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CHAPTER OVERVIEW

1: Overview of ANOVA

4b Objectives

Upon completion of this lesson, you should be able to:

o Become familiar with the standard ANOVA basics.
o Apply the Exploratory Data Analysis (EDA) basics for ANOVA appropriate data.

In previous statistics courses analysis of variance (ANOVA) has been applied in very simple settings, mainly involving one group
or factor as the explanatory variable. In this course, ANOVA models are extended to more complex situations involving several
explanatory variables. The experimental design aspects are discussed as well. Even though the ANOVA methodology developed in
the course is for data obtained from designed experimental settings, the same methods may be used to analyze data from
observational studies as well. However, let us keep in mind that the conclusions made may not be as sound because observational
studies do not satisfy the rigorous conditions that the designed experiments are subjected to.

If you aren't familiar with the difference between observational and experimental studies, you should be reviewing introductory
statistical concepts which are essential for success in this course!

"Classic" analysis of variance (ANOVA) is a method to compare average (mean) responses to experimental manipulations in
controlled environments. For example, if people who want to lose weight are randomly selected to participate in a weight-loss
study, each person might be randomly assigned to a dieting group, an exercise group, and a "control" group (for which there is no
intervention). The mean weight loss for each group is compared to every other group.

Recall that a fundamental tenet of the scientific method is that results should be reproducible. A designed experiment provides this
through replication and generates data that requires the calculation of mean (average) responses.

1.1: The Working Hypothesis
1.2: The 7-Step Process of Statistical Hypothesis Testing
1.3: Chapter 1 Summary

This page titled 1: Overview of ANOVA is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's

Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.



https://libretexts.org/
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/01%3A_Overview_of_ANOVA/1.01%3A_The_Working_Hypothesis
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/01%3A_Overview_of_ANOVA/1.02%3A_The_7-Step_Process_of_Statistical_Hypothesis_Testing
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/01%3A_Overview_of_ANOVA/1.03%3A_Chapter_1_Summary
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/01%3A_Overview_of_ANOVA
https://creativecommons.org/licenses/by-nc/4.0
https://science.psu.edu/stat
https://online.stat.psu.edu/stat502_fa21/

LibreTextsw

1.1: The Working Hypothesis

Using the scientific method, before any statistical analysis can be conducted, a researcher must generate a guess, or hypothesis
about what is going on. The process begins with a Working Hypothesis. This is a direct statement of the research idea. For
example, a plant biologist may think that plant height may be affected by applying different fertilizers. So they might say: "Plants
with different fertilizers will grow to different heights".

But according to the Popperian Principle of Falsification, we can't conclusively affirm a hypothesis, but we can conclusively negate
a hypothesis. So we need to translate the working hypothesis into a framework wherein we state a null hypothesis that the average
height (or mean height) for plants with the different fertilizers will all be the same. The alternative hypothesis (which the biologist
hopes to show) is that they are not all equal, but rather some of the fertilizer treatments have produced plants with different mean
heights. The strength of the data will determine whether the null hypothesis can be rejected with a specified level of confidence.

Pictured in the graph below, we can imagine testing three kinds of fertilizer and also one group of plants that are untreated (the
control). The plant biologist kept all the plants under controlled conditions in the greenhouse, to focus on the effect of the fertilizer,
the only thing we know to differ among the plants. At the end of the experiment, the biologist measured the height of each plant.
Plant height is the dependent or response variable and is plotted on the vertical (y) axis. The biologist used a simple boxplot to plot
the difference in the heights.

Distribution of Plant Height by Fertilizer

<
27.5 L

-
|

2254

32.54

30.0

Plant Height

20.04

T
Control F1 F2 F3
Fertilizer

Figure 1.1.1: Boxplot of plant height distribution by fertilizer.

This boxplot is a customary way to show treatment (or factor) level differences. In this case, there was only one treatment:
fertilizer. The fertilizer treatment had four levels that included the control, which received no fertilizer. Using this language
convention is important because later on we will be using ANOVA to handle multi-factor studies (for example if the biologist
manipulated the amount of water AND the type of fertilizer) and we will need to be able to refer to different treatments, each with
their own set of levels.

Another alternative for viewing the differences in the heights is with a means plot (a scatter or interval plot):
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LS-Means for Fertilizer
With 95% Confidence Limits
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Figure 1.1.2: Means plot for fertilizer with 95% confidence limits.

This second method to plot the difference in the means of the treatments provides essentially the same information. However, this
plot illustrates the variability in the data with 'error bars' that are the 95% confidence interval limits around the means.

In between the statement of a Working Hypothesis and the creation of the 95% confidence intervals used to create this means plot
is a 7-step process of statistical hypothesis testing, presented in the following section.

This page titled 1.1: The Working Hypothesis is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
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1.2: The 7-Step Process of Statistical Hypothesis Testing

We will cover the seven steps one by one.

Step 1: State the Null Hypothesis

The null hypothesis can be thought of as the opposite of the "guess" the researchers made: in this example, the biologist thinks the
plant height will be different for the fertilizers. So the null would be that there will be no difference among the groups of plants.
Specifically, in more statistical language the null for an ANOVA is that the means are the same. We state the null hypothesis as:

H()Z M1 =2 = ... = UT (121)

for T levels of an experimental treatment.

Why do we do this? Why not simply test the working hypothesis directly? The answer lies in the Popperian Principle of
Falsification. Karl Popper (a philosopher) discovered that we can't conclusively confirm a hypothesis, but we can conclusively
negate one. So we set up a null hypothesis which is effectively the opposite of the working hypothesis. The hope is that based
on the strength of the data, we will be able to negate or reject the null hypothesis and accept an alternative hypothesis. In other
words, we usually see the working hypothesis in H 4.

Step 2: State the Alternative Hypothesis
H, : treatment level means not all equal (1.2.2)
The reason we state the alternative hypothesis this way is that if the null is rejected, there are many possibilities.

For example, p11 # po = ... = ur is one possibility, as is p3 = p2 # us =... = pr . Many people make the mistake of stating
the alternative hypothesis as mu; # mug # ... # pr , which says that every mean differs from every other mean. This is a
possibility, but only one of many possibilities. To cover all alternative outcomes, we resort to a verbal statement of "not all equal"
and then follow up with mean comparisons to find out where differences among means exist. In our example, this means that
fertilizer 1 may result in plants that are really tall, but fertilizers 2, 3, and the plants with no fertilizers don't differ from one another.
A simpler way of thinking about this is that at least one mean is different from all others.

Step 3: Set a
If we look at what can happen in a hypothesis test, we can construct the following contingency table:
In Reality
Decision H, is TRUE H, is FALSE
Type Il E
Accept Hy correct yp € rror
B = probability of Type II Error
Type I E
Reject Hy Y& 2 ot correct

a = probability of Type I Error

You should be familiar with type I and type II errors from your introductory course. It is important to note that we want to set o
before the experiment (a priori) because the Type I error is the more grievous error to make. The typical value of a is 0.05,
establishing a 95% confidence level. For this course, we will assume ac=0.05, unless stated otherwise.

Step 4: Collect Data

Remember the importance of recognizing whether data is collected through an experimental design or observational study.
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Step 5: Calculate a test statistic

For categorical treatment level means, we use an F' statistic, named after R.A. Fisher. We will explore the mechanics of computing
the F' statistic beginning in Chapter 2. The F' value we get from the data is labeled Fiaicuiated-

Step 6: Construct Acceptance / Rejection regions

As with all other test statistics, a threshold (critical) value of F' is established. This F' value can be obtained from statistical tables
or software and is referred to as Fiitical OF Fi. As a reminder, this critical value is the minimum value for the test statistic (in this
case the F test) for us to be able to reject the null.

The F distribution, F},, and the location of acceptance and rejection regions are shown in the graph below:

Accept H,

Reject H,

F F

The F distribution

Figure 1.2.1: The F distribution, with F}, and acceptance and rejection regions.

Step 7: Based on steps 5 and 6, draw a conclusion about HO

If the F\ calculated from the data is larger than the F,, then you are in the rejection region and you can reject the null hypothesis with
(1 — ) level of confidence.

Note that modern statistical software condenses steps 6 and 7 by providing a p-value. The p-value here is the probability of getting
an Fi,lcuated €ven greater than what you observe assuming the null hypothesis is true. If by chance, the Feaiculated = Fa , then the
p-value would exactly equal «. With larger Fea)culated Values, we move further into the rejection region and the p-value becomes
less than a. So the decision rule is as follows:

If the p-value obtained from the ANOVA is less than o, then reject H, and accept H 4.

If you are not familiar with this material, we suggest that you review course materials from your basic statistics course.

This page titled 1.2: The 7-Step Process of Statistical Hypothesis Testing is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Penn State's Department of Statistics.
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1.3: Chapter 1 Summary

The emphasis of this lesson was to reinforce the basics of ANOVA, which perhaps you may have seen in other courses. Using the
greenhouse example, the seven important steps of hypothesis testing in a single factor ANOVA setting were explored. Step 2
highlighted the correct way to state and also interpret the alternative hypothesis (H 4 ), while Step 3 discusses the Truth Table that
includes possible errors in hypothesis testing. Step 6 discusses in detail the rejection region of the null hypothesis (Hy).

The lesson also introduced us to some basics in ANOVA-related explanatory data analysis (EDA). The graphics such as side-by-
side boxplots and mean plots are useful tools in producing a visual summary of the raw data and ANOVA results. These will serve
as stepping stones to more elaborate graphical techniques we will learn throughout the course.

The concepts and methodology learned in this lesson, though seem straight forward will help us navigate more complex topics
addressed in future lessons. The keywords and phrases learned in this lesson are:

o null and alternative hypotheses (Hy and Hy4)

e Type 1 and Type II errors

« significance level («)

e rejection region

o F statistic and its critical and calculated values.

This page titled 1.3: Chapter 1 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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CHAPTER OVERVIEW

2: ANOVA Foundations

4b Objectives

Upon completion of this chapter, you should be able to:

o Perform basic computations for Single Factor ANOVA and interpret the results.
o Carry out the Tukey pairwise mean comparison method.

o Learn about other pairwise mean comparison methods.

o Conduct a contrast analysis that accommodates the comparison of group means.

In this chapter, we will begin to learn the notation and the formulas to compute the fundamental quantities necessary for ANOVA-
related hypothesis testing as well as mean comparison procedures. The application of these statistical procedures will be illustrated
using the Greenhouse example from Chapter 1.

2.1: Building the ANOVA Table - Notation

2.2: Computing Quantities for the ANOVA Table

2.3: Tukey Test for Pairwise Mean Comparisons

2.4: Other Pairwise Mean Comparison Methods

2.5: Contrast Analysis

2.6: Try It!

2.7: Chapter 2 Summary

This page titled 2: ANOVA Foundations is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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2.1: Building the ANOVA Table - Notation
The idea of ANOVA is to compare different sources of variability: between sample variability and within sample variability.

As a point of review, the alternative hypothesis is what we think is going on (or what we need to conclude). Typically we are
looking to find differences among at least one pair of our treatment means. Because of this, the null hypothesis (the opposite of the
alternative) states that there are no differences among the group means (or that they are all equal).

To test the Null hypothesis (which is traditionally written as Hy : w3 = g2 =... = pr , we need to compute the test (F") statistic
that compares the between sample variability to within sample variability.

To see how we compute this statistic it is helpful to look at the ANOVA table. The table below is an ANOVA table (here presented
blank, with no entries yet):

Source | df | SS | MS | F

Figure 2.1.1: Blank ANCOVA table.

To define the elements of the table and fill in these quantities, let’s return to our example data (Lesson 1 Data) for the hypothetical
greenhouse experiment:

Control F1 F2 F3

21 32 22.5 28
19.5 30.5 26 27.5

22.5 25 28 31
21.5 27.5 27 29.5

20.5 28 26.5 30
21 28.6 25.2 29.2

Notation

Each observation in the dataset can be referenced by two indicator subscripts, 4 and j, as Y;;.

For those of you not familiar with this notation, we use Y to indicate that it is a response variable. The subscript % refers to the i
level of the treatment; our example has 4 treatments, so i will take on the values 1,2, 3,and 4.) The subscript j refers to the ;%

observation (again, our example has 6 observations for each treatment so j takes the values 1,2, 3,4, 5,and 6). It is important to
note that the 5% observation is occurring within the " treatment level.

subscripts
Control F1 F2 F3
ji=1 21 32 22.5 28
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ji=2 19.5 30.5 26 27.5
ji=3 22.5 25 28 31
j=4 21.5 27.5 27 29.5
j=5 20.5 28 26.5 30
j=6 21 28.6 25.2 29.2

For example, Y5 = 27.5.

We now can define the various means explicitly using these subscripts. The overall or Grand Mean is given by

Grand Mean =Y (2.1.1)

where the dots indicate that the quantity has been averaged over that subscript. For the Grand Mean, we have averaged over all j
observations in all ¢ treatment levels. The treatment means are given by

Treatment Mean =Y, (2.1.2)
indicating that we have averaged over the j observations in each of the ¢ treatment levels.

We can find these in the output from the summary procedure that can be generated in SAS and the coding details are discussed in
Chapter 3:

Summary Output for Lesson 1 Data

Fert _Type_ _FREQ_ mean
0 24 26.1667
Control 1 6 21.0000
F1 1 6 28.6000
F2 1 6 25.8667
F3 1 6 29.2000

In the output we see the column heading _TYPE_. The summary procedure in SAS calculates all possible means when specified,
and so the _TYPE_ indicates what mean is being computed. _TYPE_ = 0 is the Grand Mean, and we can see this from the number
of observations (given by _FREQ_) of 24. Each of the treatment level means is listed as _TYPE_ = 1 and we confirm that 6
replications were made for each treatment level (remember that j took on values 1 through 6).

Note that SAS automatically has ordered the treatment levels alphabetically.

The grand mean and treatment means are all we need in this example to compute the quantities for the ANOVA table.

This page titled 2.1: Building the ANOVA Table - Notation is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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2.2: Computing Quantities for the ANOVA Table

When working with ANOVA, we start with the total variability in the response variable and divide or "partition" it into different
parts: the between sample variability (i.e. variability due to our treatment) and the within sample variability (i.e. residual
variability). The variability that is due to our treatment we of course hope is significantly large and variability in the response that
is leftover can be thought of as the nuisance, "error", or "residual” variability.

To help you imagine this a bit more, think about the data storage capacity of a computer. If you have 8GB of storage total, you can
ask your computer to show the types of files that are occupying the storage. The ANOVA model is (in a very elementary fashion)
going to compare the variability due to the treatment to the variability left over.

From elementary statistics, when we think of computing a variance of a random variable (say X), we use the expression:

Y (Xi-X)" 88
N-1  df

variance = (2.2.1)
The numerator of this expression is referred to as the Sum of Squares, or Sum of Squared deviations from the mean, or simply SS.
(If you don't recognize this, then we suggest you sharpen your introductory statistics skills!) The denominator is the degrees of
freedom, (N —1), or df.

# ANOVA Table Rules

1. Total SS = sum of the SS of all Sources (i.e., Total SS = Treatment SS + Error SS)
2. Total df = sum of df of all Sources
3. MS = SS/df

Treatment MS

4. Falculated = TrMS with numerator df = number of treatments - 1 and denominator df = error df

The ANOVA table is set up to generate quantities analogous to the simple variance calculation above. In our greenhouse
experiment example:

1. We start by considering the TOTAL variability in the response variable. This is done by calculating the SStota1

Total$S =Y, %, (Yy-Y.)°
—312.47

(2.2.2)

The degrees of freedom for the Total SSis N —1 =24 —1 =23 , where N is the total sample size.

2. Our next step determines how much of the variability in Y is accounted for by our treatment. We now calculate S'St;eatment OF
SSTrt:

Treatment SS = an (}7,; — Y_'“) 2 (2.2.3)

The sum of squares for the treatment is the deviation of the group mean from the grand mean. So in some sense, we are
"aggregating” all of the responses from that group and representing the "group effect" as the group mean.

and for our example:

Treatment SS = 6 x (21.0 — 26.1667)2 + 6 x (28.6 — 26.1667)+

2.2.4
...+ 6% (25.8667 —26.1667)% + 6 x (29.2 —26.1667)> = 251.44 (2.2.4)

Note that in this case we have equal numbers of observations (6) per treatment level, and it is, therefore, a balanced ANOVA.

3. Finally, we need to determine how much variability is "left over". This is the Error or Residual sums of squares by subtraction:

ErrorSS  =37,> (Vi —Y.) ? = Total SS — Treatment SS
=312.47—-251.44 =61.033

(2.2.5)
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Note here that the "leftover" is really the deviation of any score from its group mean.

We can now fill in the following columns of the table:

ANOVA
Source df SS MS F
Treatment T-1=3 251.44
Error 23-3=20 61.033

We have T treatment levels and so we use T'— 1 for the df for the treatment. In our example, there are 4 treatment levels (the
control and the 3 fertilizers) so T'=4 and T—1 =4 —1 = 3 . Finally, we obtain the error df by subtraction as we did with the
SS.

The Mean Squares (MS) can now be calculated as:

SSry  251.44

MSr, = A =3 - 83.813 (2.2.6)
and
MSgror = Z‘;j: = 612‘?)33 — 3.052 (2.2.7)
NOTE: M Sg;ror Will sometimes be referred as M SE and we don’t need to calculate the M Stotal.
ANOVA
Source df SS MS F
Treatment 3 251.44 83.813
Error 20 61.033 3.052

Finally, we can compute the F' statistic for our ANOVA. Conceptually we are comparing the ratio of the variability due to our
treatment (remember we expect this to be relatively large) to the variability leftover, or due to error (and of course, since this is an
error we want this to be small). Following this logic, we expect our F' to be a large number. If we go back and think about the
computer storage space we can picture most of the storage space taken up by our treatment, and less of it taken up by error. In our
example, the F' is calculated as:

MSr:  83.813

F = MSpo.  3.052 =27.46 (2.2.8)
Source df SS MS F
Treatment 3 251.44 83.813 27.46
Error 20 61.033 3.052

So how do we know if the F' is large enough to conclude we have a significant amount of variability due to our treatment? We look
up the critical value of F' and compare it to the value we calculated. Specifically, the critical F' is Fy, = F{(0.05,3,20)= 3.10. The
critical value can be found using tables or technology.
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Using a Table:
Appendix Table B4

Using SAS:

data Fvalue;
g=finv(©.95, 3, 20);
put g=;

run;

proc print data=work.Fvalue;
run;

The Print Procedure

Data Set WORK.FVALUE
Obs q
1 3.09839

Most F tables actually index this value as 1 —a = .95

Calculated

F =31 F
Figure 2.2.1: The F' distribution.

The Figicuiated > Fo s0 we reject Hy and accept the alternative H 4. The p-value (which we don't typically calculate by hand) is
the area under the curve to the right of the Fi;cuated and is the way the process is reported in statistical software. Note that in the
unlikely event that the Fyjcuated is exactly equal to the Fy, then the p-value = . As the calculated F statistic increases beyond
the F,, and we go further into the rejection region, the area under the curve (hence the p-value) gets smaller and smaller. This leads
us to the decisions rule: If the p-value is < a then we reject Hy.

This page titled 2.2: Computing Quantities for the ANOVA Table is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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2.3: Tukey Test for Pairwise Mean Comparisons

If (and only if) we reject the null hypothesis, we then conclude at least one group is different from one other (importantly, we do
not conclude that all the groups are different).

If it is the case that we reject the null, then we will want to know which group or groups are different. In our example we are not
satisfied knowing at least one treatment level is different, we want to know where the difference is and the nature of the difference.
To answer this question, we can follow up the ANOVA with a mean comparison procedure to find out which means differ from
each other and which ones don’t.

You might think we could not bother with the ANOVA and proceed with a series of t-tests to compare the groups. While that is
intuitively simple, it creates inflation of the type I error. How does this inflation of type I error happen? For a single test,

o =1-(.95) (2.3.1)

The probability of committing a type I error (by random chance) for two simultaneous tests follows from the Multiplication Rule
for independent events in probability. Recall that, for two independent events A and B the probability of A and B both occurring is
P(A and B) = P(A) * P(B) . So for two tests, we have

a=1—((.95)(.95)) = 0.0975 (2.3.2)

which is now larger than the o that we originally set. For our example, we have 6 comparisons, so a =1 — (.956) =0.2649 which
is a much larger (inflated) probability of committing a type I error than we originally set.

The multiple comparison procedures compensate for the type I error inflation (although each does so in a slightly different way).

There are several comparison procedures that can be employed, but we will start with the one most commonly used, the Tukey
procedure. In the Tukey procedure, we compute a "yardstick" value based on the M Sg..., and the number of means being
compared. If any two means differ by more than the Tukey w value, then they are significantly different.

Step 1: Compute Tukey's w value

W = qa(p,dfy,,,) " 57 (2.3.3)

where ¢, is obtained from a table of Tukey q values
p = the number of treatment levels

sy = standard error of a treatment mean = |/ M Sgyo, /7

r = number of replications

Show Tukey g Values Table

df for p = Number of Treatments

Error [}

Term 2 3 4 5 6 7 3 9 10

5 0.05 3.64 4.6 5.22 5.67 6.03 6.33 6.58 6.80 6.99
0.01 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24

6 0.05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49
0.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10

. 0.05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16
0.01 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37

: 0.05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92
0.01 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86

9 0.05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74
0.01 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49
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df for p = Number of Treatments
Error o
Term 2 3 4 5 6 7 3 9 10
10 0.05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60
0.01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21
1 0.05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49
0.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99
12 0.05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39
0.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81
13 0.05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32
0.01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67
1 0.05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25
0.01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54
15 0.05 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20
0.01 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44
16 0.05 3.00 3.65 4.05 4.33 4.56 4.74 490 5.03 5.15
0.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35
17 0.05 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11
0.01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27
18 0.05 297 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07
0.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20
19 0.05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04
0.01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14
20 0.05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01
0.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09
24 0.05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92
0.01 3.96 4.55 491 5.17 5.37 5.54 5.69 5.81 5.92
30 0.05 2.89 3.49 3.84 4.10 4.30 4.46 4.60 4.72 4.83
0.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76
40 0.05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.74
0.01 3.82 4.37 4.70 4.93 5.11 5.27 5.39 5.50 5.60

For our greenhouse example we get: w = g 54,20/ (3-052/6) = 3.96(0.7132) = 2.824

Step 2: Rank the means, calculate differences

For the greenhouse example, we rank the means as:

29.20 28.6 25.87 21.00

Start with the largest and second-largest means and calculate the difference, 29.20 —28.60 = 0.60, which is less than our w of
2.824, so we indicate there is no significant difference between these two means by placing the letter "a" under each:

29.20 28.6 25.87 21.00

d d
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Then calculate the difference between the largest and third-largest means, 29.20 —25.87 = 3.33 which exceeds the critical w of
2.824, so we can label these with a "b" to show this difference is significant:

29.20 28.6 25.87 21.00

a a b

Now we have to consider whether or not the second-largest and third-largest differ significantly. This is a step that sets up a back-
and-forth process. Here 28.6 —25.87 = 2.73 less than the critical w of 2.824, so these two means do not differ significantly. We
need to add a factor of "b" to show this:

29.20 28.6 25.87 21.00

a ab b

Continuing down the line, we now calculate the next difference: 28.60 —21.00 = 7.60, exceeding the critical w, so we now add a

"C":
29.20 28.6 25.87 21.00
a ab b c

Again, we need to go back and check to see if the third-largest also differs from the smallest: 25.87 — 21.00 = 4.87, which it does.
So we are done.

These letters can be added to figures summarizing the results of the ANOVA.

The Tukey procedure explained above is valid only with equal sample sizes for each treatment level. In the presence of unequal
sample sizes, more appropriate is the Tukey-Cramer Method, which calculates the standard deviation for each pairwise comparison
separately. This method is available in SAS, R, and most other statistical softwares.

This page titled 2.3: Tukey Test for Pairwise Mean Comparisons is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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2.4: Other Pairwise Mean Comparison Methods

Although the Tukey procedure is the most widely used multiple comparison procedure, there are many other multiple comparison
techniques.

An older approach, no longer offered in many statistical computing packages, is Fisher’s Protected Least Significant Difference
(LSD). This is a method to compare all possible means, two at a time, as ¢-tests. Unlike an ordinary two-sample ¢-test, however,
the method does rely on the experiment-wide error (the MSE). The LSD is calculated as:

LSD(O() =ta,dfSj (2.4.1)

where t,, is based on « and df = error degrees of freedom from the ANOVA table. The standard error for the difference between
two treatment means (s; or SE) is calculated as:
2s2
§r =4/ — 2.4.2

== (2.4.2)
where 7 is the number of observations per treatment mean (replications) and s is the MSE from the ANOVA. As in the Tukey
method, any pair of means that differ by more than the LSD value differ significantly. The major drawback of this method is that it
does not control o over for an entire set of pair-wise comparisons (the experiment-wise error rate) and hence is associated with
Type 1 inflation.

The following multiple comparison procedures are much more assertive in dealing with Type 1 inflation. In theory, while we can
set o for a single test, the fact that we have T' treatment levels means there are T'(T"—1)/2 tests (the number of pairs of possible
comparisons), and so we need to adjust « to have the desired confidence level for the set of tests. The Tukey, Bonferroni, and
Scheffé methods control the experiment-wise error, but in different ways. All three use a "multiplier” * SE form, but differ in the
form of the multiplier.

Contrasts are comparisons involving two or more factor level means (discussed more in the following section). Mean comparisons
can be thought of as a subset of possible contrasts among the means. If only pairwise comparisons are made, the Tukey method will
produce the narrowest confidence intervals and is the recommended method. The Bonferroni and Scheffé methods are used for
general tests of possible contrasts. The Bonferroni method is better when the number of contrasts being tested is about the same as
the number of factor levels. The Scheffé method covers all possible contrasts, and as a result, is the most conservative of all the
methods. The drawback for such a highly conservative test, however, is that it becomes more difficult to resolve differences among
means, even though the ANOVA would indicate that they exist.

When treatment levels include a control and mean comparisons are restricted to only comparing treatment levels against a control
level, Dunnett’s mean comparison method is appropriate. Because there are fewer comparisons made in this case, the test provides
more power compared to a test (see Section 3.7) using the full set of all pairwise comparisons.

To illustrate these methods, the following output was obtained (as we will see later on in the course) for the hypothetical
greenhouse data of our example. We will be running these types of analyses later.

Fisher’s Least Significant Difference (LSD)
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Height t Grouping for Means of Fertilizer (Alpha =
0.05)

SMeans covered by the same bar are not significantly different.Sin

Fertilizer Estimate

F3 29.2000
F1 28.6000
F2 25.8667
Control 21.0000

Figure 2.4.1: LSD height groupings for fertilizer treatments.

Since the estimated means for F1 and F3 are covered by the same colored bar, they are not significantly different using the LSD
approach.

Tukey

Height Tukey Grouping for Means of Fertilizer (Alpha
= 0.05)

Means covered by the same bar are not significantly different

Fertilizer Estimate

F3 29.2000
F1 28.6000
F2 25.8667
Control 21.0000

Figure 2.4.2: Tukey height groupings for fertilizer treatments.

Since the estimated means for F1 and F3 are covered by the same colored bar (red bar), they are not significantly different using
Tukey's approach. Similarly, since F1 and F2 are covered by the same colored bar (blue bar) they are not significantly different
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using Tukey's approach.

Bonferroni

Height Bonferroni Grouping for Means of Fertilizer
(Alpha = 0.05)

Means covered by the same bar are not significantly different.

Fertilizer Estimate

F3 29.2000
F1 28.6000
F2 25.8667
Control 21.0000

Figure 2.4.3: Bonferroni height groupings for fertilizer treatments.

Observations from the Bonferroni approach are similar to the ones from Tukey's approach.

Scheffé

Height Scheffé Grouping for Means of Fertilizer
(Alpha = 0.05)

Means covered by the same bar are not significantly different.

Fertilizer Estimate

F3 29.2000
F1 28.6000
F2 25.8667
Control 21.0000

Figure 2.4.4: Scheffé height groupings for fertilizer treatments.

Observations from the Scheffé approach are similar to the ones from Tukey's and Bonferroni's approaches.
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Dunnett
Comparisons significant at the 0.05 level are indicated by ***.
. Difference
Fertilizer . . ..
. Between Simultaneous 95% Confidence Limits ***
Comparison
Means
F3 - Control 8.200 5.638 10.762 =
F1 - Control 7.600 5.038 10.162 H**
F2 - Control 4.867 2.305 7.429 ww*

We can see that the LSD method was the most liberal, that is, it indicated the largest number of significant differences between
means. In this example, Tukey, Bonferroni, and Scheffé produced the same results. The Dunnett test was consistent with the other 4
methods, and this is not surprising given the small value of the control mean compared to the other treatment levels.

To get a closer look at the results of employing the different methods, we can focus on the differences between the means for each
possible pair:

Comparison Difference between means
Control F1 7.6000
Control F2 4.8667
Control F3 8.2000
F1 F2 2.7333
F1 F3 0.6000
F2 F3 3.3333

and compare the 95% confidence intervals produced:

Type LSD Tukey Bonferroni Scheffé Dunnett

Comparison Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
Control F1 5.496 9.704 4.777 10.423 4.648 10.552 4.525 10.675 5.038 10.162
Control F2 2.763 6.971 2.044 7.690 1.914 7.819 1.792 7.942 2.305 7.429
Control F3 6.096 10.304 5.377 11.023 5.248 11.152 5.125 11.275 5.638 10.762
F1 F2 0.629 4.837 -0.090 5.556  -0.2189 5.686 -0.342 5.808 X X
F1 F3 -1.504 2.704 -2.223 3.423 -2.352 3.552 -2.475 3.675 X X
F2 EF3 1.229 5.437 0.510 6.156 0.3811 6.286 0.258 6.408 X X

You can see that the LSD produced the narrowest confidence intervals for the differences between means. Dunnett’s test had the
next most narrow intervals, but only compares treatment levels to the control. The Tukey method produced intervals that were
similar to those obtained for the LSD, and the Scheffé method produced the broadest confidence intervals.

What does this mean? When we need to be REALLY sure about our results, we should use conservative tests. If you are working in
life-and-death situations, such as in most clinical trials or bridge building, you might want to be surer. If the consequences are less
severe you can use a more liberal test, understanding there is more of a chance you might be incorrect (but still able to detect
differences). In reality, you need to be consistent with the rigor used in your discipline. While we can't tell you which comparison
to use, we can tell you the differences among the tests and the trade-offs for each one.
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2.5: Contrast Analysis

The paired comparisons discussed in sections 2.2 and 2.3 have the limitation that the comparisons are made only between treatment
mean pairs. The contrast analysis procedure can be used to carry out comparisons of a much wider context such as comparisons of
treatment level groups or even testing of trends prompting regression modeling to express the response vs. treatment relationship
with treatment as a numerical predictor. In the context of a single factor ANOVA model, a linear contrast can be defined as a linear
combination of the treatment means such that their numerical coefficients add to zero. Mathematically, a contrast can be

represented by...
T
A=>"a;g; (2.5.1)
i=1
where 4,9, ...,y represent the sample treatment means and 23;1 a; = 0. The quantity A is a sample statistic and serves as an

estimate for the population contrast Z;‘rzl a; ;. By choosing the numerical coefficients appropriately, linear contrasts can be used
to make different comparisons among groups of treatment means but not limited to only mean pairs. The table below gives 4 linear
contrasts defined in terms of the 3 fertilizer levels F1, F2, F3, and the Control in the greenhouse example.

Table: Greenhouse example contrasts

Ex a; as as ay Contrast

1 1 -1 0 0 F1-F2

2 1 1 1 -3 F1+F2+F3-3C
3 1 1 -2 0 F1+F2-2F3

4 0 1 -1 0 F2-F3

Notice that values of each list of a; (¢ =1, 2, 3,4) add to zero. The first contrast compares the first two fertilizer types in terms of
their means, and the second compares the means of the 3 fertilizer types with the Control mean. The third is a comparison between
the combined effect of fertilizer types 1 and 2 with fertilizer type 3, while the last contrast compares the second and third fertilizer
types.

A pair of contrasts A = EZTZI a;y; and B= ZZ;I by, is orthogonal if the products of their numerical coefficients add to zero.
This can be expressed mathematically as

> aibi =0 (2.5.2)

A set of contrasts is said to be orthogonal if every pair of contrasts in the set is orthogonal. Two orthogonal contrasts are not
correlated which means that if A and B are orthogonal, then Covariance(A, B) = 0. Furthermore, the sum of squares of the
treatment usually displayed in the ANOVA table can be partitioned into a set of (' — 1) orthogonal contrasts each with 1 degree of
freedom. Note that the maximal number of orthogonal contrasts associated with a treatment of 7" levels is (I'—1) and each of
them would be associated with one specific comparison independent of each other. In the table above, contrasts 1, 2, and 3 form an
orthogonal set of contrasts and contrast 4 cannot be admitted into this set.

The statistical significance of a linear contrast, which can be equated to testing for the zero contrast value can be formulated using
the null and alternative hypotheses:

T T
Hy: Zai,ui:0vs. Hy: Zai,ui;zéo (2.5.3)
=1 =1
and can be tested using either,
T
- QY
t= M with (N —T') degrees of freedom (2.5.4)
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or
F= ( i ) (2.5.5)
MSEYT, £

with numerator and denominator degrees of freedom equal to 1 and (N —T') respectively.

Note that MSE can be obtained from the ANOVA table. Applying the above formula, the ¢-statistic for testing contrast 2 above is...

T _
T e 28.6 1 25.867 +29.2 + (3 21
po et Oli B21) g 365 (2.5.6)

/ (1+14149)
MSEZz 1 n_ 3.052 x T

with df = 20 and has a p-value of .0028, indicating that the average plant height due to the combined treatment of the 3 fertilizer
types differs significantly from the average plant height yielded by the control.

The above testing procedure is applicable to non-orthogonal contrasts as well. But, as non-orthogonal contrasts are not guaranteed
to be uncorrelated, the conclusions arrived at may be "overlapping" and lead to redundancies. In Chapter 3, examples are provided
to illustrate how software can be used to conduct contrast testing. The hypothesis testing for trends using contrasts will be
discussed in Chapter 10: ANCOVA 1I.

This page titled 2.5: Contrast Analysis is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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2.6: Try It!

? Exercise 2.6.1: Teaching Effectiveness

To compare the teaching effectiveness of 3 teaching methods, the semester average based on 4 midterm exams from five
randomly selected students enrolled in each teaching method were used.

1. What is the response in this study?

2. How many replicates are there?

3. Write the appropriate null and alternative hypotheses.

4. Complete the partially filled ANOVA table given below. Round your answers to 4 decimal places.

Source df SS MS F p-value

teach_mtd 245

5. Find the critical value at « = .01

6. Make your conclusion.

7. From the ANOVA analysis, you performed, can you detect the teaching method which yields the highest semester average?
If not, suggest a technique that will.

Solution
1. Average of 4 mid-terms
2.5
3. Hy: p1 = pe = p3 = pg , where pg, o, pg are the actual semester average of a student enrolled in teaching method
1, method 2, and method 3 respectively. Ha: Not all semester averages are equal. (This means that there are at least two
teaching methods that differ in their actual semester averages)

4, Source df SS MS F p-value
teach_mtd
error
total

5. 6.925

6. As the calculated F'-statistic value = 14.6853 is more than the critical value of 6.925, Hy, should be rejected. Therefore,
we can conclude that all 3 teaching methods do not have the same semester average, indicating that at least 2 teaching
methods differ in their actual semester average.

7. The ANOVA conclusion indicated that not all 3 teaching methods are equally effective, but did not indicate which one
yields the highest mean score. The Tukey comparison method is one procedure that shows the teaching method that
yields the significantly highest average semester score.

? Exercise 2.6.2: Commuter Times

In a local commuter bus service, the number of daily passengers for 50 weeks was recorded. The purpose was to determine if
the passenger volume is significantly less during weekends compared to workdays. Below are summary statistics for each day
of the week. The partially filled ANOVA table, along with a Tukey plot, is shown below.

Statistics

Day N Mean SE Mean Std Dev
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Day N Mean SE Mean Std Dev
Sun 50 486.500 9.003 63.661
Mon 50 514.600 6.891 48.724
Tue 50 501.340 7.922 56.018
Wed 50 520.640 7.055 49.886
Thu 50 512.880 10.258 72.532
Fri 50 512.600 8.086 57.174
Sat 50 469.860 8.988 63.555

a) State the appropriate null and alternative hypotheses for this test.

Solution
Hy: HSun = UMon = MTues = UWed = HThurs = HFri = HSat

\(H_{A}: \ \text{At least one } \mu_{day \ i} \neq \mu_{day \ j}, \text{ for some)) i, j = 1, 2, \ldots, 7 \text{ OR not all
means are equal }\)

b) Complete the partially filled ANOVA table given below. Use two decimal places in the F statistic.

Source df SS MS F p-value

Groups 100391

Error

Solution

Source df SS

MS F

Error

¢) Use the appropriate F'-distribution cumulative probabilities to verify that the p-value for the test is approximately zero.

p-value

Solution

p-value ~ 0 (from the F'-distribution with 6 and 343 degrees of freedom)

d) Use a = 0.05 to test if the mean passenger volume differs significantly by day of the week.

Solution

Since the p-value < a = 0.05, we reject Hy. There is strong evidence to indicate that the mean passenger volume differs
significantly by day of the week (i.e., for some days of the week, the average number of commuters is more than others, but
this test does not indicate which days have a higher passenger volume).

https://stats.libretexts.org/@go/page/33186
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Volume Tukey Grouping for Means of Day (Alpha =
0.05)
Means covered by the same bar are not significantly different.
Day  Estimate
Wed 520.64
Mon 514.60
Thu 512.88
Fri 512.60
Tue 501.34
Sun 486.50
Sat 469.86

Figure 2.6.1: Grouping information using the tukey method and 95% confidence.

e) Use the output to make a statement about how the mean daily passenger volume differs significantly by day of the week.

Solution

The passenger volume on Sundays is not statistically different from Saturdays and also from Tuesdays. The mean passenger
volume on Saturdays is significantly lower than on workdays other than Tuesdays.

f) The management would like to know if the overall number of commuters is significantly more during workdays than during
weekends. An appropriate comparison to respond to their query would be to compare the average number of commuters
between workdays (Monday through Friday) and the weekend. Write the weight (coefficients) for a linear contrast to make this
comparison. Test the hypothesis that the average commuter volume during the weekends is less.

Solution

The weights (coefficients) for the appropriate contrast are given below.

Day Mon Tue Wed Thu Fri Sat Sun
weight 1 1 1 1 1 25 2.5
T —
i—1 Y 171.16
t 21 % —4.878

- 2 - 17.5

\/MSEer_l ] \/3517.5+ 1%
Under the null hypothesis, this test statistic has a ¢-distribution with 343 degrees of freedom. You can obtain the p-value
using statistical software. Recall this is a one-tailed test.

Student's t distribution with 343 DF

4.878 8.216815- 107 ~ 0

This p-value indicates that the difference in the average number of passengers is
statistically significant between workdays and weekends.

See the table below for computations:

@ 0 g 2.6.3 https://stats.libretexts.org/@go/page/33186
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Factor N Mean weights product weight?
Mon 50 514.6 1.0 514.6 1.00
Tue 50 501.34 1.0 501.34 1.00
Wed 50 520.64 1.0 520.64 1.00
Thu 50 512.88 1.0 512.88 1.00
Fri 50 512.6 1.0 512.6 1.00
Sat 50 469.86 -2.5 -1174.65 6.25
Sun 50 486.5 -2.5 -1216.25 6.25
Recall that the MSE (error mean squares) is 3517.5 with d feor = 343.

This page titled 2.6: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of

Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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2.7: Chapter 2 Summary

In this lesson, we became familiar with the ANOVA methodology to test for equality among treatment means. As follow-up
procedures, we were also exposed to the Tukey method for paired mean comparisons which helped to identify significantly
different treatment (factor) levels. The contrast analysis was also discussed as a means to compare differences among group means.

This page titled 2.7: Chapter 2 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

3: ANOVA Models Part |

In Chapter 2 we learned that ANOVA is based on testing the effect of the treatment relative to the amount of random error. In
statistics, we call this the partitioning of variability (due to treatment and due to random variability in the measurements). This
partitioning of the deviations can be written mathematically as:

Y;-Y. =Y, -Y +Y;-Y; (3.1)

(1) (2) (3)

Thus, the total deviation Y;; — 17._ in (1) can be viewed as the sum of two components:
(2) Deviation of estimated factor level mean around overall mean, and
(3) Deviation of the 4t response of the 5™ factor around the estimated factor level mean.

These two deviations are also called variability between groups, a reflection of differences between treatment levels and the
variability within groups that serves as a proxy for the error variability among individual observations. A practitioner would
however be more interested in the variability between groups as it is the indicator of treatment level differences and may have little
interest in the within-group variability, expecting it to be in fact small. However, it will be seen that both these variability measures
will play an important role in statistical procedures.

There are several mathematically equivalent forms of ANOVA models describing the relationship between the response and the

treatment. In this chapter we will focus on the effects model, and in the next chapter three other alternative models will be
introduced.

This lesson will also cover the topic of model assumptions needed to employ the ANOVA. Model diagnostics, which deal with
verifying the validity of model assumptions, are also discussed, along with power analysis techniques to assess the power
associated with a statistical study. How software can be used to analyze data using the statistical techniques discussed will also be
presented.

3.1: The Model

3.2: Assumptions and Diagnostics

3.3: Anatomy of SAS Programming for ANOVA

3.4: Greenhouse Example in SAS

3.5: SAS Output for ANOVA

3.6: One-Way ANOVA Greenhouse Example in Minitab

3.7: One-Way ANOVA Greenhouse Example in R

3.8: Power Analysis

3.9: Try It!

3.10: Chapter 3 Summary

This page titled 3: ANOVA Models Part I is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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3.1: The Model

The effects model for one way ANOVA is a linear additive statistical model which relates the response to the treatment and can be
expressed as

Y;jzli“t‘Ti-i-Eij (3.1.1)
where p is the grand mean, 7; (¢ =1,2,...,T) are the deviations from the grand mean due to the treatment levels and ¢;; are the
error terms. The quantities 7; (¢ =1, 2,...,T') which add to zero, are also referred to as the treatment level effects and the errors

show the amount "left over" after considering the grand mean and the effect of being in a particular treatment level.

Here’s the analogy in terms of the greenhouse experiment. Think of someone who is not aware that different fertilizers have been
used walking into the greenhouse to simply inquire about plant heights in general. The overall sample mean, an estimate of the
grand mean, will be a suitable response to this inquiry. On the other hand, the overall mean would not be satisfactory to the
experimenter of the study, who obviously suspects that there will be height differences among different fertilizer types. Instead,
what is more acceptable to the experimenter are the plant height estimates after including the effect of the treatment ;.

The actual plant height can never be known because there is an unknown measurement error associated with any observation.
This unknown error is associated with the ith treatment level, and the jth observation is denoted
€; (1=1,2,...,T, j=1,2,...,n;) is a random component (noise) that reflects the unexplained variability among plants
within treatment levels.

Under the null hypothesis where the treatment effect is zero, the reduced model can be written Y;; = p+¢;; .
Under the alternative hypothesis, where the treatment effects are not zero, the full model for at least one treatment level can be
written Y;; = p+7; + €55 .

If SSE(R) denotes the error sums of squares associated with the reduced model and SSE(F') denotes the error sums of squares
associated with the full model, we can utilize the General Linear Test approach to test the null hypothesis by using the test statistic:

(s

(%)

which under the null hypothesis has an F' distribution with the numerator and denominator degrees of freedom equal to dfr — d fr
and d fr respectively, where dfg is the degrees of freedom associated with SSE(R) and dfr is the degree of freedom associated
with SSE(F). It is easy to see that d{fg = N —1 and dfp = N —T where N =YY n;. Also,

(3.1.2)

SSE(R) = Z Z (Yij 717_,) 2_ SSTotal See Section 2.2 (3.1.3)
L2
Therefore,

SS87otat —SSE
T-1

F= (3.1.4)
( SSE )
d.fEr'ror
(SSTreatment )
— A\ Afrreatment ) (3.1.5)
( SSE ) o
derror
o MSTrt
= 358 (3.1.6)
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Note that this is the same test statistic derived in Section 2.2 for testing the treatment significance. If the null hypothesis is true,
then the treatment effect is not significant. If we reject the null hypothesis, then we conclude that the treatment effect is significant,
which leads to the conclusion that at least one treatment level is better than the others!

This page titled 3.1: The Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department
of Statistics.
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3.2: Assumptions and Diagnostics

Before we draw any conclusions about the significance of the model, we need to make sure we have a "valid" model. Like any other statistical procedure, the ANOVA has assumptions
that must be met. Failure to meet these assumptions means any conclusions drawn from the model are not to be trusted.

Assumptions

So what are these assumptions being made to employ the ANOVA model? The errors are assumed to be independent and identically distributed (iid) with a normal distribution having a
mean of 0 and unknown equal variance.

As the model residuals serve as estimates of the unknown error, diagnostic tests to check for validity of model assumptions are based on residual plots, and thus, the implementation of
diagnostic tests is also called Residual Analysis.
Diagnostic Tests

Most useful is the residual vs. predicted value plot, which identifies the violations of zero mean and equal variance. Residuals are also plotted against the treatment levels to examine if
the residual behavior differs among treatments.

The normality assumption is checked by using a normal probability plot.
Residual plots can help identify potential outliers, and the pattern of residuals vs. fitted values or treatments may suggest a transformation of the response variable.

Lesson 4: SLR Model Assumptions of STAT 501 online notes discuss various diagnostic procedures in more detail.

There are various statistical tests to check the validity of these assumptions, but some may not be that useful. For example, Bartlett’s test for homogeneity is too sensitive and indicates
that problems exist when they really don’t. It turns out that the ANOVA is very robust and is not badly affected by minor violations of these assumptions. In practice, a good deal of
common sense and the visual inspection of the residual plots are sufficient to determine if serious problems exist.

We will employ statistical software such as SAS to conduct the residual analysis. Here are common patterns that you may encounter in the residual analysis (i.e. plotting residuals, e,
against the predicted values, g).

Figure 3.2.1a shows the prototype plot when the ANOVA model is appropriate for data. The residuals are scattered randomly around mean zero and variability is constant (i.e. within
the horizontal bands) for all groups.

v Order
© (dy

Figure 3.2.1: Common patterns in residual analysis.

Figure 3.2.1bsuggests that although the variance is constant, there are some trends in the response that is not explained by a linear model. Using Figure 3.2.1¢ we can depict that the
linear model is appropriate as the central trend in data is a line. However, the megaphone patterns in Figure 3.2.1csuggest that variance is not constant.

¥ Alert!

A common problem encountered in ANOVA is when the variance of treatment levels is not equal (heterogeneity of variance). If the variance is increasing in proportion to the mean
(panel (c) in Figure 3.2.1), a logarithmic transformation of Y can "stabilize" the variances. If the residuals vs. predicted values instead show a curvilinear trend (panel (b) in Figure
3.2.1), then a quadratic or other transformation may help. Since finding the correct transformation can be challenging, the Box-Cox method is often used to identify the appropriate
transformation, given in terms of A as shown below.

yl@:{y’%l’ ifA#0, (3.2.1)
Iny,, ifA=0

Some A values result some common transformations.

transformations.

A YA Transformation

2 y? Square

1 y! Original (No transform)
1/2 VY Square Root

0 log(Y) Logarithm

-1/2 % Reciprocal Square Root
-1 % Reciprocal

Using Technology
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To run the Box-Cox procedure in Minitab, set up the data (Simulated Data), as a stacked format (a column with treatment (or trt combination) levels, and the second column with
the response variable.

Treatment Response Variable

12
23
34
45
56
67
14
25

0O 0O 0w w w o o» >

36

Steps in Minitab
1. On the Minitab toolbar, choose Stat >Control Charts >Box-Cox Transformation

File ~ Edit  Data  Calc  Stat  Graph  View  Help Predictive Ana

Navigator - Basic Statistics »
Regression »
ANOVA »
DOE ,

e
Quality Tools » | Variables Charts for Subgroups »
Reliability/Survival ~ » | Variables Charts for Individuals »
Predictive Analytics > | Attributes Charts >

T hted Charts »
Time Series » | Multivariate Charts »
Tables » Rare Event Charts »
Nonparametrics »

Figure 3.2.2: Selecting Box-Cox Transformation stat option.

2. Place "Response Variable" and "Treatment" in the boxes as shown below.

Box-Cox Transformation

Al observations for a chart are in one column: v

‘Response Variable'

Subgroup sizes: | Treatment (enter a number or ID column)

Options...

Figure 3.2.3: Inputting "Response Variable" and "Treatment" in pop-up window.

3. Click OK to finish. You will get an output like this:

Box-Cox Plot of Response Variable

Lower CL Upper CL
50 X
(using 95.0% confidence)
. Estimate [E
200 Lower CL 00
Upper CL 188
Rounded Value  1.00
150
2
z
]
@
100
.
50
e e amea? Limit
0
50 25 0o 25 50
A

Figure 3.2.4: Minitab Box-Cox plot output.

In the upper right-hand box, the rounded value for A is given from which the appropriate transformation of the response variable can be found using the chart above. Note, with
a A of 1, no transformation is recommended.

tps://stats.libretexts.org/@go/page/33434
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? Using SAS

The Box-Cox procedure in SAS is more complicated in a general setting. It is done through the Transreg procedure, by obtaining the ANOVA solution with regression which first
requires coding the treatment levels with effect coding discussed in Chapter 4.

However, for one-way ANOVA (ANOVA with only one factor) we can use the SAS Transreg procedure without much hassle.

Steps in SAS

Suppose we have SAS data as follows.

Obs Treatment ResponseVariable
1 A 12
2 A 23
3 A 34
4 B 45
5 B 56
6 B 67
7 C 14
8 C 25
9 C 36

We can use the following SAS commands to run the Box-Cox analysis.

proc transreg data=boxcoxSimData;
model boxcox(ResponseVariable)=class(Treatment);
run;

This would generate an output as follows, which suggests a transformation using A =1 (i.e. no transformation).

Box-Cox Analysis for ResponseVariable

~ <
1254 Ve ~

100 4 /

Selectedd =1 l——— | ——

S O 95%cl \

LogLikelihood

Lambda

[Terms with Pr F < 0.05 at the Selected Lambda _— — — Treatment B

Figure 3.2.5: SAS Box-cox plot output.

? UsingR

Steps in R

Load the simulated data and perform the Box-Cox transformation. Note that simulated data are in the stacked format (a column with treatment levels and a column with the
response variable)

setwd("~/path-to-folder/)
simulated_data<-read.table("simulated_data.txt", header=T)
attach(simulated_data)

library(AID)#Load package AID so that we can use the Box-Cox Procedure
boxcoxfr(Response_Variable, Treatment)#Box-Cox command for One-Way ANOVA

Output
Box-Cox power transformation
data: Response_Variable and Treatment
lambda.hat: 0.93

https://stats.libretexts.org/@go/page/33434
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Shapiro-Wilk normality test for transformed data (alpha = 0.05)

Level statistic p.value Normality
1 A 0.9998983 0.9807382 YES
2 B 0.9999840 0.9923681 YES
3 C 0.9999151 0.9824033 YES

Bartlett's homogeneity test for transformed data (alpha = 0.05)

Level statistic p.value Homogeneity

1 All 0.008271728 0.9958727 YES
From the output, we can see that the lambda value for the transformation is 0.93 (the same value as Minitab suggested). Since this value is very close to 1 we can use A =1 (no
transformation).
In addition, from the output, we can see that normality exists in all 3 levels (Shapiro-Wilk test) and we have the same variance (Bartlett's test).

Alternative:

We can use the command bhoxcox from package MASS

library(MASS)
Box_Cox_Plot<-boxcox(aov(Response Variable~Treatment), lambda=seq(-3,3,0.01))

log-Likelihood

Figure 3.2.6: R-generated plot of log-likelihood vs A.

From the plot, we can see the 95% CL. Since A = 1 is within the interval there is no need for transformation.

#Exact lambda
lambda<-Box_Cox_Plot$x[which.max(Box_Cox_Plot$y)] #0.93
detach(simulated_data)

This page titled 3.2: Assumptions and Diagnostics is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of Statistics.
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3.3: Anatomy of SAS Programming for ANOVA

The statistical software SAS is widely used in this course, and in previous sections we came across outputs generated through SAS
programs. In this section, we begin to delve further into SAS programming with a special focus on ANOVA-related statistical
procedures. The STAT 480-course series is also a useful resource for additional help.

Here is the program used to generate the summary output in Section 2.1:

data greenhouse;
input Fert $ Height;

The first line begins with the word data and invokes the data step. Notice that the end of each SAS statement has a semicolon.
This is essential. In the dataset, the data to be used and its variables are named. Note that SAS assumes variables are numeric in the
input statement, so if we are going to use a variable with alpha-numeric values (e.g. F1 or Control), then we have to follow the
name of the variable in the input statement witha $ sign.

A simple way to input small datasets is shown in this code, wherein we embed the data in the program. This is done with the word

datalines .
datalines;
Control 21
Control 19.5
Control 22.5
Control 21.5
Control 20.5
Control 21
F1 32
F1 30.5
F1 25
F1 27.5
F1 28
F1 28.6
F2 22.5
F2 26
F2 28
F2 27
F2 26.5
F2 25.2
F3 28
F3 27.5
F3 31
F3 29.5
F3 30
F3 29.2
’

The semicolon here ends the dataset.

SAS then produces an output of interest using proc statements, short for “procedure”. You only need to use the first four letters,
so SAS code is full of proc statements to do various tasks. Here we just wanted to print the data to be sure it read it in OK.
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proc print data= greenhouse;
title 'Raw Data for Greenhouse Data'; run;

Notice that the data set to be printed is specified in the proc print command. This is an important habit to develop because if not
specified, SAS will use the last created data set, out of both input data sets, and output datasets that may have been generated as a
result of any SAS procedures run up to that point.

The summary procedure which was then run can be very useful in both EDA (exploratory data analysis) and obtaining descriptive
statistics such as mean, variance, minimum, maximum, etc. SAS procedures including the summary procedure categorical variables
are specified in the class statement. Any variable NOT listed in the class statement is treated as a continuous variable. The target
variable for which the summary will be made is specified by the var (for variable) statement.

The output statement creates an output dataset and the out= part assigns a name of your choice to the output. Descriptive
statistics also can be named. For example, in the output statement below, mean=mean and stderr=se have named the
mean of the variable Tert as mean and standard error as se . The output data sets of any SAS procedure will not be
automatically printed. As illustrated in the code below, the print procedure would then have to be used to print the generated output.
In the proc print command a title can be included as a means of identifying and describing the output contents.

proc summary data= greenhouse;

class fert;

var height;

output out=outputl mean=mean stderr=se;
run;

proc print data=outputl;

title 'Summary Output for Greenhouse Data';
run;

The two commands title ; run; right after will erase the title assignment. This prevents the same title to be used in every
output generated thereafter, which is a default feature in SAS.

I title; run;

Summary Output for Greenhouse Data

Obs Fert TYPE FREQ mean se

1 0 24 26.1667 0.75238
2 Control 1 6 21.0000 0.40825
3 F1 1 6 28.6000 0.99499
4 F2 1 6 25.8667 0.77531
5 F3 1 6 29.2000 0.52599

This page titled 3.3: Anatomy of SAS Programming for ANOVA is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics.
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3.4: Greenhouse Example in SAS

In this section we will modify our previous program for greenhouse data to run the ANOVA model. The two SAS procedures that
are commonly used are: proc glm and proc mixed .

data greenhouse;

input fert $ Height;

datalines;

Control 21

Control 19.5

Control 22.5

Control 21.5

Control 20.5

Control 21

F1 32

F1 30.5

F1 25

F1 27.5

F1 28

F1 28.6

F2 22.5

F2 26

F2 28

F2 27

F2 26.5

F2 25.2

F3 28

F3 27.5

F3 31

F3 29.5

F3 30

F3 29.2

/*

Any lines enclosed between starting with "/*" & ending with "*/" will be ignored by S
*/

/* Recall how to print the data and obtain summary statistics. See section 3.3*/
/*To run the ANOVA model, use proc mixed procedure*/
proc mixed data=greenhouse method=type3 plots=all;
class fert;

model height=fert;

store myresults; /*myresults is an user defined object that stores results*/
title 'ANOVA of Greenhouse Data';
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run;

/*To conduct the pairwise comparisons using Tukey adjustment*/
/*1smeans statement below outputs the estimates means,
performs the Tukey paired comparisons, plots the data. */
/*Use proc plm procedure for post estimation analysis*/

proc plm restore=myresults;

lsmeans fert / adjust=tukey plot=meanplot cl lines;

run;

/* Testing for contrasts of interest with Bonferroni adjustment*/
proc plm restore=myresults;
lsmeans fert / adjust=tukey plot=meanplot cl lines;
estimate 'Compare control + F3 with F1 and F2 ' fert 1 -1 -1 1,
'Compare control + F2 with F1' fert 1 -2 1 0/ adjust=bon;
run;

This page titled 3.4: Greenhouse Example in SAS is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn

State's Department of Statistics.
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3.5: SAS Output for ANOVA

The first output of the ANOVA procedure as shown below, gives useful details about the model.

ANOVA of Greenhouse Data: The Mixed Procedure

Model Information

Data Set WORK.GREENHOUSE
Dependent Variable Height

Covariance Structure Diagonal

Estimation Method Type 3

Residual Variance Method Factor

Fixed Effects SE Method

Degrees of Freedom Method

Model-Based

Residual

Class Level Information

Class Levels Values

fert 4 Control F1 F2 F3
Dimensions

Covariance Parameters 1

Columns in X 5

Columns in Z 0

Subjects 0

Max Obs Per Subject 24

The output below titled “Type 3 Analysis of Variance’ is similar to the ANOVA table we are already familiar with. Note that it
does not include the Total SS, however it can be computed as the sum of all SS values in the table.

Type 3 Analysis of Variance

Sum of Expected

Sources DF Mean Square Error Term  Error DF F Value Pr>F
Squares Mean Square
fert 3 251440000 83813333 orResidua  MSResidua 27.46 <0001
D+Q(fert) 1)
Residual 20 61.033333  3.051667 Xar(Re“d”a
Covariance Parameter Estimates
Cov Parm Estimate
Residual 3.0517
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Fit Statistics

-2 Res Log Likelihood
AIC (smaller is better)
AICC (smaller is better)

BIC (smaller is better)

86.2
88.2
88.5
89.2

Type 3 Tests of Fixed Effects

Effect

fert

Num DF

Den DF

20

F Value

27.46

Pr>F

<.0001

The output above titled “Type 3 Tests of Fixed Effects” will display the Fi4;cuateq and p-value for the test of any variables that are
specified in the model statement. Additional information can also be requested. For example, the method = type 3 option
will include the Expected Mean Squares for each source, which will prove to be useful and will be seen in Chapter 6.

The Mixed Procedure also produces the following diagnostic plots:

Residuals for Height

4]
o
40 -
2 o .
o
=, 30 4
] a o| E
% 0o 2 g 2
a o -] @ 20
1 L o n [
o o
=241 10
o
4 G o
T T T T T T T T
22 24 26 28 4.5 3 -1.5 0 135 435
Predicted Mean Residual
4 Residual Statistics
> Observations 24
2 o -0 Minimum -36
= g Mean 41E-16
S a0” Mandmum 34
o g4 00000
o o Std Dev 1629
ar oo
i L0°
75 o Fit Statistics
i Ohbjective 86.238
e AlC 83.238
T T T T T AlCC 83.461
-2 1 a 1 2 BIC 89.234
Quantile

Figure 3.5.1: Diagnostic plots for residuals for height.

Distribution of Residuals for Height

Residual
o

:

T

< < <
Cantral F1 F2 F3

fart

Figure 3.5.2: Box plots for distribution of residuals for height.
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The following display is a result of the LSmeans statement in the PLM procedure which was included in the programming code.

Differences of fert Least Squares Means

fert Estimate :trizfard DF t Value Pr > |t| Alpha Lower Upper
Control 21.0000 0.7132 20 29.45 <.0001 0.05 19.5124 22.4876
F1 28.6000 0.7132 20 40.10 <.0001 0.05 27.1124 30.0876
F2 25.8667 0.7132 20 36.27 <.0001 0.05 24.3790 27.3543

F3 29.2000 0.7132 20 40.94 <.001 0.05 27.7124 30.6876

In the "Least Squares Means" table above, note that the ¢-value and Pr > |¢| are testing null hypotheses that each group mean= 0.
(These tests usually do not provide any useful information). The Lower and Upper values are the 95% confidence limits for the
group means. Note also that the least square means are the same as the original arithmetic means that were generated in the
Summary procedure in Section 3.3 because all 4 groups have the same sample sizes. With unequal sample sizes or if there is a
covariate present, the least square means can differ from the original sample means.

Next, the Plot= mean plot option in the LSmeans statement yields a mean plot and also a diffogram, shown below. The confidence
intervals in the mean plot are commonly used to identify the significantly different treatment levels or groups. If two confidence
intervals do not overlap, then the difference between the two associated means is statistically significant, which is a valid
conclusion. However, if they overlap, it may be the case that the difference might still be significant. Consequently, conclusions
made based on the visual inspection of the mean plot may not match with those arrived at using the table of "Difference of Least
Square Means", another output of the Tukey procedure, and is displayed below.

Notice that this is different from the previous table because it displays the results of each pairwise comparison. For example, the
first row shows the comparison between the control and F1. The interpretation of these results is similar to any other confidence
interval for the difference in two means—if the confidence interval does not contain zero, then the difference between the two
associated means is statistically significant.

Differences of fert Least Squares Means
Adjustment for Multiple Comparisons: Tukey

fert foy  Doimat Swndar Lo e Pr>d AGP Alpha L U Adp - Ad)

¢ —er e d Error alue r> 1 ] pa ower pper Lower  Upper
-10.422

Control F1 -7.6000 1.0086 20 -7.54 <.0001 <.0001 0.05 -9.7038 -5.4962 9 -4.7771

Control F2 -4.8667 1.0086 20 -4.83  0.0001  0.0006 0.05 -6.9705 -2.7628 -7.6896 -2.0438

-10. -11.022

Control F3 -8.2000 1.0086 20 -8.13 <.0001 <.0001 0.05 0 30: -6.0962 0 9 -5.3771
-0.0895

F1 F2 27333 1.0086 20 271 0.0135 0.0599 0.05 0.6295 4.8372 . 5.5562

F1 F3 -0.6000 1.0086 20 -0.59 0.5586  0.9324 0.05 -2.7038 1.5038 -3.4229  2.2229

F2 F3 -3.3333 1.0086 20 -3.30  0.0035 .0171 0.05 -5.4372 -1.2295 -6.1562 -0.5104

This discrepancy between the mean plot and the "Difference of Least Square Means" results occurs because the testing is done in
terms of the difference of two means, using the standard error of the difference of the two-sample means, but the confidence
intervals of the mean plot are computed for the individual means which are in terms of the standard error of individual sample
means. Consistent results can be achieved by using the diffogram as discussed below or the confidence intervals displayed in the
"difference in mean plot" available in SAS 14, but not included here.
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The diffogram has two useful features. It allows one to identify the significant mean pairs and also gives estimates of the individual
means. The diagonal line shown in the diffogram is used as a reference line. Each group (or factor level) is marked on the
horizontal and vertical axes and has vertical and horizontal reference lines with their intersection point falling on the diagonal
reference line. The x or the y coordinates of this intersection point which are equal is the sample mean of that group. For example,
the sample mean for the Control group is about 21, which matches with the estimate provided in the "Least Squares Means" table
displayed above. Furthermore, each slanted line represents a mean pair. Start with any group label from the horizontal axis and run
your cursor up, along the associated vertical line until it meets a slanted line, and then go across the intersecting horizontal line to
identify the other group (or factor level). For example, the lowermost solid line (colored blue) represents the Control and F2. As
stated at the bottom of the chart, the solid (or blue) lines indicate significant pairs, and the broken (or red) lines correspond to the
non-significant pairs. Furthermore, a line corresponding to a nonsignificant pair will cross the diagonal reference line.

LS-Means for fert
'With 95% Confidence Limits

300

[

Height LS-Mean

Control F1 F2 F3
fert

Figure 3.5.3: LS-Means plot.

Height Comparisons for fert

300

250

Cantrol

00 Contial 2 MR

200 225 50 275 oo

Difiaiences ror alpha=0.03 (Tukey Adjustment)
— —— Mot significant Significant

Figure 3.5.4: Diffogram.

The non-overlapping confidence intervals in the mean plot above indicate that the average plant height due to control is
significantly different from those of the other 3 fertilizer levels and that the F2 fertilizer type yields a statistically different average
plant height from F3. The diffogram also delivers the same conclusions and so, in this example, conclusions are not contradictory.
In general, the diffogram always provides the same conclusions as derived from the confidence intervals of difference of least-
square means shown in the "Difference of Least Square Means" table, but the conclusions based on the mean plot may differ.

There are two contrasts of interest: contrast to compare the control and F3 with F1 (i.e. tcontrot — bF1 — b2 + 43 ) and the
contrast to compare control and F2 with F1 (i.e., tcontror — 21471 + 2 ). Since we are testing for two contrasts, we should adjust
for multiple comparisons. We use Bonferroni adjustment. In SAS, we can use the estimate command under proc plm to
make these computations.

In general, the estimate command estimates linear combinations of model parameters and performs t-tests on them. Contrasts
are linear combinations that satisfy a special condition. We will discuss the model parameters in Chapter 4.
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Estimates
Adjustment for Multiplicity: Bonferroni

Label Estimate Standard Error DF t Value Pr > |t AdjP

Compare control

+ F3 with F1 and -4.2667 1.4263 20 -2.99 0.0072 0.0144
F2

Compare control

- 5 < <
+ F2 with F1 10.3333 1.7469 20 5.92 .0001 .0001

SAS returns both unadjusted and adjusted p-values. Suppose we wanted to make the comparisons at 1% level. If we ignored the
multiple comparisons (i.e. using unadjusted p-values), the both comparisons are statistically significant. However, if we consider
the adjusted p-values, we will fail to reject the hypothesis corresponding to the first contrast at the 1% level.

This page titled 3.5: SAS Output for ANOVA is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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3.6: One-Way ANOVA Greenhouse Example in Minitab

Step 1: Import the data

The data (Lesson 1 Data) can be copied and pasted from a word processor into a worksheet in Minitab:

c1 Cc2 C3 c4

Control F1 F2 F3
1 21.0 32.0 22.5 28.0
2 19.5 30.5 26.0 27.5
3 22.5 25.0 28.0 31.0
4 21.5 27.5 27.0 29.5
5 20.5 28.0 26.5 30.0

Figure 3.6.1: Worksheet in Minitab of Lesson 1 data.

Step 2: Run the ANOVA
To run the ANOVA, we use the sequence of tool-bar tabs: Stat > ANOVA > One-way...

File Edit Data Calc Stat Graph View Help Predictive /

Navigator v Basic Statistics 4
Regression »
ANOVA » One-Way...
DOE > Analysis of Means...
Balanced ANOVA...
Control Charts »
General Linear Model >
Quality Tools »
Mixed Effects Model »
Reliability/Survival »

Figure 3.6.2: Selecting toolbar tabs in Minitab.

You then get the pop-up box seen below. Be sure to select from the drop-down in the upper right, "Response data are in a separate
column for each factor level":
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| oot x|

Response data are in a separate column for each factor leve

Responses:

Control F1 F2 F3

Options... Comparisons... Graphs...

Results... Storage...

Figure 3.6.3: ANOVA pop-up window in Minitab.

Then we double-click from the left-hand list of factor levels to the input box labeled "Responses", and then click on the box labeled

Comparisons.
One-Way Analysis of Variance: Comparisons X

Error rate for comparison: ‘ 5 ‘

Comparison procedures assuming equal variances

Tukey
[J Fisher
() Dunnett

(J Hsu MCB

Results

Interval plot for differences of means

Grouping information
[J Tests

Figure 3.6.4: ANOVA: Comparisons pop-up window in Minitab.

We check the box for Tukey and then exit by clicking on OK. To generate the Diagnostics, we then click on the box for Graphs
and select the "Three in one" option:
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One-Way Analysis of Variance: Graphs

Data plots
@] Interval plot

O Individual value plot
(J Boxplot of data
Residual plots

O Individual plots

@ Three in one

Figure 3.6.5: ANOVA: Graphs pop-up window in Minitab.

You can now "back out" by clicking on OK in each nested panel.

Step 3: Results

Now in the Session Window, we see the ANOVA table along with the results of the Tukey Mean Comparison:
One-Way ANOVA: Control, F1, F2, F3

Method

Null Hypothesis: All means are equal

Alternative Hypothesis: Not all means are equal

Significance Level: o = 0.05

Equal variances were assumed for the analysis.

Factor Information

Factor Levels Values

Factor 4 Control, F1, F2, F3

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Factor 3 251.44 83.813 27.46 0.000
Error 20 61.03 3.052

Total 23 312.47

(Extracted from the output that follows from above.)

Grouping Information Using Tukey Method
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N Mean Grouping
F3 6 29.200 A
F1 6 28.600 A B
F2 6 25.867 B
Control 6 21.000 C

Means that do not share a letter are significantly different.

Tukey Simultaneous 95% Cls

Differénce of Means for Contral, F1, .

F1 - Control | ——————
|
1
F2 - Control 1 ——
|
1
F3 - Control : | e ——
|
|
F2-Fi| | . i
|
i
F3-F1 1
|
|
F1-F2 N
-50 -2.5 0o 25 50 75 100 125

1 an intenval does not contain zero, the corresponding means are significantiy cijferent
Figure 3.6.6: Minitab difference in means plot.

As can be seen, Minitab provides a difference in means plot, which can be conveniently used to identify the significantly different
means by following the rule: if the confidence interval does not cross the vertical zero line, then the difference between the two
associated means is statistically significant.

The diagnostic (residual) plots, as we asked for them, are in one figure:

Residual Plots for Control, F1, ...

Normal Prob ability Plot Versus Fits
99 - 4
. L]
90 ;'.' 2 . ..
ai P — .
g 3 H .
S s "’ T 0 . . -2
o w . L] .
o .-' I &’ 3 . " .
10 - ) -
: -._ - | i | . .
-4 -2 [} 2 4 20 22 24 26 8
Residual Fitted Value
Histogram

Frequency
-

Residual

Figure 3.6.7: Residual plots generated by Minitab.

Note that the Normal Probability plot is reversed (i.e, the axes are switched) compared to the SAS output. Assessing straight line
adherence is the same, and the residual analysis provided is comparable to SAS output.

This page titled 3.6: One-Way ANOVA Greenhouse Example in Minitab is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Penn State's Department of Statistics.
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3.7: One-Way ANOVA Greenhouse Example in R

R Instructions: Code for the Greenhouse Data

¢ Load the greenhouse data.

o Calculate the overall mean, standard deviation, and standard error.

o Calculate the mean, standard deviation, and standard error for each group.

o Produce a boxplot to plot the differences in heights for each fertilizer.

o Produce a "means plot" (interval plot) to view the differences in heights for each fertilizer.
o Obtain the ANOVA table.

e Obtain Tukey’s multiple comparisons CIs and difference in means plot.

e Produce diagnostic (residuals) plots.

e Power analysis.

setwd("~/path-to-folder/")
greenhouse_data<-read.table('"greenhouse_data.txt", header=T)

Note that greenhouse data are in separate columns.

attach(greenhouse_data)
my_data<-stack(greenhouse_data)

With this command, we put our data in a stacked format (the first column has the response variable (values) and the second column
has the treatment levels (ind).

To calculate the overall mean, standard deviation, and standard error we can use the following commands:

overall mean<-mean(my_data$values) #26.16667
overall sd<-sd(my_data$values) #3.685892
overall standard_error<-overall_sd/sqrt(length(my_data$values)) #0.7523795

To calculate the group means we can use the following command:

group_means<-aggregate(my_data[, 1],1list(my_data$ind), mean)
# group_means

# Group.1 X

# 1 Control 21.00000

# 2 F1 28.60000

# 3 F2 25.86667

# 4 F3 29.20000

To calculate the group standard deviations and standard errors we can use the following commands:

group_sd<-aggregate(my_data[, 1],list(my_data$ind), sd)
# group_sd Group.1 X

# 1 Control 1.000000

# 2 F1 2.437212

# 3 F2 1.899123

# 4 F3 1.288410
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group_standard_error<-group_sd$x/sqrt(length(my_data$ind)/4)
# group_standard_error
# 0.4082483 0.9949874 0.7753136 0.5259911

To produce the Boxplot we can use the following commands:

library("ggpubr")

boxplot(values~ind, data=my_data,

xlab="Fertilizer", ylab="Plant Height",
main="Distribution of Plant Heights by Fertilizer",
frame=TRUE)

Distribution of Plant Heights by Fertilizer
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Control F1 F2 F3
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Figure 3.7.1: Box plot for distribution of plant heights by fertilizer.

To produce the means plot (interval plot) we can use the following commands:

library("gplots")

plotmeans(values~ind, data=my_data, connect=FALSE,
xlab="Fertilizer",ylab="Plant Height",
main="Means Plot with 95% CI")
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Means Plot with 95% CI
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Figure 3.7.2: Means plot with 95% confidence interval.

To obtain the ANOVA table we can use the following commands:

anova<-aov(values~ind, my_data)
summary(anova)

The command summary (anova) will give you the following output:

summary(anova)
Df Sum Sq Mean Sqg F value Pr(>F)
ind 3 251.44 83.81 27.46 2.71e-07 ***

Residuals 20 61.03 3.05

Signif. codes: © ‘***’ ©.001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 ' ' 1

We can see the degrees of freedom in the first column, the sum of squares in the second column, the mean sum of squares in the
third column, the F'-test statistic in the fourth column, and finally, we can see the p-value.

Note that the output doesn't give the SST'O. To find it, use the identity SSTO = SSR+ SSE . Similarly, for the df associated
with SSTO, add the df of SSR and SSE.

For our example, SSTO =251.44+61.03 = 312.47

To obtain Tukey multiple comparisons of means with a 95% family-wise confidence level we use the following command:

library(multcomp)

library(multcompView)
tukey_multiple_comparisons<-TukeyHSD(anova, conf.level=0.95)
plot(tukey_multiple_comparisons)

tukey_multiple_comparisons

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = values ~ ind, data = my_data)
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$ind

diff lwr upr p adj

F1-Control 7.600000 4.7770648 10.42293521 0.0000016
F2-Control 4.866667 2.0437315 7.68960188 0.0005509
F3-Control 8.200000 5.3770648 11.02293521 0.0000005
F2-F1 -2.733333 -5.5562685 0.08960188 0.0598655
F3-F1 0.600000 -2.2229352 3.42293521 0.9324380
F3-F2 3.333333 0.5103981 6.15626854 0.0171033

Based on this output, the Control group is significantly different from the 3 treatment groups and F3 is significantly different from
F2.

95% family-wise confidence level

F3-Control F2-Control F1-Control

F2-F1

F3-F1

F3-F2

T
-5 0 5 10
Figure 3.7.3: 95% famil-wise confidence level plot.

To produce diagnostic (residuals) plots we use the following commands:

#Residuals vs Fits plot
plot(anova, 1)
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Figure 3.7.6: Residuals vs fitted values plot.
#QQ plot
plot(anova, 2)
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Figure 3.7.7: Normal Q-Q plot.

#Histogram of residuals
residuals<-anova$res #with this command we get the residuals from ANOVA
hist(residuals)
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Figure 3.7.8: Histogram of residuals.

This page titled 3.7: One-Way ANOVA Greenhouse Example in R is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics.
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3.8: Power Analysis

After completing a statistical test, conclusions are drawn about the null hypothesis. In cases where the null hypothesis is not
rejected, a researcher may still feel that the treatment did have an effect. Let's say that three weight loss treatments are conducted.
At the end of the study, the researcher analyzes the data and finds there are no differences among the treatments. The researcher
believes that there really are differences. While you might think this is just wishful thinking on the part of the researcher, there
MAY be a statistical reason for the lack of significant findings.

At this point, the researcher can run a power analysis. Recall from your introductory text or course that power is the ability to
reject the null when the null is really false. The factors that impact power are sample size (larger samples lead to more power), the
effect size (treatments that result in larger differences between groups will have differences that are more readily found), the
variability of the experiment, and the significance of the type 1 error.

As a note, the most common type of power analysis are those that calculate needed sample sizes for experimental designs. These
analyses take advantage of pilot data or previous research. When power analysis is done ahead of time, it is a PROSPECTIVE
power analysis. This example is a retrospective power analysis, as it is done after the experiment is completed.

So back to our greenhouse example. Typically we want power to be at 80%. Again, power represents our ability to reject the null
when it is false, so a power of 80% means that 80% of the time our test identifies a difference in at least one of the means correctly.
The converse of this is that 20% of the time we risk not rejecting the null when we really should be rejecting the null.

Using our greenhouse example, we can run a retrospective power analysis (just a reminder, we typically don't do this unless we
have some reason to suspect the power of our test was very low).

This is one analysis where Minitab is much easier and still just as accurate as SAS, so we will use Minitab to illustrate this simple

power analysis in detail and follow up the analysis with SAS.

Power Analysis Techniques

? Using SAS

Steps in SAS

Let us now consider running the power analysis in SAS. In our greenhouse example with 4 treatments (control, F1, F2, and
F3), the estimated means were 21, 28.6,25.877, 29.2espectively. Using ANOVA, the estimated standard deviation of
errors was 1.747 (which is obtained by +/MSE = 1/3.0517. There are 6 replicates for each treatment. Using these values,
we could employ SAS POWER procedure to compute the power of our study retrospectively.

proc power;

onewayanova alpha=.05 test=overall
groupmeans=(21 28.6 25.87, 29.2)
npergroup=6 stddev=1.747

power=.;

run;
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Fixed Scenario Elements

Method Exact
Alpha 0.05
Group Means 21 28.6 25.87 29.2
Standard Deviation 1.747
Sample Size per Group 6

Computed Power

Power

>.999

As with MINITAB, we see that the retrospective power analysis for our greenhouse example yields a power of 1. If we re-
do the analysis ignoring the CONTROL treatment group, then we only have 3 treatment groups: F1, F2, and F3. The
ANOVA with only these three treatments yields an MSE of 3.735556 Therefore the estimated standard deviation of errors
would be 1.933 We will have a power of 0.731 in this modified scenario, as shown in the below output.

Fixed Scenario Elements

Method Exact
Alpha 0.05
Group Means 28.6 25.87 29.2
Standard Deviation 1.933
Sample Size per Group 6

Computed Power

Power

0.731

Suppose, we ask the question of how many replicates we would need to obtain at least 80% power to detect a difference in
the means of our greenhouse example with the same group means but with different variability in data (i.e. standard
deviations should be different). We can use SAS POWER to answer this question.
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Overall F Test for One-Way ANOVA
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Figure 3.8.al: Plot for overall F'-test.

We can see that with a standard deviation of 1.747, if we have only 2 replicates in each of the four treatments we can detect
the differences in greenhouse example means with more than 80% power. However, as the data get noisier (i.e. as standard
deviation increases) we need more replicates to achieve 80% power in the same example.

? Using Minitab

Steps in Minitab
In Minitab select STAT > Power and Sample Size >One-Way ANOVA
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Basic Statistics »
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Figure 3.8.b1: Selecting the One-Way ANOVA tab in Minitab.

Since we have a one-way ANOVA we select this test (you can see there are power analyses for many different tests, and
SAS will allow even more complicated options).

Power and Sample Size for One-Way ANOVA X

Number of levels: 4

Specify values for any two of the following:

Sample sizes: B

Values of the maximum difference between  §.2
means:

Power values:

Standard deviation: [ 1.7464)

Options... Graph...

Figure 3.8.b2: Entering values in the Power and Sample Size pop-up window.
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When you look at our filled-in dialogue box, you will notice we have not entered a value for power. This is because
Minitab will calculate whichever box you leave blank (so if we needed sample size we would leave sample size blank and
fill in a value for power). From our example, we know the number of levels is 4 because we have four treatments. We have
six observations for each treatment so the sample size is 6. The value for the maximum difference in the means is 8.2 (we
simply subtracted the smallest mean from the largest mean, and the standard deviation is 1.747. Where did this come from?
The MSE, available from the ANOVA table, is about 3, and hence the standard deviation is \/3 =1.747).

After we click OK we get the following output:

Power Curve for One-way ANOVA

1.0 — -
Sample
Size
6
08 Assumptions
a 0.05
StDev 1.7464
# Levels 4
0.6
-
@
H
<]
-9
0.4
0.2
0.0
0 1 2 3 4 5 6 7 8

Maximum Difference

Figure 3.8.63: Power curve for greenhouse data one-way ANOVA, with 4 treatment levels.

If you follow this graph you see that power is on the y-axis and the power for the specific setting is indicated by a red dot. It
is hard to find, but if you look carefully the red dot corresponds to a power of 1. In practice, this is very unusual, but can be
easily explained given that the greenhouse data was constructed to show differences.

We can ask the question, what about differences among the treatment groups, not considering the control? All we need to
do is modify some of the input in Minitab.

Power and Sample Size for One-Way ANOVA X ‘

Number of levels: 3

. Specify values for any two of the following:

Sample sizes: 6

Values of the maximum difference between 3,333
means.

Power values:

Standard deviation: ' 1.934

Options... Graph...

Figure 3.8.b4: Entering modified values in the Power and Sample Size window.
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Note the differences here as in the previous screenshot. We now have 3 levels because we are only considering the three
treatments. The maximum differences among the means and also the standard deviation are also different.

The output now is much easier to see:

Power Curve for One-way ANOVA

1.0
Sample
Size
08 Assumptions
a 0.05
StDev 1934
[ # Levels 3
06
e
v
2
o
o
0.4
0.2
0.0
0 1 2 3 4 5

Maximum Difference

Figure 3.8.b5: Power curve for greenhouse data one-way ANOVA, with 3 treatment levels (control omitted).

Here we can see the power is lower than when including the control. The main reason for this decrease is that the difference
between the means is smaller.

You can experiment with the power function in Minitab to provide you with sample sizes, etc. for various powers. Below is
some sample output when we ask for various power curves for various sample sizes, a kind of "what if" scenario.

Power Curve for One-way ANOVA

1.0 ——— :
. Sample
Size
2
3
08 4
5
6
L]
Assumptions
06 a 0.05
o StDev 1.7464
= #Levels 4
o
a
04
02
0.0
o 2 4 6 8 10 12 14

Maximum Difference

Figure 3.8.b6: Power curves for greenhouse data, with varying sample sizes.

Just as a reminder, power analyses are most often performed BEFORE an experiment is conducted, but occasionally, a
power analysis can provide some evidence as to why significant differences were not found.

? UsingR

Steps in R

With the following commands we will get the power analysis for the greenhouse example:
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groupmeans<-c(21,28.6,25.87,29.2)

groups = 4

n ==6

between.var = 13.96823
within.var = 3.05
sig.level = 0.05

power = 1

NOTE: n is the number in each group.

use the following commands:

groupmeans<-c(21,28.6,25.87,29.2)
n<-c(seq(2,8,by=1))

pl<power.anova.test(groups=4,n=n, between.
p2<power.anova.test(groups=4, n=n, between.
p3<power.anova.test(groups=4,n=n, between.
p4<power.anova.test(groups=4, n=n, between.
p5<power.anova.test(groups=4, n=n, between.
plot(n, p$power,ylab="Power",6 xlab="Sample
lines(n, p$power, col = "blue")
abline(h=0.80)

par (new=TRUE)

plot(n, pi1$power,ylab="Power", xlab="Sample
lines(n, p1$power, col = "red")

par (new=TRUE)

plot(n, p2$power, ylab="Power", xlab="Sample
lines(n, p2%power, col = "green")

par (new=TRUE)

plot(n, p3$power,ylab="Power", xlab="Sample
lines(n, p3$power, col = "brown")

par (new=TRUE)

plot(n, p4$power,ylab="Power", xlab="Sample
lines(n, p4$power, col = "purple")

par (new=TRUE)

plot(n, p5%power,ylab="Power", xlab="Sample
lines(n, p5$power, col = "gray")
text(locator(1),"var=3.05",col="blue")
text(locator(1), "var=4",col="red")
text(locator(1), "var=6.25",col="green")
text(locator (1), "var=9",col="brown")
text(locator(1), "var=16",col="purple")
text(locator(1), "var=25",col="gray")

power.anova.test(groups=4,n=6, between.var=var(groupmeans),within.var=3.05,sig.le
Balanced one-way analysis of variance power calculation

If we want to produce a power plot by increasing the sample size and the variance (like the one produced by SAS) we can

p<power.anova.test(groups=4,n=n,between.var=var(groupmeans),within.var=3.05, sig.
var=var (groupmeans),within.
var=var (groupmeans),within.
var=var (groupmeans),within.
var=var (groupmeans),within.
var=var (groupmeans),within.

var=4,sig.le
var=6.25, sig
var=9,sig.le
var=16.05, si
var=25,sig.1

size per group",main="Overall F test fo

size per group",main="Overall F test f

size per group",main="Overall F test f

size per group",main="Overall F test f

size per group",main="Overall F test f

size per group",main="Overall F test f
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Figure 3.8.cl: Plot of overall F'-test for one-way ANOVA of greenhouse data.

This page titled 3.8: Power Analysis is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's

Department of Statistics.
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3.9: Try It!

? Exercise 3.9.1: Diet Study

The weight gain due to 4 different diets given to 24 calves is shown below.

dietl diet2 diet3 diet4
12 18 10 19
10 19 12 20
13 18 13 18
11 18 16 19
12 19 14 18
09 19 13 19

a) Write the appropriate null and alternative hypotheses to test if the weight gain differs significantly among the 4 diets.

Solution
Hy: py =po =p3 =pa vs. Hy: p; # pjforsome\(i,j=1,2,3,4 OR "Not all means are equal”
Note: Here, p;, i =1, 2, 3, 4are the actual mean weight gains due to diet1, diet2, diet3, and diet4, respectively.

b) Analyze the data and write your conclusion.

Solution

Using SAS...

data Lesson3_ex1;

input diet $ wt_gain;

datalines;

diet1 12

diet1l 10

diet1l 13

diet1l 11

dietl 12

diet1l 09

diet2 18

diet2 19

diet2 18

diet2 18

diet2 19

diet2 19

diet3 10

diet3 12

diet3 13

diet3 16

diet3 14

diet3 13

diet4 19

diet4 20

diet4 18

diet4 19

diet4 18

diet4 19

;

ods graphics on;

proc mixed data= Lesson3_ex1l plots=all; class diet;
model wt_gain = diet;

contrast 'Compare dietl with diets 2,3,4 combined ' diet 3 -1 -1 -1;
store resultil;

title 'ANOVA of Weight Gain Data';
run;

ods html style=statistical sge=on;
proc plm restore=resultl;

lsmeans diet/ adjust=tukey plot=meanplot cl lines;
run;

https://stats.libretexts.

The ANOVA results shown below indicate that the diet effect is significant with an F'-value of 51.27 (p-value <.0001). This means that not all diets provide the same mean weight gain. The
diffogram below indicates the significant different pairs of diets identified by solid blue lines. The estimated mean weight gains from diets 1, 3, 2, and 4 are 11, 13, 18.1, and 19 units
respectively. The diet pairs that have significantly different mean weight gains are (1,2), (1,4), (3,2), and (3,4).
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Partial Output:
Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr>F

diet 3 20 51.27 <.0001

diet Least Squares Means

diet Estimate Standard Error DF t Value Pr>|t| Alpha Lower Upper

diet1 11.1667 0.5413 20 20.63 <.0001 0.05 10.0374 12.2959
diet2 18.5000 0.5413 20 34.17 <.0001 0.05 17.3708 19.6292
diet3 13.0000 0.5413 20 24.01 <.0001 0.05 11.8708 14.1292
diet4 18.8333 0.5413 20 34.79 <.0001 0.05 17.7041 19.9626

Differences of diet Least Squares Means
Adjustment for Multiple Comparisons: Tukey

diet _diet Estimate ::Z:iard DF t Value Pr>|t| Adj P Alpha Lower Upper Adj Lower Adj Upper

dietl diet2 -7.3333 0.7656 20 -9.58 <.0001 <.0001 0.05 -8.9303 -5.7364 -9.4761 -5.1906
dietl diet3 -1.8333 0.7656 20 -2.39 0.0265 0.1105 0.05 -3.4303 -0.2364 -3.9761 0.3094
dietl diet4 -7.6667 0.7656 20 -10.01 <.0001 <.0001 0.05 -9.2636 -6.0697 -9.8094 -5.5239
diet2 diet3 5.5000 0.7656 20 7.18 <.0001 <.0001 0.05 3.9030 7.0970 3.3572 7.6428
diet2 diet4 -0.3333 0.7656 20 -0.44 0.6679 0.9716 0.05 -1.9303 1.2636 -2.4761 1.8094
diet3 diet4 -5.8333 0.7656 20 -7.62 <.0001 <.0001 0.05 -7.4303 -4.2364 -7.9761 -3.6906

wt_gain Comparisens for diet
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Differences for alpha=0.05 (Tukey Adjustment)
Not significant Significant

Figure 3.9.a1: SAS-generated diffogram for weight gain comparisons by diet.

wt_gain Tukey Grouping for LS-Means of diet
(Alpha = 0.05)

Ls-means covered by the same bar are not signficantly diffaran.

diet  Estimate

dew  18.8333
gez 185000
g3 13.0000
get 11667

Figure 3.9.a2: SAS-generated Tukey grouping of weight gains for diet LS-means.

? Exercise 3.9.2: Commuter Times
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Commute_time Comparisons for Region
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Figure 3.9.b1: Commute time comparisons in hours by region.
Above is a diffogram depicting the differences in daily commuter time (in hours) among regions of a metropolitan city. Answer the following.

a) Name the regions included in the study.

Solution
SOUT, MIDW, NORT, and WEST

b) How many red or blue lines are to be expected?

Solution

4 choose 2 = 6 red or blue lines
c) Which pairs of regions have significantly different average commuter times?

Solution

(SOUT and NORT), (SOUT and WEST), (MIDW and NORT), and (MIDW and WEST) have significantly different mean commuter times.
d) Write down the estimated mean daily commuter time for each region.

Solution
Region SOUT MIDW NORT

Estimated mean commuter time in hours 8.7 10.5 16

This page titled 3.9: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of Statistics.
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3.10: Chapter 3 Summary

The primary focus in this chapter was to establish the foundation for developing mathematical models for a one-way ANOVA
setting. The effects model was then discussed along with the ANOVA model assumptions and diagnostics. The other focus was to
illustrate, using the greenhouse example, how SAS and Minitab can be utilized to run an ANOVA model. Sections 3.3-3.6 were
devoted to this purpose and include details on SAS and Minitab ANOVA basics, together with guidance in the interpretation of the
outputs. Software-based diagnostics tests to detect the validity of model assumptions were also discussed, along with the power
analysis procedure which computes any one of the four quantities of sample size, power, effect size, and the significance level,
given the other three.

The next chapter will be a continuation of this lesson. Three more different versions of ANOVA model equations that represent a
single factor experiment will be discussed. These are known as Overall Mean, Cell Means, and Dummy Variable Regression
models.

This page titled 3.10: Chapter 3 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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CHAPTER OVERVIEW

4: ANOVA Models Part Il

4b Objectives

By the end of this chapter, students will be able to:

Apply the overall mean, cell means, and dummy variable regression models for a one-way ANOVA and interpret the
results.

Identify the design matrix and the parameter vector for each ANOVA model studied.

Recognize aspects of ANOVA programming computations.

This is a continuation of the previous lesson, and in this lesson, three more alternative ANOVA models are introduced. ANOVA
models are derived under the assumption of linearity of model parameters and additivity of model terms so that every model will
follow the general linear model (GLM): Y = X + £ . In later sections of this lesson, we will see that the appropriate choice of X,
the design matrix, will result in a different ANOVA model. This lesson will also shed insight into the similarities of how ANOVA
calculations are done by most software, regardless of which model is being used. Finally, the concept of a study diagram is also
discussed, demonstrating its usefulness when building a statistical model and designing an experiment.

4.1: How is ANOVA Calculated?

4.2: The Overall Mean Model

4.3: Cell Means Model

4.4: Dummy Variable Regression

4.5: Computational Aspects of the Effects Model
4.6: The Study Diagram

4.7: Try It!

4.8: Chapter 4 Summary

This page titled 4: ANOVA Models Part 1T is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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4.1: How is ANOVA Calculated?

In the past lessons, we carried out the ANOVA computations conceptually in terms of deviations from means. For the calculation of
total variance, we used the deviations of the individual observations from the overall mean, while the treatment SS was calculated
using the deviations of treatment level means from the overall mean, and the residual or error SS was calculated using the
deviations of individual observations from treatment level means. In practice, however, to achieve higher computational efficiency,
SS for ANOVA is computed utilizing the following mathematical identity:

SS:Z(K—Y)2:ZY;2—@—;/?)2 (4.1.1)

This identity is commonly called the working formula or machine formula. The second term on the right-hand side is often
referred to as the correction factor (CF).

For computing the SS for the total variance of the responses, the formula above can be used as it is, but modifications need be made
for others. For example, to compute the treatment SS, the above equation has to be modified as:

2
e (SYs) (v
SStreatment = 12:1: T - N (412)

We will examine three new ANOVA models (Models 1, 2, 3), as well as the effects model (Model 4) from the previous lesson,
defined as follows:

& Model 1 - The Overall Mean Model

Yij = pte; (4.1.3)

which simply fits an overall or "grand" mean'. This model reflects the situation where Hy is true, implying that
M1 =2 = ... = UT .

& Model 2 - The Cell Means Model

where p;, © =1,2,...,T are the factor level means. Note that in this model, there is no overall mean being fitted.
& Model 3 - Dummy Variable Regression
Yi; = p+pi +e, fitted as Y = Bo + Brever 1 + Brevei2 +- - - + Breverr—1 + €5 (4.1.5)
where Brevei1, Brevel 2y - - - s BLevel T—1 are regression coefficients for 7' — 1 indicator-coded regression "dummy" variables that

are correspond to the T'— 1 categorical factor levels. The T'* factor level mean is given by the regression intercept Sy.

& Model 4 - The Effects Model

Yij=p+7+e; (4.1.6)

where 7; are the the deviations of each factor level mean from the overall mean so that Z;‘le 7 =0.

Each of these four models can be written as a general linear model (GLM): Y = X3 + £ simply by changing the design matrix
X. Thus to perform the data analysis, in terms of the computer coding instructions, the appropriate numerical values for the X
matrix elements will need to be inputted.

This page titled 4.1: How is ANOVA Calculated? is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics.
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4.2: The Overall Mean Model

& Model 1 - The Overall Mean Model

Yii=u+e; (4.2.1)

which simply fits an overall or "grand" mean. This model reflects the situation where Hy is true, implying that
M1 =2 = ... = UT .

To understand how various facades of the model relate to each other, let us look at a toy example with 3 treatments (or factor
levels) and 2 replicates of each treatment.

We have 6 observations, which means that Y is a column vector of dimension 6 and so is the error vector € where its elements are
the random error values associated with the 6 observations. In the GLM model of Y = X8+ &, the design matrix X for the
overall mean model turns out to be a 6-dimensional column vector of ones. The parameter vector, 3, is a scalar equal to y, the
overall population mean.

That is,
(27 (1] (€1 ]
1 1 €2
3 1 €3
Y= , X = ,B8=1[p], ande= (4.2.2)
4 1 €4
5 1 €5
L 6 | L 1 | | €6 |
Using the method of least squares, the estimates of the parameters in 3 are obtained as:
B=XX)'XY (4.2.3)

Using the estimate 3, the i predicted response ¥; can be computed as y; = x;’, where x;’ denotes the i row vector of the
design matrix.

In this simplest of cases, we can see how the matrix algebra works. The term X'X would be:

1
1
1
11110 | | =14+141+141+1=6=n (4.2.4)
1
| 1]
The term XY would be:
Y
1
111111« i —24143+445+6=21=3 Y] (4.2.5)
5
L 6]

So in this case, the estimate b as expected is simply the overall mean = 4 =g =21/6 =3.5

Note that the exponent of X'X in the formula above indicates arithmetic division as X'X is a scalar increase in this case. In the
more general setting, the superscript of '-1 ' indicates the inverse operation in matrix algebra.

To perform these matrix operations in SAS IML, we will open a regular SAS editor window, and then copy and paste three
components from the file (IML Design Matrices) as shown below.

https://stats.libretexts.org/@go/page/33490
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Steps in SAS

Step 1
Procedure initiation, and specification of the dependent variable vector, Y.

For our example we have:

/* Initiate IML, define response variable */
proc iml;

Step 2

Step 3
We can now copy and paste a program for the matrix computations to generate results (regression
coefficients and ANOVA output):

beta=inv(x *x)*x *y;

beta_label={"Beta_0", "Beta_1", "Beta_2", "Beta_3"};

print beta [label="Regression Coefficients"
rowname=beta_label];

n=nrow(y);

p=ncol(x);

j=j(n,n,1);

ss_tot = (y'*y) - (1/n)*(y *J)*y;

ss_trt (beta *(x"*y)) - (1/n)*(y *j)*y;

ss_error = ss_tot - ss_trt;
total _df=n-1;

trt_df=p-1;

error_df=n-p;

ms_trt = ss_trt/(p-1);

https://stats.libretexts.org/@go/page/33490
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ms_error = ss_error / error_df;
F=ms_trt/ms_error;

empty={.};

row_label= {"Treatment", "Error", "Total"},

col label={"df" "SS" "MS" "F"};

trt_row= trt_df || ss_trt || ms_trt || F;

error_row= error_df || ss_error || ms_error || empty;

tot_row=total_df || ss_tot || empty || empty;

aov = trt_row // error_row // tot_row;

print aov [label="ANOVA"
rowname=row_label
colname=col_label];

Here is a quick video walk-through to show you the process for how you can do this in SAS. (Right-click and select "Show
All" if your browser does not display the entire screencast window.)

Video 4.2.1 Walkthrough for ANOVA using the SAS overall mean model.

The program can then be run to produce the following output:

We see the estimate of the regression coefficient for 8y equals 3.5, which indeed is the overall mean of the response
variable, and is also the same value we obtained above using "by-hand" calculations. In this simple case, where the
treatment factor has not entered the model, the only item of interest from the ANOVA table would be the SSg;, for later
use in the General Linear F'-test.

https://stats.libretexts.org/@go/page/33490
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If you like to see the internal calculations further, you may optionally add the following few lines, to the end of the
calculation code.

/* (Optional) Intermediates in the matrix computations */
Xprimex=x"*x; print xprimex;

Xprimey=x"

*y; print xprimey;

Xprimexinv=inv(x *x); print xprimexinv;
check=xprimexinv*xprimex; print check;

SumY2=beta"

*(x“*y); print SumY2;

CF=(1/n)*(y"

*3j)*y; print CF;

This additional code produces the following output:

Xprimex Xprimey Xprimeinv

6 21 0.1666667

check SumY?2 CF

1 735 73.5

.
From this we can verify the computations for the SSycatment = D, Yf — @ =>Y-CF=0

The "check" calculation confirms that (X'X) 1X'X =1, which in fact defines the matrix division operation. In this
simple case, it amounts to simple division by n, but in other models that we will work with, the matrix division process is
more complicated and is explained here. In general, the inverse of a matrix A, denoted A, is defined by the matrix
identity A'A =T, where I is the identity matrix (a diagonal matrix of 1’s). In this example, A is replaced by X'X,
which is a scalar and equals 6.

? R: Overall Mean Model

Steps in R
1. Define response variable and design matrix

y<-matrix(c(2,1,3,4,6,5), ncol=1)
x<-matrix(c(1,1,1,1,1,1), ncol=1)

2. Regression coefficients

I beta<-solve(t(x)%*%x)%*%(t(x)%*%y) #3.5

3. Calculate the entries of the ANOVA Table

n<-nrow(y)

p<-ncol(x)

J<-matrix(1,n,n)

ss_tot = (t(y)%*%y) - (1/n)*(t(y)%*%J)%*%y #17.5

https://stats.libretexts.org/@go/page/33490



https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33490?pdf

LibreTextsm

ss_trt = t(beta)%*%(t(x)%*%y) - (1/n)*(t(y)%*%J)%*%y #0
ss_error = ss_tot - ss_trt #17.5

total_df=n-1 #5

trt_df=p-1 #0

error_df=n-p #5

MS_trt = ss_trt/(p-1)

MS_error = ss_error / error_df #3.5

F=MS_trt/MS_error

4. Creating the ANOVA table

ANOVA <- data.frame(

c ("","Treatment","Error", "Total"),
c("DF", trt_df,error_df,total_df),
c("SS", ss_trt, ss_error, ss_tot),
c("ms", "", MS_error, ""),
c("F", """, """,

stringsAsFactors = FALSE)

names (ANOVA) <- c(™ ", "™ ™, mow mmw nmy

5. Print the ANOVA table

print (ANOVA)

# 1 DF SS MS F
# 2 Treatment 0 (0]

# 3 Error 5 17.5 3.5
# 4 Total 5 17.5

6. Intermediates in the matrix computations

Xprimex<-t(x)%*%x # 6

xprimey<-t(x)%*%y # 21
xprimexinv<-solve(t(x)%*%x) # 0.1666667
check<-xprimexinv*xprimex # 1
sSumy2<-t(beta)%*%(t(x)%*%y) # 73.5
CF<-(1/n)*(t(y)%*%J)%*%y # 73.5

This page titled 4.2: The Overall Mean Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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4.3: Cell Means Model

& Model 2 - The Cell Means Model

Yij = pi +eij (4.3.1)
where u;, ¢ =1,2,...,T are the factor level means. Note that in this model, there is no overall mean being fitted.
The cell means model does not fit an overall mean, but instead fits an individual mean for each of the treatment levels. Let us run

this model for the same data assuming that each pair of observations arise from one treatment level, so that T, the number of
treatment levels equals 3. We then have to replace the design matrix in the IML code with:

/* The Cell Means Model */
x={

1 0] o,

1 0] o,

0] 1 o,

0] 1 o,

0] 0] 1,

0] 0] 1},

Notice that each column represents a specific treatment level and is using indicator coding: 1 for the rows corresponding to the
observations receiving the specified treatment level, and 0 for the other rows. It can be seen that 7 = 2 is the number of replicates
for each treatment level. Observe that column 1 generates the mean for treatment level 1, column 2 for treatment level 2, and
column 3 for treatment level 3.

To write the cell means model as a GLM, let

1 0 0 X1
1 0 0 X2/
!
x= |01 0 _|xs (4.3.2)
0 1 0 X4l
0 0 1 X5/
B 0 0 1 h L Xﬁl _
where x;’ is the i** row vector of the design matrix.
The parameter vector 3 is a 3-dimensional column vector and is defined by
Bo P
B=|5|=|m (4.3.3)
B2 K3

The parameter estimates 3 can again be found using the least squares method. One can verify that y; = 3, , the ¢ treatment mean,
for ¢ =1, 2, 3. Using this estimate, the resulting estimated regression equation for the cell means model is,

-~ -~

Y =X (4.3.4)
fin
which produces y; = &} | fi,
fis
We then re-run the program with the new design matrix to get the following output:

Regression Coefficients

https://stats.libretexts.org/@go/page/33491
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RegireBsion Coefficients 1.5
Beta_1 3.5

g%ﬁ: %E
Beta_1 3.5

ANOVA
dF SS MS F
Treatment
2 16 8 16

Error 3 1.5 0.5
Total 5 17.5

The regression coefficients 3y, 51, and B2 are now the means for each treatment level, and in the ANOVA table, we see that the
SSEror is 1.5. This reduction in the SSgor is the SSieatment - Notice that the error SS of the Overall Mean model is the sum of
the SS values for Treatment and Error term in this model, which means that by not including the treatment effect in that model, its
error SS has been unduly inflated.

Adding the optional code given in Section 4.2 to compute additional Internal computations, we can obtain:

xprimex check xprimey
2 0 0 1 0 0 3
0 2 0 0 1 0 7
0 0 2 0 0 1 11
Xprimexinv
SumY?2 CF 0.5 0 0
89.5 73.5 0 0.5 0
0 0 0.5

Here we can see that X' X now contains diagonal elements that are the n; = number of observations for each treatment level mean
being computed. In addition, we can verify that CF =Y Y? — CF =16 , or the working formula equals the treatment SS.

We can now test for the significance of the treatment by using the General Linear F' test:

e SSE,equced —SSEpui/df Ereduced — Af Etun

(4.3.5)
SSEpu/dfE s
The Overall Mean model is the "Reduced" model, and the Cell Means model is the "Full" model. From the ANOVA tables, we get:
17.5—-1.5/5—-3
= —/ =16 (4.3.6)
1.5/3

which can be compared to Fp5 2 3=9.55.

Steps in R - Cell Means Model

1. Define response variable and design matrix

https://stats.libretexts.org/@go/page/33491
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y<-matrix(c(2,1,3,4,6,5), ncol=1)
Xx<matrix(c(1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1),ncol=3, nrow=6, byrow=TRUE)

2. Regression coefficients

beta<-solve(t(x)%*%x)%*%(t(Xx)%*%y)
# beta

# [,1]
#[1,] 1.5
# [2,] 3.5
# [3,] 5.5

3. Calculate the entries of the ANOVA Table

n<-nrow(y)

p<-ncol(x)

J<-matrix(1,n,n)

ss_tot (t(y)%*%y) - (1/n)*(t(y)%*%J)%*%y #17.5
ss_trt = t(beta)%*%(t(x)%*%y) - (1/n)*(t(y)%*%I)%*%y #16
ss_error = ss_tot - ss_trt #1.5

total_df=n-1 #5

trt_df=p-1 #2

error_df=n-p #3

MS_trt = ss_trt/(p-1) #8

MS_error = ss_error / error_df #0.5
F=MS_trt/MS_error #16

4. Creating the ANOVA table

ANOVA <- data.frame(
c ("","Treatment", "Error", "Total"),
c("DF", trt_df,error_df,total_df),
c("SS", ss_trt, ss_error, ss_tot),
c("MS", MS_trt, MS_error, ""),
C(IIFII F nn Illl)

4 4 4 4
stringsAsFactors = FALSE)
names (ANOVA) <- C ( n n n n n n nmn nmn )

4 4 4 4

5. Print the ANOVA table

print (ANOVA)

# 1 DF SS MS F
# 2 Treatment 2 16 8 16
# 3 Error 3 1.5 0.5

# 4 Total 5 17.5

6. Intermediates in the matrix computations

https://stats.libretexts.org/@go/page/33491
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Xprimex<-t(x)%*%x

# Xprimex

# [,1] [,2] [,3]
#[1,] 2 ) )
#

#

[2,1] ) 2 )
[3,] ) ) 2
Xprimey<-t(x)%*%y
# Xxprimey
# [,1]
# [1,] 3
# [2,] 7
# [3,] 11
xprimexinv<-solve(t(x)%*%x)
# Xprimexinv
# [,1] [,2] [,3]
# [1,] 0.5 0.0 0.0
#[2,] 0.0 0.5 0.0
# [3,] 0.0 0.0 0.5
check<-xprimexinv%*%xprimex
# check
# [,11 [,2] [,3]
#[1,] 1 0 0
#[2,] ) 1 )
# [3,] ) 0 1
Sumy2<-t(beta)%*%(t(x)%*%y) #89.5
CF<-(1/n)*(t(y)%*%d)%*%y #73.5

This page titled 4.3: Cell Means Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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4.4: Dummy Variable Regression

& Model 3 - Dummy Variable Regression

Yy = p+pi e, fittedasYi; = Bo + Brever1 + Brever2 +- - - + Brever 7-1 + €5 (4.4.1)

where Brevel 1, BLevel 25 - - - s BLevel T—1 are regression coefficients for 7" — 1 indicator-coded regression "dummy" variables that
are correspond to the T'— 1 categorical factor levels. The T*" factor level mean is given by the regression intercept ;.

The General Linear Model (GLM) applied to data with categorical predictors can be viewed from a regression modeling
perspective as an ordinary multiple linear regression (MLR) with "dummy" coding, also known as indicator coding, for the
categorical treatment levels. Typically, software performing the MLR will automatically include an intercept, which corresponds to
the first column of the design matrix and is a column of 1's. This automatic inclusion of the intercept can lead to complications
when interpreting the regression coefficients.

The SAS Mixed procedure, and also the GLM procedure which we may encounter later, use the "Dummy Variable Regression"
model. For the Y data used in sections 4.2 and 4.3, the design matrix for this model can be entered into IML as:

/* Dummy Variable Regression Model */
x ={

1 1 0,

1 1 o,

1 0] 1,

1 0] il,

1 0] o,

1 0 0};

Notice that in the above design matrix, there are only two indicator columns even though there are three treatment levels in the
study. It is because, similar to the matrix below, if we were to have a design matrix with another indicator column representing the
third treatment level, the resulting 4 columns would form a set of linearly dependent columns, a mathematical condition that will
hinder the computation process any further as explained below.

1

(4.4.2)

S O O = =
O O = = O O
= = O O O O

1
1
1
1
1

0

The above matrix containing all 4 columns has the property that the sum of columns 2-4 will equal the first column representing the
intercept. As a result, a mathematical condition called singularity is created and the matrix computations will not run. So one of the
treatment levels is omitted from the coding in the design matrix above for IML and the eliminated level is called the ‘reference’
level. In SAS, typically, the treatment level with the highest label is defined as the reference level and so, in this study, it is
treatment level 3.

Note that the parameter vector for the dummy variable regression model is

H1
B= |1 (4.4.3)
H3

Running IML, with the design matrix for the dummy variable regression model, we get the following output;
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Regression Coefficients

Beta_ 0 5.5
Beta_1 -4
Beta_2 -2

The coefficient By is the mean for treatment level 3. The mean for treatment level 1 is then calculated from /3’0 +ﬁ 1=15.
Likewise, the mean for treatment level 2 is calculated as 5y + 8, =3.5 .

Notice that the F' statistic calculated from this model is the same as that produced from the Cell Means model.

ANOVA
df SS MS F
Treatment
2 16 8 16
Error 3 1.5 0.5
Total 5 17.5

Using Technology
? Minitab Example
We can confirm our ANOVA table now by running the analysis in software such as Minitab.

Steps in Minitab
First input the data:

C1 c2-T
y trt

1 2 A

2 1A

3 3 B

4 4 B

5 6 C

6 5C

7

Figure 4.4.a1: Inputting data.

In Minitab, different coding options allow the choice of the design matrix which can be done as follows:

Stat > ANOVA > General Linear Model > Fit General Linear Model and place the variables in the
appropriate boxes:
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General Linear Model X

Responses:
cz o
y
Factors:
n
Covariates:
Random/Mest.. Model... Optiens... Coding...
Stepwise... Graphs... Results... Storage...
Select
=m

Figure 4.4.a2: Placing variables in the General Linear Model pop-up window.

Then select Coding... and choose the (1,0) coding as shown below:

General Linear Model: Coding X

Coding for factors

O (1,0, +1)

@ (1,0)
Factor Reference level .
trt C v

Standardize covariates:

Figure 4.4.a3: Selecting options in the General Linear Model: Coding window.

Select OK to exit the nested windows. This produces the regular ANOVA output:

Analvsis of Variance

Source DF Adj SS Adj MS F-Value P-Value

trt 2 16.000 8.0000 16.00 0.025
Error 3 1.500 0.5000

Total 5 17.500

And also the Regression Equation:

Regression Equation
y = 5.500 - 4.000 trt_levell - 2.000 trt_level2 + 0.0 trt_level3
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Steps in SAS

In SAS, the default coding is indicator coding, so when you specify the option

I model y=trt / solution;

Copy code

you get the regression coefficients:

Solution for Fixed Effects

Effect trt Estimate Standard Error ~ DF t Value Pr> [f|
Intercept 5.5000 0.5000 3 11.00 0.0016
trt levell -4.0000 0.7071 3 -5.66 0.0109
trt level2 -2.0000 0.7071 3 -2.83 0.0663
trt level3 0

And the same ANOVA table:

Type 3 Analysis of Variance

Expected
Sum of Mean
Source DF Mean Error Term  Error DF F Value Pr>F
Squares Square
Square
trt 2 16000000 8000000 ' or(Residu  MS(Residu 3 16.00 0.0251
al)+Q(trt) al)
Resi
Residual 3 1500000 0.500000 "¢ eSIdI‘;
a
The Intermediate calculations for this model are:
xprimex check Xprimey
6 2 2 1 -2.22E-16 0 21
2 2 0 3.331E-16 1 0 3
2 0 2 0 0 1 7
Xprimexinv
SumY?2 CF 0.5 -0.5 -0.5
89.5 73.50.5 1 0.5
-0.5 0.5 1
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Steps in R

1. Define response variable and design matrix

y<-matrix(c(2,1,3,4,6,5), ncol=1)
X = matrix(c(1,1,0,1,1,0,1,0,1,1,0,1,1,0,0,1,0,0),ncol=3, nrow=6, byrow=TRUE)

2. Regression coefficients

beta<-solve(t(x)%*%x)%*%(t(x)%*%y)

# beta

# [,1]
# [1,] 5.5
# [2,] -4.0
# [3,] -2.0

3. Calculate the entries of the ANOVA Table

n<-nrow(y)

p<-ncol(x)

J<-matrix(1,n,n)

ss_tot (t(y)%*%y) - (1/n)*(t(y)%*%d)%*%y #17.5
ss_trt = t(beta)%*%(t(x)%*%y) - (1/n)*(t(y)%*%J)%*%y #16
ss_error = ss_tot - ss_trt #1.5

total_df=n-1 #5

trt_df=p-1 #2

error_df=n-p #3

MS_trt = ss_trt/(p-1) #8

MS_error = ss_error / error_df #0.5
F=MS_trt/MS_error #16

4. Creating the ANOVA table

ANOVA <- data.frame(

c ("","Treatment","Error", "Total"),
c("DF", trt_df,error_df,total_df),
c("SS", ss_trt, ss_error, ss_tot),
c("MS", MS_trt, MS_error, ""),
c("F",F,"", "),

stringsAsFactors = FALSE)

names (ANOVA) <- c¢c(™ "™, "™ ™, mow mmw oo

5. Print the ANOVA table

print (ANOVA)
# 1 DF SS MS F
# 2 Treatment 2 16 8 16
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# 3 Error 3 1.5 0.5
# 4 Total 5 17.5

6. Intermediates in the matrix computations

Xprimex<-t(x)%*%x

#  Xprimex

# [,1] [,2] [,3]
# [1,] 6 2 2
# [2,] 2 2 0
# [3,] 2 ) 2
Xprimey<-t(x)%*%y

# Xprimey

# [,1]

# [1,] 21

# [2,] 3

# [3,] 7
xprimexinv<-solve(t(x)%*%x)

# Xprimexinv

# [,11 [,2] [,3]

#[1,] 0.5 -0.5 -0.5

#[2,] -0.5 1.0 0.5

# [3,] -0.5 0.5 1.0
check<-xprimexinv%*%xprimex

# check

# [,1] [,2] [,3]
# [1,] 1.000000e+00 0.000000e+00 (0]
# [2,] -1.110223e-16 1.000000e+00 0
# [3,] 0.000000e+00 -1.110223e-16 1
sumy2<-t(beta)%*%(t(x)%*%y) # 89.5
CF<-(1/n)*(t(y)%*%J)%*%y # 73.5

7. Regression Equation and ANOVA table

trt_leveli<-x[,2]
trt_level2<-x[, 3]
model<-Im(y~trt_levell+trt_level2)

8. With the command summary(model) we can get the following output:

Call:

Im(formula = y ~ trt_levell + trt_level?2)
Residuals:

1 2 3 4 5 6

0.5 -0.5 -0.5 0.5 0.5 -0.5

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 5.5000 0.5000 11.000 0.00161 **
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trt_levell -4.0000 0.7071 -5.657 0.01094 *

trt_level2 -2.0000 0.7071 -2.828 0.06628

Signif. codes: O ‘***’ @.,001 ‘**’ @.01 ‘*’ ©0.05 ‘." 0.2 / " 1
Residual standard error: 0.7071 on 3 degrees of freedom
Multiple R-squared: 0.9143, Adjusted R-squared: 0.8571
F-statistic: 16 on 2 and 3 DF, p-value: 0.02509

From the output, we can see the estimates for the coefficients are b0=>5.5, b1=-4, b2=-2 and the F-statistic is 16 with a p-
value of 0.02509.

By using the estimates we can write the regression equation:

y=5.5-4 trt_level1-2 trt_level2+0 trt_level3

9. With the command anova(model) we can get the following output

Analysis of Variance Table
Response: y
Df Sum Sgq Mean Sq F value Pr(>F)

trt_levell 1 12.0 12.0 24 0.01628 *
trt_level2 1 4.0 4.0 8 0.06628
Residuals 3 1.5 0.5 ---

Signif. codes: 0O ‘***’ ©9.001 ‘**’ ©0.01 ‘*’ 0.05 ‘.” 0.1/ ' 1

Note: R is giving the sequential sum of squares in the ANOVA table.

This page titled 4.4: Dummy Variable Regression is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics.
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4.5: Computational Aspects of the Effects Model

& Model 4 - The Effects Model

}/ijz,uz'f‘Ti'f‘Gij (451)
where 7; are the the deviations of each factor level mean from the overall mean so that 23;1 7;=0.
In the effects model that we discussed in chapter 3, the treatment means were not estimated but instead, the 7;'s, or the deviations of

treatment means from the overall mean, were estimated. The model must include the overall mean, which is estimated by the
intercept, and hence the design matrix to be inputted for IML is:

/* The Effects Model */
x={

1 1 0,

1 1 0,

1 0 1,

1 0 1,

1 Sl -,

1 =il -1};

Here we have another omission of a treatment level, but for a different reason. In the effects model, we have the constraint
> 7; =0. As aresult, coding for one treatment level can be omitted.

Running the IML program with this design matrix yields:

Regression Coefficients

Beta_0 3.5
Beta_1 -2
Beta_2 0
ANOVA

dF SS MS F
Treatment

2 16 8 16
Error 3 1.5 0.5
Total 5 17.5

The regression coefficient Beta_0 is the overall mean and the coefficients 8; and B2 are 71 and 73, respectively. The estimate for 73
is obtained as —(71) — (12) = 2.0 .

In Minitab, if we change the coding now to be Effect coding (-1,0,+1), which is the default setting, we get the following:
Regression Equation
y = 3.500 - 2.000 trt_A - 0.000 trt_B + 2.000 trt_C

The ANOVA table is the same as for the dummy-variable regression model above. We can also observe that the factor level means
and General Linear F Statistics values obtained for all 3 representations (cell means, dummy coded regression and effects coded
regression) are identical, confirming that the 3 representations are identical.

The intermediates were:
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xprimex check xprimey
6 0 0 1 0 0 21
0 4 2 0 1 0 -8
0 2 4 0 0 1 -4
Xprimexinv

SumY?2 CF 0.1666667 0 0
89.5 73.5 0 0.3333333 -0.166667

0 -0.166667 0.3333333

By coding treatment or factor levels into numerical terms, we can use regression methods to perform the ANOVA.
To state the effects model
Yij =p+7ite; (4.5.2)

as a regression model, we need to include y, 7;, . . . , 71 as elements in the parameter vector 3 of the GLM model. Note that, in the
case of equal replication at each factor level, the deviations satisfy the following constraint:

T
» n=0 (4.5.3)
i=1

This implies one of the 7; parameters is not needed since it can be expressed in terms of the other T'— 1 parameters and need not
be included in the B parameter vector. We shall drop the parameter 7 from the regression equation, as it can be expressed in terms
of the other 7" — 1 parameters 7; as follows:

TrT=—T|—To—...—Tr_1 (4.5.4)
Thus, the 8 vector of the GLM is a T x 1 vector containing only the parameters y, 71, . . . , 7p—1 for the linear model.

To illustrate how a linear model is developed with this approach, consider a single-factor study with T' =3 factor levels when
ny =ny =ng =2 .The Y, X, B3, and € matrices for this case are as follows:

Yi1 1 1 0 €11
Yio 1 1 0 €12
Y; 1 0 1 Po €
Y: 21 y X_: 5 ﬂ: 131 s € = 21 (4.5-5)
Yoo 1 0 1 4 €22
Y31 1 -1 -1 2 €1
| Y3 L1 -1 -1 L €32

where By, B1, and S5 correspond to u, 71, and 7» respectively.

Note that the vector of expected values E{Y } = X3 yields the following:
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E{Y}=Xp (4.5.6)
[BE{Yu}] [1 1 0]
E{Y12} 1 1 0 B,
powp| {10 1| | 57
{Ya} 1 0 1
By| |11 |t
 B{Yp}| L1 -1 —1]
[ pt+m ]
B+TL
—| HtT (4.5.8)
n+ T
H—T1 —T2
LM —T1 —T2

Since 73 = —7; — Ty , as shown above, we see that E{Y3;} = E{Y33} = u+ 73 . Thus, the above X matrix and 8 vector
representation provides the appropriate expected values for all factor levels as expressed below:

E{Y;;} = p+i (4.5.9)
? Using R: Effects Model

Steps in R

1. Define response variable and design matrix

y<-matrix(c(2,1,3,4,6,5), ncol=1)
X = matrix(c(1,1,0,21,1,0,1,0,1,1,0,1,1,-1,-1,1,-1,-1),ncol=3, nrow=6, byrow=TRUE)

2. Regression coefficients

beta<-solve(t(x)%*%x)%*%(t(x)%*%y)
# beta

# [,1]
# [1,] 3.5
#[2,] -2.0
# [3,] 0.0

3. Calculate the entries of the ANOVA Table

n<-nrow(y)

p<-ncol(x)

J<-matrix(1,n,n)

ss_tot = (t(y)%*%y) - (1/n)*(t(y)%*%J)%*%y #17.5
ss_trt = t(beta)%*%(t(x)%*%y) - (1/n)*(t(y)%*%J)%*%y #16
ss_error = ss_tot - ss_trt #1.5

total_df=n-1 #5

trt_df=p-1 #2

error_df=n-p #3

MS_trt = ss_trt/(p-1) #8

MS_error = ss_error / error_df #0.5
F=MS_trt/MS_error #16
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4. Creating the ANOVA table

ANOVA <- data.frame(

c ("","Treatment","Error", "Total"),
c("DF", trt_df,error_df,total_df),
c("SS", ss_trt, ss_error, ss_tot),
c("MS", MS_trt, MS_error, ""),
c("F",F,"",""),

stringsAsFactors = FALSE)

names (ANOVA) <- c¢c(™ ", "™ ™, mow mw oo

5. Print the ANOVA table

print (ANOVA)

# 1 DF SS MS F
# 2 Treatment 2 16 8 16
# 3 Error 3 1.5 0.5

# 4 Total 5 17.5

Copy code

6. Intermediates in the matrix computations

Xprimex<-t(x)%*%x

# Xxprimex

# [,1] [,2] [,3]
# [1,] 6 0 0
# [2,] ) 4 2
# [3,] 0 2 4
Xprimey<-t(x)%*%y

# Xxprimey

# [,1]

# [1,] 21

# [2,] -8

# [3,] -4
xprimexinv<-solve(t(x)%*%x)

# Xprimexinv

# [,1] [,2] [,3]
# [1,] 0.1666667 0.0000000 0.060000000
# [2,] 0.0000000 0.3333333 -0.1666667
# [3,] 0.0000000 -0.1666667 (.3333333
check<-xprimexinv%*%xprimex

# check

# [,11 [,2] [,3]

# [1,] 1 0 )

#[2,] 0 1 0

#

[3,] 0 0 1
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Sumy2<-t(beta)%*%(t(x)%*%y) #89.5
CF<-(1/n)*(t(y)%*%J)%*%y # 73.5

7. Regression Equation and ANOVA table

trt_levell<-x[, 2]
trt_level2<-x[, 3]
model<-1lm(y~trt_levell+trt_level2)

8. With the command summary(model) we can get the following output:

Call:

Im(formula =y ~ trt_levell + trt_level2)

Residuals:

1 2 3 4 5 6

0.5 -0.5 -0.5 0.5 0.5 -0.5

Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 3.500e+00 2.887e-01 12.124 0.00121 **
trt_levell -2.000e+00 4.082e-01 -4.899 0.01628 *
trt_level2 -1.282e-16 4.082e-01 0.000 1.00000

Signif. codes: 0 ‘***’ @.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
Residual standard error: 0.7071 on 3 degrees of freedom
Multiple R-squared: 0.9143, Adjusted R-squared: 0.8571
F-statistic: 16 on 2 and 3 DF, p-value: 0.02509

4

1

value of 0.02509.

By using the estimates we can write the regression equation:

y=3.5-2 trt_level1-0 trt_level2+2 trt_level3

The estimator 73 is obtained as —7; — 17 =2

9. With the command anova(model) we can get the following output:

From the output we can see the estimates for the coefficients are b0=3.5, b1=-2, b2=0 and the F-statistic is 16 with a p-

Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)

trt_levell 1 16.0 16.0 32 0.01094 *
trt_level2 1 0.0 0.0 0@ 1.00000
Residuals 3 1.5 0.5

Signif. codes: 0 ‘***’ ©@.001 ‘**' 0.01 ‘*" ©0.05 ‘." 0.1 '

4

1

Note that R is giving the sequential sum of squares in the ANOVA table.
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This page titled 4.5: Computational Aspects of the Effects Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or

curated by Penn State's Department of Statistics.
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4.6: The Study Diagram

In Section 1.1 we encountered a brief description of an experiment. The description of an experiment provides a context for
understanding how to build an appropriate statistical model. All too often, mistakes are made in statistical analyses because of a
lack of understanding of the setting and procedures in which a designed experiment is conducted. Creating a study diagram is one
of the best ways to address this, in addition to being intuitive. A study diagram is a schematic diagram that captures the essential
features of the experimental design. Here, as we explore the computations for a single factor ANOVA in a simple experimental
setting, the study diagram may seem trivial. However, in practice and in lessons to follow in this course, the ability to create
accurate study diagrams usually makes a substantial difference in getting the model right.

In our example, as described in Section 1.1, a plant biologist thinks that plant height may be affected by the fertilizer type and three
types of fertilizer were chosen to investigate this claim. Next, 24 plants were randomly chosen and 4 batches, with 6 plants in each,
were assigned individually to the 3 fertilizer types; the last batch was left untreated, constituting the Control group. The researchers
kept all the plants under controlled conditions in the greenhouse. The individual containerized plants were randomly assigned the
fertilizer treatment levels to produce 6 replications of each of the fertilizer applications.

Here is the data from the example that we were using in this lesson:

Control F1 F2 F3
21 32 22.5 28
19.5 30.5 26 27.5
22.5 25 28 31
21.5 27.5 27 29.5
20.5 28 26.5 30
21 28.6 25.2 29.2

So we have a description of the treatment levels and how they were assigned to individual experimental units (the potted plant), and
we see the data organized in a table. But what are we missing? A key question is: how was the experiment conducted? This
question is a practical one and is answered with a study diagram. These are usually hand-drawn depictions of a real setting,
indicating the treatments, levels of treatments, and how the experiment was laid out. They are not typically works of art and no one
should ever feel embarrassed by a lack of artistic ability to draw one. For this example, we need to draw a greenhouse bench,
capable of holding the 4 x 6 = 24 experimental units:

U
&S Height = Response Variable
(ilizers

Ferti==
pertilizer \i Greenhouse Bench £ F
applied Fio 2 ’FQBrt' (co\’\UO\)

OOOOO + No

ki 00 O OO X
F3 O O O O o o Q,o
Control O OO oo \‘6‘&&@?3

71 F
Minital @ v
candom'?
Figure 4.6.1: Study diagram for response variable of height, showing 4 treatment levels with 6 units in each.

The diagram identified the response variable, listed the treatment levels, and indicated the random assignment of treatment levels to
these 24 experimental units on the greenhouse bench.
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This randomization and the subsequent experimental layout we would identify as a Completely Randomized Design (CRD). We
know from this schematic diagram that we need a statistical model that is appropriate for a one-way ANOVA in a Completely
Randomized Design (CRD).

Furthermore, once the plant heights are recorded at the end of the study, the experimenter may observe that the variability in the
growth may possibly be influenced by a second factor besides the fertilizer level. A careful examination of the layout of the plants
in the study diagram may perhaps reveal this additional factor. For example, if the growth is higher in the plants placed on the row
nearer to the windows, it is reasonable to assume that sunlight also plays a role and to redesign the experiment as a randomized
completely block design (RCBD) with rows as a blocking factor. Note that design aspects of experiments are covered in Chapters 7
and 8.

Being able to draw and reproduce a study diagram is very useful in identifying the components of the ANOVA models.

This page titled 4.6: The Study Diagram is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.

https://stats.libretexts.org/@go/page/33494
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4.7: Try It!

? Exercise 4.7.1: Design Matrix

Below is a design matrix for a data set of a recent study.

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1
1 -1 -1 -1
1 -1 -1 -1

1 -1 -1 -1,

a) Identify the number of treatment levels and replicates.

Solution

4 treatment levels and 3 replicates

b) Name the model and write its equation.

Solution
This design matrix corresponds to the effects model, and the model equation is Y;; = 1 +7; +¢€;; , where i =1,2,3,4
j=1,2,3,and Y%, 7, =0.

c) Write the equation and the design matrix that corresponds to the cell means model.

Solution

The equation for the cell means model is: Y;; = u+e¢;; , where 1=1,2,3,4 and j=1,2,3. The design matrix
corresponding to the cell means model is:

O OO B B FHEHF O OO O o O
=== O OO0 O O O O O O

S O O O OO O OO K= =
©C O O O OO = =M OO O

d) Write the equation and the design matrix that corresponds to the dummy variable regressions model.

Solution

@ 0 a 4.7.1 https://stats.libretexts.org/@go/page/33495
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The equation for the 'dummy variable regression' model is: Y;; =p+pu; +¢; for 1 =1,2,3 and j=1,2,3.
Yij=ptey

The design matrix is given below. Note that the last 3 rows correspond to the 4th treatment level which is the reference
category and its effect is estimated by the model intercept.

ju—y

L T T S e S e e S O SO Sy
O O O O O O © O O +FH = =
O O O © ©O O = == M= O O O
O OO R MR O OO OO O

This page titled 4.7: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
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4.8: Chapter 4 Summary

This chapter, together with Chapter 3, covered four different versions of single-factor ANOVA models. They are: Overall Mean,
Cell Means, Dummy Variable Regression, and Effects Coded Regression models. This lesson also provided the coding compatible
with the SAS IML procedure, which facilitates the ANOVA computations using Matrix Algebra in a GLM setting. The method of
least squares was used to estimate model parameters yielding a prediction equation for the response in terms of the treatment level.
This prediction tool will show to be more useful in ANCOVA settings where model predictors are both categorical and numerical
(more details on ANCOVA in Chapters 9 and 10). The prediction process can be utilized effectively only with a sound knowledge
of the parameterization process for each ANOVA model, which we have been able to acquire as the design matrix was an input
resource for running the IML code and the knowledge of the parameter vector was useful in interpreting the prediction (regression)
equations.

Finally, using the greenhouse example, the concept of a study diagram was discussed. Though a simple visual tool, a study diagram
may play an important role in identifying new predictors so that perhaps a pre-determined ANOVA model can be extended to
include additional factors to create a multi-factor model discussed in Chapters 5 and 6. In addition to identifying the treatment
design, the study diagram also helps in choosing an appropriate randomization design, a topic discussed in Chapters 7 and 8.

This page titled 4.8: Chapter 4 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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CHAPTER OVERVIEW

5: Multi-Factor ANOVA

4b Learning Objectives

Upon completion of this lesson, you should be able to:

1. Identify factorial, nested, and cross-nested treatment designs.

2. Use main effects and interaction effects in factorial designs.

3. Create nested designs and identify the nesting effects.

4. Use statistical software to analyze data from different treatment designs via ANOVA and mean comparison procedures.

Researchers often identify more than one experimental factor of interest. One alternative is to set up separate, independent
experiments in which a single treatment (or factor) is used in each experiment, and data from each experiment to be analyzed as we
have done using a one-way ANOVA. This approach might have the advantage of a concentrated focus on the single treatment of
interest and the simplicity of computations. However, there are several disadvantages as well.

o First, environmental factors or experimental material conditions may change during the process. This could distort the
assessment of the relative importance of different treatments on the response variable.

o Second, it is inefficient. Setting up and running multiple separate experiments usually will involve more work and resources.

o Last, and probably the most important, this one-at-a-time approach does not allow the examination of how several treatments
jointly impact the response.

ANOVA methodology can be extended to accommodate this multi-factor setting. Here are Dr. Rosenberger and Dr. Shumway
talking about some of the things to look out for as you work your way through this lesson.

Video 5.1: Experimental design drives analysis.

To put it into perspective, let’s take a look at the phrase "Experimental Design" a term that you often hear. We are going to take this
colloquial phrase and divide it into two formal components:

A. The Treatment Design
B. The Randomization Design

We will use the treatment design component to address the nature of the experimental factors under study and the randomization
design component to address how treatments are assigned to experimental units. An experimental unit is defined to be that which
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receives a specific treatment level and in a multi-factor setting, a specific treatment or factor combination. In the single-factor
greenhouse example, which is an experiment, the experimental unit is a single plant receiving one specific fertilizer level. Note that
the ANOVA model pertaining to a given study depends on both the treatment design and the randomization process.

The following figure illustrates the conceptual division between the treatment design and the randomization design. The terms that
are in boldface type will be addressed in detail in this or future lessons.

Treatment Design Randomization Design

N

_
v
v
v
v

Figure 5.1: Concepts to consider in experimental design, for treatment design and randomization design.

5.1: Factorial or Crossed Treatment Designs
5.1.1: Two-Factor Factorial - Greenhouse Example (SAS)
5.1.1a: The Additive Model (No Interaction)
5.1.2: Two-Factor Factorial - Greenhouse Example (Minitab)
5.1.3: Two-Factor Factorial - Greenhouse Example (R)
5.1.3a: The Additive Model

5.2: Nested Treatment Design
5.2.1: Nested Model in SAS
5.2.2: Nested Model in Minitab
5.2.3: Nested Model in R
5.3: Crossed-Nested Designs
5.4: Try It!
5.5: Chapter 5 Summary
5.6: Treatment Design Summary (Optional Enrichment Material)

This page titled 5: Multi-Factor ANOVA is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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5.1: Factorial or Crossed Treatment Designs

In multi-factor experiments, combinations of factor levels are applied to experimental units. The single-factor greenhouse
experiment discussed in previous lessons can be extended to a multi-factor study by including plant species as an additional factor
along with fertilizer type. This addition of another factor may prove to be useful, as one fertilizer type may be most effective on
one specific plant species! In other words, the optimal height growth is perhaps attainable by a unique combination of fertilizer
type and plant species. A treatment design that provides the opportunity to determine this best combination is a factorial design,
where responses are observed at each level of a given factor combined with each level of all other factors. In this setting, factors are
said to be crossed.

A factorial design with ¢ factors is identified using the [l;ls...[l; notation, where [; is the number of levels of factor ¢
(¢=1,2,...,t). For example, a factorial design with 2 factors A and B, where A has 4 levels and B has 3 levels, will have the
4 x 3 notation.

One complete replication of a factorial design with ¢ factors requires (I; X la X ... x[;) experimental units, and this quantity is
called the replicate size. If 7 is the number of complete replicates, then NN, the total number of observations, equals
rx (I xlgx...xl) .

It is easy to see that with the addition of more and more crossed factors, the replicate size will increase rapidly and design
modifications have to be made to make the experiment more manageable.

In a factorial experiment, as combinations of different factor levels play an important role, it is important to differentiate between
the lone (or main) effects of a factor on the response and the combined effects of a group of factors on the response.

The main effect of factor A is the effect of A on the response ignoring the effect of all other factors. The main effect of a given
factor is equivalent to the factor effect associated with the single-factor experiment using only that particular factor.

The combined effect of a specific combination of [ different factors is called the interaction effect (more details later). The
interaction effect of most interest is the two-way interaction effect and is denoted by the product of the two letters assigned to the
two factors. For example, the two-way interaction effects of a factorial design with 3 factors A, B, C are denoted AB, AC, and BC.
Likewise, the three-way interaction effect of these 3 factors is denoted by ABC.

Let us now examine how the degrees of freedom (df) values of a single-factor ANOVA can be extended to the ANOVA of a two-
factor factorial design. Note that the interaction effects are additional terms that need to be included in a multi-factor ANOVA, but
the ANOVA rules studied in Chapter 2 for single-factor situations still apply for the main effect of each factor. If the two factors of
the design are denoted by A and B with a and b as their number of levels respectively, then the df values of the two main effects
are (a—1) and (b—1). The df value for the two-way interaction effect is (a —1)(b—1) , the product of df values for A and B.
The ANOVA table below gives the layout of the df values for a 2 x 2 factorial design with 5 complete replications. Note that in
this experiment, r equals 5, and NV is equal to 20.

Source d.f.

Factor A (a—1)=1
Factor B (b-1)=1
Factor A x Factor B (a—1)(b—-1)=1
Error 19-3=16

Total N—-1=(nab)—1=19

If in the single-factor model of
Yij=p+7+e; (511)

7; is effectively replaced with a; + B; 4+ (af3);; , then the resulting equation shown below will represent the model equation of a
two-factor factorial design.

Yijp = p+ i+ B+ (B)ij + €ije (5.1.2)

https://stats.libretexts.org/@go/page/33629
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where o; is the main effect of factor A, 3; is the main effect of factor B, and (aﬂ)i]- is the interaction -effect
(t=1,2,...,a,j=1,2,...,b, k=1,2,...,7).

This reflects the following partitioning of treatment deviations from the grand mean:

Y —Y. =Y, -Y +Y,;-Y +Y,;-Y, -Y;+Y (5.1.3)
——
Deviation of estimated treatment mean A maineffect  Bmain effect AB interaction effect

around overall mean

The main effects for Factor A and Factor B are straightforward to interpret, but what is an interaction? Delving more, an interaction
can be defined as the failure of the response to one factor to be the same at different levels of another factor. Notice that (af3);j, the
interaction term in the model, is multiplicative, and as a result may have a large and important impact on the response variable.
Interactions go by different names in various fields. In medicine, for example, physicians most times ask what medication you are
on before prescribing a new medication. They do this out of a concern for interaction effects of either interference (a canceling
effect) or synergism (a compounding effect).

Graphically, in a two-factor factorial with each factor having 2 levels, the interaction can be represented by two non-parallel lines
connecting means (adapted from Zar, H. Biostatistical Analysis, 5th Ed., 1999). It is because the interaction reflects the failure of
the difference in response between the two different levels of one factor to be the same, for both levels of the other factor. So, if
there is no interaction, then this difference in response will be the same, which will graphically result in two parallel lines. In the
interaction plots below, parallel lines are a consistent feature in all settings with no interaction. In plots depicting interaction, the
lines do cross (or would cross if the lines kept going).

Graph 1 Graph 2

In graph 1 there is no effect of Factor A, a small effect of Factor B

Graph 2 shows a large effect of Factor A, small effect of Factor B,
(and if there were no effect of Factor B the two lines would

and no interaction.

coincide), and no interaction between Factor A and Factor B.

https://stats.libretexts.org/@go/page/33629
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Graph 3

Graph 3 shows no effect of Factor A, larger effect of Factor B,
and no interaction.

Graph 5
In graph 5 there is no effect of Factor A and no effect of Factor B,
but an interaction between A and B.

e
o

Graph 4

In graph 4 there is a large effect of Factor A, a large effect of
Factor B, and no interaction.

B
I\Jh;

Graph 6

In graph 6 there is a large effect of Factor A and no effect of Factor
B, with a slight interaction between A and B.

Graph 7

A A

Graph 8

In graph 7 there is no effect of Factor A and a large effect of In graph 8 there is a small effect of Factor A and a large effect of
Factor B, with a very large interaction.

™

Factor B, with a large interaction.

https://stats.libretexts.org/@go/page/33629
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In the presence of multiple factors with their interactions, multiple hypotheses can be tested and for a two-factor factorial design.

They are:

Main Effect of Factor A:

H():
HA:

Main Effect of Factor B:

H()Z

Hy

A x B Interaction:

ap=ay=...=q, =0
not all a; are equal to 0

Br=PBa=...=6=0

: not all 3; are equal to 0

Hj there is no interaction

H, : aninteraction exists

(5.1.4)

(5.1.5)

(5.1.6)

When testing these hypotheses, it is important to test for the significance of the interaction effect first. If the interaction is
significant, the main effects are of no consequence; rather, the differences among different factor level combinations should be
looked into. The greenhouse example, extended to include a second (crossed) factor, will illustrate the steps.

This page titled 5.1: Factorial or Crossed Treatment Designs is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Penn State's Department of Statistics.
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5.1.1: Two-Factor Factorial - Greenhouse Example (SAS)

Let's return to the greenhouse example with plant species also as a predictive factor, in addition to fertilizer type. The study then
becomes a 2x4 factorial as 2 types of plant species and 4 types of fertilizers are investigated. The total number of experimental
units (plants) that are needed now is 48, as r=6 and there are 8 plant species and fertilizer type combinations.

The data might look like this:

Fertilizer Treatment
Control F1 F2 F3
A 21.0 32.0 22.5 28.0

19.5 30.5 26.0 27.5
225 25.0 28.0 31.0
215 275 27.0 29.5
20.5 28.0 26.5 30.0
21.0 28.6 25.2 29.2

Species

B 23.7 30.1 30.6 36.1
23.8 289 31.1 36.6
23.7 344 34.9 37.1
22.8 32.7 30.1 36.8
22.8 32.7 30.1 36.8
244 32.7 25.5 37.1
The ANOVA table would now be constructed as follows:
Source df SS MS F

Fertilizer (4-1)=3

Species 2-1)=1

Fertilizer x Species (2-1)(4-1)=3

Error 47-7=40

Total N—-1=47

The data presented in the table above are in unstacked format. One needs to convert this into a stacked format when attempting to
use statistical software. The SAS code is as follows.

The data presented in the table above are in unstacked format. One needs to convert this into a stacked format when attempting to
use statistical software. The SAS code is as follows.

data greenhouse_2way;
input fert $ species $ height;
datalines;

https://stats.libretexts.org/@go/page/33634
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f3 SppB 37.1

run;

/*The code to generate the boxplot

for distribution of height by species organized by fertilizer
in Figure 5.1*/

proc sort data=greenhouse_2way; by fert species;
proc boxplot data=greenhouse_2way;

plot height*species (fert);

run;

As a preliminary step in Exploratory Data Analysis (EDA), a side-by-side boxplot display of height vs. species organized by
fertilizer type would be an ideal graphic. As the plot shows, the height differences between species are variable among fertilizer
types (see for example the difference in height between SppA and SppB for Control is much less than that for F3). This indicates
that fert*species could be a significant interaction prompting a factorial model with interaction.

Distribution of height by species

control [ [r2 3

404

35

i

254 -§_

o B

height

T T T T T T T T
SppA SppB SppA SppB SppA SppB SppA SppB
species

Figure 5.1.1.1: Boxplot for distribution of height by species organized by fertilizer.

To run the two-factor factorial model with interaction in SAS proc mixed , we can use:

/*Runs the two-factor factorial model with interaction*/
proc mixed data=greenhouse_2way method=type3;

class fert species;

model height = fert species fert*species;

store out2way,

run;

Inthe proc mixed procedure, similar to when running the single factor ANOVA. The name of the data set is specified in the
proc mixed statement and so is the method=type 3 option that specifies the way the F test is calculated. The fert
and species factors that are both categorical are included in the class statement. The terms (or effects) in the model statement
are consistent with the source effects in the layout of the "theoretical' ANOVA table illustrated in 5.1. Finally, the store

command stores the elements necessary for the generation of the LS-Means interval plot.

https://stats.libretexts.org/@go/page/33634
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Recall the two ANOVA rules, applicable to any model: (a). the df values add up to total df and (b). the sums of squares add up to
total sums of squares. As seen by the output below, the df values and also the sums of squares follow these rules. (It is easy to
confirm that the total sum of squares = 1168.732500, by the 2" ANOVA rule.)

Type 3 Analysis of Variance

Source DF Sum of Mean Square Expected Error Term  Error DF F Value Pr>F
Squares Mean Square
Var(Residua MS(Residua
fert 3 745.437500 248.479167 1)+Q(fert,fer N 40 73.10 <.0001
t*species)
Var(Residua
D+ i MS(Resid
species 1 236740833 236740833 D Qspecies (Residua 40 69.65 <0001
J[fert*species )
)
. Var(Residua MS(Residua
fert*species 3 50.584167 16.861389 1)+Q(fert*sp ) 40 4.96 0.0051
ecies)
Residual 40 135970000  3.399250 Xar(ReSId“a

In a model with the interaction effect, the interaction term should be interpreted first. If the interaction effect is significant, then
do NOT interpret the main effects individually. Instead, compare the mean response differences among the different factor
level combinations.

In general, a significant interaction effect indicates that the impact of the levels of Factor A on the response depends upon the
level of Factor B and vice versa. In other words, in the presence of a significant interaction, a stand-alone main effect is of no
consequence. In the case where an interaction is not significant, the interaction term can be dropped and a model without the
interaction should be run. See Section 5.1.1a: The Additive Model (No Interaction)).

Now applying the above rule for this example, the small p-value of 0.0051 displayed in the table above indicates that the
interaction effect is significant, which means that the main effects of either fert or species should not be considered individually. It
is the average response differences among the fert and species combinations that matter. In order to determine the statistically
significant fert and species combinations, a suitable multiple comparison procedure, such as Tukey and Kramer procedure can be
performed on the LS-Means of the interaction effect (i.e.: the treatment combinations).

The necessary follow-up SAS code to perform this procedure is given below.

ods graphics on;
proc plm restore=out2way;
lsmeans fert*species / adjust=tukey plot=(diffplot(center) meanplot(cl ascending)) cl
/* Because the 2-factor interaction is significant, we work with
the means for treatment combination*/
run;

SAS Output for the LSmeans:

fert*species Least Squares Means
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fert*species Least Squares Means

fert species

control SppA
control SppB
f1 SppA
f1 SppB
2 SppA
f2 SppB
3 SppA
3 SppB

Estimate :t;grdard DF t Value Pr> || Alpha
21.0000 0.7527 40 27.90 <.0001
32.7000 0.7527 40 31.49 <.0001
28.6000 0.7527 40 38.00 <.0001
31.6167 0.7527 40 42.00 <.0001
25.8667 0.7527 40 34.37 <.0001
30.0500 0.7527 40 39.92 <.0001
29.2000 0.7527 40 38.79 <.0001
37.0667 0.7527 40 49.25 <.0001

Lower Upper
0.05 19.4788 22.5212
0.05 22.1788 25.2212
0.05 27.0788 30.1212
0.05 30.0954 33.1379
0.05 24.3454 27.3879
0.05 28.5288 31.5712
0.05 27.6788 30.7212
0.05 35.5454 38.5879

Note that the p-values here (Pr > t) are testing the hypotheses that the fert and species combination means = 0. This may be of very
little interest. However, a comparison of mean response values for different species and fertilizer combinations may prove to be
more beneficial and can be derived from the diffogram shown in Figure 5.1.1.2 Again recall that, if the confidence interval does
not contain zero, then the difference between the two associated means is statistically significant.

Notice also that we see a single value for the standard error based on the MSE from the ANOVA, rather than a separate standard
error for each mean (as we would get from Proc Summary for the sample means). Again in this example, with equal sample sizes
and no covariates, the Ismeans will be identical to the ordinary means displayed in the Summary Procedure.

height Comparisons for fert*species
404 4
7
s
v
3 SppB
7
s
35 P
/
NN P /
f1 SppB
\\ % s
AN \\\ '\, 2 SppB
304 \9 \bb» 13 SppA
b \\
§ 7 /\\ f1 SppA
. / 2 SppA
254 N\ N
N s control SppB
‘s\ —
N
# control SppA
7
20 6ontro| SpoB 3 SppA 3 SppB
control SppA f2 SppA 1 S%)A 1 SppB
I 1 1 SDDB 1 1
20 25 30 35 40
Differences for alpha=0.05 (Tukey Adjustment)
— — — Not significant Significant

Figure 5.1.1.2: Diffogram for species and fertilizer combinations.
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There are total of 8 fert*species combinations resulting a total of (g) =28 pairwise comparisons. From the diffogram for
differences in fert*species combinations, we see that 10 of them are not significant and 18 of them are significant at a 5% level
after Tukey adjustment (more about diffograms). The information used to generate the diffogram is presented in the table for
differences of fert*species least squares means in the SAS output (this table is not displayed here).

We can save the differences estimated in SAS proc mixed and utilize proc sgplot to create the plot of differences in
mean response for the fert*species combinations as shown in Figure 5.1.1.3 The CIs shown are the Tukey adjusted CIs. SAS code
to produce Figure 5.1.1.3is not given in these notes. The interpretations of the plot are similar to what we observed from the
diffogram in Figure 5.1.1.2

Pairwise Difference of LSMeans (Tukey Adjustment)
95% Confidence Intervals of Mean Difference
control : SppA - control : SppB e
control : SppA - f1 : SppA e
control : SppA - f1: SppB e
control : SppA - f2 : SppA P
control : SppA - f2 : SppB + [ —
control : SppA - f3 : SppA L
control : SppA-f3:8ppBq{ FH———+—"—"—"
control : SppB - f1 : SppA | S E—
control : SppB - f1: SppB e
control : SppB - f2 : SppA p——o——
control : SppB - f2 : SppB L |
control : SppB - 13 : SppA | ———
control : SppB - 13 : SppB + e i |
1 : SppA-f1: SppB + e
1 : SppA-f2 : SppA F—e—A
1 : SppA-f2 : SppB p——e—
1 : SppA - f3 : SppA et
1 : SppA - f3 : SppB S —
1 : SppB - f2 : SppA e
1 : SppB - f2 : SppB —_—e
1 : SppB - f3 : SppA [ — |
1 : SppB - f3 : SppB | |
2 : SppA - f2 : SppB ¥
2 : SppA - f3 : SppA p—e———
2 : SppA - f3 : SppB T
2 : SppB - 13 : SppA —F—
2 : SppB - f3 : SppB P
3 : SppA- 3 : SppB | —
T T T T T T
20 15 10 5 0 5 10
Estimate
[ © Notsignificant _+ Significant |
Pairs Whose Intervals Contain 0 Are Not Significantly Different

Figure 5.1.1.3: Plot of differences in mean response for the fert*species combinations.

In addition to comparing differences in mean responses for the fert*species combinations, the SAS code shared above will also
produce the line plot for multiple comparisons of means for fert*species combinations (shown in Figure 5.1.1.4) and the plot of
means responses organized in the ascending order with 95% ClIs for fert*species combinations (shown in Figure 5.1.1.5).
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height Tukey Grouping for LS-Means of fert*species
(Alpha = 0.05)

LS-means covered by the same bar are not significantly different.
fert species Estimate

3 SppB 37.0667 I
1 SppB 31.6167
2 SppB 30.0500
3 SppA 29.2000
1 SppA 28.6000
2 SppA 25.8667
control  SppB 23.7000
control  SppA 21.0000

Figure 5.1.1.4: The line plot for multiple comparisons of means for fert*species combinations.

The line plot in Figure 5.1.1.4 connects groups in which the LS-means are not statistically different and displays a summary of
which groups have similar means. The plot of means with 95% ClIs in Figure 5.1.1.5illustrates the same result, although it uses
unadjusted CIs. We have organized the plot in the ascending order of estimated means to make it easy to draw conclusions.
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Figure 5.1.1.5: The plot of means with 95% ClISs for fert*species combinations.

Using LSMEANS, subsequent to performing an ANOVA will help to identify the significantly different treatment level
combinations. In other words, the ANOVA doesn't end with a p-value for an F'-test. A small p-value signals the need for a mean

comparison procedure.

This page titled 5.1.1: Two-Factor Factorial - Greenhouse Example (SAS) is shared under a CC BY-NC 4.0 license and was authored, remixed,

and/or curated by Penn State's Department of Statistics.
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5.1.1a: The Additive Model (No Interaction)

In a factorial design, we first look at the interactions for significance. In the case where interaction is not significant, then we can
drop the interaction term from our model, and we end up with an additive model.

For a two-factor factorial, the model we initially consider (as we have discussed in Section 5.1) is:
Yij = p. +ai + B+ (af)ij +€ijn (5.1.1a.1)
Note that the interaction term, (« B)ij, is a multiplicative term.

If the interaction is found to be non-significant, then the model reduces to:
Yij :,Ua‘,+0£i+,3j+€ijk (5.1.13.2)

Here we can see that the response variable is simply a function of adding the effects of the two factors.

v/ Example 5.1.1a. 1: Glucose in Blood Serum

As an example, (adapted from Kuehl, 2000), let's look at a study designed to evaluate two chemical methods used for assaying
the amount of glucose in blood serum. A large volume of blood serum served as a starting point for the experiment. The blood
serum was divided into three portions, each of which was 'doped' or augmented by adding an additional amount of glucose.
Three doping levels were used. Samples of the doped serum were then assayed for glucose concentration by one of two
chemical methods. This type of ‘doping’ experiment is commonly used to compare the sensitivity of assay methods.

The amount of glucose detected in each sample was recorded and is presented in the table below.

Chemical Assay Method
Method 1 Method 2
Doping Level 1 2 3 1 2 3
46.5 138.4 180.9 39.8 132.4 176.8
47.3 144.4 180.5 40.3 132.4 173.6
46.9 142.7 183 41.2 130.3 174.9

Solution
The model was run as a two-factor factorial and produced the following results:

Type 3 Analysis of Variance

Expected
Sum of Mean
Source DF Mean Error Term  Error DF F Value Pr>F
Squares Square
Square
Var(Residua
D+ .
MS(Residu
method 1 263.733889 263.733889  Q(method, 12 98.35 <.0001
al)
method*do
ping)
Var(Residua
)+ .
. . MS(Residu
doping 2 57026 28513 Q(doping, al) 12 10632.5 <.0001
method*do
ping)
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Type 3 Analysis of Variance

Var(Residua
thod*d .
oot 2 13821111  6.910556 D+ MS(Residu 12 2.58 0.1172
e Q(method* al)
doping)
Residual 12 32180000  2.681667 Var(RESIdulé)l

Here we can see that the interaction of method*doping was not significant (p-value > 0.05) at a 5% level. We drop the
interaction effect from the model and run the additive model. The resulting ANOVA table is:

The Mixed Procedure

Type 3 Analysis of Variance

Expected
Sum of Mean
Source DF Mean Error Term  Error DF F Value Pr>F
Squares Square
Square
Var(Residua MS(Residu
method 1 263.733889 263.733889 1)+Q(metho 14 80.26 <.0001
al)
d, method)
Var(Residua
)+ MS(Resi
doping 2 57026 28513 D S(Residu 14 8677.63 <.0001
Q(doping,d al)
oping)
1Residual 14 46001111  3.285794 Var(Res‘dul;

The Error SS is now 46.001, which is the sum of the interaction SS and the error SS of the model with the interaction. The df
values were also added the same way. This example shows that any term not included in the model gets added into the error
term, which may erroneously inflate the error especially if the impact of excluded term on the response is not negligible.

The Error SS is now 46.001, which is the sum of the interaction SS and the error SS of the model with the interaction. The df
values were also added the same way. This example shows that any term not included in the model gets added into the error
term, which may erroneously inflate the error especially if the impact of excluded term on the response is not negligible.

method Least Squares Means

Standard
method Estimate E andar DF t Value Pr >[t| Alpha Lower Upper
ITor
1 123.40 0.6042 14 204.23 <.0001 0.05 122.10 124.70
2 115.74 0.6042 14 191.56 <.0001 0.05 114.45 117.04
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glucose Tukey Grouping for LS-Means of method (Alpha = 0.05)

LS-means covered by the same bar are not significantly different.

method Estimate

1 123.40

2 116.74

Figure 5.1.1a. 1: Glucose Tukey grouping for LS-Means of method.

doping Least Squares Means

Standard
Doping Estimate - andar DF t Value Pr >[t| Alpha Lower Upper
rror
1 43.67 0.7400 14 59.01 <.0001 0.05 42.08 45.25
2 136.77 0.7400 14 184.81 <.0001 0.05 135.18 138.35
3 178.28 0.7400 14 240.92 <.0001 0.05 176.70 179.87

Here, we can see that the response variable, the amount of glucose detected in a sample, is the overall mean PLUS the effect of

the method used PLUS the effect of the glucose amount added to the original sample. (Hence, the additive nature of this
model!)

This page titled 5.1.1a: The Additive Model (No Interaction) is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Penn State's Department of Statistics.
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5.1.2: Two-Factor Factorial - Greenhouse Example (Minitab)

For Minitab, we also need to convert the data to a stacked format (Lesson 4 2 way Stacked Dataset). Once we do this, we will
need to use a different set of commands to generate the ANOVA. We use...

Stat > ANOVA > General Linear Model > Fit General Linear Model

and get the following dialog box:

General Linear Model X

C1 fert Responses:
€2 species
C3 resp resp
Factors:
fert species
Covariates:
Random/MNest... Modal... Options... Coding...
Stepwise... Graphs... Resulls... Storage...
Select

Km -

Figure 5.1.2.1: General Linear Model pop-up window.

Click on Model..., hold down the shift key and highlight both factors. Then click on the Add box to add the interaction to the
model.

General Linear Model: Model X

Factors and covariates: Add terms using selected factors, covariates, and model terms:

fert Interactions through order:; 2 ~
species
Cross factors, covariates, and terms in the model

Terms in the model: Default ® 4 *

fert
species

Figure 5.1.2.2: General Linear Model: Model pop-up window.

@ 0 a 5.1.2.1 https://stats.libretexts.org/@go/page/33635


https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33635?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/05%3A_Multi-Factor_ANOVA/5.01%3A_Factorial_or_Crossed_Treatment_Designs/5.1.02%3A_Two-Factor_Factorial_-_Greenhouse_Example_(Minitab)
https://online.stat.psu.edu/stat502_fa21/sites/stat502_fa21/files/lesson04/lesson4_2way_stackeddata_sp22.txt

LibreTextsw

These commands will produce the ANOVA results below which are similar to the output generated by SAS (shown in the previous
section).

Analysis of Variance

Source DF Adj SS Adj MS F-value P-value

fert 3 745.44 248.479 73.10 0.000
species 1 236.74 236.741 69.65 0.000
fert*species 3 50.58 16.861 4.96 0.005
Error 40 135.97 3.399

Total 47 1168.73

Following the ANOVA run, you can generate the mean comparisons by
Stat > ANOVA > General Linear Model > Comparisons

Then specify the fert*species interaction term for the comparisons by checking the box.

Comparisons X
Response:  resp v
Type of comparison: Pairwise v
Method:
Tukey () Fisher
CJ Bonferroni [ Sidak

Choose terms for comparisons:

O fert
[ species
fert"species

Options... Graphs... Results...

Figure 5.1.2.3: Comparisons pop-up window.

Then choose Graphs to get the following dialog box, where "Interval plot for difference of means" should be checked.

Comparisons: Graphs b 4

Interval plot for differences of means :
|

Figure 5.1.2.4: Comparisons: Graphs pop-up window.
The outputs are shown below.

Grouping Information Using the Tukey Method and 95% Confidence
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fert species N Mean Grouping
3 SppB 6 37.0667 A

f1 SppB 6 31.6167 B

f2 SppB 6 30.0500 B

3 SppA 6 29.2000 BC

f1 SppA 6 28.6000 BC

f2 SppA 6 25.8667 CD
control SppB 6 23.7000 DE
control SppA 6 21.0000 E

Means that do not share a letter are significantly different.

QMinilab Tukey Simultaneous 95% confidence intervals graph of differences of means for resp.

Figure 5.1.2.5: Tukey simultaneous 95% confidence intervals.

This page titled 5.1.2: Two-Factor Factorial - Greenhouse Example (Minitab) is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Penn State's Department of Statistics.
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5.1.3: Two-Factor Factorial - Greenhouse Example (R)

o Load the greenhouse data.

o Produce a boxplot to plot the differences in heights for each species organized by fertilizer.

e Produce a “means plot” (interval plot) to view the differences in heights for each species organized by fertilizer.
e Obtain the ANOVA table with interaction.

¢ Obtain Tukey’s multiple comparisons CIs, grouping, and plot.

1. Load the greenhouse data by using the following commands:

setwd("~/path-to-folder/")
greenhouse_2way_data <-read.table("greenhouse_2way_data.txt",6 header=T)
attach(greenhouse_2way_data)

2. Produce the Boxplot by using the following commands:

library("ggpubr")

boxplot(height ~ species*fertilizer, data = greenhouse_2way_data,
xlab = "Species", ylab = "Plant Height",

main="Distribution of Plant Height by Species",

frame = TRUE)

QR-generated boxplot for distribution of plant height by species.
Figure 5.1.3.1: Boxplot of plant height distribution by species.

3. Produce the means plot (interval plot) by using the following commands:

library("gplots")

plotmeans(height ~ interaction(species, fertilizer), data = greenhouse_2way_data, conne
xlab = "Fertilizer*species", ylab = "Plant Height",

main="Means Plot with 95% CI")

QMeans plot with 95% confidence intervals for plant height vs. Fertilizer*Species

Figure 5.1.3.2: Means plot for plant height vs fertilizer*species.

4. Obtain the ANOVA table with interaction by using the following commands:

anova<-aov(height~fertilizer+species+fertilizer*species, greenhouse_2way_data)

summary (anova)

# Df Sum Sq Mean Sq F value Pr(>F)

# fertilizer 3 745.4 248.48 73.10 2.77e-16 ***

# species 1 236.7 236.74 69.64 2.71e-10 ***

# fertilizer:species 3 50.6 16.86 4.96 0.00508 **

# Residuals 40 136.0 3.40

S8 oo o

# Signif. codes: O ‘***’ @.001 ‘**’ @.01 ‘*’ 0.05 ‘.7 0.1 ' ' 1

5. Obtain Tukey multiple comparisons of means with 95% family-wise confidence level by using the following commands:

library(multcomp)
library(multcompView)
tukey_multiple_comparisons<-TukeyHSD(anova,conf.level=0.95, ordered=TRUE)

https://stats.libretexts.org/@go/page/33636
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tukey_multiple_comparisons

Tukey multiple comparisons of means

95% family-wise confidence level

factor levels have been ordered

Fit: aov(formula = height ~ fertilizer + species + fertilizer * species, data = green

$fertilizer

diff lwr upr p adj

f2-control 5.608333 3.5908095 7.625857 0.0000000

fl-control 7.758333 5.7408095 9.775857 0.0000000

f3-control 10.783333 8.7658095 12.800857 0.0000000

fi1-f2 2.150000 0.1324762 4.167524 0.0328745

f3-f2 5.175000 3.1574762 7.192524 0.0000002

f3-f1 3.025000 1.0074762 5.042524 0.0013828

$species

diff lwr upr p adj

SppB-SppA 4.441667 3.365986 5.517348 0

$ fertilizer:species’

diff lwr upr p adj

control:SppB-control:SppA 2.700000 -0.7025601 6.102560 0.2100548
f2:SppA-control:SppA 4.866667 1.4641065 8.269227 0.0010962
f1:SppA-control:SppA 7.600000 4.1974399 11.002560 0.0000003
f3:SppA-control:SppA 8.200000 4.7974399 11.602560 0.0000001
f2:SppB-control:SppA 9.050000 5.6474399 12.452560 0.0000000
f1:SppB-control:SppA 10.616667 7.2141065 14.019227 0.0000000
f3:SppB-control:SppA 16.066667 12.6641065 19.469227 0.0000000
f2:SppA-control:SppB 2.166667 -1.2358935 5.569227 0.4721837
f1:SppA-control:SppB 4.900000 1.4974399 8.302560 0.0009970
f3:SppA-control:SppB 5.500000 2.0974399 8.902560 0.0001745
f2:SppB-control:SppB 6.350000 2.9474399 9.752560 0.0000138
f1:SppB-control:SppB 7.916667 4.5141065 11.319227 0.0000001
f3:SppB-control:SppB 13.366667 9.9641065 16.769227 0.0000000
f1:SppA-f2:SppA 2.733333 -0.6692268 6.135893 0.1979193
f3:SppA-f2:SppA 3.333333 -0.0692268 6.735893 0.0584747
f2:SppB-f2:SppA 4,183333 0.7807732 7.585893 0.0072041
f1:SppB-f2:SppA 5.750000 2.3474399 9.152560 0.0000832
f3:SppB-f2:SppA 11.200000 7.7974399 14.602560 0.0000000
f3:SppA-f1:SppA 0.600000 -2.8025601 4.002560 0.9991227
f2:SppB-f1:SppA 1.450000 -1.9525601 4.852560 0.8685338
f1:SppB-f1:SppA 3.016667 -0.3858935 6.419227 0.1150225
f3:SppB-f1:SppA 8.466667 5.0641065 11.869227 0.0000000
f2:SppB-f3:SppA 0.850000 -2.5525601 4.252560 0.9922487
f1:SppB-f3:SppA 2.416667 -0.9858935 5.819227 0.3344595
f3:SppB-f3:SppA 7.866667 4.4641065 11.269227 0.0000001
f1:SppB-f2:SppB 1.566667 -1.8358935 4.969227 0.8173904
f3:SppB-f2:SppB 7.016667 3.6141065 10.419227 0.0000019
f3:SppB-f1:SppB 5.450000 2.0474399 8.852560 0.0002022
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We can see the mean differences for fertilizer combinations, for the two species and for all fertilizer*species combinations. By
using the confidence intervals or the p-values we can conclude which of these combinations are significant or not.

6. Obtain Tukey grouping by using the following commands:

tukey_grouping<-multcompLetters4(anova, tukey_multiple_comparisons)
print(tukey_grouping)

$fertilizer

f3 fi f2 control

"a" "b" "c" "d"

$species

SppB SppA

ngn  npn

$ fertilizer:species’

f3:SppB f1:SppB f2:SppB f3:SppA f1:SppA f2:SppA control:SppB control:SppA
"a" "b" "b" "bc" "bc" "cd" "de" "e"

7. Obtain a plot of differences in mean response for fertilizer*species combinations by using the following commands:

par(mar=c(4.1,13,4.1,2.1))
plot(tukey_multiple_comparisons, las=2)
detach(greenhouse_2way_data)

E‘_’ps% family-wise confidence level graph for differences in mean levels of Fertilizer:species

Figure 5.1.3.3: Graph of differences in mean levels of fertilizer:species, showing 95% family-wise confidence levels.

This page titled 5.1.3: Two-Factor Factorial - Greenhouse Example (R) is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Penn State's Department of Statistics.

https://stats.libretexts.org/@go/page/33636



https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33636?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/05%3A_Multi-Factor_ANOVA/5.01%3A_Factorial_or_Crossed_Treatment_Designs/5.1.03%3A_Two-Factor_Factorial_-_Greenhouse_Example_(R)
https://creativecommons.org/licenses/by-nc/4.0
https://science.psu.edu/stat

LibreTextsw

5.1.3a: The Additive Model

o Load the glucose in blood serum data.

¢ Obtain the ANOVA table with interaction.

¢ Obtain the ANOVA table without interaction.

¢ Obtain estimators and CIs for means for each treatment level.
Obtain Tukey’s multiple comparisons Cls and grouping.

. Load the glucose in blood serum data by using the following commands:

setwd("~/path-to-folder/")
glucose_data <- read.table("glucose_data.txt", header=T)
attach(glucose_data)

. Obtain the ANOVA table with interaction by using the following commands:

summary (anova)

Df Sum Sg Mean Sq F value Pr(>F)

factor(method) 1 264 264 98.347 3.92e-07 ***
factor(doping) 2 57026 28513 10632.526 < 2e-16 ***
factor(method):factor(doping) 2 14 7 2.577 0.117
Residuals 12 32 3

1
2
anova<-aov(glucose ~ factor(method) + factor(doping) + factor(method)*factor(doping),:
Signif. codes: 0 ‘***’ @.001 ‘**’ 0.01 ‘*’ 0.05 ‘." 0.1/ " 1

Here we can see that the interaction term is not significant, and we can drop it from the model. Also, notice that I have defined
method and doping as factors since they have numeric values.

3. Obtain the ANOVA table without interaction by using the following commands:

anoval<-aov(glucose ~ factor(method) + factor(doping), data=glucose_data)

summary(anoval)

Df Sum Sq Mean Sq F value Pr(>F)

factor(method) 1 264 264 80.27 3.58e-07 ***
factor(doping) 2 57026 28513 8677.63 < 2e-16 ***
Residuals 14 46 3

Signif. codes: 0 ‘***’ 0.001 ‘**" ©0.01 ‘*" ©.05 ‘." 0.1 ‘" 1

The Error SS is now 46.001, which is the sum of the interaction SS and the error SS of the model with the interaction. The df
values were also added the same way.

4. Obtain estimators and CIs for means for each treatment level by using the following commands:

library(lsmeans)

lsmeans(anoval, "method")

method lsmean SE df lower.CL upper.CL

1 123 0.604 14 122 125

2 116 0.604 14 114 117

Results are averaged over the levels of: doping

https://stats.libretexts.org/@go/page/33638
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Confidence level used: 0.95

lsmeans(anoval, "doping")

doping lsmean  SE df lower.CL upper.CL

1 43.7 0.74 14 42.1 45.3

2 136.8 0.74 14 135.2 138.4

3 178.3 0.74 14 176.7 179.9

Results are averaged over the levels of: method
Confidence level used: 0.95

5. Obtain Tukey’s multiple comparisons CIs and grouping by using the following commands:

tukey_multiple_comparisons<-TukeyHSD(anoval, conf.level=0.95,ordered=TRUE)
tukey_multiple_comparisons

Tukey multiple comparisons of means

95% family-wise confidence level

factor levels have been ordered

Fit: aov(formula = glucose ~ factor(method) + factor(doping), data = glucose_data)
$ factor(method)"

diff lwr upr p adj

1-2 7.655556 5.822828 9.488283 4e-07

$ factor(doping)"

diff lwr upr p adj

2-1 93.10000 90.36089 95.83911 0]
3-1 134.61667 131.87755 137.35578 0]
3-2 41.51667 38.77755 44.25578 0]

tukey_grouping<-multcompLetters4(anoval, tukey_multiple_comparisons)
print(tukey_grouping)
$ factor(method)"

1 2

llall llbll

$ factor(doping)"
3 2 1

llall llbll "C"

detach(glucose_data)

This page titled 5.1.3a: The Additive Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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5.2: Nested Treatment Design

When setting up a multi-factor study, sometimes it is not possible to cross the factor levels. In other words, because of the logistics
of the situation, we may not be able to have each level of treatment be combined with each level of another treatment.

Here is an example:

A research team interested in the lifestyle of high school students conducted a study to compare the activity levels of high school
students across the 3 geographic regions in the United States, Northeast (NE), Midwest (MW), and the West (W). The study also
included the comparison of activity levels among cities within each region. Two school districts were chosen from two major cities
from each of these 3 regions and the response variable, the average number of exercise hours per week for high school students for
each school district was recorded.

A diagram to illustrate the treatment design can be set up as follows. Here, the subscript ¢ identifies the regions, and the subscript j
indicates the cities:

Factor B (City)
I'Jactor A (Region) j A
’ 1 2
NE 30 18
35 20
Average Yll_ =325 1712_ =19 Y’L =25.75
MW 10 20
9 22
Average Yo =95 Yo =21 Y, =15.25
w 18 4
19 6
Average Y4 =185 Y3 =5 Y3 =95

Average 17 =16.83

The table above shows the data obtained: the grand mean, the marginal means which are the treatment level means, and finally, the
cell means. The cell means are the averages of the two school district mean activity levels for each combination of Region and City.

This example drives home the point that the levels of the second factor (City) cannot practically be crossed with the levels of the
first factor (Region) as cities are specific or unique to regions. Note that the cities are identified as 1 or 2 within each region. But it
is important to note that city 1 in the Northeast is not the same as city 1 in the Midwest. The concept of nesting does come in useful
to describe this type of situation and the use of parentheses is appropriate to clearly indicate the nesting of factors. To indicate that
the City is nested within the factor Region, the notation: City(Region) will be used. Here, City is the nested factor and Region is the
nesting factor.

Region (f)

City (5)

Sch_Dist(kEkil)

Figure 5.2.1: Diagram of the levels of treatment design.

We can partition the deviations as before into the following components:

DO 5.2.1 https://stats libretexts .org/@go/page/33630
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Y;jk_Y... =Y, -Y_ + Y,‘j, -Y;. +Y2‘jk—Y,'j, (5.2.1)
Total deviation A maineffect  gpecific B effect when A at the it level Residual

Source d.f.

Region (a—1)=2

City (Region) a(b—1)=3

Error abln—1)=6

Total N—-1=11

The statistical model follows as:
Yiik :,U+Oéi+,3j(i) + €ijk (5.2.2)
\[
where: p is a constant

a; are constants subject to the restriction Z a; =0

Bj(i) are constants subject to the restriction Z Bj@i) =0 forall ¢

€k are independent NV (O, 02)

i=1,...,a;j=1,...,b; k=1,...,n

We will want to test the following Null Hypotheses:

For Factor A
Hy : piNortheast = UMidwest = UWest VS. H4 : Not all equal (523)

For Factor B

When stating the Null Hypothesis for Factor B, the nested effect, alternative notation has to be used.

Up to this point, we have been stating Null Hypotheses in terms of the means (e.g. Hj : = o =...=pu ), but we can
alternatively state a Null Hypothesis in terms of the parameters for that treatment in the model. For exarnple for the nesting factor
A, we could also state the Null Hypothesis as

HO ¢ ONortheast = OMidwest — OWest — Oor HO s all a; = 0 (524)

For the nested factor B, the Null Hypothesis should differentiate between the nesting and the nested factors, because we are
evaluating the nested factor within the levels of the nesting factor.

So for the nested factor (City, nested within Region), we have the Null Hypothesis.
Hy: all B;;) =0vs. Hy : notall Bj;) =0forj=1,2, (5.2.5)

The F'-tests can then proceed as usual using the ANOVA results. The first two columns of the ANOVA table should be as follows
on the next page.

1. There is no interaction between a nested factor and its nesting factor.

2. The nested factors always have to be accompanied by their nested factor. This means that the effect B does not exist and
B(A) represents the effect of B within the factor A

3. df of B(A) = df of B + df of A*B (This is simply a mathematically correct identity and may not be of much practical use, as
effects B(A) and A*B cannot coexist)

4. The residual effect of any ANOVA model is a nested effect - the replicate effect nested within the factor level
combinations. Recall that the replicates are considered homogeneous and so any variability among them serves to estimate
the model error.

https://stats.libretexts.org/@go/page/33630
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5.2.1: Nested Model in SAS

Here is the SAS code to run the ANOVA model for the hours of exercise for high school students example discussed in lesson 5.2:

data Nested_Example_data;
infile datalines delimiter="',"';
input Region $ City $ ExHours;
datalines;

NE, NY, 30

NE, NY, 35

NE, Pittsburgh, 18

NE, Pittsburgh, 20

MW, Chicago, 10

MW, Chicago, 9

MW, Detroit, 20

MW, Detroit, 22

W, LA, 18

W, LA, 19

W, Seattle, 4

W, Seattle, 6

/*to run the nested ANOVA model*/

proc mixed data=Nested_Example_data method=type3;
class Region City;
model ExHours = Region City(Region);
store nestedil;

run;

/*to obtain the resulting multiple comparison results*/
ods graphics on;
proc plm restore=nestedl;
lsmeans Region / adjust=tukey plot=meanplot cl lines;
lsmeans City(Region) / adjust=tukey plot=meanplot cl lines;
run;

When we run this SAS program, here is the output that we are interested in:

Type 3 Analysis of Variance

Source DF Sum of Mean Square Expected Error Term Error DF F Value Pr>F
Squares Mean Square
Var(Residua
D+Q(Regi
. JHQRegion g Residua
Region 2 424666667 212.333333 , 6 65.33 <.0001
. . )
City(Region
)

https://stats.libretexts.org/@go/page/33639
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Type 3 Analysis of Variance

Resi
City(Region Var( e§1dua MS(Residua
) 3 496.750000 165.583333 D+Q(City(R ) 6 50.95 0.0001
egion))
Residual 6 19500000 3250000 'o(Residud
Type 3 Test of Fixed Effects
Effect Num DF Den DF F Value Pr>F
Region 65.33 <.0001
City(Region) 50.95 0.0001

The p-values above indicate that both Region and City(Region) are statistically significant. The plots and charts below obtained
from the Tukey option specify the means which are significantly different.

https://stats.libretexts.org/@go/page/33639


https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33639?pdf

LibreTextsw

LS-Means for Region ExHours Comparisons for Region
With 95% Corfidenca Limits
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Figure 5.2.1.1: Mean hours of exercise by Region with 95% i ° 2 2
e Differences for alpha=0.05 (Tukey Adjustment)
Cls — — — Not significant Significant

Figure 5.2.1.2: Diffogram for Mean Comparisons by
Region

LS-Means for City(Region) ExHours Comparisens for City(Region)
With 95% Confidence Limits
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Figure 5.2.1.3: Mean hours of exercise by City(Region) with T T : .
95% Cls 1] 10 20 30

Differences for alpha=0.05 (Tukey Adjustment)
— — — Not significant Significant

Figure 5.2.1.4: Diffogram for Mean Comparisons by
City(Region)

The exercise hours on average are statistically higher in the northeastern region compared to the midwest and the west while the

average exercise hours of these two regions are not significantly different.

Also, the comparison of the means between cities indicates that the high schoolers in New York city exercise significantly more
than the other cities in the study. The exercise levels are similar among Detroit, Pittsburgh, and LA, while exercise levels of high
schoolers in Chicago and Seattle are similar but significantly lower than all other cities in the study.

These grouping observations are further confirmed by the lines plots below.
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ExHours Tukey Grouping for LS-Means of ExHours Tukey Grouping for LS-Means of City
Region (Alpha = 0.05) (Region) (Alpha = 0.05)
LS-means covered by the same bar are not significantly different. LS-means covered by the same bar are not significantly different.
Region Estimate City Region Estimate
NY NE 32.5000 I
NE 25.7500
Detrait MW 21.0000
Pittsbur NE 19.0000
MW 15.2500
LA W 18.5000
W 11,7500 Chicage MW 9.5000
Seattle W 5.0000
Figure 5.2.1.5: Line plot for multiple comparisons of means for

Regions.
Figure 5.2.1.6: Line plot for multiple comparisons of means
for Cities.

This page titled 5.2.1: Nested Model in SAS is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's

Department of Statistics.
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5.2.2: Nested Model in Minitab

In Minitab, for the following (Nested Example Data):

Stat > ANOVA > General Linear Model > Fit General Linear Model

Enter the factors 'Region' and 'City’ in the Factors box, then click on Random/Nest...Here is where we specify the nested effect of
City in Region.

General Linear Model X

C1 City Responses:
C2 Region
C3 Ex_hours 'Ex_hours'
Factors:
Region City}
Covariates:
Random/Nest... Model... Options... Coding...
Stepwise... Graphs... Results... Storage...
Select

Figure 5.2.2.1: General Linear Model pop-up window.

General Linear Model: Random Nest X

C1 City Nesting:

E2giegion Factor/Covariate Nested in specified factors
Region

City [ |Region ]

Factor type:

Factor Type

Region Fixed ~

Salect City Fixed ~

Figure 5.2.2.2: Random Nest pop-up window.
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The output is shown below.

Factor Information

General Linear Model: response versus School, Instructor
Factor Type Levels Values

Region Fixed 2 1,2

Atlanta(1), Chicago(1),
City(Region) Fixed 6 SanFran(1), Atlanta(2),
Chicago(2), SanFran(2)

Analysis of Variance

Source DF Adj SS Adj MS F P
Region 1 108.00 108.000 15.43 0.008
City(Region) 4 616.00 154.000 22.00 0.001
Error 6 42.00 7.000

Total 11 766.00

Model Summary
S R-sq R-sq(adj) R-sq(pred)

2.64575 94.52% 89.95% 78.07%

Following the ANOVA run, you can generate the mean comparisons by
Stat >ANOVA >General Linear Model > Comparisons

Then specify "Region" and "City(Region)" for the comparisons by checking the boxes.
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Response: Ex_hours v
|
Type of comparison: = Pairwise v
Method:
' Tukey (J Fisher
[J Bonferroni [ sidak

Choose terms for comparisons:
Region
City(Region)

Options... Graphs... Results...

Figure 5.2.2.3: Comparisons pop-up window.

Then choose Graphs to get the following dialog box, where "Interval plot for difference of means" should be checked.

Comparisons: Graphs

Interval plot for differences of means

Figure 5.2.2.4: Comparisons: Graphs pop-up window.

The outputs are as follows.
Comparison for Ex_hours
Tukey Pairwise Comparisons: Region

Grouping Information Using Tukey Method and 95% Confidence

Region N Mean Grouping
1 6 18 A
2 6 12 B

Means that do not share a letter are significantly different.

|»Minitab Tukey Simultaneous 95% Cls Differences of Means for Ex_Hours graph

Figure 5.2.2.5: Tukey simultaneous 95% Cls differences of means graph for Ex_hours, by Region.
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Tukey Pairwise Comparisons: (City)Region

Grouping Information Using Tukey Method and 95% Confidence

City(Region) N Mean Grouping

Atlanta (1) 2 27.0 A

Chicago(2) 2 20.0 A B

SanFran(1) 2 18.5 A B C
Atlanta(2) 2 12.5 B C
Chicago(1) 2 8.5 C
SanFran(2) 2 3.5

Means that do not share a letter are significantly different.

QMinitab Tukey Simultaneous 95% CIs Differences of Means for Ex_hours graph

Figure 5.2.2.6: Tukey simultaneous 95% ClIs differences of means graph for Ex_hours, by City(Region).

This page titled 5.2.2: Nested Model in Minitab is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics.
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5.2.3: Nested Model in R

o Load the Exercise Hours data.

o Obtain the ANOVA table for the nested treatment design.

¢ Obtain estimators and CIs for means for each region and city.
o Obtain means plot for region and city within the region.

¢ Obtain Tukey’s multiple comparisons CIs.

. Load the Exercise Hours data by using the following commands:

setwd("~/path-to-folder/")
ex_hours_data <- read.table("ex_hours_data.txt", header=T)
attach(ex_hours_data)

. Obtain the ANOVA table for the nested treatment design by using the following commands:

summary(nested)

# Df Sum Sq Mean Sq F value Pr(>F)

# Region 2 424.7 212.33 65.33 8.46e-05 ***
# Region:City 3 496.8 165.58 50.95 0.000116 ***
# Residuals 6 19.5 8.25
#
#

Signif. codes: 0@ “***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ' 1

1
2
| nested<-aov(Ex_hours ~ Region+Region/City,data=ex_hours_data)
3

. Obtain estimators and CIs for means for each region and city by using the following commands:

# MW 15.2 0.901 6 13.04 7.5

# NE 25.8 0.901 6 23.54 28.0

# W 11.8 0.901 6 9.54 14.0

#Results are averaged over the levels of: City

#Confidence level used: 0.95

lsmeans(nested, "City")

#City Region lsmean SE df lower.CL upper.CL
Chicago MW 9. .27

.27

.27

.27

6.38 12.62
17.88 24.12
29.38 35.62
15.88 22.12
15.38 21.62

1.88 8.12

#

# Detroit MW 21.
# NY NE 32.
# Pittsburgh NE 19.
# LA W 18. .27
# Seattle W 5.0 1.27
#Confidence level used: 0.95

@ 00 © 0 © O
R R R R R
D OO O O O O

library(lsmeans)

1smeans(nested, "Region")

# Region lsmean SE df lower.CL upper.CL
4

. Obtain means plot for region and city within region by using the following commands:

library(plotrix)
region_means<-as.data.frame(lsmeans(nested, "Region"))
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plotCI(x = region_means$lsmean,y = NULL ,1li = region_means$lower.CL, ui = region_mean
axis(1, at=1:3, labels=region_means$Region)

QR-generated means plot for ExHours vs region

Figure 5.2.3.1: Means plot for ExHours vs region.

city_means<-as.data.frame(lsmeans(nested, "City"))
City_Region<-paste(city_means$City,city_means$Region)

plotCI(x = city_means$lsmean,y = NULL ,1i = city_means$lower.CL, ui = city_means$uppe
axis(1, at=1:6, labels=City_Region)

QR-generated means plot for ExHours vs city-region

Figure 5.2.3.2: Means plot for ExHours vs City(Region).

5. Obtain Tukey’s multiple comparisons CIs by using the following commands:

library(multcomp)
library(multcompView)
tukey_multiple_comparisons_region<-TukeyHSD(nested, "Region",conf.level=0.95,ordered=T
tukey_multiple_comparisons_region
Tukey multiple comparisons of means
95% family-wise confidence level
factor levels have been ordered
Fit: aov(formula = Ex_hours ~ Region + Region/City, data = ex_hours_data)
# $Region
# diff lwr upr p adj
#MW - W 3.5 -0.4112978 7.411298 0.0747598
#NE-W 14.0 10.0887022 17.911298 0.0000836
plot(tukey_multiple_comparisons_region)

[ R-generated graph of 95% family-wise confidence level for differences in mean level of region

Figure 5.2.3.3: 95% family-wise confidence levels for differences in mean level of region.

tukey_multiple_comparisons_city<-TukeyHSD(nested, "Region:City", conf.level=0.95,ordere
cities<-as.data.frame(na.omit(tukey_multiple_comparisons_city$"Region:City"))
cities

# diff Iwr upr p adj

# MW:Chicago-W:Seattle 4.5 -4.96579743 13.965797 0.5867601138

# W:LA-W:Seattle 13.5 4.03420257 22.965797 0.0087623039

# NE:Pittsburgh-W:Seattle 14.0 4.53420257 23.465797 0.0072411812

# MW:Detroit-W:Seattle 16.0 6.53420257 25.465797 0.0035459602

# NE:NY-W:Seattle 27.5 18.03420257 36.965797 0.0001761692

# W:LA-MW:Chicago 9.0 -0.46579743 18.465797 0.0626471065

# NE:Pittsburgh-MW:Chicago 9.5 0.03420257 18.965797 0.0491884424

# MW:Detroit-MW:Chicago 11.5 2.03420257 20.965797 0.0198221594

# NE:NY-MW:Chicago 23.0 13.53420257 32.465797 0.0004610102

# NE:Pittsburgh-W:LA 0.5 -8.96579743 9.965797 1.0000000000

# MW:Detroit-W:LA 2.5 -6.96579743 11.965797 0.9752059356

# NE:NY-W:LA 14.0 4.53420257 23.465797 0.0072411812
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# MW:Detroit-NE:Pittsburgh 2.0 -7.46579743 11.465797 0.9960158169

# NE:NY-NE:Pittsburgh 13.5 4.03420257 22.965797 0.0087623039
# NE:NY-MW:Detroit 11.5 2.03420257 20.965797 0.0198221594
library(plotrix)

city_diff<-as.character(c("

MW:Chicago-W:Seattle", "W:LA-W:Seattle", "NE:Pittsburgh-W:Seattle", "MW:Detroit-W:Seatt.
par(mar=c(8, 4, 2, 2) + 0.1)

plotCI(x = cities$diff,y = NULL ,1i = cities$lwr, ui = cities$upr, xaxt ="
n",ylab="Differences of Means", xlab="")

abline(h=0)

axis(1, at=1:15, labels=city_diff,las = 2, cex.axis = 0.8)

QR-generated plot of differences of means by cities

Figure 5.2.3.4: Differences of means by cities plot.

This page titled 5.2.3: Nested Model in R is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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5.3: Crossed-Nested Designs

Multi-factor studies can involve factor combinations in which factors are crossed and/or nested. These treatment designs are based
on the extensions of the concepts discussed so far.

Consider an example (from Canavos and Koutrouvelis, 2009) where machines in an assembly process are evaluated for assembly
times. There were three factors of interest: Machine ID (1, 2, or 3), Configuration (1 or 2), and Power level (1, 2, or 3).

Machine (A)
3-factor table
1 2 3
Configuratio 1 ? 1 ? 1 2
n (B)
1 10.2 4.2 12.0 4.1 13.1 4.1
13.1 5.2 13.5 6.1 12.9 6.1
Power (C) 2 16.2 8.0 12.6 4.0 12.9 2.2
16.9 9.1 14.6 6.1 13.7 3.8
3 13.8 2.5 12.9 3.7 11.8 2.7
14.9 4.4 15.0 5.0 13.5 4.1

It turns out that each machine can be operated at each power level, and so these factors can be crossed. Also, each configuration
can be operated at each power level and so these factors also are crossed. But the configurations (1 or 2) are unique to each
machine. As a result, the configuration is nested within the machine.

The statistical model contains both crossed and nested effects and is:

Yij = p+ o + By + v + ()i + (B7) ik + €ijk (5.3.1)

with the ANOVA table as follows:

Source df

Factor A a—1

Factor B(A) a(b—1)

Factor C c—1

AC (a—1)(c—1)

CB(A) a(b—1)(c—1)

Error abe(n —1)

Total N —1=(nabc) — 1

Notice that the two main effects, Machine and Power, are included in the model along with their interaction effect. The nested
relationship of Configuration within Machine is represented by the Configuration(Machine) term and the crossed relationship
between Configuration and Power is represented by their interaction effect.

Notice that the main effect Configuration and the crossed effect Configuration x Machine are not included in the model. This is
consistent with the facts that a nested effect cannot be represented as the main effect and also that a nested effect cannot interact
with its nesting effect.

This page titled 5.3: Crossed-Nested Designs is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's

Department of Statistics.
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5.4: Try It!

? Exercise 5.4.1; CO, Emissions

To study the variability in CO2 emission rate by global regions 4 countries: US, Britain, India, and Australia were chosen.
From each country, 3 major cities were chosen and the emission rates for each month for the year 2019 were collected.

1. What type of model is this?

1. nested
2. cross-nested
3. factorial

2. How many factors?

1.4
2.3
3.2

3. The replicates are...

1. 12 months of 2019
2. countries US, Britain, India, and Australia
3. major cities in US, Britain, India, and Australia

4. The residual effect in the ANOVA model is...

1. country*city*month
2. month(city(country))
3. month(country*city)

5. How many degrees of freedom?

1. 66
2.132
3.88

Show Answers and Explanations

Answers
Q1 - 1. nested

Q2 - 3. 2 factors

Q3 - 1. 12 months of 2019
Q4 - 2. month(city(country)
Q5-2.132

Explanations

Residual effect(or error term) isthe month(city(country), which is the nested effect of "month", the replicate, withinthe
combinations of thetwo factors "country" and "city". One way to double-check this answer is to verify if the df values are
the same.

error term df = total df — (sum df values of the model terms)
= (144 — 1) — (country df + city(country) df)
=143 — (3+2%4)
=143 -11 =132

df for city(country) = 11(12) =132
See the Section 5.2 ANOVA table for df formula.
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A military installation is interested in evaluating the speed of reloading a large gun. Two methods of reloading are considered,
and 3 groups of cadets were evaluated (slight, average, and heavy individuals). Three teams were set up within each group and
they wanted to identify the fastest team within each group to go on to a demonstration for the military officials. Each team
performed the reloading with each method two times (two replications).

1. Identify (i.e. name) the treatment design.

1. nested
2. cross-nested
3. factorial

2. They started to construct the ANOVA table which is given below. Given that there are atotal of 36 observations in the
dataset, there seems to be amissing source of variation in the analysis. What is this source of variation?

Source df
Method 1
Group 2
Method*Group 2
Team (Group) 6

1. Team*group*method
2. Team (Group)*method
3. Team*Group

3. How many degrees of freedom are associated with the error term?

1.6
2.24
3.18
Show Answers
Q1 - 2. cross-nested

Q2 - 2. Team (Group)*method
Q3-3.18

? Exercise 5.4.3: GPA Comparisons

The GPA comparison of four popular majors—biology, business, engineering, and psychology—between males and females is
of interest. For 6 semesters, the average GPA of each of these majors for male and female students was computed.

1. What type of model is this?

1. nested
2. cross-nested
3. crossed

2. How many factors?

1.4
2.3
3.2

3. The replicates are...

https://stats.libretexts.org/@go/page/33632
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1. semesters
2. majors
3. gender

4. The residual effect in the ANOVA model is...

1. major*gender*semester
2. semester(gender*major)
3. semester(major(gender))

5. How many degrees of freedom?

1.48
2.40
3.2

Show Answers and Explanations

Answers

Q1 - 3. crossed

Q2 - 3. 2 factors

Q3 - 1. semesters

Q4 - 2. semester(gender*major)

Q5-2.40

Explanations

Residual effect (or error term) is semester (gender*major). The error term is the nested effect of "semester", the

replicate nested within gender*major, which is the "combined effect" of the factors. One way to double-check is to verify if
df values are the same.

error term df = total df — (sum df values of the model terms)
= (48 —1) — (major df + gender df + major*gender df)
=47—-(3+1+3%1)
=40

df for semester(major*gender) = 5 x 8 = 40

See the Section 5.2 ANOVA table for df formula.

This page titled 5.4: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
Statistics.
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5.5: Chapter 5 Summary

In this lesson, we discussed important elements of the "Treatment Design," one of the two components of an "Experimental
Design." We are now familiar with the main effects and interaction effects of a factorial design.

In a full factorial design, the experiment is carried out at every factor level combination. Most factorial studies do not go beyond a
two-way interaction, and if a two-way interaction is significant, the mean response values should be compared among different
combinations of the two factors rather than among the single factor levels. In other words, the focus should be on response vs.
interaction effect rather than response vs. main effects. An Interaction plot is a useful graphical tool to understand the extent of
interactions among factors (or treatments) with parallel lines indicating no interaction.

In a nested design, the experiment need not be conducted at every combination of levels in all factors. Given two factors in a nested
design, there is a distinction between the nested and the nesting factor. The levels of the nested factor may be unique to each level
of the nesting factor. Therefore, the comparison of the nested factor levels should be made within each level of the nesting factor—
a fact that should be kept in mind when stating null and alternative hypotheses for the nested factor(s), and also when writing
programming code.

This page titled 5.5: Chapter 5 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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5.6: Treatment Design Summary (Optional Enrichment Material)

In an effort to summarize how to think about sums of squares and degrees of freedom and how this translates into a model that can
be implemented in SAS, Dr. Rosenberger walks you through this process in the videos below. Pay attention to the subscripts and
these are the keys to understanding this material.

Part One

Part Two

This page titled is shared under a license and was authored,

remixed, and/or curated by
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CHAPTER OVERVIEW

6: Random Effects and Introduction to Mixed Models

Overview

So far, in our discussion of treatment designs, we have made the (unstated) assumption that the treatment levels were chosen
intentionally by the researcher as dictated by his/her specific interests. The scope of inference in this situation is limited to the
specific (or fixed) levels used in the study. However, this is not always the case. Sometimes, treatment levels may be a (random)
sample of possible levels, and the scope of inference is to a larger population of all possible levels.

If it is clear that the researcher is interested in comparing specific, chosen levels of treatment, that treatment is called a fixed effect.
On the other hand, if the levels of the treatment are a sample of a larger population of possible levels, then the treatment is called a
random effect.

@b Learning Objectives

Upon completion of this lesson, you should be able to:

1. Extend the treatment design to include random effects.

2. Understand the basic concepts of random-effects models.

3. Calculate and interpret the intraclass correlation coefficient.

4. Combining fixed and random effects in the mixed model.

5. Work with mixed models that include both fixed and random effects.

6.1: Random Effects
6.2: Battery Life Example
6.3: Random Effects in Factorial and Nested Designs
6.4: Special Case - Fully Nested Random Effects Design
6.5: Quality Control Example
6.5.1: Using Minitab
6.5.2: Using R
6.6: Introduction to Mixed Models
6.7: Mixed Model Example
6.7.1: Using Minitab
6.7.2: Using SAS
6.7.3: Using R
6.8: Complexity Happens
6.9: Try It!
6.10: Chapter 6 Summary

This page titled 6: Random Effects and Introduction to Mixed Models is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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6.1: Random Effects

When a treatment (or factor) is a random effect, the model specifications together with relevant null and alternative hypotheses will
have to be changed. Recall the cell means model defined in Chapter 4 for the fixed effect case, which has the model equation:

Y = pi +e (6.1.1)
where p; are parameters for the treatment means.
For the single factor random effects model we have:

Yij = pi + €ij (6.1.2)
where p; and ¢;; are independent random variables such that p; ifig./\/' (,u, a,%) and €;; irig./\/ (0, 052)- Here, 1 =1,2,...,T and

j=1,2,...,n;, where n; = n if balanced.

Notice that the random effects ANOVA model is similar in appearance to the fixed effects ANOVA model. However, the treatment
mean y;'s are constant in the fixed-effect ANOVA model, whereas in the random-effects ANOVA model the treatment mean p;'s
are random variables.

Note that the expected mean response, in the random effects model stated above, is the same at every treatment level and equals .
E(Yij) = E (ui +€;5) = E(ui) + E (€55) = p (6.1.3)
The variance of the response variable (say 0}2,) in this case can be partitioned as:
0L =V (V) =V (pi+e;5) =V () +V (&) = of + 02 (6.1.4)
as u; and €;; are independent random variables.

Similar to fixed effects ANOVA model, we can express the random effects ANOVA model using the factor effect representation,
using 7; = p; — p . Therefore the factor effects representation of the random effects ANOVA model would be:

}/ij =p+T7t+e€; (615)

. ) ) i
where p is a constant overall mean, and 7; and €;; are independent random variables such that 7 N (O,Uﬁ) and

€ij EBY (0,02). Here, i =1,2,...,T and j=1,2,...,n;, where n; =n if balanced. Here, 7; is the effect of the randomly
selected 7" level.

The terms Uﬁ and o2 are referred to as variance components. In general, as will be seen later in more complex models, there will
be a variance component associated with each effect involving at least one random factor.

Variance components play an important role in analyzing random effects data. They can be used to verify the significant
contribution of each random effect to the variability of the response. For the single factor random-effects model stated above, the
appropriate null and alternative hypothesis for this purpose is:

Hy: 0 =0vs.Hy: 0p >0 (6.1.6)
Similar to the fixed effects model, an ANOVA analysis can then be carried out to determine if Hj can be rejected.

The MS and the df computations of the ANOVA table are the same for both the fixed and random-effects models. However, the
computations of the F-statistics needed for hypothesis testing require some modification.

Specifically, the F statistics denominator will no longer always be the mean squared error (MSE or MSERROR) and will vary
according to the effect of interest (listed in the Source column of the ANOVA table). For a random-effects model, the quantities
known as Expected Means Squares (EMS), shown in the ANOVA table below, can be used to identify the appropriate F-statistic
denominator for a given source in the ANOVA table. These EMS quantities will also be useful in estimating the variance
components associated with a given random effect. Note that the EMS quantities are in fact the population counterparts of the mean
sums of squares (MS) that we are already familiar with. In SAS the proc mixed , method=type3 option will generate the
EMS column in the ANOVA table output.
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EMS (Expected

Source df SS MS Li P Means Squares)
Trt o2 +nol
Error o?

Total

Variance components are NOT synonymous with mean sums of squares. Variance components are usually estimated by using
the Method of Moments where algebraic equations, created by setting the mean sums of squares (MS) equal to the EMS for the
relevant effects, are solved for the unknown variance components. For example, the variance component for the treatment in
the single-factor random effects discussed above can be solved as:

2 o Mstrt - MSeTTor

among trts

s (6.1.7)

n
This is by using the two equations:
M Serror — 0-62

MSy =02 +nof

More about variance components...

Often the variance component of a specific effect in the model is expressed as a percent of the total variation of the variation in the
response variable.

Another common application of variance components is when researchers are interested in the relative size of the treatment effect
compared to the within-treatment level variation. This leads to a quantity called the intraclass correlation coefficient (ICC),
defined as: \[ICC = \frac{\sigma_{\text{among trts}}/{2}}{\sigma_{\text{\text{among trts}} {2} + \sigma_{\text{within
trts} {2} N
Ohu

Ohutal
the group (i.e. corr (Y}j, Yijr), where j # j' . Small values of ICC indicate a large spread of values at each level of the treatment,
whereas large values of ICC indicate relatively little spread at each level of the treatment:

For single random factor studies, ICC =

. ICC can also be thought of as the correlation between the observations within

Low ICC (0.018) High ICC (0.7362)
8 8
7 . r 7
3 - 'S 3
5 + + hd + 5 ‘
a & * 4 b 4 + $
. + ¥ $

3 + 3 % *
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Figure 6.1.1: Dot plots for data sets with low and high ICC values.

This page titled 6.1: Random Effects is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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6.2: Battery Life Example

Consider a study of Battery Life, measured in hours, where 4 brands of batteries are evaluated using 4 replications in a completely

randomized design (Battery Data):

Brand A Brand B Brand C
110 118 108
113 116 107
108 112 112
115 117 108

Brand D

117

112

115

119

A reasonable question to ask in this study would be, should the brand of the battery be considered a fixed effect or a random effect?

If the researchers were interested in comparing the performance of the specific brands they chose for the study, then we have a
fixed effect.

But if the researchers were actually interested in studying the overall variation in battery life, so that the results would be applicable
to all brands of batteries, then they may have chosen (presumably with a random sampling process) a sample of 4 of the many
brands available and tested 4 batteries of each of these brands. In this latter case, the battery brand would add a dimension of
variability to battery life and can be considered a random effect.

Now, let us use SAS proc mixed; tocompare the results of battery brand as a fixed vs. random effect:

A. Fixed Effect model:

Type 3 Analysis of Variance

Expected
Sum of Mean
Source DF Mean Error Term  Error DF F Value Pr>F
Squares Square
Square
Var(Residua MS(Residua
Brand 3 141.687500 47.229167 1)+ 0 12 6.21 0.0086
Q(Brand)
Resi
Residual 12 91250000  7.604167 " (Residua
B. Random Effect model:
Type 3 Analysis of Variance
E
Sum of Mean xpected
Source DF Mean Error Term  Error DF F Value Pr>F
Squares Square
Square
Var(Residua MS(Residua
Brand 3 141.687500  47.229167 1)+4 N 12 6.21 0.0086
Var(Brand)
Resi
Residual 12 91.250000  7.604167 Xar( esidua
Covariance Parameter Estimates
Cov Parm Estimate

@0 6.2.1
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Covariance Parameter Estimates

Cov Parm Estimate
Brand 9.9063
Residual 7.6042

We can verify the estimated variance component (arrow above) for the random treatment effect as:

 MSiyt — MSemor  47.229 —7.604

sgmong trts = - 1 =9.9063 (6.2.1)
With this, we can calculate the ICC as
9.9063
ICC = ——————— =0.5657 (6.2.2)

9.9063 4-7.604

The key points in comparing these two ANOVAs are 1) the scope of inference and 2) the hypothesis being tested. For a fixed effect,
the scope of inference is restricted to only 4 brands chosen for comparison and the Null hypothesis is a statement of equality of
means. In contrast, as a random effect, the scope of inference is the larger population of battery brands and the Null hypothesis is a
statement that the variance due to battery brand is 0.

Using R

? R: Single Random Effect

o Load the battery life data.
e Obtain the ANOVA for a single random effect.

Show Detailed Steps

1. Load the battery life data by using the following commands:

setwd("~/path-to-folder/")
battery_data <- read.table("battery_data.txt", header=T)
attach(battery_data)

2. Obtain the ANOVA for a single random effect by using the following commands:

library(1lmerTest)
library(1lme4)
battery_anova<-lmer(lifetime ~ (1 | trt),battery_data)
summary(battery_anova)
Linear mixed model fit by REML. t-tests use Satterthwaites method ['lmerModLmerT
Formula: lifetime ~ (1 | trt)

Data: battery_data
REML criterion at convergence: 81.3
#Scaled residuals:
# Min 1Q Median 3Q Max
#-1.35317 -0.69070 0.07355 0.69665 1.34279
#Random effects:

# Groups Name Variance Std.Dev.
# trt (Intercept) 9.906 3.147
# Residual 7.604 2.758

#Number of obs: 16, groups: trt, 4
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#Fixed effects:

# Estimate Std. Error df t value Pr(>|t|)
#(Intercept) 112.938 1.718 3.000 65.73 7.76e-06 ***
P

#Signif. codes: 0@ “***/ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' 7 1
#confint(battery_anova)

# 2.5 % 97.5 %
#.51g901 0.6530752 7.166913
#.sigma 1.9371621 4.374014

#(Intercept) 109.1585596 116.716437

Note that the command lmer () gives the ANOVA table only for the fixed effects. Therefore, in this example, since
there are no fixed effects, we won’t get the ANOVA table. In the "Random effects" section of the output, under the column
variance we get the estimates for o2 and o2, which are equal to 9.906 and 7.604 respectively. In the "Fixed effects" section
under the column estimate, we get the estimate of mu, or the overall mean, which is equal to 112.938. With the command

confint() we will get confidence intervals for the standard deviations and the overall mean. If you take the square of
the lower and upper bounds, you will get a confidence interval for the model variances.

Alternatively, we can use the command a0V () which gives a partial ANOVA table.

battery_anoval<-aov(lifetime~Error(trt),battery_data)
summary(battery_anoval)

#Error: trt

# Df Sum Sq Mean Sq F value Pr(>F)
#Residuals 3 141.7 47.23

#Error: Within

# Df Sum Sq Mean Sq F value Pr(>F)
#Residuals 12 91.25 7.604

detach(battery_data)

Note that both of these commands in R don't give the F'-values and p-values for the tests. Therefore, these must be done
manually.

This page titled 6.2: Battery Life Example is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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6.3: Random Effects in Factorial and Nested Designs

Random effects can appear in both factorial and nested designs. By inspecting the EMS quantities, we can determine the
appropriate F'-statistic denominator for a given source. Let us look at two-factor studies.

Factorial Design

Recall the Greenhouse example in section 5.1.1. In this example, there were two crossed factors (fert and species). We treated both
factors as fixed and the SAS proc mixed ANOVA table was as follows:

Type 3 Analysis of Variance

f
Source DF Sum 0 Mean Square
Squares
fert 3 745.437500 248.479167
species 1 236.740833 236.740833
fert*species 3 50.584167 16.861389
Residual 40  135.970000 3.399250

Expected Error Term Error DF F Value Pr>F
Mean Square

Var(Residua

D+ MS(Residua
Q(fert,fert*s D
pecies)

40 73.10 <.0001

Var(Residua

)+ MS(Residua
Q(species,fe 1)
rt*species)

40 69.65 <.0001

Var(Residua

D+ MS(Residua
Q(fert*speci D)
es)

40 4.96 0.0051

Var(Residua

If we inspect the EMS quantities in the output, we see that the correct denominator for all F'-tests when both factors are fixed in the

2-factor crossed study is Error Mean Squares.

Now let us consider a case in which both factors A and B are random effects in the factorial design (i.e. factors A and B are
crossed, and both are random effects). The expected mean squares for each of the source of variations in the ANOVA model would

be as follows:
Source
A
B
AxB
Error

Total

The F'-tests following from the EMS above would be:

EMS

02 +nbo2 + naiﬂ

2 2
+ no

o2+ nac;

B
2 2
o +m7aﬂ

o2
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Source EMS F
A o® +nbod +no?y MSA / MSAB

B o® +nac}+no?, MSB / MSAB

AxB o +no?, MSAB / MSE

Error o’

Total

Here we can see the ramifications of having random effects. In fixed-effects models, the denominator for the F'-statistics in
significance testing was the mean square error (MSE). In random-effects models, however, we may have to choose different
denominators depending on the term we are testing.

The F'-statistic for testing the significance of a given effect, in general, is the ratio of the two MS values with MS of the effect as
the numerator, and the denominator MS is chosen such that the F'-statistic equals 1 if Hy is true and greater than 1 if H,, is true.

Following this logic, we can see that when testing for the interaction effect of 2 random factors, the correct denominator is the error

MSAB However, when we are testing for the main effect of factor A,

mean squares. Therefore the test statistic for testing A x B is AISE

the correct denominator would be M SAB.

Recall that the EMS quantities are the population counterparts for the MS values which actually are sample statistics. Examination
of EMS expressions can therefore be used to choose the correct denominator for an F'-statistic utilized for testing significance and
will be discussed in detail in Section 6.7.

Nested Design

In the case of a nested design, where factor B is nested within the levels of factor A and both are random effects, the expected mean
squares for each of the source of variations in the ANOVA model would be as follows:

Source EMS
A o +bno + nag

B(A) o+ nag

Error o?

Total

The F'-tests follow from the EMS above:

Source EMS F
A o® +bnoj +noj MSA / MSB(A)
B(A) o® +noj MSB(A) / MSE
Error o?
Total
Using R
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? Greenhouse Data - Two Random Effects with Interaction

o Load the greenhouse data.
e Obtain the ANOVA for two random effects with interaction.

Show Detailed Steps

1. Load the greenhouse data by using the following commands:

setwd("~/path-to-folder/")
greenhouse_2way_data <-read.table("greenhouse_2way_data.txt", header=T)
attach(greenhouse_2way_data)

2. Obtain the ANOVA for two random effects with interaction by using the following commands:

library(1lmerTest)

library(1lme4)

greenhouse_anova<-lmer(height ~ (1 | fertilizer) + (1 | species) + (1 | fertiliz
summary(greenhouse_anova)

Linear mixed model fit by REML. t-tests use Satterthwaites method ['lmerModLmerT
Formula: height ~ (1 | fertilizer) + (1 | species) + (1 | fertilizer:species)
Data: greenhouse_2way_data

REML criterion at convergence: 216.7

#Scaled residuals:

# Min 1Q Median 3Q Max
#-2.46787 -0.38510 0.03012 0.38780 2.63056

#Random effects:

# Groups Name Variance Std.Dev.

# fertilizer:species (Intercept) 2.244 1.498

# fertilizer (Intercept) 19.301 4.393

# species (Intercept) 9.162 3.027

# Residual 3.399 1.844

# Number of obs: 48, groups: fertilizer:species, 8, fertilizer, 4, species, 2

#Fixed effects:

# Estimate Std. Error df t value Pr(>|t])
#(Intercept) 28.387 3.124 2.859 9.088 0.0034 **
e oo

#Signif. codes: 0 “***’ 0.001 “**’ 0.01 ‘*’ 0.05 ‘.7 0.1 ' ’ 1
confint(greenhouse_anova)

# 2.5 % 97.5 %
#.51901 0.4327681 5.482701
#.51902 0.0000000 10.319191
#.51g03 0.0000000 11.585745
#.sigma 1.5031328 2.335330

#(Intercept) 21.1262902 35.648887
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Note that the command 1mer () gives the ANOVA table only for the fixed effects. Therefore, in this example, since
there are no fixed effects, we won’t get the ANOVA table. In the "Random effects" section of the output, under the column
variance we get the estimates for aiﬂ, o2, cr;, and o which are equal to 2.244, 19.301, 9.162, and 3.399 respectively. In
the "Fixed effects" section under the column estimate we get the estimate of u, or the overall mean, which is equal to
28.387.

With the command confint() we will get confidence intervals for the standard deviations and the overall mean. If
you take the square of the lower and upper bounds, you will get a confidence interval for the model variances.

Alternatively, we can use the command a@ov () which gives a partial ANOVA table.

greenhouse_anoval<-aov(height~Error(fertilizer+species+fertilizer:species),green
summary(greenhouse_anoval)

#Error: fertilizer

# Df Sum Sq Mean Sq F value Pr(>F)

#Residuals 3 745.4 248.5

#Error: species
# Df Sum Sq Mean Sq F value Pr(>F)
#Residuals 1 236.7 236.7

#Error: fertilizer:species
# Df Sum Sq Mean Sq F value Pr(>F)
#Residuals 3 50.58 16.86

#Error: Within

# Df Sum Sq Mean Sq F value Pr(>F)
#Residuals 40 136 3.399
detach(greenhouse_2way_data)

Note that both commands in R don’t give the F'-values and the p-values for the tests. Therefore, these must be done
manually.

This page titled 6.3: Random Effects in Factorial and Nested Designs is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or

curated by Penn State's Department of Statistics.
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6.4: Special Case - Fully Nested Random Effects Design

Here, we will consider a special case of random effects models where each factor is nested within the levels of the next "order" of a
hierarchy. This Fully Nested Random Effects model is similar to Russian Matryoshka dolls, where the smaller dolls are nested
within the next larger one.

Consider 3 random factors A, B, and C that are hierarchically nested. That is, C is nested in (B, A) combinations and B is nested
within levels of A. Suppose there are n observations made at the lowest level.

The statistical model for this case is:

Yiji = 1+ i + Big) +Ve(ij) + €ijr (6.4.1)
wherei =1,2,...,a,5=1,2,...,b,k=1,2,...,candl=1,2,...,n.
We will also have ;1 %J\/(O, 02),s Vh(ij) Y (0,032), Biij) i (0, aé) Jand oy 2 N (0,03).

The DFs and expected mean squares for this design would be as follows:

Source DF EMS F

A (a—1) 02 +noj + neog + nchog MSA / MSB(A)
B(A) a(b—1) 0? +noj +neoj MSB(A) / MSC(AB)
C(A,B) ab(c—1) o2 +no? MSC(AB) / MSE
Error abe(n—1) o2

Total aben —1

In this case, each F'-test we construct for the sources will be based on different denominators.

This page titled 6.4: Special Case - Fully Nested Random Effects Design is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Penn State's Department of Statistics.
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6.5: Quality Control Example

Example - Fully Nested Random Effects Model

The temperature of a process in a manufacturing industry is critical to quality control. The researchers want to characterize the
sources of this variability. They choose 4 plants and 4 operators within each plant, look at 4 shifts for each operator, and then
measure temperature for each of the three batches used in production.

Collected data was read into SAS and proc mixed procedure was used to obtain the ANOVA model.

Show SAS Code

data fullnest;

input Temp Plant Operator Shift Batch;
datalines;
477 1
472
481
478
475
474
472
475
468
482
477
474
471
474
470
479
482
477
470
477
483
480
473
478
475
472
470
460
469
472
477
483
475
476

T O O O = Y = Gt
W W WwWwwowomwowewawNnNNNNNNMNMNMNNNNNRERRPBRPRRRBRRRPRRRB R
AW W WNNMNMRERRERREDEDNDWOWWNNNRERRERRELAEDDWOW®WNNNRRR
R W NRE WOWNMRPRONRONMNRE ONRONRER ONRPRONRER ONRONR 0N R
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480
471
465
464
471
477
475
471
481
477

475
470
475
474
484
477

481
477
482

481
479
477
482
477
470
479
472
475
475
472
475
470
472
477
475
482
477

483
485
481
477
482

483
485
477
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479
476
485
477
475
476
476
471
472
475
475
472
481

470
472

475
470
469
477

471
474
469
473
468
477
475
473
470
466
468
471
473
476
478
480
474
477
471
469
466
465
471
473
475
478
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471
475
477
472
469
471
468
473
475
473
477
470
469
463
471
469
484
477
480
476
475
474
475
470
469
481
476
472
469

475
479
482

483
479
477
479

475
472
476
479

470
481

481

475
470
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477 4 3 3 2

482 4 3 3 3

485 4 3 4 1

479 4 3 4 2

474 4 3 4 3

469 4 4 1 1

473 4 4 1 2

475 4 4 1 3

477 4 4 2 1

473 4 4 2 2

471 4 4 2 3

470 4 4 3 1

468 4 4 3 2

474 4 4 3 3

483 4 4 4 1

477 4 4 4 2

476 4 4 4 3

’

proc mixed data=fullnest covtest method=type3;
class Plant Operator Shift Batch;
model temp=;

random plant operator(plant) shift(plant operator) ;
run;

In the SAS code, notice that there are no terms on the right-hand side of the model statement. This is because SAS uses the model
statement to specify fixed effects only. The random statement is used to specify the random effects. The proc mixed
procedure will perform the fully nested random effects model as specified above, and produces the following output:

Type 3 Analysis of Variance

Source DF Mean Square

Plant

Operator(Pla

nt)

Sum of Lepprate Error Term Error DF F Value Pr>F

Squares Mean Square
Var(Residua
D+3
Var(Shift(P1
K,
ant*QOperato MS(Operato
3 731.515625  243.838542 ))+12 12 5.85 0.0106
r(Plant))
Var(Operato
r(Plant)) +
48
Var(Plant)

Var(Residua
h+3
Var(Shift(Pl ~ MS(Shift(P1
12 499.812500 41.651042 ant*Operato ant*Operato 48 1.30 0.2483
) +12 )
Var(Operato
r(Plant))
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Type 3 Analysis of Variance

Source DF Sum of Mean Square Expected Error Term Error DF F Value Pr>F
Squares Mean Square
Var(Residua
. +3 .
Shift(Plant* 1534.91666 . MS(Residua
48 31.977431 Var(Shift(Pl 128 2.58 <.0001
Operato) 7 D
ant*Operato
)
1588. Resi
Residual 1og %8 00008 12.406250 ;)/ar( esidua

Covariance Parameter Estimates

Cov Parm Estimate Standard Z Value Prz
Error

Plant 4.2122 4.1629 1.01 0.3116

Operator(Plant) 0.8061 1.5178 0.53 0.5953

Shift(Plant*Operato) 6.5237 2.2364 2.92 0.0035

Residual 12.4063 1.5508 8.00 <.0001

The largest (and significant) variance components are: (1) the shift within a plant x operator combination and (2) the batch-to-batch
variation within the shift (the residual).

Note that the Covariance Parameter Estimates here are in fact the variance components. SAS does not express the variance
components as percentages in this procedure, but by summing the variance components for all sources to serve as the denominator,
each source can be expressed as a percentage.

Because this type of model is so commonly employed, SAS also offers two other procedures to obtain the variance components
results: proc varcomp (which stands for variance components) and proc nested .

The equivalent code for these procedures is as follows:

The proc varcomp :

proc varcomp data=fullnest;

class Plant Operator Shift Batch;

model temp= plant operator(plant) shift(plant operator);
run;

Note that the model statement for proc varcomp differs from the mixed procedure, in that proc varcomp assumes that
the factors listed in the model statement are random effects.

Partial Output:

MIVQUE(0) Estimates
Variance Component Temp
Var(Plant) 4.21224
Var(Operator(Plant)) 0.80613
Var(Shift(Plant*Operato)) 6.52373
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MIVQUE(0) Estimates
Variance Component Temp
Var(Error) 12.40625

Note that, even in this procedure we will have to use the sum for a total and calculate the percentages ourselves.
The proc nested

On the other hand, the proc nested procedure will provide the full output including the percentages:

proc nested data=fullnest;
class plant operator shift;
var temp;

run;

Partial Output:

Nested Random Effects Analysis of Variance for Variable Temp

Variance Sum of Variance Percent of
DF F Value Pr>F Error Term  Mean Square

Source Squares Component  Total

Total 191 4354'24472 22.797093 23.948351 100.0000
Plant 3 731.515625 5.85 0.0106 Operator 243.838542 4.212240 17.5889
Operator 12 499.812500 1.30 0.2483  Shift 41.651042 0.806134 3.3661
Shift 48 1534'91663 2.58 <.0001 Error 31.977431 6.523727 27.2408
Error 128 1588'00003 12.406250 12.406250 51.8042

Calculation of the Variance Components

From the SAS output, we get the EMS coefficients. We can use those to compute the estimated variance components.

Source MS EMS Variance Components % Variation
Plant 243.84 0l + 303 + 1205 + 4805 4.21 17.58
Operator(Plant) 41.65 ¢ + 303 + 1203 0.806 3.37
Shift(Plant x Operator) 31.98 0% + 302 6.52 27.24
Residual 12.41 ol 12.41 51.80

Total 23.95

One can show that MS is an unbiased estimator for EMS (using the properties of Method of Moments estimates). With that, we can
algebraically solve for each variance component. Start at the bottom of the table and work up the hierarchy.

First of all, the estimated variance component for the Residuals is given:

12.41 =42

error

Then we can use this information and subtract it from the Shift(Plant x Operator) MS to get:

https://stats.libretexts.org/@go/page/33662
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~2 ~2
31.98 = O+ 30-1 or Shift(Plant x Operator)

31.98-12.41
A2
Oy =——3—— =6.52

Similarly, we use what we know for Error and Shift(Plant x Operator) and subtract it from the Operator(Plant) MS to get:
A2 A2 ~2
41.65 = o+ 307 + 120,Bor Operator (Plant)
=31.98+ 1257

41.65 —31.98
12

2 _
o5 =
=0.806
Our total = 12.41 + 6.52 + 0.806 + 4.21 = 23.95

Then, dividing each variance component by the total (in this case 23.95) gives the % values shown in the output from SAS
proc nested .

This page titled 6.5: Quality Control Example is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's

Department of Statistics.
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6.5.1: Using Minitab
Minitab has a separate program just for this type of analysis for our example (Quality Data ), under:
Stat >ANOVA >Fully Nested ANOVA

and you specify the model in the boxes provided:

Fully Nested ANOVA X

Responses:
C1 Temp Temp
C2 Plant
C3 Operator
C4 Shift 7
C5 Batch Factors:
Plant Operator Shiff

Select

Figure 6.5.1.1: Fully Nested ANOVA pop-up window.

The output you get is very comprehensive and includes the variance components expressed as percentages.

Nested ANOVA: Temp versus Plant, Operator, Shift

Analysis of Variance for Temp

Source DF SS MS F P
Plant 3 731.5156 243.8385 5.854 0.011
Operator 12 499.8125 41.6510 1.303 0.248
Shift 48 1534.9167 31.9774 2.578 0.000
Error 128 1588.0000 12.4062

Total 191 4354.2448

Variance Components

Source Var Comp. # of Total StDev
Plant 4.212 17.59 2.052
Operator 0.806 3.37 0.898
Shift 6.524 27.24 2.554
Error 12.406 51.80 3.522
Total 23.948 4.894

Expected Mean Squares
1 Plant 1.00(4) + 3.00(3) + 12.00(2) + 48.00(1)

2 Operator 1.00(4) + 3.00(3) + 12.00(2)
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3 Shift 1.00(4) + 3.00(3)

4 Error 1.00(4)

This page titled 6.5.1: Using Minitab is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's

Department of Statistics.
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6.5.2: Using R

R Fully Nested Random Effects Model

o Load the data.
o Obtain the ANOVA for the fully nested random effects.

1. Load the data by using the following commands:

setwd("~/path-to-folder/")
fullnest_data <- read.table("fullnest_data.txt", header=T)
attach(fullnest_data)

2. Obtain the ANOVA for the fully nested random effects by using the following commands:

library(lmerTest)
library(1lme4)

random_fullnest<-lmer(Temp ~ (1 | Plant) + (1 | Plant:Operator) +

(1 | Plant:(Operator:Shift)) ,fullnest_data)
summary(random_fullnest)

Linear mixed model fit by REML. t-tests use Satterthwaites method ['lmerModLmerTest']
Formula: Temp ~ (1 | Plant) + (1 | Plant:Operator) + (1 | Plant:(Operator:Shift))

Data: fullnest_data
REML criterion at convergence: 1097.2

#Scaled residuals:
# Min 1Q Median 30 Max

#-2.78620 -0.61163 0.00414 0.56721 1.99397

#Random effects:

# Groups Name Variance Std.Dev.
# Plant:(Operator:Shift) (Intercept) 6.5237 2.5542
# Plant:Operator (Intercept) 0.8061 0.8979
# Plant (Intercept) 4.2123 2.0524
# Residual 12.4063 3.5223
#

#Fixed effects:

# Estimate Std. Error df t value Pr(>|t])
#(Intercept) 474.880 1.127 3.000 421.4 2.95e-08 ***
.

#Signif. codes: 0 “***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
confint(random_fullnest)

# 2.5 % 97.5 %
#.51901 1.7251242 3.487550
#.51902 0.0000000 2.475048
#.51903 0.1192372 4.695585

Number of obs: 192, groups: Plant:(Operator:Shift), 64, Plant:Operator, 16, Plant,

/

71
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#.s1igma 3.1311707 4.002066
#(Intercept) 472.4015615 477.358858

Note that the command lmer () gives the ANOVA table only for the fixed effects. Therefore, in this example, since there are no
fixed effects, we won’t get the ANOVA table. In the "Random effects" section of the output, under the column variance, we get the
estimates for 0.2,, ag, o2, and o which are equal to 6.5237, 0.8061, 4.2123, and 12.4063 respectively. In the "Fixed effects" section

under the column estimate, we get the estimate of yu for the overall mean, which is equal to 474.880.

With the command confint() we will get confidence intervals for the standard deviations and the overall mean. If you take
the square of the lower and upper bounds, you will get a confidence interval for the model variances.

Alternatively, we can use the command aov() which gives a partial ANOVA table.

random_fullnestl<-aov(Temp ~ Error(factor(Plant) + factor(Plant)/factor(Operator) + f
summary(random_fullnestl)

#Error: factor(Plant)
# Df Sum Sq Mean Sq F value Pr(>F)
#Residuals 3 731.5 243.8

#Error: factor(Plant):factor(Operator)
# Df Sum Sq Mean Sq F value Pr(>F)
#Residuals 12 499.8 41.65

#Error: factor(Plant):factor(Operator):factor(Shift)
# Df Sum Sq Mean Sq F value Pr(>F)
#Residuals 48 1585 31.98

#Error: Within

# Df Sum Sq Mean Sq F value Pr(>F)
# Residuals 128 1588 12.41
detach(fullnest_data)

Note that both commands in R don’t give the F'-values and the p-values for the tests. Therefore, these must be done manually.

This page titled 6.5.2: Using R is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of

Statistics.
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6.6: Introduction to Mixed Models

Treatment designs can comprise both fixed and random effects. When we have this situation the treatment design is referred to as a
mixed model. Mixed models are by far the most commonly encountered treatment designs. The three situations we now have are
often referred to as Model I (fixed effects only), Model II (random effects only), and Model III (mixed) ANOVAs. In designating
the effects of a mixed model as mixed or random, the following rule will be useful.

Rule! Any interaction or nested effect containing at least one random factor is random.

Below are the ANOVA layouts of two basic mixed models with two factors.

Factorial

In the simplest case of a balanced mixed model, we may have two factors, A and B, in a factorial design in which factor A is a
fixed effect and factor B is a random effect.

The statistical model is similar to what we have seen before:

Yijk = P+ i + B+ (aB),;; + € (6.6.1)
wherei=1,2,...,a,5=1,2,...,b,andk=1,2,...,n.
Here, >3, 0; =0, Bj ~ N (070[2;), (aB)ij~N (0, el Uiﬂ), > i(@B)i; =0 and € ~ N (0,0%). Also, B, (B)sj, and €;

a

are pairwise independent.

In this case, we have the following ANOVA.

Source DF EMS

A (a—1) o? +nb%a1? +nols
B (b—1) o? +naoj
AxB (a—1)(b—1) o +nols
Error ab(n —1) o?

Total abn —1

The F'-tests are set up based on the EMS column above and we can see that we have to use different denominators in testing
significance for the various sources in the ANOVA table:

Source EMS F

= o’ + anal’? +no?, MSA / MSAB
B o* +nac} MSB / MSE
AxB o +nol, MSAB / MSE
Error o?

Total

As a reminder, the null hypothesis for a fixed effect is that the o;'s are equal, whereas the null hypothesis for the random effect is
that the o2's are equal to zero.

B
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The denominator for the F'-test for the main effect of factor A is now the MS for the A x B interaction. For Factor B and the A
x B interaction, the denominator is the MSE.

Nested

In the case of a balanced nested treatment design, where A is a fixed effect and B(A) is a random effect, the statistical model would
be:

Yijk = B+ i + Bii) + €iji (6.6.2)
wherei=1,2,...,a,5=1,2,...,b,andk=1,2,...,n.
Here, Zi a; :0, ﬂj(i) NN (0,0’2) , and €ijk :N (0,0‘2).

We have the following ANOVA for this model:

Source DF EMS
Ya?
A (a—].) 0'52“1‘”0'!2.}((1) "Fb'n a1
B(A) a(b—1) o¢ +nog,
Error ab(n —1) o?
Total abn —1
Here is the same table with the F'-statistics added. Note that the denominators for the F'-test are different.

Source EMS F
A 2 2 Yo

oé + N30 +bn — MSA / MSB(A)
B(A) o +nol MSB(A) / MSE
Error (of e2
Total

F-Calculation Facts

As can be seen from the examples above and also from sections 6.3-6.6, when significance testing in random or mixed models, the
denominator of the F'-statistic is no more the MSE value and has to be aptly chosen. Recall that the F'-statistic for testing the
significance of a given effect is the ratio with the numerator equal to the MS value of the effect, and the denominator is also an MS
value of an effect included in the ANOVA model. Furthermore, the F'-statistic has a non-central distribution when H,, is true and a
central F'-distribution when Hj is true.

The non-centrality parameter of the non-central F distribution when H, is true depends on the type of effect (fixed vs random), and
equals \sum_{i=1}"{T} \alpha_{i}*{2}\) for a fixed effect and ath for a random effect. Here a; = u; —p, where
wi (1=1,2,...,T)is the i" level of the fixed effect and p is the overall mean while o2, is the variance component associated
with the random effect. Also, MS under true H, equals to MS under true Hj plus non-centrality parameter, so that

MS when Hj is true + non-centrality parameter

F-statistic = - (6.6.3)
MS when H) is true

The above identity can be used to identify the correct denominator (also called the error term) with the aid of EMS expressions
displayed in the ANOVA table.
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https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33663?pdf

LibreTextsm

Rule! The F'-statistic denominator is the MS value of the source which has an EMS containing all EMS terms in the effect
except the non-centrality parameter.

This page titled 6.6: Introduction to Mixed Models is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn

State's Department of Statistics.
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6.7: Mixed Model Example

Consider the experimental setting in which the investigators are interested in comparing the classroom self-ratings of teachers.
They created a tool that can be used to self-rate the classrooms. The investigators are interested in comparing the Eastern vs.
Western US regions, and the type of school (Public vs. Private). Investigators chose 2 teachers randomly from each combination
and each teacher submits scores from 2 classes that they teach.

You can download the data at Schools Data.

If we carefully disseminate the information in the setup, we see that the US region makes sense as a fixed effect, and so does the
type of school. However, the investigators are probably not interested in testing for significant differences among individual
teachers they recruited for the study; more realistically, they would be interested in how much variation there is among teachers (a
random effect).

For this example, we can use a mixed model in which we model teacher as a random effect nested within the factorial fixed
treatment combinations of Region and School type.

This page titled 6.7: Mixed Model Example is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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6.7.1: Using Minitab

In Minitab, specifying the mixed model is a little different.
InStat > ANOVA > General Linear Model >Fit General Linear Model

we complete the dialog box:

General Linear Model X
C1 region Responses:
G2 school_type
C3 teacher ‘SR_score’
C4 class -
C5 SR_score
Fagtors:

region ‘school_type' teacherd

Covariates:

Random/Mest... Model... Options... Coding...

== Stepwise... Graphs... FResults... Storage...
ect

Figure 6.7.1.1: General Linear Model pop-up window.

We can create interaction terms under Model... by selecting "region" and "school_type" and clicking Add.

General Linear Model: Model

Factors and covariates: Add terms using selected factors, covariates, and model terms:
region Interactions through order: 2 M
'school_type'
teacher

Cross factors, covariates, and terms in the model

Terms in the model: Default % 4 1

region
'school_type'
teacher

region*'school_type'

Figure 6.7.1.2: General Linear Model: Model pop-up window.

Finally, we create nested terms and effects are random under Random/Nest...:

https://stats.libretexts.org/@go/page/33829
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General Linear Model: Random Nest

Nesting:

Factor/Covariate Nested in specified factors
region

school_type

teacher region 'school_type'
Factor type:

Factor Type
region Fixed ~
school_type Fixed ~
teacher Random

Figure 6.7.1.3: General Linear Model: Random Nest pOp-ll-[.)m\-A-'iildOW.

Minitab Output for the mixed model:

Factor Information

Factor Type Levels Values
region Fixed 2 EastUS, WestUS
school_type Fixed 2 Private, Public

1(EastUS,Private),
2(EastUS,Private,)
1(EastUS,Public), 2(EastUS,
Public),

1(WestUS, Private), 2(WestUS,
Private),

1(WestUS,Public),
2(WestUS,Public)

teacher(region school_type) Random 8

Analysis of Variance

Source DF Seq SS Adj SS Adj MS F-Value P-Value
region 1 564.06 564.06 564.06 24.07 0.008
school_type 1 76.56 76.56 76.56 3.27 0.145
region*school_ty
- 1 264.06 264.06 264.06 11.27 0.028
teacher(region

4 93.75 93.75 23.44 5.00 0.026
schoo_type)
Error 8 37.50 37.50 4.69
Total 15 1035.94

Model Summary

S R-sq R-sq(adj) R-sq(pred)
2.16506 96.38% 93.21% 85.52%

Minitab's results are in agreement with SAS Proc Mixed .
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This page titled 6.7.1: Using Minitab is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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6.7.2: Using SAS
In SAS we would set up the ANOVA as:

proc mixed data=school covtest method=types3;
class Region SchoolType Teacher Class;

model sr_score =

random Teacher (Region*SchoolType);

store out_school;
run;

Region SchoolType Region*SchoolType;

In SAS proc mixed , we see that the fixed effects appear in the model statement, and the nested random effect appears in the

random statement.

We get the following partial output:

Type 3 Analysis of Variance

Source DF Sl
Squares

Region 1 564.062500
SchoolType 1 76.562500
Region*Sch

1 264.062500
oolType
Teach(Regio A 93.750000
n*School) '
Residual 8 37.500000

Mean Square

564.062500

76.562500

264.062500

23.437500

4.687500

Expected
Mean Square

Var(Residua
D+2
Var(Teach(R
egion*Scho
ol)) +
Q(Region,R
egion*Scho
olType)

Var(Residua
)+2
Var(Teach(R
egion*Scho
ol)) +
Q(School Ty
pe,Region*S
choolType)

Var(Residua
D+2

Var(Teach(R
egion*Scho
ol)) +

Q(Region*S
choolType)

Var(Residua
)+2
Var(Teach(R
egion*Scho

ol))

Var(Residua
)

Error Term Error DF F Value
MS(Teach(R
egion*Scho 4 24.07
ol))
MS(Teach(R
egion*Scho 4 3.27
ol))
MS(Teach(R
egion*Scho 4 11.27
ol))
MS(Residua

8 5.00

D)
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The results for hypothesis tests for the fixed effects appear as:

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr>F
Region 1 4 24.07 0.0080
SchoolType 1 4 3.27 0.1450
Region*SchoolType 1 4 11.27 0.0284

Given that the Region*SchoolType interaction is significant, the PLM procedure along with the lsmeans statement can be
used to generate the Tukey mean comparisons and produce the groupings chart and the plots to identify what means differ
significantly.

ods graphics on;
proc plm restore=out_school;
lsmeans Region*SchoolType / adjust=tukey plot=meanplot cl lines;

run;
LS-Means for Region*SchoolType
With 95% Confidence Limits
100
90 4
3
=
4
H
S 80
704
EastUSIF'rivate EastUS‘ Public ‘.'\l'estUSI Private Wes'.tUSI Public
Region*SchoolType
Figure 6.7.2.1: Plot of score LS-means for Region*SchoolType, with 95%
confidence limits.
Differences of Region*SchoolType Least Squares Means
Adjustment for Multiple Comparisons: Tukey
Stand
Regio School _Regio _Scho Estima anca . Adj Adj
rd DF tValue Pr>|t AdjP Alpha Lower Upper
n Type n olType te Lower Upper
Error
EastU Privat EastU . . . . . . -1. .
Public 12.50 3.423 4 3.65 0.021  0.070 0.05 2,995  22.00 1.435 26.435
S e S 00 3 7 3 5 45 6 6
EastU Privat WestU -3. ’ . 5 -13. b -17. .
Private 3.750  3.423 4 110 0.334 0.710 0.05 13.25 5.754 17.68 10.185
S e S 0 3 9 9 45 5 56 6
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Differences of Region*SchoolType Least Squares Means
Adjustment for Multiple Comparisons: Tukey

Stand,
Regio School _Regio _Scho Estima anda . Adj Adj
rd DF tValue Pr>|tf AdjP Alpha Lower Upper
n Type n olType te Lower Upper
Error
EastU Privat WestU -7. . . . -17. . -21.
iv Public 7.500 3.423 4 219 0.093 0.267 0.05 17.00 2.004 21.43 6.4356
S e S 0 3 6 7 45 5 56
EastU WestU = 3 = 3 5
as Public es Private 16.25 3.423 4 475 0.009 0.030 0.05 25.75 -6.745 -30.18 -2.314
S S 00 3 0 1 45 5 56 4
EastU WestU -20. . . . -29. -10. -33. -6.
Public Public 20.00 3.423 4 584 0.004 0.014 0.05 29.50 -10.49 -33.93 -6.064
S S 00 3 3 6 45 55 56 4
WestU Privat WestU -3. ’ b A -13. o -17. b
iv Public 3.750 3.423 4 -110 0.334 0.710 0.05 13.25 5.754 17.68 10.185
S e S 0 3 9 9 45 5 56 6
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Score Comparisons for Region*SchoolType
| s
100 P
’
s
2
VY@/US Publi
1
~ > & ublic
v
90 7 TNVestUS Private
~ N
AN
\ EastU's Private
~
~
~
80+
EastUS Public
70+ .
s
}a/stUB Public EastUS Private WestUS Private .
Westl)S Public
T T T S L E
70 80 90 100
Differences for alpha=0.05 (Tukey Adjustment)
— — — Not significant Significant

Figure 6.7.2.2: Diffogram of score comparisons for
Region*SchoolType.

Score Tukey Grouping for LS-Means of
Region*SchoolType (Alpha = 0,05)

LS-means covered by the same bar are not significantly different.

Region SchoolType Estimate

WestUs Fublic 93.2500
WestUS Private 89.5000
EastUs Private 85.7500
EastUS Public 73.2500

Figure 6.7.2.3: Score Tukey grouping for LS-means of
Region*SchoolType.

From the results, it is clear that the mean self-rating scores are highest for the public school in the west region. The difference mean
scores for public schools in the west region is significantly different from the mean scores for public schools in the east region as
well as the mean scores for private schools in the east region.

The covtest option produces the results needed to test the significance of the random effect, Teach(Region*SchoolType) in

terms of the following null and alternative hypothesis:

H(): 0'2

_ )
tacher —0VS. Hyt 0 >0

teacher

However, as the following display shows, covtest option uses the Wald Z test, which is based on the z-score of the sample
statistic and hence is appropriate only for large samples—specifically, when the number of random effect levels is sufficiently

large. Otherwise, this test may not be reliable.

Covariance Parameter Estimates

https://stats.libretexts.org/@go/page/33830
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Covariance ParametSrdnstangates

Cov Parm Estimate 7 Value Pr7z
Error

Cov Parm Estimate Standard Z Value Prz
Error

Teach(Region*School) 9.3750 8.3689 1.12 0.2626

Residual 4.6875 2.3438 2.00 0.0228

Therefore, in this case, as the number of teachers employed is few, Wald's test may not be valid. It is more appropriate to use the
ANOVA F'-test for Teacher(Region*SchoolType). Note that the results from the ANOVA table suggest that the effects of the
teacher within the region and school type are significant (Pr > F = 0.0257), whereas the results based on Wald's test suggest
otherwise (since the p-value is 0.2626).

This page titled 6.7.2: Using SAS is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department

of Statistics.

https://stats.libretexts.org/@go/page/33830
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6.7.3: Using R

R - Mixed Effects Models

o Load the schools data.

o Obtain the ANOVA for the mixed effects model.

o Obtain estimators and CIs for means for each combination of region and school type.
e Obtain a means plot for each combination of region and school type.

¢ Obtain Tukey’s multiple comparisons CIs.

1. Load the schools data by using the following commands:

setwd("~/path-to-folder/")
schools_data <- read.table("schools_data.txt",header=T)
attach(schools_data)

2. Obtain the ANOVA for the mixed effects model by using the following commands:

library(lmerTest)

library(1lme4)

mixed_schools<-1lmer(SR_score ~ region + school_type + region:school_type + (1 | teach
summary(mixed_schools) # Partial output

#Random effects:

# Groups Name Variance Std.Dev.
# (region:school_type):teacher (Intercept) 9.375 3.062
# Residual 4.687 2.165

# Number of obs: 16, groups: (region:school_type):teacher, 8
anova(mixed_schools)
#Type III Analysis of Variance Table with Satterthwaites method

# Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
#region 112.812 112.812 1 4 24.0667 0.008011 **
#school_type 15.312 15.312 1 4 3.2667 0.144986
#region:school_type 52.812 52.812 1 4 11.2667 0.028395 *
#---

# Signif. codes: 0 “***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.7 0.1 ' ' 1

Note that the command Imer() gives the ANOVA table only for the fixed effects. Therefore, in this example, since there are fixed
effects, we get the ANOVA table with their F' values and p-values.

In the "Random effects" section of the output, under the column variance, we get the estimates for 03 and o which are equal to
9.375 and 4.687 respectively.

Alternatively, we can use the command aov () which gives a partial ANOVA table.

mixed_schoolsl<-aov(SR_score ~ region + school_type + region*school_type + Error((reg
summary(mixed_schools1)

#Error: region

# Df Sum Sq Mean Sq

#region 1 564.1 564.1

#Error: school_type

# Df Sum Sq Mean Sq

https://stats.libretexts.org/@go/page/33831
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#school_type 1 76.56 76.56

#Error: region:school_type

# Df Sum Sq Mean Sq
#region:school_type 1 264.1 264.1
#Error: region:school_type:teacher

# Df Sum Sq Mean Sq F value Pr(>F)
#Residuals 4 93.75 23.44

#Error: Within

# Df Sum Sq Mean Sq F value Pr(>F)
#Residuals 8 37.5 4.688

3. Obtain estimators, CIs , and multiple comparisons CIs for means for each combination of region and school type by using the
following commands:

library(emmeans)
pairwise_conf_intervals<-emmeans(mixed_schools, list(pairwise~region:school_type),adju
CI<-confint(pairwise_conf_intervals)

$ emmeans of region, school_type’

# region school_type emmean SE df lower.CL upper.CL
# EastUS Private 85.8 2.42 4 79.0 92.5
# WestUS Private 89.5 2.42 4 82.8 96.2
# EastUS Public 73.2 2.42 4 66.5 80.0
# WestUS Public 93.2 2.42 4 86.5 100.0

#Degrees-of-freedom method: kenward-roger
#Confidence level used: 0.95

$ pairwise differences of region, school_type"

# 1 estimate SE df lower.CL upper.CL
# EastUS Private - WestUS Private -3.75 3.42 4 -17.69 10.19
# EastUS Private - EastUS Public 12.50 3.42 4 -1.44 26.44
# EastUS Private - WestUS Public -7.50 3.42 4 -21.44 6.44
# WestUS Private - EastUS Public 16.25 3.42 4 2.31 30.19
# WestUS Private - WestUS Public -3.75 3.42 4 -17.69 10.19
# EastUS Public - WestUS Public -20.00 3.42 4 -33.94 -6.06

#Degrees-of-freedom method: kenward-roger
#Confidence level used: 0.95
#Conf-level adjustment: tukey method for comparing a family of 4 estimates

4. Obtain means plot for each combination of region and school type by using the following commands:

library(plotrix)

region_means<-as.data.frame(CI$ emmeans of region, school_type")
region<-region_means$region

school_type<-region_means$school_type

region_school_type<-paste(region, school_type)
plotCI(x=region_means$emmean, y=NULL, li=region_means$lower.CL,ui=region_means$upper.CL
axis(1,at=1:4,labels=region_school_type)

@ 0 e 6.7.3.2 https://stats.libretexts.org/@go/page/33831
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QMeans plot of SR score for each combination of region and school type.

Figure 6.7.3.1: SR scores mean plot for Region*SchoolType.

5. Obtain Tukey’s multiple comparisons plot by using the following commands:

diff_comp<-as.data.frame(CI$ pairwise differences of region, school_type’)
diff_reg_sch<-diff_comp[, 1]

plotCI(x=diff_comp$estimate, y=NULL,1li=diff_comp$lower.CL,ui=diff_comp$upper.CL, xaxt="
abline(h=0)

axis(1,at=1:6,labels=diff_reg_sch,las=1,cex.axis=0.6)

detach(schools_data)

D:"Iukey’s multiple comparisons plot
Figure 6.7.3.2: Tukey comparisons differences of means plot.

This page titled 6.7.3: Using R is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
Statistics.
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6.8: Complexity Happens

From what we have discussed so far, we see that even for the simplest multi-factor studies (i.e. those involving only two factors),
there are many possibilities of treatment designs generated by either factor being fixed or random, and factors being crossed or

nested.

For any of these possibilities, we can carry out the hypothesis tests using the EMS expressions to identify the correct denominator

for the relevant F'-statistics.

Crossed
Source d.f. A fixed, B fixed A fixed, B random A random, B random
2 2
B2 2 2 2 2 2
B b—1 o2 —Hmzb:q o +na0'ﬁ o +naoﬂ+noaﬁ
> (@) 2 2 2 2
AxB (a=1)(b—1) 02+nm o’ +nol o’ +nol,
o? o? o?
Nested
Source d.f. A fixed, B fixed A fixed, B random A random, B random
Yo Yo 2 2 2
A a—1 o? +bn =2 0%+ bn =2 +na§(a) o? +bnod +noj
Y8 2 2 2 2
B(A) a(b—1) o2+n a(bfli) o’ +nog ., o’ +nog
Error ab(n —1) o? o? o?

This page titled 6.8: Complexity Happens is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's

Department of Statistics.
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6.9: Try It!

? Exercise 6.9.1

Show data Lesson6_1lex1

Three teaching methods were to be compared to teach computer science in high schools. Nine different schools were chosen
randomly and each teaching method was assigned to 3 randomly chosen schools so that each school implemented only one
teaching method. The response that was used to compare the 3 teaching methods was the average score for each high school.

data Lesson6_ex1;
input mtd school score semester $;
datalines;

1 68.11 Fall
68.11 Fall
68.21 Fall
78.11 Spring
78.11 Spring
78.19 Spring
59.21 Fall
59.13 Fall
59.11 Fall
70.18 Spring
70.62 Spring
69.11 Spring
64.11 Fall
63.11 Fall
63.24 Fall
63.21 Spring
64.11 Spring
63.11 Spring
84.11 Fall
85.21 Fall
85.15 Fall
85.11 Spring
83.11 Spring
89.21 Spring
93.11 Fall
95.21 Fall
96.11 Fall
95.11 Spring
97.27 Spring
94.11 Spring
90.11 Fall
88.19 Fall
89.21 Fall
90.11 Spring
90.11 Spring

N NN NNMNNNMNNONMNNNMNNMNNNMNNMNNNNRERRRRRRR R R B R R R B RB B R
W WWwwWwNNNNNNRRRPRRRERERE®DW®WWWNNNNNNRRERRRR
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92.21 Spring
74.2 Fall
78.14 Fall
74.12 Fall
87.1 Spring
88.2 Spring
85.1 Spring
74.1 Fall
73.14 Fall
76.21 Fall
72.14 Spring
76.21 Spring
75.1 Spring
80.12 Fall
79.27 Fall
81.15 Fall
85.23 Spring
86.14 Spring
87.19 Spring

W W W WwWwWwWwWwWwWwowowowowowowowwN
W W WwwWwwwNNNNNNRERRPRRRPB ®

~=

confirm their conclusion.
2. If possible, perform any other additional statistical analyses.

Show Solution in SAS

within the teaching method.

Input:

1. Using the information about the teaching method, school, and score only, the school administrators conducted a statistical
analysis to determine if the teaching method had a significant impact on student scores. Perform a statistical analysis to

1. To confirm their conclusion, a model with only the two factors, teaching method and school was used, with school nested

data Lesson6_ex1;
input mtd school score semester $;
datalines;
1 68.11 Fall
68.11 Fall
68.21 Fall
78.11 Spring
78.11 Spring
78.19 Spring
59.21 Fall
59.13 Fall
59.11 Fall
70.18 Spring
70.62 Spring
69.11 Spring
64.11 Fall

T O O Y
WINNNMNNNMNNRRRRR
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63.11 Fall
63.24 Fall
63.21 Spring
64.11 Spring
63.11 Spring
84.11 Fall
85.21 Fall
85.15 Fall
85.11 Spring
83.11 Spring
89.21 Spring
93.11 Fall
95.21 Fall
96.11 Fall
95.11 Spring
97.27 Spring
94.11 Spring
90.11 Fall
88.19 Fall
89.21 Fall
90.11 Spring
90.11 Spring
92.21 Spring
74.2 Fall
78.14 Fall
74.12 Fall
87.1 Spring
88.2 Spring
85.1 Spring
74.1 Fall
73.14 Fall
76.21 Fall
72.14 Spring
76.21 Spring
75.1 Spring
80.12 Fall
79.27 Fall
81.15 Fall
85.23 Spring
86.14 Spring
87.19 Spring

13
13
13
13
13
21
21
21
21
21
21
22
22
22
22
22
22
23
23
23
23
23
23
31
31
31
31
31
31
3 2
32
32
3 2
32
32
33
33
33
33
33
33

proc mixed data=lesson6_exl method=type3;
class mtd school;

model score = mtd;

random school(mtd);

store resultsi;

https://stats.libretexts.org/@go/page/33666
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run;

proc plm restore=resultsi;
lsmeans mtd / adjust=tukey plot=meanplot cl lines;
run;

Partial outputs:

Type 3 Analysis of Variance

Expected
Sum of Mean
Source DF Mean Error Term Error DF F Value Pr>F
Squares Square
Square

Var(Residu

al)+6
4811.40095 2405.70048 ) MS(school(
mtd 2 Var(school( 6 16.50 0.0036
9 0 mtd))
mtd)) +

Q(mtd)

Var(Residu

al) +6 MS(Residu
Var(school( al)

mtd))

school(mtd) 6 875.059744 145.843291 45 10.13 <.0001

Var(Residu
al)

Residual 45 647.972350  14.399386

The p-value of .0036 indicates that the scores vary significantly among the 3 teaching methods and confirms the school
administrators’ conclusion. As the teaching method was significant, the Tukey procedure was conducted to determine the
significantly different pairs among the 3 teaching methods. The results of the Tukey procedure shown below indicate that
the mean scores of teaching methods 2 and 3 are not statistically significant and that the teaching method 1 mean score is
statistically lower than the mean scores of the other two.

score Tukey Grouping for LS-Means of mtd score Comparisens for mtd
(Alpha = 0.05)
LS-means covered by the same bar are not signfficantly different.
mid Estimate
2
90
2 90.1533
3 79.6033 80 3
1 67.0606 I
70
T
Figure 6.9.al: LS-means of mtd score Tukey
grouping.
1 3 2
60
T T T T
60 70 80 90
Differences for alpha=0.05 (Tukey Adjustment)
Mot significant Significant

Figure 6.9.a2: Diffogram of score comparisons for mtd with Tukey
adjustment.

2. Using the additional code shown below, an ANOVA was conducted including semester also as a possible fixed effect.
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proc mixed data=lesson6_exl method=type3;
class mtd school semester ;

model score = mtd semester mtd*semester;
random school(mtd) semester*school(mtd);
store results2;

run;

proc plm restore= results2;
lsmeans mtd semester / adjust=tukey plot=meanplot cl lines;
run;

The p-values indicate that both these main effects are statistically significant, but not their interaction. The Tukey
procedure indicates that the significances of paired comparisons for the teaching method remain the same. Between the two
semesters, the scores are statistically higher in the spring compared to the fall.

The output writes semester*school(mtd) as school*semester(mtd), probably due to arranging effects in alphabetical

order.
score Comparisons for mtd
2
90
80 3
70
1
1 3 2
60
60 7 80 %
Differences for alpha=0.05 (Tukey Adjustment)
Mot significant Significant
Figure 6.9.a2: Diffogram of score comparisons for mtd with Tukey adjustment.
semester Least Squares Means
Standard
semester Estimate arllz ar DF t Value Pr> |t Alpha Lower Upper
ITOr
Fall 76.6370 1.8265 6 41.96 <.0001 0.05 72.1677 81.1063
Spring 81.2411 1.8265 6 44.48 <.0001 0.05 76.7718 85.7104

Show Solution in Minitab
1. Choose Stat -> ANOVA -> General Linear Model

QMinitab General Linear Model pop-up window, with "score" in the Responses window and "mtd-school" in the Factors window.

Figure 6.9.b1: Minitab General Linear Model pop-up window.
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Then, click Random/Nest:

[":Minitab General Linear Model window for Random/Nest, with "mtd" entered next to the factor of "school" in the Nesting table, mtd set as a fixed factor, and school set as a random factor.

Figure 6.9.b2: General Linear Model: Random/Nest pop-up window.

Output:

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
mtd 2 4811.4 2405.70 16.50 0.004
school(mtd) 6 875.1 145.84 10.13 0.000
Error 45 648.0 14.40
Total 53 6334.4

Conclusion

The p-value of .004 indicates that mtd is statistically significant, which implies that the mean score from all 3 teaching
methods is not the same, thus confirming the school administrators’ claim. Note that in the Minitab General Linear Model,
the Tukey procedure or any other paired comparisons are not available.
2. Choose Stat -> ANOVA -> General Linear Model
['jMinitab General Linear Model pop-up window with "score" in the Responses window and "mtd-school semester" in the Factors window.
Figure 6.9.b3: Minitab General Linear Model pop-up window.
Then click Random/Nest.
[,ﬁ\/ﬁnitab General Linear Model window for Random/Nest, with "mtd" entered next to "school" in the Nesting table, "mtd" and "semester" set as fixed factors, and "school" set as a random factor.
Figure 6.9.b4: General Linear Model: Random/Nest pop-up window.
Hit OK and then click Model
|+ Minitab GLM: Model window, with "2" selected in the Interactions through order window.
Figure 6.9.b5: General Linear Model: Model pop-up window.
Select the effects mtd, semester, and school(mtd), and then click Add.
['A"GLM Model window with the selected factors of "mtd", "school(mtd)", and "semester."

Figure 6.9.b6: General Linear Model: Model pop-up window, with selected effects.

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
mtd 2 4811.40 2405.70 16.50 0.004
semester 1 286.17 286.17 8.34 0.028
school(mtd) 6 875.06 145.84 4.25 0.051
mtd*semester 2 85.70 42.85 1.25 0.352
school(mtd)*semes
ter 205.85 34.31 17.58 0.000
Error 36 70.25 1.95
Total 53 6334.43

Conclusion

The p-values indicate that both main effects, mtd and semester, are statistically significant, but not their interaction. Note
that in the Minitab General Linear Model procedure, paired comparisons are not available.
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Type 3 Analysis of Variance

Sum of Mean Expected
Source DF Mean F Value Pr>F
Squares Square
Square
Var(Residua
4811.40095 2405.70048 1)+6
9 0 Var(A*B) +
QA)

Var(Residua
D+6
Var(A*B) +
18 Var(B)

11.38 0.0224

2 29.274959  14.637480 0.07 0.9342

Var(Residua
4 845.784785 211.446196 1)+6 14.68 <.0001
Var(A*B)

Var(Residua
)

Residual 45 647.972350  14.399386

Use the ANOVA table above to answer the following.

1. Name the fixed and random effects.

2. Complete the Source column of the ANOVA table above.

3. How many observations are included in this study?

4. How many replicates are there?

5. Write the model equation.

6. Write the hypotheses that can be tested with the expression for the appropriate F'-statistic.

Show Solution

1. Name the fixed and random effects.

Fixed: A with 3 levels. In the EMS column, Q(A) reveals that A is fixed and the df indicates that it has 3 levels. Note that
any factor that has a quadratic form associated with it is fixed and Q(A) is the quadratic form associated with A. This
actually equals Z?:l af, where ¢ =1, 2, 3 are the treatment effects; it is non-zero if the treatment means are significantly
different.

Random: B is random as indicated by the presence of Var(B), The effect of factor B is studied by sampling 3 cases (see df
value for B).

e A*B is random as any effect involving a random factor is random.
o The residual is also random as indicated by the presence of the Var(residual) in the EMS column.

2. Complete the Source column of the ANOVA table above.

Use the EMS column and start from the bottom row. The bottom-most has only var(*residual) and therefore the effect on
the corresponding Source is residual. The next row up has var(A*B) in the additional term indicating that the corresponding
source is A*B, etc.

Type 3 Analysis of Variance

Expected
Sum of Mean P
Source DF Mean F Value Pr>F
Squares Square
Square

https://stats.libretexts.org/@go/page/33666
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Type 3 Analysis of Variance

Expected
Sum of Mean P
Source DF Mean F Value Pr>F
Squares Square
Square

Var(Residu

4811.40095 2405.70048 al)+6
9 0 Var(A*B) +

QA)

Var(Residu
al) +6
Var(A*B) +
18 Var(B)

A 2 11.38 0.0224

B 2 29.274959  14.637480 0.07 0.9342

Var(Residu
A*B 4 845.784785 211.446196 al)+6 14.68 <.0001
Var(A*B)

Var(Residu
al)

Residual 45 647.972350  14.399386

3. How many observations are included in this study?
N-1=2+2+4+45=53 ,s0 N =54.

4. How many full replicates are there?

Let »=number of replicates. Then /N = number of levels of A times number of levels of B times = 3 X 3 X r . Therefore,
9 x r =54, which givesr =6.

5. Write the model equation.
Yijk = 1+ —|—,Bj—|—(0éﬂ)ij + €5 where ¢, j = 1,2,3and k=1,2,...,6
6. Write the hypotheses that can be tested with the F'-statistic information.

Effect A Effect B Effect A*B

Hy:a;=0forallivs. H,: a; #0
for at leastone ¢t =1, 2,3
Hypotheses Hj: o'% =0vs. H,: O'g >0 Hp: ‘73,5 =0vs. H, : O'ZB >0
Note that 32 | a2 is the
non-centrality parameter of
the F'-statistics if H,, is true.

2405.700480
oI ad6196 o 2403880 _ ¢ oggg with 2200 14 685 with 4
with 2 and 4 degrees of 211.446196 14.399386

2 and 4 degrees of freedom and 45 degrees of freedom

F’ Statistic

freedom

This page titled 6.9: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
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6.10: Chapter 6 Summary

Random effects of an ANOVA model, represent measurements arising from a larger population and are assumed to be A/ (,u, o?).
In other words, the levels or groups of the random effect that are observed can be considered as a sample from an original
population. Random effects can also be subject effects. Consequently, in public health, a random effect is referred to as the
subject-specific effect.

As all the levels of a random effect have the same mean, its significance is measured in terms of the variance with
Hy:02=0vs. H,:0%>0 . Note also that any interaction effect involving at least one random effect is also a random effect.
Due to the added variability incurred by each random effect, the variance of the response now will have several components which
are called variance components. In the most basic case, with only one single factor and no fixed effects, this compound variance
of the response will be 012, =02 +02, where o2 is the variance component associated with the random factor. The intra-class
correlation (ICC), defined in terms of the variance components, is a useful indicator of the high or low variability within groups
(or subjects).

Mixed models, as introduced in section 6.7, include both fixed and random effects. Throughout the lesson, we learned how EMS
quantities can be used to determine the correct F'-test to test the hypotheses associated with the effects. EMS quantities can be
thought of as the population counterparts of the Mean sums of squares (MS), which are computable for each source in the ANOVA
table.

This page titled 6.10: Chapter 6 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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CHAPTER OVERVIEW

7: Randomization Design Part |

4b Objectives

Upon completion of this chapter, you should be able to:

1. Understand the importance of randomization design, the second component of experimental design, and how it impacts on
our interpretation of results.

2. Identify any blocking factors and the randomization design used in a study.

3. Use statistical software to obtain the randomization design that assigns the treatment levels to the experimental units
schematically.

4. Gain experience in utilizing statistical software to analyze data obtained from a given experimental design.

Previously in the course, we have referenced how experimental design drives the statistical model to be fitted. Recall that in
Chapter 5, we discussed the two components of the experimental design that accounts for two aspects of a study.

o The treatment design component, which was addressed in Chapters 5 and 6, describes the treatment levels of interest, treatment
type (fixed vs. random), and also the relationship of treatments with each other (crossed vs. nested).

e The randomization design component takes into account the treatment design aspects and also the physical layout of the study
setting, including other influencing factors such as confounding (or blocking) variables.

In our discussions of treatment designs, we looked at experimental data in which there were multiple observations made at the
treatment applications. We referred to these loosely as replicates. In this lesson, we will work formally with these multiple
observations and how they are to be collected. This brings us to the right-hand side of the schematic diagram portraying the
randomization design component:

Experimental Design

Treatment Design Randomization Design

Figure 7.1: Steps of treatment design and randomization design in experimental design.
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As can be seen in the diagram above, the treatment design addresses specific characteristics of the experimental factors under
study. The randomization design addresses how the treatments are assigned to experimental units. Overall, the experimental design
sets the stage in collecting data systematically and also dictates the statistical model to be used and the ANOVA-related
calculations.

7.1: Experimental Unit and Replication

7.2: Completely Randomized Design

7.3: Restriction on Randomization - RCBD

7.4: Blocking in 2 Dimensions - Latin Square

7.5: Try It!

7.6: Chapter 7 Summary

This page titled 7: Randomization Design Part I is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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7.1: Experimental Unit and Replication

An experimental unit is an item (or physical entity) that receives the treatment. Identifying the experimental unit can be a trivial
task in most experiments, but there can be exceptions.

For example...

Consider a situation where the effect of polluted stream water on fish lesions is to be studied. Two aquaria, each with 50 fish,
are used for the study. The water treatment (polluted vs. control) is randomly assigned to each of the aquaria. After 30 days,
the number of lesions from randomly caught 10 fish from each aquarium was counted. The treatment design is a single-factor
design with 2 levels of water treatment, and a one-way ANOVA can be run on the data. But what is the experimental unit?

Going back to our definition, the experimental unit is the entity that receives the treatment. In this case, we have applied a water
treatment to each aquarium. The fish are not the experimental units. In order for individual fish to be experimental units, somehow
the investigators would have to take one fish at a time and apply the treatment independently to each fish. This would be
impractical from a logistics standpoint and was not done. Instead, the water treatment levels were applied to the entire aquarium,
and so the experimental unit is an aquarium with 50 fish.

Now we can determine what constitutes a replication of the experiment. Each time the full set of treatment levels (2 levels in our
example) is applied, we have a complete replication. In the experiment described here, there is only one replication, a situation
often described as an un-replicated study.

The individual fish that were caught and counted for lesions are sampling units. Sampling units are the entities from which the
observations are recorded. Traditionally, to obtain a correct ANOVA, mean values of the sampling units have to be computed for
each experimental unit before the calculation of the treatment SS. Failure to recognize sampling units can result in a serious
problem: pseudo-replication. Pseudo-replication results from treating each sampling unit as if it were an experimental unit and
inflating the error degrees of freedom. By artificially increasing the error df, we reduce the MSE and produce a larger (incorrect)
F-statistic.

This page titled 7.1: Experimental Unit and Replication is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by

Penn State's Department of Statistics.
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7.2: Completely Randomized Design

After identifying the experimental unit and the number of replications that will be used, the next step is to assign the treatments (i.e.
factor levels or factor level combinations) to experimental units.

In a completely randomized design, treatments are assigned to experimental units at random. This is typically done by listing the
treatments and assigning a random number to each.

In the greenhouse experiment discussed in Chapter 1, there was a single factor (fertilizer) with 4 levels (i.e. 4 treatments), six
replications, and a total of 24 experimental units (each unit a potted plant). Suppose the image below is the Greenhouse Floor plan
and bench that was used for the experiment (as viewed from above).

https://stats.libretexts.org/@go/page/33889
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]
Open walkway

Figure 7.2.1: Greenhouse floor plan, showing arrangement of the 24 plants.

We need to be able to randomly assign each of the treatment levels to 6 potted plants. To do this, assign physical position numbers
on the bench for placing the pots.

https://stats.libretexts.org/@go/page/33889
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T
Open walkway

Figure 7.2.2: Greenhouse floor plan, with the plant locations numbered in a grid pattern.

Using Technology

? Minitab Example

Steps in Minitab

In Minitab, this assignment can be done by manually creating two columns: one with each treatment level repeated 6 times
(order not important) and the other with a position number 1 to N, where N is the total number of experimental units to be
used (i.e. N = 24 in this example). The third column will store the treatment assignment.

Cc1-T C2 Cc3 C:
Fert position Fert_ trt
1 F1 1
2 F1 2
3 F1 3
4 F1 4
5 F1 5
6 F1 6
7 F2 7
8 F2 8
9 F2 9
10 F2 10
11 F2 11

Figure 7.2.al: Entering treatments, position, and treatment assignment information in Minitab.

Next, select Calc > Sample from Columns, fill in the dialog box as seen below, and click OK.

https://stats.libretexts.org/@go/page/33889
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[t X

Number of rows to sample: 24

From columns:

Fert

Store samples in:

'Fert_trt'

(J Sample with replacement

Figure 7.2.a2: Minitab Sample from Columns pop-up window.

Be sure to have the "Sample with Replacement” box unchecked so that all treatment levels will be assigned to the same
number of pots, giving rise to a proper completely randomized design for a specified number of replicates.

This will result in a completely random assignment.

https://stats.libretexts.org/@go/page/33889
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C1-T C2 C3-T
Fert position Fert_trt
1 F1 1 F2
2 F1 2 Control
3 F1 3 F2
4 F1 4 F3
5 F1 5 F2
6 F1 6 F2
7 F2 7 Control
8 F2 8 F3
9 F2 9 F3
10 F2 10 F1
" F2 11 F1

Figure 7.2.a3: Minitab spreadsheet showing the random treatment assignment for each plant position.

This assignment can then be used to apply the treatment levels appropriately to pots on the greenhouse bench.

https://stats.libretexts.org/@go/page/33889
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Fertilizer 1

(Blue)

Fertilizer 2

(Red)

Fertilizer 3

(Black)

No Fertilizer/Control
(White)

Open walkway

Figure 7.2.a4: Plants in the greenhouse with their appropriate randomly assigned fertilizer treatment levels.

? SAS Example

Steps in SAS

To make the assignments in SAS we can utilize the SAS surveyselect procedure as below:

proc surveyselect data=greenhouse out=trtassignment outrandom
method=srs

samprate=1;

run;

The output would be as below. In practice, it is recommended to specify a seed to ensure the results are reproducible.

@ 0 e 7.2.8 https://stats.libretexts.org/@go/page/33889
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Obs Fertilizer
1 F3
2 F2
3 Con
4 F2
5 F3
6 Con
7 F2
8 F2
9 F3
10 F1
11 F1
12 F3
13 F2
14 F1
15 F3
16 F3
17 F1
18 Con
19 Con
20 F2
21 Con
22 F1
23 Con
24 F1
? R Example
Steps in R
Completely Randomized Design
To randomly assign treatment levels to each of our plants we can use the following commands:
sample(treatment)
[1] IIF3II IIF2II IIF1II IIF2II IIF3II IIF1II Ilcontrolll I|F2I|
[10] IIF3II IIF2II "COntrol" IIF3II IIF1II IIF1II IIF2II "COnt
[19] "F1" "Control" "F3" "Control" "Control" "F1"
This means that the first experimental unit will get Fertilizer 3, the second experimental unit will get Fertilizer 2, etc.
Randomized Complete Block Design

@ 0 a 7.2.9 https://stats.libretexts.org/@go/page/33889
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Obtain the block design. Load the greenhouse data and obtain the ANOVA table.

To obtain the block design we can use the following commands:

library(blocksdesign)
block_design<-blocks(4,6,6)$Design
obs<-c(1:24)

block<-block_design[,1]

plant<-rep(c(1:4),6)
treatment<-block_design[, 3]
data.frame(cbind(obs, block, plant, treatment))

# obs block plant treatment
# 1 1 1 1 4
# 2 2 1 2 1
# 3 3 1 3 3
# 4 4 1 4 2
# 5 5 2 1 1
# 6 6 2 2 4
# 7 7 2 & &
# 8 8 2 4 2
# 9 9 3 1 3
# 10 10 3] 2 1
# 11 11 3 3 4
# 12 12 & 4 2
# 13 13 4 1 1
# 14 14 4 2 4
# 15 15 4 & 2
# 16 16 4 4 &
# 17 17 ) 1 &
# 18 18 5] 2 2
# 19 19 ) & 1
# 20 20 ) 4 4
# 21 21 6 1 2
# 22 22 6 2 1
# 23 23 6 & 4
# 24 24 6 4 &

To load the greenhouse data and obtain the ANOVA table ( Imer () and aov( ))we use the following commands:

setwd("~/path-to-folder/")

greenhouse_RCBD_data <- read.table("greenhouse_RCBD_data.txt", header=T)
attach(greenhouse_RCBD_data)

library(lmerTest)

library(1lme4)

greenhouse_RCBD_anova<-1lmer (Height ~ Fertilizer + (1 | factor(Block)), greenhouse
anova(greenhouse_RCBD_anova)

#Type III Analysis of Variance Table with Satterthwaites method

# Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

7.2.10 https://stats.libretexts.org/@go/page/33889
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#Fertilizer 251.44 83.813 & 15 162.96 1.144e-11 ***

#---

#Signif. codes: 0 “***’ @.001 ‘**’ 0.01 ‘*" 0.05 ‘. 0.1 * 7 1
greenhouse_RCBD_anoval<-aov(Height~Fertilizer+Error(factor(Block)),greenhouse_RC
summary(greenhouse_RCBD_anoval)

#Error: factor(Block)

# Df Sum Sq Mean Sq F value Pr(>F)

#Residuals 5 53.32 10.66

#Error: Within

# Df Sum Sq Mean Sq F value Pr(>F)
#Fertilizer 3 251.44 83.81 163 1.14e-11 ***
#Residuals 15 7.72 0.51

He -

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 * ' 1

For comparison the ANOVA table for the completely randomized design is given below:

greenhouse_CRD_anova<-aov(Height~Fertilizer, greenhouse_RCBD_data)
summary(greenhouse_CRD_anova)

# Df Sum Sq Mean Sq F value Pr(>F)

#Fertilizer 3 251.44 83.81 27.46 2.71e-07 ***

#Residuals 20 61.03 3.05

Fm = o

#Signif. codes: 0@ “***/ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 ' 7 1
detach(greenhouse_RCBD_data)

This page titled 7.2: Completely Randomized Design is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics.
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7.3: Restriction on Randomization - RCBD

A completely randomized design (CRD) for the greenhouse experiment is reasonable, provided the positions on the bench are
equivalent. In reality, this is rarely the case. In this setting, for example, some micro-environmental variation can be expected due
to the glass wall on one end, and the open walkway at the other end of the bench.

A powerful alternative to the CRD is to restrict the randomization process to form blocks. Blocks, in a physical setting such as in
this example, are usually set up at right angles to suspected gradients in variation.

In a block design, general blocks are formed such that the experimental units are expected to be homogeneous within a block and
heterogeneous between blocks. The number of experimental units within a block is called its block size.

In a randomized complete block design (RCBD), each block is of the same size and is equal to the number of treatments (i.e. factor
levels or factor level combinations). Furthermore, each treatment will be randomly assigned to exactly one experimental unit within
every block. So we think of the data in the greenhouse example in terms of RCBD, we will have 6 blocks each with block size
equal to 4, the number of fertilizer levels.

To establish an RCBD for this data, the assignments of fertilizer levels to the experimental units (the potted plants) have to be done
within each block separately.

Using SAS
To obtain the block design in SAS, we can use the following code:
proc plan ordered ;
factors Block=6 Plant=4;
treatments Fertilizer=4 random;
output out=rcb block
cvals=('Block 1' 'Block 2' 'Block 3' 'Block 4' 'Block 5' 'Block 6');
run;
proc format;
value FertFmt
1 = n Flll
2 — n F 2 n
3 = n F3 n
4 = "Con";
run;
proc print data=rcb;
format Fertilizer FertFmt.;
run;
The output we obtain would be as follows:
Obs Block Plant Fertilizer
1 Block 1 1 F3
2 Block 1 2 F2
3 Block 1 3 Con
4 Block 1 4 F1
5 Block 2 1 F1
6 Block 2 2 F3

https://stats.libretexts.org/@go/page/33890
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Obs

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

Using Minitab

Block

Block 2
Block 2
Block 3
Block 3
Block 3
Block 3
Block 4
Block 4
Block 4
Block 4
Block 5
Block 5
Block 5
Block 5
Block 6
Block 6
Block 6

Block 6

To obtain the design in Minitab, we do the following.

Plant

Fertilizer

F2
Con
F2
Con
F3
F1
F2
F3
F1
Con
F3
F1
Con
F2
Con
F2
F3

F1

For Block 1, manually create two columns: one with each treatment level and the other with a position number 1 to n, where n is
the block size (i.e. n =4 in this example). The third column will store the assignment of fertilizer levels to the experimental units.

—

A WN

C1-T

(Block 1)

C2-T
Fert
F1
F2
F3
Control

Cc3

Position

3

4

Figure 7.3.1: Columns for entering Block 1 data in Minitab.

c4

Assign

Next, select Calc >Sample from Columns > fill in the dialog box as seen below, and click OK.

https://stats.libretexts.org/@go/page/33890
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Number of rows to sample: 4

From columns:

Fert

Store samples in:

Assign

(J sample with replacement

Figure 7.3.2: Minitab Sample from Columns pop-up window.

Here, the number of rows to be specified is our block size (and number of treatment levels), which yields a random assignment
from Block 1.

C1-T C2-T C3 CA4-T
Fert Position Assign
1 (Block 1) F1 1 F1
2 F2 2 Control
3 F3 3 F2
4 Control 4 F3

Figure 7.3.3: Random treatment level assignments for positions in Block 1.

The same process should be repeated for the remaining blocks. The key element is that each treatment level or treatment
combination appears in each block (forming complete blocks), and is assigned at random within each block.

https://stats.libretexts.org/@go/page/33890


https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33890?pdf

LibreTextsm

Fertilizer 1

(Blue)

Fertilizer 2

(Red)

Fertilizer 3

(Black)

No Fertilizer/Control
(White)

Open walkway

Figure 7.3.4: Greenhouse floor plan divided into blocks, with random treatment level assignment to plant positions within each
block.

Blocks are usually treated as random effects, as they would represent the population of all possible blocks. In other words, the
mean comparison among blocks is not of interest. But the variation between blocks has to be incorporated into the model and will
be partitioned out of the Error Mean squares of the CRD, resulting in a smaller MSE for testing hypotheses about treatments.

The statistical model corresponding to the RCBD is similar to the two-factor studies with one observation per cell (i.e. we assume
the two factors do not interact).

Here is Dr. Shumway stepping through this experimental design in the greenhouse.
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Video 7.3.1: Demonstrating RCBD in the greenhouse.

Once we collect the data for this experiment, we can use SAS to analyze the data and obtain the results.

We will consider the greenhouse experiment with one factor of interest (Fertilizer). We also have the identifications for the blocks.
In this example, we consider Fertilizer as a fixed effect (as we are only interested in comparing the 4 fertilizers we chose for the
study) and Block as a random effect.

Therefore the statistical model would be
Yij=u+pi+7+e; (7.3.1)
wherei =1,2,...,6and j=1,2,3,4. p; and ¢;; are independent variables such that p; ~ N (O, o*,%) and €;; ~ N (0, 02) .

Let us read the data into SAS and obtain the output.

data RCBD_oneway;
input block Fert $ Height;

datalines;

1 Control 19.5
2 Control 20.5
3 Control 21

4 Control 21

5 Control 21.5
6 Control 22.5
1 F1 25

2 F1 27.5

3 F1 28

4 F1 28.6

5 F1 30.5

6 F1 32

1 F2 22.5

2 F2 25.2

3 F2 26

4 F2 26.5

https://stats.libretexts.org/@go/page/33890
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5 F2 27
6 F2 28
1 F3 27.5
2 F3 28
3 F3 29.2
4 F3 29.5
5 F3 30
6 F3 31

4

proc summary data=RCBD_oneway;

class block fert;

var height;

output out=outputl mean=mean stderr=se;
run;

proc print data=outputil;

The proc summary output would be as follows. We see that the first line in the table with _ TYPE =0 identification is the
estimated overall mean (i.e. ¥ ). The estimated treatment means (i.e. § ;) are displayed with _TYPE_=1 identification and the
estimated block means are displayed with _ TYPE_ =2 identification. Since we only have one observation per treatment within
each block, we cannot estimate the standard error using the data.

Obs block Fert _TYPE_ _FREQ_ mean se

1 . 0 24 26.1667 0.75238
2 . Control 1 6 21.0000 0.40825
3 . F1 1 6 28.6000 0.99499
4 . F2 1 6 25.8667 0.77531
5 . F3 1 6 29.2000 0.52599
6 1 2 4 23.6250 1.71239
7 2 2 4 25.3000 1.71221
8 3 2 4 26.0500 1.80808
9 4 2 4 26.4000 1.90657
10 5 2 4 27.2500 2.06660
11 6 2 4 28.3750 2.13478
12 1 Control 3 1 19.5000

13 1 F1 3 1 25.0000

14 1 F2 3 1 22.5000

15 1 F3 3 1 27.5000

16 2 Control 3 1 20.5000

17 2 F1 3 1 27.5000

18 2 F2 3 1 25.2000

19 2 F3 3 1 28.0000
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Obs block Fert _TYPE_ _FREQ_ mean se
20 3 Control 3 1 21.0000
21 3 F1 3 1 28.0000
22 3 F2 3 1 26.0000
23 3 F3 3 1 29.2000
24 4 Control 3 1 21.0000
25 4 F1 3 1 28.6000
26 4 F2 3 1 26.5000
27 4 F3 3 1 29.5000
28 5 Control 3 1 21.5000
29 5 F1 3 1 30.5000
30 5 F2 3 1 27.0000
31 5 F3 3 1 30.0000
32 6 Control 3 1 22.5000
33 6 F1 3 1 32.0000
34 6 F2 3 1 28.0000
35 6 F3 3 1 31.0000

To run the model in SAS we can use the following code:

/* RCBD */

proc mixed data=RCBD_oneway method=type3;
class block fert;

model height=fert;

random block;

run;

We obtain the ANOVA table below for the RCBD.

Type 3 Analysis of Variance

Source DF Sum of Mean Square Expected
Squares Mean Square

Error Term Error DF F Value Pr>F

Var(Residua MS(Residua
D)+ Q(Fert) 1)

Resi
VR MS(Residua
block 5 53.318333 10.663667 1) +4 15 20.73 <.0001

)
Var(block)

Fert 3 251.440000 83.813333 15 162.96 <.0001

Residual 15 7 715000 0.514333 Var(Residua

For comparison, let us obtain the ANOVA table for the CRD for the same data. We use the following SAS commands:
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/* CRD for comparison */

proc mixed data=RCBD_oneway method=types3;
class fert;

model height=fert;

run;

The CRD ANOVA table for our data would be as follows:

Type 3 Analysis of Variance

Source DF Sum of Mean Square Expected
Squares Mean Square

Error Term Error DF F Value Pr>F

Var(Residua ~MS(Residua
D)+ QFert) 1)

Var(Residua

Fert 3 251.440000 83.813333 20 27.46 <.0001

Residual 20 61.033333 3.051667

Comparing the two ANOVA tables, we see that the MSE in RCBD has decreased considerably in comparison to the CRD. This
reduction in MSE can be viewed as the partition in SSE for the CRD (61.033) into SSBlock + SSE (53.32 + 7.715, respectively).
The potential reduction in SSE by blocking is offset to some degree by losing degrees of freedom for the blocks. But more often
than not, is worth it in terms of the improvement in the calculated F'-statistic. In our example, we observe that the F'-statistic for
the treatment has increased considerably for RCBD in comparison to CRD. It is reasonable to assume that the result from the
RCBD is more valid than that from the CRD as the MSE value obtained after accounting for the block to block variability is a more
accurate representation of the random error variance.

This page titled 7.3: Restriction on Randomization - RCBD is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Penn State's Department of Statistics.
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7.4: Blocking in 2 Dimensions - Latin Square

The fundamental idea of blocking can be extended to more dimensions. However, the full use of multiple blocking variables in a
complete block design usually requires many experimental units. Latin Square design can be useful when we want to achieve
blocking simultaneously in two directions with a limited number of experimental units.

The limitation is that the Latin Square experimental layout will only be possible if:
number of Row blocks = number of Column blocks = number of treatment levels (7.4.1)

The experimental design process begins with a Standard Latin Square. These have the treatment levels ordered across the first row
and first column. For example, a single factor with three levels (A, B, C) to be blocked in two directions could begin with this
standard 3 x 3 square:

A B C
B C A
C A

To randomize, first randomly permute the order of the rows and produce a new square.

B C A

Then randomly permute the order of the columns to yield the final square for the experimental layout.

A B

This process assures that any row or column will have all treatment levels. To obtain the design in SAS we can use:

proc plan;

factors Row=4 ordered Col=4 ordered / noprint;

treatments Treatment=4 cyclic;

output out=LatinSquare
Row cvals=('RowBlock 1' 'RowBlock 2' 'RowBlock 3' 'RowBlock 4') random
Col cvals=('ColBlock 1' 'ColBlock 2' 'ColBlock 3' 'ColBlock 4') random
Treatment nvals=(1 2 3 4) random;

run;

The ANOVA for the Latin Square is a direct extension of the RCBD with random blocking effects. The SAS random statement
has to be modified accordingly to incorporate both blocking factors and with the assumption of no interaction between them
(because of only one observation for each cell). For example, we could use the following SAS code to estimate the model:

proc mixed data=LatinSquare method=typeS3;
class Row Col Treatment;
model Response = Treatment;
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random Row Col;
run;

Using R

To obtain a Latin Square Design for four treatments we can use the following commands:

library(magic)
latin_square_design<-rlatin(4)

# latin_square_design

# [,11 [,2] [,3] [,4]
# [1,] 3 1 2 4
#[2,] 4 2 1 3
# [3,] 2 4 3 1
# [4,] 1 3 4 2

This page titled 7.4: Blocking in 2 Dimensions - Latin Square is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Penn State's Department of Statistics.
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7.5: Try It!

? Exercise 7.5.1

A poultry experiment was run to investigate the effect of diet and antibiotics on egg production. They evaluated 2 diets of
interest and 2 specific antibiotics that are on the market. The feed and antibiotic were combined and used to fill the feeding
trays in barns. They chose 3 poultry farms at random and randomly assigned the combinations of diet and antibiotic to 4 barns
within each farm. Total egg production by the chickens was recorded after 4 weeks.

a. What is the experimental design (hint: think about the randomization process)?
b. Identify which factors are fixed and which are random.
Show Solution
a) RCBD

b) Fixed factors: Diet and Antibiotic; Random factor: Farms

? Exercise 7.5.2

A commercial farmer is studying the corn yield of two fertilizer types at 2 different temperature levels. He strips his cornfield
into 20 strips. Each fertilizer type and temperature level combination is then assigned to 5 of the randomly chosen strips.

a. What is the Treatment design?
b. What is the Randomization design?
Show Solution
a) 2 x 2 factorial with fertilizer types and temperature levels, each having 2 levels

b) CRD with 5 replicates

? Exercise 7.5.3

An investigator wants to run an experiment in a Latin square design evaluating 5 levels of a treatment (labeled A, B, C, D, and
E) and included the layout in a research proposal that you are reviewing. Identify any problems you see and suggest how to
revise the design.

A B C D E
B C D B A
C D E A B
D E A B Cc
E A B C D

Show Solution

Column 4, row 2, B should be E to satisfy the property that each treatment occurs only once in each row and once in each
column. In addition, the rows and columns need to be independently randomized to produce the actual layout of the Latin
square for the experimental plan.

This page titled 7.5: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of

Statistics.
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7.6: Chapter 7 Summary

This chapter introduced us to Randomization Design, which provides the scheme of how treatment levels can be assigned to
experimental units. The specific designs discussed are CRD, RCBD, and Latin Square Design. An RCBD is employed to account
for a blocking factor, or a nuisance variable, which is not of interest but may have an impact on the response. Likewise, a Latin
square design is helpful in the presence of two such blocking variables. In an RCBD, with no replicates, the interaction between the
treatment and the blocking variable is assumed to be negligible and the Mean Square(MS) value of this interaction serves as the
estimate of the error variance which turns out to be the denominator of the F'-statistic for testing treatment significance. The next
chapter will introduce us to another widely used design called split-plot design.

This page titled 7.6: Chapter 7 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics.
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CHAPTER OVERVIEW

8: Randomization Design Part Il

4b Objectives

Upon completion of this chapter, you should be able to:

1. Recognize multiple experimental units in an experimental design.
2. Understand the structure of split-plot ANOVA.

3. Utilize split-plots administered in RCBD experiments.

4. Utilize split-plots administered in CRD experiments.

5. Extend the split-plot concept to analyze split-split-plot designs.

Sometimes multi-factor experiments use multiple (different) experimental units for the different factors in the experiment. To
visualize this, think of applying multiple treatments in a sequence. The levels of the first factor are applied to experimental units
using specific randomization and then the levels of a second factor are applied to sub-units within the application of the first factor.
In other words, the experimental unit used for the application of the first factor has been split, forming the experimental units for
the application of the second-factor levels.

Split-plot designs accommodate the above scheme in assigning two factors appropriately to their experimental units. They are
extremely common and typically result from logistical restrictions, practicality, or efficiency. Though sometimes split-plots and
their experimental unit set up are difficult to recognize, understanding the correct structure is necessary for the implementation of
ANOVA.

Split-plots occur most commonly in two experimental designs applied for the first factor: the CRD and RCBD. The ANOVA differs
between these two, and this chapter focuses on both types. Split-plots can be extended to accommodate multiple splits by sub-unit
subdivision. For example, a split-split-plot experimental design can be achieved with three stages of randomization for three
treatments when there are three types of experimental units with two sub-divisions.

8.1: Split-Plot Design in RCBD

8.2: Split-Plot Design in CRD

8.3: Split-Split-Plot Design

8.4: Try It!

8.5: Chapter 8 Summary

This page titled 8: Randomization Design Part 11 is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
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8.1: Split-Plot Design in RCBD

Recall the Randomized Complete Block Design (RCBD) we discussed in Chapter 7. In RCBD, general blocks are formed such that
the experimental units are expected to be homogenous within a block and heterogeneous between blocks.

For example. suppose we are studying the effect of irrigation amount (I; and I5) and fertilizer type (A and B) on crop yield. We
have 4 treatments in this experiment. Suppose we want to have at least 2 replicates and have two large lands that can be used for
the experiment. In RCBD, we can split each land into 4 fields and can apply the 4 treatments randomly to each field. Here lands are
blocks and fields are the experimental units.

Land 1 Land 2

(IllA) (121 B) (IllB) (IZIA) (IZIA) (IllB) (12' B) (Ill A)

Figure 8.1.1: Lands divided into 4 fields each, each field assigned one of the 4 random treatments.

In this example, we have assumed that managing levels of irrigation and fertilizer require the same effort. Now suppose varying the
level of irrigation is difficult on a small scale and it makes more sense to apply irrigation levels to larger areas of land.

In such situations, we can divide each land into two large fields (whole plots) and apply irrigation amounts to each field randomly.
And then divide each of these large fields into smaller fields (subplots) and apply fertilizer randomly within the whole plots.

Land 1 Land 2

(1) )

I |
: ® @ @  ® :
I I
I |

Figure 8.1.2: Lands divided into 2 plots for irrigation, with each plot divided into 2 fields for fertilizer treatment.

In this strategy, each land contains two whole plots and irrigation amount is assigned to each whole plot randomly using RCBD
(i.e. lands are treated as blocks and irrigation amount is assigned randomly within each block to the whole plots). Each whole plot
contains two subplots and fertilizer type is assigned to each subplot using RCBD (i.e. whole plots are treated as blocks and
fertilizer type is assigned randomly within each whole plot to the subplots).

When some factors are more difficult to vary than others at the levels of experimental units, it is more efficient to assign more
difficult-to-change factors to larger units (whole plots) and then apply the easier-to-change factor to smaller units (subplots). This
is known as the split-plot design.

As an example (adapted from Hicks, 1964), consider an experiment where an electrical component is subjected to 4 different
temperatures for 3 different amounts of time. If the investigators desire 3 replications for each of the 12 temperature and time
combinations (i.e. 12 treatments), a basic CRD or an RCBD (with a suitable blocking factor that would generate the replicates) will
require as many as 36 attempts of testing.

Instead, the experimentation can be modified as follows to reduce effort and time. Regarding ovens as blocks, 3 ovens can be set to
each of the 4 different temperature settings and then investigators can take out randomly selected components at the 3 different
times of interest.

DO 8.1.1 https://stats.libretexts org/@go/page/33901
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In this setting, temperatures are assigned randomly within each oven (i.e. an oven is treated as a block) and within each
temperature, the baking times are assigned randomly to components. We have two RCBD sub-experiments: whole plot levels
(temperatures) are assigned as RCBD within the oven and subplots levels (baking time) are assigned as RCBD within whole plot
levels.

The data (Bake Time Data) were:

Oven Temperature (°F)

Rep Baking Time (min) 580 600 620 640
5 217 158 229 223
I 10 233 138 186 227
15 175 152 155 156
5 188 126 160 201
I 10 201 130 170 181
15 195 147 161 172
5 162 122 167 182
111 10 170 185 181 201
15 213 180 182 199

It is important to notice that in a split-plot design, randomization is a two-stage process. Levels of one factor (say, factor A) are
randomized over the whole plots within each block, and the levels of the other factor (say, factor B) are randomized over the
subplots within each whole plot. This restriction in randomization results in two different error terms: one appropriate for
comparisons at the whole plot level and one appropriate for comparisons at the subplot level.

The appropriate error for whole plot level in split-plot RCBD is whole plot factor x block interaction. In other words, the
analysis at the whole plot level is essentially of a one-way ANOVA with blocking (i.e. one observation per block-treatment
combination). From the perspective of the whole plot, the subplots are simply subsamples and it is reasonable to average them
when testing the whole plot effects (i.e. factor A effects).

The subplot factor (i.e. factor B) is always compared within the whole plot factor.

Source DF

Blocks r—1

Factor A a—1

Whole plot Error (r—=1)(a—1)
Factor B b—1

Ax B (a—-1)(b—-1)
Subplot Error a(r—1)(b—1)
Total rab—1

The statistical model associated with the split-plot design with whole plots arranged as RCBD is

Yije = p+ai +ve + (y)i + B + (aB)ij + €ij (8.1.1)

where v;, for k=1, ..., r are block effects, o; fori =1,..., a are factor A effects, and 3; for j=1,...,b are factor B effects.
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Using Technology

? SAS Example

Steps in SAS
In SAS, we could specify the model with the following statements:
proc mixed data=BakeTimeData method=type3;
class oven temp time;
model resp=temp time temp*time;
random oven oven*temp;
run;
This will generate the ANOVA table as shown below.
Type 3 Analysis of Variance
Sum of Mean Expected
Source DF Mean Error Term Error DF F Value Pr>F
Squares Square
Square
Var(Residu
al) +3
k- >k
. 3 12494 4164.76851 Var(oven*t MS(oven*t 6 14.09 0.0040
9 emp) + emp)
Q(temp,te
mp*time)
Var(Residu
+ .
time 2 566222222 283411111 ) MS(Residu 16 0.46 0.6418
Q(time,tem  al)
p*time)
Var(Residu
2600.44444 )+ MS(Resi
temp*time g 2000 433.407407 2D  MS(Residu 16 0.70 0.6551
4 Q(temp*ti  al)
me)
Var(Residu
+
1962.72222 al)+3 MS(oven*t
oven 2 981.361111 Var(oven*t 6 3.32 0.1070
2 emp)
emp) + 12
Var(oven)
Var(Residu
1773.94444 1)+ MS(Resi
oven*temp g 7739 295.657407 D "3 S(Residu 16 0.48 0.8162
4 Var(oven*t al)
emp)
Residual 16 993333333 0833333 VAr(Residu
3 al)
The ANOVA table can be rearranged to the following to make it easier to understand the whole plot and subplot analyses.
Source DF Expected Mean Square
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Source DF Expected Mean Square
(Whole Plots)
oven ) zzl{gzls:;(;ual) + 3 Var(block*temp) + 12
)
oven*temp 6 Var(Residual) + 3 Var(oven*temp)
(Subplots)
time 2 Var(Residual) + Q(time, temp*time)
temp*time 6 Var(Residual) + Q(temp*time)
Residual 16 Var(Residual)

Notice that the correct error term for the F'-test of the treatment applied to whole plots is the block x whole plot factor
(assuming blocks are a random effect).

One might wonder about the terms block x subplot factor and block x whole plot factor x subplot factor . With
these terms in the model, we will not be able to retrieve the residual (the error DF will be zero). If repeat observations
are made within the split-plots, then a separate error term can be estimated. However, it is important to keep in mind
that tests of replication effects are not of interest, but are being isolated in the ANOVA to reduce the error variance. As
a result, the model that is wusually run in this design drops out the block x subplot factor  and
block x whole plot factor x subplot factor terms, and combine these interactions with the true error variance to
obtain a working error term.

? R Example

Steps in R

Load the bake time data and obtain the ANOVA table by using the following commands:

setwd("~/path-to-folder/")

baketime_data <- read.table("baketime_data.txt", header=T)

attach(baketime_data)

baketime_anova<-aov(resp ~ factor(temp) + factor(time) + factor(temp):factor(tim
summary(baketime_anova)

#Error: factor(oven)

# Df Sum Sq Mean Sq F value Pr(>F)

#Residuals 2 1963 981.4

#Error: factor(oven):factor(temp)

# Df Sum Sq Mean Sq F value Pr(>F)
#factor(temp) 3 12494 4165 14.09 0.004 **
#Residuals 6 1774 296

Fm = o

#Signif. codes: 0 “***’ @.,001 ‘**/ 0.01 ‘*’ .05 ‘.” 0.1 * ’ 1
#Error: Within
# #Df Sum Sq Mean Sq F value Pr(>F)
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#factor(time) 2 566 283.1 0.456 0.642
#factor(temp):factor(time) 6 2600 433.4 0.698 0.655
#Residuals 16 9933 620.8

detach(baketime_data)

This page titled 8.1: Split-Plot Design in RCBD is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics.
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8.2: Split-Plot Design in CRD

Recall the irrigation amount and fertilizer type example we discussed in the previous section. We had two large lands and managing
the irrigation amount was harder on a smaller scale; we assigned the irrigation amount within each land to whole plots using an
RCBD.

Now suppose in this case, instead of two large lands, we had 4 large fields. Irrigation amount is still a factor that is difficult to
control. In that case, we can assign the irrigation amount randomly using a CRD for the 4 whole plots. Then each whole plot can be

divided into smaller fields (subplots) and we can assign fertilizer type randomly within each whole plot.

(1)

(I2)

(I2)

(4)

(B)

(1)

(B)

(4)

Figure 8.2.1: Large fields assigned irrigation amounts using CBD, with fertilizer type randomly assigned to subplots within each
field.

Within the whole plot, the subplots are always arranged in an RCBD. The difference between split-plot in RCBD and split-plot in
CRD is how the whole plot factor is randomized.

Example:

Consider a study in which the experimenters are interested in two factors: irrigation (Factor A at 2 levels) and seed type (Factor B
at 2 levels), and they are crossed to form a factorial treatment design. The seed treatment can be easily applied at a small scale, but
the irrigation treatment is problematic. Irrigating one plot may influence neighboring plots, and furthermore, the irrigation
equipment is most efficiently used in a large area. As a result, the investigators want to apply the irrigation to a large whole plot and
then split the whole plot into 2 smaller subplots in which they can apply the seed treatment levels.

In the first step, the levels of the irrigation treatment are applied to four experimental (fields) to end up with 2 replications:

Field 1 Field 2 Field 3 Field 4

A2 Al Al A2
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Following that, the fields are split into two subplots and a level of Factor B is randomly applied to subplots within each application
of the Trrigation treatment:

Field 1 Field 2 Field 3 Field 4
A2 B2 Al1B1 A1 B2 A2 B1
A2 B1 A1 B2 Al1B1 A2 B2

In this design, the whole plot treatments (i.e factor A, irrigation) are arranged in a CRD and the subplot treatments (i.e. factor B,
seed type) are arranged within whole plots in an RCBD.

If we carefully think about this, we see that the replicates (i.e. fields) are nested within the whole factor levels. For example, fields
2 and 3 are nested within level A, and fields 1 and 4 are nested within level As. So the variability due to replicates is nested
within the whole factor.

The statistical model for the design is:
Yijk = p+ i + i) + B+ (aB)ij +€ijn (8.2.1)

wherei=1,2,...,a,j=1,2,...,b,and k=1,2,...,r where a is the number of levels in factor A, b is the number of levels in
factor B and r is the number of replicates.

As discussed in section 8.1, from the perspective of whole plots (i.e. Factor A, irrigation), the subplots are simply subsamples and it
is reasonable to average them when testing the whole plot effects. If the values of the subplots within each whole plot are average,
the resulting design is CRD, and the error term in a simple CRD is the replication(whole factor) Therefore, for split-plot in
CRD, the whole plot errors are computationally equivalent to replication(whole factor), but in order to use it, we must explicitly
extract it from the error term and put it in the model.

The ANOVA table, in this case, would look like this:

Source DF Expected Mean Square Error Term
(Whole Plots)

Var(Residual) +
A 1 2Var(Replicate(A)) + Q(A, MS(Replicate(A))

A*B)

i +

Replicate(A) 2 Var(Re51d1'1al)

2Var(Replicate(A))
(Subplots)
B 1 Var(Residual) + Q(B, A*B) MS(Residual)
A*B 1 Var(Residual) + Q(A*B) MS(Residual)
Residual 2 Var(Residual)

Using Technology

SAS Example
In SAS, the code would be:

proc mixed data=example_8_2 method=type3;
class factorA factorB field;

model resp=factorA factorB factorA*factorB;
random field(factorA);

run;
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Minitab Example

In Minitab the "field(FactorA)" term would need to be constructed in the Random/Nest... options box under the STAT > ANOVA
> General Linear Model > Fit the General Linear Model.

R Example

In R use the following code:

anova<-aov(resp ~ factorA + factorB + factorA:factorB + Error(factorA/replicate), data
summary(anova)

This page titled 8.2: Split-Plot Design in CRD is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's

Department of Statistics.
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8.3: Split-Split-Plot Design

The idea of split-plots can easily be extended to multiple splits. In a 3-factor factorial, for example, it is possible to assign Factor A
to whole plots, then Factor B to subplots within the applications of Factor A, and then split the experimental units used for Factor B
into sub-subplots to receive the levels of Factor C.

For a fixed effect factorial treatment design in an RCBD (with blocks, levels of Factor A, levels of Factor B, and levels of Factor
C), the split-split-plot would produce the following table:

Source d.f.
(Whole plots)
Block r—1
Factor A a—1
Whole plot error (r—1)(a—1)
(Subplots)
Factor B b—1
AxB (a—1)(b—1)
Subplot error a(r—1)(b—1)

(Sub-subplots)

Factor C c—1

AxC (a—1)(c—1)

BxC (b-1)(c—1)
AxBxC (a=1)(d—1)(c—1)
Sub-subplot error \(ab(r - 1)(c - 1))
Total (rabc) — 1

The model is specified as we did earlier for the split-plot in RCBD, retaining only the interactions involving replication where they
form denominators for F'-tests for factor effects. For the model above, we would need to include the block, block x A, and block x
A x B terms in the random statement in SAS. In SAS, Block x A x B would automatically include the Block x B effect SS and df.
All other interactions involving replications and factor C would be included in the residual error term. The block % A term is often
referred to as "Error a" (""Whole plot error” in the table), the Block x A x B term as "Error b" ("Subplot error" in the table), and the
residual error as "Error ¢" ("Sub-subplot error" in the table) because of their roles as the denominator in the F'-tests.

This page titled 8.3: Split-Split-Plot Design is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
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8.4: Try It!

? Exercise 8.4.1

Researchers are investigating the effect of storage temperature on bacterial growth for two types of seafood. They set up the
experiment to evaluate 3 storage temperatures. There were 9 storage units that were available, and so they randomly selected 3
storage units to be used for each storage temperature, and both seafood types were stored in each unit. After 2 weeks, bacterial
counts were made. After taking a logarithmic transformation of the counts, they produced the following ANOVA:

Type 3 Analysis of Variance

s . -, Expected
Source DF Surn © S ean Mean
quares quare S

Var(Residua
D+2
Var(unit(tem
temp 2 107.656588  53.828294 p))+
Q(temp,
temp*seafoo
d)
Var(Residua
D+
seafood 1 3.713721 3.713721 Q(seafood,
temp*seafoo
d)
Var(Residua

temp*seafoo )+
2 2.647594 1.323797
d Q(temp*sea

food)
Var(Residua
D+2
Var(unit(tem
P)
Var(Residua
)

unit(temp) 6  44.050650 7.341775

Residual 6 5.590873 0.931812

a) For each factor, indicate whether it is a fixed or random effect.
b) Identify the treatments and describe (in words) the treatment design.
¢) Describe the randomization used.

d) Compute the F'-statistic for the temperature effect in the ANOVA, and determine significance for the effect.

Show Solution
a) temp=fixed, seafood=fixed, storage unit=random

b) Temperature and Seafood, factorial design. Each seafood type is combined with each temperature level in the
experiment.

c) Split-plot in a CRD. Temperature levels were assigned (randomly) to storage units. Then the storage unit set at a given
temperature is split to accommodate each of the two seafood types.
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l d) Fremperature = 53.83/7.342 = 7.3318F syiticar = 5.14, so reject Hy.

? Exercise 8.4.2

Answer the questions based on the following output:
Type 3 Analysis of Variance
S . i Expected
Source DF Surn © S ean Mean
quares quare Square
Var(Residua
)+3
6429.38833 2143.12944 Var(blk*gro
group 3
3 4 up) +
Q(group,gro
up*tech_int)
Var(Residua
1)+
tech_int 2 881.408750 440.704375 Q(tech_int,g
roup*tech_i
nt)
Var(Residua
group*tech_ )+
. 6 207.507917  34.584653
int Q(group*tec
h_int)
Var(Residua
)+3
blk 3 408.985000 136.328333 Var(blk*gro
up) + 12
Var(blk)
Var(Residua
+3
blk*group 9 466.543333 51.838148
Var(blk*gro
up)
Residual 24 595.696667  24.820694 ;)]ar(ReS‘dua
a) For each factor, indicate whether it is a fixed or random effect
b) Identify the treatments and describe (in words) the treatment design.
¢) Describe (in words) the randomization used.
d) Compute the F'-statistic for each effect in the ANOVA, and determine significance (i.e., compare Fiyicuiated t0 Feriticar fOr
each effect).
Show Solution
a) group = fixed, tech_int = fixed, blk = random
b) group and tech_int, crossed for a factorial treatment design
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c) Split-plot in a RCBD, with group as the whole plot treatment and tech_int as the subplot treatment with blk as the
blocking factor.

2143.129444

d) group: F' = =41.3427, Fiticat = 3.86, reject H

51.838148
tech_int: F' = % =17.7555, Fiiticat = 3.40, reject Hy
group X tech_int: F' = %ﬁggz =1.3934, F_ iticat = 2.51, do not reject H
blk: F = %:;28813 =2.6299, F_i1icar = 3.86, do not reject Hy

? Exercise 8.4.3
1. An experimenter wants to compare the yield of three varieties of oats at four different levels of manure. Suppose 6 farmers
agree to participate in the experiment and each farmer will designate 3 fields from their farms for the experiment.
a. What is the treatment design?
b. What is the randomization design?
Show Solution

a) Treatment design: 3 x 4 factorial with oat variety and manure levels as factors having 3 and 4 levels respectively

b) Randomization design: Three oats varieties will be randomly assigned to the 3 fields from each farm using RCBD with
farms as blocks. Four manure levels are then randomized within each field using an RCBD. So the randomization design is
a split-plot in RCBD.

2. In an agricultural setting, an experimenter is applying one of two irrigation methods randomly to 6 plots where all plots are
similar in moisture, soil type, slope, fertility, etc. Each plot is then subdivided into 5 portions and 5 levels of nitrogen fertilizer
are applied randomly to these portions.

a. What is the treatment design?
b. What is the randomization design?
Show Solution

a) Treatment design: 2 x5 factorial with irrigation method and fertilizer levels as factors having 2 and 5 levels
respectively

b) Randomization design: Split-plot in CRD with the whole factor as irrigation method and subplot factor as fertilizer

level

3. A survey was conducted among 100 high schoolers who were potential athletes to learn about their preferences on financial
benefits. The sample consisted of an equal number of male and female students and 3 incentive types were offered: a 20%
tuition reduction for all 4 years; a 50% tuition reduction in the first year, but renewable based on freshman GPA; and full room
and board for all 4 years.

a. What is the treatment design?
b. What is the randomization design?
Show Solution
a) Treatment design: A single factor study with 3 levels; the factor of interest is incentive type

b) Randomization design: RCBD with gender as the blocking factor

This page titled 8.4: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
Statistics.
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8.5: Chapter 8 Summary

In this chapter, we discussed split-plot designs with the special feature of having two types of experimental units: whole plots into
which the whole plot treatments are assigned and the subplots into which the subplot treatments are assigned.

The whole plot assignment can be either according to a CRD or an RCBD, and depending on this design type, the overall design is
called a split-plot in either CRD or RCBD. Note that in either case, the denominator of the F'-statistic for testing the whole plot
factor is not MSE, but equals the MS of replicate(A) and MS of block x A respectively.

This page titled 8.5: Chapter 8 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's

Department of Statistics.
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CHAPTER OVERVIEW

9: ANCOVA Part |

4b Objectives

Upon completion of this chapter, you should be able to:

1. Be familiar with the basics of the General Linear Model (GLM) necessary for ANCOVA implementation.
2. Develop the ANCOVA procedure by extending the ANOVA methodology to include a continuous predictor.
3. Carry out the testing sequences for ANCOVA with equal and unequal slopes.

The analysis of covariance (ANCOVA) procedure is used when the statistical model has both quantitative and qualitative predictors
and is based on the concepts of the General Linear Model (GLM). In ANCOVA, we will combine the concepts applicable to
categorical factors learned so far in this course with the principles and foundations of regression, applicable to continuous
predictors learned in STAT 501.

In this chapter, we will address the classic case of ANCOVA where the ANOVA model is extended to include the linear effect of a
continuous variable, known as the covariate. In the next chapter, we will generalize the ANCOVA model to include the quadratic
and cubic effects of the covariate as well.

You might find it interesting that when SAS first came out they had PROC ANOVA and PROC REGRESSION and that was it.
Then people asked, "What about the case when you have categorical factors and you want to do an ANOVA but now you have this
other variable, a continuous variable, that you can use as a covariate to account for extraneous variability in the response?" So, SAS
came out with PROC GLM, which is the general linear model. With PROC GLM you could take the continuous regression variable
and pop it into the ANOVA model and it runs. Or, conversely, if you are running a regression and you have a categorical predictor
like gender, you could include it into the regression model and it runs. The general linear model handles both the regression and the
categorical variables in the same model. There is no PROC ANCOVA in SAS, but there is PROC MIXED. PROC GLM had
problems when it came to random effects and was effectively replaced by PROC MIXED. The same sort of process can be seen in
Minitab and accounts for the multiple tabs under Stat > ANOVA and Stat > Regression. In SAS PROC MIXED or in Minitab's
General Linear Model, you have the capacity to include covariates and correctly work with random effects. But enough about
history; let's get to this lesson.

Introduction to Analysis of Covariance (ANCOVA)

A "classic" ANOVA tests for differences in mean responses to categorical factor (treatment) levels. When there is heterogeneity in
experimental units, sometimes restrictions on the randomization (blocking) can improve the accuracy of significance testing results.
In some situations, however, the opportunity to construct blocks may not exist, but there may be a continuous variable that may be
causing the heterogeneity in the experimental units. Such sources of extraneous variability are referred to as "covariates", and
historically have been also termed "nuisance" or "concomitant" variables.

Note that an ANCOVA model is formed by including a continuous covariate in an ANOVA model. As the continuous covariate

enters the model as a regression variable, an ANCOVA requires a few additional steps that should be combined with the ANOVA
procedure.

9.1: Role of the Covariate

9.2: ANCOVA in the GLM Setting - The Covariate as a Regression Variable
9.3: Steps in ANCOVA

9.4: Using Technology - Equal Slopes Model

9.5: Using Technology - Unequal Slopes Model

9.6: Chapter 9 Summary

This page titled 9: ANCOVA Part I is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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9.1: Role of the Covariate

To illustrate the role the covariate has in the ANCOVA, let’s look at a hypothetical situation wherein investigators are comparing
the salaries of male vs. female college graduates. A random sample of 5 individuals for each gender is compiled, and a simple one-

way ANOVA is performed:
Males Females
78 80
43 50
103 30
48 20
80 60

Hy: Hmales = Mfemales

? SAS Example

Using SAS
SAS coding for the One-way ANOVA:

data ancova_example;
input gender $ salary;
datalines;

78

43

103

48

80

80

50

30

20

60

= —Hh —h Hh Hh 3 3 3 3 3B

4

proc mixed data=ancova_example method=type3;
class gender;

model salary=gender;

run;

Here is the output we get:

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr>F

gender 1 8 211 F">0.1840

https://stats.libretexts.org/@go/page/33166
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Using Minitab

To perform a one-way ANOVA test in Minitab, you can first open the data (ANCOVA Example Minitab Data) and then
select Stat > ANOVA > One Way...

In the pop-up window that appears, select salary as the Response and gender as the Factor.

One-Way Analysis of Variance X

Response data are in one column for all factor levels

Response: | salary

Factor gender

Options... Comparisons... Graphs...
Results... Storage...
= -

Figure 9.1.1: Minitab One-Way Analysis of Variance window
Click OK, and the output is as follows.

Analysis of Variance

Source DF SS SS F-Value P-Value
gender 1 1254 1254 2.11 0.184
Error 8 4745 593

Total 9 6000

Model Summary
S R-sq R-sq(adj) R-sq(pred)

24.3547 20.91% 11.02% 0.00%

? R Example

Using R
Tasks:

o Load the ANCOVA example data.
¢ Obtain the ANOVA table.
o Plot the data.

1. Load the ANCOVA example data and obtain the ANOVA table by using the following commands:

setwd("~/path-to-folder/")

ancova_example_data <- read.table("ancova_example.txt", header=T)
attach(ancova_example_data)

ancova<-aov(salary ~ gender,ancova_example_data)

summary(ancova)
# Df Sum Sq Mean Sq F value Pr(>F)
#gender 1 1254 1254 .4 2.115 0.184

#Residuals 8 4745 593.1

https://stats.libretexts.org/@go/page/33166
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2. Plot for the data, salary by gender, by using the following commands:

library(ggplot2)

myplot<-ggplot(ancova_example_data, aes(x = gender, y = salary)) + geom_point()
myplot + theme_bw() + theme(panel.border = element_blank(), panel.grid.major = e
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))

gender

Figure 9.1.2: Gender and salary plot

3. Plot for the data, salary vs years, by using the following commands:

plot(years, salary, xlab="Years after graduation", ylab="Salary(Thousands)", pch=2
abline(lm(salary~years,data=ancova_example_data))
detach(ancova_example_data)

100
1

Salary(Thousands)
80
L

1 2 3 4 E

Years after graduation
Figure 9.1.3: Plot of salary vs years
Because the p-value > o (=0.05), they can't reject the H.

A plot of the data shows the situation:
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Salary in Thousands]

Gender

Figure 9.1.4: Plot of salary vs gender

However, it is reasonable to assume that the length of time since graduation from college is also likely to influence one's
income. So more appropriately, the duration since graduation, a continuous variable, should be also included in the analysis,
and the required data is shown below.

Females Males
Salary years Salary years
80 5 78 3
50 3 43 1
30 2 103 5
20 1 48 2
60 4 80 4
120
100 *
80
(Thiaulsa;:ds} 60
40
20

0

0 1 2 3 4 5 6

Years after Graduation

Figure 9.1.5: Plot of salary vs years since graduation

The plot above indicates an upward linear trend between salary and the number of years since graduation, which could be a
marker for experience and/or postgraduate education. The fundamental idea of including a covariate is to take this trend
into account and to "control" it effectively. In other words, including the covariate in the ANOVA will make the comparison
between Males and Females after accounting for the covariate.

This page titled 9.1: Role of the Covariate is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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9.2: ANCOVA in the GLM Setting - The Covariate as a Regression Variable

In this section, we will develop the statistical ANCOVA, which by definition is a general linear model that includes both ANOVA
(categorical) predictors and regression (continuous) predictors. The simple linear regression model is:

Y, =060+ 51X +e (9.2.1)
where §y and B; are the intercept and the slope of the line, respectively. The significance of a regression is equivalent to testing
Hy: B, =0 vs Hy: 81 #0 using the F statistic: %

MSE is the mean squared error. In this case of a simple linear regression, this test is equivalent to a t-test.

where MS(Regr) is the mean sum of squares for regression and

Now, in adding the regression variable to our one-way ANOVA model, we can envision a notational problem. In the balanced one-
way ANOVA, we have the grand mean (1), but now we also have the intercept f;.

To get around this, we can use

X" =X;—-X (9.2.2)
and get the following as an expression of our covariance model:
Yy Z/J,-i-Ti—l—’yX*-FGij (9.2.3)

Note that the above model fits into the general linear model (GLM) and the Type III (model fit) sums of squares for the treatment
levels in this model are being corrected (or adjusted) for the regression relationship. This has the effect of evaluating the treatment
levels "on the same playing field", that is, comparing the means of the treatment levels at the mean value of the covariate. This
process effectively removes the variation due to the covariate that may otherwise be attributed to treatment level differences.

This page titled 9.2: ANCOVA in the GLM Setting - The Covariate as a Regression Variable is shared under a CC BY-NC 4.0 license and was
authored, remixed, and/or curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the
LibreTexts platform.
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9.3: Steps in ANCOVA

First, we need to confirm that for at least one of the treatment groups there is a significant regression relationship with the
covariate. Otherwise, including the covariate in the model won't improve the estimation of treatment means.

Then, we need to make sure that the regression relationship of the response with the covariate has the same slope for each treatment
group. Graphically, this means that the regression line at each factor level has the same slope and therefore the lines are all parallel.
Depending on the outcome of the test for equal slopes, we have two alternative ways to finish up the ANCOVA:

1. Fit a common slope model and adjust the treatment SS for the presence of the covariate
2. Evaluate the differences in means at least three levels of the covariate

These steps are illustrated in the following two sections and are diagrammed below:

Step 1: Are the

regression slopes all

No equal to 0?7

Yes

4

Step 2: Are the Stop! o
The analysis is just

an ANOVA

regression slopes
all equal?

A4 A 4

Step 3 (different slopes): If
slopes differ significantly, then
individual regressions for each

level of the treatment are
reported. LSmeans are
compared at 3 points along the
covariate.

Step 3 (equal slopes): If slopes
differ not significantly, generate a
common slope and use
LSmeans to compare responses
at a common (mean) value of the
covariate.

Figure 9.3.1: Flowchart for the ANCOVA

The figure above is presented as a guideline and does require some subjective judgment. Small sample sizes, for example, may
result in none of the individual regressions in step 1 being statistically significant. Yet the inclusion of the covariate in the
model may still be advantageous, as pooling the data will increase the number of observations when fitting the joint model.
Exploratory data analysis and regression diagnostics also will be useful.

This page titled 9.3: Steps in ANCOVA is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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9.4: Using Technology - Equal Slopes Model
Using Technology

? SAS Example

Using our Salary example using the data in the table below, we can run through the steps for the ANCOVA.

Females Males

Salary Years Salary Years
80 5 78 3

50 3 43 1

30 2 103 5

20 1 48 2

60 4 80 4

Steps in SAS

Step 1: Are all regression slopes = 0?
A simple linear regression can be run for each treatment group, Males and Females.

Running these procedures using statistical software we get the following:
Males
Use the following SAS code:

data equal_slopes;

input gender $ salary years;
datalines;

78 3

43 1

103 5

48
80
80
50
30
20
60

= = h H Hh 3 3 3 3 =3
A RPN W OO BN

7

proc reg data=equal_slopes;
where gender='m';

model salary=years;

title 'Males';

run; quit;

And here is the output that you get:
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The REG Procedure
Model:: MODEL1
Dependent Variable: salary

Number of Observations Read 5

Number of Observations Used 5

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr>F
FII 1 :ll
Vafi... Model 1 2310.40000 2310.40000 44.78 class
">0.0068
vari... Error 3 154.80000 51.60000 F" class=" ">
Vari... Corrected Total 4 2465.20000
Females

Use the following SAS code:

data equal_slopes;

input gender $ salary years;
datalines;

78 3

43 1

103 5

48
80
80
50
30
20
60

= = h H Hh 3 3 3 3 =3
A RPN W OO BN

proc reg data=equal_slopes;
where gender='f";

model salary=years;

title 'Females';

run; quit;

And here is the output for this run:

The REG Procedure
Model:: MODEL1
Dependent Variable: salary

Number of Observations Read 5

Number of Observations Used 5
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x|

or

C...

C...

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr>F
FII 1 :Il
Model 1 2250.00000 2250.00000 225.00 cass
">0.0006
Error 3 30.00000 10.00000 F" class="">
Corrected Total 4 2280.00000 E" class=" ">

In both cases, the simple linear regressions are significant, so the slopes are not = 0.
Step 2: Are the slopes equal?

We can test for this using our statistical software.

In SAS we now use proc mixed and include the covariate in the model.

We will also include a "treatment X covariate" interaction term and the significance of this term answers our question. If the
slopes differ significantly among treatment levels, the interaction p-value will be < 0.05.

If the slopes differ significantly among treatment levels, the interaction p-value will be < 0.05.

data equal_slopes;

input gender $ salary years;
datalines;

78 3

43 1

103 5

48
80
80
50
30
20
60

= —h h Hh Hh 3 3 3 3 =3
A RPN WO BN

proc mixed data=equal_slopes;

class gender;

model salary = gender years gender*years;
run;

In SAS, we specify the treatment in the class statement, indicating that these are categorical levels. By NOT including
the covariate in the class statement, it will be treated as a continuous variable for regression in the model statement.

The Mixed Procedure
Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr>F
years 1 6 148.06 F" class=" "><.0001
gender 1 6 7.01 F" class=" ">0.0381
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o

C...

years*gender 1 6 0.01

F" class="">0.9384

So here we see that the slopes are equal and in a plot of the regressions, we see that the lines are parallel.

120

100 y=15.2x+24.8

80 ™

Salary

(Thousands) 80

#Females

40 Wmales

20

0 |
o 1 2 3 4 5 3

Years after Graduation
Figure 9.4.al: Parallel lines of best fit
To obtain the plot in SAS, we can use the following SAS code:

SAS code:

ods graphics on;

proc sgplot data=equal_slopes;
styleattrs datalinepatterns=(solid);
reg y=salary x=years / group=gender;
run;

Step 3: Fit an Equal Slopes Model

We can now proceed to fit an Equal Slopes model by removing the interaction term. Again, we will use our statistical

software SAS.

data equal_slopes;

input gender $ salary years;
datalines;

78 3

43 1

103 5

48
80
80
50
30
20
60

= —h —+h Hh Hh 3 3 3 3 3B
A RPN WO BN

proc mixed data=equal_slopes;

class gender;

model salary = gender years;

1smeans gender / pdiff adjust=tukey;

/* Tukey unnecessary with only two treatment levels */
title 'Equal Slopes Model';

run;
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We obtain the following results:

The Mixed Procedure
Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr>F
>r@ic... years 1 7 172.55 F" class=" "><.0001
>r@c... gender 1 7 47.46 F" class=" ">0.0002

Least Squares Means

Effect gender Estimate Standard Error  DF t Value Pr> |t
" l =ll ll>
esl.. gender f 48.0000 2.2991 7 20.88 " class
<.0001
" 1 =ll ll>
esl.. gender m 70.4000 2.2991 7 30.62 " class
<.0001

In SAS, the model statement automatically creates an intercept, and so the ANCOVA model is technically over-
parameterized. To get the slopes and intercepts for the covariate directly, we have to re-parameterize the model. This entails
suppressing the intercept (noint ), and then specifying that we want the solutions, ( Solution ), to the model. Here is
what the SAS code looks like for this:

data equal_slopes;

input gender $ salary years;
datalines;

78 3

43 1

103 5

48
80
80
50
30
20
60

= = —h Hh Hh 3 3 3 3 3
A RPN WO BN

4

proc mixed data=equal_slopes;

class gender;

model salary = gender years / noint solution;
ods select SolutionF;

title 'Equal Slopes Model';

run;

Here is the output:

Solution for Fixed Effects

Effect gender Estimate Standard Error DF t Value Pr>|t|
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Solution for Fixed Effects [t]" class="
Fix... _gender f 2.7000 4.1447 7 0.65 s 55
Effect gender Estimate Standard Error  DF t Value Pr(;‘?t:?
fgtclass="
Fix... gender m 25.1000 4.1447 7 6.06 158
">0.0005
Bl gender £ 250000 41493 7 0554 " elags=" >
’ ' ) 2008356
F t|" class="

d 25,1000 4.1447 . 7 6.06 .
1 the Tirst section OF the output above is reported a separate intercept for each gender, the ‘(])iﬁstlmate’ value'fey.@a0bh gender,

and a common slope for both genders, labeled “Years’. " i
t|" class=" ">

o This, the estimated regression equatllg)ﬁlg)oroFemales islg')1 7 + 15.1(§'ears) , and for M31&d it is y = 254050(Years).
To this point in this analysis, we can see that 'gender' is now significant. By removing the impact of the covariate, we went
from

Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value Pr>F
of ... gender 1 8 2.11 F" class=" ">0.1840

(without covariate consideration)

to

gender 1 7 47.46 0.0002

(adjusting for the covariate)

? Minitab Example

Using our Salary example and the data in the table below, we can run through the steps for the ANCOVA. On this page, we
will go through the steps using Minitab.

Females Males

Salary Years Salary Years
80 5 78 3

50 3 43 1

30 2 103 5

20 1 48 2

60 4 80 4

Steps in Minitab

Step 1: Are all regression slopes = 0?

A simple linear regression can be run for each treatment group, Males and Females. To perform regression analysis on each
gender group in Minitab, we will have to subdivide the salary data manually and separately, saving the male data into the
Male Salary Dataset and the female data into the Female Salary dataset.

Running these procedures using statistical software we get the following:

Males

Open the Male dataset in the Minitab project file (Male Salary Dataset).
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Then, from the menu bar, select Stat > Regression > Regression >Fit Regression Model

In the pop-up window, select salary into Response and years into Predictors as shown below.

Continuous pradictors:

years

Categonical pradictors:

Modsl, Optians. Coding. Stopwrse.

Validation. Graphs... Results.. Starage...

b conce
Figure 9.4.b1: Minitab Regressions pop-up window

Click OK, and Minitab will output the following.

Regression Equation: salary = 24.8 + 15.2 years

Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant 24.80 7.53 3.29 0.046
years 15.20 2.27 6.69 0.007 1.00

Model Summary

S R-sq R-sq (adj) R-sq (pred)

7.18331 R-5q=93.7% 91.6% 85.94%

Analysis of Variance

Source DF SS MS F-Value P-Value
Regression 1 23104 2310.40 44.78 0.007
years 1 2310.4 2310.40 44.78 0.007
Residual Error 3 154.8 51.6
Total 4 2465.2

Females

Open Minitab dataset Female Salary Dataset. Follow the same procedure as was done for the Male dataset and Minitab
will output the following:

Regression Equation: salary = 3.00 + 15.00 years

Coefficients
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Term
Constant

years

Model Summary

S

3.16228

Source
Regression
years

Residual Error

Total

be < 0.05.

Coef
3.00

15.00

R-sq

98.68%

Analysis of Variance

DF

1
1

3

Step 2: Are the slopes equal?

SE Coef
3.32

1.00

SS
2250.0
2250.0
30.0

2280.0

T-Value P-Value VIF
0.90 0.432

15.00 0.001 1.00
R-sq (adj) R-sq (pred)
98.25% 95.92%

MS F-Value P-Value
2250.0 225.00 0.001
2250.0 225.00 0.001
10.0

In both cases, the simple linear regressions are significant, so the slopes are not = 0.

General Lingar Model b4

Help

Responses:

salary

Factors:

gendsr

Covariates:
Random/Nest. Mode!... Oplions. Coding.
Stepwiae... Graphs... Results... Storage...
xm -
Figure \(\
Pagelndex
{b2}\): Minitab

GLM
pop-up selections

We can test for this using our statistical software. In Minitab, we must now use GLM (general linear model) and be sure to
include the covariate in the model. We will also include a "treatment x covariate" interaction term and the significance of
this term is what answers our question. If the slopes differ significantly among treatment levels, the interaction p-value will

First, open the dataset in the Minitab project file Salary Dataset. Then, from the menu select Stat > ANOVA >
General Linear Model >Fit General Linear Model

In the dialog box, select salary into Responses, gender into Factors, and years into Covariates.
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To add the interaction term, first click Model.... Then, use the shift key to highlight gender and years, and click Add. Click
OK, then OK again, and Minitab will display the following output.

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
year 1 4560.20 4560.20 148.06 0.000
gender 1 216.02 216.02 7.01 0.038
years*gender 1 0.20 0.20 0.01 0.938
Error 6 184.80 30.80

Total 9 5999.60

It is clear the interaction term is not significant. This suggests the slopes are equal. In a plot of the regressions, we can also
see that the lines are parallel.

120

100 y=15.2x+24.8

80

Salary

(Thousands) *Females

40 W Males

20

Years after Graduation
Figure 9.4.b3: Parallel lines of best fit

Step 3: Fit an Equal Slopes Model

We can now proceed to fit an Equal Slopes model by removing the interaction term. This can be easily accomplished by
starting again with STAT > ANOVA > General Linear Model >Fit General Linear Model

General Linear Model: Model X

| Factors and covariates: Add terms using selected factors, covariates, and model terms:
years Interactions through order: 2 v
gender
Terms through order: 2 v Add
Cross factors, covariates, and terms in the model Add

Terms in the model: Dela@ t

years
gender
years*gender

Hob KEm -
Figure 9.4.b4: Removing the years*gender term from the model
Click OK, then OK again, and Minitab will display the following output.

Analysis of Variance
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Source DF Adj SS Adj MS F-Value P-Value
year 1 4560.20 4560.20 172.55 0.000
gender 1 1254.4 1254.40 47.46 0.000
Error 7 185.0 26.43

Total 9 5999.6

To generate the mean comparisons select STAT > ANOVA > General Linear Model > Comparisons... and

fill in the dialog box as seen below.

FResponse:  salary v
Type of comparison:  Pairwise v

Method:
Tukey "] Fisher

Banferroni [ sidak

Choose terms for comparisons:

gender

Options... Graphs... Results...

Figure 9.4.b5: Comparisons window selections
Click OK and Minitab will produce the following output.
Comparison of salary
Tukey Pairwise Comparisons: gender

Grouping information Using the Tukey Method and 95% Confidence

gender N

Mean Grouping
Male 5 70.4 A
gender 5 48.0 B

Means that do not share a letter are significantly different.

? R Example

Steps for the ANCOVA for the Salary example in R:

¢ Run a simple linear model for each treatment group.
o Testing whether the slopes are equal.

o Plot the regression lines.

« Fit an equal slopes model.

Steps in R

1. Run a simple linear model for each treatment group (males and females) by using the following commands:
Males
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males_regression <- lm(salary~years,data=subset(equal_slopes_data,gender=="m"))
anova(males_regression)

#Analysis of Variance Table

#Response: salary

# Df Sum Sq Mean Sq F value Pr(>F)
#years 1 2310.4 2310.4 44.775 0.006809 **
#Residuals 3 154.8 51.6

#He- -

#Signif. codes: 0@ “***/ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 ' 7 1
#summary(males_regression)$coefficients

# Estimate Std. Error t value Pr(>|t|)

#(Intercept) 24.8 7.533923 3.291778 0.046016514

#years 15.2 2.271563 6.691427 (.006808538
Females

females_regression <- 1lm(salary~years,data=subset(equal_slopes_data,gender=="f")
anova(females_regression)

#Analysis of Variance Table

#Response: salary

# Df Sum Sq Mean Sq F value Pr(>F)
#years 1 2250 2250 225 0.0006431 ***
#Residuals 3 30 10

He -

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.7 0.1 * 7 1
# summary(females_regression)$coefficients

# Estimate Std. Error t value Pr(>|t]|)
#(Intercept) & 3.316625 0.904534 0.4323889978
#years 15 1.000000 15.000000 0.0006431193

2. Test whether the slopes are equal by using the following commands:

ancova_model<-1lm(salary ~ gender + years + gender:years,equal_slopes_data)
anova(ancova_model)

Analysis of Variance Table

Response: salary

Df Sum Sq Mean Sq F value Pr(>F)
gender 1 1254.4 1254.4 40.7273 0.0006961 ***
years 1 4560.2 4560.2 148.0584 1.874e-05 ***
gender:years 1 0.2 0.2 0.0065 0.9383948
Residuals 6 184.8 30.8

Signif. codes: 0O ‘***’ @9.001 ‘**’ 0.01 ‘*’ 0.05 ‘." 0.2 / " 1

With a p-value of 0.9383948 in the interaction term ( gender *years ), we can conclude that the slopes are equal.

3. Plot the regression line for males and females by using the following commands:
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plot(years,salary, xlab="Years after graduation", ylab="Salary(Thousands)", pch=2
abline(males_regression)

abline(females_regression)

text(locator (1), "y=15.2x+24.8",col="red")

text(locator (1), "y=15x+3",col="blue")

100
I

y=15.2x+24.8

80
I

y=15x+3

Salary(Thousands)
60
|
<

20
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&

T T T T T
1 2 3 4 5

Years after graduation
Figure 9.4.c1: Regression lines for male and female data

4. Fit an equal slopes model by using the following commands:

equal_slopes_model<-1lm(salary ~ gender + years,equal_slopes_data)
anova(equal_slopes_model)

#Analysis of Variance Table

#Response: salary

# Df Sum Sq Mean Sq F value Pr(>F)
#gender 1 1254.4 1254.4 47.464 0.0002335 ***
#years 1 4560.2 4560.2 172.548 3.458e-06 ***
#Residuals 7 185.0 26.4

H#H===

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*' 0.65 ‘." 0.1 ‘ " 1

We can see that gender is significant now. To estimate the two regression lines, we need the following output:

summary(equal_slopes_model)$coefficients

#Coefficients:

# Estimate Std. Error t value Pr(>|t])
#(Intercept) 2.700 4.145 0.651 0.535560
#genderm 22.400 3.251 6.889 0.000234
#years 15.100 1.150 13.136 3.46e-06

detach(equal_slopes_data)

The estimate for the years (15.1) is the slope of the models. The intercept for females is 2.7 and the intercept for males is
2.7+22.4=25.1

Thus, the estimated regression equation for females is y = 15.1x + 2.7 and for males it's y = 15.1z +25.1

This page titled 9.4: Using Technology - Equal Slopes Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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9.5: Using Technology - Unequal Slopes Model

? SAS Example

If the data collected in the example study were instead as follows:

Females Males

Salary Years Salary Years
80 5 42 1

50 3 112 4

30 2 92 3

20 1 62 2

60 4 142 5

We would see in Step 2 of the ANCOVA that we do have a significant treatment x covariate interaction.

Steps for ANCOVA

Using this SAS program with the new data shown below.

data unequal_slopes;

input gender $ salary years;
datalines;

42 1

112 4

92 3

62 2

142 5

80
50
30
20
60

= = h H Hh 3 3 3 3 =3

A RPN WO

7

proc mixed data=unequal_slopes;

class gender;

model salary=gender years gender*years;

title 'Covariance Test for Equal Slopes';

/*Note that we found a significant years*gender interaction*/
/*so we add the lsmeans for comparisons*/

/*With 2 treatments levels we omitted the Tukey adjustment*/
lsmeans gender/pdiff at years=1;

lsmeans gender/pdiff at years=3;

lsmeans gender/pdiff at years=5;

run;

We get the following output:

https://stats.libretexts.org/@go/page/33170
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Type 3 Test of Fixed Effects

Effect Num DF De DF F Value Pr>F
offF... years 1 6 800.00 F"><.0001
of F... gender 1 6 6.55 F">0.0430
offF... years*gender 1 6 50.00 F">0.0004

Generating Covariate Regression Slopes and Intercepts

data unequal_slopes;

input gender $ salary years;
datalines;

42 1

112 4

92 3

62 2

142 5

80
50
30
20
60

= —h h Hh Hh 3 3 3 3 =3

A RPN WO

7

proc mixed data=unequal_slopes;

class gender;

model salary=gender years gender*years / noint solution;
ods select SolutionF;

title 'Reparmeterized Model';

run;
Output:
Solution for Fixed Effects
Effect gender Estimate  Standard Error DF t Value Pr> [f|
F gender f 3.0000 3.3166 6 0.90 [t|">0.4006
F gender m 15.0000 3.3166 6 4.52 [t|">0.0040
F years 25.0000 1.0000 6 25.00 [t|"><.0001
F years*gender f -10.0000 1.4142 6 -7.07 |t|">0.0004
F years*gender m 0 . . . [t]">.

Here the intercepts are the Estimates for effects labeled "gender" and the slopes are the Estimates for the effect labeled
"years*gender". Thus, the regression equations for this unequal slopes model are:

Females gy =3.0+15(Years) (9.5.1)
Males gy =15+ 25(Years) (9.5.2)

The slopes of the regression lines differ significantly and are not parallel:

https://stats.libretexts.org/@go/page/33170
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And here is the output:

Years after Graduation

Figure 9.5.a1: Non-parallel regression lines of salary vs years since graduation

Differences of Least Squares Means

In this case, we see a significant difference at each level

points along the covariate axis.

?

Minitab Example

Steps in Minitab

years.
To do this, open the Minitab dataset Salary-new Data.
Go to Stat > ANOVA > General Linear model

Analysis of Variance

Source DF Adj SS
years 1 8000.0
gender 1 65.5
years*gender 1 500.0
Error 6 60.0
Total 9 12970.0

Standard

Effect gender _gender years Estimate DF t Value Pr>|t|
Error

gender f m 1.00 -22.000 3.4641 6 -6.35  |t]">0.0007

gender f m 3.00 -42.000 2.0000 6 -21.00 [f|"><.0001

gender f m 5.00 -62.000 3.4641 6 -17.90  |t|"><.0001

of the covariate specified in the lsmeans statement. The

magnitude of the difference between males and females differs (giving rise to the interaction significance). In more realistic
situations, a significant treatment x covariate interaction often results in significant treatment level differences at certain

When we re-run the program with the new dataset Salary-new Data, we find a significant interaction between gender and

> Fit General Linear Model and follow the same

sequence of steps as in the previous section. In Step 2, Minitab will display the following output.

Adj MS F-Value P-Value
8000.0 800.00 0.000
65.45 6.55 0.043
500.0 50.00 0.000
10.00

It is clear the interaction term is significant and should not be removed. This suggests the slopes are not equal. Thus, the
magnitude of the difference between males and females differs (giving rise to the interaction significance).

https://stats.libretexts.org/@go/page/33170
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Steps:

« Fit an unequal slopes model.
o Plot the regression lines.

Steps in R

1. Fit an unequal slopes model by using the following commands:

setwd("~/path-to-folder/")

unequal_slopes_data <- read.table("unequal_slopes.txt", header=T)
attach(unequal_slopes_data)

unequal_slopes_model<-1lm(salary ~ gender + years + gender:years,unequal_slopes_d
anova(unequal_slopes_model)

#Analysis of Variance Table

#Response: salary

# Df Sum Sq Mean Sq F value Pr(>F)
#gender 1 4410 4410 441 7.596e-07 ***
#years 1 8000 8000 800 1.293e-07 ***
#gender:years 1 500 500 50 0.0004009 ***
#Residuals 6 60 10

H---

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.7 0.1 * 7 1

With a p-value of 0.0004009 in the interaction term ( gender *years ), we can conclude that the slopes are unequal. To
estimate the two regression lines, we need the following output:

#summary (unequal_slopes_model)$coefficients

# Estimate Std. Error t value Pr(>|t]|)
#(Intercept) 3 3.316625 0.904534 4.005719e-01
#genderm 12 4.690416 2.558409 4.300074e-02
#years 15 1.000000 15.000000 5.530240e-06
#genderm:years 10 1.414214 7.071068 4.008775e-04

Here the intercept for females is the estimate for intercept and the intercept for males is the summation of the
estimates intercept + genderm (note the letter m after gender). The slope for females is the estimate for years
and the slope for males is the summation of the estimates years + genderm: years (note the letter m after
gender). Thus, the regression equations for the unequal slopes model are: y =3 4 15z for females and y = 15 + 25z for
males.

2. Plot the regression lines by using the following commands:

males_regression <- lm(salary~years,data=subset(unequal_slopes_data, gender=="m"
females_regression <- 1lm(salary~years,data=subset(unequal_slopes_data, gender=="f
plot(years, salary, xlab="Years after graduation", ylab="Salary(Thousands)", pch=2
abline(males_regression)

abline(females_regression)

text(locator(1), "y=25x+15",col="red")
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text(locator (1), "y=15x+3",col="blue")
detach(unequal_slopes_data)
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Figure 9.5.c1: Regression line plot in R

This page titled 9.5: Using Technology - Unequal Slopes Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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9.6: Chapter 9 Summary

This chapter introduced us to ANCOVA methodology, which accommodates both continuous and categorical predictors. The model
discussed in this chapter has one categorical factor and only the linear effect of one single covariate, the continuous predictor. We
noted that the fitted linear relationship between the response and the covariate results in a straight line for each factor level and the
ANCOVA procedure then depends on the condition of equal slopes. One advantage of ANCOVA is the ability to examine the
differences among the factor levels after adjusting for the impact of the covariate on the response.

The salary data comparing males and females after accounting for their years after college illustrated how software such as SAS
and Minitab can be utilized in analyzing data using the ANCOVA procedure. In the next chapter, the ANCOVA topic will be
extended to include up to a cubic polynomial as the regression model of the response vs. covariate.

This page titled 9.6: Chapter 9 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's

Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

10: ANCOVA Part Il

4b Objectives

Upon completion of this chapter, you should be able to:

e Use ANCOVA to analyze experiments that require polynomial modeling for quantitative (numerical) predictors.
o Test hypotheses for treatment effects on polynomial coefficients.

In this chapter, we will extend our work with ANCOVA to model quantitative predictors with higher-order polynomials by utilizing
orthogonal polynomial coding. Fitting a polynomial to express the impact of the quantitative predictor on the response is also called
trend analysis and helps to evaluate the separate contributions of linear and nonlinear components of the polynomial. The examples
discussed will illustrate how software can be used to fit higher-order polynomials within an ANCOVA model.

10.1: ANCOVA with Quantitative Factor Levels
10.2: Quantitative Predictors - Orthogonal Polynomials
10.3: Chapter 10 Summary

This page titled 10: ANCOVA Part 1I is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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10.1: ANCOVA with Quantitative Factor Levels

An Extended Overview of ANCOVA

Designed experiments often contain treatment levels that have been set with increasing numerical values. For example, a chemical
process may be hypothesized to vary by two factors: the Reagent type (A or B), and temperature. So the researchers conducted an
experiment that investigates a response at 40, 50, 60, 70, and 80 degrees (Fahrenheit) for each of the Reagent types.

You can find the data at QuantFactorData.csv.

If temperature is considered as a categorical factor, we can proceed as usual with a 2 x 5 factorial ANOVA to evaluate the Null

Hypotheses:
Hy: pua=pg (10.1.1)
Hy @ pao = pso = peo = p70 = Bso (10.1.2)
and
Hj : no interaction (10.1.3)

Although the above hypotheses achieve the goal of comparing response means for the process carried out at different temperatures,
no conclusion can be made about the trend of the response as the temperature is increased.

In general, the trend effects of a continuous predictor are modeled using a polynomial where its non-constant terms represent the
different trends such as linear, quadratic, and cubic effects. These non-constant terms in the polynomial are called trend terms. The
statistical significance of these trend terms can also be tested in an ANCOVA setting by adding columns representing the trend
terms and their interaction effects with the categorical factor into the design matrix (X) of the General Linear Model (see Chapter 4
for the definition of a design matrix).

Note that the design matrix representing only the categorical factor contains the column of ones representing the reference factor
level and other dummy variable columns representing the remaining factor levels.

Inclusion of the trend term columns will facilitate significance testing for the overall trend effects and the columns representing the
interactions can be utilized to compare differences of each trend effect among the categorical factor levels.

Getting back to the chemical process example, if the quantitative property of measured temperature is used, we can carry out an
ANCOVA by fitting a polynomial regression model to express the impact of temperature on the response. If a quadratic polynomial
is desired, the appropriate ANCOVA design matrix can be obtained by adding two columns representing temp and temp? along
with the column of ones representing the reagent type A, the reference reagent category, and one dummy variable column
representing the reagent type B.

The temp and temp?® terms allow us to investigate the linear and quadratic trends respectively. Furthermore, the inclusion of
columns representing the interactions between the reagent type and the two trend terms will facilitate the testing of differences
between these two trends between the two reagent types. Note also that additional columns can be added appropriately to fit a
polynomial of an even higher order.

To fit a polynomial of degree n, the response should be measured at least (n+1) distinct levels of the covariate. Preliminary
graphics such as scatterplots are useful in deciding the degree of the polynomial to be fitted.

X Suggestion

To reduce structural multicollinearity, centering the covariate by subtracting the mean is recommended. For more details see
STAT 501 - Chapter 12: Multicollinearity

The necessary software code and/or commands along with outputs and conclusions are given below.

In SAS, this process would look like this:

https://stats.libretexts.org/@go/page/33176
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/*centering the covariate creating x/2 */

data centered_quant_factor;

set quant_factor;

X = temp-60;

X2 = X**2;

run;

proc mixed data=centered_quant_factor method=type3;
class reagent;

model product=reagent x X2 reagent*x reagent*x2;
title 'Centered';

run;

Notice that we specify reagent as a class variable, but z and z2 enter the model as continuous variables. The regression coefficient
of z and % can be used to test the significance of the linear and quadratic trends for reagent type A, the reference category and the
interaction term coefficients can be used if these trends differ by categorical factor level. For example, testing the null hypothesis
Hy : Breagentsz =0 where Breqgent«o is the regression coefficient of the Reagent * x term is equivalent to testing that the linear
effects are the same for reagent type A and B.

SAS output:
Type 3 Analysis of Variance
Source DF Sum of Mean Square Expected Error Term Error DF F Value Pr>F
Squares Mean Square
reagent 1 3.066357 3.066357 Yai(ReSIdua MS(Residua 24 g9y [ class™
. ' ' ) D ’ ">0.0977
Q(reagent)
Var(Residua
+ 3 " —n n>
X | 97.600495 97.600495 MS(Residua 24 9452 T class
Q(x,x*reage 1) <.0001
nt)
Var(Residua
4 . " s
X2 | 88.832986 88832986 MS(Residua 24 g6.03 | class
Q(x2,x2*rea 1) <.0001
gent)
Var(Residua
+ 3 " =ll
X*reagent 1 0341215 0341215 MS(Residua 24 033 [ class
Q(x*reagent 1) ">0.5707
)
Var(Residua
4 . " _n
X2*reagent 1 0067586 0067586 MS(Residua 24 007 Fclass
Q(x2*reage 1) ">0.8003
nt)
Residual 24 24782417 1.032601 Xar(ReSIdua i class=

1. The reagent effect was not significant with p = 0.0977
2. Only the linear and quadratic effects were significant in describing the trend in the response, and linear and quadratic effects
were the same for each of the reagent types (no interactions)

@0
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Figure 10.1.1: Graphing product vs temperature

Steps:

¢ Load the Quant Factor Data.
« Obtain the ANOVA table after centering the covariate and creating 2.
o Plot the data.

Steps in R

1. Load the Quant Factor data, obtain the ANOVA table (after centering the covariate), and create 2 by using the following
commands:

setwd("~/path-to-folder/")

QuantFactor_data <- read.table("QuantFactorData.txt", header=T)
attach(QuantFactor_data)

temp_center<-temp-60

temp_square_center<-temp_centern2
new_data<-cbind(QuantFactor_data, temp_center, temp_square_center)
ancova_model<-1lm(product ~ reagent + temp_center + temp_square_center + reagent:
anova(ancova_model)

#Analysis of Variance Table

#Response: product

# Df Sum Sq Mean Sq F value Pr(>F)
#reagent 1 ©), 2K ©), 2K 8.9476 0.006336 **
#temp_center 1 97.600 97.600 94.5191 8.499e-10 ***
#temp_square_center 1 88.833 88.833 86.0284 2.093e-09 ***
#reagent:temp_center 1 0.341 0.341 0.3304 0.570749
#reagent:temp_square_center 1 0.068 0.068 0.0655 0.800257
#Residuals 24 24.782 1.033

Heoo o
#Signif. codes: 0@ “***’ @,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 * ' 1

Only the linear and quadratic effects were significant in describing the trend in the response, and linear and quadratic
effects were the same for each of the reagent types (no interactions).

2. Plot the polynomial regression curve for reagent A and reagent B by using the following commands:
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reagentA_regression <- 1lm(product ~ temp_center + temp_square_center,data=subset
reagentB_regression <- lm(product ~ temp_center + temp_square_center,data=subset
plot(temp, product,ylim=c(0,20),xlab="Temperature", ylab="Product",pch=23, col=if
lines(fitted(reagentA_regression) ~ temp, data=subset(new_data, reagent=="A"), co
lines(fitted(reagentB_regression) ~ temp, data=subset(new_data, reagent=="B"), co

text(locator(1), "reagent A",col="blue")
text(locator(1), "reagent B",col="red")
detach(QuantFactor_data)

reagent A

reagent B

Product
10
1

T T T T T
40 50 60 70 80

Temperature

Figure 10.1.2: Graphing product vs temperature using R

This page titled 10.1: ANCOVA with Quantitative Factor Levels is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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10.2: Quantitative Predictors - Orthogonal Polynomials

Polynomial trends in the response with respect to a quantitative predictor can be evaluated by using orthogonal polynomial contrasts,
a special set of linear contrasts. This is an alternative to the Regression analysis illustrated in the previous section, which may be
affected by multicollinearity. Note that centering to remedy multicollinearity is effective only for quadratic polynomials. Therefore,
this simple technique of trend analysis performed via orthogonal polynomial coding will prove to be beneficial for higher-order
polynomials. Orthogonal polynomials have the property that the cross-products defined by the numerical coefficients of their terms
add to zero.

The orthogonal polynomial coding can be applied only when the levels of quantitative predictor are equally spaced. The method is to
partition the quantitative factor in the ANOVA table into independent single degrees of freedom comparisons. The comparisons are
called orthogonal polynomial contrasts or comparisons.

Orthogonal polynomials are equations such that each is associated with a power of the independent variable (e.g. z, linear; x2,
quadratic; x3, cubic, etc.). In other words, orthogonal polynomials are coded forms of simple polynomials. The number of possible
comparisons is equal to k — 1, where k is the number of quantitative factor levels. For example, if £k = 3, only two comparisons are
possible allowing for testing of linear and quadratic effects.

Using orthogonal polynomials to fit the desired model to the data would allow us to eliminate collinearity and to seek the same
information as simply polynomials.

A typical polynomial model of order k£ would be:
y=Po+Piz+pa’ + -+ Pz +e (10.2.1)

The simple polynomials used are z,z?, ..., 2" We can obtain orthogonal polynomials as linear combinations of these simple
polynomials. If the levels of the predictor variable, «, are equally spaced, then one can easily use coefficient tables to determine the
orthogonal polynomial coefficients that can be used to set up an orthogonal polynomial model.

If we are to fit the k& order polynomial to using orthogonal contrasts coefficients, the general equation can be written as
Yij = o +o11i(z) + a2g2i(T) +- - - + argri(z) + € (10.2.2)

where g,;(z) is a polynomial in z of degree p, (p =1,2,..., k) for the i" level treatment factor and the parameter oy, depends on
the coefficients ,. Using the properties of the function gp;(x), one can show that the first five orthogonal polynomial are of the
following form:

Mean: go(z)=1 (10.2.3)

a:;w) (10.2.4)
(mdi)2_<t2121)> (10.2.5)
(x;.i‘)3_($;i‘)(3t22(;7)> (10.2.6)

Quartic:  ga(z) = At ((‘”;”EY (w;iy (3t21;13) L3 (tz—;gét2—9) ) (10.2.7)

where ¢ = number of levels of the factor, = value of the factor level, £ = mean of the factor levels, and d = distance between factor
levels.

Linear: gi(z) =X\

Cubic:  gs(z) = As

Quadratic:  ga(z) = A2 (

In the next section, we will illustrate how the orthogonal polynomial contrast coefficients are generated, and the Factor SS is
partitioned. This method will be required to fit polynomial regression models with terms greater than the quadratic, because even
after centering there will still be multicollinearity between  and z as well as between 2 and z*.

The following example is taken from Design of Experiments: Statistical Principles of Research Design and Analysis by Robert
Kuehl.
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The treatment design consisted of five plant densities (10, 20, 30, 40, and 50). Each of the five treatments was assigned randomly
to three field plots in a completely randomized experimental design. The resulting grain yields are shown in the table below

(Grain Data):
Plant Density (z)
10 20 30 40 50
12.2 16.0 18.6 17.6 18.0
11.4 15.5 20.2 19.3 16.4
124 16.5 18.2 17.1 16.6
Means (y;) 12.0 16.0 19.0 18.0 17.0
Solution

We can see that the factor levels of plant density are equally spaced. Therefore, we can use the orthogonal contrast coefficients to
fit a polynomial to the response, grain yields. With k =5, we can only fit up to a quartic term. The orthogonal polynomial
contrast coefficients for the example are shown in Table 10.1.

Table 10.1 - Computations for orthogonal polynomial contrasts and sums of squares

Orthogonal Polynomial Coefficients (gy;)

Density (z) Y
Mean Linear Quadratic Cubic Quartic
10 12 1 -2 2 -1 1
20 16 1 -1 -1 2 -4
30 19 1 0 -2 0 6
40 18 1 1 -1 -2 -4
50 17 1 2 2 1 1
Ap - 1 1 5/6 35/12
Sum = 3" g,i¥; 82 12 -14 1 7
Divisor = 3~ g2, 5 10 14 10 70
SSP, = (X %)%/ 3 9% - 432 42.0 0.3 2.1
ap =Y Gpil¥i/ Zgzi 16.4 1.2 -1.0 0.1 0.1

As mentioned before, one can easily find the orthogonal polynomial coefficients for a different order of polynomials using pre-
documented tables for equally spaced intervals. However, let us try to understand how the coefficients are obtained.

First note that the five values of x are 10, 20, 30,40, 50 Therefore, x = 30 and the spacing d = 10. This means that the five
values of =% are —2,—1,0,1,and 2.

Linear coefficients: The polynomial g; for linear coefficients turn out to be:
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Linear Coefficient Polynomials g;

P 10 20 30 40 50
(z — 30) 20 -10 0 10 20
(z—30) 2 1 0 1 2

Linear orthogonal (—2)A\ (—1)As O\ (DA 2\

polynomial

To obtain the final set of coefficients we choose A; so that the coefficients are integers. Therefore, we set A; =1 and obtain the
coefficient values in Table 10.1.

Quadratic coefficients: The polynomial g, for linear coefficients:
Linear Coefficient Polynomials g,

R (22— (352) (2= () a0 - (554)) % (@2 - (554)) % (@2 (1)) »

12

Simplified form (2) A2 (=1)Ag (—=2)Aq (=1D)Aq (2) A2

To obtain the final set of coefficients we choose Ay so that the coefficients are integers. Therefore, we set Ay =1 and obtain the
coefficient values in Table 10.1.

Cubic coefficients: The polynomial gs for linear coefficients:
Linear Coefficient Polynomials g3

oo (2 =2 (5P (-0 (5) w0 (5 v - 0 (5w - 0 (5))

Simplified form (f%) A3 (%) A3 (0)As (f%) A3 (%) A3

Quartic coefficients: The polynomial g4 can be used to obtain the quartic coefficients in the same way as
above.

Notice that each set of coefficients for contrast among the treatments since the sum of coefficients is equal to zero. For example,
the quartic coefficients (1, —4,6, —4,1) sums to zero. Using orthogonal polynomial contrasts, we can partition the treatment
sums of squares into a set of additive sums of squares corresponding to orthogonal polynomial contrasts. Computations are
similar to what we learned in lesson 2.5. We can use those partitions to test sequentially the significance of linear, quadratic,
cubic, and quartic terms in the model to find the polynomial order appropriate for the data.

Table 10.1 shows how to obtain the sums of squares for each component and how to compute the estimates of the oy, coefficients
for the orthogonal polynomial equation. Using the results in table 10.1, we have estimated orthogonal polynomial equation as:

Table 10.2 summarizes how the treatment sums of squares are partitioned and their test results.

Table 10.2 - Analysis of variance for the orthogonal polynomial model
relationship between plant density and grain yield.

Source of Variation  Degrees of Freedom Sum of Squares Mean Square F Pr>F
Density 4 87.60 21.90 29.28 F">.000
Error 10 7.48 0.75 F">
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Contrast DF Contrast SS Mean Square F Pr>F
Linear 1 43.20 43.20 57.75 F">.000
Quadratic 1 42.00 42.00 56.15 F">.000
Cubic 1 .30 .30 .40 F">.541
Quartic 1 2.10 2.10 2.81 F">.125

To test whether any of the polynomials are significant (i.e. Hy : a3 = a2 = a3 =a4 =0 ), we can use the global F-test where
the test statistic is equal to 29.28. We see that the p-value is almost zero and therefore we can conclude that at the 5% level at
least one of the polynomials is significant. Using the orthogonal polynomial contrasts we can determine which of the polynomials
are useful. From table 3.5, we see that for this example only the linear and quadratic terms are useful. Therefore we can write the
estimated orthogonal polynomial equation as:

16.44+1.2g1; —1.0g9;

The polynomial relationship expressed as a function of y and z in actual units of the observed variables is more informative than
when expressed in units of the orthogonal polynomial.

We can obtain the polynomial relationship using the actual units of observed variables by back-transforming using the
relationships presented earlier. The necessary quantities to back-transform are Ay =1, d =10, z =30, and ¢t = 5. Substituting
these values, we obtain

2 2
z—30 z—30 5 —1
—16.4+1.2(1)( = )—1.0(1)(( = )— = )

§=5.840.72z —0.012>

which simplifies to

Generating Orthogonal Polynomials

? Using SAS

Steps in SAS

Below is the code for generating polynomials from the IML procedure in SAS:

/* read the grain data set */

/* Generating Ortho_Polynomials from IML */

proc iml;

x={10 20 30 40 50};

xpoly=orpol(x,4); /* the '4' is the df for the quantitative factor */
density=x"; new=density || xpoly;

create outl from new[colname={"density" "xp@" "xpi" "xp2" "xp3" "xp4"}]1;
append from new; close outl;

quit;

proc print data=outl;

run;

/* Here data is sorted and then merged with the original dataset */
proc sort data=grain;

by density;

run;
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data ortho_poly; merge outl grain;

by density;

run;

proc print data=ortho_poly;

run;

/* The following code will then generate the results shown in the
Online Lesson Notes for the Kuehl example data */

proc mixed data=ortho_poly method=type3;

class;

model yield=xpl xp2 xp3 xp4;

title 'Using Orthog polynomials from IML';

run;

/* We can use proc glm to obtain the same results without using
IML codings, to directly obtained the same results.

Proc glm will use the orthogonal contrast coefficients directly */
proc glm data=grain;

class density;

model yield = density;

contrast 'linear' density -2 -1 0 1 2;

contrast 'quadratic' density 2 -1 -2 -1 2;

contrast 'cubic' density -1 2 0 -2 1;

contrast 'quartic' density 1 -4 6 -4 1;

run;

The output is:

Analysis of Variance

Expected
s - DE Sum of Mean M " Error Error F Pr > F
ouree Squares  Square o Term DF Value
Square
Var (Residual ) >
xp1 1  43.200000 43.200000 MS(Residual) 10 57.75 <
+ Q(Xp
.0001
. Var (Residual ) F>
Vati... xp2 1 42.000000 42.000000 MS(Residual) 10 56.15 <
+ Q(Xp
.0001
Vati xp3 1 0.300000 0.300000 o (RESIAUAL) e cidual) 10 0.40 >
o p : : + (xp3iRestdua ) ' 0.5407
Vati xp4 1 2.100000 2.100000 o (RESIOUALIL cidual) 10 2.81 >
o0 p - : + Q(xpa)estaua ) ' 0.1248
vati... Residual 10 7.480000 7.480000 Var(Residual) i>da“:

Fitting a Quadratic Model with Proc Mixed

Often we can see that only a quadratic curvature is of interest in a set of data. In this case, we can plan to simply run an order
2 (quadratic) polynomial and can easily use proc mixed (the general linear model). This method just requires centering the
quantitative variable levels by subtracting the mean of the levels (30) and then creating the quadratic polynomial terms.
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data grain;

set grain;

x=density-30;

X2=X**2;

run;

proc mixed data=grain method=type3;
class;

model yield = x x2;

run;

The output is:

Type 3 Analysis of Variance

Ex
S DE Sum of Mean :ected Error Error F Pr > E
ource ean r
Squares Square Term DF Value
Square
X 1 43.200000 43.200000 Var(Residuagl idual 12 52.47 B
. . resi .
y o g{zjresidpal) <.0001
X2 1 42.000000 42.000000 Var(Residuﬁl idual 12 51.01 B
. . resi .
y + g(3{residual) <.0001
- . F" class="
ysfs ... Residual 12 9.880000 0.823333 Var(Residual) "
We can also generate the solutions (coefficients) for the model with:
proc mixed data=grain method=type3;
class;
model yield = x x2 / solution;
run;
which gives the following output for the regression coefficients:
Solution for Fixed Effects
Standard
Effect Estimate DF t Value Pr > |t]
Error
Fix... Intercept 18.4000 0.3651 12 50.40 [t]"> <.0001
Fix... X 0.1200 0.01657 12 7.24 [t]"> <.0001
Fi... X2 -0.01000 0.001400 12 -7.14 [t|"> <.0001

Regression Function in Terms of X

}} =by+by (CE) +b11.’L’2

Here we need to keep in mind that the regression was based on centered values for the predictor, so we have to back-
transform to get the coefficients in terms of the original variables. This back-transform process (from Kutner et.al) is:

After a polynomial regression model has been developed, we often wish to express the final model in terms of the original
variables rather than keeping it in terms of the centered variables. This can be done readily. For example, the fitted second-
order model for one predictor variable that is is expressed in terms of centered values x = X — X :
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because in terms of the original X variable:

Y =¥, + b X 4+ b, X?
where:

By, =by— by X +bp X

Y =b; —2b X
bi; =bu

In the example above, this back-transformation uses the estimates from the Solutions for Fixed Effects table above.

data backtransform;
bprime0=18.4-(.12*30)+(-.01*(30**2));
bprimel=.12-(2*-.01*30);
bprime2=-.01,;

title 'bprime0O=b0o-(bl*meanX)+(b2*(meanX)2)"';
title2 'bprimel=b1=2*b2*meanX’;
title3 'bprime2=b2';

run;

proc print data=backtransform;

var bprime®@ bprimel bprime2;

run;

The output is then:

Obs bprime0 bprimel bprime2

1 5. & 0.72 -0.01

The ANOVA results and the final quadratic regression equation here are identical to the results from the orthogonal
polynomial coding approach.

? UsingR

e Load the Grain Data.
e Obtain the ANOVA table.
« Fit a quadratic model after centering the covariate and creating x2. Transform back to the original variables.
Steps in R
1. Load the Grain data and obtain the ANOVA table by using the following commands:

setwd("~/path-to-folder/")

grain_data <- read.table('"grain_data.txt", header=T)
attach(grain_data)

poly model<-1lm(yield ~ poly(density,4),data=grain_data)
summary(poly_model)

#Coefficients:
# Estimate Std. Error t value Pr(>|t])
#(Intercept) 16.4000 0.2233 73.441 5.35e-15 ***
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#poly(density, 4)1 6.5727 0.8649 7.600 1.84e-05 ***
#poly(density, 4)2 -6.4807 0.8649 -7.493 2.08e-05 ***
#poly(density, 4)3 0.5477 0.8649 0.633 0.541
#poly(density, 4)4 1.4491 0.8649 1.676 0.125

anova(poly_model)
#Analysis of Variance Table
#Response: yield

# Df Sum Sq Mean Sq F value Pr(>F)
#poly(density, 4) 4 87.60 21.900 29.278 1.69e-05 ***
#Residuals 10 7.48 0.748

H#H-==

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ' 1

By using the command anova() we can test whether any of the polynomials are significant (i.e.
Hy: oy =ay =a3 =a4 =0 . We can use the global F-test where the test statistic is equal to 29.28. We see that the p-value
is almost zero, and therefore we can conclude that at the 5% level at least one of the polynomials is significant.

By using the command summary() we can test which contrasts are significant. For this example only the linear and
quadratic terms are significant since there p-values are almost zero.

2. Fit a quadratic model after centering the covariate and creating x2 by using the following commands:

Transform back to the original variables

density_center<-density-30

density_square_center<-density_centern2
new_data<-cbind(grain_data,density_center,density_square_center)
ancova_model<-1m(yield ~ density_center + density_square_center,new_data)
summary(ancova_model)

#Coefficients:

# Estimate Std. Error t value Pr(>|t])
#(Intercept) 18.40000 0.36511 50.396 2.44e-15 ***
#density_center 0.12000 0.01657 7.244 1.02e-05 ***
#density_square_center -0.01000 0.00140 -7.142 1.18e-05 ***
H#-=--

#Signif. codes: 0 ‘***’ @.001 ‘**’ 0.01 ‘*' 0.05 ‘.’ 0.1 ‘ ' 1
anova(ancova_model)

#Analysis of Variance Table

#Response: yield

# Df Sum Sq Mean Sq F value Pr(>F)
#density_center 1 43.20 43.200 52.470 1.024e-05 ***
#density_square_center 1 42.00 42.000 51.012 1.177e-05 ***
#Residuals 12 9.88 0.823

H#H---

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’' 0.05 ‘.’ 0.1 ‘ ' 1

3. Transform back to the original variables

The estimated coefficients for the polynomial model are 18.4, 0.12 and -0.01. Here we need to keep in mind that the
regression was based on centered values for the predictor, so we have to back-transform to get the coefficients in terms of the
original variables. We can do that by using the following commands:
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b_0_prime<-18.4-0.12*30-0.01*30/2 #5.8
b_1 prime<-0.12-0.01*(-2*30) # 0.72
b_2 prime<--0.01 # -0.01
detach(grain_data)

For the original variables the estimated coefficients are 5.8, 0.72 and -0.01.

This page titled 10.2: Quantitative Predictors - Orthogonal Polynomials is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.

@ 0 e 10.2.9 https://stats.libretexts.org/@go/page/33177


https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/33177?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Analysis_of_Variance_and_Design_of_Experiments/10%3A_ANCOVA_Part_II/10.02%3A_Quantitative_Predictors_-_Orthogonal_Polynomials
https://creativecommons.org/licenses/by-nc/4.0
https://science.psu.edu/stat
https://online.stat.psu.edu/stat502_fa21/

LibreTextsw

10.3: Chapter 10 Summary

We've seen some of the versatility of ANCOVA in Chapter 9 and Chapter 10. In application, it's often used in ANOVA settings to
adjust or "control for" a covariate that may be masking real treatment differences. In regression settings, researchers may be
focused on a family of regression relationships, and are interested in testing for significant differences among regression
coefficients across different groups.

These are like two sides of the same coin: in terms of model development, ANOVA and Regression approaches converge in the
general linear model as ANCOVA. Mastery of ANCOVA methodology is arguably one of the most important tools to have in an
applied statistician's toolbox.

This page titled 10.3: Chapter 10 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

11: Introduction to Repeated Measures

4b Objectives

Upon completion of this lesson, you should be able to:

o Recognize repeated measures designs in time.
o Understand the different covariance structures that can be imposed on model error.
o Use software such as SAS, Minitab, and R for fitting repeated measures ANOVA.

The focus of many studies can be expanded by introducing time also as a potential covariate. In the greenhouse example, the
growth of plants can be measured weekly over a period of time, allowing time also to be included as a predictor in the statistical
model. Another example is to compare the effect of two anti-cancer drugs on disease status at different intervals of time. In both
these examples, the response has to be measured multiple times from the same experimental unit, hence the term "repeated
measures." The repeated measurements made on the same experimental unit cannot be assumed independent which means that the
model errors may not be uncorrelated anymore and the statistical model should be modified accordingly.

Two fundamental types of repeated measures are common. Repeated measures in time are the type in which experimental units
receive treatment, and they are simply followed with repeated measures on the response variable over several times. In contrast,
experiments can involve administering all treatment levels (in a sequence) to each experimental unit. This type of repeated
measures study is called a crossover design, the topic of our next lesson.

Repeated measures are frequently encountered in clinical trials including longitudinal studies, growth models, and situations in
which experimental units are difficult to acquire.

11.1: Historical Methods

11.2: Correlated Residuals

11.3: More on Covariance Structures

11.4: Worked Example

11.5: Chapter 11 Summary

This page titled 11: Introduction to Repeated Measures is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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11.1: Historical Methods

Repeated measures in time were historically handled in either a multivariate analysis setting or as a univariate split-plot in time.
The focus in this course is limited only to the latter.

A split-plot in time approach looks at each subject (experimental unit) as the main plot (receiving treatment) and then is split into
sub-plots (time periods). Historically, the default assumption in split-plot in time data analysis has been that the correlations among
responses at different time points are the same for all treatment levels and time points (compound symmetry). However, depending
on the study and nature of data, other correlation structures can be more appropriate (e.g. autoregressive lag 1).

Most of the current software facilitates the inclusion of different correlation structures which has helped in the evolution of

methodology for repeated measures to accommodate the presence of different correlated structures in residuals.

This page titled 11.1: Historical Methods is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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11.2: Correlated Residuals

The first part of the section uses a hypothetical data set to illustrate the origin of the covariance structure, by capturing the
residuals for each time point and looking at the simple correlations for pairs of time points. Therefore, the software code used
for this purpose is NOT what we would ordinarily use in conducting a repeated measures analysis as generating the residuals
of a fitted model and their variances and covariances is automatically done by software. The variances and the covariances of
the residuals will be outputted as the diagonals and the off-diagonals of the variance-covariance (R block) matrix in SAS or R.
Minitab currently does not accommodate various covariance structures, opting instead to treat repeated measures as "split-plot
in time" (which assumes compound symmetry).

If we look at the ANOVA mixed model in general terms, we have:
Model: response = fixed effects +random effects + errors (11.2.1)

In the case of repeated measures with measures taken at p number of time points, the covariance structure of the errors can be
expressed as a matrix. The diagonals of this matrix are the error variances at each time point. The off-diagonals are the covariances
between successive time points. In general, the variance-covariance matrix can be expressed as follows:

oq g12 O1p
021 022 O2p
y = (11.2.2)
i : T .
o‘ 0' ... 0'2
pl p2 P

The structure shown above does not assume any specific properties of the variances and covariances and is called an unstructured

-1 . +1 . ) .
p(p2 ) covariances that adds to @ unknown quantities which define

this matrix. So, even for a small number of time points, a substantial number of parameters will have to be estimated. Therefore, in
practice, specific structures are imposed to reduce the number of distinct parameters that need to be estimated, which will be
discussed in Section 11.3.

covariance structure. Note that there are p variances and

To understand the correlation structure of errors, let us use SAS to generate the variance-covariance matrix of the errors for a
repeated measures model using hypothetical data stored in Repeated Measures Example Data. The data consists of a single
treatment with 3 levels. Subjects are assigned a treatment level at random (CRD) and then are measured at p = 3 time points. The
SAS code which is given below fits a factorial model and generates the errors along with the correlations among responses taken at
three time points.

data rmanova;
input trt $ time subject resp;
datalines;
A1l110
Al 2 12
A1 3 13
A 21 16
A 22 19
A 2 3 20
A 3125
A 3 2 27
A 3 3 28
B 14 12
B15 11
B 16 10
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B 24 18
B 25 20
B 26 22
B 34 25
B 35 26
B 36 27
c17 106
Cc18 12
Cc19 13
C27 22
C 28 23
C 29 22
cC3731
C 38 34
C 3933
4

We can run a simple model and obtain the residuals.

/* 2-factor factorial for trt and time - saving residuals */
proc mixed data=rmanova method=type3;
class trt time subject;
model resp=trt time trt*time / ddfm=kr outpm=outmixed;
title 'Two_factor_factorial';
run; title;

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr>F
trt 2 18 14.52 F">0.0002
time 2 18 292.72 F"><.0001
trt*time 4 18 4.67 F">0.0092

/* re-organize the residuals to (unstacked data for correlation) */
data one;

set outmixed;

where time=1; timel=resid;

keep timel;
run;
data two; set outmixed; where time=2; time2=resid; keep time2; run;
data three; set outmixed; where time=3; time3=resid; keep time3; run;

data corrcheck; merge one two three;

proc print data=corrcheck;
run;
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proc corr data=corrcheck nosimple; var timel time2 time3; run;

The residuals then are:

The Print Procedure

Obs timel time2 time3
1 -1.66667 -2.33333 -1.66667
2 0.33333 0.66667 0.33333
3 1.33333 1.66667 1.33333
4 1.00000 -2.00000 -1.00000
5 0.00000 0.00000 0.00000
6 -1.00000 2.00000 1.00000
7 -1.66667 -0.33333 -1.66667
8 0.33333 0.66667 1.33333
9 1.33333 -0.33333 0.33333

The correlations of responses between time points are:

The CORR Procedure
3 Variables: timel time2 time3
Pearson Correlation Coefficients, N =9
Prob > |r| under HO: Rho=0
timel time2 time3
timel 1.00000 0.19026 0.55882
0.6239 0.1178

time2 0.19026 1.00000 0.83239

0.6239 0.0054
time3 0.55882 0.83239 1.00000

0.1178 0.0054

Notice that in the above code, the repeated nature of the data is not being utilized. The "repeated" statement in proc mixed ,
which is used in practice, accounts for this. As in the code given below, in the repeated statement, the option of subject=
specifies what experimental (or observational) units the repeated measures are made on. The type= can be used to specify one
of many types of structures for these correlations. Here we specified the unstructured covariance structure and obtained the same
correlations that were generated earlier with simple statistics.

proc mixed data=rmanova ;
class trt time subject;
model resp=trt time trt*time / ddfm=kr solution ;
repeated /subject=subject(trt) type=UN rcorr;
title 'Repeated Measures';

run; title;
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Finding the best covariance structure is much of the work in modeling repeated measures and is usually done by considering a
subset of candidate structures. These include UN (Unstructured), CS (Compound Symmetry), AR(1) (Autoregressive lag 1) — if
time intervals are evenly spaced, or SP(POW) (Spatial Power) — if time intervals are unequally spaced.

Choosing the best covariance structure is based on Fit Statistics (also known as information criteria). PROC MIXED in SAS
automatically generates four of such Fit Statistics measures and for this example, they are:

Fit Statistics

-2 Res Log Likelihood 63.0
AIC (Smaller is Better) 75.0
AICC (Smaller is Better) 82.6
BIC (Smaller is Better) 76.2

Smaller or more negative values indicate a better fit to the data. The process amounts to trying various candidate structures and
then selecting the covariance structure producing the smallest or most negative values. The information criteria listed above are
usually similar in value, but for small sample sizes, the AICC criterion is recommended. The topic of covariance structures for a
general setting is discussed in the next section.

o Load the Repeated Measures Example Data.

e Obtain the ANOVA table.

e Obtain the correlations of responses between time points.

o Obtain the results for the split-plot in time approach.

o Run the analysis as a repeated-measures ANOVA by using different covariance structures.

Steps in R
1. Load the Repeated Measures Example data and obtain the ANOVA by using the following commands:

setwd("~/path-to-folder/")

repeated_measures_example_data <- read.table("repeated_measures_example_data.txt
attach(repeated_measures_example_data)

rmanova<-aov(resp ~ trt + factor(time) + trt*factor(time), repeated_measures_exa
anova(rmanova)

#Analysis of Variance Table

#Response: resp

# Df Sum Sq Mean Sq F value Pr(>F)
#trt 2 64.52 32.26 14.5167 0.0001761 ***
#factor(time) 2 1300.96 650.48 292.7167 1.87e-14 ***
#trt:factor(time) 4 41.48 10.37 4.6667 0.0092424 **
#Residuals 18 40.00 2.22

Fm = o

#Signif. codes: @ “***’ 0.001 ‘**’ 0.01 ‘*" 0.05 ‘. 0.1 ' 7 1

2. Obtain the correlations of responses between time points by using the following commands:

time_1<-c(rmanova$residuals[1:3], rmanova$residuals[10:12], rmanova$residuals[19:2
time_2<-c(rmanova$residuals[4:6], rmanova$residuals[13:15], rmanova$residuals[22:2
time_3<-c(rmanova$residuals[7:9], rmanova$residuals[16:18], rmanova$residuals[22:2
residuals<-cbind(time_1, time_2, time_3)
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rownames(residuals)<-NULL

#residuals

# time_1
#[1,] -1.666667e+00
#[2,] 3.333333e-01
#[3,] 1.333333e+00
#[4,] 1.000000e+00
#[5,] -3.885781e-16
#[6,] -1.000000e+00
#[7,] -1.666667e+00
#[8,] 3.333333e-01
#[9,] 1.333333e+00
#cor(residuals)

#

# time_1

#time_1 1.0000000
#time_2 0.1902606
#time_3 0.3290726

time_2 time_3
-2.333333e+00 -1.666667e+00
6.666667e-01 3.333333e-01
1.666667e+00 1.333333e+00
-2.000000e+00 -1.000000e+00
9.436896e-16 -7.216450e-16
2.000000e+00 1.000000e+00
-3.333333e-01 -3.333333e-01
6.666667e-01 6.666667e-01
-3.333333e-01 -3.333333e-01
time_2 time_3
0.1902606 0.3290726
1.0000000 0.9756655
0.9756655 1.0000000

This page titled 11.2: Correlated Residuals is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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11.3: More on Covariance Structures

Variance Components (VC)

o (11.3.1)

2
0

The variance component structure (VC) is the simplest, where the correlations of errors within a subject are presumed to be 0. This
structure is the default setting in proc mixed, but is not a reasonable choice for most repeated measures designs. It is included in the
exploration process to get a sense of the effect of fitting other structures.

Compound Symmetry (CS)

1.0 p p p ap +o? a; o} o}
1.0 o2 402 o2 o2
o PPl prhe v (11.3.2)
1.0 »p oy +o¢ oy,
1.0 af—l—og

The simplest covariance structure that includes within-subject correlated errors is compound symmetry (CS). Here we see
correlated errors between time points within subjects, and note that these correlations are presumed to be the same for each set of
times, regardless of how distant in time the repeated measures are made.

First Order Autoregressive AR(1)

2

o 1o p p (11.3.3)
1.0 »p
1.0

The autoregressive (Lag 1) structure considers correlations to be highest between adjacent times, and a systematically decreasing
correlation with increasing distance between time points. For one subject, the error correlation between time 1 and time 2 would be
pt271 Between time 1 and time 3 the correlation would be less, and equal to p%*~*'. Between time 1 and 4, the correlation is lesser,
as p'~*, and so on. Note that this structure is only applicable for evenly spaced time intervals for the repeated measure; so that
consecutive correlations are p raised to powers of 1, 2, 3, etc.

Spatial Power

t—ty t)—t3 t—tg

1.0 p‘ -ty ) p| 1ty ‘ p| t1—ta |

taty ty—ty
o2 1.0 p‘ tl—t2| p’ ZZ| (11.3.4)
1.0 p’ t1—ta |
1.0

When time intervals are not evenly spaced, a covariance structure equivalent to the AR(1) is the spatial power (SP(POW)). The
concept is the same as the AR(1) but instead of raising the correlation to powers of 1, 2, 3, ..., the correlation coefficient is raised
to a power that is the actual difference in times (e.g. > —t! for the correlation between time 1 and time 2). It is clear that this
method requires having quantitative values for the variable time in the data so that it can be specified for the calculation of the
exponents in the SP(POW) structure. If an analysis is run wherein the repeated measures are equally spaced in time, the AR(1) and
SP(POW) structures yield identical results.
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Unstructured Covariance

(11.3.5)

0y

The Unstructured covariance structure (UN) is the most complex because it is estimating unique correlations for each pair of time
points. As there are too many parameters (all distinct correlations), the estimates most times will not be computable. SAS for
instance returns an error message indicating that there are too many parameters to estimate with the data.

Choosing the Best Covariance Structure

The fit statistics used for model selection can also be utilized in choosing the best covariance matrix. The model selections most
commonly supported by software are -2 Res Log Likelihood, Akaike’s information criterion - corrected (AICC), and Bayesian
Information Criteria (BIC). These statistics are functions of the log likelihood and can be compared across different models as well
as different covariance structures provided the fixed effects part is the same in each model. The smaller the criterion statistics value
is, the better the model is, and if they are close, the simpler model is preferred.

BIC tends to choose simpler models compared to AICC. Choosing a model that is too simple however inflates the Type I error rate.
Therefore, if controlling Type I error is of importance, AICC may be the better criterion. On the other hand, if loss of power is of
more concern, BIC might be preferable (Guerin and Stroup 2000).

The MIXED procedure in SAS outputs the 3 criterion statistics when using the type = option in the Repeated statement.

In addition to using the above fit statistics, graphical approaches are also available, and see Graphical Approach for more details.
Combining information from both approaches to make the final choice may also prove to be beneficial.

This page titled 11.3: More on Covariance Structures is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn
State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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11.4: Worked Example

For the example dataset in Repeated Measures Example Data, which we introduced in the 11.2: Correlated Residuals section, we
can plot the data:

resp

time

Figure 11.4.1: The values of the response plotted at each of the three time points for each of the 9 subjects.

We can obtain the results for the split-plot in time approach using the following:

/* Split-Plot in Time */
proc mixed data=rmanova method=type3;

class trt time subject;

model resp=trt time trt*time / ddfm=kr;

random subject(trt); title 'Split-Plot in Time';
run;

Next, we run the analysis as a repeated-measures ANOVA, which allows us to evaluate which covariance structure fits best.

Next, we run the analysis as a repeated-measures ANOVA, which allows us to evaluate which covariance structure fits best.

/* Repeated Measures Approach */
/* Fitting Covariance structures: */
/* Note: the code begining with "ods output ..." for each
run of the Mixed procedure generates an output that
is tabulated at the end to enable comparison of
the candidate covariance structure */
proc mixed data=rmanova;
class trt time subject;
model resp=trt time trt*time / ddfm=kr;
repeated time/subject=subject(trt) type=cs rcorr;

ods output FitStatistics=FitCS (rename=(value=CS))
FitStatistics=FitCSp;

title 'Compound Symmetry'; run;

title ' '; run;
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proc mixed data=rmanova;
class trt time subject;
model resp=trt time trt*time / ddfm=kr;
repeated time/subject=subject(trt) type=ar(1l) rcorr;

ods output FitStatistics=FitAR1 (rename=(value=AR1))
FitStatistics=FitAR1p;

title 'Autoregressive Lag 1'; run;

title ' '; run;

proc mixed data=rmanova;
class trt time subject;
model resp=trt time trt*time / ddfm=kr;
repeated time/subject=subject(trt) type=un rcorr;

ods output FitStatistics=FitUN (rename=(value=UN))
FitStatistics=FitUNp;

title 'Unstructured'; run;

title ' '; run;

data fits;
merge FitCS FitAR1l FitUN;
by descr;
run;
ods listing; proc print data=fits; run;

We get the following Summary Table:

Obs Descr CS AR1 UN
1 -2 Res Log Likelihood 70.9 71.9 63.0
2 AIC (smaller is better) 74.9 75.9 75.0
B AICC (smaller is better) 75.7 76.7 82.6
4 BIC (smaller is better) 75.3 76.3 76.2

Using the AICC as our criteria, we would choose the compound symmetry (CS) covariance structure.

The output from this would be:

Type 3 Test of Fixed Effect
Effect Num DF Den DF F Value Pr>F
trt 2 6 7.14 F">0.0259
time 2 12 605.62 F"><.0001
tre*time 4 12 9.66 F">0.0010

Note that for this case, the p-values obtained here are identical to the split-plot in time approach.
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Steps in R
1. Obtain the results for the split-plot in time approach by using the following commands:

library(1lmerTest)
library(1lme4)
model<-lmer(resp ~ trt + factor(time) + trt:factor(time) + (1 | factor(subject)
anova(model)
#Type III Analysis of Variance Table with Satterthwaite s method
# Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
#trt s 8 2 6 7.14 0.02590 *
#(time) 1301 650 2 1z 605.62 8.9e-13 ***
#trt:factor(time) 41 10 4 12 9.66 0.00099 ***
#---
#Signif. codes: O “***’ @.001 “**’ 0.01 ‘*” .05 ‘.” 0.1 ' ’ 1

2. Run the analysis as a repeated-measures ANOVA by using different covariance structures. We can use the following
commands:

library(nlme)

model_cs<-gls(resp ~ trt + factor(time) + trt*factor(time),repeated_measures_exa
model_AR<-gls(resp ~ trt + factor(time) + trt*factor(time), repeated_measures_exa
model_UN<-gls(resp ~ trt + factor(time) + trt*factor(time),repeated_measures_exa
Model_Selection <- data.frame(

c ("","-2LogLik","AIC", "BIC"),

c("CS", round(-2*summary(model_cs)$logLik,2), round(summary(model_cs)$AIC,2),roun
c("AR1", round(-2*summary(model AR)$logLik,2), round(summary(model AR)$AIC,2),rou
c("UN", round(-2*summary(model_UN)$logLik,2), round(summary(model_UN)$AIC,2), roun
stringsAsFactors = FALSE)

names(Model_Selection) <- c¢(" ", ™ ", "n, "o
print(Model_Selection)

#1 CS AR1 UN

#2 -2LogLik 80.54 82.03 69.95

#3 AIC 102.54 104.03 95.95

#4 BIC 116.79 118.29 112.79

detach(repeated_measures_example_data)

This page titled 11.4: Worked Example is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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11.5: Chapter 11 Summary

This lesson introduced us to the topic of repeated measures designs. The focus was on repeated measures in time where each
experimental unit is assigned to exactly one treatment level the response is observed over several time periods. This means that the
responses from the same experimental unit observed over time can be correlated and the model assumption of independent
observations is no longer valid. Therefore, an appropriate covariance structure should be imposed to account for the correlated
nature of the response, and the best is chosen based on fit statistics. Note that the AR(1) covariance structure is a possible choice
only when time intervals are equally spaced. If time intervals are unequal sp(pow) has to be the alternative.

Other scenarios can result in repeated measures, not necessarily in time. The important feature is that multiple measurements are
being made on the same experimental unit. A special case of this is the cross-over design wherein the treatments themselves are
switched on the same experimental unit during the course of the experiment. This would be the topic of the next lesson.

This page titled 11.5: Chapter 11 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

12: Cross-over Repeated Measure Designs

4b Objectives

Upon completion of this lesson, you should be able to:

o Recognize a cross-over repeated measures design.

o Understand what a wash-out period is.

o Test for the significance of carry-over effects.

o Adjust treatment means to account for carry-over effects.

In this lesson, we will be discussing the basics of cross-over designs briefly. A crossover design is a repeated measures design in
which each experimental unit is given each of the different treatment levels during different time periods. This means that over time
each experimental unit is assigned to a specific ordered sequence of different treatment levels. This is in contrast to a repeated-
measures design in time, discussed in the previous chapter, where multiple (repeat) measurements are taken through time from the
same experimental unit assigned to a specific treatment level.

12.1: Introduction to Cross-Over Designs

12.2: Coding for Carry-Over Covariates

12.3: Programming for Steer Example

12.4: Testing the Significance of the Carry-Over Effect

12.5: Try It!

12.6: Chapter 12 Summary

This page titled 12: Cross-over Repeated Measure Designs is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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12.1: Introduction to Cross-Over Designs

The simplest cross-over design is a 2-level treatment, 2-period design. If we use A and B to represent the two treatment levels, then
we can build the following table to represent their administering sequences.

Sequence Period 1 Period 2
1 A B
2 B A

Experimental units are randomly assigned to receive one of the two different sequences. For example, if this were a clinical trial,
patients assigned to sequence 2 would be given treatment B first, then after assessment of their condition, given treatment A and
their condition re-assessed.

The complicated part of the cross-over design is the potential for carry-over effects. A carry-over effect is when the response to a
particular treatment level has been influenced by the previous application of a different treatment level. The presence of carry-over
effects is dealt with differently by different researchers in different ways. Having a sufficiently long washout period is one way to
reduce carry-over effects. A washout period is a gap in time between the application of the treatment levels such that any residual
effect of a previous treatment level has been dissipated and there is no detectable carry-over effect.
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Figure 12.1.1: Timeline showing the washout period

However, there may be instances where significant carry-over effects may exist and sufficiently long washout periods may not be
practically feasible. In such situations, an adjustment for carry-over effects would be appropriate during the statistical analysis.

If the treatment has only 2 levels, it is sufficient to simply include a "sequence" categorical variable in the model to assess the
presence of a carry-over effect. If the sequence variable is significant, then a detectable carry-over effect exists.

With more than two treatment levels, the complexity of the analysis rises sharply. For 3 levels of treatment, 3 periods will be
needed, and now we have 3! = 6 sequences to consider. What is needed in this case, in addition to a sequence variable, is a way to
adjust the assessment of treatment effects for the presence of carry-over effects. This can be accomplished with a set of coded
covariates in a repeated-measures ANCOVA.
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12.2: Coding for Carry-Over Covariates

The late Dr. Steve Arnold (Penn State), came up with a satisfactory solution to account for carry-over effects in the data analysis.
The following example will illustrate how the procedure works. The data can be found in the textbook Design of Experiments, by
Kuehl, as Example 16.1. Investigators want to evaluate the effect of 3 diets on Neutral Detergent Fiber (NDF) levels in steer. The
three diets are administered to each steer in a sequence over 3 periods. A total of 6 sequences were used and two steers were
assigned to each sequence of treatments.

The cross-over design can be summarized as:

Period
Sequence 1 2 3
1 A B C
2 B C A
3 C A B
4 A C B
5 B A C
6 C B A

If we look at the first part of the dataset (Steer Data) for this example in Excel, we can see the following:

a | 8 | ¢ [ o | € ]

B PER SEQ  DIET  STEER  NDF
B 1 1 A 1 50
3| 1 1 A 2 55
4| 1 2 B 1 a
5| 1 2 B 2 51
6 | 1 3 c 1 35
| 7] 1 3 c 2 2
8| 1 a A 1 54
9| 1 a A 2 58
10} 1 5 B 1 50
| ] 1 5 B 2 55
12 1 6 c 1 a1
13| 1 6 c 2 6
14 2 1 B 1 61
15 2 1 B 2 63
16| 2 2 c 1 42
Ed 2 2 c 2 15
18] 2 3 A 1 55
19 2 3 A 2 56
20 2 a c 1 48
21 2 a c 2 51
22 2 5 A 1 57
72 l 5 n 27 =q

Figure 12.2.1: First five columns of steer dataset in Excel.

We need now to add two columns to use an effect-type coding for the 3 treatment levels. We can use:

x1 T2
A 1 0

0 1
C -1 -1

Where z; and z3 will be columns we create in the data to input for all of the rows of data. The coding values depend on which
treatment level is administered during the previous period. For example, if treatment A was administered in the previous period,
then coding values would be z; = 1,22 =0.
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There will be no entries for the first period because on the first application of each treatment there are no treatments that have
preceded it. Therefore a 0 is used as the coding value for both z; and 5.

a | B | ¢ [ o | & [ ¢ T @ ]

1] PER SEQ  DIET  STEER NDF X1 x2
| 2 | 1 1 A 1 50 0 0
Bl 1 1 A 2 55 0 0
|4 | 1 2 B 1 aa 0 0
|5 | 1 2 B 2 51 0 0
6 | 1 3 c 1 35 0 0
| 7| 1 3 c 2 a1 0 0
|8 | 1 a A 1 54 0 0
| 9| 1 a A 2 58 0 0
|10 1 5 B 1 50 0 0
| 11| 1 5 B 2 55 0 0
|12 1 6 c 1 n 0 0
| 13| 1 6 c 2 a6 0 0
|14 2 1 B 1 61 1 0
| 15| 2 1 B 2 63 1 0
15| 2 2 c 1 a2 0 1
|17 2 2 c 2 a5 0 1
| 18] 2 3 A 1 55 = =
|19 2 3 A 2 56 4l 4l
| 20 2 a c 1 a8 1 0
|21 2 a c 2 51 1 0
| 22| 2 5 A 1 57 0 1
ek 2 s A 2 =] n 1

Figure 12.2.2: Steer dataset, including ; and x5, in Excel.

Looking at Period 2, sequence 1, treatment B we can refer back to the Sequence chart and see that it was preceded by treatment
level A, so we assign 1 = 1, and 2 = 0, indicating that it was treatment A that could produce a carry-over effect here.

Ly —
|1 eER  SEQ  DIET  STEER  NDF x1 x2
2|l il il n 1 50 0 0
= TP 1 A 2 0 0
| 4] 1 r g ] 1 0 0
= 1 2 B 0 0
| 6 | 1 3 c 0 0
=l 1 3 c 2 0 0
| 8| 1 a A 1 0 0
= 1 4 A 2 0 0
|10 1 5 ] 1 0 0
| 11| 1 5 B 2 0 0
|12 1J 6 c 1 0 0
13 1 6 c 2 0 0
w2z 1| = 1 a1 o
15| B 2 63 1 0

Figure 12.2.3: Identifying the carry-over effects using the spreadsheet.

The process can be repeated to define the coding variables to each entry in the dataset. The coded variables x; and x5 are then
entered into the general linear model as continuous covariates and LSmeans for treatments are adjusted for carry-over effects.
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12.3: Programming for Steer Example

v Using SAS

The SAS code given below will run a repeated measures ANCOVA in SAS for the Neutral Detergent Fiber levels in steer

example in section 12.2.

Code

12.2.
data steer;
input PER SEQ DIET $ STEER NDF x1 x2;
datalines;
1 1 A 1 50 0 0]
1 1 A 2 55 0 0
1 2 B 1 44 0 0
1 2 B 2 51 0 0
1 3 c 1 35 0 0
1 3 C 2 41 0 0
1 4 A 1 54 0] 0]
1 4 A 2 58 0 0
1 5 B 1 50 0 0]
1 5 B 2 55 0 0
1 6 C 1 41 0 0
1 6 c 2 46 0 0
2 1 B 1 61 1 0
2 1 B 2 63 1 0
2 2 c 1 42 0] 1
2 2 C 2 45 0 1
2 3 A 1 55 -1 -1
2 3 A 2 56 -1 -1
2 4 C 1 48 1 0
2 4 C 2 51 1 0
2 5 A 1 57 0 1
2 5 A 2 59 0 1
2 6 B 1 56 -1 -1
2 6 B 2 58 -1 -1
3 1 c 1 53 0] 1
3 1 c 2 57 0 1
3 2 A 1 57 -1 -1
3 2 A 2 59 -1 -1
3 3 B 1 47 1 0
3 3 B 2 50 1 0
3 4 B 1 51 -1 -1
3 4 B 2 54 -1 -1
3 5 c 1 51 1 0]
3 5 c 2 55 1 0
3 6 A 1 58 0 1
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3 6 A 2 61 0] 1
’

run;

/*0btaining fit Statistics*/
proc mixed data=steer;
class per seq diet steer;
model ndf = per diet seq x1 x2/ddfm=kr;
repeated per / subject=steer(seq) type=cs rcorr;
ods output FitStatistics=FitCS (rename=(value=CS)) FitStatistics=FitCSp;
title 'Compound Symmetry';
run;

proc mixed data=steer;
class per seq diet steer;
model ndf = per diet seq x1 x2/ddfm=kr;
repeated per / subject=steer(seq) type=AR(1) rcorr;
ods output FitStatistics=FitAR1 (rename=(value=AR1)) FitStatistics=FitAR1p;
title 'Autoregressive Lag 1';
run;

proc mixed data=steer;
class per seq diet steer;
model ndf = per diet seq x1 x2/ddfm=kr;
repeated per / subject=steer(seq) type=UN rcorr;
ods output FitStatistics=FitUN (rename=(value=UN)) FitStatistics=FitUNp;
title 'Unstructured';
run;

proc mixed data=steer;
class per seq diet steer;
model ndf = per diet seq x1 x2/ddfm=kr;
repeated per / subject=steer(seq) type=CSH rcorr;
ods output FitStatistics=FitCSH (rename=(value=CSH)) FitStatistics=FitCSHp;
title 'HETEROGENOUS COMPOUND SYMMETRY';
run;

data fits;
merge FitCS FitAR1 FitUN FITCSH;
by descr;
run;
ods listing; title 'Summerized Fit Statistics'; run;
proc print data=fits; run;

/* Model Adjusting for carryover effects */
proc mixed data= steer;
class per seq diet steer;
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model ndf = per diet seq x1 x2/ddfm=kr;
repeated per / subject=steer(seq) type=csh;
store out_steer;

run;

proc plm restore=out_steer;
lsmeans diet / adjust=tukey plot=meanplot cl lines;
ods exclude diffs diffplot;

run;

/* Reduced Model, Ignoring carryover effects */
proc mixed data= steer;
class per seq diet steer;
model ndf = per diet seq/ddfm=kr;
repeated per / subject=steer(seq) type=csh;
lsmeans diet / pdiff adjust=tukey;
run;

The results of the fit statistics are as follows:

Obs Descr CS AR1 UN CSH
1 -2 Res Log 148.3 147.2 121.6 1225
Likelihood
9 AIC (Smaller is 1523 151.2 133.6 130.5
Better)
3 AICC (Smaller is 152.8 151.7 138.6 132.6
Better)
4 BIC (Smaller is 153.2 152.1 136.5 132.5
Better)

Based on the fit statistics AIC (and also AICC and BIC), the covariance structure heterogeneous compound symmetry

(type=CSH) was shown to be better compared to UN or CS or AR(1). Similar to the covariance structure CS, the CSH
covariance structure, also has a constant correlation in the off-diagonal elements. However, the diagonal elements (the variance
at each time point), can be different.

Here is the output that is generated for the full model:

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

PER 2 5.09 10.86 0.0146
DIET 2 11.6 188.52 < .001>
SEQ 5 10.9 31.96 < .0001
x1 1 11.2 17.03 0.0016
X2 1 11.2 78.85 < .0001
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The Type 3 tests shown above are "model dependent," meaning that the sum of squares for each of the effects are adjusted for
the other effects in the model. In this case, we have adjusted for the presence of carry-over effects. As the diet is significant, it
is appropriate to generate LSmeans and the Tukey-Kramer mean comparisons for the diet factor.

DIET Least Squares Means

. Standard t Pr >
DIET Estimate DF Alpha Lower upper
Error Value |t]

<

A 57.8092 1.6046 6.412 36.03 0.001 0.05 53.9432 61.6752
<

B 50.8134 1.6046 6.412 31.67 0.001 0.05 46.9474 54.6794
<

C 48.3774 1.6046 6.412 30.15 0.001 0.05 44 .5114 52.2434

To see the adjustment on the treatment means, we can compare the LSmeans for a reduced model that does not contain the
carry-over covariates.

LSmeans

Full Model with Covariates
Effect DIET Estimate
DIET A 57.8092
DIET B 50.8134
DIET C 48.3774

Reduced Model (without carry-over covariates)

Effect DIET Estimate

DIET A 57.3941

DIET B 50.9766

DIET C 48.6292

Although the differences in the LSmeans between the two models are small in this particular example, these carry-over effect
adjustments can be very important in many research situations.

o Load the Steer Data.
o Run the analysis by using different covariance structures and obtain fit statistics.

Code

o Load the Steer data, run the analysis by using different covariance structures and obtain fit statistics by using the following
commands:

setwd("~/path-to-folder/")

steer_data <- read.table("steer_data.txt", header=T)
attach(steer_data)

library(nlme)
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model_CS<-gls(NDF ~ factor(PER) + DIET + factor(SEQ) + x1 + x2,steer_data,correlat:
model_AR<-gls(NDF ~ factor(PER) + DIET + factor(SEQ) + x1 + x2,steer_data,correlat:
Model_Selection <- data.frame(

c ("","-2LogLik","AIC", "BIC"),

c("CS", round(-2*summary(model_CS)$logLik,2), round(summary(model_CS)$AIC,2), round(¢
c("AR1", round(-2*summary(model_ AR)$logLik,2), round(summary(model AR)$AIC,2), roundi
stringsAsFactors = FALSE)

names(Model_Selection) <- c( "™ ","",""
print(Model_Selection)

#1 CS AR1

#2 -2LoglLik 140.75 141.11

#3 AIC 168.75 169.11

#4 BIC 185.25 185.61

detach(steer_data)

This page titled 12.3: Programming for Steer Example is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Penn State's Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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12.4: Testing the Significance of the Carry-Over Effect

To test for the overall significance of carry-over effects, we can drop the carry-over covariates (1 and z» in our example) and re-
run the ANOVA. Because the reduced model is a subset of the full model that includes the covariates, we can construct a likelihood
ratio test.

AG? = (—210g Liequced) — (—210g Lruy)  with dfreduced — dfruy degrees of freedom (12.4.1)

The —2log L values are provided in the SAS Fit Statistics output for each model. For our example, the SAS output for the Full
model with carry-over covariates is:

Fit Statistics

-2 Res Log 100 5
Likelihood '
AIC (smaller e
is better) )
AICC
(smaller is 132.6
better)
BIC (smaller

132.5

is better)

And for the reduced model without the carry-over covariates is:

Fit Statistics

-2 Res Log a6 5
Likelihood '
AIC (smaller
. 144.5
is better)
AICC
(smaller is 146.4
better)
BIC (smaller

146.4

is better)

So,
AG? =136.5—-122.5 =14
and with
X052 = 5-991

we conclude that there are significant carry-over effects.

This page titled 12.4: Testing the Significance of the Carry-Over Effect is shared under a CC BY-NC 4.0 license and was authored, remixed,
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12.5: Try It!

? Exercise 12.5.1

Ginkgo Biloba is recognized as a herbal remedy for memory improvement. To investigate its effectiveness on memory recall, a
cross-over study was planned using 3 treatments: one tablet of 120mg Ginkgo Biloba (G), one tablet of 200mg Caffeine pill
(C), and sleep for 2 hours before the recall test (S). The assignment order of the 3 treatments to participants was determined by
randomly assigning 12 college students to one of 6 possible sequences of the 3 treatments. The student recall capability was
assessed based on a Recall score and the 3 treatments were given over 3 consecutive days. On each day, only one treatment
was administered before one 1 hour of taking the recall test at 2.00 pm (the higher the recall score the better).

a) Which variable signifies the experimental unit?

Solution

Id
b) What is the washout period?

Solution

One day
¢) How many periods are required?

Solution

3
d) How many replicates are there?

Solution

2

e) Perform a statistical analysis to determine if the treatments vary with regard to memory recall. The data can be found in
Cross over Ex1.txt

Solution: Using SAS

DATA CROSS_OVER;

INPUT score Seq $ PER Id TRT $ X1 X2;
DATALINES;

74 CGS 1 1 C 0 ©
45 CGS 1 2 C 0 ©O
92 CSG 1 3 C 0 ©
94 CSG 1 4 C 0 ©
79 GCS 1 5 G O ©
35 GCS 1 6 G 0 ©
31 GSC 1 7 G 0 ©
40 GSC 1 8 G O ©
106 SCG 1 9 S 0 ©O
60 SCG 1 106 S O ©
80 SGC 1 11 S 0 ©O
1106 SGC 1 12 S 0 0
41 CGS 2 1 G 1 ©
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20 CGS 2 2 G 1 ©

50 CSG 2 3 S 1 ©

88 CSG 2 4 S 1 ©

92 GCS 2 5 C 0 1

50 GCS 2 6 C 0 1

32 GSC 2 7 S 0 1

54 GSC 2 8 S 0 1
120 sCG 2 9 C -1 -1
8o SCG 2 16 C -1 -1
7% SGC 2 11 G -1 -1
55 sGC 2 12 G -1 -1
64 CGS 3 1 S 0 1

30 CGS 3 2 S 0 1

50 ¢s6 3 3 G -1 -1
56 ¢S6 3 4 G -1 -1
76 GCS 3 5 S 1 0

50 GCS 3 6 S 1 0

38 GSC 3 7 C -1 -1
66 GSC 3 8 C -1 -1
85 SCG 3 9 G 1 0

40 SCG 3 10 G 1 ©
88 SGC 3 11 C 0 1
86 SGC 3 12 C 0 1

’

RUN;

proc mixed data=CROSS_OVER;
class PER TRT SEQ 1ID;
model SCORE=PER TRT SEQ X1 X2 / ddfm=kr;
repeated PER /subject=ID(SEQ) type=cs rcorr;
ods output FitStatistics=FitCS (rename=(value=CS)) FitStatistics=FitCSp;
title 'Compound Symmetry';
run;
title ' '; run;

proc mixed data=CROSS_OVER;
class PER TRT SEQ 1ID;
model SCORE=PER TRT SEQ X1 X2 / ddfm=kr;
repeated PER /subject=ID(SEQ) type=AR(1) rcorr;
ods output FitStatistics=FitAR1 (rename=(value=AR1)) FitStatistics=FitAR1p;
title 'Autoregressive Lag 1';
run;
title ' '; run;

proc mixed data=CROSS_OVER;
class PER TRT SEQ 1ID;
model SCORE=PER TRT SEQ X1 X2 / ddfm=kr;
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repeated PER /subject=ID(SEQ) type=UN rcorr;
ods output FitStatistics=FitUN (rename=(value=UN)) FitStatistics=FitUNp;
title 'Unstructured';

run;

title ' '; run;

proc mixed data=CROSS_OVER;
class PER TRT SEQ 1ID;
model SCORE=PER TRT SEQ X1 X2 / ddfm=kr;
repeated PER /subject=ID(SEQ) type=CSH rcorr;
ods output FitStatistics=FitCSH (rename=(value=CSH)) FitStatistics=FitCSHp;
title 'HETEROGENOUS COMPOUND SYMMETRY';
run;
title ' '; run;

data fits;
merge FitCS FitAR1 FitUN FITCSH;
by descr;
run;
ods listing; proc print data=fits; run;

The above code was used to obtain the fit statistics for different covariance structures and the AICC (AIC and BIC) values
indicate that CS is the best covariance structure. Hence, the remaining analysis was done using CS.

Obs Descr CS AR1 UN CSH
0 -2. Re§ Log 215.3 219.1 212.7 214.7
Likelihood
2 AIC (Smaller is 219.3 223.1 224.7 222.7
Better)
3 AICC (Smaller is 219.9 2237 2297 224.8
Better)
4 BIC (Smaller is 2203 224.1 227.6 224.6
Better)

/* Model Adjusting for carryover effects */
proc mixed data= CROSS_OVER;
class per TRT SEQ ID;
model SCORE=PER TRT SEQ X1 X2 / ddfm=kr;
repeated PER /subject=ID(SEQ) type=cs rcorr;
store out_CROSS_OVER;
run;

proc plm restore=out_CROSS_OVER;
1smeans TRT / adjust=tukey plot=meanplot cl lines;
ods exclude diffs diffplot;

run;
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/* Reduced Model, Ignoring carryover effects */
proc mixed data= CROSS_OVER;
class per TRT seq 1ID;
model SCORE=PER TRT SEQ / ddfm=kr;
repeated PER /subject=ID(SEQ) type=cs rcorr;
lsmeans TRT / pdiff adjust=tukey;
run;

Full Model: with carryover effect

Fit Statistics

-2 Res Log Likelihood 215.3
AIC (Smaller is Better) 219.3
AICC (Smaller is Better) 219.9
BIC (Smaller is Better) 220.3

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr>F
PER 2 18 3.12 0.0688
TRT 2 18 18.03 <.0001
Seq 5 6.1 1.46 0.3259
X1 1 18 0.10 0.7565
X2 1 18 0.18 0.6768

Reduced Model: without carryover effect

Fit Statistics

-2 Res Log Likelihood 224.2
AIC (Smaller is Better) 228.2
AICC (Smaller is Better) 228.7
BIC (Smaller is Better) 229.1

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr>F
PER 2 20 3.36 0.0552
TRT 2 20 23.70 <.0001
Seq 5 6 1.52 0.3101
The test statistic below tests for the significance of the carry over effect.

A? = (—210g Lreduced ) — (—210g Ly ) with\ (dfpu; — dfReducea degrees of freedom.
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A? = (224.2 —215.3) = 8.9. This exceeds the critical Chi-Square of 5.991 (X.205,2) indicating that model with carryover
effect is more appropriate and will be used to base the final conclusions.

In the full model output, the Treatment is the only significant factor, so LSmeans and comparisons are generated only for
the treatment effect. The results of the Tukey comparison procedure indicate that treatments C and S are not significantly
different, but G is significantly lower, indicating that both sleep for 2 hours and caffeine are similarly effective in improving
recall capability and are superior to Ginkgo biloba.

TRT Least Squares Means
TRT Estimate Standard DF t Value Pr > |t| Alpha Lower Upper
Error
76.7222 6.2382 8.572 12.30 <.0001 0.05 62.5024 90.9421
G 50.4306 6.2382 8.572 8.08 <.0001 0.05 36.2107 64.6504
S 67.5139 6.2382 8.572 10.82 <.0001 0.05 53.2940 81.7337

score Tukey-Kramer Grouping for LS-Means of
TRT (Alpha = 0.05)

LS-means covered by the same bar are nat significantly different.

TRT Estimate

c 787222

=3 B7.51389

G 50.4306 I

Figure 12.5.1: Scores for Tukey-Kramer grouping

This page titled 12.5: Try It! is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of
Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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12.6: Chapter 12 Summary

In this lesson, we discussed the second type of repeated measures designs, namely cross-over designs wherein the treatments
themselves are switched on the same experimental unit during the course of the experiment. One concern is the presence of
carryover effects caused due to previous applications of different treatment levels. Carryover effects can be reduced by imposing a
wash-out period in between the application of different treatment levels on the same experimental unit or by utilizing a repeated
measures ANCOVA model that includes coding covariates representing the carry-over effects.

This page titled 12.6: Chapter 12 Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's
Department of Statistics via source content that was edited to the style and standards of the LibreTexts platform.
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