rather than a separate standard
error for each mean (as we would get from Proc Summary for the sample means). Again in this example, with equal sample sizes
and no covariates, the lsmeans will be identical to the ordinary means displayed in the Summary Procedure.

Figure : Diffogram for species and fertilizer combinations.

p
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There are total of 8 fert*species combinations resulting a total of  pairwise comparisons. From the diffogram for
differences in fert*species combinations, we see that 10 of them are not significant and 18 of them are significant at a 5% level
after Tukey adjustment (more about diffograms). The information used to generate the diffogram is presented in the table for
differences of fert*species least squares means in the SAS output (this table is not displayed here).

We can save the differences estimated in SAS proc mixed  and utilize proc sgplot  to create the plot of differences in
mean response for the fert*species combinations as shown in Figure . The CIs shown are the Tukey adjusted CIs. SAS code
to produce Figure  is not given in these notes. The interpretations of the plot are similar to what we observed from the
diffogram in Figure .

Figure : Plot of differences in mean response for the fert*species combinations.

In addition to comparing differences in mean responses for the fert*species combinations, the SAS code shared above will also
produce the line plot for multiple comparisons of means for fert*species combinations (shown in Figure ) and the plot of
means responses organized in the ascending order with 95% CIs for fert*species combinations (shown in Figure ).
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Figure : The line plot for multiple comparisons of means for fert*species combinations.

The line plot in Figure  connects groups in which the LS-means are not statistically different and displays a summary of
which groups have similar means. The plot of means with 95% CIs in Figure  illustrates the same result, although it uses
unadjusted CIs. We have organized the plot in the ascending order of estimated means to make it easy to draw conclusions.
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Figure : The plot of means with 95% CIs for fert*species combinations.

Using LSMEANS, subsequent to performing an ANOVA will help to identify the significantly different treatment level
combinations. In other words, the ANOVA doesn't end with a -value for an -test. A small -value signals the need for a mean
comparison procedure.

This page titled 5.1.1: Two-Factor Factorial - Greenhouse Example (SAS) is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Penn State's Department of Statistics.
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5.1.1a: The Additive Model (No Interaction)
In a factorial design, we first look at the interactions for significance. In the case where interaction is not significant, then we can
drop the interaction term from our model, and we end up with an additive model.

For a two-factor factorial, the model we initially consider (as we have discussed in Section 5.1) is:

Note that the interaction term, , is a multiplicative term.

If the interaction is found to be non-significant, then the model reduces to:

Here we can see that the response variable is simply a function of adding the effects of the two factors.

As an example, (adapted from Kuehl, 2000), let's look at a study designed to evaluate two chemical methods used for assaying
the amount of glucose in blood serum. A large volume of blood serum served as a starting point for the experiment. The blood
serum was divided into three portions, each of which was 'doped' or augmented by adding an additional amount of glucose.
Three doping levels were used. Samples of the doped serum were then assayed for glucose concentration by one of two
chemical methods. This type of ‘doping’ experiment is commonly used to compare the sensitivity of assay methods.

The amount of glucose detected in each sample was recorded and is presented in the table below.

 
Chemical Assay Method

Method 1 Method 2

Doping Level 1 2 3 1 2 3

46.5 138.4 180.9 39.8 132.4 176.8

47.3 144.4 180.5 40.3 132.4 173.6

46.9 142.7 183 41.2 130.3 174.9

Solution
The model was run as a two-factor factorial and produced the following results:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

Error Term Error DF F Value Pr > F

method 1 263.733889 263.733889

Var(Residua
l) +

Q(method,
method*do

ping)

MS(Residu
al)

12 98.35 <.0001

doping 2 57026 28513

Var(Residua
l) +

Q(doping,
method*do

ping)

MS(Residu
al)

12 10632.5 <.0001
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Type 3 Analysis of Variance

method*dop
ing

2 13.821111 6.910556

Var(Residua
l) +

Q(method*
doping)

MS(Residu
al)

12 2.58 0.1172

Residual 12 32.180000 2.681667
Var(Residua

l)
    

Here we can see that the interaction of method*doping was not significant (p-value > 0.05) at a 5% level. We drop the
interaction effect from the model and run the additive model. The resulting ANOVA table is:

The Mixed Procedure

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

Error Term Error DF F Value Pr > F

method 1 263.733889 263.733889
Var(Residua
l)+Q(metho
d, method)

MS(Residu
al)

14 80.26 <.0001

doping 2 57026 28513

Var(Residua
l) +

Q(doping,d
oping)

MS(Residu
al)

14 8677.63 <.0001

1Residual 14 46.001111 3.285794
Var(Residua

l)
    

The Error SS is now 46.001, which is the sum of the interaction SS and the error SS of the model with the interaction. The df
values were also added the same way. This example shows that any term not included in the model gets added into the error
term, which may erroneously inflate the error especially if the impact of excluded term on the response is not negligible.

The Error SS is now 46.001, which is the sum of the interaction SS and the error SS of the model with the interaction. The df
values were also added the same way. This example shows that any term not included in the model gets added into the error
term, which may erroneously inflate the error especially if the impact of excluded term on the response is not negligible.

method Least Squares Means

method Estimate
Standard
Error

DF t Value Pr >|t| Alpha Lower Upper

1 123.40 0.6042 14 204.23 <.0001 0.05 122.10 124.70

2 115.74 0.6042 14 191.56 <.0001 0.05 114.45 117.04
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Figure : Glucose Tukey grouping for LS-Means of method.

doping Least Squares Means

Doping Estimate
Standard
Error

DF t Value Pr >|t| Alpha Lower Upper

1 43.67 0.7400 14 59.01 <.0001 0.05 42.08 45.25

2 136.77 0.7400 14 184.81 <.0001 0.05 135.18 138.35

3 178.28 0.7400 14 240.92 <.0001 0.05 176.70 179.87

Here, we can see that the response variable, the amount of glucose detected in a sample, is the overall mean PLUS the effect of
the method used PLUS the effect of the glucose amount added to the original sample. (Hence, the additive nature of this
model!)

This page titled 5.1.1a: The Additive Model (No Interaction) is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Penn State's Department of Statistics.

5.1.1a. 1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33637?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/05%3A_Multi-Factor_ANOVA/5.01%3A_Factorial_or_Crossed_Treatment_Designs/5.1.01%3A_Two-Factor_Factorial_-_Greenhouse_Example_(SAS)/5.1.1a%3A_The_Additive_Model_(No_Interaction)
https://creativecommons.org/licenses/by-nc/4.0
https://science.psu.edu/stat


5.1.2.1 https://stats.libretexts.org/@go/page/33635

5.1.2: Two-Factor Factorial - Greenhouse Example (Minitab)
For Minitab, we also need to convert the data to a stacked format (Lesson 4 2 way Stacked Dataset). Once we do this, we will
need to use a different set of commands to generate the ANOVA. We use...

Stat > ANOVA > General Linear Model > Fit General Linear Model

and get the following dialog box:

Figure : General Linear Model pop-up window.

Click on Model…, hold down the shift key and highlight both factors. Then click on the Add box to add the interaction to the
model.

Figure : General Linear Model: Model pop-up window.

5.1.2.1
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These commands will produce the ANOVA results below which are similar to the output generated by SAS (shown in the previous
section).

Analysis of Variance
Source DF Adj SS Adj MS F-value P-value

fert 3 745.44 248.479 73.10 0.000

species 1 236.74 236.741 69.65 0.000

fert*species 3 50.58 16.861 4.96 0.005

Error 40 135.97 3.399   

Total 47 1168.73    

Following the ANOVA run, you can generate the mean comparisons by

Stat > ANOVA > General Linear Model > Comparisons

Then specify the fert*species interaction term for the comparisons by checking the box.

Figure : Comparisons pop-up window.

Then choose Graphs to get the following dialog box, where "Interval plot for difference of means" should be checked.

Figure : Comparisons: Graphs pop-up window.

The outputs are shown below.

Grouping Information Using the Tukey Method and 95% Confidence

5.1.2.3

5.1.2.4
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fert species N Mean Grouping

f3 SppB 6 37.0667 A

f1 SppB 6 31.6167 B

f2 SppB 6 30.0500 B

f3 SppA 6 29.2000 B C

f1 SppA 6 28.6000 B C

f2 SppA 6 25.8667 C D

control SppB 6 23.7000 D E

control SppA 6 21.0000 E

Means that do not share a letter are significantly different.
Minitab Tukey Simultaneous 95% confidence intervals graph of differences of means for resp.

Figure : Tukey simultaneous 95% confidence intervals.

This page titled 5.1.2: Two-Factor Factorial - Greenhouse Example (Minitab) is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Penn State's Department of Statistics.
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5.1.3: Two-Factor Factorial - Greenhouse Example (R)
Load the greenhouse data.
Produce a boxplot to plot the differences in heights for each species organized by fertilizer.
Produce a “means plot” (interval plot) to view the differences in heights for each species organized by fertilizer.
Obtain the ANOVA table with interaction.
Obtain Tukey’s multiple comparisons CIs, grouping, and plot.

1. Load the greenhouse data by using the following commands:

setwd("~/path-to-folder/") 

greenhouse_2way_data <-read.table("greenhouse_2way_data.txt",header=T) 

attach(greenhouse_2way_data) 

2. Produce the Boxplot by using the following commands:

library("ggpubr") 

boxplot(height ~ species*fertilizer, data = greenhouse_2way_data, 

xlab = "Species", ylab = "Plant Height", 

main="Distribution of Plant Height by Species", 

frame = TRUE) 

R-generated boxplot for distribution of plant height by species.

Figure : Boxplot of plant height distribution by species.

3. Produce the means plot (interval plot) by using the following commands:

Means plot with 95% confidence intervals for plant height vs. Fertilizer*Species

Figure : Means plot for plant height vs fertilizer*species.

4. Obtain the ANOVA table with interaction by using the following commands:

anova<-aov(height~fertilizer+species+fertilizer*species,greenhouse_2way_data) 

summary(anova) 

#                    Df Sum Sq Mean Sq F value   Pr(>F)     

# fertilizer          3  745.4  248.48   73.10 2.77e-16 *** 

# species             1  236.7  236.74   69.64 2.71e-10 *** 

# fertilizer:species  3   50.6   16.86    4.96  0.00508 ** 

# Residuals          40  136.0    3.40                      

# --- 

# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

5. Obtain Tukey multiple comparisons of means with 95% family-wise confidence level by using the following commands:

library("gplots") 

plotmeans(height ~ interaction(species,fertilizer), data = greenhouse_2way_data,connec

xlab = "Fertilizer*species", ylab = "Plant Height", 

main="Means Plot with 95% CI")  

library(multcomp) 

library(multcompView) 

tukey_multiple_comparisons<-TukeyHSD(anova,conf.level=0.95,ordered=TRUE) 

5.1.3.1

5.1.3.2
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tukey_multiple_comparisons 

Tukey multiple comparisons of means 

95% family-wise confidence level 

factor levels have been ordered 

Fit: aov(formula = height ~ fertilizer + species + fertilizer * species, data = greenh

$fertilizer 

diff       lwr       upr     p adj 

f2-control  5.608333 3.5908095  7.625857 0.0000000 

f1-control  7.758333 5.7408095  9.775857 0.0000000 

f3-control 10.783333 8.7658095 12.800857 0.0000000 

f1-f2       2.150000 0.1324762  4.167524 0.0328745 

f3-f2       5.175000 3.1574762  7.192524 0.0000002 

f3-f1       3.025000 1.0074762  5.042524 0.0013828 

$species

diff      lwr      upr p adj 

SppB-SppA 4.441667 3.365986 5.517348     0 

$`fertilizer:species` 

diff        lwr       upr     p adj 

control:SppB-control:SppA  2.700000 -0.7025601  6.102560 0.2100548 

f2:SppA-control:SppA       4.866667  1.4641065  8.269227 0.0010962 

f1:SppA-control:SppA       7.600000  4.1974399 11.002560 0.0000003 

f3:SppA-control:SppA       8.200000  4.7974399 11.602560 0.0000001 

f2:SppB-control:SppA       9.050000  5.6474399 12.452560 0.0000000 

f1:SppB-control:SppA      10.616667  7.2141065 14.019227 0.0000000 

f3:SppB-control:SppA      16.066667 12.6641065 19.469227 0.0000000 

f2:SppA-control:SppB       2.166667 -1.2358935  5.569227 0.4721837 

f1:SppA-control:SppB       4.900000  1.4974399  8.302560 0.0009970 

f3:SppA-control:SppB       5.500000  2.0974399  8.902560 0.0001745 

f2:SppB-control:SppB       6.350000  2.9474399  9.752560 0.0000138 

f1:SppB-control:SppB       7.916667  4.5141065 11.319227 0.0000001 

f3:SppB-control:SppB      13.366667  9.9641065 16.769227 0.0000000 

f1:SppA-f2:SppA            2.733333 -0.6692268  6.135893 0.1979193 

f3:SppA-f2:SppA            3.333333 -0.0692268  6.735893 0.0584747 

f2:SppB-f2:SppA            4.183333  0.7807732  7.585893 0.0072041 

f1:SppB-f2:SppA            5.750000  2.3474399  9.152560 0.0000832 

f3:SppB-f2:SppA           11.200000  7.7974399 14.602560 0.0000000 

f3:SppA-f1:SppA            0.600000 -2.8025601  4.002560 0.9991227 

f2:SppB-f1:SppA            1.450000 -1.9525601  4.852560 0.8685338 

f1:SppB-f1:SppA            3.016667 -0.3858935  6.419227 0.1150225 

f3:SppB-f1:SppA            8.466667  5.0641065 11.869227 0.0000000 

f2:SppB-f3:SppA            0.850000 -2.5525601  4.252560 0.9922487 

f1:SppB-f3:SppA            2.416667 -0.9858935  5.819227 0.3344595 

f3:SppB-f3:SppA            7.866667  4.4641065 11.269227 0.0000001 

f1:SppB-f2:SppB            1.566667 -1.8358935  4.969227 0.8173904 

f3:SppB-f2:SppB            7.016667  3.6141065 10.419227 0.0000019 

f3:SppB-f1:SppB            5.450000  2.0474399  8.852560 0.0002022 
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We can see the mean differences for fertilizer combinations, for the two species and for all fertilizer*species combinations. By
using the confidence intervals or the p-values we can conclude which of these combinations are significant or not.

6. Obtain Tukey grouping by using the following commands:

tukey_grouping<-multcompLetters4(anova,tukey_multiple_comparisons) 

print(tukey_grouping) 

$fertilizer 

f3      f1      f2 control 

"a"     "b"     "c"     "d" 

$species

SppB SppA 

"a"  "b"

$`fertilizer:species` 

f3:SppB f1:SppB f2:SppB f3:SppA f1:SppA f2:SppA control:SppB control:SppA 

"a"     "b"     "b"    "bc"     "bc"     "cd"      "de"          "e" 

7. Obtain a plot of differences in mean response for fertilizer*species combinations by using the following commands:

par(mar=c(4.1,13,4.1,2.1)) 

plot(tukey_multiple_comparisons,las=2) 

detach(greenhouse_2way_data) 

95% family-wise confidence level graph for differences in mean levels of Fertilizer:species

Figure : Graph of differences in mean levels of fertilizer:species, showing 95% family-wise confidence levels.

This page titled 5.1.3: Two-Factor Factorial - Greenhouse Example (R) is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Penn State's Department of Statistics.
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5.1.3a: The Additive Model
Load the glucose in blood serum data.
Obtain the ANOVA table with interaction.
Obtain the ANOVA table without interaction.
Obtain estimators and CIs for means for each treatment level.
Obtain Tukey’s multiple comparisons CIs and grouping.

1. Load the glucose in blood serum data by using the following commands:

setwd("~/path-to-folder/") 

glucose_data <- read.table("glucose_data.txt",header=T) 

attach(glucose_data) 

2. Obtain the ANOVA table with interaction by using the following commands:

Here we can see that the interaction term is not significant, and we can drop it from the model. Also, notice that I have defined
method and doping as factors since they have numeric values.

3. Obtain the ANOVA table without interaction by using the following commands:

anova1<-aov(glucose ~ factor(method) + factor(doping),data=glucose_data) 

summary(anova1) 

Df Sum Sq Mean Sq F value   Pr(>F)     

factor(method)  1    264     264   80.27 3.58e-07 *** 

factor(doping)  2  57026   28513 8677.63  < 2e-16 *** 

Residuals      14     46       3                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The Error SS is now 46.001, which is the sum of the interaction SS and the error SS of the model with the interaction. The df
values were also added the same way.

4. Obtain estimators and CIs for means for each treatment level by using the following commands:

library(lsmeans) 

lsmeans(anova1,"method") 

method lsmean    SE df lower.CL upper.CL 

1    123 0.604 14      122      125 

2    116 0.604 14      114      117 

Results are averaged over the levels of: doping 

anova<-aov(glucose ~ factor(method) + factor(doping) + factor(method)*factor(doping),d

summary(anova) 

Df Sum Sq Mean Sq   F value   Pr(>F)     

factor(method)                 1    264     264    98.347 3.92e-07 *** 

factor(doping)                 2  57026   28513 10632.526  < 2e-16 *** 

factor(method):factor(doping)  2     14       7     2.577    0.117     

Residuals                     12     32       3                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Confidence level used: 0.95 

lsmeans(anova1,"doping") 

doping lsmean   SE df lower.CL upper.CL 

1   43.7 0.74 14     42.1     45.3 

2  136.8 0.74 14    135.2    138.4 

3  178.3 0.74 14    176.7    179.9 

Results are averaged over the levels of: method 

Confidence level used: 0.95 

5. Obtain Tukey’s multiple comparisons CIs and grouping by using the following commands:

tukey_multiple_comparisons<-TukeyHSD(anova1,conf.level=0.95,ordered=TRUE) 

tukey_multiple_comparisons 

Tukey multiple comparisons of means 

95% family-wise confidence level 

factor levels have been ordered 

Fit: aov(formula = glucose ~ factor(method) + factor(doping), data = glucose_data) 

$`factor(method)` 

diff      lwr      upr p adj 

1-2 7.655556 5.822828 9.488283 4e-07 

$`factor(doping)` 

diff       lwr       upr p adj 

2-1  93.10000  90.36089  95.83911     0 

3-1 134.61667 131.87755 137.35578     0 

3-2  41.51667  38.77755  44.25578     0 

tukey_grouping<-multcompLetters4(anova1,tukey_multiple_comparisons) 

print(tukey_grouping) 

$`factor(method)` 

1   2 

"a" "b" 

$`factor(doping)` 

3   2   1 

"a" "b" "c" 

detach(glucose_data) 

This page titled 5.1.3a: The Additive Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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5.2: Nested Treatment Design
When setting up a multi-factor study, sometimes it is not possible to cross the factor levels. In other words, because of the logistics
of the situation, we may not be able to have each level of treatment be combined with each level of another treatment.

Here is an example:

A research team interested in the lifestyle of high school students conducted a study to compare the activity levels of high school
students across the 3 geographic regions in the United States, Northeast (NE), Midwest (MW), and the West (W). The study also
included the comparison of activity levels among cities within each region. Two school districts were chosen from two major cities
from each of these 3 regions and the response variable, the average number of exercise hours per week for high school students for
each school district was recorded.

A diagram to illustrate the treatment design can be set up as follows. Here, the subscript  identifies the regions, and the subscript 
indicates the cities:

Factor A (Region) 
Factor B (City) 

Average

1 2

NE 30 18

35 20

Average

MW 10 20

9 22

Average

W 18 4

19 6

Average

Average

The table above shows the data obtained: the grand mean, the marginal means which are the treatment level means, and finally, the
cell means. The cell means are the averages of the two school district mean activity levels for each combination of Region and City.

This example drives home the point that the levels of the second factor (City) cannot practically be crossed with the levels of the
first factor (Region) as cities are specific or unique to regions. Note that the cities are identified as 1 or 2 within each region. But it
is important to note that city 1 in the Northeast is not the same as city 1 in the Midwest. The concept of nesting does come in useful
to describe this type of situation and the use of parentheses is appropriate to clearly indicate the nesting of factors. To indicate that
the City is nested within the factor Region, the notation: City(Region) will be used. Here, City is the nested factor and Region is the
nesting factor.

Figure : Diagram of the levels of treatment design.

We can partition the deviations as before into the following components:
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Source d.f.

Region

City (Region)

Error

Total

The statistical model follows as:

\[

We will want to test the following Null Hypotheses:

For Factor A

For Factor B

When stating the Null Hypothesis for Factor B, the nested effect, alternative notation has to be used.

Up to this point, we have been stating Null Hypotheses in terms of the means (e.g. ), but we can
alternatively state a Null Hypothesis in terms of the parameters for that treatment in the model. For example, for the nesting factor
A, we could also state the Null Hypothesis as

For the nested factor B, the Null Hypothesis should differentiate between the nesting and the nested factors, because we are
evaluating the nested factor within the levels of the nesting factor.

So for the nested factor (City, nested within Region), we have the Null Hypothesis.

The -tests can then proceed as usual using the ANOVA results. The first two columns of the ANOVA table should be as follows
on the next page.

1. There is no interaction between a nested factor and its nesting factor.
2. The nested factors always have to be accompanied by their nested factor. This means that the effect B does not exist and

B(A) represents the effect of B within the factor A
3. df of B(A) = df of B + df of A*B (This is simply a mathematically correct identity and may not be of much practical use, as

effects B(A) and A*B cannot coexist)
4. The residual effect of any ANOVA model is a nested effect - the replicate effect nested within the factor level

combinations. Recall that the replicates are considered homogeneous and so any variability among them serves to estimate
the model error.
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(a− 1) = 2

a(b− 1) = 3

ab(n− 1) = 6
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5.2.1: Nested Model in SAS
Here is the SAS code to run the ANOVA model for the hours of exercise for high school students example discussed in lesson 5.2:

data Nested_Example_data; 

infile datalines delimiter=','; 

input Region $ City $ ExHours; 

datalines; 

    NE,NY,30 

    NE,NY,35 

    NE,Pittsburgh,18 

    NE,Pittsburgh,20 

    MW,Chicago,10 

    MW,Chicago,9 

    MW,Detroit,20 

    MW,Detroit,22 

    W,LA,18 

    W,LA,19 

    W,Seattle,4 

    W,Seattle,6 

; 

 

/*to run the nested ANOVA model*/ 

proc mixed data=Nested_Example_data method=type3; 

    class Region City; 

    model ExHours = Region City(Region); 

    store nested1; 

run; 

 

/*to obtain the resulting multiple comparison results*/ 

ods graphics on; 

proc plm restore=nested1; 

    lsmeans Region / adjust=tukey plot=meanplot cl lines; 

    lsmeans City(Region) / adjust=tukey plot=meanplot cl lines; 

run; 

When we run this SAS program, here is the output that we are interested in:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean Square
Expected
Mean Square

Error Term Error DF F Value Pr > F

Region 2 424.666667 212.333333

Var(Residua
l)+Q(Region
,
City(Region
))

MS(Residua
l)

6 65.33 <.0001

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33639?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/05%3A_Multi-Factor_ANOVA/5.02%3A_Nested_Treatment_Design/5.2.01%3A_Nested_Model_in_SAS


5.2.1.2 https://stats.libretexts.org/@go/page/33639

Type 3 Analysis of Variance

City(Region
)

3 496.750000 165.583333
Var(Residua
l)+Q(City(R
egion))

MS(Residua
l)

6 50.95 0.0001

Residual 6 19.500000 3.250000
Var(Residua
l)

Type 3 Test of Fixed Effects

Effect Num DF Den DF F Value Pr>F

Region 2 6 65.33 <.0001

City(Region) 3 6 50.95 0.0001

The -values above indicate that both Region and City(Region) are statistically significant. The plots and charts below obtained
from the Tukey option specify the means which are significantly different.

p
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Figure : Mean hours of exercise by Region with 95%
CIs

Figure : Diffogram for Mean Comparisons by
Region

Figure : Mean hours of exercise by City(Region) with
95% CIs

Figure : Diffogram for Mean Comparisons by
City(Region)

The exercise hours on average are statistically higher in the northeastern region compared to the midwest and the west while the
average exercise hours of these two regions are not significantly different.

Also, the comparison of the means between cities indicates that the high schoolers in New York city exercise significantly more
than the other cities in the study. The exercise levels are similar among Detroit, Pittsburgh, and LA, while exercise levels of high
schoolers in Chicago and Seattle are similar but significantly lower than all other cities in the study.

These grouping observations are further confirmed by the lines plots below.

5.2.1.1

5.2.1.2

5.2.1.3

5.2.1.4
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Figure : Line plot for multiple comparisons of means for
Regions.

Figure : Line plot for multiple comparisons of means
for Cities.

This page titled 5.2.1: Nested Model in SAS is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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5.2.2: Nested Model in Minitab
In Minitab, for the following (Nested Example Data):

Stat > ANOVA > General Linear Model > Fit General Linear Model

Enter the factors 'Region' and 'City' in the Factors box, then click on Random/Nest...Here is where we specify the nested effect of
City in Region.

Figure : General Linear Model pop-up window.

Figure : Random Nest pop-up window.
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The output is shown below.

Factor Information

General Linear Model: response versus School, Instructor
Factor Type Levels Values

Region Fixed 2 1,2

City(Region) Fixed 6
Atlanta(1), Chicago(1),
SanFran(1), Atlanta(2),
Chicago(2), SanFran(2)

Analysis of Variance
Source DF Adj SS Adj MS F P

Region 1 108.00 108.000 15.43 0.008

City(Region) 4 616.00 154.000 22.00 0.001

Error 6 42.00 7.000   

Total 11 766.00    

Model Summary
S R-sq R-sq(adj) R-sq(pred)

2.64575 94.52% 89.95% 78.07%

Following the ANOVA run, you can generate the mean comparisons by

Stat > ANOVA > General Linear Model > Comparisons

Then specify "Region" and "City(Region)" for the comparisons by checking the boxes.
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Figure : Comparisons pop-up window.

Then choose Graphs to get the following dialog box, where "Interval plot for difference of means" should be checked.

Figure : Comparisons: Graphs pop-up window.

The outputs are as follows.

Comparison for Ex_hours

Tukey Pairwise Comparisons: Region

Grouping Information Using Tukey Method and 95% Confidence
Region N Mean Grouping

1 6 18 A

2 6 12 B

Means that do not share a letter are significantly different.
Minitab Tukey Simultaneous 95% CIs Differences of Means for Ex_Hours graph

Figure : Tukey simultaneous 95% CIs differences of means graph for Ex_hours, by Region.
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Tukey Pairwise Comparisons: (City)Region

Grouping Information Using Tukey Method and 95% Confidence
City(Region) N Mean Grouping

Atlanta (1) 2 27.0 A

Chicago(2) 2 20.0 A B

SanFran(1) 2 18.5 A B C

Atlanta(2) 2 12.5 B C D

Chicago(1) 2 8.5 C D

SanFran(2) 2 3.5 D

Means that do not share a letter are significantly different.
Minitab Tukey Simultaneous 95% CIs Differences of Means for Ex_hours graph

Figure : Tukey simultaneous 95% CIs differences of means graph for Ex_hours, by City(Region).

This page titled 5.2.2: Nested Model in Minitab is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
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5.2.3: Nested Model in R
Load the Exercise Hours data.
Obtain the ANOVA table for the nested treatment design.
Obtain estimators and CIs for means for each region and city.
Obtain means plot for region and city within the region.
Obtain Tukey’s multiple comparisons CIs.

1. Load the Exercise Hours data by using the following commands:

setwd("~/path-to-folder/") 

ex_hours_data <- read.table("ex_hours_data.txt",header=T) 

attach(ex_hours_data) 

2. Obtain the ANOVA table for the nested treatment design by using the following commands:

nested<-aov(Ex_hours ~ Region+Region/City,data=ex_hours_data) 

summary(nested) 

# Df Sum Sq Mean Sq F value Pr(>F) 

# Region       2  424.7  212.33   65.33 8.46e-05 *** 

# Region:City  3  496.8  165.58   50.95 0.000116 *** 

# Residuals    6   19.5    3.25                      

# --- 

# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

3. Obtain estimators and CIs for means for each region and city by using the following commands:

library(lsmeans) 

lsmeans(nested,"Region") 

# Region lsmean    SE df lower.CL upper.CL 

# MW       15.2 0.901  6    13.04     17.5 

# NE       25.8 0.901  6    23.54     28.0 

# W        11.8 0.901  6     9.54     14.0 

#Results are averaged over the levels of: City 

#Confidence level used: 0.95 

lsmeans(nested,"City") 

#City       Region lsmean   SE df lower.CL upper.CL 

# Chicago    MW        9.5 1.27  6     6.38    12.62 

# Detroit    MW       21.0 1.27  6    17.88    24.12 

# NY         NE       32.5 1.27  6    29.38    35.62 

# Pittsburgh NE       19.0 1.27  6    15.88    22.12 

# LA         W        18.5 1.27  6    15.38    21.62 

# Seattle    W         5.0 1.27  6     1.88     8.12 

#Confidence level used: 0.95 

4. Obtain means plot for region and city within region by using the following commands:

library(plotrix) 

region_means<-as.data.frame(lsmeans(nested,"Region")) 
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R-generated means plot for ExHours vs region

Figure : Means plot for ExHours vs region.

R-generated means plot for ExHours vs city-region

Figure : Means plot for ExHours vs City(Region).

5. Obtain Tukey’s multiple comparisons CIs by using the following commands:

R-generated graph of 95% family-wise confidence level for differences in mean level of region

Figure : 95% family-wise confidence levels for differences in mean level of region.

plotCI(x = region_means$lsmean,y = NULL ,li = region_means$lower.CL, ui = region_means

axis(1, at=1:3, labels=region_means$Region) 

city_means<-as.data.frame(lsmeans(nested,"City")) 

City_Region<-paste(city_means$City,city_means$Region) 

plotCI(x = city_means$lsmean,y = NULL ,li = city_means$lower.CL, ui = city_means$upper

axis(1, at=1:6, labels=City_Region) 

library(multcomp) 

library(multcompView) 

tukey_multiple_comparisons_region<-TukeyHSD(nested,"Region",conf.level=0.95,ordered=TR

tukey_multiple_comparisons_region 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

    factor levels have been ordered 

Fit: aov(formula = Ex_hours ~ Region + Region/City, data = ex_hours_data) 

# $Region 

#      diff        lwr       upr     p adj 

#MW-W   3.5 -0.4112978  7.411298 0.0747598 

#NE-W  14.0 10.0887022 17.911298 0.0000836 

plot(tukey_multiple_comparisons_region) 

tukey_multiple_comparisons_city<-TukeyHSD(nested,"Region:City",conf.level=0.95,ordered

cities<-as.data.frame(na.omit(tukey_multiple_comparisons_city$"Region:City")) 

cities 

 

#                         diff         lwr       upr        p adj 

# MW:Chicago-W:Seattle      4.5 -4.96579743 13.965797 0.5867601138 

# W:LA-W:Seattle           13.5  4.03420257 22.965797 0.0087623039 

# NE:Pittsburgh-W:Seattle  14.0  4.53420257 23.465797 0.0072411812 

# MW:Detroit-W:Seattle     16.0  6.53420257 25.465797 0.0035459602 

# NE:NY-W:Seattle          27.5 18.03420257 36.965797 0.0001761692 

# W:LA-MW:Chicago           9.0 -0.46579743 18.465797 0.0626471065 

# NE:Pittsburgh-MW:Chicago  9.5  0.03420257 18.965797 0.0491884424 

# MW:Detroit-MW:Chicago    11.5  2.03420257 20.965797 0.0198221594 

# NE:NY-MW:Chicago         23.0 13.53420257 32.465797 0.0004610102 

# NE:Pittsburgh-W:LA        0.5 -8.96579743  9.965797 1.0000000000 

# MW:Detroit-W:LA           2.5 -6.96579743 11.965797 0.9752059356 

# NE:NY-W:LA               14.0  4.53420257 23.465797 0.0072411812 

5.2.3.1

5.2.3.2

5.2.3.3
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R-generated plot of differences of means by cities

Figure : Differences of means by cities plot.

This page titled 5.2.3: Nested Model in R is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.

# MW:Detroit-NE:Pittsburgh  2.0 -7.46579743 11.465797 0.9960158169 

# NE:NY-NE:Pittsburgh      13.5  4.03420257 22.965797 0.0087623039 

# NE:NY-MW:Detroit         11.5  2.03420257 20.965797 0.0198221594 

 

library(plotrix) 

city_diff<-as.character(c(" 

MW:Chicago-W:Seattle","W:LA-W:Seattle", "NE:Pittsburgh-W:Seattle","MW:Detroit-W:Seattl

par(mar=c(8, 4, 2, 2) + 0.1) 

plotCI(x = cities$diff,y = NULL ,li = cities$lwr, ui = cities$upr, xaxt = " 

n",ylab="Differences of Means",xlab="") 

abline(h=0) 

axis(1, at=1:15, labels=city_diff,las = 2, cex.axis = 0.8) 

5.2.3.4
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5.3: Crossed-Nested Designs
Multi-factor studies can involve factor combinations in which factors are crossed and/or nested. These treatment designs are based
on the extensions of the concepts discussed so far.

Consider an example (from Canavos and Koutrouvelis, 2009) where machines in an assembly process are evaluated for assembly
times. There were three factors of interest: Machine ID (1, 2, or 3), Configuration (1 or 2), and Power level (1, 2, or 3).

3-factor table
Machine (A)

1 2 3

Configuratio
n (B)

1 2 1 2 1 2

1 10.2 4.2 12.0 4.1 13.1 4.1

13.1 5.2 13.5 6.1 12.9 6.1

Power (C) 2 16.2 8.0 12.6 4.0 12.9 2.2

16.9 9.1 14.6 6.1 13.7 3.8

3 13.8 2.5 12.9 3.7 11.8 2.7

14.9 4.4 15.0 5.0 13.5 4.1

It turns out that each machine can be operated at each power level, and so these factors can be crossed. Also, each configuration
can be operated at each power level and so these factors also are crossed. But the configurations (1 or 2) are unique to each
machine. As a result, the configuration is nested within the machine.

The statistical model contains both crossed and nested effects and is:

with the ANOVA table as follows:

Source df

Factor A

Factor B(A)

Factor C

AC

CB(A)

Error

Total

Notice that the two main effects, Machine and Power, are included in the model along with their interaction effect. The nested
relationship of Configuration within Machine is represented by the Configuration(Machine) term and the crossed relationship
between Configuration and Power is represented by their interaction effect.

Notice that the main effect Configuration and the crossed effect Configuration × Machine are not included in the model. This is
consistent with the facts that a nested effect cannot be represented as the main effect and also that a nested effect cannot interact
with its nesting effect.

This page titled 5.3: Crossed-Nested Designs is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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5.4: Try It!

To study the variability in CO2 emission rate by global regions 4 countries: US, Britain, India, and Australia were chosen.
From each country, 3 major cities were chosen and the emission rates for each month for the year 2019 were collected.

1. What type of model is this?

1. nested
2. cross-nested
3. factorial

2. How many factors?

1. 4
2. 3
3. 2

3. The replicates are...

1. 12 months of 2019
2. countries US, Britain, India, and Australia
3. major cities in US, Britain, India, and Australia

4. The residual effect in the ANOVA model is...

1. country*city*month
2. month(city(country))
3. month(country*city)

5. How many degrees of freedom?

1. 66
2. 132
3. 88

Show Answers and Explanations

Answers
Q1 - 1. nested

Q2 - 3. 2 factors

Q3 - 1. 12 months of 2019

Q4 - 2. month(city(country)

Q5 - 2. 132

Explanations
Residual effect (or error term) is the month(city(country), which is the nested effect of  "month", the replicate, within the
combinations of the two factors "country" and "city". One way to double-check this answer is to verify if the df values are
the same.

See the Section 5.2 ANOVA table for df formula.

 Exercise :  Emissions5.4.1 CO

2

error term df = total df −(sum df values of the model terms)

= (144 −1) −(country df +city(country) df)

= 143 −(3 +2 ∗ 4)

= 143 −11 = 132

df for city(country) = 11(12) = 132
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A military installation is interested in evaluating the speed of reloading a large gun. Two methods of reloading are considered,
and 3 groups of cadets were evaluated (slight, average, and heavy individuals). Three teams were set up within each group and
they wanted to identify the fastest team within each group to go on to a demonstration for the military officials. Each team
performed the reloading with each method two times (two replications). 

1. Identify (i.e. name) the treatment design.

1. nested
2. cross-nested
3. factorial

2. They started to construct the ANOVA table which is given below. Given that there are a total of 36 observations in the
dataset, there seems to be a missing source of variation in the analysis. What is this source of variation?

Source df

Method 1

Group 2

Method*Group 2

Team (Group) 6

1. Team*group*method
2. Team (Group)*method
3. Team*Group

3. How many degrees of freedom are associated with the error term?

1. 6
2. 24
3. 18

Show Answers

Q1 - 2. cross-nested

Q2 - 2. Team (Group)*method

Q3 - 3. 18

The GPA comparison of four popular majors—biology, business, engineering, and psychology—between males and females is
of interest.  For 6 semesters, the average GPA of each of these majors for male and female students was computed.

1. What type of model is this?

1. nested
2. cross-nested
3. crossed

2. How many factors?

1. 4
2. 3
3. 2

3. The replicates are...

 Exercise 5.4.2

 Exercise : GPA Comparisons5.4.3
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1. semesters
2. majors
3. gender

4. The residual effect in the ANOVA model is...

1. major*gender*semester
2. semester(gender*major)
3. semester(major(gender))

5. How many degrees of freedom?

1. 48
2. 40
3. 2

Show Answers and Explanations

Answers
Q1 - 3. crossed

Q2 - 3. 2 factors

Q3 - 1. semesters

Q4 - 2. semester(gender*major)

Q5 - 2. 40

Explanations
Residual effect (or error term) is semester (gender*major). The error term is the nested effect of "semester", the
replicate nested within gender*major, which is the "combined effect" of the factors. One way to double-check is to verify if
df values are the same.

See the Section 5.2 ANOVA table for df formula.

This page titled 5.4: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
Statistics.

error term df

= 40

= total df −(sum df values of the model terms)

= (48 −1) −(major df + gender df + major*gender df)

= 47 −(3 +1 +3 ∗ 1)

df for semester(major*gender) = 5 ∗ 8 = 40
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5.5: Chapter 5 Summary
In this lesson, we discussed important elements of the "Treatment Design," one of the two components of an "Experimental
Design." We are now familiar with the main effects and interaction effects of a factorial design.

In a full factorial design, the experiment is carried out at every factor level combination. Most factorial studies do not go beyond a
two-way interaction, and if a two-way interaction is significant, the mean response values should be compared among different
combinations of the two factors rather than among the single factor levels. In other words, the focus should be on response vs.
interaction effect rather than response vs. main effects. An Interaction plot is a useful graphical tool to understand the extent of
interactions among factors (or treatments) with parallel lines indicating no interaction.

In a nested design, the experiment need not be conducted at every combination of levels in all factors. Given two factors in a nested
design, there is a distinction between the nested and the nesting factor. The levels of the nested factor may be unique to each level
of the nesting factor. Therefore, the comparison of the nested factor levels should be made within each level of the nesting factor—
a fact that should be kept in mind when stating null and alternative hypotheses for the nested factor(s), and also when writing
programming code.

This page titled 5.5: Chapter 5 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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5.6: Treatment Design Summary (Optional Enrichment Material)
In an effort to summarize how to think about sums of squares and degrees of freedom and how this translates into a model that can
be implemented in SAS, Dr. Rosenberger walks you through this process in the videos below. Pay attention to the subscripts and
these are the keys to understanding this material.

Part One

Part Two

This page titled 5.6: Treatment Design Summary (Optional Enrichment Material) is shared under a CC BY-NC 4.0 license and was authored,
remixed, and/or curated by Penn State's Department of Statistics.

Rules for ANOVA Tables - Part OneRules for ANOVA Tables - Part One
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CHAPTER OVERVIEW

6: Random Effects and Introduction to Mixed Models

Overview

So far, in our discussion of treatment designs, we have made the (unstated) assumption that the treatment levels were chosen
intentionally by the researcher as dictated by his/her specific interests. The scope of inference in this situation is limited to the
specific (or fixed) levels used in the study. However, this is not always the case. Sometimes, treatment levels may be a (random)
sample of possible levels, and the scope of inference is to a larger population of all possible levels.

If it is clear that the researcher is interested in comparing specific, chosen levels of treatment, that treatment is called a fixed effect.
On the other hand, if the levels of the treatment are a sample of a larger population of possible levels, then the treatment is called a
random effect.

Upon completion of this lesson, you should be able to:

1. Extend the treatment design to include random effects.
2. Understand the basic concepts of random-effects models.
3. Calculate and interpret the intraclass correlation coefficient.
4. Combining fixed and random effects in the mixed model.
5. Work with mixed models that include both fixed and random effects.

6.1: Random Effects
6.2: Battery Life Example
6.3: Random Effects in Factorial and Nested Designs
6.4: Special Case - Fully Nested Random Effects Design
6.5: Quality Control Example

6.5.1: Using Minitab
6.5.2: Using R

6.6: Introduction to Mixed Models
6.7: Mixed Model Example

6.7.1: Using Minitab
6.7.2: Using SAS
6.7.3: Using R

6.8: Complexity Happens
6.9: Try It!
6.10: Chapter 6 Summary

This page titled 6: Random Effects and Introduction to Mixed Models is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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6.1: Random Effects
When a treatment (or factor) is a random effect, the model specifications together with relevant null and alternative hypotheses will
have to be changed. Recall the cell means model defined in Chapter 4 for the fixed effect case, which has the model equation:

where  are parameters for the treatment means.

For the single factor random effects model we have:

where  and  are independent random variables such that  and . Here,  and 
, where  if balanced.

Notice that the random effects ANOVA model is similar in appearance to the fixed effects ANOVA model. However, the treatment
mean 's are constant in the fixed-effect ANOVA model, whereas in the random-effects ANOVA model the treatment mean 's
are random variables.

Note that the expected mean response, in the random effects model stated above, is the same at every treatment level and equals .

The variance of the response variable (say ) in this case can be partitioned as:

as  and  are independent random variables.

Similar to fixed effects ANOVA model, we can express the random effects ANOVA model using the factor effect representation,
using . Therefore the factor effects representation of the random effects ANOVA model would be:

where  is a constant overall mean, and  and  are independent random variables such that  and 

. Here,  and , where  if balanced. Here,  is the effect of the randomly
selected  level.

The terms  and  are referred to as variance components. In general, as will be seen later in more complex models, there will
be a variance component associated with each effect involving at least one random factor.

Variance components play an important role in analyzing random effects data. They can be used to verify the significant
contribution of each random effect to the variability of the response. For the single factor random-effects model stated above, the
appropriate null and alternative hypothesis for this purpose is:

Similar to the fixed effects model, an ANOVA analysis can then be carried out to determine if  can be rejected.

The MS and the df computations of the ANOVA table are the same for both the fixed and random-effects models. However, the
computations of the F-statistics needed for hypothesis testing require some modification.

Specifically, the F statistics denominator will no longer always be the mean squared error (MSE or MSERROR) and will vary
according to the effect of interest (listed in the Source column of the ANOVA table). For a random-effects model, the quantities
known as Expected Means Squares (EMS), shown in the ANOVA table below, can be used to identify the appropriate F-statistic
denominator for a given source in the ANOVA table. These EMS quantities will also be useful in estimating the variance
components associated with a given random effect. Note that the EMS quantities are in fact the population counterparts of the mean
sums of squares (MS) that we are already familiar with. In SAS the proc mixed , method=type3  option will generate the
EMS column in the ANOVA table output.
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Source df SS MS F P
EMS (Expected
Means Squares)

Trt

Error

Total

Variance components are NOT synonymous with mean sums of squares. Variance components are usually estimated by using
the Method of Moments where algebraic equations, created by setting the mean sums of squares (MS) equal to the EMS for the
relevant effects, are solved for the unknown variance components. For example, the variance component for the treatment in
the single-factor random effects discussed above can be solved as:

This is by using the two equations:

More about variance components...

Often the variance component of a specific effect in the model is expressed as a percent of the total variation of the variation in the
response variable.

Another common application of variance components is when researchers are interested in the relative size of the treatment effect
compared to the within-treatment level variation. This leads to a quantity called the intraclass correlation coefficient (ICC),
defined as: \[ICC = \frac{\sigma_{\text{among trts}}^{2}}{\sigma_{\text{\text{among trts}}^{2} + \sigma_{\text{within
trts}}^{2}}\]

For single random factor studies, . ICC can also be thought of as the correlation between the observations within

the group (i.e. , where . Small values of ICC indicate a large spread of values at each level of the treatment,
whereas large values of ICC indicate relatively little spread at each level of the treatment:

Figure : Dot plots for data sets with low and high ICC values.

This page titled 6.1: Random Effects is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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6.2: Battery Life Example
Consider a study of Battery Life, measured in hours, where 4 brands of batteries are evaluated using 4 replications in a completely
randomized design (Battery Data):

Brand A Brand B Brand C Brand D

110 118 108 117

113 116 107 112

108 112 112 115

115 117 108 119

A reasonable question to ask in this study would be, should the brand of the battery be considered a fixed effect or a random effect?

If the researchers were interested in comparing the performance of the specific brands they chose for the study, then we have a
fixed effect.

But if the researchers were actually interested in studying the overall variation in battery life, so that the results would be applicable
to all brands of batteries, then they may have chosen (presumably with a random sampling process) a sample of 4 of the many
brands available and tested 4 batteries of each of these brands. In this latter case, the battery brand would add a dimension of
variability to battery life and can be considered a random effect.

Now, let us use SAS proc mixed;  to compare the results of battery brand as a fixed vs. random effect:

A. Fixed Effect model:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

Error Term Error DF F Value Pr > F

Brand 3 141.687500 47.229167
Var(Residua
l) +
Q(Brand)

MS(Residua
l)

12 6.21 0.0086

Residual 12 91.250000 7.604167
Var(Residua
l)

. . . .

B. Random Effect model:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

Error Term Error DF F Value Pr > F

Brand 3 141.687500 47.229167
Var(Residua
l) + 4
Var(Brand)

MS(Residua
l)

12 6.21 0.0086

Residual 12 91.250000 7.604167
Var(Residua
l)

. . . .

Covariance Parameter Estimates

Cov Parm Estimate

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33659?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/06%3A_Random_Effects_and_Introduction_to_Mixed_Models/6.02%3A_Battery_Life_Example
https://online.stat.psu.edu/onlinecourses/sites/stat502/files/lesson06/battery_data.txt


6.2.2 https://stats.libretexts.org/@go/page/33659

Covariance Parameter Estimates

Cov Parm Estimate

Brand 9.9063

Residual 7.6042

We can verify the estimated variance component (arrow above) for the random treatment effect as:

With this, we can calculate the ICC as

The key points in comparing these two ANOVAs are 1) the scope of inference and 2) the hypothesis being tested. For a fixed effect,
the scope of inference is restricted to only 4 brands chosen for comparison and the Null hypothesis is a statement of equality of
means. In contrast, as a random effect, the scope of inference is the larger population of battery brands and the Null hypothesis is a
statement that the variance due to battery brand is 0.

Using R

Load the battery life data.
Obtain the ANOVA for a single random effect.

Show Detailed Steps

1. Load the battery life data by using the following commands:

setwd("~/path-to-folder/") 

battery_data <- read.table("battery_data.txt",header=T) 

attach(battery_data) 

2. Obtain the ANOVA for a single random effect by using the following commands:

library(lmerTest) 

library(lme4) 

battery_anova<-lmer(lifetime ~ (1 | trt),battery_data) 

summary(battery_anova) 

Linear mixed model fit by REML. t-tests use Satterthwaites method ['lmerModLmerT

Formula: lifetime ~ (1 | trt) 

   Data: battery_data 

REML criterion at convergence: 81.3 

#Scaled residuals: 

#     Min       1Q   Median       3Q      Max 

#-1.35317 -0.69070  0.07355  0.69665  1.34279 

#Random effects: 

# Groups   Name        Variance Std.Dev. 

# trt      (Intercept) 9.906    3.147    

# Residual             7.604    2.758    

#Number of obs: 16, groups:  trt, 4 

= = = 9.9063s

2

among trts

M −MS

trt

S

error

n

47.229 −7.604

4

(6.2.1)

ICC = = 0.5657

9.9063

9.9063 +7.604

(6.2.2)

 R: Single Random Effect
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Note that the command lmer()  gives the ANOVA table only for the fixed effects. Therefore, in this example, since
there are no fixed effects, we won’t get the ANOVA table. In the "Random effects" section of the output, under the column
variance we get the estimates for  and , which are equal to 9.906 and 7.604 respectively. In the "Fixed effects" section
under the column estimate, we get the estimate of , or the overall mean, which is equal to 112.938. With the command 
confint()  we will get confidence intervals for the standard deviations and the overall mean. If you take the square of

the lower and upper bounds, you will get a confidence interval for the model variances.

Alternatively, we can use the command aov()  which gives a partial ANOVA table.

battery_anova1<-aov(lifetime~Error(trt),battery_data) 

summary(battery_anova1) 

#Error: trt 

#          Df Sum Sq Mean Sq F value Pr(>F) 

#Residuals  3  141.7   47.23                

#Error: Within 

#          Df Sum Sq Mean Sq F value Pr(>F) 

#Residuals 12  91.25   7.604    

detach(battery_data) 

Note that both of these commands in R don't give the -values and -values for the tests. Therefore, these must be done
manually.

This page titled 6.2: Battery Life Example is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.

#Fixed effects: 

#            Estimate Std. Error      df t value Pr(>|t|)     

#(Intercept)  112.938      1.718   3.000   65.73 7.76e-06 *** 

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

#confint(battery_anova) 

#                  2.5 %     97.5 % 

#.sig01        0.6530752   7.166913 

#.sigma        1.9371621   4.374014 

#(Intercept) 109.1585596 116.716437 

σ

2

α

σ

2

mu

F p
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6.3: Random Effects in Factorial and Nested Designs
Random effects can appear in both factorial and nested designs. By inspecting the EMS quantities, we can determine the
appropriate -statistic denominator for a given source. Let us look at two-factor studies.

Factorial Design
Recall the Greenhouse example in section 5.1.1. In this example, there were two crossed factors (fert and species). We treated both
factors as fixed and the SAS proc mixed  ANOVA table was as follows:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean Square
Expected
Mean Square

Error Term Error DF F Value Pr > F

fert 3 745.437500 248.479167

Var(Residua
l) +
Q(fert,fert*s
pecies)

MS(Residua
l)

40 73.10 <.0001

species 1 236.740833 236.740833

Var(Residua
l) +
Q(species,fe
rt*species)

MS(Residua
l)

40 69.65 <.0001

fert*species 3 50.584167 16.861389

Var(Residua
l) +
Q(fert*speci
es)

MS(Residua
l)

40 4.96 0.0051

Residual 40 135.970000 3.399250
Var(Residua
l)

. . . .

If we inspect the EMS quantities in the output, we see that the correct denominator for all -tests when both factors are fixed in the
2-factor crossed study is Error Mean Squares.

Now let us consider a case in which both factors A and B are random effects in the factorial design (i.e. factors A and B are
crossed, and both are random effects). The expected mean squares for each of the source of variations in the ANOVA model would
be as follows:

Source EMS

A

B

A × B

Error

Total

The -tests following from the EMS above would be:

F

F

+nb +nσ

2

σ

2

α

σ

2

αβ

+na +nσ

2

σ

2

β

σ

2

αβ

+nσ

2

σ

2

αβ

σ

2

F
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Source EMS F

A MSA / MSAB

B MSB / MSAB

A × B MSAB / MSE

Error

Total

Here we can see the ramifications of having random effects. In fixed-effects models, the denominator for the -statistics in
significance testing was the mean square error (MSE). In random-effects models, however, we may have to choose different
denominators depending on the term we are testing.

The -statistic for testing the significance of a given effect, in general, is the ratio of the two MS values with MS of the effect as
the numerator, and the denominator MS is chosen such that the -statistic equals 1 if  is true and greater than 1 if  is true.

Following this logic, we can see that when testing for the interaction effect of 2 random factors, the correct denominator is the error
mean squares. Therefore the test statistic for testing  is . However, when we are testing for the main effect of factor A,
the correct denominator would be .

Recall that the EMS quantities are the population counterparts for the MS values which actually are sample statistics. Examination
of EMS expressions can therefore be used to choose the correct denominator for an -statistic utilized for testing significance and
will be discussed in detail in Section 6.7.

Nested Design

In the case of a nested design, where factor B is nested within the levels of factor A and both are random effects, the expected mean
squares for each of the source of variations in the ANOVA model would be as follows:

Source EMS

A

B(A)

Error

Total

The -tests follow from the EMS above:

Source EMS F

A MSA / MSB(A)

B(A) MSB(A) / MSE

Error

Total

Using R

+nb +nσ

2

σ

2

α

σ

2

αβ

+na +nσ

2

σ

2

β

σ

2

αβ

+nσ

2

σ

2

αβ

σ

2

F

F

F H

0

H

a

A×B

MSAB

MSE

MSAB

F

+ bn +nσ

2

σ

2

α

σ

2

β

+nσ

2

σ

2

β

σ

2
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2

σ

2
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σ
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2

σ
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Load the greenhouse data.
Obtain the ANOVA for two random effects with interaction.

Show Detailed Steps

1. Load the greenhouse data by using the following commands:

setwd("~/path-to-folder/") 

greenhouse_2way_data <-read.table("greenhouse_2way_data.txt",header=T) 

attach(greenhouse_2way_data) 

2. Obtain the ANOVA for two random effects with interaction by using the following commands:

library(lmerTest) 

library(lme4) 

greenhouse_anova<-lmer(height ~ (1 | fertilizer) + (1 | species) + (1 | fertiliz

summary(greenhouse_anova) 

 

Linear mixed model fit by REML. t-tests use Satterthwaites method ['lmerModLmerT

Formula: height ~ (1 | fertilizer) + (1 | species) + (1 | fertilizer:species) 

    Data: greenhouse_2way_data 

     

REML criterion at convergence: 216.7 

#Scaled residuals: 

#     Min        1Q   Median       3Q      Max 

#-2.46787  -0.38510  0.03012  0.38780  2.63056 

 

#Random effects: 

# Groups              Name       Variance  Std.Dev. 

# fertilizer:species (Intercept)    2.244  1.498 

# fertilizer         (Intercept)   19.301  4.393 

# species            (Intercept)    9.162  3.027 

# Residual                          3.399  1.844 

# Number of obs: 48, groups: fertilizer:species, 8; fertilizer, 4; species, 2 

 

#Fixed effects: 

#            Estimate Std.  Error     df t value Pr(>|t|) 

#(Intercept)     28.387     3.124  2.859 9.088 0.0034 ** 

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

confint(greenhouse_anova) 

#                2.5 %     97.5 % 

#.sig01      0.4327681   5.482701 

#.sig02      0.0000000  10.319191 

#.sig03      0.0000000  11.585745 

#.sigma      1.5031328   2.335330 

#(Intercept) 21.1262902 35.648887 

 Greenhouse Data - Two Random Effects with Interaction
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Note that the command lmer()  gives the ANOVA table only for the fixed effects. Therefore, in this example, since
there are no fixed effects, we won’t get the ANOVA table. In the "Random effects" section of the output, under the column
variance we get the estimates for , , , and  which are equal to 2.244, 19.301, 9.162, and 3.399 respectively. In
the "Fixed effects" section under the column estimate we get the estimate of , or the overall mean, which is equal to
28.387.

With the command confint()  we will get confidence intervals for the standard deviations and the overall mean. If
you take the square of the lower and upper bounds, you will get a confidence interval for the model variances.

Alternatively, we can use the command aov()  which gives a partial ANOVA table.

Note that both commands in R don’t give the -values and the -values for the tests. Therefore, these must be done
manually.

This page titled 6.3: Random Effects in Factorial and Nested Designs is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics.

greenhouse_anova1<-aov(height~Error(fertilizer+species+fertilizer:species),green

summary(greenhouse_anova1) 

#Error: fertilizer 

#          Df  Sum Sq  Mean Sq  F value  Pr(>F) 

#Residuals  3   745.4    248.5 

 

#Error: species 

#          Df  Sum Sq  Mean Sq  F value  Pr(>F) 

#Residuals  1   236.7    236.7 

 

#Error: fertilizer:species 

#          Df  Sum Sq  Mean Sq  F value  Pr(>F) 

#Residuals  3   50.58    16.86 

 

#Error: Within 

#           Df  Sum Sq  Mean Sq  F value  Pr(>F) 

#Residuals  40     136    3.399 

detach(greenhouse_2way_data) 
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6.4: Special Case - Fully Nested Random Effects Design
Here, we will consider a special case of random effects models where each factor is nested within the levels of the next "order" of a
hierarchy. This Fully Nested Random Effects model is similar to Russian Matryoshka dolls, where the smaller dolls are nested
within the next larger one.

Consider 3 random factors A, B, and C that are hierarchically nested. That is, C is nested in (B, A) combinations and B is nested
within levels of A. Suppose there are  observations made at the lowest level.

The statistical model for this case is:

where , ,  and .

We will also have , , , and .

The DFs and expected mean squares for this design would be as follows:

Source DF EMS F

A MSA / MSB(A)

B(A) MSB(A) / MSC(AB)

C(A,B) MSC(AB) / MSE

Error

Total

In this case, each -test we construct for the sources will be based on different denominators.

This page titled 6.4: Special Case - Fully Nested Random Effects Design is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Penn State's Department of Statistics.
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6.5: Quality Control Example

Example - Fully Nested Random Effects Model

The temperature of a process in a manufacturing industry is critical to quality control. The researchers want to characterize the
sources of this variability. They choose 4 plants and 4 operators within each plant, look at 4 shifts for each operator, and then
measure temperature for each of the three batches used in production.

Collected data was read into SAS and proc mixed  procedure was used to obtain the ANOVA model.

Show SAS Code

data fullnest; 

input Temp Plant Operator Shift Batch; 

datalines; 

477    1    1    1    1 

472    1    1    1    2 

481    1    1    1    3 

478    1    1    2    1 

475    1    1    2    2 

474    1    1    2    3 

472    1    1    3    1 

475    1    1    3    2 

468    1    1    3    3 

482    1    1    4    1 

477    1    1    4    2 

474    1    1    4    3 

471    1    2    1    1 

474    1    2    1    2 

470    1    2    1    3 

479    1    2    2    1 

482    1    2    2    2 

477    1    2    2    3 

470    1    2    3    1 

477    1    2    3    2 

483    1    2    3    3 

480    1    2    4    1 

473    1    2    4    2 

478    1    2    4    3 

475    1    3    1    1 

472    1    3    1    2 

470    1    3    1    3 

460    1    3    2    1 

469    1    3    2    2 

472    1    3    2    3 

477    1    3    3    1 

483    1    3    3    2 

475    1    3    3    3 

476    1    3    4    1 
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480    1    3    4    2 

471    1    3    4    3 

465    1    4    1    1 

464    1    4    1    2 

471    1    4    1    3 

477    1    4    2    1 

475    1    4    2    2 

471    1    4    2    3 

481    1    4    3    1 

477    1    4    3    2 

475    1    4    3    3 

470    1    4    4    1 

475    1    4    4    2 

474    1    4    4    3 

484    2    1    1    1 

477    2    1    1    2 

481    2    1    1    3 

477    2    1    2    1 

482    2    1    2    2 

481    2    1    2    3 

479    2    1    3    1 

477    2    1    3    2 

482    2    1    3    3 

477    2    1    4    1 

470    2    1    4    2 

479    2    1    4    3 

472    2    2    1    1 

475    2    2    1    2 

475    2    2    1    3 

472    2    2    2    1 

475    2    2    2    2 

470    2    2    2    3 

472    2    2    3    1 

477    2    2    3    2 

475    2    2    3    3 

482    2    2    4    1 

477    2    2    4    2 

483    2    2    4    3 

485    2    3    1    1 

481    2    3    1    2 

477    2    3    1    3 

482    2    3    2    1 

483    2    3    2    2 

485    2    3    2    3 

477    2    3    3    1 

476    2    3    3    2 

481    2    3    3    3 
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479    2    3    4    1 

476    2    3    4    2 

485    2    3    4    3 

477    2    4    1    1 

475    2    4    1    2 

476    2    4    1    3 

476    2    4    2    1 

471    2    4    2    2 

472    2    4    2    3 

475    2    4    3    1 

475    2    4    3    2 

472    2    4    3    3 

481    2    4    4    1 

470    2    4    4    2 

472    2    4    4    3 

475    3    1    1    1 

470    3    1    1    2 

469    3    1    1    3 

477    3    1    2    1 

471    3    1    2    2 

474    3    1    2    3 

469    3    1    3    1 

473    3    1    3    2 

468    3    1    3    3 

477    3    1    4    1 

475    3    1    4    2 

473    3    1    4    3 

470    3    2    1    1 

466    3    2    1    2 

468    3    2    1    3 

471    3    2    2    1 

473    3    2    2    2 

476    3    2    2    3 

478    3    2    3    1 

480    3    2    3    2 

474    3    2    3    3 

477    3    2    4    1 

471    3    2    4    2 

469    3    2    4    3 

466    3    3    1    1 

465    3    3    1    2 

471    3    3    1    3 

473    3    3    2    1 

475    3    3    2    2 

478    3    3    2    3 

471    3    3    3    1 

469    3    3    3    2 
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471    3    3    3    3 

475    3    3    4    1 

477    3    3    4    2 

472    3    3    4    3 

469    3    4    1    1 

471    3    4    1    2 

468    3    4    1    3 

473    3    4    2    1 

475    3    4    2    2 

473    3    4    2    3 

477    3    4    3    1 

470    3    4    3    2 

469    3    4    3    3 

463    3    4    4    1 

471    3    4    4    2 

469    3    4    4    3 

484    4    1    1    1 

477    4    1    1    2 

480    4    1    1    3 

476    4    1    2    1 

475    4    1    2    2 

474    4    1    2    3 

475    4    1    3    1 

470    4    1    3    2 

469    4    1    3    3 

481    4    1    4    1 

476    4    1    4    2 

472    4    1    4    3 

469    4    2    1    1 

475    4    2    1    2 

479    4    2    1    3 

482    4    2    2    1 

483    4    2    2    2 

479    4    2    2    3 

477    4    2    3    1 

479    4    2    3    2 

475    4    2    3    3 

472    4    2    4    1 

476    4    2    4    2 

479    4    2    4    3 

470    4    3    1    1 

481    4    3    1    2 

481    4    3    1    3 

475    4    3    2    1 

470    4    3    2    2 

475    4    3    2    3 

469    4    3    3    1 
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477    4    3    3    2 

482    4    3    3    3 

485    4    3    4    1 

479    4    3    4    2 

474    4    3    4    3 

469    4    4    1    1 

473    4    4    1    2 

475    4    4    1    3 

477    4    4    2    1 

473    4    4    2    2 

471    4    4    2    3 

470    4    4    3    1 

468    4    4    3    2 

474    4    4    3    3 

483    4    4    4    1 

477    4    4    4    2 

476    4    4    4    3 

; 

proc mixed data=fullnest covtest method=type3; 

class Plant Operator Shift Batch; 

model temp=; 

random plant operator(plant) shift(plant operator) ; 

run; 

In the SAS code, notice that there are no terms on the right-hand side of the model statement. This is because SAS uses the model
statement to specify fixed effects only. The random statement is used to specify the random effects. The proc mixed
procedure will perform the fully nested random effects model as specified above, and produces the following output:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean Square
Expected
Mean Square

Error Term Error DF F Value Pr > F

Plant 3 731.515625 243.838542

Var(Residua
l) + 3
Var(Shift(Pl
ant*Operato
)) + 12
Var(Operato
r(Plant)) +
48
Var(Plant)

MS(Operato
r(Plant))

12 5.85 0.0106

Operator(Pla
nt)

12 499.812500 41.651042

Var(Residua
l) + 3
Var(Shift(Pl
ant*Operato
)) + 12
Var(Operato
r(Plant))

MS(Shift(Pl
ant*Operato
))

48 1.30 0.2483
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Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean Square
Expected
Mean Square

Error Term Error DF F Value Pr > F

Shift(Plant*
Operato)

48
1534.91666

7
31.977431

Var(Residua
l) + 3
Var(Shift(Pl
ant*Operato
))

MS(Residua
l)

128 2.58 <.0001

Residual 128
1588.00000

0
12.406250

Var(Residua
l)

. . . .

Covariance Parameter Estimates

Cov Parm Estimate
Standard 

Error
Z Value Pr Z

Plant 4.2122 4.1629 1.01 0.3116

Operator(Plant) 0.8061 1.5178 0.53 0.5953

Shift(Plant*Operato) 6.5237 2.2364 2.92 0.0035

Residual 12.4063 1.5508 8.00 <.0001

The largest (and significant) variance components are: (1) the shift within a plant × operator combination and (2) the batch-to-batch
variation within the shift (the residual).

Note that the Covariance Parameter Estimates here are in fact the variance components. SAS does not express the variance
components as percentages in this procedure, but by summing the variance components for all sources to serve as the denominator,
each source can be expressed as a percentage.

Because this type of model is so commonly employed, SAS also offers two other procedures to obtain the variance components
results: proc varcomp  (which stands for variance components) and proc nested .

The equivalent code for these procedures is as follows:

The proc varcomp :

proc varcomp data=fullnest; 

class Plant Operator Shift Batch; 

model temp= plant operator(plant) shift(plant operator); 

run; 

Note that the model statement for proc varcomp  differs from the mixed procedure, in that proc varcomp  assumes that
the factors listed in the model statement are random effects.

Partial Output:

MIVQUE(0) Estimates

Variance Component Temp

Var(Plant) 4.21224

Var(Operator(Plant)) 0.80613

Var(Shift(Plant*Operato)) 6.52373
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MIVQUE(0) Estimates

Variance Component Temp

Var(Error) 12.40625

Note that, even in this procedure we will have to use the sum for a total and calculate the percentages ourselves.

The proc nested

On the other hand, the proc nested  procedure will provide the full output including the percentages:

proc nested data=fullnest; 

class plant operator shift; 

var temp; 

run; 

Partial Output:

Nested Random Effects Analysis of Variance for Variable Temp

Variance
Source

DF
Sum of
Squares

F Value Pr > F Error Term Mean Square
Variance
Component

Percent of
Total

Total 191
4354.24479

2
  22.797093 23.948351 100.0000

Plant 3 731.515625 5.85 0.0106 Operator 243.838542 4.212240 17.5889

Operator 12 499.812500 1.30 0.2483 Shift 41.651042 0.806134 3.3661

Shift 48
1534.91666

7
2.58 <.0001 Error 31.977431 6.523727 27.2408

Error 128
1588.00000

0
  12.406250 12.406250 51.8042

Calculation of the Variance Components
From the SAS output, we get the EMS coefficients. We can use those to compute the estimated variance components.

Source MS EMS Variance Components % Variation

Plant 243.84 4.21 17.58

Operator(Plant) 41.65 0.806 3.37

Shift(Plant × Operator) 31.98 6.52 27.24

Residual 12.41 12.41 51.80

Total 23.95

One can show that MS is an unbiased estimator for EMS (using the properties of Method of Moments estimates). With that, we can
algebraically solve for each variance component. Start at the bottom of the table and work up the hierarchy.

First of all, the estimated variance component for the Residuals is given:

Then we can use this information and subtract it from the Shift(Plant × Operator) MS to get:
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Similarly, we use what we know for Error and Shift(Plant × Operator) and subtract it from the Operator(Plant) MS to get:

Our total = 12.41 + 6.52 + 0.806 + 4.21 = 23.95

Then, dividing each variance component by the total (in this case 23.95) gives the % values shown in the output from SAS 
proc nested .

This page titled 6.5: Quality Control Example is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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6.5.1: Using Minitab
Minitab has a separate program just for this type of analysis for our example (Quality Data ), under:

Stat > ANOVA > Fully Nested ANOVA

and you specify the model in the boxes provided:

Figure : Fully Nested ANOVA pop-up window.

The output you get is very comprehensive and includes the variance components expressed as percentages.

Nested ANOVA: Temp versus Plant, Operator, Shift

Analysis of Variance for Temp
Source DF SS MS F P

Plant 3 731.5156 243.8385 5.854 0.011

Operator 12 499.8125 41.6510 1.303 0.248

Shift 48 1534.9167 31.9774 2.578 0.000

Error 128 1588.0000 12.4062   

Total 191 4354.2448    

Variance Components
Source Var Comp. # of Total StDev

Plant 4.212 17.59 2.052

Operator 0.806 3.37 0.898

Shift 6.524 27.24 2.554

Error 12.406 51.80 3.522

Total 23.948  4.894

Expected Mean Squares
1 Plant 1.00(4) + 3.00(3) + 12.00(2) + 48.00(1)

2 Operator 1.00(4) + 3.00(3) + 12.00(2)

6.5.1.1
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3 Shift 1.00(4) + 3.00(3)

4 Error 1.00(4)

This page titled 6.5.1: Using Minitab is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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6.5.2: Using R

R Fully Nested Random Effects Model
Load the data.
Obtain the ANOVA for the fully nested random effects.

1. Load the data by using the following commands:

setwd("~/path-to-folder/") 

fullnest_data <- read.table("fullnest_data.txt",header=T) 

attach(fullnest_data) 

2. Obtain the ANOVA for the fully nested random effects by using the following commands:

library(lmerTest) 

library(lme4) 

random_fullnest<-lmer(Temp ~ (1 | Plant) + (1 | Plant:Operator) + 

(1 | Plant:(Operator:Shift)) ,fullnest_data) 

summary(random_fullnest) 

Linear mixed model fit by REML. t-tests use Satterthwaites method ['lmerModLmerTest'] 

Formula: Temp ~ (1 | Plant) + (1 | Plant:Operator) + (1 | Plant:(Operator:Shift)) 

   Data: fullnest_data 

REML criterion at convergence: 1097.2 

 

#Scaled residuals: 

#     Min       1Q   Median       3Q      Max 

#-2.78620 -0.61163  0.00414  0.56721  1.99397 

 

#Random effects: 

# Groups                 Name        Variance Std.Dev. 

# Plant:(Operator:Shift) (Intercept)  6.5237  2.5542   

# Plant:Operator         (Intercept)  0.8061  0.8979   

# Plant                  (Intercept)  4.2123  2.0524   

# Residual                           12.4063  3.5223   

# Number of obs: 192, groups:  Plant:(Operator:Shift), 64; Plant:Operator, 16; Plant, 

 

#Fixed effects: 

#            Estimate Std. Error      df t value Pr(>|t|)     

#(Intercept)  474.880      1.127   3.000   421.4 2.95e-08 *** 

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

confint(random_fullnest) 

 

 #                2.5 %     97.5 % 

#.sig01        1.7251242   3.487550 

#.sig02        0.0000000   2.475048 

#.sig03        0.1192372   4.695585 
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Note that the command lmer()  gives the ANOVA table only for the fixed effects. Therefore, in this example, since there are no
fixed effects, we won’t get the ANOVA table. In the "Random effects" section of the output, under the column variance, we get the
estimates for , , , and  which are equal to 6.5237, 0.8061, 4.2123, and 12.4063 respectively. In the "Fixed effects" section
under the column estimate, we get the estimate of  for the overall mean, which is equal to 474.880.

With the command confint()  we will get confidence intervals for the standard deviations and the overall mean. If you take
the square of the lower and upper bounds, you will get a confidence interval for the model variances.

Alternatively, we can use the command aov() which gives a partial ANOVA table.

Note that both commands in R don’t give the -values and the -values for the tests. Therefore, these must be done manually.

This page titled 6.5.2: Using R is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
Statistics.

#.sigma        3.1311707   4.002066 

#(Intercept) 472.4015615 477.358858 

random_fullnest1<-aov(Temp ~ Error(factor(Plant) + factor(Plant)/factor(Operator) + fa

summary(random_fullnest1) 

 

#Error: factor(Plant) 

#          Df Sum Sq Mean Sq F value Pr(>F) 

#Residuals  3  731.5   243.8                

 

#Error: factor(Plant):factor(Operator) 

#          Df Sum Sq Mean Sq F value Pr(>F) 

#Residuals 12  499.8   41.65                

 

#Error: factor(Plant):factor(Operator):factor(Shift) 

#          Df Sum Sq Mean Sq F value Pr(>F) 

#Residuals 48   1535   31.98                

 

#Error: Within 

#            Df Sum Sq Mean Sq F value Pr(>F) 

# Residuals 128   1588   12.41                

detach(fullnest_data) 
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6.6: Introduction to Mixed Models
Treatment designs can comprise both fixed and random effects. When we have this situation the treatment design is referred to as a
mixed model. Mixed models are by far the most commonly encountered treatment designs. The three situations we now have are
often referred to as Model I (fixed effects only), Model II (random effects only), and Model III (mixed) ANOVAs. In designating
the effects of a mixed model as mixed or random, the following rule will be useful.

Rule! Any interaction or nested effect containing at least one random factor is random.

Below are the ANOVA layouts of two basic mixed models with two factors.

Factorial
In the simplest case of a balanced mixed model, we may have two factors, A and B, in a factorial design in which factor A is a
fixed effect and factor B is a random effect.

The statistical model is similar to what we have seen before:

where , , and .

Here, , , ,  and . Also, , , and 

are pairwise independent.

In this case, we have the following ANOVA.

Source DF EMS

A

B

A × B

Error

Total  

The -tests are set up based on the EMS column above and we can see that we have to use different denominators in testing
significance for the various sources in the ANOVA table:

Source EMS F

A MSA / MSAB

B MSB / MSE

A × B MSAB / MSE

Error  

Total   

As a reminder, the null hypothesis for a fixed effect is that the 's are equal, whereas the null hypothesis for the random effect is
that the 's are equal to zero.
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The denominator for the -test for the main effect of factor A is now the MS for the A × B interaction. For Factor B and the A
× B interaction, the denominator is the MSE.

Nested
In the case of a balanced nested treatment design, where A is a fixed effect and B(A) is a random effect, the statistical model would
be:

where , , and .

Here, , , and .

We have the following ANOVA for this model:

Source DF EMS

A

B(A)

Error

Total  

Here is the same table with the -statistics added. Note that the denominators for the -test are different.

Source EMS F

A MSA / MSB(A)

B(A) MSB(A) / MSE

Error  

Total   

-Calculation Facts

As can be seen from the examples above and also from sections 6.3-6.6, when significance testing in random or mixed models, the
denominator of the -statistic is no more the MSE value and has to be aptly chosen. Recall that the -statistic for testing the
significance of a given effect is the ratio with the numerator equal to the MS value of the effect, and the denominator is also an MS
value of an effect included in the ANOVA model. Furthermore, the -statistic has a non-central distribution when  is true and a
central -distribution when  is true.

The non-centrality parameter of the non-central F distribution when  is true depends on the type of effect (fixed vs random), and
equals \sum_{i=1}^{T} \alpha_{i}^{2}\) for a fixed effect and  for a random effect. Here , where 

 is the  level of the fixed effect and  is the overall mean while  is the variance component associated
with the random effect. Also, MS under true  equals to MS under true  plus non-centrality parameter, so that

The above identity can be used to identify the correct denominator (also called the error term) with the aid of EMS expressions
displayed in the ANOVA table.
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Rule! The -statistic denominator is the MS value of the source which has an EMS containing all EMS terms in the effect
except the non-centrality parameter.

This page titled 6.6: Introduction to Mixed Models is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics.
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6.7: Mixed Model Example
Consider the experimental setting in which the investigators are interested in comparing the classroom self-ratings of teachers.
They created a tool that can be used to self-rate the classrooms. The investigators are interested in comparing the Eastern vs.
Western US regions, and the type of school (Public vs. Private). Investigators chose 2 teachers randomly from each combination
and each teacher submits scores from 2 classes that they teach.

You can download the data at Schools Data.

If we carefully disseminate the information in the setup, we see that the US region makes sense as a fixed effect, and so does the
type of school. However, the investigators are probably not interested in testing for significant differences among individual
teachers they recruited for the study; more realistically, they would be interested in how much variation there is among teachers (a
random effect).

For this example, we can use a mixed model in which we model teacher as a random effect nested within the factorial fixed
treatment combinations of Region and School type.

This page titled 6.7: Mixed Model Example is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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6.7.1: Using Minitab
In Minitab, specifying the mixed model is a little different.

In Stat > ANOVA > General Linear Model > Fit General Linear Model

we complete the dialog box:

Figure : General Linear Model pop-up window.

We can create interaction terms under Model… by selecting "region" and "school_type" and clicking Add.

Figure : General Linear Model: Model pop-up window.

Finally, we create nested terms and effects are random under Random/Nest…:

6.7.1.1

6.7.1.2
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Figure : General Linear Model: Random Nest pop-up window.

Minitab Output for the mixed model:

Factor Information
Factor Type Levels Values

region Fixed 2 EastUS, WestUS

school_type Fixed 2 Private, Public

teacher(region school_type) Random 8

1(EastUS,Private),
2(EastUS,Private,) 

1(EastUS,Public), 2(EastUS,
Public), 

1(WestUS, Private), 2(WestUS,
Private), 

1(WestUS,Public),
2(WestUS,Public)

Analysis of Variance
Source DF Seq SS Adj SS Adj MS F-Value P-Value

region 1 564.06 564.06 564.06 24.07 0.008

school_type 1 76.56 76.56 76.56 3.27 0.145

region*school_ty
pe

1 264.06 264.06 264.06 11.27 0.028

teacher(region
schoo_type)

4 93.75 93.75 23.44 5.00 0.026

Error 8 37.50 37.50 4.69   

Total 15 1035.94     

Model Summary
S R-sq R-sq(adj) R-sq(pred)

2.16506 96.38% 93.21% 85.52%

Minitab's results are in agreement with SAS Proc Mixed .

6.7.1.3
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This page titled 6.7.1: Using Minitab is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33829?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/06%3A_Random_Effects_and_Introduction_to_Mixed_Models/6.07%3A_Mixed_Model_Example/6.7.01%3A_Using_Minitab
https://creativecommons.org/licenses/by-nc/4.0
https://science.psu.edu/stat


6.7.2.1 https://stats.libretexts.org/@go/page/33830

6.7.2: Using SAS
In SAS we would set up the ANOVA as:

proc mixed data=school covtest method=type3; 

    class Region SchoolType Teacher Class; 

    model sr_score = Region SchoolType Region*SchoolType; 

    random Teacher(Region*SchoolType); 

    store out_school; 

run; 

In SAS proc mixed , we see that the fixed effects appear in the model statement, and the nested random effect appears in the
random statement.

We get the following partial output:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean Square
Expected
Mean Square

Error Term Error DF F Value Pr > F

Region 1 564.062500 564.062500

Var(Residua
l) + 2
Var(Teach(R
egion*Scho
ol)) +
Q(Region,R
egion*Scho
olType)

MS(Teach(R
egion*Scho
ol))

4 24.07 0.0080

SchoolType 1 76.562500 76.562500

Var(Residua
l) + 2
Var(Teach(R
egion*Scho
ol)) +
Q(SchoolTy
pe,Region*S
choolType)

MS(Teach(R
egion*Scho
ol))

4 3.27 0.1450

Region*Sch
oolType

1 264.062500 264.062500

Var(Residua
l) + 2
Var(Teach(R
egion*Scho
ol)) +
Q(Region*S
choolType)

MS(Teach(R
egion*Scho
ol))

4 11.27 0.0284

Teach(Regio
n*School)

4 93.750000 23.437500

Var(Residua
l) + 2
Var(Teach(R
egion*Scho
ol))

MS(Residua
l)

8 5.00 0.0257

Residual 8 37.500000 4.687500
Var(Residua
l)

. . . .
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The results for hypothesis tests for the fixed effects appear as:

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

Region 1 4 24.07 0.0080

SchoolType 1 4 3.27 0.1450

Region*SchoolType 1 4 11.27 0.0284

Given that the Region*SchoolType interaction is significant, the PLM  procedure along with the lsmeans  statement can be
used to generate the Tukey mean comparisons and produce the groupings chart and the plots to identify what means differ
significantly.

ods graphics on; 

proc plm restore=out_school; 

lsmeans Region*SchoolType / adjust=tukey plot=meanplot cl lines; 

run; 

Figure : Plot of score LS-means for Region*SchoolType, with 95%
confidence limits.

Differences of Region*SchoolType Least Squares Means 
Adjustment for Multiple Comparisons: Tukey
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Differences of Region*SchoolType Least Squares Means 
Adjustment for Multiple Comparisons: Tukey
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Figure : Diffogram of score comparisons for
Region*SchoolType.

Figure : Score Tukey grouping for LS-means of
Region*SchoolType.

From the results, it is clear that the mean self-rating scores are highest for the public school in the west region. The difference mean
scores for public schools in the west region is significantly different from the mean scores for public schools in the east region as
well as the mean scores for private schools in the east region.

The covtest  option produces the results needed to test the significance of the random effect, Teach(Region*SchoolType) in
terms of the following null and alternative hypothesis:

However, as the following display shows, covtest  option uses the Wald Z test, which is based on the -score of the sample
statistic and hence is appropriate only for large samples—specifically, when the number of random effect levels is sufficiently
large. Otherwise, this test may not be reliable.

Covariance Parameter Estimates

6.7.2.2

6.7.2.3
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Cov Parm Estimate
Standard 

Error
Z Value Pr Z

Covariance Parameter Estimates

Cov Parm Estimate
Standard 

Error
Z Value Pr Z

Teach(Region*School) 9.3750 8.3689 1.12 0.2626

Residual 4.6875 2.3438 2.00 0.0228

Therefore, in this case, as the number of teachers employed is few, Wald's test may not be valid. It is more appropriate to use the
ANOVA -test for Teacher(Region*SchoolType). Note that the results from the ANOVA table suggest that the effects of the
teacher within the region and school type are significant (Pr > F = 0.0257), whereas the results based on Wald's test suggest
otherwise (since the -value is 0.2626).

This page titled 6.7.2: Using SAS is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department
of Statistics.
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6.7.3: Using R

R - Mixed Effects Models
Load the schools data.
Obtain the ANOVA for the mixed effects model.
Obtain estimators and CIs for means for each combination of region and school type.
Obtain a means plot for each combination of region and school type.
Obtain Tukey’s multiple comparisons CIs.

1. Load the schools data by using the following commands:

setwd("~/path-to-folder/") 

schools_data <- read.table("schools_data.txt",header=T) 

attach(schools_data) 

2. Obtain the ANOVA for the mixed effects model by using the following commands:

Note that the command lmer() gives the ANOVA table only for the fixed effects. Therefore, in this example, since there are fixed
effects, we get the ANOVA table with their  values and -values.

In the "Random effects" section of the output, under the column variance, we get the estimates for  and  which are equal to
9.375 and 4.687 respectively.

Alternatively, we can use the command aov()  which gives a partial ANOVA table.

library(lmerTest) 

library(lme4) 

mixed_schools<-lmer(SR_score ~ region + school_type + region:school_type + (1 | teache

summary(mixed_schools) # Partial output 

#Random effects: 

# Groups                       Name        Variance Std.Dev. 

# (region:school_type):teacher (Intercept) 9.375    3.062    

# Residual                                 4.687    2.165    

# Number of obs: 16, groups:  (region:school_type):teacher, 8 

anova(mixed_schools) 

#Type III Analysis of Variance Table with Satterthwaites method 

#                    Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)    

#region             112.812 112.812     1     4 24.0667 0.008011 ** 

#school_type         15.312  15.312     1     4  3.2667 0.144986    

#region:school_type  52.812  52.812     1     4 11.2667 0.028395 * 

#--- 

# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

mixed_schools1<-aov(SR_score ~ region + school_type + region*school_type + Error((regi

summary(mixed_schools1) 

#Error: region 

#       Df Sum Sq Mean Sq 

#region  1  564.1   564.1 

#Error: school_type 

#            Df Sum Sq Mean Sq 

F p

σ

2

γ

σ

2
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3. Obtain estimators, CIs , and multiple comparisons CIs for means for each combination of region and school type by using the
following commands:

4. Obtain means plot for each combination of region and school type by using the following commands:

#school_type  1  76.56   76.56 

#Error: region:school_type 

#                   Df Sum Sq Mean Sq 

#region:school_type  1  264.1   264.1 

#Error: region:school_type:teacher 

#          Df Sum Sq Mean Sq F value Pr(>F) 

#Residuals  4  93.75   23.44                

#Error: Within 

#          Df Sum Sq Mean Sq F value Pr(>F) 

#Residuals  8   37.5   4.688                

library(emmeans) 

pairwise_conf_intervals<-emmeans(mixed_schools,list(pairwise~region:school_type),adjus

CI<-confint(pairwise_conf_intervals) 

$`emmeans of region, school_type` 

# region school_type emmean   SE df lower.CL upper.CL 

# EastUS Private       85.8 2.42  4     79.0     92.5 

# WestUS Private       89.5 2.42  4     82.8     96.2 

# EastUS Public        73.2 2.42  4     66.5     80.0 

# WestUS Public        93.2 2.42  4     86.5    100.0 

#Degrees-of-freedom method: kenward-roger 

#Confidence level used: 0.95 

$`pairwise differences of region, school_type` 

# 1                               estimate   SE df lower.CL upper.CL 

# EastUS Private - WestUS Private    -3.75 3.42  4   -17.69    10.19 

# EastUS Private - EastUS Public     12.50 3.42  4    -1.44    26.44 

# EastUS Private - WestUS Public     -7.50 3.42  4   -21.44     6.44 

# WestUS Private - EastUS Public     16.25 3.42  4     2.31    30.19 

# WestUS Private - WestUS Public     -3.75 3.42  4   -17.69    10.19 

# EastUS Public - WestUS Public     -20.00 3.42  4   -33.94    -6.06 

#Degrees-of-freedom method: kenward-roger 

#Confidence level used: 0.95 

#Conf-level adjustment: tukey method for comparing a family of 4 estimates 

library(plotrix) 

region_means<-as.data.frame(CI$`emmeans of region, school_type`) 

region<-region_means$region 

school_type<-region_means$school_type 

region_school_type<-paste(region,school_type) 

plotCI(x=region_means$emmean,y=NULL,li=region_means$lower.CL,ui=region_means$upper.CL,

axis(1,at=1:4,labels=region_school_type)
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Means plot of SR score for each combination of region and school type.

Figure : SR scores mean plot for Region*SchoolType.

5. Obtain Tukey’s multiple comparisons plot by using the following commands:

Tukey’s multiple comparisons plot

Figure : Tukey comparisons differences of means plot.

This page titled 6.7.3: Using R is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
Statistics.

diff_comp<-as.data.frame(CI$`pairwise differences of region, school_type`) 

diff_reg_sch<-diff_comp[,1] 

plotCI(x=diff_comp$estimate,y=NULL,li=diff_comp$lower.CL,ui=diff_comp$upper.CL,xaxt="n

abline(h=0) 

axis(1,at=1:6,labels=diff_reg_sch,las=1,cex.axis=0.6) 

detach(schools_data)

6.7.3.1

6.7.3.2
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6.8: Complexity Happens
From what we have discussed so far, we see that even for the simplest multi-factor studies (i.e. those involving only two factors),
there are many possibilities of treatment designs generated by either factor being fixed or random, and factors being crossed or
nested.

For any of these possibilities, we can carry out the hypothesis tests using the EMS expressions to identify the correct denominator
for the relevant -statistics.

Crossed

Source d.f. A fixed, B fixed A fixed, B random A random, B random

A

B

A×B

 

Nested

Source d.f. A fixed, B fixed A fixed, B random A random, B random

A

B(A)

Error

This page titled 6.8: Complexity Happens is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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6.9: Try It!

Three teaching methods were to be compared to teach computer science in high schools. Nine different schools were chosen
randomly and each teaching method was assigned to 3 randomly chosen schools so that each school implemented only one
teaching method. The response that was used to compare the 3 teaching methods was the average score for each high school.

Show data Lesson6_1ex1

    data Lesson6_ex1; 

    input mtd school score semester $; 

    datalines; 

    1 1 68.11 Fall 

    1 1 68.11 Fall 

    1 1 68.21 Fall 

    1 1 78.11 Spring 

    1 1 78.11 Spring 

    1 1 78.19 Spring 

    1 2 59.21 Fall 

    1 2 59.13 Fall 

    1 2 59.11 Fall 

    1 2 70.18 Spring 

    1 2 70.62 Spring 

    1 2 69.11 Spring 

    1 3 64.11 Fall 

    1 3 63.11 Fall 

    1 3 63.24 Fall 

    1 3 63.21 Spring 

    1 3 64.11 Spring 

    1 3 63.11 Spring 

    2 1 84.11 Fall 

    2 1 85.21 Fall 

    2 1 85.15 Fall 

    2 1 85.11 Spring 

    2 1 83.11 Spring 

    2 1 89.21 Spring 

    2 2 93.11 Fall 

    2 2 95.21 Fall 

    2 2 96.11 Fall 

    2 2 95.11 Spring 

    2 2 97.27 Spring 

    2 2 94.11 Spring 

    2 3 90.11 Fall 

    2 3 88.19 Fall 

    2 3 89.21 Fall 

    2 3 90.11 Spring 

    2 3 90.11 Spring 

 Exercise 6.9.1
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    2 3 92.21 Spring 

    3 1 74.2 Fall 

    3 1 78.14 Fall 

    3 1 74.12 Fall 

    3 1 87.1 Spring 

    3 1 88.2 Spring 

    3 1 85.1 Spring 

    3 2 74.1 Fall 

    3 2 73.14 Fall 

    3 2 76.21 Fall 

    3 2 72.14 Spring 

    3 2 76.21 Spring 

    3 2 75.1 Spring 

    3 3 80.12 Fall 

    3 3 79.27 Fall 

    3 3 81.15 Fall 

    3 3 85.23 Spring 

    3 3 86.14 Spring 

    3 3 87.19 Spring 

    ;  

1. Using the information about the teaching method, school, and score only, the school administrators conducted a statistical
analysis to determine if the teaching method had a significant impact on student scores. Perform a statistical analysis to
confirm their conclusion.

2. If possible, perform any other additional statistical analyses.

Show Solution in SAS

1. To confirm their conclusion, a model with only the two factors, teaching method and school was used, with school nested
within the teaching method.

Input:

data Lesson6_ex1; 

    input mtd school score semester $; 

    datalines; 

    1 1 68.11 Fall 

    1 1 68.11 Fall 

    1 1 68.21 Fall 

    1 1 78.11 Spring 

    1 1 78.11 Spring 

    1 1 78.19 Spring 

    1 2 59.21 Fall 

    1 2 59.13 Fall 

    1 2 59.11 Fall 

    1 2 70.18 Spring 

    1 2 70.62 Spring 

    1 2 69.11 Spring 

    1 3 64.11 Fall 
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    1 3 63.11 Fall 

    1 3 63.24 Fall 

    1 3 63.21 Spring 

    1 3 64.11 Spring 

    1 3 63.11 Spring 

    2 1 84.11 Fall 

    2 1 85.21 Fall 

    2 1 85.15 Fall 

    2 1 85.11 Spring 

    2 1 83.11 Spring 

    2 1 89.21 Spring 

    2 2 93.11 Fall 

    2 2 95.21 Fall 

    2 2 96.11 Fall 

    2 2 95.11 Spring 

    2 2 97.27 Spring 

    2 2 94.11 Spring 

    2 3 90.11 Fall 

    2 3 88.19 Fall 

    2 3 89.21 Fall 

    2 3 90.11 Spring 

    2 3 90.11 Spring 

    2 3 92.21 Spring 

    3 1 74.2 Fall 

    3 1 78.14 Fall 

    3 1 74.12 Fall 

    3 1 87.1 Spring 

    3 1 88.2 Spring 

    3 1 85.1 Spring 

    3 2 74.1 Fall 

    3 2 73.14 Fall 

    3 2 76.21 Fall 

    3 2 72.14 Spring 

    3 2 76.21 Spring 

    3 2 75.1 Spring 

    3 3 80.12 Fall 

    3 3 79.27 Fall 

    3 3 81.15 Fall 

    3 3 85.23 Spring 

    3 3 86.14 Spring 

    3 3 87.19 Spring 

    ; 

proc mixed data=lesson6_ex1 method=type3; 

class mtd school; 

model score = mtd; 

random school(mtd); 

store results1; 
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run; 

 

proc plm restore=results1; 

lsmeans mtd / adjust=tukey plot=meanplot cl lines; 

run; 

Partial outputs:
Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

Error Term Error DF F Value Pr > F

mtd 2
4811.40095

9
2405.70048

0

Var(Residu
al) + 6
Var(school(
mtd)) +
Q(mtd)

MS(school(
mtd))

6 16.50 0.0036

school(mtd) 6 875.059744 145.843291

Var(Residu
al) + 6
Var(school(
mtd))

MS(Residu
al)

45 10.13 <.0001

Residual 45 647.972350 14.399386
Var(Residu
al)

. . . .

The -value of .0036 indicates that the scores vary significantly among the 3 teaching methods and confirms the school
administrators’ conclusion. As the teaching method was significant, the Tukey procedure was conducted to determine the
significantly different pairs among the 3 teaching methods. The results of the Tukey procedure shown below indicate that
the mean scores of teaching methods 2 and 3 are not statistically significant and that the teaching method 1 mean score is
statistically lower than the mean scores of the other two.

Figure : LS-means of mtd score Tukey
grouping.

Figure : Diffogram of score comparisons for mtd with Tukey
adjustment.

2. Using the additional code shown below, an ANOVA was conducted including semester also as a possible fixed effect.

p

6.9.a1

6.9.a2
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proc mixed data=lesson6_ex1 method=type3; 

class mtd school semester ; 

model score = mtd semester mtd*semester; 

random school(mtd) semester*school(mtd); 

store results2; 

run; 

 

proc plm restore= results2; 

lsmeans mtd semester / adjust=tukey plot=meanplot cl lines; 

run; 

The -values indicate that both these main effects are statistically significant, but not their interaction. The Tukey
procedure indicates that the significances of paired comparisons for the teaching method remain the same. Between the two
semesters, the scores are statistically higher in the spring compared to the fall.

The output writes semester*school(mtd) as school*semester(mtd), probably due to arranging effects in alphabetical
order.

Figure : Diffogram of score comparisons for mtd with Tukey adjustment.

semester Least Squares Means

semester Estimate
Standard

Error
DF t Value Pr > |t| Alpha Lower Upper

Fall 76.6370 1.8265 6 41.96 <.0001 0.05 72.1677 81.1063

Spring 81.2411 1.8265 6 44.48 <.0001 0.05 76.7718 85.7104

Show Solution in Minitab

1. Choose Stat -> ANOVA -> General Linear Model
Minitab General Linear Model pop-up window, with "score" in the Responses window and "mtd-school" in the Factors window.

Figure : Minitab General Linear Model pop-up window.

p

 Note

6.9.a2

6.9.b1
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Then, click Random/Nest:
Minitab General Linear Model window for Random/Nest, with "mtd" entered next to the factor of "school" in the Nesting table, mtd set as a fixed factor, and school set as a random factor.

Figure : General Linear Model: Random/Nest pop-up window.

Output:

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value

mtd 2 4811.4 2405.70 16.50 0.004

school(mtd) 6 875.1 145.84 10.13 0.000

Error 45 648.0 14.40

Total 53 6334.4

Conclusion
The -value of .004 indicates that mtd is statistically significant, which implies that the mean score from all 3 teaching
methods is not the same, thus confirming the school administrators’ claim. Note that in the Minitab General Linear Model,
the Tukey procedure or any other paired comparisons are not available.

2. Choose Stat -> ANOVA -> General Linear Model
Minitab General Linear Model pop-up window with "score" in the Responses window and "mtd-school semester" in the Factors window.

Figure : Minitab General Linear Model pop-up window.

Then click Random/Nest.
Minitab General Linear Model window for Random/Nest, with "mtd" entered next to "school" in the Nesting table, "mtd" and "semester" set as fixed factors, and "school" set as a random factor.

Figure : General Linear Model: Random/Nest pop-up window.

Hit OK and then click Model
Minitab GLM: Model window, with "2" selected in the Interactions through order window.

Figure : General Linear Model: Model pop-up window.

Select the effects mtd, semester, and school(mtd), and then click Add.
GLM Model window with the selected factors of "mtd", "school(mtd)", and "semester."

Figure : General Linear Model: Model pop-up window, with selected effects.

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value

mtd 2 4811.40 2405.70 16.50 0.004

semester 1 286.17 286.17 8.34 0.028

school(mtd) 6 875.06 145.84 4.25 0.051

mtd*semester 2 85.70 42.85 1.25 0.352

school(mtd)*semes
ter

6 205.85 34.31 17.58 0.000

Error 36 70.25 1.95

Total 53 6334.43

Conclusion
The -values indicate that both main effects, mtd and semester, are statistically significant, but not their interaction. Note
that in the Minitab General Linear Model procedure, paired comparisons are not available.

6.9.b2

p

6.9.b3

6.9.b4

6.9.b5

6.9.b6

p
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Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

F Value Pr > F

2
4811.40095

9
2405.70048

0

Var(Residua
l) + 6
Var(A*B) +
Q(A)

11.38 0.0224

2 29.274959 14.637480

Var(Residua
l) + 6
Var(A*B) +
18 Var(B)

0.07 0.9342

4 845.784785 211.446196
Var(Residua
l)+ 6
Var(A*B)

14.68 <.0001

Residual 45 647.972350 14.399386
Var(Residua
l)

Use the ANOVA table above to answer the following.

1. Name the fixed and random effects.
2. Complete the Source column of the ANOVA table above.
3. How many observations are included in this study?
4. How many replicates are there?
5. Write the model equation.
6. Write the hypotheses that can be tested with the expression for the appropriate -statistic.

Show Solution

1. Name the fixed and random effects.

Fixed: A with 3 levels. In the EMS column, Q(A) reveals that A is fixed and the df indicates that it has 3 levels. Note that
any factor that has a quadratic form associated with it is fixed and Q(A) is the quadratic form associated with A. This
actually equals , where  are the treatment effects; it is non-zero if the treatment means are significantly
different.

Random: B is random as indicated by the presence of Var(B), The effect of factor B is studied by sampling 3 cases (see df
value for B).

A*B is random as any effect involving a random factor is random.
The residual is also random as indicated by the presence of the Var(residual) in the EMS column.

2. Complete the Source column of the ANOVA table above.

Use the EMS column and start from the bottom row. The bottom-most has only var(*residual) and therefore the effect on
the corresponding Source is residual. The next row up has var(A*B) in the additional term indicating that the corresponding
source is A*B, etc.

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

F Value Pr > F

 Exercise 6.9.2

F

∑

3

i=1
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Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

F Value Pr > F

A 2
4811.40095

9
2405.70048

0

Var(Residu
al) + 6
Var(A*B) +
Q(A)

11.38 0.0224

B 2 29.274959 14.637480

Var(Residu
al) + 6
Var(A*B) +
18 Var(B)

0.07 0.9342

A*B 4 845.784785 211.446196
Var(Residu
al)+ 6
Var(A*B)

14.68 <.0001

Residual 45 647.972350 14.399386
Var(Residu
al)

. .

3. How many observations are included in this study?
, so .

4. How many full replicates are there?
Let =number of replicates. Then  = number of levels of A times number of levels of B times  = . Therefore, 

, which gives .

5. Write the model equation.

 where  and 
6. Write the hypotheses that can be tested with the -statistic information.

Effect A Effect B Effect A*B

Hypotheses
for at least one  
 
Note that  is the
non-centrality parameter of
the -statistics if  is true.

 Statistic with 2 and 4 degrees of
freedom

 with

2 and 4 degrees of freedom

 with 4

and 45 degrees of freedom
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6.10: Chapter 6 Summary
Random effects of an ANOVA model, represent measurements arising from a larger population and are assumed to be .
In other words, the levels or groups of the random effect that are observed can be considered as a sample from an original
population. Random effects can also be subject effects. Consequently, in public health, a random effect is referred to as the
subject-specific effect.

As all the levels of a random effect have the same mean, its significance is measured in terms of the variance with 
. Note also that any interaction effect involving at least one random effect is also a random effect.

Due to the added variability incurred by each random effect, the variance of the response now will have several components which
are called variance components. In the most basic case, with only one single factor and no fixed effects, this compound variance
of the response will be , where  is the variance component associated with the random factor. The intra-class
correlation (ICC), defined in terms of the variance components, is a useful indicator of the high or low variability within groups
(or subjects).

Mixed models, as introduced in section 6.7, include both fixed and random effects. Throughout the lesson, we learned how EMS
quantities can be used to determine the correct -test to test the hypotheses associated with the effects. EMS quantities can be
thought of as the population counterparts of the Mean sums of squares (MS), which are computable for each source in the ANOVA
table.

This page titled 6.10: Chapter 6 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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CHAPTER OVERVIEW

7: Randomization Design Part I

Upon completion of this chapter, you should be able to:

1. Understand the importance of randomization design, the second component of experimental design, and how it impacts on
our interpretation of results.

2. Identify any blocking factors and the randomization design used in a study.
3. Use statistical software to obtain the randomization design that assigns the treatment levels to the experimental units

schematically.
4. Gain experience in utilizing statistical software to analyze data obtained from a given experimental design.

Previously in the course, we have referenced how experimental design drives the statistical model to be fitted. Recall that in
Chapter 5, we discussed the two components of the experimental design that accounts for two aspects of a study.

The treatment design component, which was addressed in Chapters 5 and 6, describes the treatment levels of interest, treatment
type (fixed vs. random), and also the relationship of treatments with each other (crossed vs. nested).
The randomization design component takes into account the treatment design aspects and also the physical layout of the study
setting, including other influencing factors such as confounding (or blocking) variables.

In our discussions of treatment designs, we looked at experimental data in which there were multiple observations made at the
treatment applications. We referred to these loosely as replicates. In this lesson, we will work formally with these multiple
observations and how they are to be collected. This brings us to the right-hand side of the schematic diagram portraying the
randomization design component:

Figure : Steps of treatment design and randomization design in experimental design.

 Objectives

7.1
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As can be seen in the diagram above, the treatment design addresses specific characteristics of the experimental factors under
study. The randomization design addresses how the treatments are assigned to experimental units. Overall, the experimental design
sets the stage in collecting data systematically and also dictates the statistical model to be used and the ANOVA-related
calculations.

7.1: Experimental Unit and Replication
7.2: Completely Randomized Design
7.3: Restriction on Randomization - RCBD
7.4: Blocking in 2 Dimensions - Latin Square
7.5: Try It!
7.6: Chapter 7 Summary

This page titled 7: Randomization Design Part I is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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7.1: Experimental Unit and Replication
An experimental unit is an item (or physical entity) that receives the treatment. Identifying the experimental unit can be a trivial
task in most experiments, but there can be exceptions.

For example...

Consider a situation where the effect of polluted stream water on fish lesions is to be studied. Two aquaria, each with 50 fish,
are used for the study. The water treatment (polluted vs. control) is randomly assigned to each of the aquaria. After 30 days,
the number of lesions from randomly caught 10 fish from each aquarium was counted. The treatment design is a single-factor
design with 2 levels of water treatment, and a one-way ANOVA can be run on the data. But what is the experimental unit?

Going back to our definition, the experimental unit is the entity that receives the treatment. In this case, we have applied a water
treatment to each aquarium. The fish are not the experimental units. In order for individual fish to be experimental units, somehow
the investigators would have to take one fish at a time and apply the treatment independently to each fish. This would be
impractical from a logistics standpoint and was not done. Instead, the water treatment levels were applied to the entire aquarium,
and so the experimental unit is an aquarium with 50 fish.

Now we can determine what constitutes a replication of the experiment. Each time the full set of treatment levels (2 levels in our
example) is applied, we have a complete replication. In the experiment described here, there is only one replication, a situation
often described as an un-replicated study.

The individual fish that were caught and counted for lesions are sampling units. Sampling units are the entities from which the
observations are recorded. Traditionally, to obtain a correct ANOVA, mean values of the sampling units have to be computed for
each experimental unit before the calculation of the treatment SS. Failure to recognize sampling units can result in a serious
problem: pseudo-replication. Pseudo-replication results from treating each sampling unit as if it were an experimental unit and
inflating the error degrees of freedom. By artificially increasing the error df, we reduce the MSE and produce a larger (incorrect) 

-statistic.

This page titled 7.1: Experimental Unit and Replication is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Penn State's Department of Statistics.
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7.2: Completely Randomized Design
After identifying the experimental unit and the number of replications that will be used, the next step is to assign the treatments (i.e.
factor levels or factor level combinations) to experimental units.

In a completely randomized design, treatments are assigned to experimental units at random. This is typically done by listing the
treatments and assigning a random number to each.

In the greenhouse experiment discussed in Chapter 1, there was a single factor (fertilizer) with 4 levels (i.e. 4 treatments), six
replications, and a total of 24 experimental units (each unit a potted plant). Suppose the image below is the Greenhouse Floor plan
and bench that was used for the experiment (as viewed from above).
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Figure : Greenhouse floor plan, showing arrangement of the 24 plants.

We need to be able to randomly assign each of the treatment levels to 6 potted plants. To do this, assign physical position numbers
on the bench for placing the pots.

7.2.1
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Figure : Greenhouse floor plan, with the plant locations numbered in a grid pattern.

Using Technology

Steps in Minitab

In Minitab, this assignment can be done by manually creating two columns: one with each treatment level repeated 6 times
(order not important) and the other with a position number 1 to , where  is the total number of experimental units to be
used (i.e.  in this example). The third column will store the treatment assignment.

Figure : Entering treatments, position, and treatment assignment information in Minitab.

Next, select Calc > Sample from Columns, fill in the dialog box as seen below, and click OK.

7.2.2

 Minitab Example

N N

N = 24

7.2.a1
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Figure : Minitab Sample from Columns pop-up window.

Be sure to have the "Sample with Replacement" box unchecked so that all treatment levels will be assigned to the same
number of pots, giving rise to a proper completely randomized design for a specified number of replicates.

This will result in a completely random assignment.

7.2.a2

 Note!
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Figure : Minitab spreadsheet showing the random treatment assignment for each plant position.

This assignment can then be used to apply the treatment levels appropriately to pots on the greenhouse bench.

7.2.a3
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Figure : Plants in the greenhouse with their appropriate randomly assigned fertilizer treatment levels.

Steps in SAS

To make the assignments in SAS we can utilize the SAS surveyselect procedure as below:

proc surveyselect data=greenhouse out=trtassignment outrandom 

method=srs 

samprate=1; 

run; 

The output would be as below. In practice, it is recommended to specify a seed to ensure the results are reproducible.

7.2.a4

 SAS Example
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Obs FertilizerObs Fertilizer

1 F3

2 F2

3 Con

4 F2

5 F3

6 Con

7 F2

8 F2

9 F3

10 F1

11 F1

12 F3

13 F2

14 F1

15 F3

16 F3

17 F1

18 Con

19 Con

20 F2

21 Con

22 F1

23 Con

24 F1

Steps in R

Completely Randomized Design
To randomly assign treatment levels to each of our plants we can use the following commands:

This means that the first experimental unit will get Fertilizer 3, the second experimental unit will get Fertilizer 2, etc.

Randomized Complete Block Design

sample(treatment) 

[1] "F3"      "F2"      "F1"      "F2"      "F3"      "F1"      "Control" "F2"   

[10] "F3"      "F2"      "Control" "F3"      "F1"      "F1"      "F2"      "Cont

[19] "F1"      "Control" "F3"      "Control" "Control" "F1"      

 R Example
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Obtain the block design. Load the greenhouse data and obtain the ANOVA table.

To obtain the block design we can use the following commands:

library(blocksdesign) 

block_design<-blocks(4,6,6)$Design 

obs<-c(1:24) 

block<-block_design[,1] 

plant<-rep(c(1:4),6) 

treatment<-block_design[,3] 

data.frame(cbind(obs,block,plant,treatment)) 

#    obs block plant treatment 

# 1    1     1     1         4 

# 2    2     1     2         1 

# 3    3     1     3         3 

# 4    4     1     4         2 

# 5    5     2     1         1 

# 6    6     2     2         4 

# 7    7     2     3         3 

# 8    8     2     4         2 

# 9    9     3     1         3 

# 10  10     3     2         1 

# 11  11     3     3         4 

# 12  12     3     4         2 

# 13  13     4     1         1 

# 14  14     4     2         4 

# 15  15     4     3         2 

# 16  16     4     4         3 

# 17  17     5     1         3 

# 18  18     5     2         2 

# 19  19     5     3         1 

# 20  20     5     4         4 

# 21  21     6     1         2 

# 22  22     6     2         1 

# 23  23     6     3         4 

# 24  24     6     4         3 

To load the greenhouse data and obtain the ANOVA table ( lmer()  and aov( )) we use the following commands:

setwd("~/path-to-folder/") 

greenhouse_RCBD_data <- read.table("greenhouse_RCBD_data.txt",header=T) 

attach(greenhouse_RCBD_data) 

library(lmerTest) 

library(lme4) 

greenhouse_RCBD_anova<-lmer(Height ~ Fertilizer + (1 | factor(Block)),greenhouse_

anova(greenhouse_RCBD_anova) 

#Type III Analysis of Variance Table with Satterthwaites method 

#           Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)     
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For comparison the ANOVA table for the completely randomized design is given below:

greenhouse_CRD_anova<-aov(Height~Fertilizer,greenhouse_RCBD_data) 

summary(greenhouse_CRD_anova) 

#            Df Sum Sq Mean Sq F value   Pr(>F)     

#Fertilizer   3 251.44   83.81   27.46 2.71e-07 *** 

#Residuals   20  61.03    3.05                      

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

detach(greenhouse_RCBD_data) 

This page titled 7.2: Completely Randomized Design is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics.

#Fertilizer 251.44  83.813     3    15  162.96 1.144e-11 *** 

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

greenhouse_RCBD_anova1<-aov(Height~Fertilizer+Error(factor(Block)),greenhouse_RC

summary(greenhouse_RCBD_anova1) 

#Error: factor(Block) 

#          Df Sum Sq Mean Sq F value Pr(>F) 

#Residuals  5  53.32   10.66                

#Error: Within 

#           Df Sum Sq Mean Sq F value   Pr(>F)     

#Fertilizer  3 251.44   83.81     163 1.14e-11 *** 

#Residuals  15   7.72    0.51                      

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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7.3: Restriction on Randomization - RCBD
A completely randomized design (CRD) for the greenhouse experiment is reasonable, provided the positions on the bench are
equivalent. In reality, this is rarely the case. In this setting, for example, some micro-environmental variation can be expected due
to the glass wall on one end, and the open walkway at the other end of the bench.

A powerful alternative to the CRD is to restrict the randomization process to form blocks. Blocks, in a physical setting such as in
this example, are usually set up at right angles to suspected gradients in variation.

In a block design, general blocks are formed such that the experimental units are expected to be homogeneous within a block and
heterogeneous between blocks. The number of experimental units within a block is called its block size.

In a randomized complete block design (RCBD), each block is of the same size and is equal to the number of treatments (i.e. factor
levels or factor level combinations). Furthermore, each treatment will be randomly assigned to exactly one experimental unit within
every block. So we think of the data in the greenhouse example in terms of RCBD, we will have 6 blocks each with block size
equal to 4, the number of fertilizer levels.

To establish an RCBD for this data, the assignments of fertilizer levels to the experimental units (the potted plants) have to be done
within each block separately.

Using SAS

To obtain the block design in SAS, we can use the following code:

proc plan ordered ; 

factors Block=6 Plant=4; 

treatments Fertilizer=4 random; 

output out=rcb block 

cvals=('Block 1' 'Block 2' 'Block 3' 'Block 4' 'Block 5' 'Block 6'); 

run; 

proc format; 

value FertFmt 

1 = "F1"

2 = "F2"

3 = "F3"

4 = "Con"; 

run; 

proc print data=rcb; 

format Fertilizer FertFmt.; 

run; 

The output we obtain would be as follows:

Obs Block Plant Fertilizer

1 Block 1 1 F3

2 Block 1 2 F2

3 Block 1 3 Con

4 Block 1 4 F1

5 Block 2 1 F1

6 Block 2 2 F3
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Obs Block Plant Fertilizer

7 Block 2 3 F2

8 Block 2 4 Con

9 Block 3 1 F2

10 Block 3 2 Con

11 Block 3 3 F3

12 Block 3 4 F1

13 Block 4 1 F2

14 Block 4 2 F3

15 Block 4 3 F1

16 Block 4 4 Con

17 Block 5 1 F3

18 Block 5 2 F1

19 Block 5 3 Con

20 Block 5 4 F2

21 Block 6 1 Con

22 Block 6 2 F2

23 Block 6 3 F3

24 Block 6 4 F1

Using Minitab

To obtain the design in Minitab, we do the following.

For Block 1, manually create two columns: one with each treatment level and the other with a position number 1 to , where  is
the block size (i.e.  in this example). The third column will store the assignment of fertilizer levels to the experimental units.

Figure : Columns for entering Block 1 data in Minitab.

Next, select Calc > Sample from Columns > fill in the dialog box as seen below, and click OK.

n n

n= 4

7.3.1
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Figure : Minitab Sample from Columns pop-up window.

Here, the number of rows to be specified is our block size (and number of treatment levels), which yields a random assignment
from Block 1.

Figure : Random treatment level assignments for positions in Block 1.

The same process should be repeated for the remaining blocks. The key element is that each treatment level or treatment
combination appears in each block (forming complete blocks), and is assigned at random within each block.

7.3.2

7.3.3
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Figure : Greenhouse floor plan divided into blocks, with random treatment level assignment to plant positions within each
block.

Blocks are usually treated as random effects, as they would represent the population of all possible blocks. In other words, the
mean comparison among blocks is not of interest. But the variation between blocks has to be incorporated into the model and will
be partitioned out of the Error Mean squares of the CRD, resulting in a smaller MSE for testing hypotheses about treatments.

The statistical model corresponding to the RCBD is similar to the two-factor studies with one observation per cell (i.e. we assume
the two factors do not interact).

Here is Dr. Shumway stepping through this experimental design in the greenhouse.

7.3.4
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Video : Demonstrating RCBD in the greenhouse.

Once we collect the data for this experiment, we can use SAS to analyze the data and obtain the results.

We will consider the greenhouse experiment with one factor of interest (Fertilizer). We also have the identifications for the blocks.
In this example, we consider Fertilizer as a fixed effect (as we are only interested in comparing the 4 fertilizers we chose for the
study) and Block as a random effect.

Therefore the statistical model would be

where  and .  and  are independent variables such that  and .

Let us read the data into SAS and obtain the proc summary output.

data RCBD_oneway; 

input block Fert $ Height; 

datalines; 

1     Control     19.5 

2     Control     20.5 

3     Control     21 

4     Control     21 

5     Control     21.5 

6     Control     22.5 

1     F1     25 

2     F1     27.5 

3     F1     28 

4     F1     28.6 

5     F1     30.5 

6     F1     32 

1     F2     22.5 

2     F2     25.2 

3     F2     26 

4     F2     26.5 

4 Levels of a Single Treatment4 Levels of a Single Treatment

7.3.1
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5     F2     27 

6     F2     28 

1     F3     27.5 

2     F3     28 

3     F3     29.2 

4     F3     29.5 

5     F3     30 

6     F3     31 

; 

proc summary data=RCBD_oneway; 

class block fert; 

var height; 

output out=output1 mean=mean stderr=se; 

run; 

proc print data=output1; 

The proc summary output would be as follows. We see that the first line in the table with _TYPE_=0 identification is the
estimated overall mean (i.e. ). The estimated treatment means (i.e. ) are displayed with _TYPE_=1 identification and the
estimated block means are displayed with _TYPE_=2 identification. Since we only have one observation per treatment within
each block, we cannot estimate the standard error using the data.

Obs block Fert _TYPE_ _FREQ_ mean se

1 . 0 24 26.1667 0.75238

2 . Control 1 6 21.0000 0.40825

3 . F1 1 6 28.6000 0.99499

4 . F2 1 6 25.8667 0.77531

5 . F3 1 6 29.2000 0.52599

6 1 2 4 23.6250 1.71239

7 2 2 4 25.3000 1.71221

8 3 2 4 26.0500 1.80808

9 4 2 4 26.4000 1.90657

10 5 2 4 27.2500 2.06660

11 6 2 4 28.3750 2.13478

12 1 Control 3 1 19.5000 .

13 1 F1 3 1 25.0000 .

14 1 F2 3 1 22.5000 .

15 1 F3 3 1 27.5000 .

16 2 Control 3 1 20.5000 .

17 2 F1 3 1 27.5000 .

18 2 F2 3 1 25.2000 .

19 2 F3 3 1 28.0000 .

ȳ

..

ȳ

.j
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Obs block Fert _TYPE_ _FREQ_ mean se

20 3 Control 3 1 21.0000 .

21 3 F1 3 1 28.0000 .

22 3 F2 3 1 26.0000 .

23 3 F3 3 1 29.2000 .

24 4 Control 3 1 21.0000 .

25 4 F1 3 1 28.6000 .

26 4 F2 3 1 26.5000 .

27 4 F3 3 1 29.5000 .

28 5 Control 3 1 21.5000 .

29 5 F1 3 1 30.5000 .

30 5 F2 3 1 27.0000 .

31 5 F3 3 1 30.0000 .

32 6 Control 3 1 22.5000 .

33 6 F1 3 1 32.0000 .

34 6 F2 3 1 28.0000 .

35 6 F3 3 1 31.0000 .

To run the model in SAS we can use the following code:

/* RCBD */ 

proc mixed data=RCBD_oneway method=type3; 

class block fert; 

model height=fert; 

random block; 

run; 

We obtain the ANOVA table below for the RCBD.

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean Square
Expected
Mean Square

Error Term Error DF F Value Pr > F

Fert 3 251.440000 83.813333
Var(Residua
l) + Q(Fert)

MS(Residua
l)

15 162.96 <.0001

block 5 53.318333 10.663667
Var(Residua
l) + 4
Var(block)

MS(Residua
l)

15 20.73 <.0001

Residual 15 7.715000 0.514333
Var(Residua
l)

. . . .

For comparison, let us obtain the ANOVA table for the CRD for the same data. We use the following SAS commands:
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/* CRD for comparison */ 

proc mixed data=RCBD_oneway method=type3; 

class fert; 

model height=fert; 

run; 

The CRD ANOVA table for our data would be as follows:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean Square
Expected
Mean Square

Error Term Error DF F Value Pr > F

Fert 3 251.440000 83.813333
Var(Residua
l) + Q(Fert)

MS(Residua
l)

20 27.46 <.0001

Residual 20 61.033333 3.051667
Var(Residua
l)

. . . .

Comparing the two ANOVA tables, we see that the MSE in RCBD has decreased considerably in comparison to the CRD. This
reduction in MSE can be viewed as the partition in SSE for the CRD (61.033) into SSBlock + SSE (53.32 + 7.715, respectively).
The potential reduction in SSE by blocking is offset to some degree by losing degrees of freedom for the blocks. But more often
than not, is worth it in terms of the improvement in the calculated -statistic. In our example, we observe that the -statistic for
the treatment has increased considerably for RCBD in comparison to CRD. It is reasonable to assume that the result from the
RCBD is more valid than that from the CRD as the MSE value obtained after accounting for the block to block variability is a more
accurate representation of the random error variance.

This page titled 7.3: Restriction on Randomization - RCBD is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Penn State's Department of Statistics.
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7.4: Blocking in 2 Dimensions - Latin Square
The fundamental idea of blocking can be extended to more dimensions. However, the full use of multiple blocking variables in a
complete block design usually requires many experimental units. Latin Square design can be useful when we want to achieve
blocking simultaneously in two directions with a limited number of experimental units.

The limitation is that the Latin Square experimental layout will only be possible if:

The experimental design process begins with a Standard Latin Square. These have the treatment levels ordered across the first row
and first column. For example, a single factor with three levels (A, B, C) to be blocked in two directions could begin with this
standard  square:

A B C

B C A

C A B

To randomize, first randomly permute the order of the rows and produce a new square.

B C A

C A B

A B C

Then randomly permute the order of the columns to yield the final square for the experimental layout.

C A B

A B C

B C A

This process assures that any row or column will have all treatment levels. To obtain the design in SAS we can use:

proc plan; 

factors Row=4 ordered Col=4 ordered / noprint; 

treatments Treatment=4 cyclic; 

output out=LatinSquare 

    Row cvals=('RowBlock 1' 'RowBlock 2' 'RowBlock 3' 'RowBlock 4') random 

    Col cvals=('ColBlock 1' 'ColBlock 2' 'ColBlock 3' 'ColBlock 4') random 

    Treatment nvals=(1 2 3 4) random; 

run; 

The ANOVA for the Latin Square is a direct extension of the RCBD with random blocking effects. The SAS random  statement
has to be modified accordingly to incorporate both blocking factors and with the assumption of no interaction between them
(because of only one observation for each cell). For example, we could use the following SAS code to estimate the model:

proc mixed data=LatinSquare method=type3; 

 class Row Col Treatment; 

 model Response = Treatment; 

number of Row blocks = number of Column blocks = number of treatment levels (7.4.1)

3 ×3
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 random Row Col; 

run; 

Using R

To obtain a Latin Square Design for four treatments we can use the following commands:

library(magic) 

latin_square_design<-rlatin(4) 

# latin_square_design 

#      [,1] [,2] [,3] [,4] 

# [1,]    3    1    2    4 

# [2,]    4    2    1    3 

# [3,]    2    4    3    1 

# [4,]    1    3    4    2 

This page titled 7.4: Blocking in 2 Dimensions - Latin Square is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Penn State's Department of Statistics.
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7.5: Try It!

A poultry experiment was run to investigate the effect of diet and antibiotics on egg production. They evaluated 2 diets of
interest and 2 specific antibiotics that are on the market. The feed and antibiotic were combined and used to fill the feeding
trays in barns. They chose 3 poultry farms at random and randomly assigned the combinations of diet and antibiotic to 4 barns
within each farm. Total egg production by the chickens was recorded after 4 weeks.

a. What is the experimental design (hint: think about the randomization process)?
b. Identify which factors are fixed and which are random.

Show Solution

a) RCBD

b) Fixed factors: Diet and Antibiotic; Random factor: Farms

A commercial farmer is studying the corn yield of two fertilizer types at 2 different temperature levels. He strips his cornfield
into 20 strips. Each fertilizer type and temperature level combination is then assigned to 5 of the randomly chosen strips.

a. What is the Treatment design?
b. What is the Randomization design?

Show Solution

a)  factorial with fertilizer types and temperature levels, each having 2 levels

b) CRD with 5 replicates

An investigator wants to run an experiment in a Latin square design evaluating 5 levels of a treatment (labeled A, B, C, D, and
E) and included the layout in a research proposal that you are reviewing. Identify any problems you see and suggest how to
revise the design.

A B C D E

B C D B A

C D E A B

D E A B C

E A B C D

Show Solution

Column 4, row 2, B should be E to satisfy the property that each treatment occurs only once in each row and once in each
column. In addition, the rows and columns need to be independently randomized to produce the actual layout of the Latin
square for the experimental plan.

This page titled 7.5: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
Statistics.
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 Exercise 7.5.2

2×2
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https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33892?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/07%3A_Randomization_Design_Part_I/7.05%3A_Try_It
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/07%3A_Randomization_Design_Part_I/7.05%3A_Try_It
https://creativecommons.org/licenses/by-nc/4.0
https://science.psu.edu/stat


7.6.1 https://stats.libretexts.org/@go/page/33893

7.6: Chapter 7 Summary
This chapter introduced us to Randomization Design, which provides the scheme of how treatment levels can be assigned to
experimental units. The specific designs discussed are CRD, RCBD, and Latin Square Design. An RCBD is employed to account
for a blocking factor, or a nuisance variable, which is not of interest but may have an impact on the response. Likewise, a Latin
square design is helpful in the presence of two such blocking variables. In an RCBD, with no replicates, the interaction between the
treatment and the blocking variable is assumed to be negligible and the Mean Square(MS) value of this interaction serves as the
estimate of the error variance which turns out to be the denominator of the -statistic for testing treatment significance. The next
chapter will introduce us to another widely used design called split-plot design.

This page titled 7.6: Chapter 7 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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CHAPTER OVERVIEW

8: Randomization Design Part II

Upon completion of this chapter, you should be able to:

1. Recognize multiple experimental units in an experimental design.
2. Understand the structure of split-plot ANOVA.
3. Utilize split-plots administered in RCBD experiments.
4. Utilize split-plots administered in CRD experiments.
5. Extend the split-plot concept to analyze split-split-plot designs.

Sometimes multi-factor experiments use multiple (different) experimental units for the different factors in the experiment. To
visualize this, think of applying multiple treatments in a sequence. The levels of the first factor are applied to experimental units
using specific randomization and then the levels of a second factor are applied to sub-units within the application of the first factor.
In other words, the experimental unit used for the application of the first factor has been split, forming the experimental units for
the application of the second-factor levels.

Split-plot designs accommodate the above scheme in assigning two factors appropriately to their experimental units. They are
extremely common and typically result from logistical restrictions, practicality, or efficiency. Though sometimes split-plots and
their experimental unit set up are difficult to recognize, understanding the correct structure is necessary for the implementation of
ANOVA.

Split-plots occur most commonly in two experimental designs applied for the first factor: the CRD and RCBD. The ANOVA differs
between these two, and this chapter focuses on both types. Split-plots can be extended to accommodate multiple splits by sub-unit
subdivision. For example, a split-split-plot experimental design can be achieved with three stages of randomization for three
treatments when there are three types of experimental units with two sub-divisions.

8.1: Split-Plot Design in RCBD
8.2: Split-Plot Design in CRD
8.3: Split-Split-Plot Design
8.4: Try It!
8.5: Chapter 8 Summary

This page titled 8: Randomization Design Part II is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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8.1: Split-Plot Design in RCBD
Recall the Randomized Complete Block Design (RCBD) we discussed in Chapter 7. In RCBD, general blocks are formed such that
the experimental units are expected to be homogenous within a block and heterogeneous between blocks.

For example. suppose we are studying the effect of irrigation amount (  and ) and fertilizer type (  and ) on crop yield. We
have 4 treatments in this experiment. Suppose we want to have at least 2 replicates and have two large lands that can be used for
the experiment. In RCBD, we can split each land into 4 fields and can apply the 4 treatments randomly to each field. Here lands are
blocks and fields are the experimental units.

Figure : Lands divided into 4 fields each, each field assigned one of the 4 random treatments.

In this example, we have assumed that managing levels of irrigation and fertilizer require the same effort. Now suppose varying the
level of irrigation is difficult on a small scale and it makes more sense to apply irrigation levels to larger areas of land.

In such situations, we can divide each land into two large fields (whole plots) and apply irrigation amounts to each field randomly.
And then divide each of these large fields into smaller fields (subplots) and apply fertilizer randomly within the whole plots.

Figure : Lands divided into 2 plots for irrigation, with each plot divided into 2 fields for fertilizer treatment.

In this strategy, each land contains two whole plots and irrigation amount is assigned to each whole plot randomly using RCBD
(i.e. lands are treated as blocks and irrigation amount is assigned randomly within each block to the whole plots). Each whole plot
contains two subplots and fertilizer type is assigned to each subplot using RCBD (i.e. whole plots are treated as blocks and
fertilizer type is assigned randomly within each whole plot to the subplots).

When some factors are more difficult to vary than others at the levels of experimental units, it is more efficient to assign more
difficult-to-change factors to larger units (whole plots) and then apply the easier-to-change factor to smaller units (subplots). This
is known as the split-plot design.

As an example (adapted from Hicks, 1964), consider an experiment where an electrical component is subjected to 4 different
temperatures for 3 different amounts of time. If the investigators desire 3 replications for each of the 12 temperature and time
combinations (i.e. 12 treatments), a basic CRD or an RCBD (with a suitable blocking factor that would generate the replicates) will
require as many as 36 attempts of testing.

Instead, the experimentation can be modified as follows to reduce effort and time. Regarding ovens as blocks, 3 ovens can be set to
each of the 4 different temperature settings and then investigators can take out randomly selected components at the 3 different
times of interest.

I

1

I

2

A B

8.1.1

8.1.2
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In this setting, temperatures are assigned randomly within each oven (i.e. an oven is treated as a block) and within each
temperature, the baking times are assigned randomly to components. We have two RCBD sub-experiments: whole plot levels
(temperatures) are assigned as RCBD within the oven and subplots levels (baking time) are assigned as RCBD within whole plot
levels.

The data (Bake Time Data) were:

Oven Temperature 

Rep Baking Time (min) 580 600 620 640

I

5 217 158 229 223

10 233 138 186 227

15 175 152 155 156

II

5 188 126 160 201

10 201 130 170 181

15 195 147 161 172

III

5 162 122 167 182

10 170 185 181 201

15 213 180 182 199

It is important to notice that in a split-plot design, randomization is a two-stage process. Levels of one factor (say, factor A) are
randomized over the whole plots within each block, and the levels of the other factor (say, factor B) are randomized over the
subplots within each whole plot. This restriction in randomization results in two different error terms: one appropriate for
comparisons at the whole plot level and one appropriate for comparisons at the subplot level.

The appropriate error for whole plot level in split-plot RCBD is . In other words, the
analysis at the whole plot level is essentially of a one-way ANOVA with blocking (i.e. one observation per block-treatment
combination). From the perspective of the whole plot, the subplots are simply subsamples and it is reasonable to average them
when testing the whole plot effects (i.e. factor A effects).

The subplot factor (i.e. factor B) is always compared within the whole plot factor.

Source DF

Blocks

Factor 

Whole plot Error

Factor B

Subplot Error

Total

The statistical model associated with the split-plot design with whole plots arranged as RCBD is

where  for  are block effects,  for  are factor A effects, and  for  are factor B effects.
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Using Technology

Steps in SAS

In SAS, we could specify the model with the following statements:

proc mixed data=BakeTimeData method=type3; 

class oven temp time; 

model resp=temp time temp*time; 

random oven oven*temp; 

run; 

This will generate the ANOVA table as shown below.

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

Error Term Error DF F Value Pr > F

temp 3 12494
4164.76851

9

Var(Residu
al) + 3
Var(oven*t
emp) +
Q(temp,te
mp*time)

MS(oven*t
emp)

6 14.09 0.0040

time 2 566.222222 283.111111

Var(Residu
al) +
Q(time,tem
p*time)

MS(Residu
al)

16 0.46 0.6418

temp*time 6
2600.44444

4
433.407407

Var(Residu
al) +
Q(temp*ti
me)

MS(Residu
al)

16 0.70 0.6551

oven 2
1962.72222

2
981.361111

Var(Residu
al) + 3
Var(oven*t
emp) + 12
Var(oven)

MS(oven*t
emp)

6 3.32 0.1070

oven*temp 6
1773.94444

4
295.657407

Var(Residu
al) + 3
Var(oven*t
emp)

MS(Residu
al)

16 0.48 0.8162

Residual 16
9933.33333

3
620.833333

Var(Residu
al)

. . . .

The ANOVA table can be rearranged to the following to make it easier to understand the whole plot and subplot analyses.

Source DF Expected Mean Square

 SAS Example
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Source DF Expected Mean Square

(Whole Plots)   

oven 2
Var(Residual) + 3 Var(block*temp) + 12
Var(oven)

temp 3
Var(Residual) + 3 Var(oven*temp) +
Q(temp, temp*time)

oven*temp 6 Var(Residual) + 3 Var(oven*temp)

(Subplots)   

time 2 Var(Residual) + Q(time, temp*time)

temp*time 6 Var(Residual) + Q(temp*time)

Residual 16 Var(Residual)

Notice that the correct error term for the -test of the treatment applied to whole plots is the 
(assuming blocks are a random effect).

One might wonder about the terms  and . With
these terms in the model, we will not be able to retrieve the residual (the error DF will be zero). If repeat observations
are made within the split-plots, then a separate error term can be estimated. However, it is important to keep in mind
that tests of replication effects are not of interest, but are being isolated in the ANOVA to reduce the error variance. As
a result, the model that is usually run in this design drops out the  and 

 terms, and combine these interactions with the true error variance to
obtain a working error term.

Steps in R

Load the bake time data and obtain the ANOVA table by using the following commands:

setwd("~/path-to-folder/") 

baketime_data <- read.table("baketime_data.txt",header=T) 

attach(baketime_data) 

baketime_anova<-aov(resp ~ factor(temp) + factor(time) + factor(temp):factor(tim

summary(baketime_anova) 

#Error: factor(oven) 

#          Df Sum Sq Mean Sq F value Pr(>F) 

#Residuals  2   1963   981.4                

#Error: factor(oven):factor(temp) 

#             Df Sum Sq Mean Sq F value Pr(>F)    

#factor(temp)  3  12494    4165   14.09  0.004 ** 

#Residuals     6   1774     296                   

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

#Error: Within 

#                          #Df Sum Sq Mean Sq F value Pr(>F) 

F block ×whole plot factor

 Note!

block ×subplot factor block ×whole plot factor ×subplot factor

block ×subplot factor

block ×whole plot factor ×subplot factor

 R Example

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33901?pdf


8.1.5 https://stats.libretexts.org/@go/page/33901

This page titled 8.1: Split-Plot Design in RCBD is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics.

#factor(time)               2    566   283.1   0.456  0.642 

#factor(temp):factor(time)  6   2600   433.4   0.698  0.655 

#Residuals                 16   9933   620.8                

detach(baketime_data) 

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33901?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/08%3A_Randomization_Design_Part_II/8.01%3A_Split-Plot_Design_in_RCBD
https://creativecommons.org/licenses/by-nc/4.0
https://science.psu.edu/stat


8.2.1 https://stats.libretexts.org/@go/page/33902

8.2: Split-Plot Design in CRD
Recall the irrigation amount and fertilizer type example we discussed in the previous section. We had two large lands and managing
the irrigation amount was harder on a smaller scale; we assigned the irrigation amount within each land to whole plots using an
RCBD.

Now suppose in this case, instead of two large lands, we had 4 large fields. Irrigation amount is still a factor that is difficult to
control. In that case, we can assign the irrigation amount randomly using a CRD for the 4 whole plots. Then each whole plot can be
divided into smaller fields (subplots) and we can assign fertilizer type randomly within each whole plot.

Figure : Large fields assigned irrigation amounts using CBD, with fertilizer type randomly assigned to subplots within each
field.

Within the whole plot, the subplots are always arranged in an RCBD. The difference between split-plot in RCBD and split-plot in
CRD is how the whole plot factor is randomized.

Example:
Consider a study in which the experimenters are interested in two factors: irrigation (Factor A at 2 levels) and seed type (Factor B
at 2 levels), and they are crossed to form a factorial treatment design. The seed treatment can be easily applied at a small scale, but
the irrigation treatment is problematic. Irrigating one plot may influence neighboring plots, and furthermore, the irrigation
equipment is most efficiently used in a large area. As a result, the investigators want to apply the irrigation to a large whole plot and
then split the whole plot into 2 smaller subplots in which they can apply the seed treatment levels.

In the first step, the levels of the irrigation treatment are applied to four experimental (fields) to end up with 2 replications:

Field 1 Field 2 Field 3 Field 4

A2 A1 A1 A2

8.2.1
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Following that, the fields are split into two subplots and a level of Factor B is randomly applied to subplots within each application
of the Irrigation treatment:

Field 1 Field 2 Field 3 Field 4

A2 B2 A1 B1 A1 B2 A2 B1

A2 B1 A1 B2 A1 B1 A2 B2

In this design, the whole plot treatments (i.e factor A, irrigation) are arranged in a CRD and the subplot treatments (i.e. factor B,
seed type) are arranged within whole plots in an RCBD.

If we carefully think about this, we see that the replicates (i.e. fields) are nested within the whole factor levels. For example, fields
2 and 3 are nested within level , and fields 1 and 4 are nested within level . So the variability due to replicates is nested
within the whole factor.

The statistical model for the design is:

where , , and  where  is the number of levels in factor A,  is the number of levels in
factor B and  is the number of replicates.

As discussed in section 8.1, from the perspective of whole plots (i.e. Factor A, irrigation), the subplots are simply subsamples and it
is reasonable to average them when testing the whole plot effects. If the values of the subplots within each whole plot are average,
the resulting design is CRD, and the error term in a simple CRD is the . Therefore, for split-plot in
CRD, the whole plot errors are computationally equivalent to , but in order to use it, we must explicitly
extract it from the error term and put it in the model.

The ANOVA table, in this case, would look like this:

Source DF Expected Mean Square Error Term

(Whole Plots)    

A 1
Var(Residual) +
2Var(Replicate(A)) + Q(A,
A*B)

MS(Replicate(A))

Replicate(A) 2
Var(Residual) +
2Var(Replicate(A))

 

(Subplots)    

B 1 Var(Residual) + Q(B, A*B) MS(Residual)

A*B 1 Var(Residual) + Q(A*B) MS(Residual)

Residual 2 Var(Residual)  

Using Technology

SAS Example

In SAS, the code would be:

proc mixed data=example_8_2 method=type3; 

class factorA factorB field; 

model resp=factorA factorB factorA*factorB; 

random field(factorA); 

run; 

A

1

A

2

= μ+ + + +(αβ +Y

ijk

α

i

γ

k(i)

β

j

)

ij

ϵ

ijk

(8.2.1)

i = 1, 2, … , a j= 1, 2, … , b k = 1, 2, … , r a b

r

replication(whole factor)

replication(whole factor)
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Minitab Example

In Minitab the "field(FactorA)" term would need to be constructed in the Random/Nest… options box under the STAT > ANOVA
> General Linear Model > Fit the General Linear Model.

R Example

In R use the following code:

This page titled 8.2: Split-Plot Design in CRD is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.

anova<-aov(resp ~ factorA + factorB + factorA:factorB + Error(factorA/replicate),datas

summary(anova) 
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8.3: Split-Split-Plot Design
The idea of split-plots can easily be extended to multiple splits. In a 3-factor factorial, for example, it is possible to assign Factor A
to whole plots, then Factor B to subplots within the applications of Factor A, and then split the experimental units used for Factor B
into sub-subplots to receive the levels of Factor C.

For a fixed effect factorial treatment design in an RCBD (with blocks, levels of Factor A, levels of Factor B, and levels of Factor
C), the split-split-plot would produce the following table:

Source d.f.

(Whole plots)

Block

Factor A

Whole plot error

(Subplots)

Factor B

A × B

Subplot error

(Sub-subplots)

Factor C

A × C

B × C

A × B × C

Sub-subplot error \(ab(r - 1)(c - 1)\)

Total

The model is specified as we did earlier for the split-plot in RCBD, retaining only the interactions involving replication where they
form denominators for -tests for factor effects. For the model above, we would need to include the block, block × A, and block ×
A × B terms in the random statement in SAS. In SAS, Block × A × B would automatically include the Block × B effect SS and df.
All other interactions involving replications and factor C would be included in the residual error term. The block × A term is often
referred to as "Error a" ("Whole plot error" in the table), the Block × A × B term as "Error b" ("Subplot error" in the table), and the
residual error as "Error c" ("Sub-subplot error" in the table) because of their roles as the denominator in the -tests.

This page titled 8.3: Split-Split-Plot Design is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.

r−1

a−1

(r−1)(a−1)

b−1

(a−1)(b−1)

a(r−1)(b−1)

c−1

(a−1)(c−1)

(b−1)(c−1)

(a−1)(b−1)(c−1)

(rabc)− 1

F

F
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8.4: Try It!

Researchers are investigating the effect of storage temperature on bacterial growth for two types of seafood. They set up the
experiment to evaluate 3 storage temperatures. There were 9 storage units that were available, and so they randomly selected 3
storage units to be used for each storage temperature, and both seafood types were stored in each unit. After 2 weeks, bacterial
counts were made. After taking a logarithmic transformation of the counts, they produced the following ANOVA:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

temp 2 107.656588 53.828294

Var(Residua
l) + 2
Var(unit(tem
p)) +
Q(temp,
temp*seafoo
d)

seafood 1 3.713721 3.713721

Var(Residua
l) +
Q(seafood,
temp*seafoo
d)

temp*seafoo
d

2 2.647594 1.323797

Var(Residua
l) +
Q(temp*sea
food)

unit(temp) 6 44.050650 7.341775

Var(Residua
l) + 2
Var(unit(tem
p))

Residual 6 5.590873 0.931812
Var(Residua
l)

a) For each factor, indicate whether it is a fixed or random effect.

b) Identify the treatments and describe (in words) the treatment design.

c) Describe the randomization used.

d) Compute the -statistic for the temperature effect in the ANOVA, and determine significance for the effect.

Show Solution

a) temp=fixed, seafood=fixed, storage unit=random

b) Temperature and Seafood, factorial design. Each seafood type is combined with each temperature level in the
experiment.

c) Split-plot in a CRD. Temperature levels were assigned (randomly) to storage units. Then the storage unit set at a given
temperature is split to accommodate each of the two seafood types.

 Exercise 8.4.1
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d) . , so reject .

Answer the questions based on the following output:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

group 3
6429.38833

3
2143.12944

4

Var(Residua
l) + 3
Var(blk*gro
up) +
Q(group,gro
up*tech_int)

tech_int 2 881.408750 440.704375

Var(Residua
l) +
Q(tech_int,g
roup*tech_i
nt)

group*tech_
int

6 207.507917 34.584653

Var(Residua
l) +
Q(group*tec
h_int)

blk 3 408.985000 136.328333

Var(Residua
l) + 3
Var(blk*gro
up) + 12
Var(blk)

blk*group 9 466.543333 51.838148

Var(Residua
l) + 3
Var(blk*gro
up)

Residual 24 595.696667 24.820694
Var(Residua
l)

a) For each factor, indicate whether it is a fixed or random effect

b) Identify the treatments and describe (in words) the treatment design.

c) Describe (in words) the randomization used.

d) Compute the -statistic for each effect in the ANOVA, and determine significance (i.e., compare  to  for
each effect).

Show Solution

a) group = fixed, tech_int = fixed, blk = random

b) group and tech_int, crossed for a factorial treatment design

= 53.83/7.342 = 7.3318F

Temperature

= 5.14F

critical

H

0

 Exercise 8.4.2

F F

calculated

F

critical
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c) Split-plot in a RCBD, with group as the whole plot treatment and tech_int as the subplot treatment with blk as the
blocking factor.

d) group: , , reject 

tech_int: , , reject 

group  tech_int: , , do not reject 

blk: , , do not reject 

1. An experimenter wants to compare the yield of three varieties of oats at four different levels of manure. Suppose 6 farmers
agree to participate in the experiment and each farmer will designate 3 fields from their farms for the experiment.

a. What is the treatment design?
b. What is the randomization design?

Show Solution

a) Treatment design:  factorial with oat variety and manure levels as factors having 3 and 4 levels respectively

b) Randomization design: Three oats varieties will be randomly assigned to the 3 fields from each farm using RCBD with
farms as blocks. Four manure levels are then randomized within each field using an RCBD. So the randomization design is
a split-plot in RCBD.

2. In an agricultural setting, an experimenter is applying one of two irrigation methods randomly to 6 plots where all plots are
similar in moisture, soil type, slope, fertility, etc. Each plot is then subdivided into 5 portions and 5 levels of nitrogen fertilizer
are applied randomly to these portions.

a. What is the treatment design?
b. What is the randomization design?

Show Solution

a) Treatment design:  factorial with irrigation method and fertilizer levels as factors having 2 and 5 levels
respectively

b) Randomization design: Split-plot in CRD with the whole factor as irrigation method and subplot factor as fertilizer
level

3. A survey was conducted among 100 high schoolers who were potential athletes to learn about their preferences on financial
benefits. The sample consisted of an equal number of male and female students and 3 incentive types were offered: a 20%
tuition reduction for all 4 years; a 50% tuition reduction in the first year, but renewable based on freshman GPA; and full room
and board for all 4 years.

a. What is the treatment design?
b. What is the randomization design?

Show Solution

a) Treatment design: A single factor study with 3 levels; the factor of interest is incentive type

b) Randomization design: RCBD with gender as the blocking factor

This page titled 8.4: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
Statistics.

F = = 41.3427

2143.129444

51.838148

= 3.86F

critical

H

0

F = = 17.7555

440.704375

24.820694

= 3.40F

critical

H

0

× F = = 1.3934

34.584653

24.820694

= 2.51F

critical

H

0

F = = 2.6299

136.3283

51.8381

= 3.86F

critical

H

0
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8.5: Chapter 8 Summary
In this chapter, we discussed split-plot designs with the special feature of having two types of experimental units: whole plots into
which the whole plot treatments are assigned and the subplots into which the subplot treatments are assigned.

The whole plot assignment can be either according to a CRD or an RCBD, and depending on this design type, the overall design is
called a split-plot in either CRD or RCBD. Note that in either case, the denominator of the -statistic for testing the whole plot
factor is not MSE, but equals the MS of  and MS of  respectively.

This page titled 8.5: Chapter 8 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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CHAPTER OVERVIEW

9: ANCOVA Part I

Upon completion of this chapter, you should be able to:

1. Be familiar with the basics of the General Linear Model (GLM) necessary for ANCOVA implementation.
2. Develop the ANCOVA procedure by extending the ANOVA methodology to include a continuous predictor.
3. Carry out the testing sequences for ANCOVA with equal and unequal slopes.

The analysis of covariance (ANCOVA) procedure is used when the statistical model has both quantitative and qualitative predictors
and is based on the concepts of the General Linear Model (GLM). In ANCOVA, we will combine the concepts applicable to
categorical factors learned so far in this course with the principles and foundations of regression, applicable to continuous
predictors learned in STAT 501.

In this chapter, we will address the classic case of ANCOVA where the ANOVA model is extended to include the linear effect of a
continuous variable, known as the covariate. In the next chapter, we will generalize the ANCOVA model to include the quadratic
and cubic effects of the covariate as well.

You might find it interesting that when SAS first came out they had PROC ANOVA and PROC REGRESSION and that was it.
Then people asked, "What about the case when you have categorical factors and you want to do an ANOVA but now you have this
other variable, a continuous variable, that you can use as a covariate to account for extraneous variability in the response?" So, SAS
came out with PROC GLM, which is the general linear model. With PROC GLM you could take the continuous regression variable
and pop it into the ANOVA model and it runs. Or, conversely, if you are running a regression and you have a categorical predictor
like gender, you could include it into the regression model and it runs. The general linear model handles both the regression and the
categorical variables in the same model. There is no PROC ANCOVA in SAS, but there is PROC MIXED. PROC GLM had
problems when it came to random effects and was effectively replaced by PROC MIXED. The same sort of process can be seen in
Minitab and accounts for the multiple tabs under Stat > ANOVA and Stat > Regression. In SAS PROC MIXED or in Minitab's
General Linear Model, you have the capacity to include covariates and correctly work with random effects. But enough about
history; let's get to this lesson.

Introduction to Analysis of Covariance (ANCOVA)

A "classic" ANOVA tests for differences in mean responses to categorical factor (treatment) levels. When there is heterogeneity in
experimental units, sometimes restrictions on the randomization (blocking) can improve the accuracy of significance testing results.
In some situations, however, the opportunity to construct blocks may not exist, but there may be a continuous variable that may be
causing the heterogeneity in the experimental units. Such sources of extraneous variability are referred to as "covariates", and
historically have been also termed "nuisance" or "concomitant" variables.

Note that an ANCOVA model is formed by including a continuous covariate in an ANOVA model. As the continuous covariate
enters the model as a regression variable, an ANCOVA requires a few additional steps that should be combined with the ANOVA
procedure.

9.1: Role of the Covariate
9.2: ANCOVA in the GLM Setting - The Covariate as a Regression Variable
9.3: Steps in ANCOVA
9.4: Using Technology - Equal Slopes Model
9.5: Using Technology - Unequal Slopes Model
9.6: Chapter 9 Summary

This page titled 9: ANCOVA Part I is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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9.1: Role of the Covariate
To illustrate the role the covariate has in the ANCOVA, let’s look at a hypothetical situation wherein investigators are comparing
the salaries of male vs. female college graduates. A random sample of 5 individuals for each gender is compiled, and a simple one-
way ANOVA is performed:

Males Females

78 80

43 50

103 30

48 20

80 60

Using SAS

SAS coding for the One-way ANOVA:

data ancova_example; 

input gender $ salary; 

datalines; 

m 78 

m 43 

m 103 

m 48 

m 80 

f 80 

f 50 

f 30 

f 20 

f 60 

; 

proc mixed data=ancova_example method=type3; 

class gender; 

model salary=gender; 

run; 

Here is the output we get:

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

gender 1 8 2.11 F">0.1840

:   =H

0

μ

males

μ

females

 SAS Example
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Using Minitab

To perform a one-way ANOVA test in Minitab, you can first open the data (ANCOVA Example Minitab Data) and then
select Stat > ANOVA > One Way…

In the pop-up window that appears, select salary as the Response and gender as the Factor.

Figure : Minitab One-Way Analysis of Variance window

Click OK, and the output is as follows.

Analysis of Variance
Source DF SS SS F-Value P-Value

gender 1 1254 1254 2.11 0.184

Error 8 4745 593   

Total 9 6000

Model Summary
S R-sq R-sq(adj) R-sq(pred)

24.3547 20.91% 11.02% 0.00%

Using R

Tasks:

Load the ANCOVA example data.
Obtain the ANOVA table.
Plot the data.

1. Load the ANCOVA example data and obtain the ANOVA table by using the following commands:

setwd("~/path-to-folder/") 

ancova_example_data <- read.table("ancova_example.txt",header=T) 

attach(ancova_example_data) 

ancova<-aov(salary ~ gender,ancova_example_data) 

summary(ancova) 

#            Df  Sum Sq  Mean Sq  F value  Pr(>F) 

#gender       1    1254   1254.4    2.115   0.184 

#Residuals    8    4745    593.1        

 Minitab Example

9.1.1

 R Example
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2. Plot for the data, salary by gender, by using the following commands:

Figure : Gender and salary plot

3. Plot for the data, salary vs years, by using the following commands:

Figure : Plot of salary vs years

Because the -value >  (=0.05), they can't reject the .

A plot of the data shows the situation:

library(ggplot2) 

myplot<-ggplot(ancova_example_data, aes(x = gender, y = salary)) +  geom_point() 

myplot + theme_bw() + theme(panel.border = element_blank(), panel.grid.major = e

panel.grid.minor = element_blank(), axis.line = element_line(colour = "black")) 

plot(years,salary, xlab="Years after graduation", ylab="Salary(Thousands)",pch=2

abline(lm(salary~years,data=ancova_example_data)) 

detach(ancova_example_data) 

9.1.2

9.1.3

p α H

0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33166?pdf


9.1.4 https://stats.libretexts.org/@go/page/33166

Figure : Plot of salary vs gender

However, it is reasonable to assume that the length of time since graduation from college is also likely to influence one's
income. So more appropriately, the duration since graduation, a continuous variable, should be also included in the analysis,
and the required data is shown below.

Females Males

Salary years Salary years

80 5 78 3

50 3 43 1

30 2 103 5

20 1 48 2

60 4 80 4

Figure : Plot of salary vs years since graduation

The plot above indicates an upward linear trend between salary and the number of years since graduation, which could be a
marker for experience and/or postgraduate education. The fundamental idea of including a covariate is to take this trend
into account and to "control" it effectively. In other words, including the covariate in the ANOVA will make the comparison
between Males and Females after accounting for the covariate.

This page titled 9.1: Role of the Covariate is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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9.2: ANCOVA in the GLM Setting - The Covariate as a Regression Variable
In this section, we will develop the statistical ANCOVA, which by definition is a general linear model that includes both ANOVA
(categorical) predictors and regression (continuous) predictors. The simple linear regression model is:

where  and  are the intercept and the slope of the line, respectively. The significance of a regression is equivalent to testing 

 vs  using the  statistic:  where  is the mean sum of squares for regression and 
 is the mean squared error. In this case of a simple linear regression, this test is equivalent to a t-test.

Now, in adding the regression variable to our one-way ANOVA model, we can envision a notational problem. In the balanced one-
way ANOVA, we have the grand mean ( ), but now we also have the intercept .

To get around this, we can use

and get the following as an expression of our covariance model:

Note that the above model fits into the general linear model (GLM) and the Type III (model fit) sums of squares for the treatment
levels in this model are being corrected (or adjusted) for the regression relationship. This has the effect of evaluating the treatment
levels "on the same playing field", that is, comparing the means of the treatment levels at the mean value of the covariate. This
process effectively removes the variation due to the covariate that may otherwise be attributed to treatment level differences.

This page titled 9.2: ANCOVA in the GLM Setting - The Covariate as a Regression Variable is shared under a CC BY-NC 4.0 license and was
authored, remixed, and/or curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the
LibreTexts platform.
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9.3: Steps in ANCOVA
First, we need to confirm that for at least one of the treatment groups there is a significant regression relationship with the
covariate. Otherwise, including the covariate in the model won't improve the estimation of treatment means.

Then, we need to make sure that the regression relationship of the response with the covariate has the same slope for each treatment
group. Graphically, this means that the regression line at each factor level has the same slope and therefore the lines are all parallel.
Depending on the outcome of the test for equal slopes, we have two alternative ways to finish up the ANCOVA:

1. Fit a common slope model and adjust the treatment SS for the presence of the covariate
2. Evaluate the differences in means at least three levels of the covariate

These steps are illustrated in the following two sections and are diagrammed below:

Figure : Flowchart for the ANCOVA

The figure above is presented as a guideline and does require some subjective judgment. Small sample sizes, for example, may
result in none of the individual regressions in step 1 being statistically significant. Yet the inclusion of the covariate in the
model may still be advantageous, as pooling the data will increase the number of observations when fitting the joint model.
Exploratory data analysis and regression diagnostics also will be useful.

This page titled 9.3: Steps in ANCOVA is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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9.4: Using Technology - Equal Slopes Model
Using Technology

Using our Salary example using the data in the table below, we can run through the steps for the ANCOVA.

Females Males

Salary Years Salary Years

80 5 78 3

50 3 43 1

30 2 103 5

20 1 48 2

60 4 80 4

Steps in SAS

Step 1: Are all regression slopes = 0?
A simple linear regression can be run for each treatment group, Males and Females.

Running these procedures using statistical software we get the following:

Males

Use the following SAS code:

data equal_slopes; 

input gender $ salary years; 

datalines; 

m 78 3 

m 43 1 

m 103 5 

m 48 2 

m 80 4 

f 80 5 

f 50 3 

f 30 2 

f 20 1 

f 60 4 

; 

proc reg data=equal_slopes; 

where gender='m'; 

model salary=years; 

title 'Males'; 

run; quit; 

And here is the output that you get:

 SAS Example
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The REG Procedure 
Mode1:: MODEL1 

Dependent Variable: salary

Number of Observations Read 5

Number of Observations Used 5

Vari…

Vari…

Vari…

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F

Model 1 2310.40000 2310.40000 44.78
F" class="
">0.0068

Error 3 154.80000 51.60000  F" class=" ">

Corrected Total 4 2465.20000  

Females

Use the following SAS code:

data equal_slopes; 

input gender $ salary years; 

datalines; 

m 78 3 

m 43 1 

m 103 5 

m 48 2 

m 80 4 

f 80 5 

f 50 3 

f 30 2 

f 20 1 

f 60 4 

; 

proc reg data=equal_slopes; 

where gender='f'; 

model salary=years; 

title 'Females'; 

run; quit; 

And here is the output for this run:

The REG Procedure 
Mode1:: MODEL1 

Dependent Variable: salary

Number of Observations Read 5

Number of Observations Used 5
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Proc…

Proc…

Vari…

Vari…

Vari…

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F

Model 1 2250.00000 2250.00000 225.00
F" class="
">0.0006

Error 3 30.00000 10.00000  F" class=" ">

Corrected Total 4 2280.00000   F" class=" ">

In both cases, the simple linear regressions are significant, so the slopes are not = 0.

Step 2: Are the slopes equal?
We can test for this using our statistical software.

In SAS we now use proc mixed and include the covariate in the model.

We will also include a "treatment × covariate" interaction term and the significance of this term answers our question. If the
slopes differ significantly among treatment levels, the interaction -value will be < 0.05.

If the slopes differ significantly among treatment levels, the interaction p-value will be < 0.05.

data equal_slopes; 

input gender $ salary years; 

datalines; 

m 78 3 

m 43 1 

m 103 5 

m 48 2 

m 80 4 

f 80 5 

f 50 3 

f 30 2 

f 20 1 

f 60 4 

; 

proc mixed data=equal_slopes; 

class gender; 

model salary = gender years gender*years; 

run; 

In SAS, we specify the treatment in the class statement, indicating that these are categorical levels. By NOT including
the covariate in the class statement, it will be treated as a continuous variable for regression in the model statement.

The Mixed Procedure 
Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

years 1 6 148.06 F" class=" "><.0001

gender 1 6 7.01 F" class=" ">0.0381

p

 Note
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Proc… years*gender 1 6 0.01 F" class=" ">0.9384

So here we see that the slopes are equal and in a plot of the regressions, we see that the lines are parallel.

Figure : Parallel lines of best fit

To obtain the plot in SAS, we can use the following SAS code:

SAS code:

ods graphics on; 

proc sgplot data=equal_slopes; 

styleattrs datalinepatterns=(solid); 

reg y=salary x=years / group=gender; 

run; 

Step 3: Fit an Equal Slopes Model
We can now proceed to fit an Equal Slopes model by removing the interaction term. Again, we will use our statistical
software SAS.

data equal_slopes; 

input gender $ salary years; 

datalines; 

m 78 3 

m 43 1 

m 103 5 

m 48 2 

m 80 4 

f 80 5 

f 50 3 

f 30 2 

f 20 1 

f 60 4 

; 

proc mixed data=equal_slopes; 

class gender; 

model salary = gender years; 

lsmeans gender / pdiff adjust=tukey; 

/* Tukey unnecessary with only two treatment levels */ 

title 'Equal Slopes Model'; 

run; 

9.4.a1
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Proc…

Proc…

We obtain the following results:

The Mixed Procedure 
Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

years 1 7 172.55 F" class=" "><.0001

gender 1 7 47.46 F" class=" ">0.0002

es …

es …

Least Squares Means

Effect gender Estimate Standard Error DF t Value Pr > |t|

gender f 48.0000 2.2991 7 20.88
|t|" class=" ">
<.0001

gender m 70.4000 2.2991 7 30.62
|t|" class=" ">
<.0001

In SAS, the model statement automatically creates an intercept, and so the ANCOVA model is technically over-
parameterized. To get the slopes and intercepts for the covariate directly, we have to re-parameterize the model. This entails
suppressing the intercept ( noint ), and then specifying that we want the solutions, ( solution ), to the model. Here is
what the SAS code looks like for this:

data equal_slopes; 

input gender $ salary years; 

datalines; 

m 78 3 

m 43 1 

m 103 5 

m 48 2 

m 80 4 

f 80 5 

f 50 3 

f 30 2 

f 20 1 

f 60 4 

; 

proc mixed data=equal_slopes; 

class gender; 

model salary = gender years / noint solution; 

ods select SolutionF; 

title 'Equal Slopes Model'; 

run; 

Here is the output:

Solution for Fixed Effects

Effect gender Estimate Standard Error DF t Value Pr > |t|
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Fix…

Fix…

Fix…Fix…

Fix…

Fix…

s of …

gender f 2.7000 4.1447 7 0.65
|t|" class="
">0.5356

gender m 25.1000 4.1447 7 6.06
|t|" class="
">0.0005

years  15.1000 1.1495 7 13.14
|t|" class=" ">
<.0001

Solution for Fixed Effects

Effect gender Estimate Standard Error DF t Value Pr > |t|

gender f 2.7000 4.1447 7 0.65
|t|" class="
">0.5356

gender m 25.1000 4.1447 7 6.06
|t|" class="
">0.0005

years  15.1000 1.1495 7 13.14
|t|" class=" ">
<.0001

In the first section of the output above is reported a separate intercept for each gender, the ‘Estimate’ value for each gender,
and a common slope for both genders, labeled ‘Years’.

Thus, the estimated regression equation for Females is , and for Males it is .

To this point in this analysis, we can see that 'gender' is now significant. By removing the impact of the covariate, we went
from

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

gender 1 8 2.11 F" class=" ">0.1840

(without covariate consideration)

to

gender 1 7 47.46 0.0002

(adjusting for the covariate)

Using our Salary example and the data in the table below, we can run through the steps for the ANCOVA. On this page, we
will go through the steps using Minitab.

Females Males

Salary Years Salary Years

80 5 78 3

50 3 43 1

30 2 103 5

20 1 48 2

60 4 80 4

Steps in Minitab

Step 1: Are all regression slopes = 0?
A simple linear regression can be run for each treatment group, Males and Females. To perform regression analysis on each
gender group in Minitab, we will have to subdivide the salary data manually and separately, saving the male data into the
Male Salary Dataset and the female data into the Female Salary dataset.

Running these procedures using statistical software we get the following:

Males

Open the Male dataset in the Minitab project file (Male Salary Dataset).

= 2.7+15.1(Years)y

^

= 5.1(Years)y

^

25.1

1

 Minitab Example
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Then, from the menu bar, select Stat > Regression > Regression > Fit Regression Model

In the pop-up window, select salary into Response and years into Predictors as shown below.

Figure : Minitab Regressions pop-up window

Click OK, and Minitab will output the following.

Regression Analysis: Salary versus years

Regression Equation: salary = 24.8 + 15.2 years

Coefficients

Term Coef SE Coef T-Value P-Value VIF

Constant 24.80 7.53 3.29 0.046  

years 15.20 2.27 6.69 0.007 1.00

Model Summary

S R-sq R-sq (adj) R-sq (pred)

7.18331 R-Sq = 93.7% 91.6% 85.94%

Analysis of Variance

Source DF SS MS F-Value P-Value

Regression 1 2310.4 2310.40 44.78 0.007

years 1 2310.4 2310.40 44.78 0.007

Residual Error 3 154.8 51.6   

Total 4 2465.2    

Females

Open Minitab dataset Female Salary Dataset. Follow the same procedure as was done for the Male dataset and Minitab
will output the following:

Regression Analysis: Salary versus years

Regression Equation: salary = 3.00 + 15.00 years

Coefficients

9.4.b1
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Term Coef SE Coef T-Value P-Value VIF

Constant 3.00 3.32 0.90 0.432  

years 15.00 1.00 15.00 0.001 1.00

Model Summary

S R-sq R-sq (adj) R-sq (pred)

3.16228 98.68% 98.25% 95.92%

Analysis of Variance

Source DF SS MS F-Value P-Value

Regression 1 2250.0 2250.0 225.00 0.001

years 1 2250.0 2250.0 225.00 0.001

Residual Error 3 30.0 10.0   

Total 4 2280.0    

In both cases, the simple linear regressions are significant, so the slopes are not = 0.

Step 2: Are the slopes equal?
We can test for this using our statistical software. In Minitab, we must now use GLM (general linear model) and be sure to
include the covariate in the model. We will also include a "treatment x covariate" interaction term and the significance of
this term is what answers our question. If the slopes differ significantly among treatment levels, the interaction p-value will
be < 0.05.

First, open the dataset in the Minitab project file Salary Dataset. Then, from the menu select Stat > ANOVA >
General Linear Model > Fit General Linear Model

In the dialog box, select salary into Responses, gender into Factors, and years into Covariates.

Figure \(\
PageIndex

{b2}\): Minitab
GLM

pop-up selections
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To add the interaction term, first click Model…. Then, use the shift key to highlight gender and years, and click Add. Click
OK, then OK again, and Minitab will display the following output.

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

year 1 4560.20 4560.20 148.06 0.000

gender 1 216.02 216.02 7.01 0.038

years*gender 1 0.20 0.20 0.01 0.938

Error 6 184.80 30.80   

Total 9 5999.60    

It is clear the interaction term is not significant. This suggests the slopes are equal. In a plot of the regressions, we can also
see that the lines are parallel.

Figure : Parallel lines of best fit

Step 3: Fit an Equal Slopes Model
We can now proceed to fit an Equal Slopes model by removing the interaction term. This can be easily accomplished by
starting again with STAT > ANOVA > General Linear Model > Fit General Linear Model

Figure : Removing the years*gender  term from the model

Click OK, then OK again, and Minitab will display the following output.

Analysis of Variance

9.4.b3

9.4.b4
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Source DF Adj SS Adj MS F-Value P-Value

year 1 4560.20 4560.20 172.55 0.000

gender 1 1254.4 1254.40 47.46 0.000

Error 7 185.0 26.43   

Total 9 5999.6    

To generate the mean comparisons select STAT > ANOVA > General Linear Model > Comparisons... and
fill in the dialog box as seen below.

Figure : Comparisons window selections

Click OK and Minitab will produce the following output.

Comparison of salary

Tukey Pairwise Comparisons: gender 
Grouping information Using the Tukey Method and 95% Confidence

gender N Mean Grouping

Male 5 70.4 A

gender 5 48.0 B

Means that do not share a letter are significantly different.

Steps for the ANCOVA for the Salary example in R:

Run a simple linear model for each treatment group.
Testing whether the slopes are equal.
Plot the regression lines.
Fit an equal slopes model.

Steps in R

1. Run a simple linear model for each treatment group (males and females) by using the following commands:

Males

9.4.b5

 R Example
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Females

2. Test whether the slopes are equal by using the following commands:

ancova_model<-lm(salary ~ gender + years + gender:years,equal_slopes_data) 

anova(ancova_model) 

Analysis of Variance Table 

Response: salary 

             Df  Sum Sq  Mean Sq  F value     Pr(>F)     

gender        1  1254.4   1254.4  40.7273  0.0006961 *** 

years         1  4560.2   4560.2 148.0584  1.874e-05 *** 

gender:years  1     0.2      0.2   0.0065  0.9383948     

Residuals     6   184.8     30.8                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

With a p-value of 0.9383948 in the interaction term ( gender*years ), we can conclude that the slopes are equal.

3. Plot the regression line for males and females by using the following commands:

males_regression <- lm(salary~years,data=subset(equal_slopes_data,gender=="m")) 

anova(males_regression) 

#Analysis of Variance Table 

#Response: salary 

#          Df  Sum Sq  Mean Sq  F value    Pr(>F)    

#years      1  2310.4   2310.4   44.775  0.006809 ** 

#Residuals  3   154.8     51.6                     

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

#summary(males_regression)$coefficients 

#              Estimate  Std. Error    t value     Pr(>|t|) 

#(Intercept)       24.8    7.533923   3.291778  0.046016514 

#years             15.2    2.271563   6.691427  0.006808538 

females_regression <- lm(salary~years,data=subset(equal_slopes_data,gender=="f")

anova(females_regression) 

#Analysis of Variance Table 

#Response: salary 

#          Df  Sum Sq  Mean Sq  F value     Pr(>F)     

#years      1    2250     2250      225  0.0006431 *** 

#Residuals  3      30       10                       

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

#  summary(females_regression)$coefficients 

#              Estimate  Std. Error   t value       Pr(>|t|) 

#(Intercept)          3    3.316625  0.904534   0.4323889978 

#years               15    1.000000 15.000000   0.0006431193 
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Figure : Regression lines for male and female data

4. Fit an equal slopes model by using the following commands:

equal_slopes_model<-lm(salary ~ gender + years,equal_slopes_data) 

anova(equal_slopes_model) 

#Analysis of Variance Table 

#Response: salary 

#          Df  Sum Sq  Mean Sq  F value     Pr(>F)     

#gender     1  1254.4   1254.4   47.464  0.0002335 *** 

#years      1  4560.2   4560.2  172.548  3.458e-06 *** 

#Residuals  7   185.0     26.4                       

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

We can see that gender is significant now. To estimate the two regression lines, we need the following output:

summary(equal_slopes_model)$coefficients 

#Coefficients: 

#            Estimate  Std. Error  t value  Pr(>|t|)     

#(Intercept)    2.700       4.145    0.651  0.535560     

#genderm       22.400       3.251    6.889  0.000234 

#years         15.100       1.150   13.136  3.46e-06 

detach(equal_slopes_data) 

The estimate for the years (15.1) is the slope of the models. The intercept for females is 2.7 and the intercept for males is
2.7+22.4=25.1

Thus, the estimated regression equation for females is  and for males it's .

This page titled 9.4: Using Technology - Equal Slopes Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.

plot(years,salary, xlab="Years after graduation", ylab="Salary(Thousands)",pch=2

abline(males_regression) 

abline(females_regression) 

text(locator(1),"y=15.2x+24.8",col="red") 

text(locator(1),"y=15x+3",col="blue") 

9.4.c1

y = 15.1x+2.7 y = 15.1x+25.1
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9.5: Using Technology - Unequal Slopes Model

If the data collected in the example study were instead as follows:

Females Males

Salary Years Salary Years

80 5 42 1

50 3 112 4

30 2 92 3

20 1 62 2

60 4 142 5

We would see in Step 2 of the ANCOVA that we do have a significant treatment × covariate interaction.

Steps for ANCOVA

Using this SAS program with the new data shown below.

data unequal_slopes; 

input gender $ salary years; 

datalines; 

m 42 1 

m 112 4 

m 92 3 

m 62 2 

m 142 5 

f 80 5 

f 50 3 

f 30 2 

f 20 1 

f 60 4 

; 

proc mixed data=unequal_slopes; 

class gender; 

model salary=gender years gender*years; 

title 'Covariance Test for Equal Slopes'; 

/*Note that we found a significant years*gender interaction*/ 

/*so we add the lsmeans for comparisons*/ 

/*With 2 treatments levels we omitted the Tukey adjustment*/ 

lsmeans gender/pdiff at years=1; 

lsmeans gender/pdiff at years=3; 

lsmeans gender/pdiff at years=5; 

run; 

We get the following output:

 SAS Example
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of F…

of F…

of F…

Fix…

Fix…

Fix…

Fix…

Fix…

Type 3 Test of Fixed Effects

Effect Num DF De DF F Value Pr > F

years 1 6 800.00 F">< .0001

gender 1 6 6.55 F">0.0430

years*gender 1 6 50.00 F">0.0004

Generating Covariate Regression Slopes and Intercepts

data unequal_slopes; 

input gender $ salary years; 

datalines; 

m 42 1 

m 112 4 

m 92 3 

m 62 2 

m 142 5 

f 80 5 

f 50 3 

f 30 2 

f 20 1 

f 60 4 

; 

proc mixed data=unequal_slopes; 

class gender; 

model salary=gender years gender*years / noint solution; 

ods select SolutionF; 

title 'Reparmeterized Model'; 

run; 

Output:

Solution for Fixed Effects

Effect gender Estimate Standard Error DF t Value Pr > |t|

gender f 3.0000 3.3166 6 0.90 |t|">0.4006

gender m 15.0000 3.3166 6 4.52 |t|">0.0040

years  25.0000 1.0000 6 25.00 |t|"><.0001

years*gender f -10.0000 1.4142 6 -7.07 |t|">0.0004

years*gender m 0 . . . |t|">.

Here the intercepts are the Estimates for effects labeled "gender" and the slopes are the Estimates for the effect labeled
"years*gender". Thus, the regression equations for this unequal slopes model are:

The slopes of the regression lines differ significantly and are not parallel:

Females = 3.0+15(Years)y

^

(9.5.1)

Males = 15+25(Years)y

^

(9.5.2)
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Figure : Non-parallel regression lines of salary vs years since graduation

And here is the output:

Differences of Least Squares Means

Effect gender _gender years Estimate
Standard

Error
DF t Value Pr > |t|

gender f m 1.00 -22.000 3.4641 6 -6.35 |t|">0.0007

gender f m 3.00 -42.000 2.0000 6 -21.00 |t|">< .0001

gender f m 5.00 -62.000 3.4641 6 -17.90 |t|">< .0001

In this case, we see a significant difference at each level of the covariate specified in the lsmeans statement. The
magnitude of the difference between males and females differs (giving rise to the interaction significance). In more realistic
situations, a significant treatment × covariate interaction often results in significant treatment level differences at certain
points along the covariate axis.

Steps in Minitab

When we re-run the program with the new dataset Salary-new Data, we find a significant interaction between gender and
years.

To do this, open the Minitab dataset Salary-new Data.

Go to Stat > ANOVA > General Linear model > Fit General Linear Model and follow the same
sequence of steps as in the previous section. In Step 2, Minitab will display the following output.

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value

years 1 8000.0 8000.0 800.00 0.000

gender 1 65.5 65.45 6.55 0.043

years*gender 1 500.0 500.0 50.00 0.000

Error 6 60.0 10.00   

Total 9 12970.0    

It is clear the interaction term is significant and should not be removed. This suggests the slopes are not equal. Thus, the
magnitude of the difference between males and females differs (giving rise to the interaction significance).

9.5.a1

 Minitab Example
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Steps:

Fit an unequal slopes model.
Plot the regression lines.

Steps in R

1. Fit an unequal slopes model by using the following commands:

With a -value of 0.0004009 in the interaction term ( gender*years ), we can conclude that the slopes are unequal. To
estimate the two regression lines, we need the following output:

#summary(unequal_slopes_model)$coefficients 

#             Estimate  Std. Error    t value      Pr(>|t|) 

#(Intercept)         3    3.316625   0.904534  4.005719e-01 

#genderm            12    4.690416   2.558409  4.300074e-02 

#years              15    1.000000  15.000000  5.530240e-06 

#genderm:years      10    1.414214  7.071068   4.008775e-04 

Here the intercept for females is the estimate for intercept  and the intercept for males is the summation of the
estimates intercept + genderm  (note the letter m after gender). The slope for females is the estimate for years
and the slope for males is the summation of the estimates years + genderm: years  (note the letter m after
gender). Thus, the regression equations for the unequal slopes model are:  for females and  for
males.

2. Plot the regression lines by using the following commands:

setwd("~/path-to-folder/") 

unequal_slopes_data <- read.table("unequal_slopes.txt",header=T) 

attach(unequal_slopes_data) 

unequal_slopes_model<-lm(salary ~ gender + years + gender:years,unequal_slopes_d

anova(unequal_slopes_model) 

#Analysis of Variance Table 

#Response: salary 

#             Df Sum Sq Mean Sq F value     Pr(>F) 

#gender        1   4410    4410     441  7.596e-07 *** 

#years         1   8000    8000     800  1.293e-07 *** 

#gender:years  1    500     500      50  0.0004009 *** 

#Residuals     6     60      10 

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

males_regression <- lm(salary~years,data=subset(unequal_slopes_data,gender=="m")

females_regression <- lm(salary~years,data=subset(unequal_slopes_data,gender=="f

plot(years,salary, xlab="Years after graduation", ylab="Salary(Thousands)",pch=2

abline(males_regression) 

abline(females_regression) 

text(locator(1),"y=25x+15",col="red") 

 R Example

p

y = 3+15x y = 15+25x
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Figure : Regression line plot in R

This page titled 9.5: Using Technology - Unequal Slopes Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.

text(locator(1),"y=15x+3",col="blue") 

detach(unequal_slopes_data) 

9.5.c1
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9.6: Chapter 9 Summary
This chapter introduced us to ANCOVA methodology, which accommodates both continuous and categorical predictors. The model
discussed in this chapter has one categorical factor and only the linear effect of one single covariate, the continuous predictor. We
noted that the fitted linear relationship between the response and the covariate results in a straight line for each factor level and the
ANCOVA procedure then depends on the condition of equal slopes. One advantage of ANCOVA is the ability to examine the
differences among the factor levels after adjusting for the impact of the covariate on the response.

The salary data comparing males and females after accounting for their years after college illustrated how software such as SAS
and Minitab can be utilized in analyzing data using the ANCOVA procedure. In the next chapter, the ANCOVA topic will be
extended to include up to a cubic polynomial as the regression model of the response vs. covariate.

This page titled 9.6: Chapter 9 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

10: ANCOVA Part II

Upon completion of this chapter, you should be able to:

Use ANCOVA to analyze experiments that require polynomial modeling for quantitative (numerical) predictors.
Test hypotheses for treatment effects on polynomial coefficients.

In this chapter, we will extend our work with ANCOVA to model quantitative predictors with higher-order polynomials by utilizing
orthogonal polynomial coding. Fitting a polynomial to express the impact of the quantitative predictor on the response is also called
trend analysis and helps to evaluate the separate contributions of linear and nonlinear components of the polynomial. The examples
discussed will illustrate how software can be used to fit higher-order polynomials within an ANCOVA model.

10.1: ANCOVA with Quantitative Factor Levels
10.2: Quantitative Predictors - Orthogonal Polynomials
10.3: Chapter 10 Summary

This page titled 10: ANCOVA Part II is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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10.1: ANCOVA with Quantitative Factor Levels

An Extended Overview of ANCOVA

Designed experiments often contain treatment levels that have been set with increasing numerical values. For example, a chemical
process may be hypothesized to vary by two factors: the Reagent type (A or B), and temperature. So the researchers conducted an
experiment that investigates a response at 40, 50, 60, 70, and 80 degrees (Fahrenheit) for each of the Reagent types.

You can find the data at QuantFactorData.csv.

If temperature is considered as a categorical factor, we can proceed as usual with a 2 × 5 factorial ANOVA to evaluate the Null
Hypotheses:

and

Although the above hypotheses achieve the goal of comparing response means for the process carried out at different temperatures,
no conclusion can be made about the trend of the response as the temperature is increased.

In general, the trend effects of a continuous predictor are modeled using a polynomial where its non-constant terms represent the
different trends such as linear, quadratic, and cubic effects. These non-constant terms in the polynomial are called trend terms. The
statistical significance of these trend terms can also be tested in an ANCOVA setting by adding columns representing the trend
terms and their interaction effects with the categorical factor into the design matrix (X) of the General Linear Model (see Chapter 4
for the definition of a design matrix).

Note that the design matrix representing only the categorical factor contains the column of ones representing the reference factor
level and other dummy variable columns representing the remaining factor levels.

Inclusion of the trend term columns will facilitate significance testing for the overall trend effects and the columns representing the
interactions can be utilized to compare differences of each trend effect among the categorical factor levels.

Getting back to the chemical process example, if the quantitative property of measured temperature is used, we can carry out an
ANCOVA by fitting a polynomial regression model to express the impact of temperature on the response. If a quadratic polynomial
is desired, the appropriate ANCOVA design matrix can be obtained by adding two columns representing  and  along
with the column of ones representing the reagent type A, the reference reagent category, and one dummy variable column
representing the reagent type B.

The  and  terms allow us to investigate the linear and quadratic trends respectively. Furthermore, the inclusion of
columns representing the interactions between the reagent type and the two trend terms will facilitate the testing of differences
between these two trends between the two reagent types. Note also that additional columns can be added appropriately to fit a
polynomial of an even higher order.

To fit a polynomial of degree n, the response should be measured at least (n+1) distinct levels of the covariate. Preliminary
graphics such as scatterplots are useful in deciding the degree of the polynomial to be fitted.

To reduce structural multicollinearity, centering the covariate by subtracting the mean is recommended. For more details see
STAT 501 - Chapter 12: Multicollinearity

The necessary software code and/or commands along with outputs and conclusions are given below.

In SAS, this process would look like this:

:   =H

0

μ

A

μ

B

(10.1.1)

:   = = = =H

0

μ

40

μ

50

μ

60

μ

70

μ

80

(10.1.2)

:  no interactionH

0

(10.1.3)

temp temp

2

temp temp

2
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 Suggestion
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/*centering the covariate creating x^2 */ 

data centered_quant_factor; 

set quant_factor; 

x = temp-60; 

x2 = x**2; 

run; 

proc mixed data=centered_quant_factor method=type3; 

class reagent; 

model product=reagent x x2 reagent*x reagent*x2; 

title 'Centered'; 

run; 

Notice that we specify reagent as a class variable, but  and  enter the model as continuous variables. The regression coefficient
of  and  can be used to test the significance of the linear and quadratic trends for reagent type A, the reference category and the
interaction term coefficients can be used if these trends differ by categorical factor level. For example, testing the null hypothesis 

 where  is the regression coefficient of the  term is equivalent to testing that the linear
effects are the same for reagent type A and B.

SAS output:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean Square
Expected
Mean Square

Error Term Error DF F Value Pr > F

reagent 1 3.066357 3.066357
Var(Residua
l) +
Q(reagent)

MS(Residua
l)

24 2.97
F" class="
">0.0977

x 1 97.600495 97.600495

Var(Residua
l) +
Q(x,x*reage
nt)

MS(Residua
l)

24 94.52
F" class=" ">
<.0001

x2 1 88.832986 88.832986

Var(Residua
l) +
Q(x2,x2*rea
gent)

MS(Residua
l)

24 86.03
F" class=" ">
<.0001

x*reagent 1 0.341215 0.341215

Var(Residua
l) +
Q(x*reagent
)

MS(Residua
l)

24 0.33
F" class="
">0.5707

x2*reagent 1 0.067586 0.067586

Var(Residua
l) +
Q(x2*reage
nt)

MS(Residua
l)

24 0.07
F" class="
">0.8003

Residual 24 24.782417 1.032601
Var(Residua
l)

. . .
F" class="
">.

1. The reagent effect was not significant with 
2. Only the linear and quadratic effects were significant in describing the trend in the response, and linear and quadratic effects

were the same for each of the reagent types (no interactions)

x x

2

x x

2

:   = 0H

0

β

Reagent∗x

β

Reagent∗x

Reagent ∗ x

p = 0.0977
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Figure : Graphing product vs temperature

Steps:

Load the Quant Factor Data.
Obtain the ANOVA table after centering the covariate and creating .
Plot the data.

Steps in R

1. Load the Quant Factor data, obtain the ANOVA table (after centering the covariate), and create  by using the following
commands:

Only the linear and quadratic effects were significant in describing the trend in the response, and linear and quadratic
effects were the same for each of the reagent types (no interactions).

2. Plot the polynomial regression curve for reagent A and reagent B by using the following commands:

setwd("~/path-to-folder/") 

QuantFactor_data <- read.table("QuantFactorData.txt",header=T) 

attach(QuantFactor_data) 

temp_center<-temp-60 

temp_square_center<-temp_center^2 

new_data<-cbind(QuantFactor_data,temp_center,temp_square_center) 

ancova_model<-lm(product ~ reagent + temp_center + temp_square_center + reagent:

anova(ancova_model) 

#Analysis of Variance Table 

#Response: product 

#                           Df  Sum Sq  Mean Sq  F value     Pr(>F)

#reagent                     1   9.239    9.239   8.9476   0.006336 ** 

#temp_center                 1  97.600   97.600  94.5191  8.499e-10 *** 

#temp_square_center          1  88.833   88.833  86.0284  2.093e-09 *** 

#reagent:temp_center         1   0.341    0.341   0.3304  0.570749 

#reagent:temp_square_center  1   0.068    0.068   0.0655  0.800257 

#Residuals                  24  24.782    1.033 

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

10.1.1

 Using R
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Figure : Graphing product vs temperature using R
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curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.

reagentA_regression <- lm(product ~ temp_center + temp_square_center,data=subset

reagentB_regression <- lm(product ~ temp_center + temp_square_center,data=subset

plot(temp,product,ylim=c(0,20),xlab="Temperature", ylab="Product",pch=23, col=if

lines(fitted(reagentA_regression) ~ temp, data=subset(new_data,reagent=="A"), co

lines(fitted(reagentB_regression) ~ temp, data=subset(new_data,reagent=="B"), co

text(locator(1),"reagent A",col="blue") 

text(locator(1),"reagent B",col="red") 

detach(QuantFactor_data) 

10.1.2
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10.2: Quantitative Predictors - Orthogonal Polynomials
Polynomial trends in the response with respect to a quantitative predictor can be evaluated by using orthogonal polynomial contrasts,
a special set of linear contrasts. This is an alternative to the Regression analysis illustrated in the previous section, which may be
affected by multicollinearity. Note that centering to remedy multicollinearity is effective only for quadratic polynomials. Therefore,
this simple technique of trend analysis performed via orthogonal polynomial coding will prove to be beneficial for higher-order
polynomials. Orthogonal polynomials have the property that the cross-products defined by the numerical coefficients of their terms
add to zero.

The orthogonal polynomial coding can be applied only when the levels of quantitative predictor are equally spaced. The method is to
partition the quantitative factor in the ANOVA table into independent single degrees of freedom comparisons. The comparisons are
called orthogonal polynomial contrasts or comparisons.

Orthogonal polynomials are equations such that each is associated with a power of the independent variable (e.g. , linear; ,
quadratic; , cubic, etc.). In other words, orthogonal polynomials are coded forms of simple polynomials. The number of possible
comparisons is equal to , where  is the number of quantitative factor levels. For example, if , only two comparisons are
possible allowing for testing of linear and quadratic effects.

Using orthogonal polynomials to fit the desired model to the data would allow us to eliminate collinearity and to seek the same
information as simply polynomials.

A typical polynomial model of order  would be:

The simple polynomials used are . We can obtain orthogonal polynomials as linear combinations of these simple
polynomials. If the levels of the predictor variable, , are equally spaced, then one can easily use coefficient tables to determine the
orthogonal polynomial coefficients that can be used to set up an orthogonal polynomial model.

If we are to fit the  order polynomial to using orthogonal contrasts coefficients, the general equation can be written as

where  is a polynomial in  of degree  for the  level treatment factor and the parameter  depends on
the coefficients . Using the properties of the function , one can show that the first five orthogonal polynomial are of the
following form:

where  = number of levels of the factor,  = value of the factor level,  = mean of the factor levels, and  = distance between factor
levels.

In the next section, we will illustrate how the orthogonal polynomial contrast coefficients are generated, and the Factor SS is
partitioned. This method will be required to fit polynomial regression models with terms greater than the quadratic, because even
after centering there will still be multicollinearity between  and  as well as between  and .

The following example is taken from Design of Experiments: Statistical Principles of Research Design and Analysis by Robert
Kuehl.
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The treatment design consisted of five plant densities (10, 20, 30, 40, and 50). Each of the five treatments was assigned randomly
to three field plots in a completely randomized experimental design. The resulting grain yields are shown in the table below
(Grain Data):

Plant Density 

10 20 30 40 50

 12.2 16.0 18.6 17.6 18.0

 11.4 15.5 20.2 19.3 16.4

 12.4 16.5 18.2 17.1 16.6

Means 12.0 16.0 19.0 18.0 17.0

Solution
We can see that the factor levels of plant density are equally spaced. Therefore, we can use the orthogonal contrast coefficients to
fit a polynomial to the response, grain yields. With , we can only fit up to a quartic term. The orthogonal polynomial
contrast coefficients for the example are shown in Table 10.1.

Table 10.1 - Computations for orthogonal polynomial contrasts and sums of squares

Density 
Orthogonal Polynomial Coefficients 

Mean Linear Quadratic Cubic Quartic

10 12 1 -2 2 -1 1

20 16 1 -1 -1 2 -4

30 19 1 0 -2 0 6

40 18 1 1 -1 -2 -4

50 17 1 2 2 1 1

- 1 1 5/6 35/12

Sum = 82 12 -14 1 7

Divisor = 5 10 14 10 70

- 43.2 42.0 0.3 2.1

16.4 1.2 -1.0 0.1 0.1

As mentioned before, one can easily find the orthogonal polynomial coefficients for a different order of polynomials using pre-
documented tables for equally spaced intervals. However, let us try to understand how the coefficients are obtained.

First note that the five values of  are . Therefore,  and the spacing . This means that the five
values of  are  and .

Linear coefficients: The polynomial  for linear coefficients turn out to be:

 Example : Grain Yield10.2.1
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Linear Coefficient Polynomials 

10 20 30 40 50

-20 -10 0 10 20

-2 -1 0 1 2

Linear orthogonal
polynomial

To obtain the final set of coefficients we choose  so that the coefficients are integers. Therefore, we set  and obtain the
coefficient values in Table 10.1.

Quadratic coefficients: The polynomial  for linear coefficients:
Linear Coefficient Polynomials 

Linear orthogonal
polynomial

Simplified form

To obtain the final set of coefficients we choose  so that the coefficients are integers. Therefore, we set  and obtain the
coefficient values in Table 10.1.

Cubic coefficients: The polynomial  for linear coefficients:
Linear Coefficient Polynomials 

Linear orthogonal
polynomial

Simplified form

Quartic coefficients: The polynomial g4 can be used to obtain the quartic coefficients in the same way as
above.
Notice that each set of coefficients for contrast among the treatments since the sum of coefficients is equal to zero. For example,
the quartic coefficients  sums to zero. Using orthogonal polynomial contrasts, we can partition the treatment
sums of squares into a set of additive sums of squares corresponding to orthogonal polynomial contrasts. Computations are
similar to what we learned in lesson 2.5. We can use those partitions to test sequentially the significance of linear, quadratic,
cubic, and quartic terms in the model to find the polynomial order appropriate for the data.

Table 10.1 shows how to obtain the sums of squares for each component and how to compute the estimates of the  coefficients
for the orthogonal polynomial equation. Using the results in table 10.1, we have estimated orthogonal polynomial equation as:

Table 10.2 summarizes how the treatment sums of squares are partitioned and their test results.

Table 10.2 - Analysis of variance for the orthogonal polynomial model 
relationship between plant density and grain yield.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F Pr > F

Density 4 87.60 21.90 29.28 F">.000

Error 10 7.48 0.75  F">
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Contrast DF Contrast SS Mean Square F Pr > F

Linear 1 43.20 43.20 57.75 F">.000

Quadratic 1 42.00 42.00 56.15 F">.000

Cubic 1 .30 .30 .40 F">.541

Quartic 1 2.10 2.10 2.81 F">.125

To test whether any of the polynomials are significant (i.e. ), we can use the global F-test where
the test statistic is equal to 29.28. We see that the p-value is almost zero and therefore we can conclude that at the 5% level at
least one of the polynomials is significant. Using the orthogonal polynomial contrasts we can determine which of the polynomials
are useful. From table 3.5, we see that for this example only the linear and quadratic terms are useful. Therefore we can write the
estimated orthogonal polynomial equation as:

The polynomial relationship expressed as a function of  and  in actual units of the observed variables is more informative than
when expressed in units of the orthogonal polynomial.

We can obtain the polynomial relationship using the actual units of observed variables by back-transforming using the
relationships presented earlier. The necessary quantities to back-transform are , , , and . Substituting
these values, we obtain

which simplifies to

Generating Orthogonal Polynomials

Steps in SAS

Below is the code for generating polynomials from the IML procedure in SAS:

/* read the grain data set */ 

/* Generating Ortho_Polynomials from IML */ 

proc iml; 

x={10 20 30 40 50}; 

xpoly=orpol(x,4); /* the '4' is the df for the quantitative factor */ 

density=x`; new=density || xpoly; 

create out1 from new[colname={"density" "xp0" "xp1" "xp2" "xp3" "xp4"}]; 

append from new; close out1; 

quit; 

proc print data=out1; 

run; 

/* Here data is sorted and then merged with the original dataset */ 

proc sort data=grain; 

by density; 

run; 
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Vari…

Vari…

Vari…

Vari…

data ortho_poly; merge out1 grain; 

by density; 

run; 

proc print data=ortho_poly; 

run; 

/* The following code will then generate the results shown in the 

Online Lesson Notes for the Kuehl example data */ 

proc mixed data=ortho_poly method=type3; 

class; 

model yield=xp1 xp2 xp3 xp4; 

title 'Using Orthog polynomials from IML'; 

run; 

/* We can use proc glm to obtain the same results without using 

IML codings, to directly obtained the same results. 

Proc glm will use the orthogonal contrast coefficients directly */ 

proc glm data=grain; 

class density; 

model yield = density; 

contrast 'linear' density -2 -1 0 1 2; 

contrast 'quadratic' density 2 -1 -2 -1 2; 

contrast 'cubic' density -1 2 0 -2 1; 

contrast 'quartic' density 1 -4 6 -4 1; 

run; 

The output is:

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean

Square

Error
Term

Error
DF

F
Value

Pr > F

xp1 1 43.200000 43.200000
Var(Residual)

+ Q(xp1)
MS(Residual) 10 57.75

F">
<

.0001

xp2 1 42.000000 42.000000
Var(Residual)

+ Q(xp2)
MS(Residual) 10 56.15

F">
<

.0001

xp3 1 0.300000 0.300000
Var(Residual)

+ Q(xp2)
MS(Residual) 10 0.40

F">
0.5407

xp4 1 2.100000 2.100000
Var(Residual)

+ Q(xp4)
MS(Residual) 10 2.81

F">
0.1248

Residual 10 7.480000 7.480000 Var(Residual)   
F" class="
">

Fitting a Quadratic Model with Proc Mixed
Often we can see that only a quadratic curvature is of interest in a set of data. In this case, we can plan to simply run an order
2 (quadratic) polynomial and can easily use proc mixed (the general linear model). This method just requires centering the
quantitative variable levels by subtracting the mean of the levels (30) and then creating the quadratic polynomial terms.
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ysis …

ysis …

ysis …

Fix…

Fix…

Fix…

data grain; 

set grain; 

x=density-30; 

x2=x**2; 

run; 

proc mixed data=grain method=type3; 

class; 

model yield = x x2; 

run; 

The output is:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean

Square

Error
Term

Error
DF

F
Value

Pr > F

x 1 43.200000 43.200000
Var(Residual)

+ Q(x)
MS(residual) 12 52.47

F">
<.0001

x2 1 42.000000 42.000000
Var(Residual)

+ Q(x2)
MS(residual) 12 51.01

F">
<.0001

Residual 12 9.880000 0.823333 Var(Residual)   
F" class="
">

We can also generate the solutions (coefficients) for the model with:

proc mixed data=grain method=type3; 

class; 

model yield = x x2 / solution; 

run; 

which gives the following output for the regression coefficients:

Solution for Fixed Effects

Effect Estimate
Standard
Error

DF t Value Pr > |t|

Intercept 18.4000 0.3651 12 50.40 |t|"> <.0001

x 0.1200 0.01657 12 7.24 |t|"> <.0001

x2 -0.01000 0.001400 12 -7.14 |t|"> <.0001

Here we need to keep in mind that the regression was based on centered values for the predictor, so we have to back-
transform to get the coefficients in terms of the original variables. This back-transform process (from Kutner et.al) is:

Regression Function in Terms of 
After a polynomial regression model has been developed, we often wish to express the final model in terms of the original
variables rather than keeping it in terms of the centered variables. This can be done readily. For example, the fitted second-
order model for one predictor variable that is is expressed in terms of centered values :
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because in terms of the original  variable:

where:

In the example above, this back-transformation uses the estimates from the Solutions for Fixed Effects table above.

data backtransform; 

bprime0=18.4-(.12*30)+(-.01*(30**2)); 

bprime1=.12-(2*-.01*30); 

bprime2=-.01; 

title 'bprime0=b0-(b1*meanX)+(b2*(meanX)2)'; 

title2 'bprime1=b1=2*b2*meanX'; 

title3 'bprime2=b2'; 

run; 

proc print data=backtransform; 

var bprime0 bprime1 bprime2; 

run; 

The output is then:

Obs bprime0 bprime1 bprime2

1 5.8 0.72 -0.01

The ANOVA results and the final quadratic regression equation here are identical to the results from the orthogonal
polynomial coding approach.

Load the Grain Data.
Obtain the ANOVA table.
Fit a quadratic model after centering the covariate and creating . Transform back to the original variables.

Steps in R

1. Load the Grain data and obtain the ANOVA table by using the following commands:

setwd("~/path-to-folder/") 

grain_data <- read.table("grain_data.txt",header=T) 

attach(grain_data) 

poly_model<-lm(yield ~ poly(density,4),data=grain_data) 

summary(poly_model) 

#Coefficients: 

#                   Estimate  Std. Error  t value  Pr(>|t|) 

#(Intercept)         16.4000      0.2233   73.441  5.35e-15 *** 
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#poly(density, 4)1    6.5727      0.8649    7.600  1.84e-05 *** 

#poly(density, 4)2   -6.4807      0.8649   -7.493  2.08e-05 *** 

#poly(density, 4)3    0.5477      0.8649    0.633     0.541 

#poly(density, 4)4    1.4491      0.8649    1.676     0.125 

anova(poly_model) 

#Analysis of Variance Table 

#Response: yield 

#                  Df  Sum Sq  Mean Sq  F value    Pr(>F) 

#poly(density, 4)   4   87.60   21.900   29.278  1.69e-05 *** 

#Residuals         10    7.48    0.748 

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

By using the command anova()  we can test whether any of the polynomials are significant (i.e. 
. We can use the global F-test where the test statistic is equal to 29.28. We see that the p-value

is almost zero, and therefore we can conclude that at the 5% level at least one of the polynomials is significant.

By using the command summary()  we can test which contrasts are significant. For this example only the linear and
quadratic terms are significant since there p-values are almost zero.

2. Fit a quadratic model after centering the covariate and creating  by using the following commands:

Transform back to the original variables

density_center<-density-30 

density_square_center<-density_center^2 

new_data<-cbind(grain_data,density_center,density_square_center) 

ancova_model<-lm(yield ~ density_center + density_square_center,new_data) 

summary(ancova_model) 

#Coefficients: 

#                      Estimate  Std. Error  t value  Pr(>|t|) 

#(Intercept)           18.40000     0.36511   50.396  2.44e-15 *** 

#density_center         0.12000     0.01657    7.244  1.02e-05 *** 

#density_square_center -0.01000     0.00140   -7.142  1.18e-05 *** 

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

anova(ancova_model) 

#Analysis of Variance Table 

#Response: yield 

#                      Df  Sum Sq  Mean Sq  F value     Pr(>F) 

#density_center         1   43.20   43.200   52.470  1.024e-05 *** 

#density_square_center  1   42.00   42.000   51.012  1.177e-05 *** 

#Residuals             12    9.88    0.823 

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

3. Transform back to the original variables

The estimated coefficients for the polynomial model are 18.4, 0.12 and -0.01. Here we need to keep in mind that the
regression was based on centered values for the predictor, so we have to back-transform to get the coefficients in terms of the
original variables. We can do that by using the following commands:
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b_0_prime<-18.4-0.12*30-0.01*30^2 #5.8 

b_1_prime<-0.12-0.01*(-2*30) # 0.72 

b_2_prime<--0.01 # -0.01 

detach(grain_data) 

For the original variables the estimated coefficients are 5.8, 0.72 and -0.01.

This page titled 10.2: Quantitative Predictors - Orthogonal Polynomials is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
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10.3: Chapter 10 Summary
We've seen some of the versatility of ANCOVA in Chapter 9 and Chapter 10. In application, it's often used in ANOVA settings to
adjust or "control for" a covariate that may be masking real treatment differences. In regression settings, researchers may be
focused on a family of regression relationships, and are interested in testing for significant differences among regression
coefficients across different groups.

These are like two sides of the same coin: in terms of model development, ANOVA and Regression approaches converge in the
general linear model as ANCOVA. Mastery of ANCOVA methodology is arguably one of the most important tools to have in an
applied statistician's toolbox.

This page titled 10.3: Chapter 10 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

11: Introduction to Repeated Measures

Upon completion of this lesson, you should be able to:

Recognize repeated measures designs in time.
Understand the different covariance structures that can be imposed on model error.
Use software such as SAS, Minitab, and R for fitting repeated measures ANOVA.

The focus of many studies can be expanded by introducing time also as a potential covariate. In the greenhouse example, the
growth of plants can be measured weekly over a period of time, allowing time also to be included as a predictor in the statistical
model. Another example is to compare the effect of two anti-cancer drugs on disease status at different intervals of time. In both
these examples, the response has to be measured multiple times from the same experimental unit, hence the term "repeated
measures." The repeated measurements made on the same experimental unit cannot be assumed independent which means that the
model errors may not be uncorrelated anymore and the statistical model should be modified accordingly.

Two fundamental types of repeated measures are common. Repeated measures in time are the type in which experimental units
receive treatment, and they are simply followed with repeated measures on the response variable over several times. In contrast,
experiments can involve administering all treatment levels (in a sequence) to each experimental unit. This type of repeated
measures study is called a crossover design, the topic of our next lesson.

Repeated measures are frequently encountered in clinical trials including longitudinal studies, growth models, and situations in
which experimental units are difficult to acquire.

11.1: Historical Methods
11.2: Correlated Residuals
11.3: More on Covariance Structures
11.4: Worked Example
11.5: Chapter 11 Summary

This page titled 11: Introduction to Repeated Measures is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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11.1: Historical Methods
Repeated measures in time were historically handled in either a multivariate analysis setting or as a univariate split-plot in time.
The focus in this course is limited only to the latter.

A split-plot in time approach looks at each subject (experimental unit) as the main plot (receiving treatment) and then is split into
sub-plots (time periods). Historically, the default assumption in split-plot in time data analysis has been that the correlations among
responses at different time points are the same for all treatment levels and time points (compound symmetry). However, depending
on the study and nature of data, other correlation structures can be more appropriate (e.g. autoregressive lag 1).

Most of the current software facilitates the inclusion of different correlation structures which has helped in the evolution of
methodology for repeated measures to accommodate the presence of different correlated structures in residuals.

This page titled 11.1: Historical Methods is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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11.2: Correlated Residuals

The first part of the section uses a hypothetical data set to illustrate the origin of the covariance structure, by capturing the
residuals for each time point and looking at the simple correlations for pairs of time points. Therefore, the software code used
for this purpose is NOT what we would ordinarily use in conducting a repeated measures analysis as generating the residuals
of a fitted model and their variances and covariances is automatically done by software. The variances and the covariances of
the residuals will be outputted as the diagonals and the off-diagonals of the variance-covariance (R block) matrix in SAS or R.
Minitab currently does not accommodate various covariance structures, opting instead to treat repeated measures as "split-plot
in time" (which assumes compound symmetry).

If we look at the ANOVA mixed model in general terms, we have:

In the case of repeated measures with measures taken at  number of time points, the covariance structure of the errors can be
expressed as a matrix. The diagonals of this matrix are the error variances at each time point. The off-diagonals are the covariances
between successive time points. In general, the variance-covariance matrix can be expressed as follows:

The structure shown above does not assume any specific properties of the variances and covariances and is called an unstructured

covariance structure. Note that there are  variances and  covariances that adds to  unknown quantities which define
this matrix. So, even for a small number of time points, a substantial number of parameters will have to be estimated. Therefore, in
practice, specific structures are imposed to reduce the number of distinct parameters that need to be estimated, which will be
discussed in Section 11.3.

To understand the correlation structure of errors, let us use SAS to generate the variance-covariance matrix of the errors for a
repeated measures model using hypothetical data stored in Repeated Measures Example Data. The data consists of a single
treatment with 3 levels. Subjects are assigned a treatment level at random (CRD) and then are measured at  time points. The
SAS code which is given below fits a factorial model and generates the errors along with the correlations among responses taken at
three time points.

data rmanova; 

  input trt $ time subject resp; 

  datalines; 

   A 1 1 10 

   A 1 2 12 

   A 1 3 13 

   A 2 1 16 

   A 2 2 19 

   A 2 3 20 

   A 3 1 25 

   A 3 2 27 

   A 3 3 28 

   B 1 4 12 

   B 1 5 11 

   B 1 6 10 

 Note

Model: response = fixed effects +random effects +errors (11.2.1)
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   B 2 4 18 

   B 2 5 20 

   B 2 6 22 

   B 3 4 25 

   B 3 5 26 

   B 3 6 27 

   C 1 7 10 

   C 1 8 12 

   C 1 9 13 

   C 2 7 22 

   C 2 8 23 

   C 2 9 22 

   C 3 7 31 

   C 3 8 34 

   C 3 9 33 

; 

We can run a simple model and obtain the residuals.

/* 2-factor factorial for trt and time - saving residuals */ 

proc mixed data=rmanova method=type3; 

  class trt time subject; 

  model resp=trt time trt*time / ddfm=kr outpm=outmixed; 

  title 'Two_factor_factorial'; 

run; title; 

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

trt 2 18 14.52 F">0.0002

time 2 18 292.72 F"><.0001

trt*time 4 18 4.67 F">0.0092

/* re-organize the residuals to (unstacked data for correlation) */ 

data one; 

  set outmixed; 

  where time=1; time1=resid; 

  keep time1; 

run; 

data two; set outmixed; where time=2; time2=resid; keep time2; run; 

data three; set outmixed; where time=3; time3=resid; keep time3; run; 

 

data corrcheck; merge one two three; 

 

proc print data=corrcheck; 

run; 
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proc corr data=corrcheck nosimple; var time1 time2 time3; run; 

The residuals then are:

The Print Procedure

Obs time1 time2 time3

1 -1.66667 -2.33333 -1.66667

2 0.33333 0.66667 0.33333

3 1.33333 1.66667 1.33333

4 1.00000 -2.00000 -1.00000

5 0.00000 0.00000 0.00000

6 -1.00000 2.00000 1.00000

7 -1.66667 -0.33333 -1.66667

8 0.33333 0.66667 1.33333

9 1.33333 -0.33333 0.33333

The correlations of responses between time points are:

The CORR Procedure

3 Variables: time1 time2 time3

Pearson Correlation Coefficients, N = 9 
Prob > |r| under H0: Rho=0

time1 time2 time3

time1 1.00000
0.19026 
0.6239

0.55882 
0.1178

time2
0.19026 
0.6239

1.00000
0.83239 
0.0054

time3
0.55882 

0.1178
0.83239 
0.0054

1.00000

Notice that in the above code, the repeated nature of the data is not being utilized. The "repeated" statement in proc mixed ,
which is used in practice, accounts for this. As in the code given below, in the repeated statement, the option of subject=
specifies what experimental (or observational) units the repeated measures are made on. The type=  can be used to specify one
of many types of structures for these correlations. Here we specified the unstructured covariance structure and obtained the same
correlations that were generated earlier with simple statistics.

proc mixed data=rmanova ; 

    class trt time subject; 

    model resp=trt time trt*time / ddfm=kr solution ; 

    repeated /subject=subject(trt) type=UN rcorr; 

    title 'Repeated Measures'; 

run; title; 
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Finding the best covariance structure is much of the work in modeling repeated measures and is usually done by considering a
subset of candidate structures. These include UN (Unstructured), CS (Compound Symmetry), AR(1) (Autoregressive lag 1) – if
time intervals are evenly spaced, or SP(POW) (Spatial Power) – if time intervals are unequally spaced.

Choosing the best covariance structure is based on Fit Statistics (also known as information criteria). PROC MIXED in SAS
automatically generates four of such Fit Statistics measures and for this example, they are:

Fit Statistics

-2 Res Log Likelihood 63.0

AIC (Smaller is Better) 75.0

AICC (Smaller is Better) 82.6

BIC (Smaller is Better) 76.2

Smaller or more negative values indicate a better fit to the data. The process amounts to trying various candidate structures and
then selecting the covariance structure producing the smallest or most negative values. The information criteria listed above are
usually similar in value, but for small sample sizes, the AICC criterion is recommended. The topic of covariance structures for a
general setting is discussed in the next section.

Load the Repeated Measures Example Data.
Obtain the ANOVA table.
Obtain the correlations of responses between time points.
Obtain the results for the split-plot in time approach.
Run the analysis as a repeated-measures ANOVA by using different covariance structures.

Steps in R

1. Load the Repeated Measures Example data and obtain the ANOVA by using the following commands:

2. Obtain the correlations of responses between time points by using the following commands:

setwd("~/path-to-folder/") 

repeated_measures_example_data <- read.table("repeated_measures_example_data.txt

attach(repeated_measures_example_data) 

rmanova<-aov(resp ~ trt + factor(time) + trt*factor(time), repeated_measures_exa

anova(rmanova) 

#Analysis of Variance Table 

#Response: resp 

#                 Df   Sum Sq  Mean Sq   F value     Pr(>F) 

#trt               2    64.52    32.26   14.5167  0.0001761 *** 

#factor(time)      2  1300.96   650.48  292.7167   1.87e-14 *** 

#trt:factor(time)  4    41.48    10.37    4.6667  0.0092424 ** 

#Residuals        18    40.00     2.22 

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

time_1<-c(rmanova$residuals[1:3],rmanova$residuals[10:12],rmanova$residuals[19:2

time_2<-c(rmanova$residuals[4:6],rmanova$residuals[13:15],rmanova$residuals[22:2

time_3<-c(rmanova$residuals[7:9],rmanova$residuals[16:18],rmanova$residuals[22:2

residuals<-cbind(time_1,time_2,time_3) 

 Using R
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This page titled 11.2: Correlated Residuals is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.

rownames(residuals)<-NULL 

#residuals 

#             time_1        time_2         time_3 

#[1,] -1.666667e+00  -2.333333e+00  -1.666667e+00 

#[2,]  3.333333e-01   6.666667e-01   3.333333e-01 

#[3,]  1.333333e+00   1.666667e+00   1.333333e+00 

#[4,]  1.000000e+00  -2.000000e+00  -1.000000e+00 

#[5,] -3.885781e-16   9.436896e-16  -7.216450e-16 

#[6,] -1.000000e+00   2.000000e+00   1.000000e+00 

#[7,] -1.666667e+00  -3.333333e-01  -3.333333e-01 

#[8,]  3.333333e-01   6.666667e-01   6.666667e-01 

#[9,]  1.333333e+00  -3.333333e-01  -3.333333e-01 

#cor(residuals) 

# 

#           time_1     time_2     time_3 

#time_1  1.0000000  0.1902606  0.3290726 

#time_2  0.1902606  1.0000000  0.9756655 

#time_3  0.3290726  0.9756655  1.0000000 
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11.3: More on Covariance Structures

Variance Components (VC)

The variance component structure (VC) is the simplest, where the correlations of errors within a subject are presumed to be 0. This
structure is the default setting in proc mixed, but is not a reasonable choice for most repeated measures designs. It is included in the
exploration process to get a sense of the effect of fitting other structures.

Compound Symmetry (CS)

The simplest covariance structure that includes within-subject correlated errors is compound symmetry (CS). Here we see
correlated errors between time points within subjects, and note that these correlations are presumed to be the same for each set of
times, regardless of how distant in time the repeated measures are made.

First Order Autoregressive AR(1)

The autoregressive (Lag 1) structure considers correlations to be highest between adjacent times, and a systematically decreasing
correlation with increasing distance between time points. For one subject, the error correlation between time 1 and time 2 would be 

. Between time 1 and time 3 the correlation would be less, and equal to . Between time 1 and 4, the correlation is lesser,
as , and so on. Note that this structure is only applicable for evenly spaced time intervals for the repeated measure; so that
consecutive correlations are  raised to powers of 1, 2, 3, etc.

Spatial Power

When time intervals are not evenly spaced, a covariance structure equivalent to the AR(1) is the spatial power (SP(POW)). The
concept is the same as the AR(1) but instead of raising the correlation to powers of 1, 2, 3, …, the correlation coefficient is raised
to a power that is the actual difference in times (e.g.  for the correlation between time 1 and time 2). It is clear that this
method requires having quantitative values for the variable time in the data so that it can be specified for the calculation of the
exponents in the SP(POW) structure. If an analysis is run wherein the repeated measures are equally spaced in time, the AR(1) and
SP(POW) structures yield identical results.
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Unstructured Covariance

The Unstructured covariance structure (UN) is the most complex because it is estimating unique correlations for each pair of time
points. As there are too many parameters (all distinct correlations), the estimates most times will not be computable. SAS for
instance returns an error message indicating that there are too many parameters to estimate with the data.

Choosing the Best Covariance Structure
The fit statistics used for model selection can also be utilized in choosing the best covariance matrix. The model selections most
commonly supported by software are -2 Res Log Likelihood, Akaike’s information criterion - corrected (AICC), and Bayesian
Information Criteria (BIC). These statistics are functions of the log likelihood and can be compared across different models as well
as different covariance structures provided the fixed effects part is the same in each model. The smaller the criterion statistics value
is, the better the model is, and if they are close, the simpler model is preferred.

BIC tends to choose simpler models compared to AICC. Choosing a model that is too simple however inflates the Type I error rate.
Therefore, if controlling Type I error is of importance, AICC may be the better criterion. On the other hand, if loss of power is of
more concern, BIC might be preferable (Guerin and Stroup 2000).

The MIXED procedure in SAS outputs the 3 criterion statistics when using the type =  option in the Repeated statement.

In addition to using the above fit statistics, graphical approaches are also available, and see Graphical Approach for more details.
Combining information from both approaches to make the final choice may also prove to be beneficial.

This page titled 11.3: More on Covariance Structures is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.

⎡

⎣

⎢

⎢

⎢

⎢

σ

1

1

σ

12

σ

2

2

σ

13

σ

23

σ

2

3

σ

14

σ

24

σ

34

σ

2

4

⎤

⎦

⎥

⎥

⎥

⎥

(11.3.5)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33192?pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/198-30.pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/11%3A_Introduction_to_Repeated_Measures/11.03%3A_More_on_Covariance_Structures
https://creativecommons.org/licenses/by-nc/4.0
https://science.psu.edu/stat
https://online.stat.psu.edu/stat502_fa21/


11.4.1 https://stats.libretexts.org/@go/page/33193

11.4: Worked Example
For the example dataset in Repeated Measures Example Data, which we introduced in the 11.2: Correlated Residuals section, we
can plot the data:

Figure : The values of the response plotted at each of the three time points for each of the 9 subjects.

We can obtain the results for the split-plot in time approach using the following:

/* Split-Plot in Time */ 

proc mixed data=rmanova method=type3; 

  class trt time subject; 

  model resp=trt time trt*time / ddfm=kr; 

  random subject(trt); title 'Split-Plot in Time'; 

run; 

Next, we run the analysis as a repeated-measures ANOVA, which allows us to evaluate which covariance structure fits best.

Next, we run the analysis as a repeated-measures ANOVA, which allows us to evaluate which covariance structure fits best.

/* Repeated Measures Approach */ 

/* Fitting Covariance structures: */ 

/* Note: the code begining with "ods output ..." for each 

run of the Mixed procedure generates an output that 

is tabulated at the end to enable comparison of 

the candidate covariance structure */ 

proc mixed data=rmanova; 

  class trt time subject; 

  model resp=trt time trt*time / ddfm=kr; 

  repeated time/subject=subject(trt) type=cs rcorr; 

 

ods output FitStatistics=FitCS (rename=(value=CS)) 

 FitStatistics=FitCSp; 

title 'Compound Symmetry'; run; 

title ' '; run; 

 

11.4.1
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…

…

…

proc mixed data=rmanova; 

  class trt time subject; 

  model resp=trt time trt*time / ddfm=kr; 

  repeated time/subject=subject(trt) type=ar(1) rcorr; 

 

ods output FitStatistics=FitAR1 (rename=(value=AR1)) 

 FitStatistics=FitAR1p; 

title 'Autoregressive Lag 1'; run; 

title ' '; run; 

 

proc mixed data=rmanova; 

  class trt time subject; 

  model resp=trt time trt*time / ddfm=kr; 

  repeated time/subject=subject(trt) type=un rcorr; 

 

ods output FitStatistics=FitUN (rename=(value=UN)) 

 FitStatistics=FitUNp; 

title 'Unstructured'; run; 

title ' '; run; 

 

data fits; 

  merge FitCS FitAR1 FitUN; 

  by descr; 

  run; 

ods listing; proc print data=fits; run; 

We get the following Summary Table:

Obs Descr CS AR1 UN

1 -2 Res Log Likelihood 70.9 71.9 63.0

2 AIC (smaller is better) 74.9 75.9 75.0

3 AICC (smaller is better) 75.7 76.7 82.6

4 BIC (smaller is better) 75.3 76.3 76.2

Using the AICC as our criteria, we would choose the compound symmetry (CS) covariance structure.

The output from this would be:

Type 3 Test of Fixed Effect

Effect Num DF Den DF F Value Pr > F

trt 2 6 7.14 F">0.0259

time 2 12 605.62 F">< .0001

trt*time 4 12 9.66 F">0.0010

Note that for this case, the -values obtained here are identical to the split-plot in time approach.p
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Steps in R

1. Obtain the results for the split-plot in time approach by using the following commands:

2. Run the analysis as a repeated-measures ANOVA by using different covariance structures. We can use the following
commands:

This page titled 11.4: Worked Example is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.

library(lmerTest) 

library(lme4) 

model<-lmer(resp ~ trt + factor(time) + trt:factor(time) + (1 | factor(subject) 

anova(model) 

#Type III Analysis of Variance Table with Satterthwaite s method 

#               Sum Sq  Mean Sq  NumDF  DenDF  F value   Pr(>F) 

#trt                15        8      2      6     7.14  0.02590 * 

#(time)           1301      650      2     12   605.62  8.9e-13 ***

#trt:factor(time)   41       10      4     12     9.66  0.00099 ***

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

library(nlme) 

model_cs<-gls(resp ~ trt + factor(time) + trt*factor(time),repeated_measures_exa

model_AR<-gls(resp ~ trt + factor(time) + trt*factor(time),repeated_measures_exa

model_UN<-gls(resp ~ trt + factor(time) + trt*factor(time),repeated_measures_exa

Model_Selection <- data.frame( 

c ("","-2LogLik","AIC", "BIC"), 

c("CS", round(-2*summary(model_cs)$logLik,2),round(summary(model_cs)$AIC,2),roun

c("AR1", round(-2*summary(model_AR)$logLik,2),round(summary(model_AR)$AIC,2),rou

c("UN", round(-2*summary(model_UN)$logLik,2),round(summary(model_UN)$AIC,2),roun

stringsAsFactors = FALSE) 

names(Model_Selection) <- c(" ", " ","","") 

print(Model_Selection) 

#1               CS     AR1      UN 

#2 -2LogLik   80.54   82.03   69.95 

#3      AIC  102.54  104.03   95.95 

#4      BIC  116.79  118.29  112.79 

detach(repeated_measures_example_data) 
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11.5: Chapter 11 Summary
This lesson introduced us to the topic of repeated measures designs. The focus was on repeated measures in time where each
experimental unit is assigned to exactly one treatment level the response is observed over several time periods. This means that the
responses from the same experimental unit observed over time can be correlated and the model assumption of independent
observations is no longer valid. Therefore, an appropriate covariance structure should be imposed to account for the correlated
nature of the response, and the best is chosen based on fit statistics. Note that the AR(1) covariance structure is a possible choice
only when time intervals are equally spaced. If time intervals are unequal sp(pow) has to be the alternative.

Other scenarios can result in repeated measures, not necessarily in time. The important feature is that multiple measurements are
being made on the same experimental unit. A special case of this is the cross-over design wherein the treatments themselves are
switched on the same experimental unit during the course of the experiment. This would be the topic of the next lesson.

This page titled 11.5: Chapter 11 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

12: Cross-over Repeated Measure Designs

Upon completion of this lesson, you should be able to:

Recognize a cross-over repeated measures design.
Understand what a wash-out period is.
Test for the significance of carry-over effects.
Adjust treatment means to account for carry-over effects.

In this lesson, we will be discussing the basics of cross-over designs briefly. A crossover design is a repeated measures design in
which each experimental unit is given each of the different treatment levels during different time periods. This means that over time
each experimental unit is assigned to a specific ordered sequence of different treatment levels. This is in contrast to a repeated-
measures design in time, discussed in the previous chapter, where multiple (repeat) measurements are taken through time from the
same experimental unit assigned to a specific treatment level.

12.1: Introduction to Cross-Over Designs
12.2: Coding for Carry-Over Covariates
12.3: Programming for Steer Example
12.4: Testing the Significance of the Carry-Over Effect
12.5: Try It!
12.6: Chapter 12 Summary

This page titled 12: Cross-over Repeated Measure Designs is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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12.1: Introduction to Cross-Over Designs
The simplest cross-over design is a 2-level treatment, 2-period design. If we use A and B to represent the two treatment levels, then
we can build the following table to represent their administering sequences.

Sequence Period 1 Period 2

1 A B

2 B A

Experimental units are randomly assigned to receive one of the two different sequences. For example, if this were a clinical trial,
patients assigned to sequence 2 would be given treatment B first, then after assessment of their condition, given treatment A and
their condition re-assessed.

The complicated part of the cross-over design is the potential for carry-over effects. A carry-over effect is when the response to a
particular treatment level has been influenced by the previous application of a different treatment level. The presence of carry-over
effects is dealt with differently by different researchers in different ways. Having a sufficiently long washout period is one way to
reduce carry-over effects. A washout period is a gap in time between the application of the treatment levels such that any residual
effect of a previous treatment level has been dissipated and there is no detectable carry-over effect.

Figure : Timeline showing the washout period

However, there may be instances where significant carry-over effects may exist and sufficiently long washout periods may not be
practically feasible. In such situations, an adjustment for carry-over effects would be appropriate during the statistical analysis.

If the treatment has only 2 levels, it is sufficient to simply include a "sequence" categorical variable in the model to assess the
presence of a carry-over effect. If the sequence variable is significant, then a detectable carry-over effect exists.

With more than two treatment levels, the complexity of the analysis rises sharply. For 3 levels of treatment, 3 periods will be
needed, and now we have 3! = 6 sequences to consider. What is needed in this case, in addition to a sequence variable, is a way to
adjust the assessment of treatment effects for the presence of carry-over effects. This can be accomplished with a set of coded
covariates in a repeated-measures ANCOVA.

This page titled 12.1: Introduction to Cross-Over Designs is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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12.2: Coding for Carry-Over Covariates
The late Dr. Steve Arnold (Penn State), came up with a satisfactory solution to account for carry-over effects in the data analysis.
The following example will illustrate how the procedure works. The data can be found in the textbook Design of Experiments, by
Kuehl, as Example 16.1. Investigators want to evaluate the effect of 3 diets on Neutral Detergent Fiber (NDF) levels in steer. The
three diets are administered to each steer in a sequence over 3 periods. A total of 6 sequences were used and two steers were
assigned to each sequence of treatments.

The cross-over design can be summarized as:

Period

Sequence 1 2 3

1 A B C

2 B C A

3 C A B

4 A C B

5 B A C

6 C B A

If we look at the first part of the dataset (Steer Data) for this example in Excel, we can see the following:

Figure : First five columns of steer dataset in Excel.

We need now to add two columns to use an effect-type coding for the 3 treatment levels. We can use:

A 1 0

B 0 1

C -1 -1

Where  and  will be columns we create in the data to input for all of the rows of data. The coding values depend on which
treatment level is administered during the previous period. For example, if treatment A was administered in the previous period,
then coding values would be .
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There will be no entries for the first period because on the first application of each treatment there are no treatments that have
preceded it. Therefore a 0 is used as the coding value for both  and .

Figure : Steer dataset, including  and , in Excel.

Looking at Period 2, sequence 1, treatment B we can refer back to the Sequence chart and see that it was preceded by treatment
level A, so we assign , and , indicating that it was treatment A that could produce a carry-over effect here.

Figure : Identifying the carry-over effects using the spreadsheet.

The process can be repeated to define the coding variables to each entry in the dataset. The coded variables  and  are then
entered into the general linear model as continuous covariates and LSmeans for treatments are adjusted for carry-over effects.

This page titled 12.2: Coding for Carry-Over Covariates is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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12.3: Programming for Steer Example

The SAS code given below will run a repeated measures ANCOVA in SAS for the Neutral Detergent Fiber levels in steer
example in section 12.2.

Code
12.2.

data steer; 

input PER   SEQ   DIET $ STEER NDF x1 x2; 

datalines; 

1     1     A     1     50     0     0 

1     1     A     2     55     0     0 

1     2     B     1     44     0     0 

1     2     B     2     51     0     0 

1     3     C     1     35     0     0 

1     3     C     2     41     0     0 

1     4     A     1     54     0     0 

1     4     A     2     58     0     0 

1     5     B     1     50     0     0 

1     5     B     2     55     0     0 

1     6     C     1     41     0     0 

1     6     C     2     46     0     0 

2     1     B     1     61     1     0 

2     1     B     2     63     1     0 

2     2     C     1     42     0     1 

2     2     C     2     45     0     1 

2     3     A     1     55     -1    -1 

2     3     A     2     56     -1    -1 

2     4     C     1     48     1     0 

2     4     C     2     51     1     0 

2     5     A     1     57     0     1 

2     5     A     2     59     0     1 

2     6     B     1     56     -1    -1 

2     6     B     2     58     -1    -1 

3     1     C     1     53     0     1 

3     1     C     2     57     0     1 

3     2     A     1     57     -1    -1 

3     2     A     2     59     -1    -1 

3     3     B     1     47     1     0 

3     3     B     2     50     1     0 

3     4     B     1     51     -1    -1 

3     4     B     2     54     -1    -1 

3     5     C     1     51     1     0 

3     5     C     2     55     1     0 

3     6     A     1     58     0     1 
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3     6     A     2     61     0     1 

; 

run; 

 

/*Obtaining fit Statistics*/ 

proc mixed data=steer; 

    class per seq diet steer; 

    model ndf = per diet seq x1 x2/ddfm=kr; 

    repeated per / subject=steer(seq) type=cs rcorr; 

    ods output FitStatistics=FitCS (rename=(value=CS)) FitStatistics=FitCSp; 

    title 'Compound Symmetry'; 

run; 

 

proc mixed data=steer; 

    class per seq diet steer; 

    model ndf = per diet seq x1 x2/ddfm=kr; 

    repeated per / subject=steer(seq) type=AR(1) rcorr; 

    ods output FitStatistics=FitAR1 (rename=(value=AR1)) FitStatistics=FitAR1p; 

    title 'Autoregressive Lag 1'; 

run; 

 

proc mixed data=steer; 

    class per seq diet steer; 

    model ndf = per diet seq x1 x2/ddfm=kr; 

    repeated per / subject=steer(seq) type=UN rcorr; 

    ods output FitStatistics=FitUN (rename=(value=UN)) FitStatistics=FitUNp; 

    title 'Unstructured'; 

run; 

 

proc mixed data=steer; 

    class per seq diet steer; 

    model ndf = per diet seq x1 x2/ddfm=kr; 

    repeated per / subject=steer(seq) type=CSH rcorr; 

    ods output FitStatistics=FitCSH (rename=(value=CSH)) FitStatistics=FitCSHp; 

    title 'HETEROGENOUS COMPOUND SYMMETRY'; 

run; 

 

data fits; 

    merge FitCS FitAR1 FitUN FITCSH; 

    by descr; 

run; 

ods listing; title 'Summerized Fit Statistics'; run; 

proc print data=fits; run; 

 

/* Model Adjusting for carryover effects */ 

proc mixed data= steer; 

    class per seq diet steer; 
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    model ndf = per diet seq x1 x2/ddfm=kr; 

    repeated per / subject=steer(seq) type=csh; 

    store out_steer; 

run; 

 

proc plm restore=out_steer; 

    lsmeans diet / adjust=tukey plot=meanplot cl lines; 

    ods exclude diffs diffplot; 

run; 

 

/* Reduced Model, Ignoring carryover effects */ 

proc mixed data= steer; 

    class per seq diet steer; 

    model ndf = per diet seq/ddfm=kr; 

    repeated per / subject=steer(seq) type=csh; 

    lsmeans diet / pdiff adjust=tukey; 

run; 

The results of the fit statistics are as follows:

Obs Descr CS AR1 UN CSH

1
-2 Res Log
Likelihood

148.3 147.2 121.6 122.5

2
AIC (Smaller is
Better)

152.3 151.2 133.6 130.5

3
AICC (Smaller is
Better)

152.8 151.7 138.6 132.6

4
BIC (Smaller is
Better)

153.2 152.1 136.5 132.5

Based on the fit statistics AIC (and also AICC and BIC), the covariance structure heterogeneous compound symmetry 
(type=CSH)  was shown to be better compared to UN or CS or AR(1). Similar to the covariance structure CS, the CSH

covariance structure, also has a constant correlation in the off-diagonal elements. However, the diagonal elements (the variance
at each time point), can be different.

Here is the output that is generated for the full model:

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

PER 2 5.09 10.86 0.0146

DIET 2 11.6 188.52 < .001>

SEQ 5 10.9 31.96 < .0001

x1 1 11.2 17.03 0.0016

x2 1 11.2 78.85 < .0001
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The Type 3 tests shown above are "model dependent," meaning that the sum of squares for each of the effects are adjusted for
the other effects in the model. In this case, we have adjusted for the presence of carry-over effects. As the diet is significant, it
is appropriate to generate LSmeans and the Tukey-Kramer mean comparisons for the diet factor.

DIET Least Squares Means

DIET Estimate
Standard
Error

DF
t
Value

Pr >
|t|

Alpha Lower upper

A 57.8092 1.6046 6.412 36.03
<

0.001
0.05 53.9432 61.6752

B 50.8134 1.6046 6.412 31.67
<

0.001
0.05 46.9474 54.6794

C 48.3774 1.6046 6.412 30.15
<

0.001
0.05 44.5114 52.2434

To see the adjustment on the treatment means, we can compare the LSmeans for a reduced model that does not contain the
carry-over covariates.

LSmeans

Full Model with Covariates

Effect DIET Estimate

DIET A 57.8092

DIET B 50.8134

DIET C 48.3774

Reduced Model (without carry-over covariates)

Effect DIET Estimate

DIET A 57.3941

DIET B 50.9766

DIET C 48.6292

Although the differences in the LSmeans between the two models are small in this particular example, these carry-over effect
adjustments can be very important in many research situations.

Load the Steer Data.
Run the analysis by using different covariance structures and obtain fit statistics.

Code
Load the Steer data, run the analysis by using different covariance structures and obtain fit statistics by using the following
commands:

setwd("~/path-to-folder/") 

steer_data <- read.table("steer_data.txt",header=T) 

attach(steer_data) 

library(nlme) 

 Using R
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This page titled 12.3: Programming for Steer Example is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.

model_CS<-gls(NDF ~ factor(PER) + DIET + factor(SEQ) + x1 + x2,steer_data,correlati

model_AR<-gls(NDF ~ factor(PER) + DIET + factor(SEQ) + x1 + x2,steer_data,correlati

Model_Selection <- data.frame( 

c ("","-2LogLik","AIC", "BIC"), 

c("CS", round(-2*summary(model_CS)$logLik,2),round(summary(model_CS)$AIC,2),round(s

c("AR1", round(-2*summary(model_AR)$logLik,2),round(summary(model_AR)$AIC,2),round(

stringsAsFactors = FALSE) 

names(Model_Selection) <- c( " ","","") 

print(Model_Selection) 

#1              CS    AR1 

#2 -2LogLik 140.75 141.11 

#3      AIC 168.75 169.11 

#4      BIC 185.25 185.61                                

detach(steer_data) 
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12.4: Testing the Significance of the Carry-Over Effect
To test for the overall significance of carry-over effects, we can drop the carry-over covariates (  and  in our example) and re-
run the ANOVA. Because the reduced model is a subset of the full model that includes the covariates, we can construct a likelihood
ratio test.

The  values are provided in the SAS Fit Statistics output for each model. For our example, the SAS output for the Full
model with carry-over covariates is:

Fit Statistics

-2 Res Log
Likelihood

122.5

AIC (smaller
is better)

130.5

AICC
(smaller is
better)

132.6

BIC (smaller
is better)

132.5

And for the reduced model without the carry-over covariates is:

Fit Statistics

-2 Res Log
Likelihood

136.5

AIC (smaller
is better)

144.5

AICC
(smaller is
better)

146.4

BIC (smaller
is better)

146.4

So,

and with

we conclude that there are significant carry-over effects.

This page titled 12.4: Testing the Significance of the Carry-Over Effect is shared under a CC BY-NC 4.0 license and was authored, remixed,
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12.5: Try It!

Ginkgo Biloba is recognized as a herbal remedy for memory improvement. To investigate its effectiveness on memory recall, a
cross-over study was planned using 3 treatments: one tablet of 120mg Ginkgo Biloba (G), one tablet of 200mg Caffeine pill
(C), and sleep for 2 hours before the recall test (S). The assignment order of the 3 treatments to participants was determined by
randomly assigning 12 college students to one of 6 possible sequences of the 3 treatments. The student recall capability was
assessed based on a Recall score and the 3 treatments were given over 3 consecutive days. On each day, only one treatment
was administered before one 1 hour of taking the recall test at 2.00 pm (the higher the recall score the better).

a) Which variable signifies the experimental unit?

Solution

Id

b) What is the washout period?

Solution

One day

c) How many periods are required?

Solution

3

d) How many replicates are there?

Solution

2

e) Perform a statistical analysis to determine if the treatments vary with regard to memory recall. The data can be found in
Cross_over_Ex1.txt

Solution: Using SAS

DATA CROSS_OVER; 

INPUT score  Seq $ PER  Id  TRT $ X1  X2; 

DATALINES; 

74  CGS  1  1  C  0  0 

45  CGS  1  2  C  0  0 

92  CSG  1  3  C  0  0 

94  CSG  1  4  C  0  0 

79  GCS  1  5  G  0  0 

35  GCS  1  6  G  0  0 

31  GSC  1  7  G  0  0 

40  GSC  1  8  G  0  0 

106  SCG  1  9  S  0  0 

60  SCG  1  10  S  0  0 

80  SGC  1  11  S  0  0 

110  SGC  1  12  S  0  0 

41  CGS  2  1  G  1  0 
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20  CGS  2  2  G  1  0 

50  CSG  2  3  S  1  0 

88  CSG  2  4  S  1  0 

92  GCS  2  5  C  0  1 

50  GCS  2  6  C  0  1 

32  GSC  2  7  S  0  1 

54  GSC  2  8  S  0  1 

120  SCG  2  9  C  -1  -1 

80  SCG  2  10  C  -1  -1 

75  SGC  2  11  G  -1  -1 

55  SGC  2  12  G  -1  -1 

64  CGS  3  1  S  0  1 

30  CGS  3  2  S  0  1 

55  CSG  3  3  G  -1  -1 

55  CSG  3  4  G  -1  -1 

76  GCS  3  5  S  1  0 

50  GCS  3  6  S  1  0 

38  GSC  3  7  C  -1  -1 

66  GSC  3  8  C  -1  -1 

85  SCG  3  9  G  1  0 

40  SCG  3  10  G  1  0 

88  SGC  3  11  C  0  1 

86  SGC  3  12  C  0  1 

; 

RUN; 

 

proc mixed data=CROSS_OVER; 

  class PER TRT SEQ  ID; 

  model SCORE=PER  TRT SEQ  X1 X2 / ddfm=kr; 

  repeated PER /subject=ID(SEQ) type=cs rcorr; 

  ods output FitStatistics=FitCS (rename=(value=CS)) FitStatistics=FitCSp; 

  title 'Compound Symmetry'; 

run; 

title ' '; run; 

 

proc mixed data=CROSS_OVER; 

  class PER TRT SEQ  ID; 

  model SCORE=PER  TRT SEQ  X1 X2 / ddfm=kr; 

  repeated PER /subject=ID(SEQ) type=AR(1) rcorr; 

  ods output FitStatistics=FitAR1 (rename=(value=AR1)) FitStatistics=FitAR1p; 

  title 'Autoregressive Lag 1'; 

run; 

title ' '; run; 

 

proc mixed data=CROSS_OVER; 

  class PER TRT SEQ  ID; 

  model SCORE=PER  TRT SEQ  X1 X2 / ddfm=kr; 
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  repeated PER /subject=ID(SEQ) type=UN rcorr; 

  ods output FitStatistics=FitUN (rename=(value=UN)) FitStatistics=FitUNp; 

  title 'Unstructured'; 

run; 

title ' '; run; 

 

proc mixed data=CROSS_OVER; 

  class PER TRT SEQ  ID; 

  model SCORE=PER  TRT SEQ  X1 X2 / ddfm=kr; 

  repeated PER /subject=ID(SEQ) type=CSH  rcorr; 

  ods output FitStatistics=FitCSH (rename=(value=CSH)) FitStatistics=FitCSHp; 

  title 'HETEROGENOUS COMPOUND SYMMETRY'; 

run; 

title ' '; run; 

 

data fits; 

  merge FitCS FitAR1 FitUN FITCSH; 

  by descr; 

run; 

ods listing; proc print data=fits; run;  

The above code was used to obtain the fit statistics for different covariance structures and the AICC (AIC and BIC) values
indicate that CS is the best covariance structure. Hence, the remaining analysis was done using CS.

Obs Descr CS AR1 UN CSH

1
-2 Res Log
Likelihood

215.3 219.1 212.7 214.7

2
AIC (Smaller is
Better)

219.3 223.1 224.7 222.7

3
AICC (Smaller is
Better)

219.9 223.7 229.7 224.8

4
BIC (Smaller is
Better)

220.3 224.1 227.6 224.6

/* Model Adjusting for carryover effects */ 

proc mixed data= CROSS_OVER; 

  class per TRT SEQ ID; 

  model SCORE=PER  TRT SEQ  X1 X2 / ddfm=kr; 

  repeated PER /subject=ID(SEQ) type=cs rcorr; 

  store out_CROSS_OVER; 

run; 

 

proc plm restore=out_CROSS_OVER; 

  lsmeans TRT / adjust=tukey plot=meanplot cl lines; 

  ods exclude diffs diffplot; 

run; 
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/* Reduced Model, Ignoring carryover effects */ 

proc mixed data= CROSS_OVER; 

  class per TRT seq  ID; 

  model SCORE=PER  TRT SEQ   / ddfm=kr; 

  repeated PER /subject=ID(SEQ) type=cs rcorr; 

  lsmeans TRT / pdiff adjust=tukey; 

run;  

Full Model: with carryover effect

Fit Statistics

-2 Res Log Likelihood 215.3

AIC (Smaller is Better) 219.3

AICC (Smaller is Better) 219.9

BIC (Smaller is Better) 220.3

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

PER 2 18 3.12 0.0688

TRT 2 18 18.03 <.0001

Seq 5 6.1 1.46 0.3259

X1 1 18 0.10 0.7565

X2 1 18 0.18 0.6768

Reduced Model: without carryover effect

Fit Statistics

-2 Res Log Likelihood 224.2

AIC (Smaller is Better) 228.2

AICC (Smaller is Better) 228.7

BIC (Smaller is Better) 229.1

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

PER 2 20 3.36 0.0552

TRT 2 20 23.70 <.0001

Seq 5 6 1.52 0.3101

The test statistic below tests for the significance of the carry over effect. 
 degrees of freedom.= (−2 log )−(−2 log )with\(d −dΔ

2

L

Reduced

L

Full

f

Full

f

Reduced
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. This exceeds the critical Chi-Square of 5.991  indicating that model with carryover

effect is more appropriate and will be used to base the final conclusions.

In the full model output, the Treatment is the only significant factor, so LSmeans and comparisons are generated only for
the treatment effect. The results of the Tukey comparison procedure indicate that treatments C and S are not significantly
different, but G is significantly lower, indicating that both sleep for 2 hours and caffeine are similarly effective in improving
recall capability and are superior to Ginkgo biloba.

TRT Least Squares Means

TRT Estimate
Standard

Error
DF t Value Pr > |t| Alpha Lower Upper

C 76.7222 6.2382 8.572 12.30 <.0001 0.05 62.5024 90.9421

G 50.4306 6.2382 8.572 8.08 <.0001 0.05 36.2107 64.6504

S 67.5139 6.2382 8.572 10.82 <.0001 0.05 53.2940 81.7337

Figure : Scores for Tukey-Kramer grouping

This page titled 12.5: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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12.6: Chapter 12 Summary
In this lesson, we discussed the second type of repeated measures designs, namely cross-over designs wherein the treatments
themselves are switched on the same experimental unit during the course of the experiment. One concern is the presence of
carryover effects caused due to previous applications of different treatment levels. Carryover effects can be reduced by imposing a
wash-out period in between the application of different treatment levels on the same experimental unit or by utilizing a repeated
measures ANCOVA model that includes coding covariates representing the carry-over effects.

This page titled 12.6: Chapter 12 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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