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10.2: Quantitative Predictors - Orthogonal Polynomials
Polynomial trends in the response with respect to a quantitative predictor can be evaluated by using orthogonal polynomial contrasts,
a special set of linear contrasts. This is an alternative to the Regression analysis illustrated in the previous section, which may be
affected by multicollinearity. Note that centering to remedy multicollinearity is effective only for quadratic polynomials. Therefore,
this simple technique of trend analysis performed via orthogonal polynomial coding will prove to be beneficial for higher-order
polynomials. Orthogonal polynomials have the property that the cross-products defined by the numerical coefficients of their terms
add to zero.

The orthogonal polynomial coding can be applied only when the levels of quantitative predictor are equally spaced. The method is to
partition the quantitative factor in the ANOVA table into independent single degrees of freedom comparisons. The comparisons are
called orthogonal polynomial contrasts or comparisons.

Orthogonal polynomials are equations such that each is associated with a power of the independent variable (e.g. , linear; ,
quadratic; , cubic, etc.). In other words, orthogonal polynomials are coded forms of simple polynomials. The number of possible
comparisons is equal to , where  is the number of quantitative factor levels. For example, if , only two comparisons are
possible allowing for testing of linear and quadratic effects.

Using orthogonal polynomials to fit the desired model to the data would allow us to eliminate collinearity and to seek the same
information as simply polynomials.

A typical polynomial model of order  would be:

The simple polynomials used are . We can obtain orthogonal polynomials as linear combinations of these simple
polynomials. If the levels of the predictor variable, , are equally spaced, then one can easily use coefficient tables to determine the
orthogonal polynomial coefficients that can be used to set up an orthogonal polynomial model.

If we are to fit the  order polynomial to using orthogonal contrasts coefficients, the general equation can be written as

where  is a polynomial in  of degree  for the  level treatment factor and the parameter  depends on
the coefficients . Using the properties of the function , one can show that the first five orthogonal polynomial are of the
following form:

where  = number of levels of the factor,  = value of the factor level,  = mean of the factor levels, and  = distance between factor
levels.

In the next section, we will illustrate how the orthogonal polynomial contrast coefficients are generated, and the Factor SS is
partitioned. This method will be required to fit polynomial regression models with terms greater than the quadratic, because even
after centering there will still be multicollinearity between  and  as well as between  and .

The following example is taken from Design of Experiments: Statistical Principles of Research Design and Analysis by Robert
Kuehl.
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The treatment design consisted of five plant densities (10, 20, 30, 40, and 50). Each of the five treatments was assigned randomly
to three field plots in a completely randomized experimental design. The resulting grain yields are shown in the table below
(Grain Data):

Plant Density 

10 20 30 40 50

 12.2 16.0 18.6 17.6 18.0

 11.4 15.5 20.2 19.3 16.4

 12.4 16.5 18.2 17.1 16.6

Means 12.0 16.0 19.0 18.0 17.0

Solution
We can see that the factor levels of plant density are equally spaced. Therefore, we can use the orthogonal contrast coefficients to
fit a polynomial to the response, grain yields. With , we can only fit up to a quartic term. The orthogonal polynomial
contrast coefficients for the example are shown in Table 10.1.

Table 10.1 - Computations for orthogonal polynomial contrasts and sums of squares

Density 
Orthogonal Polynomial Coefficients 

Mean Linear Quadratic Cubic Quartic

10 12 1 -2 2 -1 1

20 16 1 -1 -1 2 -4

30 19 1 0 -2 0 6

40 18 1 1 -1 -2 -4

50 17 1 2 2 1 1

- 1 1 5/6 35/12

Sum = 82 12 -14 1 7

Divisor = 5 10 14 10 70

- 43.2 42.0 0.3 2.1

16.4 1.2 -1.0 0.1 0.1

As mentioned before, one can easily find the orthogonal polynomial coefficients for a different order of polynomials using pre-
documented tables for equally spaced intervals. However, let us try to understand how the coefficients are obtained.

First note that the five values of  are . Therefore,  and the spacing . This means that the five
values of  are  and .

Linear coefficients: The polynomial  for linear coefficients turn out to be:
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∑g2
pi

SS = r /∑Pp (∑ )gpiȳ i
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Linear Coefficient Polynomials 

10 20 30 40 50
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-2 -1 0 1 2

Linear orthogonal
polynomial

To obtain the final set of coefficients we choose  so that the coefficients are integers. Therefore, we set  and obtain the
coefficient values in Table 10.1.

Quadratic coefficients: The polynomial  for linear coefficients:
Linear Coefficient Polynomials 

Linear orthogonal
polynomial

Simplified form

To obtain the final set of coefficients we choose  so that the coefficients are integers. Therefore, we set  and obtain the
coefficient values in Table 10.1.

Cubic coefficients: The polynomial  for linear coefficients:
Linear Coefficient Polynomials 

Linear orthogonal
polynomial

Simplified form

Quartic coefficients: The polynomial g4 can be used to obtain the quartic coefficients in the same way as
above.
Notice that each set of coefficients for contrast among the treatments since the sum of coefficients is equal to zero. For example,
the quartic coefficients  sums to zero. Using orthogonal polynomial contrasts, we can partition the treatment
sums of squares into a set of additive sums of squares corresponding to orthogonal polynomial contrasts. Computations are
similar to what we learned in lesson 2.5. We can use those partitions to test sequentially the significance of linear, quadratic,
cubic, and quartic terms in the model to find the polynomial order appropriate for the data.

Table 10.1 shows how to obtain the sums of squares for each component and how to compute the estimates of the  coefficients
for the orthogonal polynomial equation. Using the results in table 10.1, we have estimated orthogonal polynomial equation as:

Table 10.2 summarizes how the treatment sums of squares are partitioned and their test results.

Table 10.2 - Analysis of variance for the orthogonal polynomial model 
relationship between plant density and grain yield.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F Pr > F

Density 4 87.60 21.90 29.28 F">.000

Error 10 7.48 0.75  F">
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Contrast DF Contrast SS Mean Square F Pr > F

Linear 1 43.20 43.20 57.75 F">.000

Quadratic 1 42.00 42.00 56.15 F">.000

Cubic 1 .30 .30 .40 F">.541

Quartic 1 2.10 2.10 2.81 F">.125

To test whether any of the polynomials are significant (i.e. ), we can use the global F-test where
the test statistic is equal to 29.28. We see that the p-value is almost zero and therefore we can conclude that at the 5% level at
least one of the polynomials is significant. Using the orthogonal polynomial contrasts we can determine which of the polynomials
are useful. From table 3.5, we see that for this example only the linear and quadratic terms are useful. Therefore we can write the
estimated orthogonal polynomial equation as:

The polynomial relationship expressed as a function of  and  in actual units of the observed variables is more informative than
when expressed in units of the orthogonal polynomial.

We can obtain the polynomial relationship using the actual units of observed variables by back-transforming using the
relationships presented earlier. The necessary quantities to back-transform are , , , and . Substituting
these values, we obtain

which simplifies to

Generating Orthogonal Polynomials

Steps in SAS

Below is the code for generating polynomials from the IML procedure in SAS:

/* read the grain data set */ 

/* Generating Ortho_Polynomials from IML */ 

proc iml; 

x={10 20 30 40 50}; 

xpoly=orpol(x,4); /* the '4' is the df for the quantitative factor */ 

density=x`; new=density || xpoly; 

create out1 from new[colname={"density" "xp0" "xp1" "xp2" "xp3" "xp4"}]; 

append from new; close out1; 

quit; 

proc print data=out1; 

run; 

/* Here data is sorted and then merged with the original dataset */ 

proc sort data=grain; 

by density; 

run; 

:   = = = = 0H0 α1 α2 α3 α4

16.4 +1.2 −1.0g1i g2i

y x

= 1λ1 d = 10 = 30x̄ t = 5
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Vari…

Vari…

Vari…

Vari…

data ortho_poly; merge out1 grain; 

by density; 

run; 

proc print data=ortho_poly; 

run; 

/* The following code will then generate the results shown in the 

Online Lesson Notes for the Kuehl example data */ 

proc mixed data=ortho_poly method=type3; 

class; 

model yield=xp1 xp2 xp3 xp4; 

title 'Using Orthog polynomials from IML'; 

run; 

/* We can use proc glm to obtain the same results without using 

IML codings, to directly obtained the same results. 

Proc glm will use the orthogonal contrast coefficients directly */ 

proc glm data=grain; 

class density; 

model yield = density; 

contrast 'linear' density -2 -1 0 1 2; 

contrast 'quadratic' density 2 -1 -2 -1 2; 

contrast 'cubic' density -1 2 0 -2 1; 

contrast 'quartic' density 1 -4 6 -4 1; 

run; 

The output is:

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

Error
Term

Error
DF

F
Value

Pr > F

xp1 1 43.200000 43.200000
Var(Residual)

+ Q(xp1)
MS(Residual) 10 57.75

F">
<

.0001

xp2 1 42.000000 42.000000
Var(Residual)

+ Q(xp2)
MS(Residual) 10 56.15

F">
<

.0001

xp3 1 0.300000 0.300000
Var(Residual)

+ Q(xp2)
MS(Residual) 10 0.40

F">
0.5407

xp4 1 2.100000 2.100000
Var(Residual)

+ Q(xp4)
MS(Residual) 10 2.81

F">
0.1248

Residual 10 7.480000 7.480000 Var(Residual)   
F" class="
">

Fitting a Quadratic Model with Proc Mixed
Often we can see that only a quadratic curvature is of interest in a set of data. In this case, we can plan to simply run an order
2 (quadratic) polynomial and can easily use proc mixed (the general linear model). This method just requires centering the
quantitative variable levels by subtracting the mean of the levels (30) and then creating the quadratic polynomial terms.
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ysis …

ysis …

ysis …

Fix…

Fix…

Fix…

data grain; 

set grain; 

x=density-30; 

x2=x**2; 

run; 

proc mixed data=grain method=type3; 

class; 

model yield = x x2; 

run; 

The output is:

Type 3 Analysis of Variance

Source DF
Sum of
Squares

Mean
Square

Expected
Mean
Square

Error
Term

Error
DF

F
Value

Pr > F

x 1 43.200000 43.200000
Var(Residual)

+ Q(x)
MS(residual) 12 52.47

F">
<.0001

x2 1 42.000000 42.000000
Var(Residual)

+ Q(x2)
MS(residual) 12 51.01

F">
<.0001

Residual 12 9.880000 0.823333 Var(Residual)   
F" class="
">

We can also generate the solutions (coefficients) for the model with:

proc mixed data=grain method=type3; 

class; 

model yield = x x2 / solution; 

run; 

which gives the following output for the regression coefficients:

Solution for Fixed Effects

Effect Estimate
Standard
Error

DF t Value Pr > |t|

Intercept 18.4000 0.3651 12 50.40 |t|"> <.0001

x 0.1200 0.01657 12 7.24 |t|"> <.0001

x2 -0.01000 0.001400 12 -7.14 |t|"> <.0001

Here we need to keep in mind that the regression was based on centered values for the predictor, so we have to back-
transform to get the coefficients in terms of the original variables. This back-transform process (from Kutner et.al) is:

Regression Function in Terms of 
After a polynomial regression model has been developed, we often wish to express the final model in terms of the original
variables rather than keeping it in terms of the centered variables. This can be done readily. For example, the fitted second-
order model for one predictor variable that is is expressed in terms of centered values :

X

x = X−X̄

= + (x) +Ŷ b0 b1 b11x
2
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because in terms of the original  variable:

where:

In the example above, this back-transformation uses the estimates from the Solutions for Fixed Effects table above.

data backtransform; 

bprime0=18.4-(.12*30)+(-.01*(30**2)); 

bprime1=.12-(2*-.01*30); 

bprime2=-.01; 

title 'bprime0=b0-(b1*meanX)+(b2*(meanX)2)'; 

title2 'bprime1=b1=2*b2*meanX'; 

title3 'bprime2=b2'; 

run; 

proc print data=backtransform; 

var bprime0 bprime1 bprime2; 

run; 

The output is then:

Obs bprime0 bprime1 bprime2

1 5.8 0.72 -0.01

The ANOVA results and the final quadratic regression equation here are identical to the results from the orthogonal
polynomial coding approach.

Load the Grain Data.
Obtain the ANOVA table.
Fit a quadratic model after centering the covariate and creating . Transform back to the original variables.

Steps in R

1. Load the Grain data and obtain the ANOVA table by using the following commands:

setwd("~/path-to-folder/") 

grain_data <- read.table("grain_data.txt",header=T) 

attach(grain_data) 

poly_model<-lm(yield ~ poly(density,4),data=grain_data) 

summary(poly_model) 

#Coefficients: 

#                   Estimate  Std. Error  t value  Pr(>|t|) 

#(Intercept)         16.4000      0.2233   73.441  5.35e-15 *** 

X

= + X+Ŷ b′
0 b′

1 b′
11X

2

b′
0

b′
1

b′
11

= − +b0 b1X̄ b11X̄
2

= −2b1 b11X̄

= b11

 Note

 Using R
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#poly(density, 4)1    6.5727      0.8649    7.600  1.84e-05 *** 

#poly(density, 4)2   -6.4807      0.8649   -7.493  2.08e-05 *** 

#poly(density, 4)3    0.5477      0.8649    0.633     0.541 

#poly(density, 4)4    1.4491      0.8649    1.676     0.125 

anova(poly_model) 

#Analysis of Variance Table 

#Response: yield 

#                  Df  Sum Sq  Mean Sq  F value    Pr(>F) 

#poly(density, 4)   4   87.60   21.900   29.278  1.69e-05 *** 

#Residuals         10    7.48    0.748 

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

By using the command anova()  we can test whether any of the polynomials are significant (i.e. 
. We can use the global F-test where the test statistic is equal to 29.28. We see that the p-value

is almost zero, and therefore we can conclude that at the 5% level at least one of the polynomials is significant.

By using the command summary()  we can test which contrasts are significant. For this example only the linear and
quadratic terms are significant since there p-values are almost zero.

2. Fit a quadratic model after centering the covariate and creating  by using the following commands:

Transform back to the original variables

density_center<-density-30 

density_square_center<-density_center^2 

new_data<-cbind(grain_data,density_center,density_square_center) 

ancova_model<-lm(yield ~ density_center + density_square_center,new_data) 

summary(ancova_model) 

#Coefficients: 

#                      Estimate  Std. Error  t value  Pr(>|t|) 

#(Intercept)           18.40000     0.36511   50.396  2.44e-15 *** 

#density_center         0.12000     0.01657    7.244  1.02e-05 *** 

#density_square_center -0.01000     0.00140   -7.142  1.18e-05 *** 

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

anova(ancova_model) 

#Analysis of Variance Table 

#Response: yield 

#                      Df  Sum Sq  Mean Sq  F value     Pr(>F) 

#density_center         1   43.20   43.200   52.470  1.024e-05 *** 

#density_square_center  1   42.00   42.000   51.012  1.177e-05 *** 

#Residuals             12    9.88    0.823 

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

3. Transform back to the original variables

The estimated coefficients for the polynomial model are 18.4, 0.12 and -0.01. Here we need to keep in mind that the
regression was based on centered values for the predictor, so we have to back-transform to get the coefficients in terms of the
original variables. We can do that by using the following commands:

:   = = = = 0H0 α1 α2 α3 α4

x2
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b_0_prime<-18.4-0.12*30-0.01*30^2 #5.8 

b_1_prime<-0.12-0.01*(-2*30) # 0.72 

b_2_prime<--0.01 # -0.01 

detach(grain_data) 

For the original variables the estimated coefficients are 5.8, 0.72 and -0.01.
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