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Note to Students and Instructors
April 27, 2023

Dear Students and Instructors,

This textbook is an initial attempt at creating a free introduction to statistics textbook that incorporates the free and popular
statistical software, R. This book is a collection of sections pulled from other free textbooks published on LibreTexts. Because
some sections are from one author's book and other sections are from another author's book, there are some inconsistencies. I
apologize in advance for the confusion this will cause and thank you for your understanding.

Sincerely,

W. Edward Chi
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SECTION OVERVIEW

1.1: Introduction

Having read this chapter, you should be able to:

Describe the central goals and fundamental concepts of statistics
Describe the difference between experimental and observational research with regard to what can be inferred about
causality
Explain how randomization provides the ability to make inferences about causation.

“Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write.” - H.G. Wells

1.1.1: What Is Statistical Thinking?

1.1.2: Dealing with Statistics Anxiety

1.1.3: What Can Statistics Do for Us?

1.1.4: The Big Ideas of Statistics

1.1.5: Causality and Statistics

This page titled 1.1: Introduction is shared under a CC BY-NC 2.0 license and was authored, remixed, and/or curated by Russell A. Poldrack via
source content that was edited to the style and standards of the LibreTexts platform.
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1.1.1: What Is Statistical Thinking?
Statistical thinking is a way of understanding a complex world by describing it in relatively simple terms that nonetheless capture
essential aspects of its structure, and that also provide us some idea of how uncertain we are about our knowledge. The foundations
of statistical thinking come primarily from mathematics and statistics, but also from computer science, psychology, and other fields
of study.

We can distinguish statistical thinking from other forms of thinking that are less likely to describe the world accurately. In
particular, human intuition often tries to answer the same questions that we can answer using statistical thinking, but often gets the
answer wrong. For example, in recent years most Americans have reported that they think that violent crime was worse compared
to the previous year (Pew Research Center). However, a statistical analysis of the actual crime data shows that in fact violent crime
has steadily decreased since the 1990’s. Intuition fails us because we rely upon best guesses (which psychologists refer to as
heuristics) that can often get it wrong. For example, humans often judge the prevalence of some event (like violent crime) using an
availability heuristic – that is, how easily can we think of an example of violent crime. For this reason, our judgments of increasing
crime rates may be more reflective of increasing news coverage, in spite of an actual decrease in the rate of crime. Statistical
thinking provides us with the tools to more accurately understand the world and overcome the fallibility of human intuition.
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1.1.2: Dealing with Statistics Anxiety
Many people come to their first statistics class with a lot of trepidation and anxiety, especially once they hear that they will also
have to learn to code in order to analyze data. In my class I give students a survey prior to the first session in order to measure their
attitude towards statistics, asking them to rate a number of statments on a scale of 1 (strongly disagree) to 7 (strongly agree). One
of the items on the survey is “The thought of being enrolled in a statistics course makes me nervous”. In the most recent class,
almost two-thirds of the class responded with a five or higher, and about one-fourth of the students said that they strongly agreed
with the statement. So if you feel nervous about starting to learn statistics, you are not alone.

Anxiety feels uncomfortable, but psychology tells us that this kind of emotional arousal can actually help us perform better on
many tasks, by focusing our attention So if you start to feel anxious about the material in this course, remind yourself that many
others in the class are feeling similarly, and that the arousal could actually help you perform better (even if it doesn’t seem like it!).
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1.1.3: What Can Statistics Do for Us?
There are three major things that we can do with statistics:

Describe: The world is complex and we often need to describe it in a simplified way that we can understand.
Decide: We often need to make decisions based on data, usually in the face of uncertainty.
Predict: We often wish to make predictions about new situations based on our knowledge of previous situations.

Let’s look at an example of these in action, centered on a question that many of us are interested in: How do we decide what’s
healthy to eat?
There are many different sources of guidance, from government dietary guidelines to diet books to bloggers. 
Let’s focus in on a specific question: Is saturated fat in our diet a bad thing?

One way that we might answer this question is common sense. 
If we eat fat then it’s going to turn straight into fat in our bodies, right? 
And we have all seen photos of arteries clogged with fat, so eating fat is going to clog our arteries, right?

Another way that we might answer this question is by listening to authority figures. The Dietary Guidelines from the US Food and
Drug Administration have as one of their Key Recommendations that “A healthy eating pattern limits saturated fats”.You might
hope that these guidelines would be based on good science, and in some cases they are, but as Nina Teicholz outlined in her book
“Big Fat Surprise”(Teicholz 2014), this particular recommendation seems to be based more on the dogma of nutrition researchers
than on actual evidence.

Finally, we might look at actual scientific research. Let’s start by looking at a large study called the PURE study, which has
examined diets and health outcomes (including death) in more than 135,000 people from 18 different countries. In one of the
analyses of this dataset (published in The Lancet in 2017; Dehghan et al. (2017)), the PURE investigators reported an analysis of
how intake of various classes of macronutrients (including saturated fats and carbohydrates) was related to the likelihood of dying
during the time that people were followed. People were followed for a median of 7.4 years, meaning that half of the people in the
study were followed for less and half were followed for more than 7.4 years. Figure 1.1 plots some of the data from the study
(extracted from the paper), showing the relationship between the intake of both saturated fats and carbohydrates and the risk of
dying from any cause.

Figure 1.1: A plot of data from the PURE study, showing the relationship between death from any cause and the relative intake of
saturated fats and carbohydrates.

This plot is based on ten numbers. To obtain these numbers, the researchers split the group of 135,335 study participants (which we
call the “sample”) into 5 groups (“quintiles”) after ordering them in terms of their intake of either of the nutrients; the first quintile
contains the 20% of people with the lowest intake, and the 5th quintile contains the 20% with the highest intake. The researchers
then computed how often people in each of those groups died during the time they were being followed. The figure expresses this
in terms of the relative risk of dying in comparison to the lowest quintile: If this number is greater than 1 it means that people in the
group are more likely to die than are people in the lowest quintile, whereas if it’s less than one it means that people in the group are
less likely to die. The figure is pretty clear: People who ate more saturated fat were less likely to die during the study, with the
lowest death rate seen for people who were in the fourth quintile (that is, who ate more fat than the lowest 60% but less than the top
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20%). The opposite is seen for carbohydrates; the more carbs a person ate, the more likely they were to die during the study. This
example shows how we can use statistics to describe a complex dataset in terms of a much simpler set of numbers; if we had to
look at the data from each of the study participants at the same time, we would be overloaded with data and it would be hard to see
the pattern that emerges when they are described more simply.

The numbers in Figure 1.1 seem to show that deaths decrease with saturated fat and increase with carbohydrate intake, but we also
know that there is a lot of uncertainty in the data; there are some people who died early even though they ate a low-carb diet, and,
similarly, some people who ate a ton of carbs but lived to a ripe old age. Given this variability, we want to decide whether the
relationships that we see in the data are large enough that we wouldn’t expect them to occur randomly if there was not truly a
relationship between diet and longevity. Statistics provide us with the tools to make these kinds of decisions, and often people from
the outside view this as the main purpose of statistics. But as we will see throughout the book, this need for black-and-white
decisions based on fuzzy evidence has often led researchers astray.

Based on the data we would also like to make predictions about future outcomes. For example, a life insurance company might
want to use data about a particular person’s intake of fat and carbohydrate to predict how long they are likely to live. An important
aspect of prediction is that it requires us to generalize from the data we already have to some other situation, often in the future; if
our conclusions were limited to the specific people in the study at a particular time, then the study would not be very useful. In
general, researchers must assume that their particular sample is representative of a larger population, which requires that they
obtain the sample in a way that provides an unbiased picture of the population. For example, if the PURE study had recruited all of
its participants from religious sects that practice vegetarianism, then we probably wouldn’t want to generalize the results to people
who follow different dietary standards.
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1.1.4: The Big Ideas of Statistics
There are a number of very basic ideas that cut through nearly all aspects of statistical thinking. Several of these are outlined by
Stigler (2016) in his outstanding book “The Seven Pillars of Statistical Wisdom”, which I have augmented here.

1.4.1 Learning from data
One way to think of statistics is as a set of tools that enable us to learn from data. In any situation, we start with a set of ideas or
hypotheses about what might be the case. In the PURE study, the researchers may have started out with the expectation that eating
more fat would lead to higher death rates, given the prevailing negative dogma about saturated fats. Later in the course we will
introduce the idea of prior knowledge, which is meant to reflect the knowledge that we bring to a situation. This prior knowledge
can vary in its strength, often based on our amount of experience; if I visit a restaurant for the first time I am likely to have a weak
expectation of how good it will be, but if I visit a restaurant where I have eaten ten times before, my expectations will be much
stronger. Similarly, if I look at a restaurant review site and see that a restaurant’s average rating of four stars is only based on three
reviews, I will have a weaker expectation than I would if it was based on 300 reviews.

Statistics provides us with a way to describe how new data can be best used to update our beliefs, and in this way there are deep
links between statistics and psychology. In fact, many theories of human and animal learning from psychology are closely aligned
with ideas from the new field of machine learning. Machine learning is a field at the interface of statistics and computer science
that focuses on how to build computer algorithms that can learn from experience. While statistics and machine learning often try to
solve the same problems, researchers from these fields often take very different approaches; the famous statistician Leo Breiman
once referred to them as “The Two Cultures” to reflect how different their approaches can be (Breiman 2001). In this book I will
try to blend the two cultures together because both approaches provide useful tools for thinking about data.

1.4.2 Aggregation

Another way to think of statistics is “the science of throwing away data”. In the example of the PURE study above, we took more
than 100,000 numbers and condensed them into ten. It is this kind of aggregation that is one of the most important concepts in
statistics. When it was first advanced, this was revolutionary: If we throw out all of the details about every one of the participants,
then how can we be sure that we aren’t missing something important?

As we will see, statistics provides us ways to characterize the structure of aggregates of data, and with theoretical foundations that
explain why this usually works well. However, it’s also important to keep in mind that aggregation can go too far, and later we will
encounter cases where a summary can provide a misleading picture of the data being summarized.

1.4.3 Uncertainty

The world is an uncertain place. We now know that cigarette smoking causes lung cancer, but this causation is probabilistic: A 68-
year-old man who smoked two packs a day for the past 50 years and continues to smoke has a 15% (1 out of 7) risk of getting lung
cancer, which is much higher than the chance of lung cancer in a nonsmoker. However, it also means that there will be many people
who smoke their entire lives and never get lung cancer. Statistics provides us with the tools to characterize uncertainty, to make
decisions under uncertainty, and to make predictions whose uncertainty we can quantify.

One often sees journalists write that scientific researchers have “proven” some hypothesis. But statistical analysis can never
“prove” a hypothesis, in the sense of demonstrating that it must be true (as one would in a logical or mathematical proof). Statistics
can provide us with evidence, but it’s always tentative and subject to the uncertainty that is always present in the real world.

1.4.4 Sampling
The concept of aggregation implies that we can make useful insights by collapsing across data – but how much data do we need?
The idea of sampling says that we can summarize an entire population based on just a small number of samples from the
population, as long as those samples are obtained in the right way. For example, the PURE study enrolled a sample of about
135,000 people, but its goal was to provide insights about the billions of humans who make up the population from which those
people were sampled. As we already discussed above, the way that the study sample is obtained is critical, as it determines how
broadly we can generalize the results. Another fundamental insight about sampling is that while larger samples are always better (in
terms of their ability to accurately represent the entire population), there are diminishing returns as the sample gets larger. In fact,
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the rate at which the benefit of larger samples decreases follows a simple mathematical rule, growing as the square root of the
sample size, such that in order to double the quality of our data we need to quadruple the size of our sample.
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1.1.5: Causality and Statistics
The PURE study seemed to provide pretty strong evidence for a positive relationship between eating saturated fat and living longer,
but this doesn’t tell us what we really want to know: If we eat more saturated fat, will that cause us to live longer? This is because
we don’t know whether there is a direct causal relationship between eating saturated fat and living longer. The data are consistent
with such a relationship, but they are equally consistent with some other factor causing both higher saturated fat and longer life. For
example, it is likely that people who are richer eat more saturated fat and richer people tend to live longer, but their longer life is
not necessarily due to fat intake — it could instead be due to better health care, reduced psychological stress, better food quality, or
many other factors. The PURE study investigators tried to account for these factors, but we can’t be certain that their efforts
completely removed the effects of other variables. The fact that other factors may explain the relationship between saturated fat
intake and death is an example of why introductory statistics classes often teach that “correlation does not imply causation”, though
the renowned data visualization expert Edward Tufte has added, “but it sure is a hint.”

Although observational research (like the PURE study) cannot conclusively demonstrate causal relations, we generally think that
causation can be demonstrated using studies that experimentally control and manipulate a specific factor. In medicine, such a study
is referred to as a randomized controlled trial (RCT). Let’s say that we wanted to do an RCT to examine whether increasing
saturated fat intake increases life span. To do this, we would sample a group of people, and then assign them to either a treatment
group (which would be told to increase their saturated fat intake) or a control group (who would be told to keep eating the same as
before). It is essential that we assign the individuals to these groups randomly. Otherwise, people who choose the treatment might
be different in some way than people who choose the control group – for example, they might be more likely to engage in other
healthy behaviors as well. We would then follow the participants over time and see how many people in each group died. Because
we randomized the participants to treatment or control groups, we can be reasonably confident that there are no other differences
between the groups that would confound the treatment effect; however, we still can’t be certain because sometimes randomization
yields treatment versus control groups that do vary in some important way. Researchers often try to address these confounds using
statistical analyses, but removing the influence of a confound from the data can be very difficult.

A number of RCTs have examined the question of whether changing saturated fat intake results in better health and longer life.
These trials have focused on reducing saturated fat because of the strong dogma amongst nutrition researchers that saturated fat is
deadly; most of these researchers would have probably argued that it was not ethical to cause people to eat more saturated fat!
However, the RCTs have show a very consistent pattern: Overall there is no appreciable effect on death rates of reducing saturated
fat intake.
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SECTION OVERVIEW

1.2: Working with Data

Having read this chapter, you should be able to:

Distinguish between different types of variables (quantitative/qualitative, binary/integer/real, discrete/continuous) and give
examples of each of these kinds of variables
Distinguish between the concepts of reliability and validity and apply each concept to a particular dataset

1.2.1: What Are Data?

1.2.2: Data Basics

1.2.3: Scales of Measurement

1.2.4: What Makes a Good Measurement?

1.2.5: Overview of Data Collection Principles

1.2.6: Observational Studies and Sampling Strategies

1.2.7: Experiments

1.2.8: How Not to Do Statistics

1.2.9: Exercises
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1.2.1: What Are Data?
The first important point about data is that data are - meaning that the word “data” is plural (though some people disagree with me
on this). You might also wonder how to pronounce “data” – I say “day-tah” but I know many people who say “dah-tah” and I have
been able to remain friends with them in spite of this. Now if I heard them say “the data is” then that would be bigger issue…

2.1.1 Qualitative data
Data are composed of variables, where a variable reflects a unique measurement or quantity. Some variables are qualitative,
meaning that they describe a quality rather than a numeric quantity. For example, in my stats course I generally give an
introductory survey, both to obtain data to use in class and to learn more about the students. One of the questions that I ask is
“What is your favorite food?”, to which some of the answers have been: blueberries, chocolate, tamales, pasta, pizza, and mango.
Those data are not intrinsically numerical; we could assign numbers to each one (1=blueberries, 2=chocolate, etc), but we would
just be using the numbers as labels rather than as real numbers; for example, it wouldn’t make sense to add the numbers together in
this case. However, we will often code qualitative data using numbers in order to make them easier to work with, as you will see
later.

2.1.2 Quantitative data
More commonly in statistics we will work with quantitative data, meaning data that are numerical. For example, here Table 2.1
shows the results from another question that I ask in my introductory class, which is “Why are you taking this class?”

Table 2.1: Counts of the prevalence of different responses to the question “Why are you taking this class?”

Why are you taking this class? Number of students

It fulfills a degree plan requirement 105

It fulfills a General Education Breadth Requirement 32

It is not required but I am interested in the topic 11

Other 4

Note that the students’ answers were qualitative, but we generated a quantitative summary of them by counting how many students
gave each response.

2.1.2.1 Types of numbers

There are several different types of numbers that we work with in statistics. It’s important to understand these differences, in part
because programming languages like R often distinguish between them.

Binary numbers. The simplest are binary numbers – that is, zero or one. We will often use binary numbers to represent whether
something is true or false, or present or absent. For example, I might ask 10 people if they have ever experienced a migraine
headache, recording their answers as “Yes” or “No”. It’s often useful to instead use logical values, which take the value of either 
TRUE  or FALSE . We can create these by testing whether each value is equal to “Yes”, which we can do using the ==

symbol. This will return the value TRUE  for any matching “Yes” values, and FALSE  otherwise. These are useful to R knows
how to interpret them natively, whereas it doesn’t know what “Yes” and “No” mean.

In general, most programming languages treat truth values and binary numbers equivalently. The number 1 is equal to the logical
value TRUE , and the number zero is equal to the logical value FALSE .

Integers. Integers are whole numbers with no fractional or decimal part. We most commonly encounter integers when we count
things, but they also often occur in psychological measurement. For example, in my introductory survey I administer a set of
questions about attitudes towards statistics (such as “Statistics seems very mysterious to me.”), on which the students respond with
a number between 1 (“Disagree strongly”) and 7 (“Agree strongly”).

Real numbers. Most commonly in statistics we work with real numbers, which have a fractional/decimal part. For example, we
might measure someone’s weight, which can be measured to an arbitrary level of precision, from whole pounds down to
micrograms.
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1.2.2: Data Basics
Effective presentation and description of data is a first step in most analyses. This section introduces one structure for organizing
data as well as some terminology that will be used throughout this book.

Observations, variables, and data matrices
Table 1.3 displays rows 1, 2, 3, and 50 of a data set concerning 50 emails received during early 2012. These observations will be
referred to as the email50 data set, and they are a random sample from a larger data set that we will see in Section 1.7.

Table 1.3: Four rows from the email 50 data matrix.

spam num_char line_breaks format number

1 no 21,705 551 html small

2 no 7,011 183 html big

3 yes 631 28 text none

50 no 15,829 242 html small

Each row in the table represents a single email or case (a case is also sometimes called a unit of observation or an observational
unit.). The columns represent characteristics, called variables, for each of the emails. For example, the first row represents email 1,
which is a not spam, contains 21,705 characters, 551 line breaks, is written in HTML format, and contains only small numbers.

In practice, it is especially important to ask clarifying questions to ensure important aspects of the data are understood. For
instance, it is always important to be sure we know what each variable means and the units of measurement. Descriptions of all five
email variables are given in Table 1.4.

Table 1.4: Variables and their descriptions for the email 50 data set.

variable description

spam Specifies whether the message was spam

num_char The number of characters in the email

line_breaks
The number of line breaks in the email (not including text

wrapping)

format
Indicates if the email contained special formatting, such as

bolding, tables, or links, which would indicate the message is in
HTML format

number
Indicates whether the email contained no number, a small number

(under1 million), or a large number

The data in Table 1.3 represent a data matrix, which is a common way to organize data. Each row of a data matrix corresponds to
a unique case, and each column corresponds to a variable. A data matrix for the stroke study introduced in Section 1.1 is shown in
Table 1.1, where the cases were patients and there were three variables recorded for each patient.

Data matrices are a convenient way to record and store data. If another individual or case is added to the data set, an additional row
can be easily added. Similarly, another column can be added for a new variable.

Exercise 1.2 We consider a publicly available data set that summarizes information about the 3,143 counties in the United
states, and we call this the county data set. This data set includes information about each county: its name, the state where it

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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resides, its population in 2000 and 2010, per capita federal spending, poverty rate, and ve additional characteristics. How might
these data be organized in a data matrix? Reminder: look in the footnotes for answers to in-text exercises.

Each county may be viewed as a case, and there are eleven pieces of information recorded for each case. A table with 3,143
rows and 11 columns could hold these data, where each row represents a county and each column represents a particular piece
of information.

Seven rows of the county data set are shown in Table 1.5, and the variables are summarized in Table 1.6. These data were collected
from the US Census website.

quickfacts.census.gov/qfd/index.html

Table 1.5: Seven rows from the county data set.

name state
pop
2000

pop
2010

fed
spend

poverty
home

owner-
ship

multiu-
nit

income
med

income
smoking

ban

1
Autau-

ga
AL 43671 54571 6.068 10.6 77.5 7.2 24568 53255 none

2
Baldw-

in
AL 140415 182265 6.140 12.2 76.7 22.6 26469 50147 none

3
Barbo-

ur
AL 29038 27457 8.752 25.0 68.0 11.1 15875 33219 none

4 Bibb AL 20826 22915 7.122 12.6 82.9 6.6 19918 41770 none

5 Blount AL 51024 57322 5.131 13.4 82.0 3.7 21070 45549 none

3142
Wash-
akie

WY 8289 8533 8.714 5.6 70.9 10.0 28557 48379 none

3143 West-on WY 6644 7208 6.695 7.9 77.9 6.5 28463 53853 none

Table 1.6: Variables and their descriptions for the county data set.

variable description

name County name
state State where the county resides (also including the District of Columbia)
pop2000 Population in 2000
pop2010 Population in 2010
fed_spend Federal spending per capita
poverty Percent of the population in poverty
homeownership Percent of the population that lives in their own home or lives with the owner
(e.g. children living with parents who own the home)
multiunit Percent of living units that are in multi-unit structures (e.g. apartments)
income Income per capita
med_income Median household income for the county, where a household's income equals
the total income of its occupants who are 15 years or older
smoking_ban Type of county-wide smoking ban in place at the end of 2011, which takes one
of three values: none, partial, or comprehensive, where a comprehensive
ban means smoking was not permitted in restaurants, bars, or workplaces, and
partial means smoking was banned in at least one of those three locations

5

5

6

6

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/3.0/
https://stats.libretexts.org/@go/page/35601?pdf


1.2.2.3 https://stats.libretexts.org/@go/page/35601

Types of variables

Examine the fed spend, pop2010, state, and smoking ban variables in the county data set. Each of these variables is inherently
different from the other three yet many of them share certain characteristics.

First consider fed spend, which is said to be a numerical variable since it can takea wide range of numerical values, and it is
sensible to add, subtract, or take averages with those values. On the other hand, we would not classify a variable reporting
telephone area codes as numerical since their average, sum, and difference have no clear meaning.

The pop2010 variable is also numerical, although it seems to be a little different than fed spend. This variable of the population
count can only take whole non-negative numbers (0, 1, 2, ...). For this reason, the population variable is said to be discrete since it
can only take numerical values with jumps. On the other hand, the federal spending variable is said to be continuous.

The variable state can take up to 51 values after accounting for Washington, DC: AL, ..., and WY. Because the responses
themselves are categories, state is called a categorical variable,7 and the possible values are called the variable's levels.

Finally, consider the smoking ban variable, which describes the type of county-wide smoking ban and takes values none, partial, or
comprehensive in each county. This variable seems to be a hybrid: it is a categorical variable but the levels have a natural ordering.
A variable with these properties is called an ordinal variable. To simplify analyses, any ordinal variables in this book will be
treated as categorical variables.

Example 1.3 Data were collected about students in a statistics course. Three variables were recorded for each student: number of
siblings, student height, and whether the student had previously taken a statistics course. Classify each of the variables as
continuous numerical, discrete numerical, or categorical.

The number of siblings and student height represent numerical variables. Because the number of siblings is a count, it is discrete.
Height varies continuously, so it is a continuous numerical variable. The last variable classi es students into two categories - those
who have and those who have not taken a statistics course - which makes this variable categorical.

Exercise 1.4 Consider the variables group and outcome (at 30 days) from the stent study in Section 1.1. Are these numerical or
categorical variables?

There are only two possible values for each variable, and in both cases they describe categories. Thus, each are categorical
variables.

Sometimes also called a nominal variable.

Relationships between variables
Many analyses are motivated by a researcher looking for a relationship between two or more variables. A social scientist may like
to answer some of the following questions:

1. Is federal spending, on average, higher or lower in counties with high rates of poverty?
2. If homeownership is lower than the national average in one county, will the percent of multi-unit structures in that county likely

be above or below the national average?
3. Which counties have a higher average income: those that enact one or more smoking bans or those that do not?

To answer these questions, data must be collected, such as the county data set shown in Table 1.5. Examining summary statistics
could provide insights for each of the three questions about counties. Additionally, graphs can be used to visually summarize data

Exercise 1.2.2.1

8

8
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and are useful for answering such questions as well.

Figure 1.8: A scatterplot showing fed spend against poverty. Owsley County of Kentucky, with a poverty rate of 41.5% and federal
spending of $21.50 per capita, is highlighted.

Scatterplots are one type of graph used to study the relationship between two numerical variables. Figure 1.8 compares the
variables fed spend and poverty. Each point on the plot represents a single county. For instance, the highlighted dot corresponds to
County 1088 in the county data set: Owsley County, Kentucky, which had a poverty rate of 41.5% and federal spending of $21.50
per capita. The scatterplot suggests a relationship between the two variables: counties with a high poverty rate also tend to have
slightly more federal spending. We might brainstorm as to why this relationship exists and investigate each idea to determine which
is the most reasonable explanation.

Exercise 1.5 Examine the variables in the email50 data set, which are described in Table 1.4 on page 4. Create two questions
about the relationships between these variables that are of interest to you.

Two sample questions: (1) Intuition suggests that if there are many line breaks in an email then there would tend to also be
many characters: does this hold true? (2) Is there a connection between whether an email format is plain text (versus HTML)
and whether it is a spam message?

The fed_spend and poverty variables are said to be associated because the plot shows a discernible pattern. When two variables
show some connection with one another, they are called associated variables. Associated variables can also be called dependent
variables and vice-versa.

Example 1.6 This example examines the relationship between homeownership and the percent of units in multi-unit structures
(e.g. apartments, condos), which is visualized using a scatterplot in Figure 1.9. Are these variables associated?

Exercise 1.2.2.1
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Figure 1.9: A scatterplot of homeownership versus the percent of units that are in multi-unit structures for all 3,143 counties.

Solution

It appears that the larger the fraction of units in multi-unit structures, the lower the homeownership rate. Since there is some
relationship between the variables, they are associated.

Because there is a downward trend in Figure 1.9 { counties with more units in multiunit structures are associated with lower
homeownership - these variables are said to be negatively associated. A positive association is shown in the relationship
between the poverty and fed spend variables represented in Figure 1.8, where counties with higher poverty rates tend to receive
more federal spending per capita.

If two variables are not associated, then they are said to be independent. That is, two variables are independent if there is no
evident relationship between the two.

A pair of variables are either related in some way (associated) or not (independent). No pair of variables is both associated and
independent.

This page titled 1.2.2: Data Basics is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by David Diez, Christopher
Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the LibreTexts platform.

1.3: Data Basics by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel is licensed CC BY-SA 3.0. Original source:
https://www.openintro.org/book/os.
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1.2.3: Scales of Measurement

2.4.1 Scales of measurement

All variables must take on at least two different possible values (otherwise they would be a constant rather than a variable), but
different values of the variable can relate to each other in different ways, which we refer to as scales of measurement. There are
four ways in which the different values of a variable can differ.

Identity: Each value of the variable has a unique meaning.
Magnitude: The values of the variable reflect different magnitudes and have an ordered relationship to one another — that is,
some values are larger and some are smaller.
Equal intervals: Units along the scale of measurement are equal to one another. This means, for example, that the difference
between 1 and 2 would be equal in its magnitude to the difference between 19 and 20.
Absolute zero: The scale has a true meaningful zero point. For example, for many measurements of physical quantities such as
height or weight, this is the complete absence of the thing being measured.

There are four different scales of measurement that go along with these different ways that values of a variable can differ.

Nominal scale. A nominal variable satisfies the criterion of identity, such that each value of the variable represents something
different, but the numbers simply serve as qualitative labels as discussed above. For example, we might ask people for their
political party affiliation, and then code those as numbers: 1 = “Republican”, 2 = “Democrat”, 3 = “Libertarian”, and so on.
However, the different numbers do not have any ordered relationship with one another.

Ordinal scale. An ordinal variable satisfies the criteria of identity and magnitude, such that the values can be ordered in terms of
their magnitude. For example, we might ask a person with chronic pain to complete a form every day assessing how bad their pain
is, using a 1-7 numeric scale. Note that while the person is presumably feeling more pain on a day when they report a 6 versus a
day when they report a 3, it wouldn’t make sense to say that their pain is twice as bad on the former versus the latter day; the
ordering gives us information about relative magnitude, but the differences between values are not necessarily equal in magnitude.

Interval scale. An interval scale has all of the features of an ordinal scale, but in addition the intervals between units on the
measurement scale can be treated as equal. A standard example is physical temperature measured in Celsius or Farenheit; the
physical difference between 10 and 20 degrees is the same as the physical difference between 90 and 100 degrees, but each scale
can also take on negative values.

Ratio scale. A ratio scale variable has all four of the features outlined above: identity, magnitude, equal intervals, and absolute zero.
The difference between a ratio scale variable and an interval scale variable is that the ratio scale variable has a true zero point.
Examples of ratio scale variables include physical height and weight, along with temperature measured in Kelvin.

There are two important reasons that we must pay attention to the scale of measurement of a variable. First, the scale determines
what kind of mathematical operations we can apply to the data (see Table 2.2). A nominal variable can only be compared for
equality; that is, do two observations on that variable have the same numeric value? It would not make sense to apply other
mathematical operations to a nominal variable, since they don’t really function as numbers in a nominal variable, but rather as
labels. With ordinal variables, we can also test whether one value is greater or lesser than another, but we can’t do any arithmetic.
Interval and ratio variables allow us to perform arithmetic; with interval variables we can only add or subtract values, whereas with
ratio variables we can also multiply and divide values.

Table 2.2: Different scales of measurement admit different types of numeric operations

Equal/not equal >/< +/- Multiply/divide

Nominal OK    

Ordinal OK OK   

Interval OK OK OK  

Ratio OK OK OK OK

These constraints also imply that there are certain kinds of statistics that we can compute on each type of variable. Statistics that
simply involve counting of different values (such as the most common value, known as the mode), can be calculated on any of the
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variable types. Other statistics are based on ordering or ranking of values (such as the median, which is the middle value when all
of the values are ordered by their magnitude), and these require that the value at least be on an ordinal scale. Finally, statistics that
involve adding up values (such as the average, or mean), require that the variables be at least on an interval scale. Having said that,
we should note that it’s quite common for researchers to compute the mean of variables that are only ordinal (such as responses on
personality tests), but this can sometimes be problematic.

This page titled 1.2.3: Scales of Measurement is shared under a CC BY-NC 2.0 license and was authored, remixed, and/or curated by Russell A.
Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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1.2.4: What Makes a Good Measurement?
In many fields such as psychology, the thing that we are measuring is not a physical feature, but instead is an unobservable
theoretical concept, which we usually refer to as a construct. For example, let’s say that I want to test how well you understand the
distinction between the four different scales of measurement described above. I could give you a pop quiz that would ask you
several questions about these concepts and count how many you got right. This test might or might not be a good measurement of
the construct of your actual knowledge — for example, if I were to write the test in a confusing way or use language that you don’t
understand, then the test might suggest you don’t understand the concepts when really you do. On the other hand, if I give a
multiple choice test with very obvious wrong answers, then you might be able to perform well on the test even if you don’t actually
understand the material.

It is usually impossible to measure a construct without some amount of error. In the example above, you might know the answer
but you might mis-read the question and get it wrong. In other cases there is error intrinsic to the thing being measured, such as
when we measure how long it takes a person to respond on a simple reaction time test, which will vary from trial to trial for many
reasons. We generally want our measurement error to be as low as possible.

Sometimes there is a standard against which other measurements can be tested, which we might refer to as a “gold standard” — for
example, measurement of sleep can be done using many different devices (such as devices that measure movement in bed), but
they are generally considered inferior to the gold standard of polysomnography (which uses measurement of brain waves to
quantify the amount of time a person spends in each stage of sleep). Often the gold standard is more difficult or expensive to
perform, and the cheaper method is used even though it might have greater error.

When we think about what makes a good measurement, we usually distinguish two different aspects of a good measurement.

2.5.1 Reliability
Reliability refers to the consistency of our measurements. One common form of reliability, known as “test-retest reliability”,
measures how well the measurements agree if the same measurement is performed twice. For example, I might give you a
questionnaire about your attitude towards statistics today, repeat this same questionnaire tomorrow, and compare your answers on
the two days; we would hope that they would be very similar to one another, unless something happened in between the two tests
that should have changed your view of statistics (like reading this book!).

Another way to assess reliability comes in cases where the data includes subjective judgments. For example, let’s say that a
researcher wants to determine whether a treatment changes how well an autistic child interacts with other children, which is
measured by having experts watch the child and rate their interactions with the other children. In this case we would like to make
sure that the answers don’t depend on the individual rater — that is, we would like for there to be high inter-rater reliability. This
can be assessed by having more than one rater perform the rating, and then comparing their ratings to make sure that they agree
well with one another.

Reliability is important if we want to compare one measurement to another. The relationship between two different variables can’t
be any stronger than the relationship between either of the variables and itself (i.e., its reliability). This means that an unreliable
measure can never have a strong statistical relationship with any other measure. For this reason, researchers developing a new
measurement (such as a new survey) will often go to great lengths to establish and improve its reliability.
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Figure 2.1: A figure demonstrating the distinction between reliability and validity, using shots at a bullseye. Reliability refers to the
consistency of location of shots, and validity refers to the accuracy of the shots with respect to the center of the bullseye.

2.5.2 Validity
Reliability is important, but on its own it’s not enough: After all, I could create a perfectly reliable measurement on a personality
test by re-coding every answer using the same number, regardless of how the person actually answers. We want our measurements
to also be valid — that is, we want to make sure that we are actually measuring the construct that we think we are measuring
(Figure 2.1). There are many different types of validity that are commonly discussed; we will focus on three of them.

Face validity. Does the measurement make sense on its face? If I were to tell you that I was going to measure a person’s blood
pressure by looking at the color of their tongue, you would probably think that this was not a valid measure on its face. On the
other hand, using a blood pressure cuff would have face validity. This is usually a first reality check before we dive into more
complicated aspects of validity.

Construct validity. Is the measurement related to other measurements in an appropriate way? This is often subdivided into two
aspects. Convergent validity means that the measurement should be closely related to other measures that are thought to reflect the
same construct. Let’s say that I am interested in measuring how extroverted a person is using a questionnaire or an interview.
Convergent validity would be demonstrated if both of these different measurements are closely related to one another. On the other
hand, measurements thought to reflect different constructs should be unrelated, known as divergent validity. If my theory of
personality says that extraversion and conscientiousness are two distinct constructs, then I should also see that my measurements of
extraversion are unrelated to measurements of conscientiousness.

Predictive validity. If our measurements are truly valid, then they should also be predictive of other outcomes. For example, let’s
say that we think that the psychological trait of sensation seeking (the desire for new experiences) is related to risk taking in the
real world. To test for predictive validity of a measurement of sensation seeking, we would test how well scores on the test predict
scores on a different survey that measures real-world risk taking.

This page titled 1.2.4: What Makes a Good Measurement? is shared under a CC BY-NC 2.0 license and was authored, remixed, and/or curated by
Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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https://statsthinking21.github.io/statsthinking21-core-site.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/2.0/
https://stats.libretexts.org/@go/page/35603?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/01%3A_Basics/1.02%3A_Working_with_Data/1.2.04%3A_What_Makes_a_Good_Measurement
https://creativecommons.org/licenses/by-nc/2.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site
https://stats.libretexts.org/@go/page/7737
https://poldracklab.stanford.edu/
https://creativecommons.org/licenses/by-nc/4.0/
https://statsthinking21.github.io/statsthinking21-core-site


1.2.5.1 https://stats.libretexts.org/@go/page/35604

1.2.5: Overview of Data Collection Principles
The first step in conducting research is to identify topics or questions that are to be investigated. A clearly laid out research
question is helpful in identifying what subjects or cases should be studied and what variables are important. It is also important to
consider how data are collected so that they are reliable and help achieve the research goals.

Populations and samples
Consider the following three research questions:

1. What is the average mercury content in sword sh in the Atlantic Ocean?
2. Over the last 5 years, what is the average time to degree for Duke undergraduate students?
3. Does a new drug reduce the number of deaths in patients with severe heart disease?

Each research question refers to a target population. In the rst question, the target population is all sword sh in the Atlantic ocean,
and each sh represents a case. Often times, it is too expensive to collect data for every case in a population. Instead, a sample is
taken. A sample represents a subset of the cases and is often a small fraction of the population. For instance, 60 sword sh (or some
other number) in the population might be selected, and this sample data may be used to provide an estimate of the population
average and answer the research question.

Exercise 1.7 For the second and third questions above, identify the target population and what represents an individual case.

Anecdotal Evidence
Consider the following possible responses to the three research questions:

1. A man on the news got mercury poisoning from eating sword sh, so the average mercury concentration in sword sh must be
dangerously high.

2. I met two students who took more than 7 years to graduate from Duke, so it must take longer to graduate at Duke than at many
other colleges.

3. My friend's dad had a heart attack and died after they gave him a new heart disease drug, so the drug must not work.

Each of the conclusions are based on some data. However, there are two problems. First, the data only represent one or two cases.
Second, and more importantly, it is unclear whether these cases are actually representative of the population. Data collected in this
haphazard fashion are called anecdotal evidence.

(2) Notice that the rst question is only relevant to students who complete their degree; the average cannot be computed using a
student who never nished her degree. Thus, only Duke undergraduate students who have graduated in the last ve years represent
cases in the population under consideration. Each such student would represent an individual case. (3) A person with severe heart
disease represents a case. The population includes all people with severe heart disease.

Exercise
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Figure 1.10: In February 2010, some media pundits cited one large snow storm as valid evidence against global warming. As
comedian Jon Stewart pointed out, “It’s one storm, in one region, of one country.”

Be careful of data collected in a haphazard fashion. Such evidence may be true and veri able, but it may only represent
extraordinary cases.

Anecdotal evidence typically is composed of unusual cases that we recall based on their striking characteristics. For instance, we
are more likely to remember the two people we met who took 7 years to graduate than the six others who graduated in four years.
Instead of looking at the most unusual cases, we should examine a sample of many cases that represent the population.

Sampling from a Population
We might try to estimate the time to graduation for Duke undergraduates in the last 5 years by collecting a sample of students. All
graduates in the last 5 years represent the population, and graduates who are selected for review are collectively called the sample.
In general, we always seek to randomly select a sample from a population. The most basic type of random selection is equivalent to
how raffles are conducted. For example, in selecting graduates, we could write each graduate's name on a raffle ticket and draw 100
tickets. The selected names would represent a random sample of 100 graduates. Why pick a sample randomly? Why not just pick a
sample by hand? Consider the following scenario.

Example 1.8 Suppose we ask a student who happens to be majoring in nutrition to select several graduates for the study. What
kind of students do you think she might collect? Do you think her sample would be representative of all graduates?

Perhaps she would pick a disproportionate number of graduates from health-related fields. Or perhaps her selection would be
well-representative of the population. When selecting samples by hand, we run the risk of picking a biased sample, even if that
bias is unintentional or difficult to discern.

Anecdotal evidence

Example
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Figure 1.11: In this graphic, five graduates are randomly selected from the population to be included in the sample.

Figure 1.12: Instead of sampling from all graduates equally, a nutrition major might inadvertently pick graduates with health
related majors disproportionally often.

If someone was permitted to pick and choose exactly which graduates were included in the sample, it is entirely possible that the
sample could be skewed to that person's interests, which may be entirely unintentional. This introduces bias into a sample.
Sampling randomly helps resolve this problem. The most basic random sample is called a simple random sample, and it is the
equivalent of using a raffle to select cases. This means that each case in the population has an equal chance of being included and
there is no implied connection between the cases in the sample.

The act of taking a simple random sample helps minimize bias, however, bias can crop up in other ways. Even when people are
picked at random, e.g. for surveys, caution must be exercised if the non-response is high. For instance, if only 30% of the people
randomly sampled for a survey actually respond, then it is unclear whether the results are representative of the entire population.
This non-response bias can skew results.

Another common downfall is a convenience sample, where individuals who are easily accessible are more likely to be included in
the sample. For instance, if a political survey is done by stopping people walking in the Bronx, this will not represent all of New
York City. It is often diffcult to discern what sub-population a convenience sample represents.

Exercise 1.9 We can easily access ratings for products, sellers, and companies through websites. These ratings are based only
on those people who go out of their way to provide a rating. If 50% of online reviews for a product are negative, do you think
this means that 50% of buyers are dissatisfied with the product?

Answers will vary. From our own anecdotal experiences, we believe people tend to rant more about products that fell below
expectations than rave about those that perform as expected. For this reason, we suspect there is a negative bias in product
ratings on sites like Amazon. However, since our experiences may not be representative, we also keep an open mind should
data on the subject become available.

Exercise
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Figure 1.13: Due to the possibility of non-response, surveys studies may only reach a certain group within the population. It is
difficult, and often times impossible, to completely x this problem.

Explanatory and Response Variables

Consider the following question from page 7 for the county data set:

(1) Is federal spending, on average, higher or lower in counties with high rates of poverty?

If we suspect poverty might a ect spending in a county, then poverty is the explanatory variable and federal spending is the
response variable in the relationship.  If there are many variables, it may be possible to consider a number of them as explanatory
variables.

TIP: Explanatory and response variables
To identify the explanatory variable in a pair of variables, identify which of the two is suspected of a ecting the other and plan an
appropriate analysis.

Caution: association does not imply causation
Labeling variables as explanatory and response does not guarantee the relationship between the two is actually causal, even if there is
an association identi ed between the two variables. We use these labels only to keep track of which variable we suspect a ects the other.

In some cases, there is no explanatory or response variable. Consider the following question from page 7:

(2) If homeownership is lower than the national average in one county, will the percent of multi-unit structures in that county likely
be above or below the national average?

It is difficult to decide which of these variables should be considered the explanatory and response variable, i.e. the direction is
ambiguous, so no explanatory or response labels are suggested here.

Sometimes the explanatory variable is called the independent variable and the response variable is called the dependent variable.
However, this becomes confusing since a pair of variables might be independent or dependent, so we avoid this language.

Introducing observational studies and experiments

There are two primary types of data collection: observational studies and experiments.

Researchers perform an observational study when they collect data in a way that does not directly interfere with how the data
arise. For instance, researchers may collect information via surveys, review medical or company records, or follow a cohort of
many similar individuals to study why certain diseases might develop. In each of these situations, researchers merely observe the
data that arise. In general, observational studies can provide evidence of a naturally occurring association between variables, but
they cannot by themselves show a causal connection.

When researchers want to investigate the possibility of a causal connection, they conduct an experiment. Usually there will be
both an explanatory and a response variable. For instance, we may suspect administering a drug will reduce mortality in heart
attack patients over the following year. To check if there really is a causal connection between the explanatory variable and the
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might affect

(1.2.5.1)
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response, researchers will collect a sample of individuals and split them into groups. The individuals in each group are assigned a
treatment. When individuals are randomly assigned to a group, the experiment is called a randomized experiment. For example,
each heart attack patient in the drug trial could be randomly assigned, perhaps by flipping a coin, into one of two groups: the first
group receives a placebo (fake treatment) and the second group receives the drug. See the case study in Section 1.1 for another
example of an experiment, though that study did not employ a placebo.

In general, association does not imply causation, and causation can only be inferred from a randomized experiment.

This page titled 1.2.5: Overview of Data Collection Principles is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated
by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the LibreTexts
platform.
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1.2.6: Observational Studies and Sampling Strategies

Observational Studies

Generally, data in observational studies are collected only by monitoring what occurs, what occurs, while experiments require the
primary explanatory variable in a study be assigned for each subject by the researchers. Making causal conclusions based on
experiments is often reasonable. However, making the same causal conclusions based on observational data can be treacherous and
is not recommended. Thus, observational studies are generally only sufficient to show associations.

Suppose an observational study tracked sunscreen use and skin cancer, and it was found that the more sunscreen someone used,
the more likely the person was to have skin cancer. Does this mean sunscreen causes skin cancer?

Solution

No. See the paragraph following the exercise for an explanation.

Some previous research tells us that using sunscreen actually reduces skin cancer risk, so maybe there is another variable that can
explain this hypothetical association between sunscreen usage and skin cancer. One important piece of information that is absent is
sun exposure. If someone is out in the sun all day, she is more likely to use sunscreen and more likely to get skin cancer. Exposure
to the sun is unaccounted for in the simple investigation.

Sun exposure is what is called a confounding variable (also called a lurking variable, confounding factor, or a confounder), which
is a variable that is correlated with both the explanatory and response variables. While one method to justify making causal
conclusions from observational studies is to exhaust the search for confounding variables, there is no guarantee that all
confounding variables can be examined or measured. In the same way, the county data set is an observational study with
confounding variables, and its data cannot easily be used to make causal conclusions.

Figure 1.9 shows a negative association between the homeownership rate and the percentage of multi-unit structures in a
county. However, it is unreasonable to conclude that there is a causal relationship between the two variables. Suggest one or
more other variables that might explain the relationship visible in Figure 1.9.

Solution

Answers will vary. Population density may be important. If a county is very dense, then this may require a larger fraction of
residents to live in multi-unit structures. Additionally, the high density may contribute to increases in property value, making
homeownership infeasible for many residents.

Observational studies come in two forms: prospective and retrospective studies. A prospective study identifies individuals and
collects information as events unfold. For instance, medical researchers may identify and follow a group of similar individuals over
many years to assess the possible influences of behavior on cancer risk. One example of such a study is The Nurses Health Study,
started in 1976 and expanded in 1989. This prospective study recruits registered nurses and then collects data from them using
questionnaires. Retrospective studies collect data after events have taken place, e.g. researchers may review past events in medical
records. Some data sets, such as county, may contain both rospectively- and retrospectively-collected variables. Local governments
prospectively collect some variables as events unfolded (e.g. retails sales) while the federal government retrospectively collected
others during the 2010 census (e.g. county population counts).

Exercise 1.2.6.1

Exercise 1.2.6.2
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Three Sampling Methods
Almost all statistical methods are based on the notion of implied randomness. If observational data are not collected in a random
framework from a population, these statistical methods are not reliable. Here we consider three random sampling techniques:
simple, stratified, and cluster sampling. Figure 1.14 provides a graphical representation of these techniques.

Simple random sampling is probably the most intuitive form of random sampling. Consider the salaries of Major League Baseball
(MLB) players, where each player is a member of one of the league's 30 teams. To take a simple random sample of 120 baseball
players and their salaries from the 2010 season, we could write the names of that season's 828 players onto slips of paper, drop the
slips into a bucket, shake the bucket around until we are sure the names are all mixed up, then draw out slips until we have the
sample of 120 players. In general, a sample is referred to as "simple random" if each case in the population has an equal chance of
being included in the nal sample and knowing that a case is included in a sample does not provide useful information about which
other cases are included.

Stratified sampling is a divide-and-conquer sampling strategy. The population is divided into groups called strata. The strata are
chosen so that similar cases are grouped together, then a second sampling method, usually simple random sampling, is employed
within each stratum. In the baseball salary example, the teams could represent the strata; some teams have a lot more money (we're
looking at you, Yankees). Then we might randomly sample 4 players from each team for a total of 120 players.

Figure 1.14: Examples of simple random, stratified, and cluster sampling. In the top panel, simple random sampling was used to
randomly select the 18 cases. In the middle panel, stratified sampling was used: cases were grouped into strata, and then simple
random sampling was employed within each stratum. In the bottom panel, cluster sampling was used, where data were binned into
nine clusters, three of the clusters were randomly selected, and six cases were randomly sampled in each of these clusters.

Stratified sampling is especially useful when the cases in each stratum are very similar with respect to the outcome of interest. The
downside is that analyzing data from a stratified sample is a more complex task than analyzing data from a simple random sample.
The analysis methods introduced in this book would need to be extended to analyze data collected using stratified sampling.

Why would it be good for cases within each stratum to be very similar?

Solution

We might get a more stable estimate for the subpopulation in a stratum if the cases are very similar. These improved estimates
for each subpopulation will help us build a reliable estimate for the full population.

Example 1.2.6.1
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A cluster sample is much like a two-stage simple random sample. We break up the population into many groups, called clusters.
Then we sample a fixed number of clusters and collect a simple random sample within each cluster. This technique is similar to
stratified sampling in its process, except that there is no requirement in cluster sampling to sample from every cluster. Stratified
sampling requires observations be sampled from every stratum.

Figure 1.15: Examples of cluster and multistage sampling. In the top panel, cluster sampling was used. Here, data were binned into
nine clusters, three of these clusters were sampled, and all observations within these three cluster were included in the sample. In
the bottom panel, multistage sampling was used. It di↵ers from cluster sampling in that of the clusters selected, we randomly select
a subset of each cluster to be included in the sample.

Sometimes cluster sampling can be a more economical random sampling technique than the alternatives. Also, unlike stratified
sampling, cluster sampling is most helpful when there is a lot of case-to-case variability within a cluster but the clusters themselves
don't look very different from one another. For example, if neighborhoods represented clusters, then this sampling method works
best when the neighborhoods are very diverse. A downside of cluster sampling is that more advanced analysis techniques are
typically required, though the methods in this book can be extended to handle such data.

Suppose we are interested in estimating the malaria rate in a densely tropical portion of rural Indonesia. We learn that there are
30 villages in that part of the Indonesian jungle, each more or less similar to the next. Our goal is to test 150 individuals for
malaria. What sampling method should be employed?

Solution

A simple random sample would likely draw individuals from all 30 villages, which could make data collection extremely
expensive. Stratified sampling would be a challenge since it is unclear how we would build strata of similar individuals.
However, cluster sampling seems like a very good idea. First, we might randomly select half the villages, then randomly select
10 people from each. This would probably reduce our data collection costs substantially in comparison to a simple random
sample and would still give us reliable information.

This page titled 1.2.6: Observational Studies and Sampling Strategies is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or
curated by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the
LibreTexts platform.
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1.2.7: Experiments
Studies where the researchers assign treatments to cases are called experiments. When this assignment includes randomization,
e.g. using a coin ip to decide which treatment a patient receives, it is called a randomized experiment. Randomized experiments
are fundamentally important when trying to show a causal connection between two variables.

Principles of experimental design
Randomized experiments are generally built on four principles.

Controlling. Researchers assign treatments to cases, and they do their best to control any other differences in the groups. For
example, when patients take a drug in pill form, some patients take the pill with only a sip of water while others may have it with
an entire glass of water. To control for water consumption, a doctor may ask all patients to drink a 12 ounce glass of water with the
pill.

Randomization. Researchers randomize patients into treatment groups to account for variables that cannot be controlled. For
example, some patients may be more susceptible to a disease than others due to their dietary habits. Randomizing patients into the
treatment or control group helps even out such differences, and it also prevents accidental bias from entering the study.

Replication. The more cases researchers observe, the more accurately they can estimate the effect of the explanatory variable on
the response. In a single study, we replicate by collecting a sufficiently large sample. Additionally, a group of scientists may
replicate an entire study to verify an earlier nding.

Blocking. Researchers sometimes know or suspect that variables, other than the treatment, inuence the response. Under these
circumstances, they may rst group individuals based on this variable into blocks and then randomize cases within each block to the
treatment groups. This strategy is often referred to as blocking. For instance, if we are looking at the effect of a drug on heart
attacks, we might rst split patients in the study into low-risk and high-risk blocks, then randomly assign half the patients from each
block to the control group and the other half to the treatment group, as shown in Figure 1.15. This strategy ensures each treatment
group has an equal number of low-risk and high-risk patients.

It is important to incorporate the rst three experimental design principles into any study, and this book describes applicable methods
for analyzing data from such experiments. Blocking is a slightly more advanced technique, and statistical methods in this book may
be extended to analyze data collected using blocking.

Reducing bias in human experiments
Randomized experiments are the gold standard for data collection, but they do not ensure an unbiased perspective into the cause
and effect relationships in all cases. Human studies are perfect examples where bias can unintentionally arise. Here we reconsider a
study where a new drug was used to treat heart attack patients.17 In particular, researchers wanted to know if the drug reduced
deaths in patients.

Anturane Reinfarction Trial Research Group. 1980. Sul npyrazone in the prevention of sudden death after myocardial infarction.
New England Journal of Medicine 302(5):250-256.
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Figure 1.16: Blocking using a variable depicting patient risk. Patients are first divided into low-risk and high-risk blocks, then each
block is evenly divided into the treatment groups using randomization. This strategy ensures an equal representation of patients in
each treatment group from both the low-risk and high-risk categories.

These researchers designed a randomized experiment because they wanted to draw causal conclusions about the drug's effect.
Study volunteers18 were randomly placed into two study groups. One group, the treatment group, received the drug. The other
group, called the control group, did not receive any drug treatment.

Put yourself in the place of a person in the study. If you are in the treatment group, you are given a fancy new drug that you
anticipate will help you. On the other hand, a person in the other group doesn't receive the drug and sits idly, hoping her
participation doesn't increase her risk of death. These perspectives suggest there are actually two effects: the one of interest is the
effectiveness of the drug, and the second is an emotional effect that is difficult to quantify.

Researchers aren't usually interested in the emotional effect, which might bias the study. To circumvent this problem, researchers
do not want patients to know which group they are in. When researchers keep the patients uninformed about their treatment, the
study is said to be blind. But there is one problem: if a patient doesn't receive a treatment, she will know she is in the control group.
The solution to this problem is to give fake treatments to patients in the control group. A fake treatment is called a placebo, and an
effective placebo is the key to making a study truly blind. A classic example of a placebo is a sugar pill that is made to look like the
actual treatment pill. Often times, a placebo results in a slight but real improvement in patients. This effect has been dubbed the
placebo effect.

The patients are not the only ones who should be blinded: doctors and researchers can accidentally bias a study. When a doctor
knows a patient has been given the real treatment, she might inadvertently give that patient more attention or care than a patient
that she knows is on the placebo. To guard against this bias, which again has been found to have a measurable effect in some
instances, most modern studies employ a double-blind setup where doctors or researchers who interact with patients are, just like
the patients, unaware of who is or is not receiving the treatment.

Exercise 1.14 Look back to the study in Section 1.1 where researchers were testing whether stents were effective at reducing
strokes in at-risk patients. Is this an experiment? Was the study blinded? Was it double-blinded?

This page titled 1.2.7: Experiments is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by David Diez,
Christopher Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the LibreTexts platform.

1.6: Experiments by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel is licensed CC BY-SA 3.0. Original source:
https://www.openintro.org/book/os.
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1.2.8: How Not to Do Statistics
Many studies are conducted and conclusions are made. However, there are occasions where the study is not conducted in the
correct manner or the conclusion is not correctly made based on the data. There are many things that you should question when you
read a study. There are many reasons for the study to have bias in it. Bias is where a study may have a certain slant or preference
for a certain result. The following are a list of some of the questions or issues you should consider to help decide if there is bias in a
study.

One of the first issues you should ask is who funded the study. If the entity that sponsored the study stands to gain either profits or
notoriety from the results, then you should question the results. It doesn’t mean that the results are wrong, but you should scrutinize
them on your own to make sure they are sound. As an example if a study says that genetically modified foods are safe, and the
study was funded by a company that sells genetically modified food, then one may question the validity of the study. Since the
company funds the study and their profits rely on people buying their food, there may be bias.

An experiment could have lurking or confounding variables when you cannot rule out the possibility that the observed effect is
due to some other variable rather than the factor being studied. An example of this is when you give fertilizer to some plants and no
fertilizer to others, but the no fertilizer plants also are placed in a location that doesn’t receive direct sunlight. You won’t know if
the plants that received the fertilizer grew taller because of the fertilizer or the sunlight. Make sure you design experiments to
eliminate the effects of confounding variables by controlling all the factors that you can.

Overgeneralization

Overgeneralization is where you do a study on one group and then try to say that it will happen on all groups. An example is
doing cancer treatments on rats. Just because the treatment works on rats does not mean it will work on humans. Another example
is that until recently most FDA medication testing had been done on white males of a particular age. There is no way to know how
the medication affects other genders, ethnic groups, age groups, and races. The new FDA guidelines stresses using individuals from
different groups.

Cause and Effect
Cause and effect is where people decide that one variable causes the other just because the variables are related or correlated.
Unless the study was done as an experiment where a variable was controlled, you cannot say that one variable caused the other.
Most likely there is another variable that caused both. As an example, there is a relationship between number of drownings at the
beach and ice cream sales. This does not mean that ice cream sales increasing causes people to drown. Most likely the cause for
both increasing is the heat.

Sampling Error

This is the difference between the sample results and the true population results. This is unavoidable, and results in the fact that
samples are different from each other. As an example, if you take a sample of 5 people’s height in your class, you will get 5
numbers. If you take another sample of 5 people’s heights in your class, you will likely get 5 different numbers.

Nonsampling Error
This is where the sample is collected poorly either through a biased sample or through error in measurements. Care should be taken
to avoid this error.

Lastly, there should be care taken in considering the difference between statistical significance versus practical significance. This
is a major issue in statistics. Something could be statistically significance, which means that a statistical test shows there is
evidence to show what you are trying to prove. However, in practice it doesn’t mean much or there are other issues to consider. As
an example, suppose you find that a new drug for high blood pressure does reduce the blood pressure of patients. When you look at
the improvement it actually doesn’t amount to a large difference. Even though statistically there is a change, it may not be worth
marketing the product because it really isn’t that big of a change. Another consideration is that you find the blood pressure
medication does improve a person’s blood pressure, but it has serious side effects or it costs a great deal for a prescription. In this
case, it wouldn't be practical to use it. In both cases, the study is shown to be statistically significant, but practically you don’t want
to use the medication. The main thing to remember in a statistical study is that the statistics is only part of the process. You also
want to make sure that there is practical significance too.
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Surveys
Surveys have their own areas of bias that can occur. A few of the issues with surveys are in the wording of the questions, the
ordering of the questions, the manner the survey is conducted, and the response rate of the survey.

The wording of the questions can cause hidden bias, which is where the questions are asked in a way that makes a person respond
a certain way. An example is that a poll was done where people were asked if they believe that there should be an amendment to
the constitution protecting a woman’s right to choose. About 60% of all people questioned said yes. Another poll was done where
people were asked if they believe that there should be an amendment to the constitution protecting the life of an unborn child.
About 60% of all people questioned said yes. These two questions deal with the same issue, though giving opposite results, but
how the question was asked affected the outcome.

The ordering of the question can also cause hidden bias. An example of this is if you were asked if there should be a fine for texting
while driving, but proceeding that question is the question asking if you text while drive. By asking a person if they actually
partake in the activity, that person now personalizes the question and that might affect how they answer the next question of
creating the fine.

Non-response

Non-response is where you send out a survey but not everyone returns the survey. You can calculate the response rate by dividing
the number of returns by the number of surveys sent. Most response rates are around 30-50%. A response rate less than 30% is very
poor and the results of the survey are not valid. To reduce non-response, it is better to conduct the surveys in person, though these
are very expensive. Phones are the next best way to conduct surveys, emails can be effective, and physical mailings are the least
desirable way to conduct surveys.

Voluntary response

Voluntary response is where people are asked to respond via phone, email or online. The problem with these is that only people
who really care about the topic are likely to call or email. These surveys are not scientific and the results from these surveys are not
valid. Note: all studies involve volunteers. The difference between a voluntary response survey and a scientific study is that in a
scientific study the researchers ask the individuals to be involved, while in a voluntary response survey the individuals become
involved on their own choosing.

Suppose a mathematics department at a community college would like to assess whether computer-based homework improves
students’ test scores. They use computer-based homework in one classroom with one teacher and use traditional paper and
pencil homework in a different classroom with a different teacher. The students using the computer-based homework had
higher test scores. What is wrong with this experiment?

Solution

Since there were different teachers, you do not know if the better test scores are because of the teacher or the computer-based
homework. A better design would be have the same teacher teach both classes. The control group would utilize traditional
paper and pencil homework and the treatment group would utilize the computer-based homework. Both classes would have the
same teacher, and the students would be split between the two classes randomly. The only difference between the two groups
should be the homework method. Of course, there is still variability between the students, but utilizing the same teacher will
reduce any other confounding variables.

Determine if the one variable did cause the change in the other variable.

a. Cinnamon was giving to a group of people who have diabetes, and then their blood glucose levels were measured a time
period later. All other factors for each person were kept the same. Their glucose levels went down. Did the cinnamon cause
the reduction?

b. There is a link between spray on tanning products and lung cancer. Does that mean that spray on tanning products cause
lung cancer?

Solution

Example : Bias in a Study1.2.8.1

Example : Cause and Effect1.2.8.2
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a. Since this was a study where the use of cinnamon was controlled, and all other factors were kept constant from person to
person, then any changes in glucose levels can be attributed to the use of cinnamon

b. Since there is only a link, and not a study controlling the use of the tanning spray, then you cannot say that increased use
causes lung cancer. You can say that there is a link, and that there could be a cause, but you cannot say for sure that the
spray causes the cancer.

a. A researcher conducts a study on the use of ibuprofen on humans and finds that it is safe. Does that mean that all species
can use ibuprofen?

b. Aspirin has been used for years to bring down fevers in humans. Originally it was tested on white males between the ages
of 25 and 40 and found to be safe. Is it safe to give to everyone?

Solution

a. No. Just because a drug is safe to use on one species doesn’t mean it is safe to use for all species. In fact, ibuprofen is toxic
to cats.

b. No. Just because one age group can use it doesn’t mean it is safe to use for all age groups. In fact, there has been a link
between giving a child under the age of 19 aspirin when they have a fever and Reye’s syndrome.

Homework

1. Suppose there is a study where a researcher conducts an experiment to show that deep breathing exercises helps to lower blood
pressure. The researcher takes two groups of people and has one group to perform deep breathing exercises and a series of
aerobic exercises every day and the other group was asked to refrain from any exercises. The researcher found that the group
performing the deep breathing exercises and the aerobic exercises had lower blood pressure. Discuss any issue with this study.

2. Suppose a car dealership offers a low interest rate and a longer payoff period to customers or a high interest rate and a shorter
payoff period to customers, and most customers choose the low interest rate and longer payoff period, does that mean that most
customers want a lower interest rate? Explain.

3. Over the years it has been said that coffee is bad for you. When looking at the studies that have shown that coffee is linked to
poor health, you will see that people who tend to drink coffee don’t sleep much, tend to smoke, don’t eat healthy, and tend to
not exercise. Can you say that the coffee is the reason for the poor health or is there a lurking variable that is the actual cause?
Explain.

4. When researchers were trying to figure out what caused polio, they saw a connection between ice cream sales and polio. As ice
cream sales increased so did the incident of polio. Does that mean that eating ice cream causes polio? Explain your answer.

5. There is a positive correlation between having a discussion of gun control, which usually occur after a mass shooting, and the
sale of guns. Does that mean that the discussion of gun control increases the likelihood that people will buy more guns?
Explain.

6. There is a study that shows that people who are obese have a vitamin D deficiency. Does that mean that obesity causes a
deficiency in vitamin D? Explain.

7. A study was conducted that shows that polytetrafluoroethylene (PFOA) (Teflon is made from this chemical) has an increase risk
of tumors in lab mice. Does that mean that PFOA’s have an increased risk of tumors in humans? Explain.

8. Suppose a telephone poll is conducted by contacting U.S. citizens via landlines about their view of gay marriage. Suppose over
50% of those called do not support gay marriage. Does that mean that you can say over 50% of all people in the U.S. do not
support gay marriage? Explain.

9. Suppose that it can be shown to be statistically significant that a smaller percentage of the people are satisfied with your
business. The percentage before was 87% and is now 85%. Do you change how you conduct business? Explain?

10. You are testing a new drug for weight loss. You find that the drug does in fact statistically show a weight loss. Do you market
the new drug? Why or why not?

11. There was an online poll conducted about whether the mayor of Auckland, New Zealand, should resign due to an affair. The
majority of people participating said he should. Should the mayor resign due to the results of this poll? Explain.

12. An online poll showed that the majority of Americans believe that the government covered up events of 9/11. Does that really
mean that most Americans believe this? Explain.

Example : Generalization1.2.8.3

Exercise 1.2.8.1
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13. A survey was conducted at a college asking all employees if they were satisfied with the level of security provided by the
security department. Discuss how the results of this question could be biased.

14. An employee survey says, “Employees at this institution are very satisfied with working here. Please rate your satisfaction with
the institution.” Discuss how this question could create bias.

15. A survey has a question that says, “Most people are afraid that they will lose their house due to economic collapse. Choose
what you think is the biggest issue facing the nation today.
a. Economic collapse
b. Foreign policy issues
c. Environmental concerns.” Discuss how this question could create bias.

16. A survey says, “Please rate the career of Roberto Clemente, one of the best right field baseball players in the world.” Discuss
how this question could create bias.

Answer

See solutions
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1.2.9: Exercises

Do Athletes Get Special Treatment?

Prerequisites

Levels of Measurement

Figure : Runners

The Board of Trustees at a university commissioned a top management-consulting firm to address the admission processes for
academic and athletic programs. The consulting firm wrote a report discussing the trade-off between maintaining academic and
athletic excellence. One of their key findings was:

The standard for an athlete’s admission, as reflected in SAT scores alone, is lower than the standard for non-athletes by as
much as  percent, with the weight of this difference being carried by the so-called “revenue sports” of football and
basketball. Athletes are also admitted through a different process than the one used to admit non-athlete students.

What do you think?

Based on what you have learned in this chapter about measurement scales, does it make sense to compare SAT scores using
percentages? Why or why not?

As you may know, the SAT has an arbitrarily-determined lower limit on test scores of . Therefore, SAT is measured on
either an ordinal scale or, at most, an interval scale. However, it is clearly not measured on a ratio scale. Therefore, it is not
meaningful to report SAT score differences in terms of percentages. For example, consider the effect of subtracting  from
every student's score so that the lowest possible score is . How would that affect the difference as expressed in percentages?

Statistical Errors in Politics

Prerequisites

Inferential Statistics

1.2.9.1
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Figure : Survey

An article about ignorance of statistics in politics quotes a politician commenting on why the "American Community Survey"
should be eliminated:

“We’re spending  per person to fill this out. That’s just not cost effective, especially since in the end this is not a scientific
survey. It’s a random survey.”

What do you think?

What is wrong with this statement? Despite the error in this statement, what type of sampling could be done so that the sample will
be more likely to be representative of the population?

Randomness is what makes the survey scientific. If the survey were not random, then it would be biased and therefore
statistically meaningless, especially since the survey is conducted to make generalizations about the American population.
Stratified sampling would likely be more representative of the population.

Reference
Mark C. C., scientopia.org
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CHAPTER OVERVIEW

2: Introduction to R

Having finished this chapter, you should be able to:

Interact with an RMarkdown notebook in RStudio
Describe the difference between a variable and a function
Describe the different types of variables
Create a vector or data frame and access its elements
Install and load an R library
Load data from a file and view the data frame

This chapter is the first of several distributed throughout the book that will introduce you to increasingly sophisticated things that
you can do using the R programming language. The name “R” is a play on the names of the two authors of the software package
(Ross Ihaka and Robert Gentleman) as well as an homage to an older statistical software package called “S”. R has become one of
the most popular programming languages for statistical analysis and “data science”. Unlike general-purpose programming
languages such as Python or Java, R is purpose-built for statistics. That doesn’t mean that you can’t do more general things with it,
but the place where it really shines is in data analysis and statistics.

2.1: Why Programming Is Hard to Learn
2.2: Using RStudio
2.3: Installing R
2.4: Getting Started with R
2.5: Variables
2.6: Functions
2.7: Letting RStudio Help You with Your Commands
2.8: Vectors
2.9: Math with Vectors
2.10: Data Frames
2.11: Using R Libraries
2.12: Installing and Loading Packages
2.13: Using Comments
2.14: Navigating the File System
2.15: Loading and Saving Data
2.16: Useful Things to Know about Variables
2.17: Factors
2.18: Data frames
2.19: Suggested Readings and Videos

This page titled 2: Introduction to R is shared under a CC BY-NC 2.0 license and was authored, remixed, and/or curated by Russell A. Poldrack
via source content that was edited to the style and standards of the LibreTexts platform.
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2.1: Why Programming Is Hard to Learn
Programming a computer is a skill, just like playing a musical instrument or speaking a second language. And just like those skills,
it takes a lot of work to get good at it — the only way to acquire a skill is through practice. There is nothing special or magical
about people who are experts, other than the quality and quantity of their experience! However, not all practice is equally effective.
A large amount of psychological research has shown that practice needs to be deliberate, meaning that it focuses on developing the
specific skills that one needs to perform the skill, at a level that is always pushing one’s ability.

If you have never programmed before, then it’s going to seem hard, just as it would seem hard for a native English speaker to start
speaking Mandarin. However, just as a beginning guitarist needs to learn to play their scales, we will teach you how to perform the
basics of programming, which you can then use to do more powerful things.

One of the most important aspects of computer programming is that you can try things to your heart’s content; the worst thing that
can happen is that the program will crash. Trying new things and making mistakes is one of the keys to learning.

The hardest part of programming is figuring out why something didn’t work, which we call debugging. In programming, things are
going to go wrong in ways that are often confusing and opaque. Every programmer has a story about spending hours trying to
figure out why something didn’t work, only to realize that the problem was completely obvious. The more practice you get, the
better you will get at figuring out how to fix these errors. But there are a few strategies that can be helpful.

3.1.1 Use the web
In particular, you should take advantage of the fact that there are millions of people programming in R around the world, so nearly
any error message you see has already been seen by someone else. Whenever I experience an error that I don’t understand, the first
thing that I do is to copy and paste the error message into a search engine Often this will provide several pages discussing the
problem and the ways that people have solved it.

3.1.2 Rubber duck debugging

The idea behind rubber duck debugging is to pretend that you are trying to explain what your code is doing to an inanimate object,
like a rubber duck. Often, the process of explaning it aloud is enough to help you find the problem.

This page titled 2.1: Why Programming Is Hard to Learn is shared under a CC BY-NC 2.0 license and was authored, remixed, and/or curated by
Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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2.2: Using RStudio
When I am using R in my own work, I generally use a free software package called RStudio, which provides a number of nice tools
for working with R. In particular, RStudio provides the ability to create “notebooks” that mix together R code and text (formatted
using the Markdown text formatting system). In fact, this book is written using exactly that system! You can see the R code used to
generate this book here.
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2.3: Installing R
Okay, enough with the sales pitch. Let’s get started. Just as with any piece of software, R needs to be installed on a “computer”,
which is a magical box that does cool things and delivers free ponies. Or something along those lines: I may be confusing
computers with the iPad marketing campaigns. Anyway, R is freely distributed online, and you can download it from the R
homepage, which is:

http://cran.r-project.org/

At the top of the page – under the heading “Download and Install R” – you’ll see separate links for Windows users, Mac users, and
Linux users. If you follow the relevant link, you’ll see that the online instructions are pretty self-explanatory, but I’ll walk you
through the installation anyway. As of this writing, the current version of R is 3.0.2 (Frisbee Sailing“), but they usually issue
updates every six months, so you’ll probably have a newer version.

2.3.1 Installing R on a Windows computer

The CRAN homepage changes from time to time, and it’s not particularly pretty, or all that well-designed quite frankly. But it’s not
difficult to find what you’re after. In general you’ll find a link at the top of the page with the text “Download R for Windows”. If
you click on that, it will take you to a page that offers you a few options. Again, at the very top of the page you’ll be told to click
on a link that says to click here if you’re installing R for the first time. That’s probably what you want. This will take you to a page
that has a prominent link at the top called “Download R 3.0.2 for Windows”. That’s the one you want. Click on that and your
browser should start downloading a file called R-3.0.2-win.exe , or whatever the equivalent version number is by the time
you read this. The file for version 3.0.2 is about 54MB in size, so it may take some time depending on how fast your internet
connection is. Once you’ve downloaded the file, double click to install it. As with any software you download online, Windows
will ask you some questions about whether you trust the file and so on. After you click through those, it’ll ask you where you want
to install it, and what components you want to install. The default values should be fine for most people, so again, just click
through. Once all that is done, you should have R installed on your system. You can access it from the Start menu, or from the
desktop if you asked it to add a shortcut there. You can now open up R in the usual way if you want to, but what I’m going to
suggest is that instead of doing that you should now install RStudio.

2.3.2 Installing R on a Mac
When you click on the Mac OS X link, you should find yourself on a page with the title “R for Mac OS X”. The vast majority of
Mac users will have a fairly recent version of the operating system: as long as you’re running Mac OS X 10.6 (Snow Leopard) or
higher, then you’ll be fine.  There’s a fairly prominent link on the page called “R-3.0.2.pkg”, which is the one you want. Click on
that link and you’ll start downloading the installer file, which is (not surprisingly) called R-3.0.2.pkg . It’s about 61MB in
size, so the download can take a while on slower internet connections.

Once you’ve downloaded R-3.0.2.pkg , all you need to do is open it by double clicking on the package file. The installation
should go smoothly from there: just follow all the instructions just like you usually do when you install something. Once it’s
finished, you’ll find a file called R.app  in the Applications folder. You can now open up R in the usual way  if you want to,
but what I’m going to suggest is that instead of doing that you should now install RStudio.

2.3.3 Installing R on a Linux computer
If you’re successfully managing to run a Linux box, regardless of what distribution, then you should find the instructions on the
website easy enough. You can compile R from source yourself if you want, or install it through your package management system,
which will probably have R in it. Alternatively, the CRAN site has precompiled binaries for Debian, Red Hat, Suse and Ubuntu and
has separate instructions for each. Once you’ve got R installed, you can run it from the command line just by typing R . However,
if you’re feeling envious of Windows and Mac users for their fancy GUIs, you can download RStudio too.

2.3.4 Downloading and installing RStudio
Okay, so regardless of what operating system you’re using, the last thing that I told you to do is to download RStudio. To
understand why I’ve suggested this, you need to understand a little bit more about R itself. The term R doesn’t really refer to a
specific application on your computer. Rather, it refers to the underlying statistical language. You can use this language through lots
of different applications. When you install R initially, it comes with one application that lets you do this: it’s the R.exe application
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on a Windows machine, and the R.app application on a Mac. But that’s not the only way to do it. There are lots of different
applications that you can use that will let you interact with R. One of those is called RStudio, and it’s the one I’m going to suggest
that you use. RStudio provides a clean, professional interface to R that I find much nicer to work with than either the Windows or
Mac defaults. Like R itself, RStudio is free software: you can find all the details on their webpage. In the meantime, you can
download it here:

http://www.RStudio.org/

When you visit the RStudio website, you’ll probably be struck by how much cleaner and simpler it is than the CRAN website,
and how obvious it is what you need to do: click the big green button that says “Download”.

When you click on the download button on the homepage it will ask you to choose whether you want the desktop version or the
server version. You want the desktop version. After choosing the desktop version it will take you to a page
http://www.RStudio.org/download/desktop) that shows several possible downloads: there’s a different one for each operating
system. However, the nice people at RStudio have designed the webpage so that it automatically recommends the download that is
most appropriate for your computer. Click on the appropriate link, and the RStudio installer file will start downloading.

Figure 3.1: An R session in progress running through RStudio. The picture shows RStudio running on a Mac, but the Windows
interface is almost identical.

Once it’s finished downloading, open the installer file in the usual way to install RStudio. After it’s finished installing, you can start
R by opening RStudio. You don’t need to open R.app or R.exe in order to access R. RStudio will take care of that for you. To
illustrate what RStudio looks like, Figure 3.1 shows a screenshot of an R session in progress. In this screenshot, you can see that
it’s running on a Mac, but it looks almost identical no matter what operating system you have. The Windows version looks more
like a Windows application (e.g., the menus are attached to the application window and the colour scheme is slightly different), but
it’s more or less identical. There are a few minor differences in where things are located in the menus (I’ll point them out as we go
along) and in the shortcut keys, because RStudio is trying to “feel” like a proper Mac application or a proper Windows application,
and this means that it has to change its behaviour a little bit depending on what computer it’s running on. Even so, these differences
are very small: I started out using the Mac version of RStudio and then started using the Windows version as well in order to write
these notes.

The only “shortcoming” I’ve found with RStudio is that – as of this writing – it’s still a work in progress. The “problem” is that
they keep improving it. New features keep turning up the more recent releases, so there’s a good chance that by the time you read
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this book there will be a version out that has some really neat things that weren’t in the version that I’m using now.

2.3.5 Starting up R
One way or another, regardless of what operating system you’re using and regardless of whether you’re using RStudio, or the
default GUI, or even the command line, it’s time to open R and get started. When you do that, the first thing you’ll see (assuming
that you’re looking at the R console, that is) is a whole lot of text that doesn’t make much sense. It should look something like this:

R version 3.0.2 (2013-09-25) -- "Frisbee Sailing" 
Copyright (C) 2013 The R Foundation for Statistical Computing 
Platform: x86_64-apple-darwin10.8.0 (64-bit) 
 
R is free software and comes with ABSOLUTELY NO WARRANTY. 
You are welcome to redistribute it under certain conditions. 
Type 'license()' or 'licence()' for distribution details. 
 
  Natural language support but running in an English locale 
 
R is a collaborative project with many contributors. 
Type 'contributors()' for more information and 
'citation()' on how to cite R or R packages in publications. 
 
Type 'demo()' for some demos, 'help()' for on-line help, or 
'help.start()' for an HTML browser interface to help. 
Type 'q()' to quit R. 
 
>  

Most of this text is pretty uninteresting, and when doing real data analysis you’ll never really pay much attention to it. The
important part of it is this…

>

… which has a flashing cursor next to it. That’s the command prompt. When you see this, it means that R is waiting patiently for
you to do something!

This page titled 2.3: Installing R is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.

3.1: Installing R by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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2.4: Getting Started with R
When we work with R, we often do this using a command line in which we type commands and it responds to those commands. In
the simplest case, if we just type in a number, it will simply respond with that number. Go into the R console and type the number
3. You should see somethign like this:

> 3
[1] 3

The >  symbol is the command prompt, which is prompting you to type something in. The next line ( [1] 3 ) is R’s answer.
Let’s try something a bit more complicated:

> 3 + 4 
[1] 7

R spits out the answer to whatever you type in, as long as it can figure it out. Now let’s try typing in a word:

> hello 
Error: object 'hello' not found

What? Why did this happen? When R encounters a letter or word, it assumes that it is referring to the name of a variable — think
of X  from high school algebra. We will return to variables in a little while, but if we want R to print out the word hello then we
need to contain it in quotation marks, telling R that it is a character string.

> "hello" 
[1] "hello"

There are many types of variables in R. You have already seen two examples: integers (like the number 3) and character strings
(like the word “hello”). Another important one is real numbers, which are the most common kind of numbers that we will deal with
in statistics, which span the entire number line including the spaces in between the integers. For example:

> 1/3 
[1] 0.33

In reality the result should be 0.33 followed by an infinite number of threes, but R only shows us two decimal points in this
example.

Another kind of variable is known as a logical variable, because it is based on the idea from logic that a statement can be either true
or false. In R, these are capitalized ( TRUE  and FALSE ).

To determine whether a statement is true or not, we use logical operators. You are already familiar with some of these, like the
greater-than ( > ) and less-than ( < ) operators.

> 1 < 3 
[1] TRUE 
> 2 > 4 
[1] FALSE 

Often we want to know whether two numbers are equal or not equal to one another. There are special operators in R to do this: 
==  for equals, and !=  for not-equals:
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> 3 == 3 
[1] TRUE 
> 4 != 4 
[1] FALSE 

This page titled 2.4: Getting Started with R is shared under a CC BY-NC 2.0 license and was authored, remixed, and/or curated by Russell A.
Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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2.5: Variables
A variable is a symbol that stands for another value (just like “X” in algebra). We can create a variable by assigning a value to it
using the <-  operator. If we then type the name of the variable R will print out its value.

> x <- 4 
> x
[1] 4 

The variable now stands for the value that it contains, so we can perform operations on it and get the same answer as if we used the
value itself.

> x + 3 
[1] 7 
> x == 5 
[1] FALSE

We can change the value of a variable by simply assigning a new value to it.

> x <- x + 1 
> x
[1] 5 

A note: You can also use the equals sign =  instead of the <-
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2.6: Functions
A function is an operator that takes some input and gives an output based on the input. For example, let’s say that have a number
and we want to determine its absolute value. R has a function called abs()  that takes in a number and outputs its absolute
value:

> x <- -3 
> abs(x) 
[1] 3 

Most functions take an input like the abs()  function (which we call an argument), but some also have special keywords that
can be used to change how the function works. For example, the rnorm()  function generates random numbers from a normal
distribution (which we will learn more about later). Have a look at the help page for this function by typing help(rnorm)  in
the console, which will cause a help page to appear below. The section of the help page for the rnorm()  function shows the
following:

rnorm(n, mean = 0, sd = 1) 
 
Arguments 
 
n     number of observations.  
 
mean    vector of means. 
 
sd   vector of standard deviations.

You can also obtain some examples of how the function is used by typing example(rnorm)  in the console.

We can see that the rnorm function has two arguments, mean and sd, that are shown to be equal to specific values. This means that
those values are the default settings, so that if you don’t do anything, then the function will return random numbers with a mean of
0 and a standard deviation of 1. The other argument, n, does not have a default value. Try typing in the function rnorm()  with
no arguments and see what happens — it will return an error telling you that the argument “n” is missing and does not have a
default value.

If we wanted to create random numbers with a different mean and standard deviation (say mean == 100 and standard deviation ==
15), then we could simply set those values in the function call. Let’s say that we would like 5 random numbers from this
distribution:

> my_random_numbers <- rnorm(5, mean=100, sd=15) 
> my_random_numbers 
[1] 104 115 101  97 115 

You will see that I set the variable to the name my_random_numbers . In general, it’s always good to be as descriptive as
possible when creating variables; rather than calling them x or y, use names that describe the actual contents. This will make it
much easier to understand what’s going on once things get more complicated.
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2.7: Letting RStudio Help You with Your Commands
Time for a bit of a digression. At this stage you know how to type in basic commands, including how to use R functions. And it’s
probably beginning to dawn on you that there are a lot of R functions, all of which have their own arguments. You’re probably also
worried that you’re going to have to remember all of them! Thankfully, it’s not that bad. In fact, very few data analysts bother to try
to remember all the commands. What they really do is use tricks to make their lives easier. The first (and arguably most important
one) is to use the internet. If you don’t know how a particular R function works, Google it. Second, you can look up the R help
documentation. I’ll talk more about these two tricks in Section 4.12. But right now I want to call your attention to a couple of
simple tricks that RStudio makes available to you.

2.7.1 Autocomplete using “tab”
The first thing I want to call your attention to is the autocomplete ability in RStudio.

Let’s stick to our example above and assume that what you want to do is to round a number. This time around, start typing the
name of the function that you want, and then hit the “tab” key. RStudio will then display a little window like the one shown in
Figure 3.2. In this figure, I’ve typed the letters ro  at the command line, and then hit tab. The window has two panels. On the left,
there’s a list of variables and functions that start with the letters that I’ve typed shown in black text, and some grey text that tells
you where that variable/function is stored. Ignore the grey text for now: it won’t make much sense to you until we’ve talked about
packages in Section 4.2. In Figure 3.2 you can see that there’s quite a few things that start with the letters ro : there’s something
called rock , something called round , something called round.Date  and so on. The one we want is round , but if
you’re typing this yourself you’ll notice that when you hit the tab key the window pops up with the top entry (i.e., rock )
highlighted. You can use the up and down arrow keys to select the one that you want. Or, if none of the options look right to you,
you can hit the escape key (“esc”) or the left arrow key to make the window go away.

In our case, the thing we want is the round  option, so we’ll select that. When you do this, you’ll see that the panel on the right
changes. Previously, it had been telling us something about the rock  data set (i.e., “Measurements on 48 rock samples…”) that
is distributed as part of R. But when we select round , it displays information about the round()  function, exactly as it is
shown in Figure 3.2. This display is really handy. The very first thing it says is round(x, digits = 0) : what this is telling
you is that the round()  function has two arguments. The first argument is called x , and it doesn’t have a default value. The
second argument is digits , and it has a default value of 0. In a lot of situations, that’s all the information you need. But
RStudio goes a bit further, and provides some additional information about the function underneath. Sometimes that additional
information is very helpful, sometimes it’s not: RStudio pulls that text from the R help documentation, and my experience is that
the helpfulness of that documentation varies wildly. Anyway, if you’ve decided that round()  is the function that you want to
use, you can hit the right arrow or the enter key, and RStudio will finish typing the rest of the function name for you.

Figure 3.2: Start typing the name of a function or a variable, and hit the “tab” key. RStudio brings up a little dialog box like this one
that lets you select the one you want, and even prints out a little information about it.

Start typing the name of a function or a variable, and hit the “tab” key. RStudio brings up a little dialog box like this one that lets
you select the one you want, and even prints out a little information about it.

The RStudio autocomplete tool works slightly differently if you’ve already got the name of the function typed and you’re now
trying to type the arguments. For instance, suppose I’ve typed round(  into the console, and then I hit tab. RStudio is smart
enough to recognise that I already know the name of the function that I want, because I’ve already typed it! Instead, it figures that
what I’m interested in is the arguments to that function. So that’s what pops up in the little window. You can see this in Figure ??.
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Again, the window has two panels, and you can interact with this window in exactly the same way that you did with the window
shown in 3.2. On the left hand panel, you can see a list of the argument names. On the right hand side, it displays some information
about what the selected argument does.

Figure 3.3: If you’ve typed the name of a function already along with the left parenthesis and then hit the “tab” key, RStudio brings
up a different window to the one shown above. This one lists all the arguments to the function on the left, and information about
each argument on the right.

If you’ve typed the name of a function already along with the left parenthesis and then hit the “tab” key, RStudio brings up a
different window to the one shown in Figure 3.2. This one lists all the arguments to the function on the left, and information about
each argument on the right.

2.7.2 Browsing your command history
One thing that R does automatically is keep track of your “command history”. That is, it remembers all the commands that you’ve
previously typed. You can access this history in a few different ways. The simplest way is to use the up and down arrow keys. If
you hit the up key, the R console will show you the most recent command that you’ve typed. Hit it again, and it will show you the
command before that. If you want the text on the screen to go away, hit escape  Using the up and down keys can be really handy if
you’ve typed a long command that had one typo in it. Rather than having to type it all again from scratch, you can use the up key to
bring up the command and fix it.

The second way to get access to your command history is to look at the history panel in RStudio. On the upper right hand side of
the RStudio window you’ll see a tab labelled “History”. Click on that, and you’ll see a list of all your recent commands displayed
in that panel: it should look something like Figure ??. If you double click on one of the commands, it will be copied to the R
console. (You can achieve the same result by selecting the command you want with the mouse and then clicking the “To Console”
button).

Figure 3.4: The history panel is located in the top right hand side of the RStudio window. Click on the word “History” and it
displays this panel.

This page titled 2.7: Letting RStudio Help You with Your Commands is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

3.6: Letting RStudio Help You with Your Commands by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.
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2.8: Vectors
You may have noticed that the my_random_numbers  created above wasn’t like the variables that we had seen before — it
contained a number of values in it. We refer to this kind of variable as a vector.

If you want to create your own new vector, you can do that using the c()  function:

> my_vector <- c(4, 5, 6) 
> my_vector 
[1] 4 5 6 

You can access the individual elements within a vector by using square brackets along with a number that refers to the location
within the vector. These index values start at 1, which is different from many other programming languages that start at zero. Let’s
say we want to see the value in the second place of the vector:

> my_vector[2] 
[1] 5 

You can also look at a range of positions, by putting the start and end locations with a colon in between:

> my_vector[2:3] 
[1] 5 6 

You can also change the values of specific locations using the same indexing:

> my_vector[3] <- 7 
> my_vector 
[1] 4 5 7 

This page titled 2.8: Vectors is shared under a CC BY-NC 2.0 license and was authored, remixed, and/or curated by Russell A. Poldrack via
source content that was edited to the style and standards of the LibreTexts platform.
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2.9: Math with Vectors
You can apply mathematical operations to the elements of a vector just as you would with a single number:

> my_vector <- c(4, 5, 6) 
> my_vector_times_ten <- my_vector*10 
> my_vector_times_ten 
[1] 40 50 60 

You can also apply mathematical operations on pairs of vectors. In this case, each matching element is used for the operation.

> my_first_vector <- c(1,2,3) 
> my_second_vector <- c(10, 20, 20) 
> my_first_vector + my_second_vector 
[1] 11 22 23 

We can also apply logical operations across vectors; again, this will return a vector with the operation applied to the pairs of values
at each position.

> vector_a <- c(1,2,3) 
> vector_b <- c(1,2,4) 
> vector_a == vector_b 
[1]  TRUE  TRUE FALSE 
 

Most functions will work with vectors just as they would with a single number. For example, let’s say we wanted to obtain the
trignometric sine for each of a set of values. We could create a vector and pass it to the sin()  function, which will return as
many sine values as there are input values:

> my_angle_values <- c(0, 1, 2) 
> my_sin_values <- sin(my_angle_values) 
> my_sin_values 
[1] 0.00 0.84 0.91 
k
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2.10: Data Frames
Often in a dataset we will have a number of different variables that we want to work with. Instead of having a different named
variable that stores each one, it is often useful to combine all of the separate variables into a single package, which is referred to as
a data frame.

If you are familiar with a spreadsheet (say from Microsoft Excel) then you already have a basic understanding of a data frame. 
Let’s say that we have values of price and mileage for three different types of cars. We could start by creating a variable for each
one, making sure that the three cars are in the same order for each of the variables:

car_model <- c("Ford Fusion", "Hyundai Accent", "Toyota Corolla") 
car_price <- c(25000, 16000, 18000) 
car_mileage <- c(27, 36, 32) 

We can then combine these into a single data frame, using the data.frame()  function. I like to use "_df" in the names of data
frames just to make clear that it’s a data frame, so we will call this one “cars_df”:

cars_df <- data.frame(model=car_model, price=car_price, mileage=car_mileage) 

We can view the data frame by using the View()  function:

View(cars_df)

Which will present a view of the data frame much like a spreadsheet, as shown in Figure 2.1:

Figure 2.1: A view of the cars data frame generated by the View() function.

Each of the columns in the data frame contains one of the variables, with the name that we gave it when we created the data frame.
We can access each of those columns using the $  operator. For example, if we wanted to access the mileage variable, we would
combine the name of the data frame with the name of the variable as follows:

> cars_df$mileage 
[1] 27 36 32 

This is just like any other vector, in that we can refer to its individual values using square brackets as we did with regular vectors:

> cars_df$mileage[3] 
[1] 32 

In some of the examples in the book, you will see something called a tibble; this is basically a souped-up version of a data frame,
and can be treated mostly in the same way.
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2.11: Using R Libraries
Many of the useful features in R are not contained in the primary R package, but instead come from libraries that have been
developed by various members of the R community. For example, the ggplot2  package provides a number of features for
visualizing data, as we will see in a later chapter. Before we can use a package, we need to install it on our system, using the 
install.packages()  function:

> install.packages("ggplot2") 
trying URL 'https://cran.rstudio.com/... 
Content type 'application/x-gzip' length 3961383 bytes (3.8 MB) 
================================================== 
downloaded 3.8 MB 
 
 
The downloaded binary packages are in 
    /var/folders/.../downloaded_packages 

This will automatically download the package from the Comprehensive R Archive Network (CRAN) and install it on your system.
Once it’s installed, you can then load the library using the library()  function:

> library(ggplot2)

After loading the function, you can now access all of its features. If you want to learn more about its features, you can find them
using the help function:

> help(ggplot2)
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2.12: Installing and Loading Packages
In this section I discuss R packages, since almost all of the functions you might want to use in R come in packages. A package is
basically just a big collection of functions, data sets and other R objects that are all grouped together under a common name. Some
packages are already installed when you put R on your computer, but the vast majority of them of R packages are out there on the
internet, waiting for you to download, install and use them.

When I first started writing this book, Rstudio didn’t really exist as a viable option for using R, and as a consequence I wrote a very
lengthy section that explained how to do package management using raw R commands. It’s not actually terribly hard to work with
packages that way, but it’s clunky and unpleasant. Fortunately, we don’t have to do things that way anymore. In this section, I’ll
describe how to work with packages using the Rstudio tools, because they’re so much simpler. Along the way, you’ll see that
whenever you get Rstudio to do something (e.g., install a package), you’ll actually see the R commands that get created. I’ll explain
them as we go, because I think that helps you understand what’s going on.

However, before we get started, there’s a critical distinction that you need to understand, which is the difference between having a
package installed on your computer, and having a package loaded in R. As of this writing, there are just over 5000 R packages
freely available “out there” on the internet.  When you install R on your computer, you don’t get all of them: only about 30 or so
come bundled with the basic R installation. So right now there are about 30 packages “installed” on your computer, and another
5000 or so that are not installed. So that’s what installed means: it means “it’s on your computer somewhere”. The critical thing to
remember is that just because something is on your computer doesn’t mean R can use it. In order for R to be able to use one of your
30 or so installed packages, that package must also be “loaded”. Generally, when you open up R, only a few of these packages
(about 7 or 8) are actually loaded. Basically what it boils down to is this:

A package must be installed before it can be loaded.

A package must be loaded before it can be used.

This two step process might seem a little odd at first, but the designers of R had very good reasons to do it this way,  and you get
the hang of it pretty quickly.

2.12.1 package panel in Rstudio

Figure 4.1: The packages panel.

Right, lets get started. The first thing you need to do is look in the lower right hand panel in Rstudio. You’ll see a tab labelled
“Packages”. Click on the tab, and you’ll see a list of packages that looks something like Figure 4.1. Every row in the panel
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corresponds to a different package, and every column is a useful piece of information about that package.  Going from left to
right, here’s what each column is telling you:

The check box on the far left column indicates whether or not the package is loaded.
The one word of text immediately to the right of the check box is the name of the package.
The short passage of text next to the name is a brief description of the package.
The number next to the description tells you what version of the package you have installed.
The little x-mark next to the version number is a button that you can push to uninstall the package from your computer (you
almost never need this).

2.12.2 Loading a package

That seems straightforward enough, so let’s try loading and unloading packades. For this example, I’ll use the foreign
package. The foreign  package is a collection of tools that are very handy when R needs to interact with files that are produced
by other software packages (e.g., SPSS). It comes bundled with R, so it’s one of the ones that you have installed already, but it
won’t be one of the ones loaded. Inside the foreign  package is a function called read.spss() . It’s a handy little function
that you can use to import an SPSS data file into R, so let’s pretend we want to use it. Currently, the foreign  package isn’t
loaded, so if I ask R to tell me if it knows about a function called read.spss()  it tells me that there’s no such thing…

exists( "read.spss" )

## [1] FALSE

Now let’s load the package. In Rstudio, the process is dead simple: go to the package tab, find the entry for the foreign
package, and check the box on the left hand side. The moment that you do this, you’ll see a command like this appear in the R
console:

The lib.loc  bit will look slightly different on Macs versus on Windows, because that part of the command is just Rstudio
telling R where to look to find the installed packages. What I’ve shown you above is the Mac version. On a Windows machine,
you’ll probably see something that looks like this:

library("foreign", lib.loc="C:/Program Files/R/R-3.0.2/library")

But actually it doesn’t matter much. The lib.loc  bit is almost always unnecessary. Unless you’ve taken to installing packages
in idiosyncratic places (which is something that you can do if you really want) R already knows where to look. So in the vast
majority of cases, the command to load the foreign  package is just this:

library("foreign")

Throughout this book, you’ll often see me typing in library()  commands. You don’t actually have to type them in yourself:
you can use the Rstudio package panel to do all your package loading for you. The only reason I include the library()
commands sometimes is as a reminder to you to make sure that you have the relevant package loaded. Oh, and I suppose we should
check to see if our attempt to load the package actually worked. Let’s see if R now knows about the existence of the 
read.spss()  function…

exists( "read.spss" )

## [1] TRUE

Yep. All good.

library("foreign", lib.loc="/Library/Frameworks/R.framework/Versions/3.0/Resources/li
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2.12.3 Unloading a package
Sometimes, especially after a long session of working with R, you find yourself wanting to get rid of some of those packages that
you’ve loaded. The Rstudio package panel makes this exactly as easy as loading the package in the first place. Find the entry
corresponding to the package you want to unload, and uncheck the box. When you do that for the foreign  package, you’ll see
this command appear on screen:

detach("package:foreign", unload=TRUE)

And the package is unloaded. We can verify this by seeing if the read.spss()  function still exists() :

exists( "read.spss" )

## [1] FALSE

Nope. Definitely gone.

2.12.4 extra comments

Sections 4.2.2 and 4.2.3 cover the main things you need to know about loading and unloading packages. However, there’s a couple
of other details that I want to draw your attention to. A concrete example is the best way to illustrate. One of the other packages
that you already have installed on your computer is the Matrix  package, so let’s load that one and see what happens:

library( Matrix ) 
 
## Loading required package: lattice

This is slightly more complex than the output that we got last time, but it’s not too complicated. The Matrix  package makes
use of some of the tools in the lattice  package, and R has kept track of this dependency. So when you try to load the 
Matrix  package, R recognises that you’re also going to need to have the lattice  package loaded too. As a consequence,

both packages get loaded, and R prints out a helpful little note on screen to tell you that it’s done so.

R is pretty aggressive about enforcing these dependencies. Suppose, for example, I try to unload the lattice  package while
the Matrix  package is still loaded. This is easy enough to try: all I have to do is uncheck the box next to “lattice” in the
packages panel. But if I try this, here’s what happens:

detach("package:lattice", unload=TRUE) 
 
## Error: package `lattice' is required by `Matrix' so will not be detached  

R refuses to do it. This can be quite useful, since it stops you from accidentally removing something that you still need. So, if I
want to remove both Matrix  and lattice , I need to do it in the correct order

Something else you should be aware of. Sometimes you’ll attempt to load a package, and R will print out a message on screen
telling you that something or other has been “masked”. This will be confusing to you if I don’t explain it now, and it actually ties
very closely to the whole reason why R forces you to load packages separately from installing them. Here’s an example. Two of the
package that I’ll refer to a lot in this book are called car  and psych . The car  package is short for “Companion to
Applied Regression” (which is a really great book, I’ll add), and it has a lot of tools that I’m quite fond of. The car  package was
written by a guy called John Fox, who has written a lot of great statistical tools for social science applications. The psych
package was written by William Revelle, and it has a lot of functions that are very useful for psychologists in particular, especially
in regards to psychometric techniques. For the most part, car  and psych  are quite unrelated to each other. They do different
things, so not surprisingly almost all of the function names are different. But… there’s one exception to that. The car  package
and the psych  package both contain a function called logit() .  This creates a naming conflict. If I load both packages
into R, an ambiguity is created. If the user types in logit(100) , should R use the logit()  function in the car
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package, or the one in the psych  package? The answer is: R uses whichever package you loaded most recently, and it tells you
this very explicitly. Here’s what happens when I load the car  package, and then afterwards load the psych  package:

library(car)

## Loading required package: carData  

library(psych)

## 
## Attaching package: 'psych'  

## The following object is masked from 'package:car': 
## 
##   logit

The output here is telling you that the logit  object (i.e., function) in the car  package is no longer accessible to you. It’s
been hidden (or “masked”) from you by the one in the psych  package.

2.12.5 Downloading new packages

One of the main selling points for R is that there are thousands of packages that have been written for it, and these are all available
online. So whereabouts online are these packages to be found, and how do we download and install them? There is a big repository
of packages called the “Comprehensive R Archive Network” (CRAN), and the easiest way of getting and installing a new package
is from one of the many CRAN mirror sites. Conveniently for us, R provides a function called install.packages()  that
you can use to do this. Even more conveniently, the Rstudio team runs its own CRAN mirror and Rstudio has a clean interface that
lets you install packages without having to learn how to use the install.packages()  command

Using the Rstudio tools is, again, dead simple. In the top left hand corner of the packages panel (Figure 4.1) you’ll see a button
called “Install Packages”. If you click on that, it will bring up a window like the one shown in Figure 4.2.

Figure 4.2: The package installation dialog box in Rstudio

There are a few different buttons and boxes you can play with. Ignore most of them. Just go to the line that says “Packages” and
start typing the name of the package that you want. As you type, you’ll see a dropdown menu appear (Figure 4.3), listing names of
packages that start with the letters that you’ve typed so far.
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Figure 4.3: When you start typing, you’ll see a dropdown menu suggest a list of possible packages that you might want to install

You can select from this list, or just keep typing. Either way, once you’ve got the package name that you want, click on the install
button at the bottom of the window. When you do, you’ll see the following command appear in the R console:

install.packages("psych")

This is the R command that does all the work. R then goes off to the internet, has a conversation with CRAN, downloads some
stuff, and installs it on your computer. You probably don’t care about all the details of R’s little adventure on the web, but the 
install.packages()  function is rather chatty, so it reports a bunch of gibberish that you really aren’t all that interested in:

trying URL 'http://cran.rstudio.com/bin/macosx/contrib/3.0/psych_1.4.1.tgz' 
Content type 'application/x-gzip' length 2737873 bytes (2.6 Mb) 
opened URL 
================================================== 
downloaded 2.6 Mb 
 
 
The downloaded binary packages are in 
  /var/folders/cl/thhsyrz53g73q0w1kb5z3l_80000gn/T//RtmpmQ9VT3/downloaded_packages

Despite the long and tedious response, all thar really means is “I’ve installed the psych package”. I find it best to humour the
talkative little automaton. I don’t actually read any of this garbage, I just politely say “thanks” and go back to whatever I was
doing.

2.12.6 Updating R and R packages
Every now and then the authors of packages release updated versions. The updated versions often add new functionality, fix bugs,
and so on. It’s generally a good idea to update your packages periodically. There’s an update.packages()  function that you
can use to do this, but it’s probably easier to stick with the Rstudio tool. In the packages panel, click on the “Update Packages”
button. This will bring up a window that looks like the one shown in Figure 4.4. In this window, each row refers to a package that
needs to be updated. You can to tell R which updates you want to install by checking the boxes on the left. If you’re feeling lazy
and just want to update everything, click the “Select All” button, and then click the “Install Updates” button. R then prints out a lot
of garbage on the screen, individually downloading and installing all the new packages. This might take a while to complete
depending on how good your internet connection is. Go make a cup of coffee. Come back, and all will be well.
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Figure 4.4: The Rstudio dialog box for updating packages

About every six months or so, a new version of R is released. You can’t update R from within Rstudio (not to my knowledge, at
least): to get the new version you can go to the CRAN website and download the most recent version of R, and install it in the same
way you did when you originally installed R on your computer. This used to be a slightly frustrating event, because whenever you
downloaded the new version of R, you would lose all the packages that you’d downloaded and installed, and would have to repeat
the process of re-installing them. This was pretty annoying, and there were some neat tricks you could use to get around this.
However, newer versions of R don’t have this problem so I no longer bother explaining the workarounds for that issue.

2.12.7 What packages does this book use?

There are several packages that I make use of in this book. The most prominent ones are:

lot of interesting high-powered tools: it’s just a small collection of handy little things that I think can be useful to novice users.
As you get more comfortable with R this package should start to feel pretty useless to you.
psych . This package, written by William Revelle, includes a lot of tools that are of particular use to psychologists. In

particular, there’s several functions that are particularly convenient for producing analyses or summaries that are very common
in psych, but less common in other disciplines.
car . This is the Companion to Applied Regression package, which accompanies the excellent book of the same name by

(Fox and Weisberg 2011). It provides a lot of very powerful tools, only some of which we’ll touch in this book.

Besides these three, there are a number of packages that I use in a more limited fashion: gplots , sciplot , foreign ,
effects , R.matlab , gdata , lmtest , and probably one or two others that I’ve missed. There are also a number of

packages that I refer to but don’t actually use in this book, such as reshape , compute.es , HistData  and 
multcomp  among others. Finally, there are a number of packages that provide more advanced tools that I hope to talk about in

future versions of the book, such as sem , ez , nlme  and lme4 . In any case, whenever I’m using a function that isn’t in
the core packages, I’ll make sure to note this in the text.

This page titled 2.12: Installing and Loading Packages is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
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2.13: Using Comments
Before discussing any of the more complicated stuff, I want to introduce the comment character, # . It has a simple meaning: it
tells R to ignore everything else you’ve written on this line. You won’t have much need of the #  character immediately, but it’s
very useful later on when writing scripts (see Chapter 8). However, while you don’t need to use it, I want to be able to include
comments in my R extracts. For instance, if you read this:

seeker <- 3.1415           # create the first variable 
lover <- 2.7183            # create the second variable 
keeper <- seeker * lover   # now multiply them to create a third one 
print( keeper )            # print out the value of 'keeper'

## [1] 8.539539

it’s a lot easier to understand what I’m doing than if I just write this:

seeker <- 3.1415 
lover <- 2.7183 
keeper <- seeker * lover 
print( keeper ) 

## [1] 8.539539

You might have already noticed that the code extracts in Chapter 3 included the #  character, but from now on, you’ll start seeing 
#  characters appearing in the extracts, with some human-readable explanatory remarks next to them. These are still perfectly

legitimate commands, since R knows that it should ignore the #  character and everything after it. But hopefully they’ll help
make things a little easier to understand.

This page titled 2.13: Using Comments is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro
via source content that was edited to the style and standards of the LibreTexts platform.

4.1: Using Comments by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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2.14: Navigating the File System
In this section I talk a little about how R interacts with the file system on your computer. It’s not a terribly interesting topic, but it’s
useful. As background to this discussion, I’ll talk a bit about how file system locations work in Section 4.4.1. Once upon a time
everyone who used computers could safely be assumed to understand how the file system worked, because it was impossible to
successfully use a computer if you didn’t! However, modern operating systems are much more “user friendly”, and as a
consequence of this they go to great lengths to hide the file system from users. So these days it’s not at all uncommon for people to
have used computers most of their life and not be familiar with the way that computers organise files. If you already know this
stuff, skip straight to Section 4.4.2. Otherwise, read on. I’ll try to give a brief introduction that will be useful for those of you who
have never been forced to learn how to navigate around a computer using a DOS or UNIX shell.

2.14.1 file system itself
In this section I describe the basic idea behind file locations and file paths. Regardless of whether you’re using Window, Mac OS or
Linux, every file on the computer is assigned a (fairly) human readable address, and every address has the same basic structure: it
describes a path that starts from a root location , through as series of folders (or if you’re an old-school computer user, directories),
and finally ends up at the file.

On a Windows computer the root is the physical drive  on which the file is stored, and for most home computers the name of the
hard drive that stores all your files is C: and therefore most file names on Windows begin with C:. After that comes the folders, and
on Windows the folder names are separated by a \  symbol. So, the complete path to this book on my Windows computer might
be something like this:

C:\Users\danRbook\LSR.pdf

and what that means is that the book is called LSR.pdf, and it’s in a folder called book  which itself is in a folder called dan
which itself is … well, you get the idea. On Linux, Unix and Mac OS systems, the addresses look a little different, but they’re more
or less identical in spirit. Instead of using the backslash, folders are separated using a forward slash, and unlike Windows, they
don’t treat the physical drive as being the root of the file system. So, the path to this book on my Mac might be something like this:

/Users/dan/Rbook/LSR.pdf  

So that’s what we mean by the “path” to a file. The next concept to grasp is the idea of a working directory and how to change it.
For those of you who have used command line interfaces previously, this should be obvious already. But if not, here’s what I mean.
The working directory is just “whatever folder I’m currently looking at”. Suppose that I’m currently looking for files in Explorer (if
you’re using Windows) or using Finder (on a Mac). The folder I currently have open is my user directory (i.e., C:\Users\dan
or /Users/dan ). That’s my current working directory.

The fact that we can imagine that the program is “in” a particular directory means that we can talk about moving from our current
location to a new one. What that means is that we might want to specify a new location in relation to our current location. To do so,
we need to introduce two new conventions. Regardless of what operating system you’re using, we use . to refer to the current
working directory, and .. to refer to the directory above it. This allows us to specify a path to a new location in relation to our
current location, as the following examples illustrate. Let’s assume that I’m using my Windows computer, and my working
directory is C:\Users\danRbook ). The table below shows several addresses in relation to my current one:

Table 4.1: Basic arithmetic operations in R. These five operators are used very frequently throughout the text, so it’s important to
be familiar with them at the outset.

absolute path (i.e., from root) relative path (i.e. from C:)

C:\Users\dan ..

C:\Users ..\.. \

C:\Users\danRbook\source .\source

C:\Users\dan\nerdstuff ..\nerdstuff
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There’s one last thing I want to call attention to: the ~  directory. I normally wouldn’t bother, but R makes reference to this
concept sometimes. It’s quite common on computers that have multiple users to define ~  to be the user’s home directory. On my
Mac, for instance, the home directory ~  for the “dan” user is \Users\dan\ . And so, not surprisingly, it is possible to define
other directories in terms of their relationship to the home directory. For example, an alternative way to describe the location of the 
LSR.pdf  file on my Mac would be

~Rbook\LSR.pdf

That’s about all you really need to know about file paths. And since this section already feels too long, it’s time to look at how to
navigate the file system in R.

2.14.2 Navigating the file system using the R console
In this section I’ll talk about how to navigate this file system from within R itself. It’s not particularly user friendly, and so you’ll
probably be happy to know that Rstudio provides you with an easier method, and I will describe it in Section 4.4.4. So in practice,
you won’t really need to use the commands that I babble on about in this section, but I do think it helps to see them in operation at
least once before forgetting about them forever.

Okay, let’s get started. When you want to load or save a file in R it’s important to know what the working directory is. You can find
out by using the getwd()  command. For the moment, let’s assume that I’m using Mac OS or Linux, since there’s some
subtleties to Windows. Here’s what happens:

getwd() 
## [1] "/Users/dan"

We can change the working directory quite easily using setwd() . The setwd()  function has only the one argument, 
dir , is a character string specifying a path to a directory, or a path relative to the working directory. Since I’m currently located

at /Users/dan , the following two are equivalent:

setwd("/Users/dan/Rbook/data") 
setwd("./Rbook/data")

Now that we’re here, we can type list.files()  command to get a listing of all the files in that directory. Since this is the
directory in which I store all of the data files that we’ll use in this book, here’s what we get as the result:

Not terribly exciting, I’ll admit, but it’s useful to know about. In any case, there’s only one more thing I want to make a note of,
which is that R also makes use of the home directory. You can find out what it is by using the path.expand()  function, like
this:

list.files() 
## [1] "afl24.Rdata"             "aflsmall.Rdata"          "aflsmall2.Rdata"         
## [4] "agpp.Rdata"              "all.zip"                 "annoying.Rdata"          
## [7] "anscombesquartet.Rdata"  "awesome.Rdata"           "awesome2.Rdata"          
## [10] "booksales.csv"           "booksales.Rdata"         "booksales2.csv"         
## [13] "cakes.Rdata"             "cards.Rdata"             "chapek9.Rdata"          
## [16] "chico.Rdata"             "clinicaltrial_old.Rdata" "clinicaltrial.Rdata"    
## [19] "coffee.Rdata"            "drugs.wmc.rt.Rdata"      "dwr_all.Rdata"          
## [22] "effort.Rdata"            "happy.Rdata"             "harpo.Rdata"            
## [25] "harpo2.Rdata"            "likert.Rdata"            "nightgarden.Rdata"      
## [28] "nightgarden2.Rdata"      "parenthood.Rdata"        "parenthood2.Rdata"      
## [31] "randomness.Rdata"        "repeated.Rdata"          "rtfm.Rdata"             
## [34] "salem.Rdata"             "zeppo.Rdata"
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path.expand("~") 
## [1] "/Users/dan"

You can change the user directory if you want, but we’re not going to make use of it very much so there’s no reason to. The only
reason I’m even bothering to mention it at all is that when you use Rstudio to open a file, you’ll see output on screen that defines
the path to the file relative to the #~# directory. I’d prefer you not to be confused when you see it.

2.14.3 the Windows paths use the wrong slash?
Let’s suppose I’m on Windows. As before, I can find out what my current working directory is like this:

getwd() 
## [1] "C:/Users/dan/

This seems about right, but you might be wondering why R is displaying a Windows path using the wrong type of slash. The
answer is slightly complicated, and has to do with the fact that R treats the \  character as “special” (see Section 7.8.7). If you’re
deeply wedded to the idea of specifying a path using the Windows style slashes, then what you need to do is to type /  whenever
you mean \ . In other words, if you want to specify the working directory on a Windows computer, you need to use one of the
following commands:

setwd( "C:/Users/dan" ) 
setwd( "C:\\Users\\dan" )

It’s kind of annoying to have to do it this way, but as you’ll see later on in Section 7.8.7 it’s a necessary evil. Fortunately, as we’ll
see in the next section, Rstudio provides a much simpler way of changing directories…

2.14.4 Navigating the file system using the Rstudio file panel

Although I think it’s important to understand how all this command line stuff works, in many (maybe even most) situations there’s
an easier way. For our purposes, the easiest way to navigate the file system is to make use of Rstudio’s built in tools. The “file”
panel – the lower right hand area in Figure 4.7 – is actually a pretty decent file browser. Not only can you just point and click on
the names to move around the file system, you can also use it to set the working directory, and even load files.

Figure 4.7: The “file panel” is the area shown in the lower right hand corner. It provides a very easy way to browse and navigate
your computer using R. See main text for details.
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Here’s what you need to do to change the working directory using the file panel. Let’s say I’m looking at the actual screen shown in
Figure 4.7. At the top of the file panel you see some text that says “Home > Rbook > data”. What that means is that it’s displaying
the files that are stored in the

/Users/dan/Rbook/data

directory on my computer. It does not mean that this is the R working directory. If you want to change the R working directory,
using the file panel, you need to click on the button that reads “More”. This will bring up a little menu, and one of the options will
be “Set as Working Directory”. If you select that option, then R really will change the working directory. You can tell that it has
done so because this command appears in the console:

setwd("~/Rbook/data")  

In other words, Rstudio sends a command to the R console, exactly as if you’d typed it yourself. The file panel can be used to do
other things too. If you want to move “up” to the parent folder (e.g., from /Users/dan/Rbook/data  to 
/Users/dan/Rbook  click on the “..” link in the file panel. To move to a subfolder, click on the name of the folder that you

want to open. You can open some types of file by clicking on them. You can delete files from your computer using the “delete”
button, rename them with the “rename” button, and so on.

As you can tell, the file panel is a very handy little tool for navigating the file system. But it can do more than just navigate. As
we’ll see later, it can be used to open files. And if you look at the buttons and menu options that it presents, you can even use it to
rename, delete, copy or move files, and create new folders. However, since most of that functionality isn’t critical to the basic goals
of this book, I’ll let you discover those on your own.

This page titled 2.14: Navigating the File System is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

4.4: Navigating the File System by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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2.15: Loading and Saving Data
There are several different types of files that are likely to be relevant to us when doing data analysis. There are three in particular
that are especially important from the perspective of this book:

Workspace files are those with a .Rdata file extension. This is the standard kind of file that R uses to store data and variables.
They’re called “workspace files” because you can use them to save your whole workspace.
Comma separated value (CSV) files are those with a .csv file extension. These are just regular old text files, and they can be
opened with almost any software. It’s quite typical for people to store data in CSV files, precisely because they’re so simple.
Script files are those with a .R file extension. These aren’t data files at all; rather, they’re used to save a collection of commands
that you want R to execute later. They’re just text files, but we won’t make use of them until Chapter 8.

There are also several other types of file that R makes use of,  but they’re not really all that central to our interests. There are also
several other kinds of data file that you might want to import into R. For instance, you might want to open Microsoft Excel
spreadsheets (.xlsx files), or data files that have been saved in the native file formats for other statistics software, such as SPSS,
SAS, Minitab, Stata or Systat. Finally, you might have to handle databases. R tries hard to play nicely with other software, so it has
tools that let you open and work with any of these and many others. I’ll discuss some of these other possibilities elsewhere in this
book (Section 7.9), but for now I want to focus primarily on the two kinds of data file that you’re most likely to need: .Rdata files
and .csv files. In this section I’ll talk about how to load a workspace file, how to import data from a CSV file, and how to save your
workspace to a workspace file. Throughout this section I’ll first describe the (sometimes awkward) R commands that do all the
work, and then I’ll show you the (much easier) way to do it using Rstudio.

2.15.1 Loading workspace files using R

When I used the list.files()  command to list the contents of the /Users/dan/Rbook/data  directory (in Section
4.4.2), the output referred to a file called booksales.Rdata. Let’s say I want to load the data from this file into my workspace. The
way I do this is with the load()  function. There are two arguments to this function, but the only one we’re interested in is

file . This should be a character string that specifies a path to the file that needs to be loaded. You can use an absolute path
or a relative path to do so.

Using the absolute file path, the command would look like this:

load( file = "/Users/dan/Rbook/data/booksales.Rdata" )

but this is pretty lengthy. Given that the working directory (remember, we changed the directory at the end of Section 4.4.4) is 
/Users/dan/Rbook/data , I could use a relative file path, like so:

load( file = "../data/booksales.Rdata" )

However, my preference is usually to change the working directory first, and then load the file. What that would look like is this:

setwd( "../data" )         # move to the data directory 
load( "booksales.Rdata" )  # load the data

If I were then to type who()  I’d see that there are several new variables in my workspace now. Throughout this book, whenever
you see me loading a file, I will assume that the file is actually stored in the working directory, or that you’ve changed the working
directory so that R is pointing at the directory that contains the file. Obviously, you don’t need type that command yourself: you can
use the Rstudio file panel to do the work.

2.15.2 Loading workspace files using Rstudio
Okay, so how do we open an .Rdata file using the Rstudio file panel? It’s terribly simple. First, use the file panel to find the folder
that contains the file you want to load. If you look at Figure 4.7, you can see that there are several .Rdata files listed. Let’s say I
want to load the booksales.Rdata  file. All I have to do is click on the file name. Rstudio brings up a little dialog box asking
me to confirm that I do want to load this file. I click yes. The following command then turns up in the console,
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load("~/Rbook/data/booksales.Rdata")

and the new variables will appear in the workspace (you’ll see them in the Environment panel in Rstudio, or if you type who() ).
So easy it barely warrants having its own section.

One quite commonly used data format is the humble “comma separated value” file, also called a CSV file, and usually bearing the
file extension .csv. CSV files are just plain old-fashioned text files, and what they store is basically just a table of data. This is
illustrated in Figure 4.8, which shows a file called booksales.csv that I’ve created. As you can see, each row corresponds to a
variable, and each row represents the book sales data for one month. The first row doesn’t contain actual data though: it has the
names of the variables.

Figure 4.8: The booksales.csv data file. On the left, I’ve opened the file in using a spreadsheet program (OpenOffice), which shows
that the file is basically a table. On the right, the same file is open in a standard text editor (the TextEdit program on a Mac), which
shows how the file is formatted. The entries in the table are wrapped in quote marks and separated by commas.

If Rstudio were not available to you, the easiest way to open this file would be to use the read.csv()  function.  This
function is pretty flexible, and I’ll talk a lot more about it’s capabilities in Section 7.9 for more details, but for now there’s only two
arguments to the function that I’ll mention:

file . This should be a character string that specifies a path to the file that needs to be loaded. You can use an absolute path
or a relative path to do so.
header . This is a logical value indicating whether or not the first row of the file contains variable names. The default value

is TRUE .

Therefore, to import the CSV file, the command I need is:

books <- read.csv( file = "booksales.csv" )

There are two very important points to notice here. Firstly, notice that I didn’t try to use the load()  function, because that
function is only meant to be used for .Rdata files. If you try to use load()  on other types of data, you get an error. Secondly,
notice that when I imported the CSV file I assigned the result to a variable, which I imaginatively called books .  file. There’s a
reason for this. The idea behind an .Rdata  file is that it stores a whole workspace. So, if you had the ability to look inside the
file yourself you’d see that the data file keeps track of all the variables and their names. So when you load()  the file, R
restores all those original names. CSV files are treated differently: as far as R is concerned, the CSV only stores one variable, but
that variable is big table. So when you import that table into the workspace, R expects you to give it a name.] Let’s have a look at
what we’ve got:

print( books )
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##        Month Days Sales Stock.Levels 
## 1    January   31     0         high 
## 2   February   28   100         high 
## 3      March   31   200          low 
## 4      April   30    50          out 
## 5        May   31     0          out 
## 6       June   30     0         high 
## 7       July   31     0         high 
## 8     August   31     0         high 
## 9  September   30     0         high 
## 10   October   31     0         high 
## 11  November   30     0         high 
## 12  December   31     0         high

Clearly, it’s worked, but the format of this output is a bit unfamiliar. We haven’t seen anything like this before. What you’re
looking at is a data frame, which is a very important kind of variable in R, and one I’ll discuss in Section 4.8. For now, let’s just be
happy that we imported the data and that it looks about right.

2.15.3 Importing data from CSV files using Rstudio
Yet again, it’s easier in Rstudio. In the environment panel in Rstudio you should see a button called “Import Dataset”. Click on that,
and it will give you a couple of options: select the “From Text File…” option, and it will open up a very familiar dialog box asking
you to select a file: if you’re on a Mac, it’ll look like the usual Finder window that you use to choose a file; on Windows it looks
like an Explorer window. An example of what it looks like on a Mac is shown in Figure 4.9. I’m assuming that you’re familiar with
your own computer, so you should have no problem finding the CSV file that you want to import! Find the one you want, then
click on the “Open” button. When you do this, you’ll see a window that looks like the one in Figure 4.10.

Figure 4.9: A dialog box on a Mac asking you to select the CSV file R should try to import. Mac users will recognise this
immediately: it’s the usual way in which a Mac asks you to find a file. Windows users won’t see this: they’ll see the usual explorer
window that Windows always gives you when it wants you to select a file.

The import data set window is relatively straightforward to understand.
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Figure 4.10: The Rstudio window for importing a CSV file into R

In the top left corner, you need to type the name of the variable you R to create. By default, that will be the same as the file name:
our file is called booksales.csv , so Rstudio suggests the name booksales . If you’re happy with that, leave it alone. If
not, type something else. Immediately below this are a few things that you can tweak to make sure that the data gets imported
correctly:

Heading. Does the first row of the file contain raw data, or does it contain headings for each variable? The 
booksales.csv  file has a header at the top, so I selected “yes”.

Separator. What character is used to separate different entries? In most CSV files this will be a comma (it is “comma separated”
after all). But you can change this if your file is different.
Decimal. What character is used to specify the decimal point? In English speaking countries, this is almost always a period (i.e.,
. ). That’s not universally true: many European countries use a comma. So you can change that if you need to.

Quote. What character is used to denote a block of text? That’s usually going to be a double quote mark. It is for the 
booksales.csv  file, so that’s what I selected.

The nice thing about the Rstudio window is that it shows you the raw data file at the top of the window, and it shows you a preview
of the data at the bottom. If the data at the bottom doesn’t look right, try changing some of the settings on the left hand side. Once
you’re happy, click “Import”. When you do, two commands appear in the R console:

booksales <- read.csv("~/Rbook/data/booksales.csv") 
View(booksales)

The first of these commands is the one that loads the data. The second one will display a pretty table showing the data in Rstudio.

2.15.4 Saving a workspace file using save

Not surprisingly, saving data is very similar to loading data. Although Rstudio provides a simple way to save files (see below), it’s
worth understanding the actual commands involved. There are two commands you can use to do this, save()  and 
save.image() . If you’re happy to save all of the variables in your workspace into the data file, then you should use
save.image() . And if you’re happy for R to save the file into the current working directory, all you have to do is this:

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/35624?pdf


2.15.5 https://stats.libretexts.org/@go/page/35624

save.image( file = "myfile.Rdata" )

Since file  is the first argument, you can shorten this to save.image("myfile.Rdata") ; and if you want to save to a
different directory, then (as always) you need to be more explicit about specifying the path to the file, just as we discussed in
Section 4.4. Suppose, however, I have several variables in my workspace, and I only want to save some of them. For instance, I
might have this as my workspace:

who() 
##   -- Name --   -- Class --   -- Size -- 
##   data         data.frame    3 x 2      
##   handy        character     1          
##   junk         numeric       1        

I want to save data  and handy , but not junk . But I don’t want to delete junk  right now, because I want to use it for
something else later on. This is where the save()  function is useful, since it lets me indicate exactly which variables I want to
save. Here is one way I can use the save  function to solve my problem:

save(data, handy, file = "myfile.Rdata")

Importantly, you must specify the name of the file  argument. The reason is that if you don’t do so, R will think that 
"myfile.Rdata"  is actually a variable that you want to save, and you’ll get an error message. Finally, I should mention a

second way to specify which variables the save()  function should save, which is to use the list  argument. You do so like
this:

save.me <- c("data", "handy")   # the variables to be saved 
save( file = "booksales2.Rdata", list = save.me )   # the command to save them

2.15.5 Saving a workspace file using Rstudio
Rstudio allows you to save the workspace pretty easily. In the environment panel (Figures 4.5 and 4.6) you can see the “save”
button. There’s no text, but it’s the same icon that gets used on every computer everywhere: it’s the one that looks like a floppy
disk. You know, those things that haven’t been used in about 20 years. Alternatively, go to the “Session” menu and click on the
“Save Workspace As…” option.  This will bring up the standard “save” dialog box for your operating system (e.g., on a Mac it’ll
look a little bit like the loading dialog box in Figure 4.9). Type in the name of the file that you want to save it to, and all the
variables in your workspace will be saved to disk. You’ll see an R command like this one

save.image("~/Desktop/Untitled.RData")

Pretty straightforward, really.

2.15.6 Other things you might want to save
Until now, we’ve talked mostly about loading and saving data. Other things you might want to save include:

The output. Sometimes you might also want to keep a copy of all your interactions with R, including everything that you typed
in and everything that R did in response. There are some functions that you can use to get R to write its output to a file rather
than to print onscreen (e.g., sink() ), but to be honest, if you do want to save the R output, the easiest thing to do is to use
the mouse to select the relevant text in the R console, go to the “Edit” menu in Rstudio and select “Copy”. The output has now
been copied to the clipboard. Now open up your favourite text editor or word processing software, and paste it. And you’re
done. However, this will only save the contents of the console, not the plots you’ve drawn (assuming you’ve drawn some).
We’ll talk about saving images later on.
A script. While it is possible – and sometimes handy – to save the R output as a method for keeping a copy of your statistical
analyses, another option that people use a lot (especially when you move beyond simple “toy” analyses) is to write scripts. A
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script is a text file in which you write out all the commands that you want R to run. You can write your script using whatever
software you like. In real world data analysis writing scripts is a key skill – and as you become familiar with R you’ll probably
find that most of what you do involves scripting rather than typing commands at the R prompt. However, you won’t need to do
much scripting initially, so we’ll leave that until Chapter 8.

This page titled 2.15: Loading and Saving Data is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

4.5: Loading and Saving Data by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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2.16: Useful Things to Know about Variables
In Chapter 3 I talked a lot about variables, how they’re assigned and some of the things you can do with them, but there’s a lot of
additional complexities. That’s not a surprise of course. However, some of those issues are worth drawing your attention to now. So
that’s the goal of this section; to cover a few extra topics. As a consequence, this section is basically a bunch of things that I want to
briefly mention, but don’t really fit in anywhere else. In short, I’ll talk about several different issues in this section, which are only
loosely connected to one another.

2.16.1 Special values
The first thing I want to mention are some of the “special” values that you might see R produce. Most likely you’ll see them in
situations where you were expecting a number, but there are quite a few other ways you can encounter them. These values are 
Inf , NaN , NA  and NULL . These values can crop up in various different places, and so it’s important to understand what

they mean.

Infinity ( Inf ). The easiest of the special values to explain is Inf , since it corresponds to a value that is infinitely large.
You can also have -Inf . The easiest way to get Inf  is to divide a positive number by 0:

1 / 0  

## [1] Inf

In most real world data analysis situations, if you’re ending up with infinite numbers in your data, then something has gone awry.
Hopefully you’ll never have to see them.

Not a Number ( NaN ). The special value of NaN  is short for “not a number”, and it’s basically a reserved keyword that
means “there isn’t a mathematically defined number for this”. If you can remember your high school maths, remember that it is
conventional to say that 0/0 doesn’t have a proper answer: mathematicians would say that 0/0 is undefined. R says that it’s not a
number:

 0 / 0

## [1] NaN  

Nevertheless, it’s still treated as a “numeric” value. To oversimplify, NaN  corresponds to cases where you asked a proper
numerical question that genuinely has no meaningful answer.

Not available ( NA ). NA  indicates that the value that is “supposed” to be stored here is missing. To understand what this
means, it helps to recognise that the NA  value is something that you’re most likely to see when analysing data from real world
experiments. Sometimes you get equipment failures, or you lose some of the data, or whatever. The point is that some of the
information that you were “expecting” to get from your study is just plain missing. Note the difference between NA  and 
NaN . For NaN , we really do know what’s supposed to be stored; it’s just that it happens to correspond to something like

0/0 that doesn’t make any sense at all. In contrast, NA  indicates that we actually don’t know what was supposed to be there.
The information is missing.
No value ( NULL ). The NULL  value takes this “absence” concept even further. It basically asserts that the variable
genuinely has no value whatsoever. This is quite different to both NaN  and NA . For NaN  we actually know what the
value is, because it’s something insane like 0/0. For NA , we believe that there is supposed to be a value “out there”, but a dog
ate our homework and so we don’t quite know what it is. But for NULL  we strongly believe that there is no value at all.

2.16.2 Assigning names to vector elements
One thing that is sometimes a little unsatisfying about the way that R prints out a vector is that the elements come out unlabelled.
Here’s what I mean. Suppose I’ve got data reporting the quarterly profits for some company. If I just create a no-frills vector, I have
to rely on memory to know which element corresponds to which event. That is:
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profit <- c( 3.1, 0.1, -1.4, 1.1 ) 
profit

## [1]  3.1  0.1 -1.4  1.1

You can probably guess that the first element corresponds to the first quarter, the second element to the second quarter, and so on,
but that’s only because I’ve told you the back story and because this happens to be a very simple example. In general, it can be
quite difficult. This is where it can be helpful to assign names  to each of the elements. Here’s how you do it:

names(profit) <- c("Q1","Q2","Q3","Q4") 
profit

##   Q1   Q2   Q3   Q4  
##  3.1  0.1 -1.4  1.1

This is a slightly odd looking command, admittedly, but it’s not too difficult to follow. All we’re doing is assigning a vector of
labels (character strings) to names(profit) . You can always delete the names again by using the command 
names(profit) <- NULL . It’s also worth noting that you don’t have to do this as a two stage process. You can get the same

result with this command:

profit <- c( "Q1" = 3.1, "Q2" = 0.1, "Q3" = -1.4, "Q4" = 1.1 ) 
profit

##   Q1   Q2   Q3   Q4  
##  3.1  0.1 -1.4  1.1

The important things to notice are that (a) this does make things much easier to read, but (b) the names at the top aren’t the “real”
data. The value of profit[1]  is still 3.1 ; all I’ve done is added a name to profit[1]  as well. Nevertheless, names
aren’t purely cosmetic, since R allows you to pull out particular elements of the vector by referring to their names:

profit["Q1"]

##  Q1  
## 3.1

And if I ever need to pull out the names themselves, then I just type names(profit) .

2.16.3 Variable classes
As we’ve seen, R allows you to store different kinds of data. In particular, the variables we’ve defined so far have either been
character data (text), numeric data, or logical data.  It’s important that we remember what kind of information each variable stores
(and even more important that R remembers) since different kinds of variables allow you to do different things to them. For
instance, if your variables have numerical information in them, then it’s okay to multiply them together:

x <- 5   # x is numeric 
y <- 4   # y is numeric 
x * y   

## [1] 20
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But if they contain character data, multiplication makes no sense whatsoever, and R will complain if you try to do it:

x <- "apples"   # x is character 
y <- "oranges"  # y is character 
x * y 

## Error in x * y: non-numeric argument to binary operator  

Even R is smart enough to know you can’t multiply "apples"  by "oranges" . It knows this because the quote marks are
indicators that the variable is supposed to be treated as text, not as a number.

This is quite useful, but notice that it means that R makes a big distinction between 5  and "5" . Without quote marks, R treats 
5  as the number five, and will allow you to do calculations with it. With the quote marks, R treats "5"  as the textual character

five, and doesn’t recognise it as a number any more than it recognises "p"  or "five"  as numbers. As a consequence, there’s
a big difference between typing x <- 5  and typing x <- "5" . In the former, we’re storing the number 5 ; in the latter,
we’re storing the character "5" . Thus, if we try to do multiplication with the character versions, R gets stroppy:

x <- "5"   # x is character 
y <- "4"   # y is character 
x * y     

## Error in x * y: non-numeric argument to binary operator

Okay, let’s suppose that I’ve forgotten what kind of data I stored in the variable x  (which happens depressingly often). R
provides a function that will let us find out. Or, more precisely, it provides three functions: class() , mode()  and 
typeof() . Why the heck does it provide three functions, you might be wondering? Basically, because R actually keeps track

of three different kinds of information about a variable:

1. The class of a variable is a “high level” classification, and it captures psychologically (or statistically) meaningful distinctions.
For instance "2011-09-12"  and "my birthday"  are both text strings, but there’s an important difference between
the two: one of them is a date. So it would be nice if we could get R to recognise that "2011-09-12"  is a date, and allow
us to do things like add or subtract from it. The class of a variable is what R uses to keep track of things like that. Because the
class of a variable is critical for determining what R can or can’t do with it, the class()  function is very handy.

2. The mode of a variable refers to the format of the information that the variable stores. It tells you whether R has stored text data
or numeric data, for instance, which is kind of useful, but it only makes these “simple” distinctions. It can be useful to know
about, but it’s not the main thing we care about. So I’m not going to use the mode()  function very much.

3. The type of a variable is a very low level classification. We won’t use it in this book, but (for those of you that care about these
details) this is where you can see the distinction between integer data, double precision numeric, etc. Almost none of you
actually will care about this, so I’m not even going to bother demonstrating the typeof()  function.

For purposes, it’s the class()  of the variable that we care most about. Later on, I’ll talk a bit about how you can convince R to
“coerce” a variable to change from one class to another (Section 7.10). That’s a useful skill for real world data analysis, but it’s not
something that we need right now. In the meantime, the following examples illustrate the use of the class()  function:

x <- "hello world"     # x is text 
class(x)  

## [1] "character"

x <- TRUE     # x is logical  
class(x)  
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## [1] "logical"

x <- 100     # x is a number 
class(x)  

## [1] "numeric"

Exciting, no?

This page titled 2.16: Useful Things to Know about Variables is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
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2.17: Factors
Okay, it’s time to start introducing some of the data types that are somewhat more specific to statistics. If you remember back to
Chapter 2, when we assign numbers to possible outcomes, these numbers can mean quite different things depending on what kind
of variable we are attempting to measure. In particular, we commonly make the distinction between nominal, ordinal, interval and
ratio scale data. How do we capture this distinction in R? Currently, we only seem to have a single numeric data type. That’s
probably not going to be enough, is it?

A little thought suggests that the numeric variable class in R is perfectly suited for capturing ratio scale data. For instance, if I were
to measure response time (RT) for five different events, I could store the data in R like this:

RT <- c(342, 401, 590, 391, 554)

where the data here are measured in milliseconds, as is conventional in the psychological literature. It’s perfectly sensible to talk
about “twice the response time”, 2×RT, or the “response time plus 1 second”, RT+1000, and so both of the following are perfectly
reasonable things for R to do:

2 * RT  

## [1]  684  802 1180  782 1108

RT + 1000  

## [1] 1342 1401 1590 1391 1554

And to a lesser extent, the “numeric” class is okay for interval scale data, as long as we remember that multiplication and division
aren’t terribly interesting for these sorts of variables. That is, if my IQ score is 110 and yours is 120, it’s perfectly okay to say that
you’re 10 IQ points smarter than me , but it’s not okay to say that I’m only 92% as smart as you are, because intelligence doesn’t
have a natural zero.  We might even be willing to tolerate the use of numeric variables to represent ordinal scale variables, such as
those that you typically get when you ask people to rank order items (e.g., like we do in Australian elections), though as we will see
R actually has a built in tool for representing ordinal data (see Section 7.11.2) However, when it comes to nominal scale data, it
becomes completely unacceptable, because almost all of the “usual” rules for what you’re allowed to do with numbers don’t apply
to nominal scale data. It is for this reason that R has factors.

2.17.1 Introducing factors
Suppose, I was doing a study in which people could belong to one of three different treatment conditions. Each group of people
were asked to complete the same task, but each group received different instructions. Not surprisingly, I might want to have a
variable that keeps track of what group people were in. So I could type in something like this

group <- c(1,1,1,2,2,2,3,3,3)

so that group[i]  contains the group membership of the i -th person in my study. Clearly, this is numeric data, but equally
obviously this is a nominal scale variable. There’s no sense in which “group 1” plus “group 2” equals “group 3”, but nevertheless if
I try to do that, R won’t stop me because it doesn’t know any better:

group + 2  

## [1] 3 3 3 4 4 4 5 5 5
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Apparently R seems to think that it’s allowed to invent “group 4” and “group 5”, even though they didn’t actually exist.
Unfortunately, R is too stupid to know any better: it thinks that 3  is an ordinary number in this context, so it sees no problem in
calculating 3 + 2 . But since we’re not that stupid, we’d like to stop R from doing this. We can do so by instructing R to treat 
group  as a factor. This is easy to do using the as.factor()  function.

group <- as.factor(group) 
group  

## [1] 1 1 1 2 2 2 3 3 3 
## Levels: 1 2 3

It looks more or less the same as before (though it’s not immediately obvious what all that Levels  rubbish is about), but if we
ask R to tell us what the class of the group  variable is now, it’s clear that it has done what we asked:

class(group)  

## [1] "factor"

Neat. Better yet, now that I’ve converted group  to a factor, look what happens when I try to add 2 to it:

group + 2  

## Warning in Ops.factor(group, 2): '+' not meaningful for factors

## [1] NA NA NA NA NA NA NA NA NA

This time even R is smart enough to know that I’m being an idiot, so it tells me off and then produces a vector of missing values.
(i.e., NA : see Section 4.6.1).

2.17.2 Labelling the factor levels

I have a confession to make. My memory is not infinite in capacity; and it seems to be getting worse as I get older. So it kind of
annoys me when I get data sets where there’s a nominal scale variable called gender , with two levels corresponding to males
and females. But when I go to print out the variable I get something like this:

gender

## [1] 1 1 1 1 1 2 2 2 2 
## Levels: 1 2

Okaaaay. That’s not helpful at all, and it makes me very sad. Which number corresponds to the males and which one corresponds to
the females? Wouldn’t it be nice if R could actually keep track of this? It’s way too hard to remember which number corresponds to
which gender. And besides, the problem that this causes is much more serious than a single sad nerd… because R has no way of
knowing that the 1 s in the group  variable are a very different kind of thing to the 1 s in the gender  variable. So if I try
to ask which elements of the group  variable are equal to the corresponding elements in gender , R thinks this is totally
kosher, and gives me this:

group == gender
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## Error in Ops.factor(group, gender): level sets of factors are different  

Well, that’s … especially stupid.  The problem here is that R is very literal minded. Even though you’ve declared both group
and gender  to be factors, it still assumes that a 1  is a 1  no matter which variable it appears in.

To fix both of these problems (my memory problem, and R’s infuriating literal interpretations), what we need to do is assign
meaningful labels to the different levels of each factor. We can do that like this:

levels(group) <- c("group 1", "group 2", "group 3") 
print(group)

## [1] group 1 group 1 group 1 group 2 group 2 group 2 group 3 group 3 group 3 
## Levels: group 1 group 2 group 3

levels(gender) <- c("male", "female") 
print(gender)  

## [1] male   male   male   male   male   female female female female 
## Levels: male female

That’s much easier on the eye, and better yet, R is smart enough to know that "female"  is not equal to "group 2" , so
now when I try to ask which group memberships are “equal to” the gender of the corresponding person,

group == gender

## Error in Ops.factor(group, gender): level sets of factors are different

R correctly tells me that I’m an idiot.

2.17.3 Moving on…
Factors are very useful things, and we’ll use them a lot in this book: they’re the main way to represent a nominal scale variable.
And there are lots of nominal scale variables out there. I’ll talk more about factors in 7.11.2, but for now you know enough to be
able to get started.

This page titled 2.17: Factors is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via source
content that was edited to the style and standards of the LibreTexts platform.

4.7: Factors by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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2.18: Data frames
It’s now time to go back and deal with the somewhat confusing thing that happened in Section ?? when we tried to open up a CSV
file. Apparently we succeeded in loading the data, but it came to us in a very odd looking format. At the time, I told you that this
was a data frame. Now I’d better explain what that means.

2.18.1 Introducing data frames
In order to understand why R has created this funny thing called a data frame, it helps to try to see what problem it solves. So let’s
go back to the little scenario that I used when introducing factors in Section 4.7. In that section I recorded the group  and 
gender  for all 9 participants in my study. Let’s also suppose I recorded their ages and their score  on “Dan’s Terribly

Exciting Psychological Test”:

age <- c(17, 19, 21, 37, 18, 19, 47, 18, 19) 
score <- c(12, 10, 11, 15, 16, 14, 25, 21, 29)

Assuming no other variables are in the workspace, if I type who()  I get this:

who()  

##    -- Name --   -- Class --   -- Size -- 
##    age          numeric       9          
##    gender       factor        9          
##    group        factor        9          
##    score        numeric       9

So there are four variables in the workspace, age , gender , group  and score . And it just so happens that all four of
them are the same size (i.e., they’re all vectors with 9 elements). Aaaand it just so happens that age[1]  corresponds to the age
of the first person, and gender[1]  is the gender of that very same person, etc. In other words, you and I both know that all
four of these variables correspond to the same data set, and all four of them are organised in exactly the same way.

However, R doesn’t know this! As far as it’s concerned, there’s no reason why the age  variable has to be the same length as the 
gender  variable; and there’s no particular reason to think that age[1]  has any special relationship to gender[1]  any

more than it has a special relationship to gender[4] . In other words, when we store everything in separate variables like this,
R doesn’t know anything about the relationships between things. It doesn’t even really know that these variables actually refer to a
proper data set. The data frame fixes this: if we store our variables inside a data frame, we’re telling R to treat these variables as a
single, fairly coherent data set.

To see how they do this, let’s create one. So how do we create a data frame? One way we’ve already seen: if we import our data
from a CSV file, R will store it as a data frame. A second way is to create it directly from some existing variables using the 
data.frame()  function. All you have to do is type a list of variables that you want to include in the data frame. The output of

a data.frame()  command is, well, a data frame. So, if I want to store all four variables from my experiment in a data frame
called expt  I can do so like this:

expt <- data.frame ( age, gender, group, score )  
expt  
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##   age gender   group score 
## 1  17   male group 1    12 
## 2  19   male group 1    10 
## 3  21   male group 1    11 
## 4  37   male group 2    15 
## 5  18   male group 2    16 
## 6  19 female group 2    14 
## 7  47 female group 3    25 
## 8  18 female group 3    21 
## 9  19 female group 3    29

Note that expt  is a completely self-contained variable. Once you’ve created it, it no longer depends on the original variables
from which it was constructed. That is, if we make changes to the original age  variable, it will not lead to any changes to the
age data stored in expt .

At this point, our workspace contains only the one variable, a data frame called expt . But as we can see when we told R to print
the variable out, this data frame contains 4 variables, each of which has 9 observations. So how do we get this information out
again? After all, there’s no point in storing information if you don’t use it, and there’s no way to use information if you can’t access
it. So let’s talk a bit about how to pull information out of a data frame.

The first thing we might want to do is pull out one of our stored variables, let’s say score . One thing you might try to do is
ignore the fact that score  is locked up inside the expt  data frame. For instance, you might try to print it out like this:

score

## Error in eval(expr, envir, enclos): object 'score' not found  

This doesn’t work, because R doesn’t go “peeking” inside the data frame unless you explicitly tell it to do so. There’s actually a
very good reason for this, which I’ll explain in a moment, but for now let’s just assume R knows what it’s doing. How do we tell R
to look inside the data frame? As is always the case with R there are several ways. The simplest way is to use the $  operator to
extract the variable you’re interested in, like this:

expt$score

## [1] 12 10 11 15 16 14 25 21 29

2.18.2 Getting information about a data frame
One problem that sometimes comes up in practice is that you forget what you called all your variables. Normally you might try to
type objects()  or who() , but neither of those commands will tell you what the names are for those variables inside a data
frame! One way is to ask R to tell you what the names of all the variables stored in the data frame are, which you can do using the 
names()  function:

names(expt)

## [1] "age"    "gender" "group"  "score"

An alternative method is to use the who()  function, as long as you tell it to look at the variables inside data frames. If you set 
expand = TRUE  then it will not only list the variables in the workspace, but it will “expand” any data frames that you’ve got

in the workspace, so that you can see what they look like. That is:
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who(expand = TRUE)

##    -- Name --   -- Class --   -- Size -- 
##    expt         data.frame    9 x 4      
##     $age        numeric       9          
##     $gender     factor        9          
##     $group      factor        9          
##     $score      numeric       9

or, since expand  is the first argument in the who()  function you can just type who(TRUE) . I’ll do that a lot in this book.

2.18.3 Looking for more on data frames?
There’s a lot more that can be said about data frames: they’re fairly complicated beasts, and the longer you use R the more
important it is to make sure you really understand them. We’ll talk a lot more about them in Chapter 7.

This page titled 2.18: Data frames is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.

4.8: Data frames by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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2.19: Suggested Readings and Videos
There are many online resources for learning R. Here are a few:

Datacamp: Offers free online courses for many aspects of R programming
A Student’s Guide to R
R for cats: A humorous introduction to R programming
aRrgh: a newcomer’s (angry) guide to R
Quick-R
RStudio Cheat Sheets: Quick references for many different aspects of R programming
tidverse Style Guide: Make your code beautiful and reader-friendly!
R for Data Science: This free online book focuses on working with data in R.
Advanced R: This free online book by Hadley Wickham will help you get to the next level once your R skills start to develop.
R intro for Python users: Used Python before? Check this out for a guide on how to transition to R.

This page titled 2.19: Suggested Readings and Videos is shared under a CC BY-NC 2.0 license and was authored, remixed, and/or curated by
Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.

3.11: Suggested Readings and Videos by Russell A. Poldrack is licensed CC BY-NC 4.0. Original source:
https://statsthinking21.github.io/statsthinking21-core-site.
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3.1: Qualitative Data
Remember, qualitative data are words describing a characteristic of the individual. There are several different graphs that are used
for qualitative data. These graphs include bar graphs, Pareto charts, and pie charts.

Pie charts and bar graphs are the most common ways of displaying qualitative data. A spreadsheet program like Excel can make
both of them. The first step for either graph is to make a frequency or relative frequency table. A frequency table is a summary of
the data with counts of how often a data value (or category) occurs.

Suppose you have the following data for which type of car students at a college drive?

Ford, Chevy, Honda, Toyota, Toyota, Nissan, Kia, Nissan, Chevy, Toyota, Honda, Chevy, Toyota, Nissan, Ford, Toyota,
Nissan, Mercedes, Chevy, Ford, Nissan, Toyota, Nissan, Ford, Chevy, Toyota, Nissan, Honda, Porsche, Hyundai, Chevy,
Chevy, Honda, Toyota, Chevy, Ford, Nissan, Toyota, Chevy, Honda, Chevy, Saturn, Toyota, Chevy, Chevy, Nissan, Honda,
Toyota, Toyota, Nissan

Solution

A listing of data is too hard to look at and analyze, so you need to summarize it. First you need to decide the categories. In this
case it is relatively easy; just use the car type. However, there are several cars that only have one car in the list. In that case it is
easier to make a category called other for the ones with low values. Now just count how many of each type of cars there are.
For example, there are 5 Fords, 12 Chevys, and 6 Hondas. This can be put in a frequency distribution:

Cateogry Frequency

Ford 5

Chevy 12

Honda 6

Toyota 12

Nissan 10

Other 5

Total 50

Table : Frequency Table for Type of Car Data

The total of the frequency column should be the number of observations in the data.

Since raw numbers are not as useful to tell other people it is better to create a third column that gives the relative frequency of
each category. This is just the frequency divided by the total. As an example for Ford category:

relative frequency 

This can be written as a decimal, fraction, or percent. You now have a relative frequency distribution:

Category Frequency Relative Frequency

Ford 5 0.10

Chevy 12 0.24

Honda 6 0.12

Toyota 12 0.24

Nissan 10 0.20

Table : Relative Frequency Table for Type of Car Data

Example 3.1.1

3.1.1

= = 0.10

5

50

3.1.2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/35630?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/03%3A_Summarizing_Data_Visually/3.01%3A_Qualitative_Data


3.1.2 https://stats.libretexts.org/@go/page/35630

Category Frequency Relative Frequency

Other 5 0.10

Total 50 1.00

The relative frequency column should add up to 1.00. It might be off a little due to rounding errors.

Now that you have the frequency and relative frequency table, it would be good to display this data using a graph. There are
several different types of graphs that can be used: bar chart, pie chart, and Pareto charts.

Bar graphs or charts consist of the frequencies on one axis and the categories on the other axis. Then you draw rectangles for
each category with a height (if frequency is on the vertical axis) or length (if frequency is on the horizontal axis) that is equal to the
frequency. All of the rectangles should be the same width, and there should be equally width gaps between each bar.

Draw a bar graph of the data in Example .

Solution

Category Frequency Relative Frequency

Ford 5 0.10

Chevy 12 0.24

Honda 6 0.12

Toyota 12 0.24

Nissan 10 0.20

Other 5 0.10

Total 50 1.00

Table : Relative Frequency Table for Type of Car Data

Put the frequency on the vertical axis and the category on the horizontal axis.

Then just draw a box above each category whose height is the frequency.

All graphs are drawn using . The command in  to create a bar graph is:

variable<-c(type in percentages or frequencies for each class with commas in between values)

barplot(variable,names.arg=c("type in name of 1st category", "type in name of 2nd category",…,"type in name of last
category"),

ylim=c(0,number over max), xlab="type in label for x-axis", ylab="type in label for y-axis",ylim=c(0,number above
maximum y value), main="type in title", col="type in a color") – creates a bar graph of the data in a color if you want.

For this example the command would be:

car<-c(5, 12, 6, 12, 10, 5)

barplot(car, names.arg=c("Ford", "Chevy", "Honda", "Toyota", "Nissan", "Other"), xlab="Type of Car",
ylab="Frequency", ylim=c(0,12), main="Type of Car Driven by College Students", col="blue")

Example  drawing a bar graph3.1.2

3.1.1

3.1.2

R R
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Figure for Type of Car Data

Notice from the graph, you can see that Toyota and Chevy are the more popular car, with Nissan not far behind. Ford seems to
be the type of car that you can tell was the least liked, though the cars in the other category would be liked less than a Ford.

Some key features of a bar graph:

Equal spacing on each axis.
Bars are the same width.
There should be labels on each axis and a title for the graph.
There should be a scaling on the frequency axis and the categories should be listed on the category axis.
The bars don’t touch.

You can also draw a bar graph using relative frequency on the vertical axis. This is useful when you want to compare two
samples with different sample sizes. The relative frequency graph and the frequency graph should look the same, except for the
scaling on the frequency axis.

Using R, the command would be:

car<-c(0.1, 0.24, 0.12, 0.24, 0.2, 0.1)

barplot(car, names.arg=c("Ford", "Chevy", "Honda", "Toyota", "Nissan", "Other"), xlab="Type of Car", ylab="Relative
Frequency", main="Type of Car Driven by College Students", col="blue", ylim=c(0,.25))
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Figure for Type of Car Data

Another type of graph for qualitative data is a pie chart. A pie chart is where you have a circle and you divide pieces of the circle
into pie shapes that are proportional to the size of the relative frequency. There are 360 degrees in a full circle. Relative frequency
is just the percentage as a decimal. All you have to do to find the angle by multiplying the relative frequency by 360 degrees.
Remember that 180 degrees is half a circle and 90 degrees is a quarter of a circle

Draw a pie chart of the data in Example .

First you need the relative frequencies.

Category Frequency Relative Frequency

Ford 5 0.10

Chevy 12 0.24

Honda 6 0.12

Toyota 12 0.24

Nissan 10 0.20

Other 5 0.10

Total 50 1.00

Table : Relative Frequency Table for Type of Car Data

Solution

Then you multiply each relative frequency by 360° to obtain the angle measure for each category.

Category Relative Frequency Angle (in degrees (°))

Ford 0.10 36.0

Table : Pie Chart Angles for Type of Car Data

Example  drawing a pie chart3.1.3

3.1.1

3.1.2

3.1.3

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/35630?pdf


3.1.5 https://stats.libretexts.org/@go/page/35630

Category Relative Frequency Angle (in degrees (°))

Chevy 0.24 86.4

Honda 0.12 43.2

Toyota 0.24 86.4

Nissan 0.20 72.0

Other 0.10 36.0

Total 1.00 360.0

Now draw the pie chart using a compass, protractor, and straight edge. Technology is preferred. If you use technology, there is
no need for the relative frequencies or the angles.

You can use R to graph the pie chart. In R, the commands would be:

pie(variable,labels=c("type in name of 1st category", "type in name of 2nd category",…,"type in name of last
category"),main="type in title", col=rainbow(number of categories)) – creates a pie chart with a title and rainbow of
colors for each category.

For this example, the commands would be:

car<-c(5, 12, 6, 12, 10, 5)

pie(car, labels=c("Ford, 10%", "Chevy, 24%", "Honda, 12%", "Toyota, 24%", "Nissan, 20%", "Other, 10%"),
main="Type of Car Driven by College Students", col=rainbow(6))

Figure : Pie Chart for Type of Car Data

As you can see from the graph, Toyota and Chevy are more popular, while the cars in the other category are liked the least. Of
the cars that you can determine from the graph, Ford is liked less than the others.

Pie charts are useful for comparing sizes of categories. Bar charts show similar information. It really doesn’t matter which one you
use. It really is a personal preference and also what information you are trying to address. However, pie charts are best when you
only have a few categories and the data can be expressed as a percentage. The data doesn’t have to be percentages to draw the pie
chart, but if a data value can fit into multiple categories, you cannot use a pie chart. As an example, if you are asking people about

3.1.3
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what their favorite national park is, and you say to pick the top three choices, then the total number of answers can add up to more
than 100% of the people involved. So you cannot use a pie chart to display the favorite national park.

A third type of qualitative data graph is a Pareto chart, which is just a bar chart with the bars sorted with the highest frequencies
on the left. Here is the Pareto chart for the data in Example .

Figure : Pareto Chart for Type of Car Data

The advantage of Pareto charts is that you can visually see the more popular answer to the least popular. This is especially useful in
business applications, where you want to know what services your customers like the most, what processes result in more injuries,
which issues employees find more important, and other type of questions like these.

There are many other types of graphs that can be used on qualitative data. There are spreadsheet software packages that will create
most of them, and it is better to look at them to see what can be done. It depends on your data as to which may be useful. The next
example illustrates one of these types known as a multiple bar graph.

In the Wii Fit game, you can do four different types of exercises: yoga, strength, aerobic, and balance. The Wii system keeps
track of how many minutes you spend on each of the exercises everyday. The following graph is the data for Dylan over one
week time period. Discuss any indication you can infer from the graph.

Figure : Multiple Bar Chart for Wii Fit Data

3.1.1

3.1.4

Example  multiple bar graph3.1.4

3.1.5
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Solution

It appears that Dylan spends more time on balance exercises than on any other exercises on any given day. He seems to spend
less time on strength exercises on a given day. There are several days when the amount of exercise in the different categories is
almost equal.

The usefulness of a multiple bar graph is the ability to compare several different categories over another variable, in Example 
the variable would be time. This allows a person to interpret the data with a little more ease.

Homework

1. Eyeglassomatic manufactures eyeglasses for different retailers. The number of lenses for different activities is in Example 
.

Activity Grind Multicoat Assemble Make frames Receive finished Unknown

Number of
lenses

18872 12105 4333 25880 26991 1508

Table : Data for Eyeglassomatic 
Grind means that they ground the lenses and put them in frames, multicoat means that they put tinting or scratch resistance
coatings on lenses and then put them in frames, assemble means that they receive frames and lenses from other sources and put
them together, make frames means that they make the frames and put lenses in from other sources, receive finished means that
they received glasses from other source, and unknown means they do not know where the lenses came from. Make a bar chart
and a pie chart of this data. State any findings you can see from the graphs.

2. To analyze how Arizona workers ages 16 or older travel to work the percentage of workers using carpool, private vehicle
(alone), and public transportation was collected. Create a bar chart and pie chart of the data in Example . State any
findings you can see from the graphs.

Transportation type Percentage

Carpool 11.6%

Private Vehicle (Alone) 75.8%

Public Transportation 2.0%

Other 10.6%

Table : Data of Travel Mode for Arizona Workers

3. The number of deaths in the US due to carbon monoxide (CO) poisoning from generators from the years 1999 to 2011 are in
table #2.1.6 (Hinatov, 2012). Create a bar chart and pie chart of this data. State any findings you see from the graphs.

Region Number of Deaths from CO While Using a Generator

Urban Core 401

Sub-Urban 97

Large Rural 86

Small Rural/Isolated 111

Table : Data of Number of Deaths Due to CO Poisoning

4. In Connecticut households use gas, fuel oil, or electricity as a heating source. Example  shows the percentage of
households that use one of these as their principle heating sources ("Electricity usage," 2013), ("Fuel oil usage," 2013), ("Gas
usage," 2013). Create a bar chart and pie chart of this data. State any findings you see from the graphs.

Table : Data of Household Heating Sources

3.1.4

Exercise 3.1.1

3.1.4

3.1.4

3.1.5

3.1.5

3.1.6

3.1.7

3.1.7
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Heating Source PercentageHeating Source Percentage

Electricity 15.3%

Fuel Oil 46.3%

Gas 35.6%

Other 2.85

5. Eyeglassomatic manufactures eyeglasses for different retailers. They test to see how many defective lenses they made during
the time period of January 1 to March 31. Example  gives the defect and the number of defects. Create a Pareto chart of
the data and then describe what this tells you about what causes the most defects.

Defect type Number of defects

Scratch 5865

Right shaped - small 4613

Flaked 1992

Wrong axis 1838

Chamfer wrong 1596

Crazing, cracks 1546

Wrong shape 1485

Wrong PD 1398

Spots and bubbles 1371

Wrong height 1130

Right shape - big 1105

Lost in lab 976

Spots/bubble - intern 976

Table : Data of Defect Type

6. People in Bangladesh were asked to state what type of birth control method they use. The percentages are given in Example 
 ("Contraceptive use," 2013). Create a Pareto chart of the data and then state any findings you can from the graph.

Method Percentage

Condom 4.50%

Pill 28.50%

Periodic Abstinence 4.90%

Injection 7.00%

Female Sterilization 5.00%

IUD 0.90%

Male Sterilization 0.70%

Withdrawal 2.90%

Other Modern Methods 0.70%

Table : Data of Birth Control Type

3.1.8

3.1.8

3.1.9

3.1.9
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Method Percentage

Other Traditional Methods 0.60%

7. The percentages of people who use certain contraceptives in Central American countries are displayed in Graph 2.1.6
("Contraceptive use," 2013). State any findings you can from the graph.

Figure : Multiple Bar Chart for Contraceptive Types

Answer

See solutions

This page titled 3.1: Qualitative Data is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Kathryn Kozak via
source content that was edited to the style and standards of the LibreTexts platform.

2.1: Qualitative Data by Kathryn Kozak is licensed CC BY-SA 4.0. Original source: https://s3-us-west-
2.amazonaws.com/oerfiles/statsusingtech2.pdf.
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3.2: Quantitative Data
The graph for quantitative data looks similar to a bar graph, except there are some major differences. First, in a bar graph the categories can be put in any order on the horizontal axis. There is
no set order for these data values. You can’t say how the data is distributed based on the shape, since the shape can change just by putting the categories in different orders. With quantitative
data, the data are in specific orders, since you are dealing with numbers. With quantitative data, you can talk about a distribution, since the shape only changes a little bit depending on how
many categories you set up. This is called a frequency distribution.

This leads to the second difference from bar graphs. In a bar graph, the categories that you made in the frequency table were determined by you. In quantitative data, the categories are numerical
categories, and the numbers are determined by how many categories (or what are called classes) you choose. If two people have the same number of categories, then they will have the same
frequency distribution. Whereas in qualitative data, there can be many different categories depending on the point of view of the author.

The third difference is that the categories touch with quantitative data, and there will be no gaps in the graph. The reason that bar graphs have gaps is to show that the categories do not continue
on, like they do in quantitative data. Since the graph for quantitative data is different from qualitative data, it is given a new name. The name of the graph is a histogram. To create a histogram,
you must first create the frequency distribution. The idea of a frequency distribution is to take the interval that the data spans and divide it up into equal subintervals called classes.

1. Find the range = largest value – smallest value
2. Pick the number of classes to use. Usually the number of classes is between five and twenty. Five classes are used if there are a small number of data points and twenty classes if there

are a large number of data points (over 1000 data points). (Note: categories will now be called classes from now on.)
3. Class width =  Always round up to the next integer (even if the answer is already a whole number go to the next integer). If you don’t do this, your last class will not contain

your largest data value, and you would have to add another class just for it. If you round up, then your largest data value will fall in the last class, and there are no issues.
4. Create the classes. Each class has limits that determine which values fall in each class. To find the class limits, set the smallest value as the lower class limit for the first class. Then add

the class width to the lower class limit to get the next lower class limit. Repeat until you get all the classes. The upper class limit for a class is one less than the lower limit for the next
class.

5. In order for the classes to actually touch, then one class needs to start where the previous one ends. This is known as the class boundary. To find the class boundaries, subtract 0.5 from
the lower class limit and add 0.5 to the upper class limit.

6. Sometimes it is useful to find the class midpoint. The process is 

Midpoint 

7. To figure out the number of data points that fall in each class, go through each data value and see which class boundaries it is between. Utilizing tally marks may be helpful in counting
the data values. The frequency for a class is the number of data values that fall in the class.

The above description is for data values that are whole numbers. If you data value has decimal places, then your class width should be rounded up to the nearest value with the same number
of decimal places as the original data. In addition, your class boundaries should have one more decimal place than the original data. As an example, if your data have one decimal place,
then the class width would have one decimal place, and the class boundaries are formed by adding and subtracting 0.05 from each class limit.

Example  contains the amount of rent paid every month for 24 students from a statistics course. Make a relative frequency distribution using 7 classes.

1500 1350 350 1200 850 900

1500 1150 1500 900 1400 1100

1250 600 610 960 890 1325

900 800 2550 495 1200 690

Table : Data of Monthly Rent

Solution

1. Find the range: 
largest value - smallest value 

2. Pick the number of classes: 
The directions to say to use 7 classes.

3. Find the class width: 

width  

Round up to 315 

4. Find the class limits: 
Start at the smallest value. This is the lower class limit for the first class. Add the width to get the lower limit of the next class. Keep adding the width to get all the lower limits. 

, 
The upper limit is one less than the next lower limit: so for the first class the upper class limit would be . 
When you have all 7 classes, make sure the last number, in this case the 2550, is at least as large as the largest value in the data. If not, you made a mistake somewhere.

5. Find the class boundaries: 
Subtract 0.5 from the lower class limit to get the class boundaries. Add 0.5 to the upper class limit for the last class's boundary. 

 
Every value in the data should fall into exactly one of the classes. No data values should fall right on the boundary of two classes.

6. Find the class midpoints: 

midpoint  

7. Tally and find the frequency of the data: 
Go through the data and put a tally mark in the appropriate class for each piece of data by looking to see which class boundaries the data value is between. Fill in the frequency by
changing each of the tallies into a number.

Table : Frequency Distribution for Monthly Rent

Summary of the Steps Involved in Making a Frequency Distribution

 range 

# classes 

=

 lower limit +upper limit 

2

Note

Example  creating a frequency table3.2.1

3.2.1

3.2.1

= 2550 −350 = 2200

= = ≈ 314.286

 range 

7

2200

7

Alwaysrounduptothenextintegerevenifthewidthisalreadyaninteger.

350 +315 = 665, 665 +315 = 980, 980 +315 = 1295⇌

665 −1 = 664

350 −0.5 = 349.5, 665 −0.5 = 664.5, 980 −0.5 = 979.5, 1295 −0.5 = 1294.5⇌

=

 lower limit  +  upper limit 

2

= 507, = 822,⇌

350 +664

2

665 +979

2

3.2.2
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Class Limits Class Boundaries Class Midpoint Tally FrequencyClass Limits Class Boundaries Class Midpoint Tally Frequency

350-664 349.5-664.5 507 |||| 4

665-979 664.5-979.5 822  ||| 8

980-1294 979.5-1294.5 1137 5

1295-1609 1294.5-1609.5 1452  | 6

1610-1924 1609.5-1924.5 1767  0

1925-2239 1924.5-2239.5 2082  0

2240-2554 2239.5-2554.5 2397 | 1

Make sure the total of the frequencies is the same as the number of data points.

R command for a frequency distribution:

To create a frequency distribution:

summary(variable) – so you can find out the minimum and maximum.

breaks = seq(min, number above max, by = class width)

breaks – so you can see the breaks that R made.

variable.cut=cut(variable, breaks, right=FALSE) – this will cut up the data into the classes.

variable.freq=table(variable.cut) – this will create the frequency table.

variable.freq – this will display the frequency table.

For the data in Example , the R command would be:

rent<-c(1500, 1350, 350, 1200, 850, 900, 1500, 1150, 1500, 900, 1400, 1100, 1250, 600, 610, 960, 890, 1325, 900, 800, 2550, 495, 1200, 690) summary(rent)

Output:

breaks=seq(350, 3000, by = 315) 
breaks

Output: 
[1] 350 665 980 1295 1610 1925 2240 2555 2870 
These are your lower limits of the frequency distribution. You can now write your own table.

rent.cut=cut(rent, breaks, right=FALSE) 
rent.freq=table(rent.cut)

Output: 
rent.cut

It is difficult to determine the basic shape of the distribution by looking at the frequency distribution. It would be easier to look at a graph. The graph of a frequency distribution for
quantitative data is called a frequency histogram or just histogram for short.

A Histogram is a graph of the frequencies on the vertical axis and the class boundaries on the horizontal axis. Rectangles where the height is the frequency and the width is the class width
are drawn for each class.

Draw a histogram for the distribution from Example .

Solution

The class boundaries are plotted on the horizontal axis and the frequencies are plotted on the vertical axis. You can plot the midpoints of the classes instead of the class boundaries. Graph
2.2.1 was created using the midpoints because it was easier to do with the software that created the graph. On R, the command is

hist(variable, col="type in what color you want", breaks, main="type the title you want", xlab="type the label you want for the horizontal axis", 
ylim=c(0, number above maximum frequency) – produces histogram with specified color and using the breaks you made for the frequency distribution.

For this example, the command in R would be (assuming you created a frequency distribution in R as described previously):

hist(rent, col="blue", breaks, right=FALSE, main="Monthly Rent Paid by Students", ylim=c(0,8) xlab="Monthly Rent ($)")

||||

||||

||||

3.2.1

Min

350

1st Qu.

837.5

Median

1030.0

Mean

1082.0

3rd Qu.

1331.0

Max

2550.0

[350, 665)

4

[665, 980)

8

[980, 1.3e+03)

5

[1.3e+03, 1.61e+03)

6

[1.61e+03, 1.92e+03)

0

[1.92e+03, 2.24e+03)

0

[2.24e+03, 2.56e+03)

1

[2.56e+03, 2.87e+03)

0

Definition : Histogram3.2.1

Example \(\PageIndex{2}\: Drawing a Histogram

3.2.1
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Figure : Histogram for Monthly Rent

If no frequency distribution was created before the histogram, then the command would be:

hist(variable, col="type in what color you want", number of classes, main="type the title you want", xlab="type the label you want for the horizontal axis") – produces histogram with
specified color and number of classes (though the number of classes is an estimate and R will create the number of classes near this value).

For this example, the R command without a frequency distribution created first would be:

hist(rent, col="blue", 7, main="Monthly Rent Paid by Students", xlab="Monthly Rent ($)")

Notice the graph has the axes labeled, the tick marks are labeled on each axis, and there is a title.

Reviewing the graph you can see that most of the students pay around $750 per month for rent, with about $1500 being the other common value. You can see from the graph, that most
students pay between $600 and $1600 per month for rent. Of course, these values are just estimates from the graph. There is a large gap between the $1500 class and the highest data value.
This seems to say that one student is paying a great deal more than everyone else. This value could be considered an outlier. An outlier is a data value that is far from the rest of the values.
It may be an unusual value or a mistake. It is a data value that should be investigated. In this case, the student lives in a very expensive part of town, thus the value is not a mistake, and is
just very unusual. There are other aspects that can be discussed, but first some other concepts need to be introduced.

Frequencies are helpful, but understanding the relative size each class is to the total is also useful. To find this you can divide the frequency by the total to create a relative frequency. If you have
the relative frequencies for all of the classes, then you have a relative frequency distribution.

Relative Frequency Distribution

A variation on a frequency distribution is a relative frequency distribution. Instead of giving the frequencies for each class, the relative frequencies are calculated.

Relative frequency 

This gives you percentages of data that fall in each class.

Find the relative frequency for the grade data.

Solution

From Example , the frequency distribution is reproduced in Example .

Class Limits Class Boundaries Class Midpoint Frequency

350-664 349.5-664.5 507 4

665-979 664.5-979.5 822 8

980-1294 979.5-1294.5 1127 5

1295-1609 1294.5-1609.5 1452 6

1610-1924 1609.5-1924.5 1767 0

1925-2239 1924.5-2239.5 2082 0

2240-2554 2239.5-2554.5 2397 1

Table : Frequency Distribution for Monthly Rent

Divide each frequency by the number of data points.

Class Limits Class Boundaries Class Midpoint Frequency Relative Frequency

350-664 349.5-664.5 507 4 0.17

665-979 664.5-979.5 822 8 0.33

980-1294 979.5-1294.5 1127 5 0.21

Table : Relative Frequency Distribution for Monthly Rent

3.2.1

Definition 3.2.2

=

 frequency 

# of data points 

Example  creating a relative frequency table3.2.3

3.2.1 3.2.2

3.2.2

= 0.17, = 0.33, = 0.21,⇌

4

24

8

24

5

24

3.2.3
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Class Limits Class Boundaries Class Midpoint Frequency Relative Frequency

1295-1609 1294.5-1609.5 1452 6 0.25

1610-1924 1609.5-1924.5 1767 0 0

1925-2239 1924.5-2239.5 2082 0 0

2240-2554 2239.5-2554.5 2397 1 0.04

Total   24 1

The relative frequencies should add up to 1 or 100%. (This might be off a little due to rounding errors.)

The graph of the relative frequency is known as a relative frequency histogram. It looks identical to the frequency histogram, but the vertical axis is relative frequency instead of just
frequencies.

Draw a relative frequency histogram for the grade distribution from Example .

Solution

The class boundaries are plotted on the horizontal axis and the relative frequencies are plotted on the vertical axis. (This is not easy to do in R, so use another technology to graph a relative
frequency histogram.)

Figure : Relative Frequency Histogram for Monthly Rent

Notice the shape is the same as the frequency distribution.

Another useful piece of information is how many data points fall below a particular class boundary. As an example, a teacher may want to know how many students received below an 80%, a
doctor may want to know how many adults have cholesterol below 160, or a manager may want to know how many stores gross less than $2000 per day. This is known as a cumulative
frequency. If you want to know what percent of the data falls below a certain class boundary, then this would be a cumulative relative frequency. For cumulative frequencies you are finding
how many data values fall below the upper class limit.

To create a cumulative frequency distribution, count the number of data points that are below the upper class boundary, starting with the first class and working up to the top class. The last
upper class boundary should have all of the data points below it. Also include the number of data points below the lowest class boundary, which is zero.

Create a cumulative frequency distribution for the data in Example .

Solution

The frequency distribution for the data is in Example .

Class Limits Class Boundaries Class Midpoint Frequency

350-664 349.5-664.5 507 4

665-979 664.5-979.5 822 8

980-1294 979.5-1294.5 1127 5

1295-1609 1294.5-1609.5 1452 6

1610-1924 1609.5-1924.5 1767 0

1925-2239 1924.5-2239.5 2082 0

2240-2554 2239.5-2554.5 2397 1

Table : Frequency Distribution for Monthly Rent

Now ask yourself how many data points fall below each class boundary. Below 349.5, there are 0 data points. Below 664.5 there are 4 data points, below 979.5, there are 4 + 8 = 12 data
points, below 1294.5 there are 4 + 8 + 5 = 17 data points, and continue this process until you reach the upper class boundary. This is summarized in Example .

To produce cumulative frequencies in R, you need to have performed the commands for the frequency distribution. Once you have complete that, then use
variable.cumfreq=cumsum(variable.freq) – creates the cumulative frequencies for the variable 
cumfreq0=c(0,variable.cumfreq) – creates a cumulative frequency table for the variable. 
cumfreq0 – displays the cumulative frequency table.

For this example the command would be: 
rent.cumfreq=cumsum(rent.freq) 
cumfreq0=c(0,rent.cumfreq) 
cumfreq0

Output:

Example  drawing a relative frequency histogram3.2.4

3.2.1

3.2.2

Example  creating a cumulative frequency distribution3.2.5

3.2.1

3.2.2

3.2.2

3.2.4

0

[350, 665)

4

[665, 980)

12

[980, 1.3e+03)

17

[1.3e+03, 1.61e+03)

23

[1.61e+03, 1.92e+03)

23

[1.92e+03, 2.24e+03)

23

[2.24e+03, 2.56e+03)

24

[2.56e+03, 2.87e+03)

24
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Now type this into a table. See Example .

Class Limits Class Boundaries Class Midpoint Frequency Cumulative Frequency

350-664 349.5-664.5 507 4 4

665-979 664.5-979.5 822 8 12

980-1294 979.5-1294.5 1127 5 17

1295-1609 1294.5-1609.5 1452 6 23

1610-1924 1609.5-1924.5 1767 0 23

1925-2239 1924.5-2239.5 2082 0 23

2240-2554 2239.5-2554.5 2397 1 24

Table : Cumulative Distribution for Monthly Rent

Again, it is hard to look at the data the way it is. A graph would be useful. The graph for cumulative frequency is called an ogive (o-jive). To create an ogive, first create a scale on both the
horizontal and vertical axes that will fit the data. Then plot the points of the class upper class boundary versus the cumulative frequency. Make sure you include the point with the lowest class
boundary and the 0 cumulative frequency. Then just connect the dots.

Draw an ogive for the data in Example .

Solution

In R, the commands would be: 
plot(breaks,cumfreq0, main="title you want to use", xlab="label you want to use", ylab="label you want to use", ylim=c(0, number above maximum cumulative frequency) – plots the ogive 
lines(breaks,cumfreq0) – connects the dots on the ogive

For this example, the commands would be: 
Plot(breaks,cumfreq0, main=”Cumulative Frequency for Monthly Rent”, xlab=”Monthly Rent ($)”, ylab=”Cumulative Frequency”, ylim=c(0,25)) 
lines(breaks,cumfreq0)

Figure : Ogive for Monthly Rent

The usefulness of a ogive is to allow the reader to find out how many students pay less than a certain value, and also what amount of monthly rent is paid by a certain number of students. As an
example, suppose you want to know how many students pay less than $1500 a month in rent, then you can go up from the $1500 until you hit the graph and then you go over to the cumulative
frequency axes to see what value corresponds to this value. It appears that around 20 students pay less than $1500. (See Graph 2.2.4.)

Figure : Ogive for Monthly Rent with Example

Also, if you want to know the amount that 15 students pay less than, then you start at 15 on the vertical axis and then go over to the graph and down to the horizontal axis where the line
intersects the graph. You can see that 15 students pay less than about $1200 a month. (See Graph 2.2.5.)

3.2.4

3.2.4

Example  drawing an ogive3.2.6

3.2.1

3.2.3

3.2.4
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Figure : Ogive for Monthly Rent with Example

If you graph the cumulative relative frequency then you can find out what percentage is below a certain number instead of just the number of people below a certain value.

Shapes of the distribution:

When you look at a distribution, look at the basic shape. There are some basic shapes that are seen in histograms. Realize though that some distributions have no shape. The common shapes are
symmetric, skewed, and uniform. Another interest is how many peaks a graph may have. This is known as modal.

Symmetric means that you can fold the graph in half down the middle and the two sides will line up. You can think of the two sides as being mirror images of each other. Skewed means one
“tail” of the graph is longer than the other. The graph is skewed in the direction of the longer tail (backwards from what you would expect). A uniform graph has all the bars the same height.

Modal refers to the number of peaks. Unimodal has one peak and bimodal has two peaks. Usually if a graph has more than two peaks, the modal information is not longer of interest.

Other important features to consider are gaps between bars, a repetitive pattern, how spread out is the data, and where the center of the graph is.

Examples of Graphs:
This graph is roughly symmetric and unimodal:

Figure

This graph is symmetric and bimodal:

Figure

This graph is skewed to the right:

Figure

This graph is skewed to the left and has a gap:

3.2.5
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Figure

This graph is uniform since all the bars are the same height:

Figure

The following data represents the percent change in tuition levels at public, fouryear colleges (inflation adjusted) from 2008 to 2013 (Weissmann, 2013). Create a frequency distribution,
histogram, and ogive for the data.

19.5% 40.8% 57.0% 15.1% 17.4% 5.2% 13.0%

15.6% 51.5% 15.6% 14.5% 22.4% 19.5% 31.3%

21.7% 27.0% 13.1% 26.8% 24.3% 38.0% 21.1%

9.3% 46.7% 14.5% 78.4% 67.3% 21.1% 22.4%

5.3% 17.3% 17.5% 36.6% 72.0% 63.2% 15.1%

2.2% 17.5% 36.7% 2.8% 16.2% 20.5% 17.8%

30.1% 63.6% 17.8% 23.2% 25.3% 21.4% 28.5%

9.4%  

Table : Data of Tuition Levels at Public, Four-Year Colleges

Solution

1. Find the range: 
largest value - smallest value = % % %

2. Pick the number of classes: 
Since there are 50 data points, then around 6 to 8 classes should be used. Let's use 8.

3. Find the class width: 

width  

Since the data has one decimal place, then the class width should round to one decimal place. Make sure you round up. 
width %

4. Find the class limits: 

5. Find the class boundaries: 
Since the data has one decimal place, the class boundaries should have two decimal places, so subtract 0.05 from the lower class limit to get the class boundaries. Add 0.05 to the upper
class limit for the last class’s boundary. 

 
Every value in the data should fall into exactly one of the classes. No data values should fall right on the boundary of two classes.

6. Find the class midpoints: 

midpoint  

7. Tally and find the frequency of the data:

Class Limits Class Boundaries Class Midpoint Tally Frequency Relative Frequency Cumulative Frequency

2.2-11.7 2.15-11.75 6.95 6 0.12 6

11.8-21.3 11.75-21.35 16.55 20 0.40 26

21.4-30.9 21.35-30.95 26.15 11 0.22 37

31.0-45.0 30.95-40.55 35.75 4 0.08 41

40.6-50.1 40.55-50.15 45.35 2 0.04 43

Table : Frequency Distribution for Tuition Levels at Public, Four-Year Colleges

Example  creating a frequency distribution, histogram, and ogive3.2.7

3.2.5

78.4 −2.2 = 76.2

= = ≈ 9.525%

 range 

8

76.2%

8

= 9.6

2.2% +9.6% = 11.8%, 11.8% +9.6% = 21.4%, 21.4% +9.6% = 31.0%,⇋

2.2 −0.05 = 2.15%, 11.8 −0.05 = 11.75%, 21.4 −0.05 = 21.35%⇋

=

 lower limt  +  upper limit 

2

= 6.95%, = 16.55%,⇋

2.2 +11.7

2

11.8 +21.3

2

|||||

|||| |||| |||| ||||

||||| ||||

||||

||

3.2.6
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Class Limits Class Boundaries Class Midpoint Tally Frequency Relative Frequency Cumulative Frequency

50.2-59.7 50.15-59.75 54.95 2 0.04 45

59.8-69.3 59.75-69.35 64.55 3 0.06 48

69.4-78.9 69.35-78.95 74.15 2 0.04 50

Make sure the total of the frequencies is the same as the number of data points.

Figure : Histogram for Tuition Levels at Public, Four-Year Colleges

This graph is skewed right, with no gaps. This says that most percent increases in tuition were around 16.55%, with very few states having a percent increase greater than 45.35%.

Figure : Ogive for Tuition Levels at Public, Four-Year Colleges

Looking at the ogive, you can see that 30 states had a percent change in tuition levels of about 25% or less.

There are occasions where the class limits in the frequency distribution are predetermined. Example  demonstrates this situation.

The following are the percentage grades of 25 students from a statistics course. Make a frequency distribution and histogram.

62 87 81 69 87 62 45 95 76 76

62 71 65 67 72 80 40 77 87 58

84 73 93 64 89      

Table : Data of Test Grades

Solution

Since this data is percent grades, it makes more sense to make the classes in multiples of 10, since grades are usually 90 to 100%, 80 to 90%, and so forth. It is easier to not use the class
boundaries, but instead use the class limits and think of the upper class limit being up to but not including the next classes lower limit. As an example the class 80 – 90 means a grade of
80% up to but not including a 90%. A student with an 89.9% would be in the 80-90 class.

Class Limit Class Midpoint Tally Freqeuncy

40-50 45 2

50-60 55 1

60-70 65 7

70-80 75 6

80-90 85 7

90-100 95 2

Table : Frequency Distribution for Test Grades

||

|||

||

3.2.11

3.2.12

3.2.8

Example  creating a frequency distribution and histogram3.2.8

3.2.7

||

|

||||||

|||||

||||||

||

3.2.8
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Figure : Histogram for Test Grades

It appears that most of the students had between 60 to 90%. This graph looks somewhat symmetric and also bimodal. The same number of students earned between 60 to 70% and 80 to
90%.

There are other types of graphs for quantitative data. They will be explored in the next section.

Homework

1. The median incomes of males in each state of the United States, including the District of Columbia and Puerto Rico, are given in Example  ("Median income of," 2013). Create a
frequency distribution, relative frequency distribution, and cumulative frequency distribution using 7 classes.

$42,951 $52,379 $42,544 $37,488 $49,281 $50,987

$60,705 $50,411 $66,760 $40,951 $43,902 $45,494

$41,528 $50,746 $45,183 $43,624 $43,993 $41,612

$46,313 $43,944 $56,708 $60,264 $50,053 $50,580

$40,202 $43,146 $41,635 $42,182 $41,803 $53,033

$60,568 $41,037 $50,388 $41,950 $44,660 $46,176

$41,420 $45,976 $47,956 $22,529 $48,842 $41,464

$40,285 $41,309 $43,160 $47,573 $44,057 $52,805

$53,046 $42,125 $46,214 $51,630   

Table : Data of Median Income for Males

2. The median incomes of females in each state of the United States, including the District of Columbia and Puerto Rico, are given in Example  ("Median income of," 2013). Create a
frequency distribution, relative frequency distribution, and cumulative frequency distribution using 7 classes.

$31,862 $40,550 $36,048 $30,752 $41,817 $40,236

$47,476 $40,500 $60,332 $33,823 $35,438 $37,242

$31,238 $39,150 $34,023 $33,745 $33,269 $32,684

$31,844 $34,599 $48,748 $46,185 $36,931 $40,416

$29,548 $33,865 $31,067 $33,424 $35,484 $41,021

$47,155 $32,316 $42,113 $33,459 $32,462 $35,746

$31,274 $36,027 $37,089 $22,117 $41,412 $31,330

$31,329 $33,184 $35,301 $32,843 $38,177 $40,969

$40,993 $29,688 $35,890 $34,381   

Table : Data of Median Income for Females

3. The density of people per square kilometer for African countries is in Example  ("Density of people," 2013). Create a frequency distribution, relative frequency distribution, and
cumulative frequency distribution using 8 classes.

15 16 81 3 62 367 42 123

8 9 337 12 29 70 39 83

26 51 79 6 157 105 42 45

72 72 37 4 36 134 12 3

630 563 72 29 3 13 176 341

415 187 65 194 75 16 41 18

69 49 103 65 143 2 18 31

Table : Data of Density of People per Square Kilometer

4. The Affordable Care Act created a market place for individuals to purchase health care plans. In 2014, the premiums for a 27 year old for the bronze level health insurance are given in
Example  ("Health insurance marketplace," 2013). Create a frequency distribution, relative frequency distribution, and cumulative frequency distribution using 5 classes.

3.2.13

Exercise 3.2.1

3.2.9

3.2.9

3.2.10

3.2.10

3.2.11

3.2.11

3.2.12
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$114 $119 $121 $125 $132 $139

$139 $141 $143 $145 $151 $153

$156 $159 $162 $163 $165 $166

$170 $170 $176 $177 $181 $185

$185 $186 $186 $189 $190 $192

$196 $203 $204 $219 $254 $286

Table : Data of Health Insurance Premiums

5. Create a histogram and relative frequency histogram for the data in Example . Describe the shape and any findings you can from the graph.

 

6. Create a histogram and relative frequency histogram for the data in Example . Describe the shape and any findings you can from the graph.

 

7. Create a histogram and relative frequency histogram for the data in Example . Describe the shape and any findings you can from the graph.

 

8. Create a histogram and relative frequency histogram for the data in Example . Describe the shape and any findings you can from the graph.

 

9. Create an ogive for the data in Example . Describe any findings you can from the graph.

 

10. Create an ogive for the data in Example . Describe any findings you can from the graph.

 

11. Create an ogive for the data in Example . Describe any findings you can from the graph.

 

12. Create an ogive for the data in Example . Describe any findings you can from the graph.

 

13. Students in a statistics class took their first test. The following are the scores they earned. Create a frequency distribution and histogram for the data using class limits that make sense for
grade data. Describe the shape of the distribution.

 

80 79 89 74 73 67 79

93 70 70 76 88 83 73

81 79 80 85 79 80 79

58 93 94 74    

Table : Data of Test 1 Grades

14. Students in a statistics class took their first test. The following are the scores they earned. Create a frequency distribution and histogram for the data using class limits that make sense for
grade data. Describe the shape of the distribution. Compare to the graph in question 13.

 

Table : Data of Test 1 Grades

67 67 76 47 85 70

87 76 80 72 84 98

84 64 65 82 81 81

88 74 87 83   

Answer

See solutions

This page titled 3.2: Quantitative Data is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Kathryn Kozak via source content that was edited to the style and standards of the
LibreTexts platform.

2.2: Quantitative Data by Kathryn Kozak is licensed CC BY-SA 4.0. Original source: https://s3-us-west-2.amazonaws.com/oerfiles/statsusingtech2.pdf.
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3.3: Other Graphical Representations of Data
There are many other types of graphs. Some of the more common ones are the frequency polygon, the dot plot, the stem plot,
scatter plot, and a time-series plot. There are also many different graphs that have emerged lately for qualitative data. Many are
found in publications and websites. The following is a description of the stem plot, the scatter plot, and the time-series plot.

Stem Plots
Stem plots are a quick and easy way to look at small samples of numerical data. You can look for any patterns or any strange data
values. It is easy to compare two samples using stem plots.

The first step is to divide each number into 2 parts, the stem (such as the leftmost digit) and the leaf (such as the rightmost digit).
There are no set rules, you just have to look at the data and see what makes sense.

The following are the percentage grades of 25 students from a statistics course. Draw a stem plot of the data.

62 87 81 69 87 62 45 95 76 76

62 71 65 67 72 80 40 77 87 58

84 73 93 64 89

Table : Data of Test Grades

Solution

Divide each number so that the tens digit is the stem and the ones digit is the leaf. 62 becomes 6|2.

Make a vertical chart with the stems on the left of a vertical bar. Be sure to fill in any missing stems. In other words, the stems
should have equal spacing (for example, count by ones or count by tens). The Graph 2.3.1 shows the stems for this example.

Figure : Stem Plot for Test Grades Step 1

Now go through the list of data and add the leaves. Put each leaf next to its corresponding stem. Don’t worry about order yet
just get all the leaves down.

When the data value 62 is placed on the plot it looks like the plot in Graph 2.3.2.

Figure : Stem Plot for Test Grades Step 2

When the data value 87 is placed on the plot it looks like the plot in Graph 2.3.3.

Example  stem plot for grade distribution3.3.1

3.3.1

3.3.1

3.3.2
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Figure : Stem Plot for Test Grades Step 3

Filling in the rest of the leaves to obtain the plot in Graph 2.3.4.

Figure : Stem Plot for Test Grades Step 4

Now you have to add labels and make the graph look pretty. You need to add a label and sort the leaves into increasing order.
You also need to tell people what the stems and leaves mean by inserting a legend. Be careful to line the leaves up in
columns. You need to be able to compare the lengths of the rows when you interpret the graph. The final stem plot for the test
grade data is in Graph 2.3.5.

Figure : Stem Plot for Test Grades

Now you can interpret the stem-and-leaf display. The data is bimodal and somewhat symmetric. There are no gaps in the data.
The center of the distribution is around 70.

You can create a stem and leaf plot on R. the command is:

stem(variable) – creates a stem and leaf plot, if you do not get a stem plot that shows all of the stems then use scale = a number.
Adjust the number until you see all of the stems. So you would have stem(variable, scale = a number)

For Example , the command would be

grades<-c(62, 87, 81, 69, 87, 62, 45, 95, 76, 76, 62, 71, 65, 67, 72, 80, 40, 77, 87, 58, 84, 73, 93, 64, 89) 
stem(grades, scale = 2)

Output:

The decimal point is 1 digit(s) to the right of the |

3.3.3

3.3.4

3.3.5

3.3.1
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Now just put a title on the stem plot.

Scatter Plot
Sometimes you have two different variables and you want to see if they are related in any way. A scatter plot helps you to see what
the relationship would look like. A scatter plot is just a plotting of the ordered pairs.

Is there any relationship between elevation and high temperature on a given day? The following data are the high temperatures
at various cities on a single day and the elevation of the city.

Elevation 
(in feet)

7000 4000 6000 3000 7000 4500 5000

Temperature
(°F)

50 60 48 70 55 55 60

Table : Data of Temperature versus Elevation

Solution

Preliminary: State the random variables

Let x = altitude

y = high temperature

Now plot the x values on the horizontal axis, and the y values on the vertical axis. Then set up a scale that fits the data on each
axes. Once that is done, then just plot the x and y values as an ordered pair. In R, the command is:

independent variable<-c(type in data with commas in between values) 
dependent variable<-c(type in data with commas in between values) 
plot(independent variable, dependent variable, main="type in a title you want", xlab="type in a label for the horizontal axis",
ylab="type in a label for the vertical axis", ylim=c(0, number above maximum y value)

For this example, that would be:
elevation<-c(7000, 4000, 6000, 3000, 7000, 4500, 5000) 
temperature<-c(50, 60, 48, 70, 55, 55, 60) 
plot(elevation, temperature, main="Temperature versus Elevation", xlab="Elevation (in feet)", ylab="Temperature (in degrees
F)", ylim=c(0, 80))

Example  scatter plot3.3.2

3.3.2
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Figure : Scatter Plot of Temperature versus Elevation

Looking at the graph, it appears that there is a linear relationship between temperature and elevation. It also appears to be a
negative relationship, thus as elevation increases, the temperature decreases.

Time-Series
A time-series plot is a graph showing the data measurements in chronological order, the data being quantitative data. For example,
a time-series plot is used to show profits over the last 5 years. To create a time-series plot, the time always goes on the horizontal
axis, and the other variable goes on the vertical axis. Then plot the ordered pairs and connect the dots. The purpose of a time-series
graph is to look for trends over time. Caution, you must realize that the trend may not continue. Just because you see an increase,
doesn’t mean the increase will continue forever. As an example, prior to 2007, many people noticed that housing prices were
increasing. The belief at the time was that housing prices would continue to increase. However, the housing bubble burst in 2007,
and many houses lost value, and haven’t recovered.

The following table tracks the weight of a dieter, where the time in months is measuring how long since the person started the
diet

Time (months) 0 1 2 3 4 5

Weight (pounds) 200 195 192 193 190 187

Table : Data of Weights versus Time

Make a time-series plot of this data

Solution

In R, the command would be:

variable1<-c(type in data with commas in between values, this should be the time variable) 
variable2<-c(type in data with commas in between values) 
plot(variable1, variable2, ylim=c(0,number over max), main="type in a title you want", xlab="type in a label for the horizontal
axis", ylab="type in a label for the vertical axis") 
lines(variable1, variable2) – connects the dots

For this example: 
time<-c(0, 1, 2, 3, 4, 5) 

3.3.6

Example  Time-series plot3.3.3

3.3.3
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weight<-c(200, 195, 192, 193, 190, 187) 
plot(time, weight, ylim=c(0,250), main="Weight over Time", xlab="Time (Months) ", ylab="Weight (pounds)") 
ines(time, weight)

Figure of Weight versus Time

Notice, that over the 5 months, the weight appears to be decreasing. Though it doesn’t look like there is a large decrease.

Be careful when making a graph. If you don’t start the vertical axis at 0, then the change can look much more dramatic than it
really is. As an example, Graph 2.3.8 shows the Graph 2.3.7 with a different scaling on the vertical axis. Notice the decrease in
weight looks much larger than it really is.

Figure

Homework

1. Students in a statistics class took their first test. The data in Example  are the scores they earned. Create a stem plot.

80 79 89 74 73 67 79

93 70 70 76 88 83 73

81 79 80 85 79 80 79

58 93 94 74

Table : Data of Test 1 Grades

2. Students in a statistics class took their first test. The data in Example  are the scores they earned. Create a stem plot.
Compare to the graph in question 1.

Table : Data of Test 1 Grades

Exercise 3.3.1

3.3.4

3.3.4

3.3.5

3.3.5
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67 67 76 47 85 70

87 76 80 72 84 98

84 64 65 82 81 81

88 74 87 83

3. When an anthropologist finds skeletal remains, they need to figure out the height of the person. The height of a person (in cm)
and the length of one of their metacarpal bone (in cm) were collected and are in Example  ("Prediction of height," 2013).
Create a scatter plot and state if there is a relationship between the height of a person and the length of their metacarpal.

Length of Metacarpal Height of Person

45 171

51 178

39 157

41 163

48 172

49 183

46 173

43 175

47 173

Table : Data of Metacarpal versus Height

4. Example  contains the value of the house and the amount of rental income in a year that the house brings in ("Capital and
rental," 2013). Create a scatter plot and state if there is a relationship between the value of the house and the annual rental
income.

Value Rental Value Rental Value Rental Value Rental

81000 6656 77000 4576 75000 7280 67500 6864

95000 7904 94000 8736 90000 6240 85000 7072

121000 12064 115000 7904 110000 7072 104000 7904

135000 8320 130000 9776 126000 6240 125000 7904

145000 8320 140000 9568 140000 9152 135000 7488

165000 13312 165000 8528 155000 7488 148000 8320

178000 11856 174000 10400 170000 9568 170000 12688

200000 12272 200000 10608 194000 11232 190000 8320

214000 8528 280000 10400 200000 10400 200000 8320

240000 10192 240000 12064 240000 11648 225000 12480

289000 11648 270000 12896 262000 10192 244500 11232

325000 12480 310000 12480 303000 12272 300000 12480

Table : Data of House Value versus Rental

3.3.6

3.3.6

3.3.7

3.3.7

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/35632?pdf


3.3.7 https://stats.libretexts.org/@go/page/35632

5. The World Bank collects information on the life expectancy of a person in each country ("Life expectancy at," 2013) and the
fertility rate per woman in the country ("Fertility rate," 2013). The data for 24 randomly selected countries for the year 2011 are
in Example . Create a scatter plot of the data and state if there appears to be a relationship between life expectancy and the
number of births per woman.

Life Expectancy Fertility Rate Life Expectancy Fertility rate

77.2 1.7 72.3 3.9

55.4 5.8 76.0 1.5

69.9 2.2 66.0 4.2

76.4 2.1 5.9 5.2

75.0 1.8 54.4 6.8

78.2 2.0 62.9 4.7

73.0 2.6 78.3 2.1

70.8 2.8 72.1 2.9

82.6 1.4 80.7 1.4

68.9 2.6 74.2 2.5

81.0 1.5 73.3 1.5

54.2 6.9 67.1 2.4

Table : Data of Life Expectancy versus Fertility Rate

6. The World Bank collected data on the percentage of gross domestic product (GDP) that a country spends on health expenditures
("Health expenditure," 2013) and the percentage of woman receiving prenatal care ("Pregnant woman receiving," 2013). The
data for the countries where this information is available for the year 2011 is in Example . Create a scatter plot of the data
and state if there appears to be a relationship between percentage spent on health expenditure and the percentage of woman
receiving prenatal care.

Prenatal Care (%) Health Expenditure (% of GDP)

47.9 9.6

54.6 3.7

93.7 5.2

84.7 5.2

100.0 10.0

42.5 4.7

96.4 4.8

77.1 6.0

58.3 5.4

95.4 4.8

78.0 4.1

93.3 6.0

93.3 9.5

Table : Data of Prenatal Care versus Health Expenditure

3.3.8

3.3.8

3.3.9

3.3.9
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Prenatal Care (%) Health Expenditure (% of GDP)

93.7 6.8

89.8 6.1

7. The Australian Institute of Criminology gathered data on the number of deaths (per 100,000 people) due to firearms during the
period 1983 to 1997 ("Deaths from firearms," 2013). The data is in Example . Create a time-series plot of the data and
state any findings you can from the graph.

Year 1983 1984 1985 1986 1987 1988 1989 1990

Rate 4.31 4.42 4.52 4.35 4.39 4.21 3.40 3.61

Year 1991 1992 1993 1994 1995 1996 1997

Rate 3.67 3.61 2.98 2.95 2.72 2.95 2.3

Table : Data of Year versus Number of Deaths due to Firearms

8. The economic crisis of 2008 affected many countries, though some more than others. Some people in Australia have claimed
that Australia wasn’t hurt that badly from the crisis. The bank assets (in billions of Australia dollars (AUD)) of the Reserve
Bank of Australia (RBA) for the time period of March 2007 through March 2013 are contained in Example  ("B1 assets
of," 2013). Create a time-series plot and interpret any findings.

Date Assets in Billions of AUD

Mar-2006 96.9

Jun-2006 107.4

Sep-2006 107.2

Dec-2006 116.2

Mar-2007 123.7

Jun-2007 134.0

Sep-2007 123.0

Dec-2007 93.2

Mar-2008 93.7

Jun-2008 105.6

Sep-2008 101.5

Dec-2008 158.8

Mar-2009 118.7

Jun-2009 111.9

Sep-2009 87.0

Dec-2009 86.1

Mar-2010 83.4

Jun-2010 85.7

Sep-2010 74.8

Dec-2010 76.0

Table : Data of Date versus RBA Assets

3.3.10

3.3.10

3.3.11

3.3.11
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Date Assets in Billions of AUD

Mar-2011 75.7

Jun-2011 75.9

Sep-2011 75.2

Dec-2011 87.9

Mar-2012 91.0

Jun-2012 90.1

Sep-2012 83.9

Dec-2012 95.8

Mar-2013 90.5

9. The consumer price index (CPI) is a measure used by the U.S. government to describe the cost of living. Example  gives
the cost of living for the U.S. from the years 1947 through 2011, with the year 1977 being used as the year that all others are
compared (DeNavas-Walt, Proctor & Smith, 2012). Create a time-series plot and interpret.

Year
CPI-U-RS1 index (December

1977=100)
Year

CPI-U-RS1 index (December
1977=100)

1947 37.5 1980 127.1

1948 40.5 1981 139.2

1949 40.0 1982 147.6

1950 40.5 1983 153.9

1951 43.7 1984 160.2

1952 44.5 1985 165.7

1953 44.8 1986 168.7

1954 45.2 1987 174.4

1955 45.0 1988 180.8

1956 45.7 1989 188.6

1957 47.2 1990 198.0

1958 48.5 1991 205.1

1959 48.9 1992 210.3

1960 49.7 1993 215.5

1961 50.2 1994 220.1

1962 50.7 1995 225.4

1963 51.4 1996 231.4

1964 52.1 1997 236.4

1965 52.9 1998 239.7

1966 54.4 1999 244.7

Table : Data of Time versus CPI

3.3.12
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Year
CPI-U-RS1 index (December

1977=100)
Year

CPI-U-RS1 index (December
1977=100)

1967 56.1 2000 252.9

1968 58.3 2001 260.0

1969 60.9 2002 264.2

1970 63.9 2003 270.1

1971 66.7 2004 277.4

1972 68.7 2005 286.7

1973 73.0 2006 296.1

1974 80.3 2007 304.5

1975 86.9 2008 316.2

1976 91.9 2009 315.0

1977 97.7 2010 320.2

1978 104.4 2011 330.3

1979 114.4

10. The median incomes for all households in the U.S. for the years 1967 to 2011 are given in Example  (DeNavas-Walt,
Proctor & Smith, 2012). Create a time-series plot and interpret.

Year Median Income Year Median Income

1967 42,056 1990 49,950

1968 43,868 1991 48,516

1969 45,499 1992 48,117

1970 45,146 1993 47,884

1971 44,707 1994 48,418

1972 46,622 1995 49,935

1973 47,563 1996 50,661

1974 46,057 1997 51,704

1975 44,851 1998 53,582

1976 45,595 1999 54,932

1977 45,884 2000 54,841

1978 47,659 2001 53,646

1979 47,527 2002 53,019

1980 46,024 2003 52,973

1981 45,260 2004 52,788

1982 45,139 2005 53,371

1983 44,823 2006 53,768

Table : Data of Time versus Median Income
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Year Median Income Year Median Income

1984 46,215 2007 54,489

1985 47,079 2008 52,546

1986 48,746 2009 52,195

1987 49,358 2010 50,831

1988 49,737 2011 50,054

1989 50,624

11. State everything that makes Graph 2.3.9 a misleading or poor graph. 

 
Graph 2.3.9: Example of a Poor Graph

12. State everything that makes Graph 2.3.10 a misleading or poor graph (Benen, 2011). 

 
Graph 2.3.10: Example of a Poor Graph

13. State everything that makes Graph 2.3.11 a misleading or poor graph ("United States unemployment," 2013). 

 
Graph 2.3.11: Example of a Poor Graph
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14. State everything that makes Graph 2.3.12 a misleading or poor graph. 

 
Graph 2.3.12: Example of a Poor Graph

Answer

See solutions
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3.4: Statistical Literacy

Are Commercial Vehicles in Texas Unsafe?

Prerequisites

Graphing Distributions

A news report on the safety of commercial vehicles in Texas stated that one out of five commercial vehicles have been pulled off
the road in  because they were unsafe. In addition,  commercial drivers have been banned from the road for safety
violations.

The author presents the bar chart below to provide information about the percentage of fatal crashes involving commercial vehicles
in Texas since . The author also quotes DPS director Steven McCraw:

Commercial vehicles are responsible for approximately  percent of the fatalities in Texas crashes. Those who choose to
drive unsafe commercial vehicles or drive a commercial vehicle unsafely pose a serious threat to the motoring public.

Based on what you have learned in this chapter, does this bar chart below provide enough information to conclude that unsafe
or unsafely driven commercial vehicles pose a serious threat to the motoring public? What might you conclude if  percent of
all the vehicles on the roads of Texas in  were commercial and accounted for  percent of fatal crashes?

Figure : Crash Statistics for commercial vehicles in Texas

Solution

This bar chart does not provide enough information to draw such a conclusion because we don’t know, on the average, in a
given year what percentage of all vehicles on the road are commercial vehicles. For example, if  percent of all the vehicles
on the roads of Texas in  are commercial ones and only  percent of fatal crashes involved commercial vehicles, then
commercial vehicles are safer than non-commercial ones. Note that in this case  percent of vehicles are non-commercial and
they are responsible for  percent of the fatal crashes.

Linear By Design

Fox News aired the line graph below showing the number unemployed during four quarters between  and .
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Figure : Fox news graph showing job loss by quarter

Does Fox News' line graph provide misleading information? Why or Why not?

Solution:

There are major flaws with the Fox News graph. First, the title of the graph is misleading. Although the data show the number
unemployed, Fox News’ graph is titled "Job Loss by Quarter." Second, the intervals on the -axis are misleading. Although
there are  months between September  and March  and  months between March  and June , the
intervals are represented in the graph by very similar lengths. This gives the false impression that unemployment increased
steadily.

The graph presented below is corrected so that distances on the -axis are proportional to the number of days between the
dates. This graph shows clearly that the rate of increase in the number unemployed is greater between September  and
March  than it is between March  and June .

Figure : Corrected Fox News graph

Contributors and Attributions
Online Statistics Education: A Multimedia Course of Study (http://onlinestatbook.com/). Project Leader: David M. Lane, Rice
University.
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CHAPTER OVERVIEW

4: Summarizing Data Visually Using R

Above all else show the data.

–Edward Tufte
Visualising data is one of the most important tasks facing the data analyst. It’s important for two distinct but closely related reasons.
Firstly, there’s the matter of drawing “presentation graphics”: displaying your data in a clean, visually appealing fashion makes it
easier for your reader to understand what you’re trying to tell them. Equally important, perhaps even more important, is the fact
that drawing graphs helps you to understand the data. To that end, it’s important to draw “exploratory graphics” that help you learn
about the data as you go about analysing it. These points might seem pretty obvious, but I cannot count the number of times I’ve
seen people forget them.

## Warning: package 'HistData' was built under R version 3.5.2

Figure 6.1: A stylised redrawing of John Snow’s original cholera map. Each small dot represents the location of a cholera case, and
each large circle shows the location of a well. As the plot makes clear, the cholera outbreak is centred very closely on the Broad St
pump. This image uses the data from the HistData  package @[Friendly2011], and was drawn using minor alterations to the
commands provided in the help files. Note that Snow’s original hand drawn map used different symbols and labels, but you get the
idea.

To give a sense of the importance of this chapter, I want to start with a classic illustration of just how powerful a good graph can be.
To that end, Figure 6.1 shows a redrawing of one of the most famous data visualisations of all time: John Snow’s 1854 map of
cholera deaths. The map is elegant in its simplicity. In the background we have a street map, which helps orient the viewer. Over
the top, we see a large number of small dots, each one representing the location of a cholera case. The larger symbols show the
location of water pumps, labelled by name. Even the most casual inspection of the graph makes it very clear that the source of the
outbreak is almost certainly the Broad Street pump. Upon viewing this graph, Dr Snow arranged to have the handle removed from
the pump, ending the outbreak that had killed over 500 people. Such is the power of a good data visualisation.

The goals in this chapter are twofold: firstly, to discuss several fairly standard graphs that we use a lot when analysing and
presenting data, and secondly, to show you how to create these graphs in R. The graphs themselves tend to be pretty
straightforward, so in that respect this chapter is pretty simple. Where people usually struggle is learning how to produce graphs,
and especially, learning how to produce good graphs.  Fortunately, learning how to draw graphs in R is reasonably simple, as long
as you’re not too picky about what your graph looks like. What I mean when I say this is that R has a lot of very good graphing
functions, and most of the time you can produce a clean, high-quality graphic without having to learn very much about the low-
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level details of how R handles graphics. Unfortunately, on those occasions when you do want to do something non-standard, or if
you need to make highly specific changes to the figure, you actually do need to learn a fair bit about the these details; and those
details are both complicated and boring. With that in mind, the structure of this chapter is as follows: I’ll start out by giving you a
very quick overview of how graphics work in R. I’ll then discuss several different kinds of graph and how to draw them, as well as
showing the basics of how to customise these plots. I’ll then talk in more detail about R graphics, discussing some of those
complicated and boring issues. In a future version of this book, I intend to finish this chapter off by talking about what makes a
good or a bad graph, but I haven’t yet had the time to write that section.

4.1: An Overview of R Graphics
4.2: An Introduction to Plotting
4.3: Histograms
4.4: Stem and Leaf Plots
4.5: Scatterplots
4.6: Bar Graphs
4.7: Saving Image Files Using R and Rstudio
4.8: Summary
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4.1: An Overview of R Graphics
Reduced to its simplest form, you can think of an R graphic as being much like a painting. You start out with an empty canvas.
Every time you use a graphics function, it paints some new things onto your canvas. Later on, you can paint more things over the
top if you want; but just like painting, you can’t “undo” your strokes. If you make a mistake, you have to throw away your painting
and start over. Fortunately, this is way more easy to do when using R than it is when painting a picture in real life: you delete the
plot and then type a new set of commands.  This way of thinking about drawing graphs is referred to as the painter’s model. So
far, this probably doesn’t sound particularly complicated, and for the vast majority of graphs you’ll want to draw it’s exactly as
simple as it sounds. Much like painting in real life, the headaches usually start when we dig into details. To see why, I’ll expand
this “painting metaphor” a bit further just to show you the basics of what’s going on under the hood, but before I do I want to stress
that you really don’t need to understand all these complexities in order to draw graphs. I’d been using R for years before I even
realised that most of these issues existed! However, I don’t want you to go through the same pain I went through every time I
inadvertently discovered one of these things, so here’s a quick overview.

Firstly, if you want to paint a picture, you need to paint it on something. In real life, you can paint on lots of different things.
Painting onto canvas isn’t the same as painting onto paper, and neither one is the same as painting on a wall. In R, the thing that
you paint your graphic onto is called a device. For most applications that we’ll look at in this book, this “device” will be a window
on your computer. If you’re using Windows as your operating system, then the name for this device is windows ; on a Mac it’s
called quartz  because that’s the name of the software that the Mac OS uses to draw pretty pictures; and on Linux/Unix, you’re
probably using X11 . On the other hand, if you’re using Rstudio (regardless of which operating system you’re on), there’s a
separate device called RStudioGD  that forces R to paint inside the “plots” panel in Rstudio. However, from the computers
perspective there’s nothing terribly special about drawing pictures on screen: and so R is quite happy to paint pictures directly into
a file. R can paint several different types of image files: jpeg , png , pdf , postscript , tiff  and bmp  files are
all among the options that you have available to you. For the most part, these different devices all behave the same way, so you
don’t really need to know much about the differences between them when learning how to draw pictures. But, just like real life
painting, sometimes the specifics do matter. Unless stated otherwise, you can assume that I’m drawing a picture on screen, using
the appropriate device (i.e., windows , quartz , X11  or RStudioGD ). One the rare occasions where these behave
differently from one another, I’ll try to point it out in the text.

Secondly, when you paint a picture you need to paint it with something. Maybe you want to do an oil painting, but maybe you want
to use watercolour. And, generally speaking, you pretty much have to pick one or the other. The analog to this in R is a “graphics
system”. A graphics system defines a collection of very low-level graphics commands about what to draw and where to draw it.
Something that surprises most new R users is the discovery that R actually has two completely independent graphics systems,
known as traditional graphics (in the graphics  package) and grid graphics (in the grid  package).  Not surprisingly, the
traditional graphics system is the older of the two: in fact, it’s actually older than R since it has it’s origins in S, the system from
which R is descended. Grid graphics are newer, and in some respects more powerful, so many of the more recent, fancier graphical
tools in R make use of grid graphics. However, grid graphics are somewhat more complicated beasts, so most people start out by
learning the traditional graphics system. Nevertheless, as long as you don’t want to use any low-level commands yourself, then you
don’t really need to care about whether you’re using traditional graphics or grid graphics. However, the moment you do want to
tweak your figure by using some low-level commands you do need to care. Because these two different systems are pretty much
incompatible with each other, there’s a pretty big divide in R graphics universe. Unless stated otherwise, you can assume that
everything I’m saying pertains to traditional graphics.

Thirdly, a painting is usually done in a particular style. Maybe it’s a still life, maybe it’s an impressionist piece, or maybe you’re
trying to annoy me by pretending that cubism is a legitimate artistic style. Regardless, each artistic style imposes some overarching
aesthetic and perhaps even constraints on what can (or should) be painted using that style. In the same vein, R has quite a number
of different packages, each of which provide a collection of high-level graphics commands. A single high-level command is
capable of drawing an entire graph, complete with a range of customisation options. Most but not all of the high-level commands
that I’ll talk about in this book come from the graphics  package itself, and so belong to the world of traditional graphics.
These commands all tend to share a common visual style, although there are a few graphics that I’ll use that come from other
packages that differ in style somewhat. On the other side of the great divide, the grid universe relies heavily on two different
packages – lattice  and ggplots2  – each of which provides a quite different visual style. As you’ve probably guessed,
there’s a whole separate bunch of functions that you’d need to learn if you want to use lattice  graphics or make use of the 
ggplots2 . However, for the purposes of this book I’ll restrict myself to talking about the basic graphics  tools.
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At this point, I think we’ve covered more than enough background material. The point that I’m trying to make by providing this
discussion isn’t to scare you with all these horrible details, but rather to try to convey to you the fact that R doesn’t really provide a
single coherent graphics system. Instead, R itself provides a platform, and different people have built different graphical tools using
that platform. As a consequence of this fact, there’s two different universes of graphics, and a great multitude of packages that live
in them. At this stage you don’t need to understand these complexities, but it’s useful to know that they’re there. But for now, I
think we can be happy with a simpler view of things: we’ll draw pictures on screen using the traditional graphics system, and as
much as possible we’ll stick to high level commands only.

So let’s start painting.

This page titled 4.1: An Overview of R Graphics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

6.1: An Overview of R Graphics by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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4.2: An Introduction to Plotting
Before I discuss any specialised graphics, let’s start by drawing a few very simple graphs just to get a feel for what it’s like to draw
pictures using R. To that end, let’s create a small vector Fibonacci  that contains a few numbers we’d like R to draw for us.
Then, we’ll ask R to plot()  those numbers:

> Fibonacci <- c( 1,1,2,3,5,8,13 ) 
> plot( Fibonacci )

The result is Figure 6.2.

Figure 6.2: Our first plot

As you can see, what R has done is plot the values stored in the Fibonacci  variable on the vertical axis (y-axis) and the
corresponding index on the horizontal axis (x-axis). In other words, since the 4th element of the vector has a value of 3, we get a
dot plotted at the location (4,3). That’s pretty straightforward, and the image in Figure 6.2 is probably pretty close to what you
would have had in mind when I suggested that we plot the Fibonacci  data. However, there’s quite a lot of customisation
options available to you, so we should probably spend a bit of time looking at some of those options. So, be warned: this ends up
being a fairly long section, because there’s so many possibilities open to you. Don’t let it overwhelm you though… while all of the
options discussed here are handy to know about, you can get by just fine only knowing a few of them. The only reason I’ve
included all this stuff right at the beginning is that it ends up making the rest of the chapter a lot more readable!

4.2.1 tedious digression

Before we go into any discussion of customising plots, we need a little more background. The important thing to note when using
the plot()  function, is that it’s another example of a generic function (Section 4.11, much like print()  and 
summary() , and so its behaviour changes depending on what kind of input you give it. However, the plot()  function is

somewhat fancier than the other two, and its behaviour depends on two arguments, x  (the first input, which is required) and y
(which is optional). This makes it (a) extremely powerful once you get the hang of it, and (b) hilariously unpredictable, when
you’re not sure what you’re doing. As much as possible, I’ll try to make clear what type of inputs produce what kinds of outputs.
For now, however, it’s enough to note that I’m only doing very basic plotting, and as a consequence all of the work is being done
by the plot.default()  function.

What kinds of customisations might we be interested in? If you look at the help documentation for the default plotting method (i.e.,
type ?plot.default  or help("plot.default") ) you’ll see a very long list of arguments that you can specify to
customise your plot. I’ll talk about several of them in a moment, but first I want to point out something that might seem quite
wacky. When you look at all the different options that the help file talks about, you’ll notice that some of the options that it refers to
are “proper” arguments to the plot.default()  function, but it also goes on to mention a bunch of things that look like
they’re supposed to be arguments, but they’re not listed in the “Usage” section of the file, and the documentation calls them
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graphical parameters instead. Even so, it’s usually possible to treat them as if they were arguments of the plotting function. Very
odd. In order to stop my readers trying to find a brick and look up my home address, I’d better explain what’s going on; or at least
give the basic gist behind it.

What exactly is a graphical parameter? Basically, the idea is that there are some characteristics of a plot which are pretty universal:
for instance, regardless of what kind of graph you’re drawing, you probably need to specify what colour to use for the plot, right?
So you’d expect there to be something like a col  argument to every single graphics function in R? Well, sort of. In order to
avoid having hundreds of arguments for every single function, what R does is refer to a bunch of these “graphical parameters”
which are pretty general purpose. Graphical parameters can be changed directly by using the low-level par()  function, which I
discuss briefly in Section ?? though not in a lot of detail. If you look at the help files for graphical parameters (i.e., type ?par )
you’ll see that there’s lots of them. Fortunately, (a) the default settings are generally pretty good so you can ignore the majority of
the parameters, and (b) as you’ll see as we go through this chapter, you very rarely need to use par()  directly, because you can
“pretend” that graphical parameters are just additional arguments to your high-level function (e.g. plot.default() ). In
short… yes, R does have these wacky “graphical parameters” which can be quite confusing. But in most basic uses of the plotting
functions, you can act as if they were just undocumented additional arguments to your function.

4.2.2 Customising the title and the axis labels

One of the first things that you’ll find yourself wanting to do when customising your plot is to label it better. You might want to
specify more appropriate axis labels, add a title or add a subtitle. The arguments that you need to specify to make this happen are:

main . A character string containing the title.
sub . A character string containing the subtitle.
xlab . A character string containing the x-axis label.
ylab . A character string containing the y-axis label.

These aren’t graphical parameters, they’re arguments to the high-level function. However, because the high-level functions all rely
on the same low-level function to do the drawing  the names of these arguments are identical for pretty much every high-level
function I’ve come across. Let’s have a look at what happens when we make use of all these arguments. Here’s the command…

> plot( x = Fibonacci,  
+       main = "You specify title using the 'main' argument", 
+       sub = "The subtitle appears here! (Use the 'sub' argument for this)", 
+       xlab = "The x-axis label is 'xlab'", 
+       ylab = "The y-axis label is 'ylab'" 
+ )

The picture that this draws is shown in Figure 6.3.
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Figure 6.3: How to add your own title, subtitle, x-axis label and y-axis label to the plot.

It’s more or less as you’d expect. The plot itself is identical to the one we drew in Figure 6.2, except for the fact that we’ve changed
the axis labels, and added a title and a subtitle. Even so, there’s a couple of interesting features worth calling your attention to.
Firstly, notice that the subtitle is drawn below the plot, which I personally find annoying; as a consequence I almost never use
subtitles. You may have a different opinion, of course, but the important thing is that you remember where the subtitle actually
goes. Secondly, notice that R has decided to use boldface text and a larger font size for the title. This is one of my most hated
default settings in R graphics, since I feel that it draws too much attention to the title. Generally, while I do want my reader to look
at the title, I find that the R defaults are a bit overpowering, so I often like to change the settings. To that end, there are a bunch of
graphical parameters that you can use to customise the font style:

Font styles: font.main , font.sub , font.lab , font.axis . These four parameters control the font style used
for the plot title ( font.main ), the subtitle ( font.sub ), the axis labels ( font.lab : note that you can’t specify
separate styles for the x-axis and y-axis without using low level commands), and the numbers next to the tick marks on the axis
( font.axis ). Somewhat irritatingly, these arguments are numbers instead of meaningful names: a value of 1 corresponds
to plain text, 2 means boldface, 3 means italic and 4 means bold italic.
Font colours: col.main , col.sub , col.lab , col.axis . These parameters do pretty much what the name
says: each one specifies a colour in which to type each of the different bits of text. Conveniently, R has a very large number of
named colours (type colours()  to see a list of over 650 colour names that R knows), so you can use the English language
name of the colour to select it.  Thus, the parameter value here string like "red" , "gray25"  or "springgreen4"
(yes, R really does recognise four different shades of “spring green”).
Font size: cex.main , cex.sub , cex.lab , cex.axis . Font size is handled in a slightly curious way in R. The
“cex” part here is short for “character expansion”, and it’s essentially a magnification value. By default, all of these are set to a
value of 1, except for the font title: cex.main  has a default magnification of 1.2, which is why the title font is 20% bigger
than the others.
Font family: family . This argument specifies a font family to use: the simplest way to use it is to set it to "sans" , 
"serif" , or "mono" , corresponding to a san serif font, a serif font, or a monospaced font. If you want to, you can give

the name of a specific font, but keep in mind that different operating systems use different fonts, so it’s probably safest to keep
it simple. Better yet, unless you have some deep objections to the R defaults, just ignore this parameter entirely. That’s what I
usually do.

To give you a sense of how you can use these parameters to customise your titles, the following command can be used to draw
Figure 6.4:
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> plot( x = Fibonacci,                           # the data to plot 
+       main = "The first 7 Fibonacci numbers",  # the title  
+       xlab = "Position in the sequence",       # x-axis label 
+       ylab = "The Fibonacci number",           # y-axis label 
+       font.main = 1,                           # plain text for title  
+       cex.main = 1,                            # normal size for title 
+       font.axis = 2,                           # bold text for numbering 
+       col.lab = "gray50"                       # grey colour for labels 
+ )

Figure 6.4: How to customise the appearance of the titles and labels.

Although this command is quite long, it’s not complicated: all it does is override a bunch of the default parameter values. The only
difficult aspect to this is that you have to remember what each of these parameters is called, and what all the different values are.
And in practice I never remember: I have to look up the help documentation every time, or else look it up in this book.

4.2.3 Changing the plot type
Adding and customising the titles associated with the plot is one way in which you can play around with what your picture looks
like. Another thing that you’ll want to do is customise the appearance of the actual plot! To start with, let’s look at the single most
important options that the plot()  function (or, recalling that we’re dealing with a generic function, in this case the 
plot.default()  function, since that’s the one doing all the work) provides for you to use, which is the type  argument.

The type argument specifies the visual style of the plot. The possible values for this are:

type = "p" . Draw the points only.
type = "l" . Draw a line through the points.
type = "o" . Draw the line over the top of the points.
type = "b" . Draw both points and lines, but don’t overplot.
type = "h" . Draw “histogram-like” vertical bars.
type = "s" . Draw a staircase, going horizontally then vertically.
type = "S" . Draw a Staircase, going vertically then horizontally.
type = "c" . Draw only the connecting lines from the “b” version.
type = "n" . Draw nothing. (Apparently this is useful sometimes?)
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The simplest way to illustrate what each of these really looks like is just to draw them. To that end, Figure 6.5 shows the same
Fibonacci data, drawn using six different types  of plot. As you can see, by altering the type argument you can get a
qualitatively different appearance to your plot. In other words, as far as R is concerned, the only difference between a scatterplot
(like the ones we drew in Section 5.7 and a line plot is that you draw a scatterplot by setting type = "p"  and you draw a line
plot by setting type = "l" . However, that doesn’t imply that you should think of them as begin equivalent to each other. As
you can see by looking at Figure 6.5, a line plot implies that there is some notion of continuity from one point to the next, whereas
a scatterplot does not.

Figure 6.5: Changing the type  of the plot.

4.2.4 Changing other features of the plot

Figure 6.6: Changing the line and plotted characters of the plot.

In Section ?? we talked about a group of graphical parameters that are related to the formatting of titles, axis labels etc. The second
group of parameters I want to discuss are those related to the formatting of the plot itself:

Colour of the plot: col . As we saw with the previous colour-related parameters, the simplest way to specify this parameter is
using a character string: e.g., col = "blue" . It’s a pretty straightforward parameter to specify: the only real subtlety is
that every high-level function tends to draw a different “thing” as it’s output, and so this parameter gets interpreted a little
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differently by different functions. However, for the plot.default()  function it’s pretty simple: the col  argument
refers to the colour of the points and/or lines that get drawn!
Character used to plot points: pch . The plot character parameter is a number, usually between 1 and 25. What it does is tell
R what symbol to use to draw the points that it plots. The simplest way to illustrate what the different values do is with a
picture. Figure 6.6 a shows the first 25 plotting characters. The default plotting character is a hollow circle (i.e., pch = 1 ).
Plot size: cex . This parameter describes a character expansion factor (i.e., magnification) for the plotted characters. By
default cex=1 , but if you want bigger symbols in your graph you should specify a larger value.
Line type: lty . The line type parameter describes the kind of line that R draws. It has seven values which you can specify
using a number between 0  and 7 , or using a meaningful character string: "blank" , "solid" , "dashed" , 
"dotted" , "dotdash" , "longdash" , or "twodash" . Note that the “blank” version (value 0) just means that

R doesn’t draw the lines at all. The other six versions are shown in Figure 6.6 b.
Line width: lwd . The last graphical parameter in this category that I want to mention is the line width parameter, which is
just a number specifying the width of the line. The default value is 1. Not surprisingly, larger values produce thicker lines and
smaller values produce thinner lines. Try playing around with different values of lwd  to see what happens.

To illustrate what you can do by altering these parameters, let’s try the following command:

> plot( x = Fibonacci,   # the data set 
+       type = "b",      # plot both points and lines 
+       col = "blue",    # change the plot colour to blue 
+       pch = 19,        # plotting character is a solid circle 
+       cex = 5,         # plot it at 5x the usual size 
+       lty = 2,         # change line type to dashed 
+       lwd = 4          # change line width to 4x the usual 
+ )

The output is shown in Figure 6.7.

plot( x = Fibonacci, 
         type = "b", 
         col = "blue", 
         pch = 19, 
         cex=5, 
         lty=2, 
         lwd=4)
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Figure 6.7: Customising various aspects to the plot itself.

4.2.5 Changing the appearance of the axes

There are several other possibilities worth discussing. Ignoring graphical parameters for the moment, there’s a few other arguments
to the plot.default()  function that you might want to use. As before, many of these are standard arguments that are used
by a lot of high level graphics functions:

Changing the axis scales: xlim , ylim . Generally R does a pretty good job of figuring out where to set the edges of the
plot. However, you can override its choices by setting the xlim  and ylim  arguments. For instance, if I decide I want the
vertical scale of the plot to run from 0 to 100, then I’d set ylim = c(0, 100) .
Suppress labelling: ann . This is a logical-valued argument that you can use if you don’t want R to include any text for a title,
subtitle or axis label. To do so, set ann = FALSE . This will stop R from including any text that would normally appear in
those places. Note that this will override any of your manual titles. For example, if you try to add a title using the main
argument, but you also specify ann = FALSE , no title will appear.
Suppress axis drawing: axes . Again, this is a logical valued argument. Suppose you don’t want R to draw any axes at all. To
suppress the axes, all you have to do is add axes = FALSE . This will remove the axes and the numbering, but not the axis
labels (i.e. the xlab  and ylab  text). Note that you can get finer grain control over this by specifying the xaxt  and 
yaxt  graphical parameters instead (see below).

Include a framing box: frame.plot . Suppose you’ve removed the axes by setting axes = FALSE , but you still want
to have a simple box drawn around the plot; that is, you only wanted to get rid of the numbering and the tick marks, but you
want to keep the box. To do that, you set frame.plot = TRUE .

Note that this list isn’t exhaustive. There are a few other arguments to the plot.default  function that you can play with if
you want to, but those are the ones you are probably most likely to want to use. As always, however, if these aren’t enough options
for you, there’s also a number of other graphical parameters that you might want to play with as well. That’s the focus of the next
section. In the meantime, here’s a command that makes use of all these different options:

> plot( x = Fibonacci,       # the data 
+       xlim = c(0, 15),     # expand the x-scale 
+       ylim = c(0, 15),     # expand the y-scale 
+       ann = FALSE,         # delete all annotations 
+       axes = FALSE,        # delete the axes 
+       frame.plot = TRUE    # but include a framing box
+ )
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The output is shown in Figure 6.8, and it’s pretty much exactly as you’d expect. The axis scales on both the horizontal and vertical
dimensions have been expanded, the axes have been suppressed as have the annotations, but I’ve kept a box around the plot.

plot( x = Fibonacci, 
          xlim = c(0, 15), 
          ylim = c(0, 15), 
              ann = FALSE, 
          axes = FALSE, 
            frame.plot = TRUE)

Figure 6.8: Altering the scale and appearance of the plot axes.

Before moving on, I should point out that there are several graphical parameters relating to the axes, the box, and the general
appearance of the plot which allow finer grain control over the appearance of the axes and the annotations.

Suppressing the axes individually: xaxt , yaxt . These graphical parameters are basically just fancier versions of the 
axes  argument we discussed earlier. If you want to stop R from drawing the vertical axis but you’d like it to keep the

horizontal axis, set yaxt = "n" . I trust that you can figure out how to keep the vertical axis and suppress the horizontal
one!
Box type: bty . In the same way that xaxt , yaxt  are just fancy versions of axes , the box type parameter is really
just a fancier version of the frame.plot  argument, allowing you to specify exactly which out of the four borders you want
to keep. The way we specify this parameter is a bit stupid, in my opinion: the possible values are "o"  (the default), "l" , 
"7" , "c" , "u" , or "]" , each of which will draw only those edges that the corresponding character suggests. That is,

the letter "c"  has a top, a bottom and a left, but is blank on the right hand side, whereas "7"  has a top and a right, but is
blank on the left and the bottom. Alternatively a value of "n"  means that no box will be drawn.
Orientation of the axis labels las . I presume that the name of this parameter is an acronym of label style or something along
those lines; but what it actually does is govern the orientation of the text used to label the individual tick marks (i.e., the
numbering, not the xlab  and ylab  axis labels). There are four possible values for las : A value of 0 means that the
labels of both axes are printed parallel to the axis itself (the default). A value of 1 means that the text is always horizontal. A
value of 2 means that the labelling text is printed at right angles to the axis. Finally, a value of 3 means that the text is always
vertical.

Again, these aren’t the only possibilities. There are a few other graphical parameters that I haven’t mentioned that you could use to
customise the appearance of the axes,  but that’s probably enough (or more than enough) for now. To give a sense of how you
could use these parameters, let’s try the following command:

> plot( x = Fibonacci,   # the data 
+       xaxt = "n",      # don't draw the x-axis 
+       bty = "]",       # keep bottom, right and top of box only 
+       las = 1          # rotate the text 
+ )
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The output is shown in Figure 6.9. As you can see, this isn’t a very useful plot at all. However, it does illustrate the graphical
parameters we’re talking about, so I suppose it serves its purpose.

plot( x = Fibonacci, 
         xaxt = "n", 
         bty = "]", 
         las = 1 )

Figure 6.9: Other ways to customise the axes

4.2.6 Don’t panic
At this point, a lot of readers will be probably be thinking something along the lines of, “if there’s this much detail just for drawing
a simple plot, how horrible is it going to get when we start looking at more complicated things?” Perhaps, contrary to my earlier
pleas for mercy, you’ve found a brick to hurl and are right now leafing through an Adelaide phone book trying to find my address.
Well, fear not! And please, put the brick down. In a lot of ways, we’ve gone through the hardest part: we’ve already covered vast
majority of the plot customisations that you might want to do. As you’ll see, each of the other high level plotting commands we’ll
talk about will only have a smallish number of additional options. Better yet, even though I’ve told you about a billion different
ways of tweaking your plot, you don’t usually need them. So in practice, now that you’ve read over it once to get the gist, the
majority of the content of this section is stuff you can safely forget: just remember to come back to this section later on when you
want to tweak your plot.

This page titled 4.2: An Introduction to Plotting is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

6.2: An Introduction to Plotting by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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4.3: Histograms
Now that we’ve tamed (or possibly fled from) the beast that is R graphical parameters, let’s talk more seriously about some real life
graphics that you’ll want to draw. We begin with the humble histogram. Histograms are one of the simplest and most useful ways
of visualising data. They make most sense when you have an interval or ratio scale (e.g., the afl.margins  data from Chapter
5 and what you want to do is get an overall impression of the data. Most of you probably know how histograms work, since they’re
so widely used, but for the sake of completeness I’ll describe them. All you do is divide up the possible values into bins, and then
count the number of observations that fall within each bin. This count is referred to as the frequency of the bin, and is displayed as
a bar: in the AFL winning margins data, there are 33 games in which the winning margin was less than 10 points, and it is this fact
that is represented by the height of the leftmost bar in Figure 6.10. Drawing this histogram in R is pretty straightforward. The
function you need to use is called hist() , and it has pretty reasonable default settings. In fact, Figure 6.10 is exactly what you
get if you just type this:

> hist( afl.margins )   # panel a

load("./rbook-master/data/aflsmall.Rdata") 
hist(afl.margins)   # panel a

Figure 6.10: The default histogram that R produces

Although this image would need a lot of cleaning up in order to make a good presentation graphic (i.e., one you’d include in a
report), it nevertheless does a pretty good job of describing the data. In fact, the big strength of a histogram is that (properly used) it
does show the entire spread of the data, so you can get a pretty good sense about what it looks like. The downside to histograms is
that they aren’t very compact: unlike some of the other plots I’ll talk about it’s hard to cram 20-30 histograms into a single image
without overwhelming the viewer. And of course, if your data are nominal scale (e.g., the afl.finalists  data) then
histograms are useless.

The main subtlety that you need to be aware of when drawing histograms is determining where the breaks  that separate bins
should be located, and (relatedly) how many breaks there should be. In Figure 6.10, you can see that R has made pretty sensible
choices all by itself: the breaks are located at 0, 10, 20, … 120, which is exactly what I would have done had I been forced to make
a choice myself. On the other hand, consider the two histograms in Figure 6.11 and 6.12, which I produced using the following two
commands:

hist( x = afl.margins, breaks = 3 )      # panel b
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Figure 6.11: A histogram with too few bins

hist( x = afl.margins, breaks = 0:116 )  # panel c

Figure 6.12: A histogram with too many bins

In Figure 6.12, the bins are only 1 point wide. As a result, although the plot is very informative (it displays the entire data set with
no loss of information at all!) the plot is very hard to interpret, and feels quite cluttered. On the other hand, the plot in Figure 6.11
has a bin width of 50 points, and has the opposite problem: it’s very easy to “read” this plot, but it doesn’t convey a lot of
information. One gets the sense that this histogram is hiding too much. In short, the way in which you specify the breaks has a big
effect on what the histogram looks like, so it’s important to make sure you choose the breaks sensibly. In general R does a pretty
good job of selecting the breaks on its own, since it makes use of some quite clever tricks that statisticians have devised for
automatically selecting the right bins for a histogram, but nevertheless it’s usually a good idea to play around with the breaks a bit
to see what happens.

There is one fairly important thing to add regarding how the breaks  argument works. There are two different ways you can
specify the breaks. You can either specify how many breaks you want (which is what I did for panel b when I typed 
breaks = 3 ) and let R figure out where they should go, or you can provide a vector that tells R exactly where the breaks

should be placed (which is what I did for panel c when I typed breaks = 0:116 ). The behaviour of the hist()  function
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is slightly different depending on which version you use. If all you do is tell it how many breaks you want, R treats it as a
“suggestion” not as a demand. It assumes you want “approximately 3” breaks, but if it doesn’t think that this would look very
pretty on screen, it picks a different (but similar) number. It does this for a sensible reason – it tries to make sure that the breaks are
located at sensible values (like 10) rather than stupid ones (like 7.224414). And most of the time R is right: usually, when a human
researcher says “give me 3 breaks”, he or she really does mean “give me approximately 3 breaks, and don’t put them in stupid
places”. However, sometimes R is dead wrong. Sometimes you really do mean “exactly 3 breaks”, and you know precisely where
you want them to go. So you need to invoke “real person privilege”, and order R to do what it’s bloody well told. In order to do
that, you have to input the full vector that tells R exactly where you want the breaks. If you do that, R will go back to behaving like
the nice little obedient calculator that it’s supposed to be.

4.3.1 Visual style of your histogram
Okay, so at this point we can draw a basic histogram, and we can alter the number and even the location of the breaks .
However, the visual style of the histograms shown in Figure @ref(fig:hist1a; hist1b; hist1c) could stand to be improved. We can fix
this by making use of some of the other arguments to the hist()  function. Most of the things you might want to try doing have
already been covered in Section 6.2, but there’s a few new things:

Shading lines: density , angle . You can add diagonal lines to shade the bars: the density  value is a number
indicating how many lines per inch R should draw (the default value of NULL  means no lines), and the angle  is a number
indicating how many degrees from horizontal the lines should be drawn at (default is angle = 45  degrees).
Specifics regarding colours: col , border . You can also change the colours: in this instance the col  parameter sets the
colour of the shading (either the shading lines if there are any, or else the colour of the interior of the bars if there are not), and
the border  argument sets the colour of the edges of the bars.
Labelling the bars: labels . You can also attach labels to each of the bars using the labels  argument. The simplest way
to do this is to set labels = TRUE , in which case R will add a number just above each bar, that number being the exact
number of observations in the bin. Alternatively, you can choose the labels yourself, by inputting a vector of strings, e.g., 
labels = c("label 1","label 2","etc")

Not surprisingly, this doesn’t exhaust the possibilities. If you type help("hist")  or ?hist  and have a look at the help
documentation for histograms, you’ll see a few more options. A histogram that makes use of the histogram-specific customisations
as well as several of the options we discussed in Section ?? is shown in Figure ??. The R command that I used to draw it is this:

hist( x = afl.margins,  
      main = "2010 AFL margins", # title of the plot 
      xlab = "Margin",           # set the x-axis label 
      density = 10,              # draw shading lines: 10 per inch 
      angle = 40,                # set the angle of the shading lines is 40 degrees 
      border = "gray20",         # set the colour of the borders of the bars 
      col = "gray80",            # set the colour of the shading lines 
      labels = TRUE,             # add frequency labels to each bar 
      ylim = c(0,40)             # change the scale of the y-axis 
)
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Overall, this is a much nicer histogram than the default ones.

This page titled 4.3: Histograms is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.

6.3: Histograms by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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4.4: Stem and Leaf Plots
Histograms are one of the most widely used methods for displaying the observed values for a variable. They’re simple, pretty, and
very informative. However, they do take a little bit of effort to draw. Sometimes it can be quite useful to make use of simpler, if less
visually appealing, options. One such alternative is the stem and leaf plot. To a first approximation you can think of a stem and leaf
plot as a kind of text-based histogram. Stem and leaf plots aren’t used as widely these days as they were 30 years ago, since it’s
now just as easy to draw a histogram as it is to draw a stem and leaf plot. Not only that, they don’t work very well for larger data
sets. As a consequence you probably won’t have as much of a need to use them yourself, though you may run into them in older
publications. These days, the only real world situation where I use them is if I have a small data set with 20-30 data points and I
don’t have a computer handy, because it’s pretty easy to quickly sketch a stem and leaf plot by hand.

With all that as background, lets have a look at stem and leaf plots. The AFL margins data contains 176 observations, which is at
the upper end for what you can realistically plot this way. The function in R for drawing stem and leaf plots is called stem()
and if we ask for a stem and leaf plot of the afl.margins  data, here’s what we get:

stem( afl.margins )

## 
##   The decimal point is 1 digit(s) to the right of the | 
## 
##    0 | 001111223333333344567788888999999 
##    1 | 0000011122234456666899999 
##    2 | 00011222333445566667788999999 
##    3 | 01223555566666678888899 
##    4 | 012334444477788899 
##    5 | 00002233445556667 
##    6 | 0113455678 
##    7 | 01123556 
##    8 | 122349 
##    9 | 458 
##   10 | 148 
##   11 | 6

The values to the left of the |  are called stems and the values to the right are called leaves. If you just look at the shape that the
leaves make, you can see something that looks a lot like a histogram made out of numbers, just rotated by 90 degrees. But if you
know how to read the plot, there’s quite a lot of additional information here. In fact, it’s also giving you the actual values of all of
the observations in the data set. To illustrate, let’s have a look at the last line in the stem and leaf plot, namely 11 | 6 .
Specifically, let’s compare this to the largest values of the afl.margins  data set:

> max( afl.margins ) 
[1] 116

Hm… 11 | 6  versus 116 . Obviously the stem and leaf plot is trying to tell us that the largest value in the data set is 116.
Similarly, when we look at the line that reads 10 | 148 , the way we interpret it to note that the stem and leaf plot is telling us
that the data set contains observations with values 101, 104 and 108. Finally, when we see something like 
5 | 00002233445556667  the four 0 s in the the stem and leaf plot are telling us that there are four observations with

value 50.

I won’t talk about them in a lot of detail, but I should point out that some customisation options are available for stem and leaf plots
in R. The two arguments that you can use to do this are:

scale . Changing the scale  of the plot (default value is 1), which is analogous to changing the number of breaks in a
histogram. Reducing the scale causes R to reduce the number of stem values (i.e., the number of breaks, if this were a
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histogram) that the plot uses.
width . The second way that to can customise a stem and leaf plot is to alter the width  (default value is 80). Changing

the width alters the maximum number of leaf values that can be displayed for any given stem.

However, since stem and leaf plots aren’t as important as they used to be, I’ll leave it to the interested reader to investigate these
options. Try the following two commands to see what happens:

> stem( x = afl.margins, scale = .25 ) 
> stem( x = afl.margins, width = 20 )

The only other thing to note about stem and leaf plots is the line in which R tells you where the decimal point is. If our data set had
included only the numbers .11, .15, .23, .35 and .59 and we’d drawn a stem and leaf plot of these data, then R would move the
decimal point: the stem values would be 1,2,3,4 and 5, but R would tell you that the decimal point has moved to the left of the |
symbol. If you want to see this in action, try the following command:

> stem( x = afl.margins / 1000 )

The stem and leaf plot itself will look identical to the original one we drew, except for the fact that R will tell you that the decimal
point has moved.

This page titled 4.4: Stem and Leaf Plots is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro
via source content that was edited to the style and standards of the LibreTexts platform.
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4.5: Scatterplots
Scatterplots are a simple but effective tool for visualising data. We’ve already seen scatterplots in this chapter, when using the 
plot()  function to draw the Fibonacci  variable as a collection of dots (Section 6.2. However, for the purposes of this

section I have a slightly different notion in mind. Instead of just plotting one variable, what I want to do with my scatterplot is
display the relationship between two variables, like we saw with the figures in the section on correlation (Section 5.7. It’s this latter
application that we usually have in mind when we use the term “scatterplot”. In this kind of plot, each observation corresponds to
one dot: the horizontal location of the dot plots the value of the observation on one variable, and the vertical location displays its
value on the other variable. In many situations you don’t really have a clear opinions about what the causal relationship is (e.g.,
does A cause B, or does B cause A, or does some other variable C control both A and B). If that’s the case, it doesn’t really matter
which variable you plot on the x-axis and which one you plot on the y-axis. However, in many situations you do have a pretty
strong idea which variable you think is most likely to be causal, or at least you have some suspicions in that direction. If so, then
it’s conventional to plot the cause variable on the x-axis, and the effect variable on the y-axis. With that in mind, let’s look at how
to draw scatterplots in R, using the same parenthood  data set (i.e. parenthood.Rdata ) that I used when introducing
the idea of correlations.

Figure 6.18: {Two different scatterplots: (a) the default scatterplot that R produces, (b) one that makes use of several options for
fancier display.

Suppose my goal is to draw a scatterplot displaying the relationship between the amount of sleep that I get ( dan.sleep ) and
how grumpy I am the next day ( dan.grump ). As you might expect given our earlier use of plot()  to display the 
Fibonacci  data, the function that we use is the plot()  function, but because it’s a generic function all the hard work is

still being done by the plot.default()  function. In any case, there are two different ways in which we can get the plot that
we’re after. The first way is to specify the name of the variable to be plotted on the x  axis and the variable to be plotted on the 
y  axis. When we do it this way, the command looks like this:

plot( x = parenthood$dan.sleep,   # data on the x-axis 
      y = parenthood$dan.grump    # data on the y-axis 
 )  
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Figure 6.19: the default scatterplot that R produces

The second way do to it is to use a “formula and data frame” format, but I’m going to avoid using it.  For now, let’s just stick with
the x  and y  version. If we do this, the result is the very basic scatterplot shown in Figure 6.19. This serves fairly well, but
there’s a few customisations that we probably want to make in order to have this work properly. As usual, we want to add some
labels, but there’s a few other things we might want to do as well. Firstly, it’s sometimes useful to rescale the plots. In Figure 6.19
R has selected the scales so that the data fall neatly in the middle. But, in this case, we happen to know that the grumpiness measure
falls on a scale from 0 to 100, and the hours slept falls on a natural scale between 0 hours and about 12 or so hours (the longest I
can sleep in real life). So the command I might use to draw this is:

plot( x = parenthood$dan.sleep,         # data on the x-axis 
       y = parenthood$dan.grump,         # data on the y-axis 
       xlab = "My sleep (hours)",        # x-axis label 
       ylab = "My grumpiness (0-100)",   # y-axis label 
       xlim = c(0,12),                   # scale the x-axis 
       ylim = c(0,100),                  # scale the y-axis 
       pch = 20,                         # change the plot type 
       col = "gray50",                   # dim the dots slightly 
       frame.plot = FALSE                # don't draw a box 
 )

This command produces the scatterplot in Figure ??, or at least very nearly. What it doesn’t do is draw the line through the middle
of the points. Sometimes it can be very useful to do this, and I can do so using lines() , which is a low level plotting function.
Better yet, the arguments that I need to specify are pretty much the exact same ones that I use when calling the plot()
function. That is, suppose that I want to draw a line that goes from the point (4,93) to the point (9.5,37). Then the x  locations can
be specified by the vector c(4,9.5)  and the y  locations correspond to the vector c(93,37) . In other words, I use this
command:
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plot( x = parenthood$dan.sleep,         # data on the x-axis 
       y = parenthood$dan.grump,         # data on the y-axis 
       xlab = "My sleep (hours)",        # x-axis label 
       ylab = "My grumpiness (0-100)",   # y-axis label 
       xlim = c(0,12),                   # scale the x-axis 
       ylim = c(0,100),                  # scale the y-axis 
       pch = 20,                         # change the plot type 
       col = "gray50",                   # dim the dots slightly 
       frame.plot = FALSE                # don't draw a box 
 ) 
 lines( x = c(4,9.5),   # the horizontal locations 
        y = c(93,37),   # the vertical locations 
        lwd = 2         # line width 
 )

And when I do so, R plots the line over the top of the plot that I drew using the previous command. In most realistic data analysis
situations you absolutely don’t want to just guess where the line through the points goes, since there’s about a billion different ways
in which you can get R to do a better job. However, it does at least illustrate the basic idea.

One possibility, if you do want to get R to draw nice clean lines through the data for you, is to use the scatterplot()
function in the car  package. Before we can use scatterplot()  we need to load the package:

> library( car )

Having done so, we can now use the function. The command we need is this one:

> scatterplot( dan.grump ~ dan.sleep, 
+              data = parenthood,  
+              smooth = FALSE 
+ )  

## Loading required package: carData
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Figure 6.20: A fancy scatterplot drawn using the scatterplot()  function in the car  package.

The first two arguments should be familiar: the first input is a formula dan.grump ~ dan.sleep  telling R what variables to
plot,  and the second specifies a data  frame. The third argument smooth  I’ve set to FALSE  to stop the 
scatterplot()  function from drawing a fancy “smoothed” trendline (since it’s a bit confusing to beginners). The scatterplot

itself is shown in Figure 6.20. As you can see, it’s not only drawn the scatterplot, but its also drawn boxplots for each of the two
variables, as well as a simple line of best fit showing the relationship between the two variables.

4.5.1 More elaborate options
Often you find yourself wanting to look at the relationships between several variables at once. One useful tool for doing so is to
produce a scatterplot matrix, analogous to the correlation matrix.

> cor( x = parenthood ) # calculate correlation matrix 
             dan.sleep  baby.sleep   dan.grump         day 
dan.sleep   1.00000000  0.62794934 -0.90338404 -0.09840768 
baby.sleep  0.62794934  1.00000000 -0.56596373 -0.01043394 
dan.grump  -0.90338404 -0.56596373  1.00000000  0.07647926 
day        -0.09840768 -0.01043394  0.07647926  1.00000000

We can get a the corresponding scatterplot matrix by using the pairs()  function:

pairs( x = parenthood ) # draw corresponding scatterplot matrix  
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The output of the pairs()  command is shown in Figure ??. An alternative way of calling the pairs()  function, which can
be useful in some situations, is to specify the variables to include using a one-sided formula. For instance, this

> pairs( formula = ~ dan.sleep + baby.sleep + dan.grump,
+        data = parenthood 
+ )

would produce a 3×3 scatterplot matrix that only compare dan.sleep , dan.grump  and baby.sleep . Obviously, the
first version is much easier, but there are cases where you really only want to look at a few of the variables, so it’s nice to use the
formula interface.

This page titled 4.5: Scatterplots is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.
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4.6: Bar Graphs
Another form of graph that you often want to plot is the bar graph. The main function that you can use in R to draw them is the 
barplot()  function.  And to illustrate the use of the function, I’ll use the finalists  variable that I introduced in

Section 5.1.7. What I want to do is draw a bar graph that displays the number of finals that each team has played in over the time
spanned by the afl  data set. So, let’s start by creating a vector that contains this information. I’ll use the tabulate()
function to do this (which will be discussed properly in Section ??, since it creates a simple numeric vector:

> freq <- tabulate( afl.finalists ) 
> print( freq ) 
 [1] 26 25 26 28 32  0  6 39 27 28 28 17  6 24 26 39 24

This isn’t exactly the prettiest of frequency tables, of course. I’m only doing it this way so that you can see the barplot()
function in it’s “purest” form: when the input is just an ordinary numeric vector. That being said, I’m obviously going to need the
team names to create some labels, so let’s create a variable with those. I’ll do this using the levels()  function, which outputs
the names of all the levels of a factor (see Section 4.7:

> teams <- levels( afl.finalists ) 
> print( teams ) 
 [1] "Adelaide"         "Brisbane"         "Carlton"          "Collingwood"      
 [5] "Essendon"         "Fitzroy"          "Fremantle"        "Geelong"          
 [9] "Hawthorn"         "Melbourne"        "North Melbourne"  "Port Adelaide"    
[13] "Richmond"         "St Kilda"         "Sydney"           "West Coast"       
[17] "Western Bulldogs"

Okay, so now that we have the information we need, let’s draw our bar graph. The main argument that you need to specify for a bar
graph is the height  of the bars, which in our case correspond to the values stored in the freq  variable:

> barplot( height = freq )  # specifying the argument name (panel a) 
> barplot( freq )   # the lazier version (panel a)

Either of these two commands will produce the simple bar graph shown in Figure 6.21.

Figure 6.21: the simplest version of a bargraph, containing the data but no labels

As you can see, R has drawn a pretty minimal plot. It doesn’t have any labels, obviously, because we didn’t actually tell the 
barplot()  function what the labels are! To do this, we need to specify the names.arg  argument. The names.arg

argument needs to be a vector of character strings containing the text that needs to be used as the label for each of the items. In this
case, the teams  vector is exactly what we need, so the command we’re looking for is:
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barplot( height = freq, names.arg = teams ) 

Figure 6.22: we’ve added the labels, but because the text runs horizontally R only includes a few of them

This is an improvement, but not much of an improvement. R has only included a few of the labels, because it can’t fit them in the
plot. This is the same behaviour we saw earlier with the multiple-boxplot graph in Figure 6.16. However, in Figure 6.16 it wasn’t
an issue: it’s pretty obvious from inspection that the two unlabelled plots in between 1987 and 1990 must correspond to the data
from 1988 and 1989. However, the fact that barplot()  has omitted the names of every team in between Adelaide and Fitzroy
is a lot more problematic.

The simplest way to fix this is to rotate the labels, so that the text runs vertically not horizontally. To do this, we need to alter set the
las  parameter, which I discussed briefly in Section ??. What I’ll do is tell R to rotate the text so that it’s always perpendicular to

the axes (i.e., I’ll set las = 2 ). When I do that, as per the following command…

 barplot(height = freq,  # the frequencies 
            names.arg = teams,  # the label 
            las = 2)            # rotate the labels

Figure 6.23: we’ve rotated the labels, but now the text is too long to fit
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… the result is the bar graph shown in Figure 6.23. We’ve fixed the problem, but we’ve created a new one: the axis labels don’t
quite fit anymore. To fix this, we have to be a bit cleverer again. A simple fix would be to use shorter names rather than the full
name of all teams, and in many situations that’s probably the right thing to do. However, at other times you really do need to create
a bit more space to add your labels, so I’ll show you how to do that.

4.6.1 Changing global settings using par()

Altering the margins to the plot is actually a somewhat more complicated exercise than you might think. In principle it’s a very
simple thing to do: the size of the margins is governed by a graphical parameter called mar , so all we need to do is alter this
parameter. First, let’s look at what the mar  argument specifies. The mar  argument is a vector containing four numbers:
specifying the amount of space at the bottom, the left, the top and then the right. The units are “number of 
lines'". The default value for mar is c(5.1, 4.1, 4.1, 2.1)`, meaning that R leaves 5.1”lines" empty at the

bottom, 4.1 lines on the left and the bottom, and only 2.1 lines on the right. In order to make more room at the bottom, what I need
to do is change the first of these numbers. A value of 10.1 should do the trick.

So far this doesn’t seem any different to the other graphical parameters that we’ve talked about. However, because of the way that
the traditional graphics system in R works, you need to specify what the margins will be before calling your high-level plotting
function. Unlike the other cases we’ve see, you can’t treat mar  as if it were just another argument in your plotting function.
Instead, you have to use the par()  function to change the graphical parameters beforehand, and only then try to draw your
figure. In other words, the first thing I would do is this:

> par( mar = c( 10.1, 4.1, 4.1, 2.1) )

There’s no visible output here, but behind the scenes R has changed the graphical parameters associated with the current device
(remember, in R terminology all graphics are drawn onto a “device”). Now that this is done, we could use the exact same command
as before, but this time you’d see that the labels all fit, because R now leaves twice as much room for the labels at the bottom.
However, since I’ve now figured out how to get the labels to display properly, I might as well play around with some of the other
options, all of which are things you’ve seen before:

Figure 6.24: we fix this by expanding the margin at the bottom, and add several other customisations to make the chart a bit nicer
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barplot( height = freq, 
        names.arg = teams, 
        las=2, 
        ylab = "Number of Finals", 
        main = "Finals Played, 1987-2010",   
        density = 10, 
        angle = 20)

However, one thing to remember about the par()  function is that it doesn’t just change the graphical parameters for the current
plot. Rather, the changes pertain to any subsequent plot that you draw onto the same device. This might be exactly what you want,
in which case there’s no problem. But if not, you need to reset the graphical parameters to their original settings. To do this, you
can either close the device (e.g., close the window, or click the “Clear All” button in the Plots panel in Rstudio) or you can reset the
graphical parameters to their original values, using a command like this:

> par( mar = c(5.1, 4.1, 4.1, 2.1) )  

This page titled 4.6: Bar Graphs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.
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4.7: Saving Image Files Using R and Rstudio
Hold on, you might be thinking. What’s the good of being able to draw pretty pictures in R if I can’t save them and send them to
friends to brag about how awesome my data is? How do I save the picture? This is another one of those situations where the easiest
thing to do is to use the RStudio tools.

If you’re running R through Rstudio, then the easiest way to save your image is to click on the “Export” button in the Plot panel
(i.e., the area in Rstudio where all the plots have been appearing). When you do that you’ll see a menu that contains the options
“Save Plot as PDF” and “Save Plot as Image”. Either version works. Both will bring up dialog boxes that give you a few options
that you can play with, but besides that it’s pretty simple.

This works pretty nicely for most situations. So, unless you’re filled with a burning desire to learn the low level details, feel free to
skip the rest of this section.

4.7.1 ugly details (advanced)

As I say, the menu-based options should be good enough for most people most of the time. However, one day you might want to be
a bit more sophisticated, and make use of R’s image writing capabilities at a lower level. In this section I’ll give you a very basic
introduction to this. In all honesty, this barely scratches the surface, but it will help a little bit in getting you started if you want to
learn the details.

Okay, as I hinted earlier, whenever you’re drawing pictures in R you’re deemed to be drawing to a device of some kind. There are
devices that correspond to a figure drawn on screen, and there are devices that correspond to graphics files that R will produce for
you. For the purposes of this section I’ll assume that you’re using the default application in either Windows or Mac OS, not
Rstudio. The reason for this is that my experience with the graphical device provided by Rstudio has led me to suspect that it still
has a bunch on non-standard (or possibly just undocumented) features, and so I don’t quite trust that it always does what I expect.
I’ve no doubt they’ll smooth it out later, but I can honestly say that I don’t quite get what’s going on with the RStudioGD
device. In any case, we can ask R to list all of the graphics devices that currently exist, simply by using the command 
dev.list() . If there are no figure windows open, then you’ll see this:

> dev.list() 
NULL

which just means that R doesn’t have any graphics devices open. However, suppose if you’ve just drawn a histogram and you type
the same command, R will now give you a different answer. For instance, if you’re using Windows:

> hist( afl.margins ) 
> dev.list() 
windows  
      2

What this means is that there is one graphics device (device 2) that is currently open, and it’s a figure window. If you did the same
thing on a Mac, you get basically the same answer, except that the name of the device would be quartz  rather than 
windows . If you had several graphics windows open (which, incidentally, you can do by using the dev.new()  command)

then you’d see something like this:

> dev.list() 
windows windows windows   
      2       3       4 

Okay, so that’s the basic idea behind graphics devices. The key idea here is that graphics files (like JPEG images etc) are also
graphics devices as far as R is concerned. So what you want to do is to copy the contents of one graphics device to another one.
There’s a command called dev.copy()  that does this, but what I’ll explain to you is a simpler one called dev.print() .
It’s pretty simple:
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> dev.print( device = jpeg,              # what are we printing to? 
+            filename = "thisfile.jpg",  # name of the image file 
+            width = 480,                # how many pixels wide should it be 
+            height = 300                # how many pixels high should it be 
+ )

This takes the “active” figure window, copies it to a jpeg file (which R treats as a device) and then closes that device. The 
filename = "thisfile.jpg"  part tells R what to name the graphics file, and the width = 480  and 
height = 300  arguments tell R to draw an image that is 300 pixels high and 480 pixels wide. If you want a different kind of

file, just change the device argument from jpeg  to something else. R has devices for png , tiff  and bmp  that all work
in exactly the same way as the jpeg  command, but produce different kinds of files. Actually, for simple cartoonish graphics like
this histogram, you’d be better advised to use PNG or TIFF over JPEG. The JPEG format is very good for natural images, but is
wasteful for simple line drawings. The information above probably covers most things you might want to. However, if you want
more information about what kinds of options you can specify using R, have a look at the help documentation by typing ?jpeg
or ?tiff  or whatever.

This page titled 4.7: Saving Image Files Using R and Rstudio is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
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4.8: Summary
Perhaps I’m a simple minded person, but I love pictures. Every time I write a new scientific paper, one of the first things I do is sit
down and think about what the pictures will be. In my head, an article is really just a sequence of pictures, linked together by a
story. All the rest of it is just window dressing. What I’m really trying to say here is that the human visual system is a very
powerful data analysis tool. Give it the right kind of information and it will supply a human reader with a massive amount of
knowledge very quickly. Not for nothing do we have the saying “a picture is worth a thousand words”. With that in mind, I think
that this is one of the most important chapters in the book. The topics covered were:

Basic overview to R graphics. In Section 6.1 we talked about how graphics in R are organised, and then moved on to the basics
of how they’re drawn in Section 6.2.
Common plots. Much of the chapter was focused on standard graphs that statisticians like to produce: histograms (Section 6.3,
stem and leaf plots (Section 6.4, boxplots (Section 6.5, scatterplots (Section 6.6 and bar graphs (Section 6.7.
Saving image files. The last part of the chapter talked about how to export your pictures (Section 6.8

One final thing to point out. At the start of the chapter I mentioned that R has several completely distinct systems for drawing
figures. In this chapter I’ve focused on the traditional graphics system. It’s the easiest one to get started with: you can draw a
histogram with a command as simple as hist(x) . However, it’s not the most powerful tool for the job, and after a while most
R users start looking to shift to fancier systems. One of the most popular graphics systems is provided by the ggplot2  package
(see ), which is loosely based on “The grammar of graphics” @[Wilkinson2006]. It’s not for novices: you need to have a pretty
good grasp of R before you can start using it, and even then it takes a while to really get the hang of it. But when you’re finally at
that stage, it’s worth taking the time to teach yourself, because it’s a much cleaner system.

86. The origin of this quote is Tufte’s lovely book The Visual Display of Quantitative Information.
87. I should add that this isn’t unique to R. Like everything in R there’s a pretty steep learning curve to learning how to draw

graphs, and like always there’s a massive payoff at the end in terms of the quality of what you can produce. But to be honest,
I’ve seen the same problems show up regardless of what system people use. I suspect that the hardest thing to do is to force
yourself to take the time to think deeply about what your graphs are doing. I say that in full knowledge that only about half of
my graphs turn out as well as they ought to. Understanding what makes a good graph is easy: actually designing a good graph is
hard.

88. Or, since you can always use the up and down keys to scroll through your recent command history, you can just pull up your
most recent commands and edit them to fix your mistake. It becomes even easier once you start using scripts (Section 8.1, since
all you have to do is edit your script and then run it again.

89. Of course, even that is a slightly misleading description, since some R graphics tools make use of external graphical rendering
systems like OpenGL (e.g., the rgl  package). I absolutely will not be talking about OpenGL or the like in this book, but as it
happens there is one graph in this book that relies on them: Figure 15.6.

90. The low-level function that does this is called title()  in case you ever need to know, and you can type ?title  to find
out a bit more detail about what these arguments do.

91. On the off chance that this isn’t enough freedom for you, you can select a colour directly as a “red, green, blue” specification
using the rgb()  function, or as a “hue, saturation, value” specification using the hsv()  function.

92. Also, there’s a low level function called axis()  that allows a lot more control over the appearance of the axes.
93. R being what it is, it’s no great surprise that there’s also a fivenum()  function that does much the same thing.
94. I realise there’s a kind of logic to the way R names are constructed, but they still sound dumb. When I typed this sentence, all I

could think was that it sounded like the name of a kids movie if it had been written by Lewis Carroll: “The frabjous gambolles
of Staplewex and Whisklty” or something along those lines.

95. Sometimes it’s convenient to have the boxplot automatically label the outliers for you. The original boxplot()  function
doesn’t allow you to do this; however, the Boxplot()  function in the car  package does. The design of the 
Boxplot()  function is very similar to boxplot() . It just adds a few new arguments that allow you to tweak the

labelling scheme. I’ll leave it to the reader to check this out.
96. Sort of. The game was played in Launceston, which is a de facto home away from home for Hawthorn.
97. Contrast this situation with the next largest winning margin in the data set, which was Geelong’s 108 point demolition of

Richmond in round 6 at their home ground, Kardinia Park. Geelong have been one of the most dominant teams over the last
several years, a period during which they strung together an incredible 29-game winning streak at Kardinia Park. Richmond
have been useless for several years. This is in no meaningful sense an outlier. Geelong have been winning by these margins
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(and Richmond losing by them) for quite some time. Frankly I’m surprised that the result wasn’t more lopsided: as happened to
Melbourne in 2011 when Geelong won by a modest 186 points.

98. Actually, there’s other ways to do this. If the input argument x  is a list object (see Section 4.9, the boxplot()  function
will draw a separate boxplot for each variable in that list. Relatedly, since the plot()  function – which we’ll discuss shortly
– is a generic (see Section 4.11, you might not be surprised to learn that one of its special cases is a boxplot: specifically, if you
use plot()  where the first argument x  is a factor and the second argument y  is numeric, then the result will be a
boxplot, showing the values in y , with a separate boxplot for each level. For instance, something like 
plot(x = afl2\$year, y = afl2\$margin)  would work.

99. The reason is that there’s an annoying design flaw in the way the plot()  function handles this situation. The problem is
that the plot.formula()  function uses different names to for the arguments than the plot()  function expects. As a
consequence, you can’t specify the formula argument by name. If you just specify a formula as the first argument without using
the name it works fine, because the plot()  function thinks the formula corresponds to the x  argument, and the 
plot.formula()  function thinks it corresponds to the formula  argument; and surprisingly, everything works nicely.

But the moment that you, the user, tries to be unambiguous about the name, one of those two functions is going to cry.
100. You might be wondering why I haven’t specified the argument name for the formula. The reason is that there’s a bug in how the

scatterplot()  function is written: under the hood there’s one function that expects the argument to be named x  and
another one that expects it to be called formula . I don’t know why the function was written this way, but it’s not an isolated
problem: this particular kind of bug repeats itself in a couple of other functions (you’ll see it again in Chapter 13. The solution
in such cases is to omit the argument name: that way, one function “thinks” that you’ve specified x  and the other one “thinks”
you’ve specified formula  and everything works the way it’s supposed to. It’s not a great state of affairs, I’ll admit, but it
sort of works.

101. Yet again, we could have produced this output using the plot()  function: when the x  argument is a data frame
containing numeric variables only, then the output is a scatterplot matrix. So, once again, what I could have done is just type 
plot( parenthood ) .

102. Once again, it’s worth noting the link to the generic plot()  function. If the x  argument to plot()  is a factor (and no 
y  argument is given), the result is a bar graph. So you could use plot( afl.finalists )  and get the same output as
barplot( afl.finalists ) .

This page titled 4.8: Summary is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via source
content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

5: Summarizing Data With Numbers
Descriptive statistics often involves using a few numbers to summarize a distribution. One important aspect of a distribution is
where its center is located. Measures of central tendency are discussed first. A second aspect of a distribution is how spread out it
is. In other words, how much the numbers in the distribution vary from one another. The second section describes measures of
variability. Distributions can differ in shape. Some distributions are symmetric whereas others have long tails in just one direction.
The third section describes measures of the shape of distributions. The final two sections concern (1) how transformations affect
measures summarizing distributions and (2) the variance sum law, an important relationship involving a measure of variability.

5.1: Central Tendency
5.2: What is Central Tendency
5.3: Measures of Central Tendency
5.4: Median and Mean
5.5: Measures of the Location of the Data
5.6: Additional Measures
5.7: Comparing Measures
5.8: Variability
5.9: Measures of Variability
5.10: Shapes of Distributions
5.11: Effects of Linear Transformations
5.12: Variance Sum Law I - Uncorrelated Variables
5.13: Statistical Literacy
5.14: Case Study- Using Stents to Prevent Strokes
5.15: Measures of the Location of the Data (Exercises)
5.E: Summarizing Distributions (Exercises)
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5.1: Central Tendency
Central tendency is a loosely defined concept that has to do with the location of the center of a distribution. The section "What is
Central Tendency" presents three definitions of the center of a distribution. "Measures of Central Tendency" presents the three most
common measures of the center of the distribution. The three simulations that follow relate the definitions of the center of a
distribution to the commonly used measures of central tendency. The findings from these simulations are summarized in the section
"Mean and Median." The "Mean and Median" allows you to explore how the relative size of the mean and the median depends on
the skew of the distribution.

Less frequently used measures of central tendency can be valuable supplements to the more commonly used measures. Some of
these measures are presented in "Additional Measures." Finally, the last section compares and summarizes differences among
measures of central tendency.

This page titled 5.1: Central Tendency is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via
source content that was edited to the style and standards of the LibreTexts platform.
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5.2: What is Central Tendency

Identify situations in which knowing the center of a distribution would be valuable
Give three different ways the center of a distribution can be defined
Describe how the balance is different for symmetric distributions than it is for asymmetric distributions

What is "central tendency," and why do we want to know the central tendency of a group of scores? Let us first try to answer these
questions intuitively. Then we will proceed to a more formal discussion.

Imagine this situation: You are in a class with just four other students, and the five of you took a -point pop quiz. Today your
instructor is walking around the room, handing back the quizzes. She stops at your desk and hands you your paper. Written in bold
black ink on the front is " ." How do you react? Are you happy with your score of  or disappointed? How do you decide? You
might calculate your percentage correct, realize it is , and be appalled. But it is more likely that when deciding how to react to
your performance, you will want additional information. What additional information would you like?

If you are like most students, you will immediately ask your neighbors, "Whad'ja get?" and then ask the instructor, "How did the
class do?" In other words, the additional information you want is how your quiz score compares to other students' scores. You
therefore understand the importance of comparing your score to the class distribution of scores. Should your score of  turn out to
be among the higher scores, then you'll be pleased after all. On the other hand, if  is among the lower scores in the class, you
won't be quite so happy.

This idea of comparing individual scores to a distribution of scores is fundamental to statistics. So let's explore it further, using the
same example (the pop quiz you took with your four classmates). Three possible outcomes are shown in Table . They are
labeled " ," " ," and " ." Which of the three datasets would make you happiest? In other words, in
comparing your score with your fellow students' scores, in which dataset would your score of  be the most impressive?

In , everyone's score is . This puts your score at the exact center of the distribution. You can draw satisfaction from the
fact that you did as well as everyone else. But of course it cuts both ways: everyone else did just as well as you.

Table : Three possible datasets for the -point make-up quiz

Student Dataset A Dataset B Dataset C

You 3 3 3

John's 3 4 2

Maria's 3 4 2

Shareecia's 3 4 2

Luther's 3 5 1

Now consider the possibility that the scores are described as in . This is a depressing outcome even though your score is
no different than the one in . The problem is that the other four students had higher grades, putting yours below the
center of the distribution.

Finally, let's look at . This is more like it! All of your classmates score lower than you so your score is above the center
of the distribution.

Now let's change the example in order to develop more insight into the center of a distribution. Figure  shows the results of an
experiment on memory for chess positions. Subjects were shown a chess position and then asked to reconstruct it on an empty
chess board. The number of pieces correctly placed was recorded. This was repeated for two more chess positions. The scores
represent the total number of chess pieces correctly placed for the three chess positions. The maximum possible score was .

Two groups are compared. On the left are people who don't play chess. On the right are people who play a great deal (tournament
players). It is clear that the location of the center of the distribution for the non-players is much lower than the center of the
distribution for the tournament players.
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Figure : Back-to-back stem and leaf display. The left side shows the memory scores of the non-players. The right side shows
the scores of the tournament players.

We're sure you get the idea now about the center of a distribution. It is time to move beyond intuition. We need a formal definition
of the center of a distribution. In fact, we'll offer you three definitions! This is not just generosity on our part. There turn out to be
(at least) three different ways of thinking about the center of a distribution, all of them useful in various contexts. In the remainder
of this section we attempt to communicate the idea behind each concept. In the succeeding sections we will give statistical
measures for these concepts of central tendency.

Definitions of Center

Now we explain the three different ways of defining the center of a distribution. All three are called measures of central tendency.

Balance Scale

One definition of central tendency is the point at which the distribution is in balance. Figure  shows the distribution of the five
numbers  placed upon a balance scale. If each number weighs one pound, and is placed at its position along the number
line, then it would be possible to balance them by placing a fulcrum at .

Figure : A balance scale

For another example, consider the distribution shown in Figure . It is balanced by placing the fulcrum in the geometric
middle.

Figure : A distribution balanced on the tip of a triangle.

Figure  illustrates that the same distribution can't be balanced by placing the fulcrum to the left of center.
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Figure : The distribution is not balanced

Figure  shows an asymmetric distribution. To balance it, we cannot put the fulcrum halfway between the lowest and highest
values (as we did in Figure ). Placing the fulcrum at the "half way" point would cause it to tip towards the left.

Figure : An asymmetric distribution balanced on the tip of a triangle

The balance point defines one sense of a distribution's center. The simulation in the next section "Balance Scale Simulation" shows
how to find the point at which the distribution balances.

Smallest Absolute Deviation

Another way to define the center of a distribution is based on the concept of the sum of the absolute deviations (differences).
Consider the distribution made up of the five numbers . Let's see how far the distribution is from  (picking a number
arbitrarily). Table  shows the sum of the absolute deviations of these numbers from the number .

Table : An example of the sum of absolute deviations

Values Absolute Deviations from 10

2 8

3 7

4 6

9 1

16 6

Sum 28

The first row of the table shows that the absolute value of the difference between  and  is ; the second row shows that the
absolute difference between  and  is , and similarly for the other rows. When we add up the five absolute deviations, we get 

. So, the sum of the absolute deviations from  is . Likewise, the sum of the absolute deviations from  equals 
. So, the sum of the absolute deviations from  is smaller than the sum of the absolute deviations from 

. In this sense,  is closer, overall, to the other numbers than is .

We are now in a position to define a second measure of central tendency, this time in terms of absolute deviations. Specifically,
according to our second definition, the center of a distribution is the number for which the sum of the absolute deviations is
smallest. As we just saw, the sum of the absolute deviations from  is  and the sum of the absolute deviations from  is . Is
there a value for which the sum of the absolute deviations is even smaller than ? Yes. For these data, there is a value for which
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the sum of absolute deviations is only . See if you can find it. A general method for finding the center of a distribution in the
sense of absolute deviations is provided in the simulation "Absolute Differences Simulation."

Smallest Squared Deviation

We shall discuss one more way to define the center of a distribution. It is based on the concept of the sum of squared deviations
(differences). Again, consider the distribution of the five numbers . Table  shows the sum of the squared
deviations of these numbers from the number .

Table : An example of the sum of squared deviations

Values Squared Deviations from 10

2 64

3 49

4 36

9 1

16 36

Sum 186

The first row in the table shows that the squared value of the difference between  and  is ; the second row shows that the
squared difference between  and  is , and so forth. When we add up all these squared deviations, we get . Changing the
target from  to , we calculate the sum of the squared deviations from  as . So, the sum of the
squared deviations from  is smaller than the sum of the squared deviations from . Is there a value for which the sum of the
squared deviations is even smaller than ? Yes, it is possible to reach . Can you find the target number for which the sum of
squared deviations is ?

The target that minimizes the sum of squared deviations provides another useful definition of central tendency (the last one to be
discussed in this section). It can be challenging to find the value that minimizes this sum. You will see how you do it in the
upcoming section "Squared Differences Simulation."
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5.3: Measures of Central Tendency

Compute mode

In the previous section we saw that there are several ways to define central tendency. This section defines the three most common
measures of central tendency: the mean, the median, and the mode. The relationships among these measures of central tendency
and the definitions given in the previous section will probably not be obvious to you. Rather than just tell you these relationships,
we will allow you to discover them in the simulations in the sections that follow. This section gives only the basic definitions of the
mean, median and mode. A further discussion of the relative merits and proper applications of these statistics is presented in a later
section.

Arithmetic Mean
The arithmetic mean is the most common measure of central tendency. It is simply the sum of the numbers divided by the number
of numbers. The symbol " " is used for the mean of a population. The symbol " " is used for the mean of a sample. The formula
for  is shown below:

where  is the sum of all the numbers in the population and  is the number of numbers in the population.

The formula for  is essentially identical:

where  is the sum of all the numbers in the sample and  is the number of numbers in the
sample.
As an example, the mean of the numbers  is  regardless of whether the numbers constitute the entire population
or just a sample from the population.

Table  shows the number of touchdown (TD) passes thrown by each of the  teams in the National Football League in the 
 season.

Table : Number of touchdown passes

The mean number of touchdown passes thrown is  as shown below.

Although the arithmetic mean is not the only "mean" (there is also a geometric mean), it is by far the most commonly used.
Therefore, if the term "mean" is used without specifying whether it is the arithmetic mean, the geometric mean, or some other
mean, it is assumed to refer to the arithmetic mean.
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Median
The median is also a frequently used measure of central tendency. The median is the midpoint of a distribution: the same number of
scores is above the median as below it. For the data in Table , there are  scores. The  highest score (which equals ) is
the median because there are  scores below the  score and  scores above the  score. The median can also be thought
of as the  percentile.

Computation of the Median

When there is an odd number of numbers, the median is simply the middle number. For example, the median of , and  is .
When there is an even number of numbers, the median is the mean of the two middle numbers. Thus, the median of the numbers 

 is . When there are numbers with the same values, then the formula for the third definition of the 
percentile should be used.

Mode

The mode is the most frequently occurring value. For the data in Table , the mode is  since more teams ( ) had 
touchdown passes than any other number of touchdown passes. With continuous data such as response time measured to many
decimals, the frequency of each value is one since no two scores will be exactly the same (see discussion of continuous variables).
Therefore the mode of continuous data is normally computed from a grouped frequency distribution. Table  shows a grouped
frequency distribution for the target response time data. Since the interval with the highest frequency is , the mode is the
middle of that interval ( ).

Table : Grouped frequency distribution

Range Frequency

500-600 3

600-700 6

700-800 5

800-900 5

900-1000 0

1000-1100 1

This page titled 5.3: Measures of Central Tendency is shared under a Public Domain license and was authored, remixed, and/or curated by David
Lane via source content that was edited to the style and standards of the LibreTexts platform.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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5.4: Median and Mean

State whether it is the mean or median that minimizes the mean absolute deviation
State whether it is the mean or median that is the balance point on a balance scale

In the section "What is central tendency," we saw that the center of a distribution could be defined three ways:

1. the point on which a distribution would balance
2. the value whose average absolute deviation from all the other values is minimized
3. the value whose average squared difference from all the other values is minimized

From the simulation in this chapter, you discovered (we hope) that the mean is the point on which a distribution would balance, the
median is the value that minimizes the sum of absolute deviations, and the mean is the value that minimizes the sum of the squared
deviations.

Table  shows the absolute and squared deviations of the numbers  and  from their median of  and their mean of 
. You can see that the sum of absolute deviations from the median ( ) is smaller than the sum of absolute deviations from the

mean ( ). On the other hand, the sum of squared deviations from the median ( ) is larger than the sum of squared deviations
from the mean ( ).

Table : Absolute and squared deviations from the median of 4 and the mean of 6.8

Value
Absolute Deviation from

Median
Absolute Deviation from

Mean
Squared Deviation from

Median
Squared Deviation from

Mean

2 2 4.8 4 23.04

3 1 3.8 1 14.44

4 0 2.8 0 7.84

9 5 2.2 25 4.84

16 12 9.2 144 84.64

Total 20 22.8 174 134.8

Figure  shows that the distribution balances at the mean of  and not at the median of . The relative advantages and
disadvantages of the mean and median are discussed in the section "Comparing Measures" later in this chapter.

Figure : The distribution balances at the mean of  and not at the median of .

When a distribution is symmetric, then the mean and the median are the same. Consider the following distribution: .
The mean and median are both . The mean, median, and mode are identical in the bell-shaped normal distribution.

This page titled 5.4: Median and Mean is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via
source content that was edited to the style and standards of the LibreTexts platform.

3.7: Median and Mean by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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5.5: Measures of the Location of the Data
The common measures of location are quartiles and percentiles. Quartiles are special percentiles. The first quartile, Q , is the
same as the 25  percentile, and the third quartile, Q , is the same as the 75  percentile. The median, M, is called both the second
quartile and the 50  percentile.

To calculate quartiles and percentiles, the data must be ordered from smallest to largest. Quartiles divide ordered data into quarters.
Percentiles divide ordered data into hundredths. To score in the 90  percentile of an exam does not mean, necessarily, that you
received 90% on a test. It means that 90% of test scores are the same or less than your score and 10% of the test scores are the same
or greater than your test score.

Percentiles are useful for comparing values. For this reason, universities and colleges use percentiles extensively. One instance in
which colleges and universities use percentiles is when SAT results are used to determine a minimum testing score that will be used
as an acceptance factor. For example, suppose Duke accepts SAT scores at or above the 75  percentile. That translates into a score
of at least 1220.

Percentiles are mostly used with very large populations. Therefore, if you were to say that 90% of the test scores are less (and not
the same or less) than your score, it would be acceptable because removing one particular data value is not significant.

The median is a number that measures the "center" of the data. You can think of the median as the "middle value," but it does not
actually have to be one of the observed values. It is a number that separates ordered data into halves. Half the values are the same
number or smaller than the median, and half the values are the same number or larger. For example, consider the following data.

1; 11.5; 6; 7.2; 4; 8; 9; 10; 6.8; 8.3; 2; 2; 10; 1

Ordered from smallest to largest:

1; 1; 2; 2; 4; 6; 6.8; 7.2; 8; 8.3; 9; 10; 10; 11.5

Since there are 14 observations, the median is between the seventh value, 6.8, and the eighth value, 7.2. To find the median, add the
two values together and divide by two.

The median is seven. Half of the values are smaller than seven and half of the values are larger than seven.

Quartiles are numbers that separate the data into quarters. Quartiles may or may not be part of the data. To find the quartiles, first
find the median or second quartile. The first quartile, Q , is the middle value of the lower half of the data, and the third quartile, Q ,
is the middle value, or median, of the upper half of the data. To get the idea, consider the same data set:

1; 1; 2; 2; 4; 6; 6.8; 7.2; 8; 8.3; 9; 10; 10; 11.5

The median or second quartile is seven. The lower half of the data are 1, 1, 2, 2, 4, 6, 6.8. The middle value of the lower half is
two.

1; 1; 2; 2; 4; 6; 6.8

The number two, which is part of the data, is the first quartile. One-fourth of the entire sets of values are the same as or less than
two and three-fourths of the values are more than two.

The upper half of the data is 7.2, 8, 8.3, 9, 10, 10, 11.5. The middle value of the upper half is nine.

The third quartile, Q3, is nine. Three-fourths (75%) of the ordered data set are less than nine. One-fourth (25%) of the ordered
data set are greater than nine. The third quartile is part of the data set in this example.

The interquartile range is a number that indicates the spread of the middle half or the middle 50% of the data. It is the difference
between the third quartile (Q ) and the first quartile (Q ).

The IQR can help to determine potential outliers. A value is suspected to be a potential outlier if it is less than (1.5)(IQR) below
the first quartile or more than (1.5)(IQR) above the third quartile. Potential outliers always require further investigation.
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A potential outlier is a data point that is significantly different from the other data points. These special data points may be
errors or some kind of abnormality or they may be a key to understanding the data.

For the following 13 real estate prices, calculate the IQR and determine if any prices are potential outliers. Prices are in dollars.

389,950; 230,500; 158,000; 479,000; 639,000; 114,950; 5,500,000; 387,000; 659,000; 529,000; 575,000; 488,800; 1,095,000

Answer

Order the data from smallest to largest.

114,950; 158,000; 230,500; 387,000; 389,950; 479,000; 488,800; 529,000; 575,000; 639,000; 659,000; 1,095,000; 5,500,000

No house price is less than –201,625. However, 5,500,000 is more than 1,159,375. Therefore, 5,500,000 is a potential outlier.

For the following 11 salaries, calculate the IQR and determine if any salaries are outliers. The salaries are in dollars.

$33,000; $64,500; $28,000; $54,000; $72,000; $68,500; $69,000; $42,000; $54,000; $120,000; $40,500

Answer

Order the data from smallest to largest.

$28,000; $33,000; $40,500; $42,000; $54,000; $54,000; $64,500; $68,500; $69,000; $72,000; $120,000

Median = $54,000

No salary is less than –$2,250. However, $120,000 is more than $11,750, so $120,000 is a potential outlier.

 Definition: Outliers

 Example 2.4.1

M = 488, 800

= = 308, 750Q

1

230, 500+387, 000

2

= = 649, 000Q

3

639, 000+659, 000

2

IQR= 649, 000−308, 750 = 340, 250

(1.5)(IQR) = (1.5)(340, 250) = 510, 375

−(1.5)(IQR) = 308, 750−510, 375 =– 201, 625Q

1

+(1.5)(IQR) = 649, 000+510, 375 = 1, 159, 375Q

3

 Exercise 5.5.1

= $40, 500Q

1

= $69, 000Q

3

IQR= $69, 000−$40, 500 = $28, 500

(1.5)(IQR) = (1.5)($28, 500) = $42, 750

−(1.5)(IQR) = $40, 500−$42, 750 =−$2, 250Q

1

+(1.5)(IQR) = $69, 000+$42, 750 = $111, 750Q

3
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For the two data sets in the test scores example, find the following:

a. The interquartile range. Compare the two interquartile ranges.
b. Any outliers in either set.

Answer

The five number summary for the day and night classes is

Minimum Q Median Q Maximum

Day 32 56 74.5 82.5 99

Night 25.5 78 81 89 98

a. The IQR for the day group is 

The IQR for the night group is 

The interquartile range (the spread or variability) for the day class is larger than the night class IQR. This suggests more
variation will be found in the day class’s class test scores.

b. Day class outliers are found using the IQR times 1.5 rule. So,

Since the minimum and maximum values for the day class are greater than 16.25 and less than 122.25, there are no outliers.

Night class outliers are calculated as:

For this class, any test score less than 61.5 is an outlier. Therefore, the scores of 45 and 25.5 are outliers. Since no test score
is greater than 105.5, there is no upper end outlier.

Find the interquartile range for the following two data sets and compare them.

Test Scores for Class A

69; 96; 81; 79; 65; 76; 83; 99; 89; 67; 90; 77; 85; 98; 66; 91; 77; 69; 80; 94

Test Scores for Class B

90; 72; 80; 92; 90; 97; 92; 75; 79; 68; 70; 80; 99; 95; 78; 73; 71; 68; 95; 100

Answer

Class A

Order the data from smallest to largest.

65; 66; 67; 69; 69; 76; 77; 77; 79; 80; 81; 83; 85; 89; 90; 91; 94; 96; 98; 99

 = 80.5

 Example 2.4.2

1 3

− = 82.5−56 = 26.5Q

3

Q

1

− = 89−78 = 11Q

3

Q

1

−IQR(1.5) = 56– 26.5(1.5) = 16.25Q

1

+IQR(1.5) = 82.5+26.5(1.5) = 122.25Q

3

−IQR(1.5) = 78– 11(1.5) = 61.5Q

1

+IQR(1.5) = 89+11(1.5) = 105.5Q

3

 Exercise 5.5.2
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= = 72.5Q
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2
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Class B

Order the data from smallest to largest.

68; 68; 70; 71; 72; 73; 75; 78; 79; 80; 80; 90; 90; 92; 92; 95; 95; 97; 99; 100

The data for Class B has a larger IQR, so the scores between Q  and Q  (middle 50%) for the data for Class B are more spread
out and not clustered about the median.

Fifty statistics students were asked how much sleep they get per school night (rounded to the nearest hour). The results were:

AMOUNT OF SLEEP PER
SCHOOL NIGHT (HOURS)

FREQUENCY RELATIVE FREQUENCY
CUMULATIVE RELATIVE

FREQUENCY

4 2 0.04 0.04

5 5 0.10 0.14

6 7 0.14 0.28

7 12 0.24 0.52

8 14 0.28 0.80

9 7 0.14 0.94

10 3 0.06 1.00

Find the 28  percentile. Notice the 0.28 in the "cumulative relative frequency" column. Twenty-eight percent of 50 data
values is 14 values. There are 14 values less than the 28  percentile. They include the two 4s, the five 5s, and the seven 6s. The
28  percentile is between the last six and the first seven. The 28  percentile is 6.5.

Find the median. Look again at the "cumulative relative frequency" column and find 0.52. The median is the 50  percentile or
the second quartile. 50% of 50 is 25. There are 25 values less than the median. They include the two 4s, the five 5s, the seven
6s, and eleven of the 7s. The median or 50  percentile is between the 25 , or seven, and 26 , or seven, values. The median is
seven.

Find the third quartile. The third quartile is the same as the 75  percentile. You can "eyeball" this answer. If you look at the
"cumulative relative frequency" column, you find 0.52 and 0.80. When you have all the fours, fives, sixes and sevens, you
have 52% of the data. When you include all the 8s, you have 80% of the data. The 75  percentile, then, must be an eight.
Another way to look at the problem is to find 75% of 50, which is 37.5, and round up to 38. The third quartile, Q , is the 38
value, which is an eight. You can check this answer by counting the values. (There are 37 values below the third quartile and
12 values above.)

Forty bus drivers were asked how many hours they spend each day running their routes (rounded to the nearest hour). Find the
65  percentile.

Median= = 80

80+80

2

= = 72.5Q

1

72+73

2

= = 93.5Q

3

92+95

2

IQR= 93.5−72.5 = 21

3 1
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Amount of time spent on
route (hours)

Frequency Relative Frequency
Cumulative Relative

Frequency
Amount of time spent on

route (hours)
Frequency Relative Frequency

Cumulative Relative
Frequency

2 12 0.30 0.30

3 14 0.35 0.65

4 10 0.25 0.90

5 4 0.10 1.00

Answer

The 65  percentile is between the last three and the first four.

The 65  percentile is 3.5.

Using the table above in Example 

a. Find the 80  percentile.
b. Find the 90  percentile.
c. Find the first quartile. What is another name for the first quartile?

Solution

Using the data from the frequency table, we have:

a. The 80  percentile is between the last eight and the first nine in the table (between the 40  and 41  values). Therefore, we

need to take the mean of the 40  an 41  values. The 80  percentile 

b. The 90  percentile will be the 45  data value (location is ) and the 45  data value is nine.
c. Q  is also the 25  percentile. The 25  percentile location calculation:  the 13  data value.

Thus, the 25  percentile is six.

Refer to the table above in Exercise . Find the third quartile. What is another name for the third quartile?

Answer

The third quartile is the 75  percentile, which is four. The 65  percentile is between three and four, and the 90  percentile is
between four and 5.75. The third quartile is between 65 and 90, so it must be four.

Your instructor or a member of the class will ask everyone in class how many sweaters they own. Answer the following
questions:

a. How many students were surveyed?
b. What kind of sampling did you do?
c. Construct two different histograms. For each, starting value = _____ ending value = ____.
d. Find the median, first quartile, and third quartile.
e. Construct a table of the data to find the following:

i. the 10  percentile
ii. the 70  percentile

iii. the percent of students who own less than four sweaters
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A Formula for Finding the kth Percentile
If you were to do a little research, you would find several formulas for calculating the kth percentile. Here is one of them.

 the kth percentile. It may or may not be part of the data.
 the index (ranking or position of a data value)
 the total number of data

Order the data from smallest to largest.

Calculate 

If  is an integer, then the  percentile is the data value in the  position in the ordered set of data.

If  is not an integer, then round  up and round  down to the nearest integers. Average the two data values in these two positions in
the ordered data set. This is easier to understand in an example.

Listed are 29 ages for Academy Award winning best actors in order from smallest to largest.

18; 21; 22; 25; 26; 27; 29; 30; 31; 33; 36; 37; 41; 42; 47; 52; 55; 57; 58; 62; 64; 67; 69; 71; 72; 73; 74; 76; 77
a. Find the 70  percentile.
b. Find the 83  percentile.

Solution

a. 
 = the index

. Twenty-one is an integer, and the data value in the 21  position in the ordered

data set is 64. The 70  percentile is 64 years.
b.  = 83  percentile

= the index

, which is NOT an integer. Round it down to 24 and up to 25. The age in the

24  position is 71 and the age in the 25  position is 72. Average 71 and 72. The 83  percentile is 71.5 years.

Listed are 29 ages for Academy Award winning best actors in order from smallest to largest.

18; 21; 22; 25; 26; 27; 29; 30; 31; 33; 36; 37; 41; 42; 47; 52; 55; 57; 58; 62; 64; 67; 69; 71; 72; 73; 74; 76; 77

Calculate the 20  percentile and the 55  percentile.

Answer

. Index . The age in the sixth position is 27. The 20  percentile is 27 years.

. Index . Round down to 16 and up to 17. The age in the 16  position is 52

and the age in the 17  position is 55. The average of 52 and 55 is 53.5. The 55  percentile is 53.5 years.

You can calculate percentiles using calculators and computers. There are a variety of online calculators.
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A Formula for Finding the Percentile of a Value in a Data Set
Order the data from smallest to largest.

 the number of data values counting from the bottom of the data list up to but not including the data value for which you
want to find the percentile.

 the number of data values equal to the data value for which you want to find the percentile.
 the total number of data.

Calculate . Then round to the nearest integer.

Listed are 29 ages for Academy Award winning best actors in order from smallest to largest.

18; 21; 22; 25; 26; 27; 29; 30; 31; 33; 36; 37; 41; 42; 47; 52; 55; 57; 58; 62; 64; 67; 69; 71; 72; 73; 74; 76; 77
a. Find the percentile for 58.
b. Find the percentile for 25.

Solution

a. Counting from the bottom of the list, there are 18 data values less than 58. There is one value of 58.

 and . . 58 is the 64  percentile.

b. Counting from the bottom of the list, there are three data values less than 25. There is one value of 25.

 and . . Twenty-five is the 12 percentile.

Listed are 30 ages for Academy Award winning best actors in order from smallest to largest.

18; 21; 22; 25; 26; 27; 29; 30; 31, 31; 33; 36; 37; 41; 42; 47; 52; 55; 57; 58; 62; 64; 67; 69; 71; 72; 73; 74; 76; 77

Find the percentiles for 47 and 31.

Answer

Percentile for 47: Counting from the bottom of the list, there are 15 data values less than 47. There is one value of 47.

 and . . 47 is the 52  percentile.

Percentile for 31: Counting from the bottom of the list, there are eight data values less than 31. There are two values of 31.

 and . . 31 is the 30  percentile.

Interpreting Percentiles, Quartiles, and Median
A percentile indicates the relative standing of a data value when data are sorted into numerical order from smallest to largest.
Percentages of data values are less than or equal to the p  percentile. For example, 15% of data values are less than or equal to the
15  percentile.

Low percentiles always correspond to lower data values.
High percentiles always correspond to higher data values.

A percentile may or may not correspond to a value judgment about whether it is "good" or "bad." The interpretation of whether a
certain percentile is "good" or "bad" depends on the context of the situation to which the data applies. In some situations, a low
percentile would be considered "good;" in other contexts a high percentile might be considered "good". In many situations, there is
no value judgment that applies.

x =

y =

n=

(100)

x+0.5y

n

 Example 2.4.6

x = 18 y = 1 (100) = (100) = 63.80

x+0.5y

n

18+0.5(1)
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th

x = 3 y = 1 (100) = (100) = 12.07

x+0.5y

n

3+0.5(1)

29

th
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x = 15 y = 1 (100) = (100) = 51.67

x+0.5y
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15+0.5(1)
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x = 8 y = 2 (100) = (100) = 30
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8+0.5(2)
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th
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Understanding how to interpret percentiles properly is important not only when describing data, but also when calculating
probabilities in later chapters of this text.

GUIDELINE

When writing the interpretation of a percentile in the context of the given data, the sentence should contain the following
information.

information about the context of the situation being considered
the data value (value of the variable) that represents the percentile
the percent of individuals or items with data values below the percentile
the percent of individuals or items with data values above the percentile.

On a timed math test, the first quartile for time it took to finish the exam was 35 minutes. Interpret the first quartile in the context of
this situation.

Answer

Twenty-five percent of students finished the exam in 35 minutes or less.
Seventy-five percent of students finished the exam in 35 minutes or more.
A low percentile could be considered good, as finishing more quickly on a timed exam is desirable. (If you take too long, you
might not be able to finish.)

For the 100-meter dash, the third quartile for times for finishing the race was 11.5 seconds. Interpret the third quartile in the
context of the situation.

Answer

Twenty-five percent of runners finished the race in 11.5 seconds or more. Seventy-five percent of runners finished the race in
11.5 seconds or less. A lower percentile is good because finishing a race more quickly is desirable.

On a 20 question math test, the 70  percentile for number of correct answers was 16. Interpret the 70  percentile in the context of
this situation.

Answer

Seventy percent of students answered 16 or fewer questions correctly.
Thirty percent of students answered 16 or more questions correctly.
A higher percentile could be considered good, as answering more questions correctly is desirable.

On a 60 point written assignment, the 80  percentile for the number of points earned was 49. Interpret the 80  percentile in the
context of this situation.

Answer

Eighty percent of students earned 49 points or fewer. Twenty percent of students earned 49 or more points. A higher percentile
is good because getting more points on an assignment is desirable.

At a community college, it was found that the 30  percentile of credit units that students are enrolled for is seven units.
Interpret the 30  percentile in the context of this situation.

Answer

Example 2.4.7
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Thirty percent of students are enrolled in seven or fewer credit units.
Seventy percent of students are enrolled in seven or more credit units.
In this example, there is no "good" or "bad" value judgment associated with a higher or lower percentile. Students attend
community college for varied reasons and needs, and their course load varies according to their needs.

During a season, the 40  percentile for points scored per player in a game is eight. Interpret the 40  percentile in the context of
this situation.

Answer

Forty percent of players scored eight points or fewer. Sixty percent of players scored eight points or more. A higher percentile
is good because getting more points in a basketball game is desirable.

Sharpe Middle School is applying for a grant that will be used to add fitness equipment to the gym. The principal surveyed 15
anonymous students to determine how many minutes a day the students spend exercising. The results from the 15 anonymous
students are shown.

0 minutes; 40 minutes; 60 minutes; 30 minutes; 60 minutes

10 minutes; 45 minutes; 30 minutes; 300 minutes; 90 minutes;

30 minutes; 120 minutes; 60 minutes; 0 minutes; 20 minutes

Determine the following five values.

Min = 0
Q  = 20
Med = 40
Q  = 60
Max = 300

If you were the principal, would you be justified in purchasing new fitness equipment? Since 75% of the students exercise for
60 minutes or less daily, and since the IQR is 40 minutes (60 – 20 = 40), we know that half of the students surveyed exercise
between 20 minutes and 60 minutes daily. This seems a reasonable amount of time spent exercising, so the principal would be
justified in purchasing the new equipment.

However, the principal needs to be careful. The value 300 appears to be a potential outlier.

.

The value 300 is greater than 120 so it is a potential outlier. If we delete it and calculate the five values, we get the following
values:

Min = 0
Q  = 20
Q  = 60
Max = 120

We still have 75% of the students exercising for 60 minutes or less daily and half of the students exercising between 20 and 60
minutes a day. However, 15 students is a small sample and the principal should survey more students to be sure of his survey
results.
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Review
The values that divide a rank-ordered set of data into 100 equal parts are called percentiles. Percentiles are used to compare and
interpret data. For example, an observation at the 50  percentile would be greater than 50 percent of the other obeservations in the
set. Quartiles divide data into quarters. The first quartile (Q ) is the 25  percentile,the second quartile (Q  or median) is 50
percentile, and the third quartile (Q ) is the the 75  percentile. The interquartile range, or IQR, is the range of the middle 50 percent
of the data values. The IQR is found by subtracting Q  from Q , and can help determine outliers by using the following two
expressions.

Formula Review

where  = the ranking or position of a data value,

 = the k  percentile,
 = total number of data.

Expression for finding the percentile of a data value: 

where  the number of values counting from the bottom of the data list up to but not including the data value for which you want
to find the percentile,

 the number of data values equal to the data value for which you want to find the percentile,

 total number of data

Glossary

Interquartile Range
or IQR, is the range of the middle 50 percent of the data values; the IQR is found by subtracting the first quartile from the third
quartile.

Outlier
an observation that does not fit the rest of the data

Percentile
a number that divides ordered data into hundredths; percentiles may or may not be part of the data. The median of the data is the
second quartile and the 50  percentile. The first and third quartiles are the 25  and the 75  percentiles, respectively.

Quartiles
the numbers that separate the data into quarters; quartiles may or may not be part of the data. The second quartile is the median
of the data.

This page titled 5.5: Measures of the Location of the Data is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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5.6: Additional Measures

Compute the trimean
Compute the geometric mean directly
Compute the geometric mean using logs
Use the geometric to compute annual portfolio returns
Compute a trimmed mean

Although the mean, median, and mode are by far the most commonly used measures of central tendency, they are by no means the
only measures. This section defines three additional measures of central tendency: the trimean, the geometric mean, and the
trimmed mean. These measures will be discussed again in the section "Comparing Measures of Central Tendency."

Trimean

The trimean is a weighted average of the  percentile, the  percentile, and the  percentile. Letting  be the 
percentile,  be the and  be the  percentile, the formula for the trimean is:

As you can see from the formula, the median is weighted twice as much as the  and  percentiles. Table  shows the
number of touchdown (TD) passes thrown by each of the  teams in the National Football League in the  season. The
relevant percentiles are shown in Table .

Table : Number of touchdown passes

Table : Percentiles

Percentile Value

25 15

50 20

75 23

The trimean is therefore

Geometric Mean

The geometric mean is computed by multiplying all the numbers together and then taking the  root of the product. For example,
for the numbers  and , the product of all the numbers is:

Since there are three numbers, we take the cubed root of the product ( ) which is equal to . The formula for the geometric
mean is therefore
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where the symbol  means to multiply. Therefore, the equation says to multiply all the values of  and then raise the result to the 

th power. Raising a value to the  power is, of course, the same as taking the  root of the value. In this case, 

is the cube root of .

The geometric mean has a close relationship with logarithms. Table  shows the logs (base ) of these three numbers. The
arithmetic mean of the three logs is . The anti-log of this arithmetic mean of  is the geometric mean. The anti-log of  is 

. Note that the geometric mean only makes sense if all the numbers are positive.

Table : Logarithms

X

1 0

10 1

100 2

The geometric mean is an appropriate measure to use for averaging rates. For example, consider a stock portfolio that began with a
value of  and had annual returns of . Table  shows the value after each of the five
years.

Table : Portfolio Returns

Year Return Value

1 13% 1,130

2 22% 1,379

3 12% 1,544

4 -5% 1,467

5 -13% 1,276

The question is how to compute average annual rate of return. The answer is to compute the geometric mean of the returns. Instead
of using the percents, each return is represented as a multiplier indicating how much higher the value is after the year. This
multiplier is  for a  return and  for a  loss. The multipliers for this example are .
The geometric mean of these multipliers is . Therefore, the average annual rate of return is . Table  shows how a
portfolio gaining  a year would end up with the same value ( ) as shown in Table .

Table : Portfolio Returns

Year Return Value

1 5% 1,050

2 5% 1,103

3 5% 1,158

4 5% 1,216

5 5% 1,276

Trimmed Mean
To compute a trimmed mean, you remove some of the higher and lower scores and compute the mean of the remaining scores. A
mean trimmed  is a mean computed with  of the scores trimmed off:  from the bottom and  from the top. A mean
trimmed  is computed by trimming the upper  of the scores and the lower  of the scores and computing the mean of
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the remaining scores. The trimmed mean is similar to the median which, in essence, trims the upper  and the lower  of the
scores. Therefore the trimmed mean is a hybrid of the mean and the median. To compute the mean trimmed  for the
touchdown pass data shown in Table , you remove the lower  of the scores ( ) as well as the upper  of
the scores ( ) and compute the mean of the remaining  scores. This mean is .

This page titled 5.6: Additional Measures is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via
source content that was edited to the style and standards of the LibreTexts platform.

3.9: Additional Measures by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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5.7: Comparing Measures

State how the measures differ in symmetric distributions
State which measure(s) should be used to describe the center of a skewed distribution

How do the various measures of central tendency compare with each other? For symmetric distributions, the mean, median,
trimean, and trimmed mean are equal, as is the mode except in bimodal distributions. Differences among the measures occur with
skewed distributions. Figure  shows the distribution of  scores on an introductory psychology test. Notice this distribution
has a slight positive skew.

Figure : A distribution with a positive skew.

Measures of central tendency are shown in Table . Notice they do not differ greatly, with the exception that the mode is
considerably lower than the other measures. When distributions have a positive skew, the mean is typically higher than the median,
although it may not be in bimodal distributions. For these data, the mean of  is higher than the median of . Typically the
trimean and trimmed mean will fall between the median and the mean, although in this case, the trimmed mean is slightly lower
than the median. The geometric mean is lower than all measures except the mode.

Table : Measures of central tendency for the test scores

Measure Value

Mode 84.00

Median 90.00

Geometric Mean 89.70

Trimean 90.25

Mean Trimmed 50% 89.81

Mean 91.58

The distribution of baseball salaries (in ) shown in Figure  has a much more pronounced skew than the distribution in
Figure .
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Figure : A distribution with a very large positive skew. This histogram shows the salaries of major league baseball players (in
thousands of dollars:  equals ).

Table  shows the measures of central tendency for these data. The large skew results in very different values for these
measures. No single measure of central tendency is sufficient for data such as these. If you were asked the very general question:
"So, what do baseball players make?" and answered with the mean of , you would not have told the whole story since
only about one third of baseball players make that much. If you answered with the mode of  or the median of ,
you would not be giving any indication that some players make many millions of dollars. Fortunately, there is no need to
summarize a distribution with a single number. When the various measures differ, our opinion is that you should report the mean,
median, and either the trimean or the mean trimmed . Sometimes it is worth reporting the mode as well. In the media, the
median is usually reported to summarize the center of skewed distributions. You will hear about median salaries and median prices
of houses sold, etc. This is better than reporting only the mean, but it would be informative to hear more statistics.

Table : Measures of central tendency for baseball salaries (in thousands of dollars)

Measure Value

Mode 250

Median 500

Geometric Mean 555

Trimean 792

Mean Trimmed 50% 619

Mean 1,183

This page titled 5.7: Comparing Measures is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via
source content that was edited to the style and standards of the LibreTexts platform.
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5.8: Variability

To study how much the numbers in a distribution differ from each other

Variability refers to how much the numbers in a distribution differ from each other. The most common measures are presented in
"Measures of Variability." The "variability demo" allows you to change the standard deviation of a distribution and view a graph of
the changed distribution.

One of the more counter-intuitive facts in introductory statistics is that the formula for variance when computed in a population is
biased when applied in a sample. The "Estimating Variance Simulation" shows concretely why this is the case.

This page titled 5.8: Variability is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via source
content that was edited to the style and standards of the LibreTexts platform.

3.11: Variability by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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5.9: Measures of Variability

Compute the range
Compute the variance in the population
Compute the standard deviation from the variance

What is Variability?
Variability refers to how "spread out" a group of scores is. To see what we mean by spread out, consider graphs in Figure .
These graphs represent the scores on two quizzes. The mean score for each quiz is . Despite the equality of means, you can see
that the distributions are quite different. Specifically, the scores on  are more densely packed and those on  are more
spread out. The differences among students were much greater on  than on .

Figure : Bar charts of two quizzes

The terms variability, spread, and dispersion are synonyms, and refer to how spread out a distribution is. Just as in the section on
central tendency where we discussed measures of the center of a distribution of scores, in this chapter we will discuss measures of
the variability of a distribution. There are four frequently used measures of variability: the range, interquartile range, variance, and
standard deviation. In the next few paragraphs, we will look at each of these four measures of variability in more detail.

Range
The range is the simplest measure of variability to calculate, and one you have probably encountered many times in your life. The
range is simply the highest score minus the lowest score. Let’s take a few examples. What is the range of the following group of
numbers: ? Well, the highest number is , and the lowest number is , so . The range is . Let’s take
another example. Here’s a dataset with  numbers: . What is the range? The highest number is 
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 and the lowest number is , so  equals ; the range is . Now consider the two quizzes shown in Figure . On 

, the lowest score is  and the highest score is . Therefore, the range is . The range on  was larger: the lowest
score was  and the highest score was . Therefore the range is .

Interquartile Range
The interquartile range (IQR) is the range of the middle  of the scores in a distribution. It is computed as follows:

For , the  percentile is  and the  percentile is . The interquartile range is therefore . For , which has

greater spread, the  percentile is , the  percentile is , and the interquartile range is . Recall that in the discussion of box
plots, the  percentile was called the upper hinge and the  percentile was called the lower hinge. Using this terminology, the
interquartile range is referred to as the -spread.

A related measure of variability is called the semi-interquartile range. The semi-interquartile range is defined simply as the
interquartile range divided by . If a distribution is symmetric, the median plus or minus the semi-interquartile range contains half
the scores in the distribution.

Variance

Variability can also be defined in terms of how close the scores in the distribution are to the middle of the distribution. Using the
mean as the measure of the middle of the distribution, the variance is defined as the average squared difference of the scores from

the mean. The data from  are shown in Table . The mean score is . Therefore, the column "Deviation from Mean"
contains the score minus . The column "Squared Deviation" is simply the previous column squared.

Table : Calculation of Variance for  scores

Scores Deviation from Mean Squared Deviation

9 2 4

9 2 4

9 2 4

8 1 1

8 1 1

8 1 1

8 1 1

7 0 0

7 0 0

7 0 0

7 0 0

7 0 0

6 -1 1

6 -1 1

6 -1 1

6 -1 1

6 -1 1
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6 -1 1

5 -2 4

5 -2 4

Means

7 0 1.5

One thing that is important to notice is that the mean deviation from the mean is . This will always be the case. The mean of the

squared deviations is . Therefore, the variance is . Analogous calculations with  show that its variance is . The
formula for the variance is:

where  is the variance,  is the mean, and  is the number of numbers. For ,  and .

If the variance in a sample is used to estimate the variance in a population, then the previous formula underestimates the variance
and the following formula should be used:

where  is the estimate of the variance and  is the sample mean. Note that  is the mean of a sample taken from a population
with a mean of . Since, in practice, the variance is usually computed in a sample, this formula is most often used. The simulation
"estimating variance" illustrates the bias in the formula with  in the denominator.

Let's take a concrete example. Assume the scores  were sampled from a larger population. To estimate the variance in
the population you would compute  as follows:

There are alternate formulas that can be easier to use if you are doing your calculations with a hand calculator. You should note that
these formulas are subject to rounding error if your values are very large and/or you have an extremely large number of
observations.

and
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Standard Deviation

The standard deviation is simply the square root of the variance. This makes the standard deviations of the two quiz distributions 
 and . The standard deviation is an especially useful measure of variability when the distribution is normal or

approximately normal (see Chapter on Normal Distributions) because the proportion of the distribution within a given number of
standard deviations from the mean can be calculated. For example,  of the distribution is within one standard deviation of the
mean and approximately  of the distribution is within two standard deviations of the mean. Therefore, if you had a normal
distribution with a mean of  and a standard deviation of , then  of the distribution would be between  and 

. Similarly, about  of the distribution would be between  and . The symbol
for the population standard deviation is ; the symbol for an estimate computed in a sample is . Figure  shows two normal
distributions. The red distribution has a mean of  and a standard deviation of ; the blue distribution has a mean of  and a
standard deviation of . For the red distribution,  of the distribution is between  and ; for the blue distribution,  is
between  and .

Figure : Normal distributions with standard deviations of 5 and 10
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5.10: Shapes of Distributions

Compute skew using two different formulas
Compute kurtosis

We saw in the section on distributions in Chapter 1 that shapes of distributions can differ in skew and/or kurtosis. This section
presents numerical indexes of these two measures of shape.

Skew
Figure  shows a distribution with a very large positive skew. Recall that distributions with positive skew have tails that
extend to the right.

Figure : A distribution with a very large positive skew. This histogram shows the salaries of major league baseball players
(in tens of thousands of dollars).

Distributions with positive skew normally have larger means than medians. The mean and median of the baseball salaries shown in
Figure  are  and  respectively. Thus, for this highly-skewed distribution, the mean is more than twice
as high as the median. The relationship between skew and the relative size of the mean and median led the statistician Pearson to
propose the following simple and convenient numerical index of skew:

The standard deviation of the baseball salaries is . Therefore, Pearson's measure of skew for this distribution is 

.

Just as there are several measures of central tendency, there is more than one measure of skew. Although Pearson's measure is a
good one, the following measure is more commonly used. It is sometimes referred to as the third moment about the mean.

Kurtosis
The following measure of kurtosis is similar to the definition of skew. The value " " is subtracted to define "no kurtosis" as the
kurtosis of a normal distribution. Otherwise, a normal distribution would have a kurtosis of .
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5.11: Effects of Linear Transformations

Compute the mean of a transformed variable
Compute the variance of a transformed variable

This section covers the effects of linear transformations on measures of central tendency and variability. Let's start with an example
we saw before in the section that defined linear transformation: temperatures of cities. Table  shows the temperatures of 
cities.

Table : Temperatures in  cities on 

City Degrees Fahrenheit Degrees Centigrade

Houston 
Chicago 
Minneapolis 
Miami 
Phoenix

54 
37 
31 
78 
70

12.22 
2.78 
-0.56 
25.56 
21.11

Mean 
Median

54.000 
54.000

12.220 
12.220

Variance 330.00 101.852

SD 18.166 10.092

Recall that to transform the degrees Fahrenheit to degrees Centigrade, we use the formula

which means we multiply each temperature Fahrenheit by  and then subtract . As you might have expected, you
multiply the mean temperature in Fahrenheit by  and then subtract  to get the mean in Centigrade. That is, 

. The same is true for the median. Note that this relationship holds even if the mean and median are
not identical as they are in Table .

The formula for the standard deviation is just as simple: the standard deviation in degrees Centigrade is equal to the standard
deviation in degrees Fahrenheit times . Since the variance is the standard deviation squared, the variance in degrees
Centigrade is equal to  times the variance in degrees Fahrenheit.

To sum up, if a variable  has a mean of , a standard deviation of , and a variance of , then a new variable  created using
the linear transformation

will have a mean of , a standard deviation of , and a variance of .

It should be noted that the term "linear transformation" is defined differently in the field of linear algebra. For details, follow this
link.
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5.12: Variance Sum Law I - Uncorrelated Variables

Compute the variance of the sum of two uncorrelated variables
Compute the variance of the difference between two uncorrelated variables

As you will see in later sections, there are many occasions in which it is important to know the variance of the sum of two
variables. Consider the following situation:

a. you have two populations,
b. you sample one number from each population, and
c. you add the two numbers together.

The question is, "What is the variance of this sum?" For example, suppose the two populations are the populations of -year-old
males and -year-old females in Houston, Texas, and that the variable of interest is memory span. You repeat the following steps
thousands of times:

1. sample one male and one female
2. measure the memory span of each
3. sum the two memory spans.

After you have done this thousands of times, you compute the variance of the sum. It turns out that the variance of this sum can be
computed according to the following formula:

where the first term is the variance of the sum, the second term is the variance of the males and the third term is the variance of the
females. Therefore, if the variances on the memory span test for the males and females were  and  respectively, then the
variance of the sum would be .

The formula for the variance of the difference between the two variables (memory span in this example) is shown below. Notice
that the expression for the difference is the same as the formula for the sum.

More generally, the variance sum law can be written as follows:

which is read: The variance of  plus or minus  is equal to the variance of  plus the variance of .

These formulas for the sum and difference of variables given above only apply when the variables are independent.

In this example, we have thousands of randomly-paired scores. Since the scores are paired randomly, there is no relationship
between the memory span of one member of the pair and the memory span of the other. Therefore the two scores are independent.
Contrast this situation with one in which thousands of people are sampled and two measures (such as verbal and quantitative SAT)
are taken from each. In this case, there would be a relationship between the two variables since higher scores on the verbal SAT are
associated with higher scores on the quantitative SAT (although there are many examples of people who score high on one test and
low on the other). Thus the two variables are not independent and the variance of the total SAT score would not be the sum of the
variances of the verbal SAT and the quantitative SAT. The general form of the variance sum law is presented in Section 4.7 in the
chapter on correlation.
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5.13: Statistical Literacy

How to select between Mean and Median

The Mean or the Median?

The playbill for the Alley Theatre in Houston wants to appeal to advertisers. They reported the mean
household income and the median age of theatergoers. What might have guided their choice of the
mean or median?

Solution

It is likely that they wanted to emphasize that theatergoers had high income but de-emphasize how
old they are. The distributions of income and age of theatergoers probably have positive skew.
Therefore the mean is probably higher than the median, which results in higher income and lower age
than if the median household income and mean age had been presented.
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5.14: Case Study- Using Stents to Prevent Strokes
Section 1.1 introduces a classic challenge in statistics: evaluating the efficacy of a medical treatment. Terms in this section, and
indeed much of this chapter, will all be revisited later in the text. The plan for now is simply to get a sense of the role statistics can
play in practice.

In this section we will consider an experiment that studies effectiveness of stents in treating patients at risk of stroke . Stents are
devices put inside blood vessels that assist in patient recovery after cardiac events and reduce the risk of an additional heart attack
or death. Many doctors have hoped that there would be similar bene ts for patients at risk of stroke. We start by writing the
principle question the researchers hope to answer:

Chimowitz MI, Lynn MJ, Derdeyn CP, et al. 2011. Stenting versus Aggressive Medical Therapy for Intracranial Arterial Stenosis.
New England Journal of Medicine 365:993-1003. http://www.nejm.org/doi/full/10.1056/NEJMoa1105335. NY Times article
reporting on the study: http://www.nytimes.com/2011/09/08/health/research/08stent.html.

Does the use of stents reduce the risk of stroke?

The researchers who asked this question collected data on 451 at-risk patients. Each volunteer patient was randomly assigned to
one of two groups:

Treatment group. Patients in the treatment group received a stent and medical management. The medical management
included medications, management of risk factors, and help in lifestyle modi cation.
Control group. Patients in the control group received the same medical manage-ment as the treatment group, but they did not
receive stents.

Researchers randomly assigned 224 patients to the treatment group and 227 to the control group. In this study, the control group
provides a reference point against which we can measure the medical impact of stents in the treatment group.

Researchers studied the effect of stents at two time points: 30 days after enrollment and 365 days after enrollment. The results of 5
patients are summarized in Table 1.1. Patient outcomes are recorded as "stroke" or "no event", representing whether or not the
patient had a stroke at the end of a time period.

Table 1.1: Results for ve patients from the stent study.

Patient group 0-30 days 0-365 days

1 treatment no event no event

2 treatment stroke stroke

3 treatment no event no event

.. .. .. ..

450 control no event no event

451 control no event no event

Considering data from each patient individually would be a long, cumbersome path towards answering the original research
question. Instead, performing a statistical data analysis allows us to consider all of the data at once. Table 1.2 summarizes the raw
data in a more helpful way. In this table, we can quickly see what happened over the entire study. For instance, to identify the
number of patients in the treatment group who had a stroke within 30 days, we look on the left-side of the table at the intersection
of the treatment and stroke: 33.

Table 1.2: Descriptive statistics for the stent study.

0-30 days 0-365 days

stroke no event stroke no event

treatment 33 191 45 179

control 13 214 28 199

1
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0-30 days 0-365 days

Total 46 405 73 378

Exercise 1.1 Of the 224 patients in the treatment group, 45 had a stroke by the end of the first year. Using these two numbers,
compute the proportion of patients in the treatment group who had a stroke by the end of their rst year. (Please note: answers to
all in-text exercises are provided using footnotes.)

Answer

The proportion of the 224 patients who had a stroke within 365 days:  = 0.20.

We can compute summary statistics from the table. A summary statistic is a single number summarizing a large amount of data
(formally, a summary statistic is a value computed from the data. Some summary statistics are more useful than others). For
instance, the primary results of the study after 1 year could be described by two summary statistics: the proportion of people who
had a stroke in the treatment and control groups.

Proportion who had a stroke in the treatment (stent) group:  = 0.20 = 20%.
Proportion who had a stroke in the control group:  = 0.12 = 12%.

These two summary statistics are useful in looking for differences in the groups, and we are in for a surprise: an additional 8% of
patients in the treatment group had a stroke! This is important for two reasons. First, it is contrary to what doctors expected, which
was that stents would reduce the rate of strokes. Second, it leads to a statistical question: do the data show a "real" difference
between the groups?

This second question is subtle. Suppose you flip a coin 100 times. While the chance a coin lands heads in any given coin flip is
50%, we probably won't observe exactly 50% heads. This type of fluctuation is part of almost any type of data generating process.
It is possible that the 8% difference in the stent study is due to this natural variation. However, the larger the difference we observe
(for a particular sample size), the less believable it is that the difference is due to chance. So what we are really asking is the
following: is the difference so large that we should reject the notion that it was due to chance?

While we don't yet have our statistical tools to fully address this question on our own, we can comprehend the conclusions of the
published analysis: there was compelling evidence of harm by stents in this study of stroke patients.

Do not generalize the results of this study to all patients and all stents. This study looked at patients with very speci c
characteristics who volunteered to be a part of this study and who may not be representative of all stroke patients. In addition,
there are many types of stents and this study only considered the self-expanding Wingspan stent (Boston Scientific). However,
this study does leave us with an important lesson: we should keep our eyes open for surprises.
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5.15: Measures of the Location of the Data (Exercises)

Listed are 29 ages for Academy Award winning best actors in order from smallest to largest.

18; 21; 22; 25; 26; 27; 29; 30; 31; 33; 36; 37; 41; 42; 47; 52; 55; 57; 58; 62; 64; 67; 69; 71; 72; 73; 74; 76; 77

a. Find the 40  percentile.
b. Find the 78  percentile.

Answer

a. The 40  percentile is 37 years.
b. The 78  percentile is 70 years.

Listed are 32 ages for Academy Award winning best actors in order from smallest to largest.

18; 18; 21; 22; 25; 26; 27; 29; 30; 31; 31; 33; 36; 37; 37; 41; 42; 47; 52; 55; 57; 58; 62; 64; 67; 69; 71; 72; 73; 74; 76; 77

a. Find the percentile of 37.
b. Find the percentile of 72.

Jesse was ranked 37  in his graduating class of 180 students. At what percentile is Jesse’s ranking?

Answer

Jesse graduated 37  out of a class of 180 students. There are 180 – 37 = 143 students ranked below Jesse. There is one rank of
37.

 and . . Jesse’s rank of 37 puts him at the 80  percentile.

a. For runners in a race, a low time means a faster run. The winners in a race have the shortest running times. Is it more
desirable to have a finish time with a high or a low percentile when running a race?

b. The 20  percentile of run times in a particular race is 5.2 minutes. Write a sentence interpreting the 20  percentile in the
context of the situation.

c. A bicyclist in the 90  percentile of a bicycle race completed the race in 1 hour and 12 minutes. Is he among the fastest or
slowest cyclists in the race? Write a sentence interpreting the 90  percentile in the context of the situation.

a. For runners in a race, a higher speed means a faster run. Is it more desirable to have a speed with a high or a low percentile
when running a race?

b. The 40  percentile of speeds in a particular race is 7.5 miles per hour. Write a sentence interpreting the 40  percentile in
the context of the situation.

Answer

a. For runners in a race it is more desirable to have a high percentile for speed. A high percentile means a higher speed which
is faster.

b. 40% of runners ran at speeds of 7.5 miles per hour or less (slower). 60% of runners ran at speeds of 7.5 miles per hour or
more (faster).
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On an exam, would it be more desirable to earn a grade with a high or low percentile? Explain.

Mina is waiting in line at the Department of Motor Vehicles (DMV). Her wait time of 32 minutes is the 85  percentile of wait
times. Is that good or bad? Write a sentence interpreting the 85  percentile in the context of this situation.

Answer

When waiting in line at the DMV, the 85  percentile would be a long wait time compared to the other people waiting. 85% of
people had shorter wait times than Mina. In this context, Mina would prefer a wait time corresponding to a lower percentile.
85% of people at the DMV waited 32 minutes or less. 15% of people at the DMV waited 32 minutes or longer.

In a survey collecting data about the salaries earned by recent college graduates, Li found that her salary was in the 78
percentile. Should Li be pleased or upset by this result? Explain.

In a study collecting data about the repair costs of damage to automobiles in a certain type of crash tests, a certain model of car
had $1,700 in damage and was in the 90  percentile. Should the manufacturer and the consumer be pleased or upset by this
result? Explain and write a sentence that interprets the 90  percentile in the context of this problem.

Answer

The manufacturer and the consumer would be upset. This is a large repair cost for the damages, compared to the other cars in
the sample. INTERPRETATION: 90% of the crash tested cars had damage repair costs of $1700 or less; only 10% had damage
repair costs of $1700 or more.

The University of California has two criteria used to set admission standards for freshman to be admitted to a college in the UC
system:

a. Students' GPAs and scores on standardized tests (SATs and ACTs) are entered into a formula that calculates an "admissions
index" score. The admissions index score is used to set eligibility standards intended to meet the goal of admitting the top
12% of high school students in the state. In this context, what percentile does the top 12% represent?

b. Students whose GPAs are at or above the 96  percentile of all students at their high school are eligible (called eligible in
the local context), even if they are not in the top 12% of all students in the state. What percentage of students from each
high school are "eligible in the local context"?

Suppose that you are buying a house. You and your realtor have determined that the most expensive house you can afford is the
34  percentile. The 34  percentile of housing prices is $240,000 in the town you want to move to. In this town, can you afford
34% of the houses or 66% of the houses?

Answer

You can afford 34% of houses. 66% of the houses are too expensive for your budget. INTERPRETATION: 34% of houses cost
$240,000 or less. 66% of houses cost $240,000 or more.

Use Exercise to calculate the following values:
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First quartile = _______

Second quartile = median = 50  percentile = _______

Answer

4

Third quartile = _______

Interquartile range (IQR) = _____ – _____ = _____

Answer

10  percentile = _______

70  percentile = _______

Answer

6

This page titled 5.15: Measures of the Location of the Data (Exercises) is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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5.E: Summarizing Distributions (Exercises)

General questions

Q1

Make up a dataset of  numbers with a positive skew. Use a statistical program to compute the skew. Is the mean larger than the
median as it usually is for distributions with a positive skew? What is the value for skew? (relevant section & relevant section )

Q2

Repeat Q1 only this time make the dataset have a negative skew. (relevant section & relevant section)

Q3

Make up three data sets with  numbers each that have: (relevant section & relevant section)
a. the same mean but different standard deviations.
b. the same mean but different medians.
c. the same median but different means.

Q4

Find the mean and median for the following three variables: (relevant section)

Q5

A sample of  distance scores measured in yards has a mean of , a variance of , and a standard deviation of .

a. You want to convert all your distances from yards to feet, so you multiply each score in the sample by . What are the new
mean, variance, and standard deviation?

b. You then decide that you only want to look at the distance past a certain point. Thus, after multiplying the original scores by ,
you decide to subtract  feet from each of the scores. Now what are the new mean, variance, and standard deviation? (relevant
section)

Q6

You recorded the time in seconds it took for  participants to solve a puzzle. These times appear below. However, when the data
was entered into the statistical program, the score that was supposed to be  was entered as . You had calculated the
following measures of central tendency: the mean, the median, and the mean trimmed . Which of these measures of central
tendency will change when you correct the recording error? (relevant section & relevant section)
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Q7

For the test scores in question Q6, which measures of variability (range, standard deviation, variance) would be changed if the 
data point had been erroneously recorded as ? (relevant section)

Q8

You know the minimum, the maximum, and the , , and  percentiles of a distribution. Which of the following measures
of central tendency or variability can you determine? (relevant section, relevant section & relevant section)

mean, median, mode, trimean, geometric mean, 

range, interquartile range, variance, standard deviation

Q9
a. Find the value ( ) for which  is minimized.
b. Find the value ( ) for which  is minimized.

Q10

Your younger brother comes home one day after taking a science test. He says that someone at school told him that "  of the
students in the class scored above the median test grade." What is wrong with this statement? What if he said "  of the students
scored below the mean?" (relevant section)

Q11

An experiment compared the ability of three groups of participants to remember briefly-presented chess positions. The data are
shown below. The numbers represent the number of pieces correctly remembered from three chess positions. Compare the
performance of each group. Consider spread as well as central tendency. (relevant section, relevant section & relevant section)

Non-players Beginners Tournament players

22.1 32.5 40.1

22.3 37.1 45.6

26.2 39.1 51.2

29.6 40.5 56.4

31.7 45.5 58.1

33.5 51.3 71.1

38.9 52.6 74.9

39.7 55.7 75.9

43.2 55.9 80.3

43.2 57.7 85.3

Q12

True/False: A bimodal distribution has two modes and two medians. (relevant section)

Q13

True/False: The best way to describe a skewed distribution is to report the mean. (relevant section)

Q14

True/False: When plotted on the same graph, a distribution with a mean of  and a standard deviation of  will look more spread
out than will a distribution with a mean of  and a standard deviation of . (relevant section)
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Q15

Compare the mean, median, trimean in terms of their sensitivity to extreme scores (relevant section).

Q16

If the mean time to respond to a stimulus is much higher than the median time to respond, what can you say about the shape of the
distribution of response times? (relevant section)

Q17

A set of numbers is transformed by taking the log base  of each number. The mean of the transformed data is . What is the
geometric mean of the untransformed data? (relevant section)

Q18

Which measure of central tendency is most often used for returns on investment?

Q19

The histogram is in balance on the fulcrum. What are the mean, median, and mode of the distribution (approximate where
necessary)?

Questions from Case Studies
The following questions are from the Angry Moods (AM) case study.

Q20

(AM#4) Does Anger-Out have a positive skew, a negative skew, or no skew? (relevant section)

Q21

(AM#8) What is the range of the Anger-In scores? What is the interquartile range? (relevant section)

Q22

(AM#12) What is the overall mean Control-Out score? What is the mean Control-Out score for the athletes? What is the mean
Control-Out score for the non-athletes? (relevant section)

Q23

(AM#15) What is the variance of the Control-In scores for the athletes? What is the variance of the Control-In scores for the non-
athletes? (relevant section)

The following question is from the Flatulence (F) case study.

Q24

(F#2) Based on a histogram of the variable "perday", do you think the mean or median of this variable is larger? Calculate the mean
and median to see if you are right. (relevant section & relevant section)

The following questions are from the Stroop (S) case study.

Q25

(S#1) Compute the mean for "words". (relevant section)

Q26

(S#2) Compute the mean and standard deviation for "colors". (relevant section & relevant section)

The following questions are from the Physicians' Reactions (PR) case study.

Q27

(PR#2) What is the mean expected time spent for the average-weight patients? What is the mean expected time spent for the
overweight patients? (relevant section)
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Q28

(PR#3) What is the difference in means between the groups? By approximately how many standard deviations do the means differ?
(relevant section & relevant section)

The following question is from the Smiles and Leniency (SL) case study.

Q29

(SL#2) Find the mean, median, standard deviation, and interquartile range for the leniency scores of each of the four groups.
(relevant section & relevant section)

The following questions are from the ADHD Treatment (AT) case study.

Q30

(AT#4) What is the mean number of correct responses of the participants after taking the placebo (  mg/kg)? (relevant section)

Q31

(AT#7) What are the standard deviation and the interquartile range of the  condition? (relevant section)

Selected Answers

S4

Variable A: Mean = , Median = 

S5
a. Mean = , Var = , SD = 

S9
a. 

S22

Non-athletes: 

S23

Athletes: 

S26

Mean = 

S27

Ave. weight: 

S29

False smile group:

Mean = 

Median = 

SD = 

IQR = 
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CHAPTER OVERVIEW

6: Describing Data With Numbers Using R
Any time that you get a new data set to look at, one of the first tasks that you have to do is find ways of summarising the data in a
compact, easily understood fashion. This is what descriptive statistics (as opposed to inferential statistics) is all about. In fact, to
many people the term “statistics” is synonymous with descriptive statistics. It is this topic that we’ll consider in this chapter, but
before going into any details, let’s take a moment to get a sense of why we need descriptive statistics. To do this, let’s load the 
aflsmall.Rdata  file, and use the who()  function in the lsr  package to see what variables are stored in the file:

load( "./data/aflsmall.Rdata" )
library(lsr)

## Warning: package 'lsr' was built under R version 3.5.2

who()

##    -- Name --      -- Class --   -- Size -- 
##    afl.finalists   factor        400        
##    afl.margins     numeric       176

There are two variables here, afl.finalists  and afl.margins . We’ll focus a bit on these two variables in this chapter,
so I’d better tell you what they are. Unlike most of data sets in this book, these are actually real data, relating to the Australian
Football League (AFL)  The afl.margins  variable contains the winning margin (number of points) for all 176 home and
away games played during the 2010 season. The afl.finalists  variable contains the names of all 400 teams that played in
all 200 finals matches played during the period 1987 to 2010. Let’s have a look at the afl.margins  variable:

print(afl.margins)

##   [1]  56  31  56   8  32  14  36  56  19   1   3 104  43  44  72   9  28 
##  [18]  25  27  55  20  16  16   7  23  40  48  64  22  55  95  15  49  52 
##  [35]  50  10  65  12  39  36   3  26  23  20  43 108  53  38   4   8   3 
##  [52]  13  66  67  50  61  36  38  29   9  81   3  26  12  36  37  70   1 
##  [69]  35  12  50  35   9  54  47   8  47   2  29  61  38  41  23  24   1 
##  [86]   9  11  10  29  47  71  38  49  65  18   0  16   9  19  36  60  24 
## [103]  25  44  55   3  57  83  84  35   4  35  26  22   2  14  19  30  19 
## [120]  68  11  75  48  32  36  39  50  11   0  63  82  26   3  82  73  19 
## [137]  33  48   8  10  53  20  71  75  76  54  44   5  22  94  29   8  98 
## [154]   9  89   1 101   7  21  52  42  21 116   3  44  29  27  16   6  44 
## [171]   3  28  38  29  10  10

This output doesn’t make it easy to get a sense of what the data are actually saying. Just “looking at the data” isn’t a terribly
effective way of understanding data. In order to get some idea about what’s going on, we need to calculate some descriptive
statistics (this chapter) and draw some nice pictures (Chapter 6. Since the descriptive statistics are the easier of the two topics, I’ll
start with those, but nevertheless I’ll show you a histogram of the afl.margins  data, since it should help you get a sense of
what the data we’re trying to describe actually look like. But for what it’s worth, this histogram – which is shown in Figure 5.1 –
was generated using the hist()  function. We’ll talk a lot more about how to draw histograms in Section 6.3. For now, it’s
enough to look at the histogram and note that it provides a fairly interpretable representation of the afl.margins  data.
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Figure 5.1: A histogram of the AFL 2010 winning margin data (the afl.margins  variable). As you might expect, the larger
the margin the less frequently you tend to see it.
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6.1: Measures of Central Tendency
Drawing pictures of the data, as I did in Figure 5.1 is an excellent way to convey the “gist” of what the data is trying to tell you, it’s
often extremely useful to try to condense the data into a few simple “summary” statistics. In most situations, the first thing that
you’ll want to calculate is a measure of central tendency. That is, you’d like to know something about the “average” or “middle” of
your data lies. The two most commonly used measures are the mean, median and mode; occasionally people will also report a
trimmed mean. I’ll explain each of these in turn, and then discuss when each of them is useful.

6.1.1 mean
The mean of a set of observations is just a normal, old-fashioned average: add all of the values up, and then divide by the total
number of values. The first five AFL margins were 56, 31, 56, 8 and 32, so the mean of these observations is just:

Of course, this definition of the mean isn’t news to anyone: averages (i.e., means) are used so often in everyday life that this is
pretty familiar stuff. However, since the concept of a mean is something that everyone already understands, I’ll use this as an
excuse to start introducing some of the mathematical notation that statisticians use to describe this calculation, and talk about how
the calculations would be done in R.

The first piece of notation to introduce is N, which we’ll use to refer to the number of observations that we’re averaging (in this
case N=5). Next, we need to attach a label to the observations themselves. It’s traditional to use X for this, and to use subscripts to
indicate which observation we’re actually talking about. That is, we’ll use X  to refer to the first observation, X to refer to the
second observation, and so on, all the way up to X  for the last one. Or, to say the same thing in a slightly more abstract way, we
use X to refer to the i-th observation. Just to make sure we’re clear on the notation, the following table lists the 5 observations in
the afl.margins  variable, along with the mathematical symbol used to refer to it, and the actual value that the observation
corresponds to:

The Observation Its Symbol The Observed Value

winning margin, game 1 X 56 points

winning margin, game 2 X 31 points

winning margin, game 3 X 56 points

winning margin, game 4 X 8 points

winning margin, game 5 X 32 points

Okay, now let’s try to write a formula for the mean. By tradition, we use x̄ as the notation for the mean. So the calculation for the
mean could be expressed using the following formula:

This formula is entirely correct, but it’s terribly long, so we make use of the summation symbol ∑ to shorten it.  If I want to add
up the first five observations, I could write out the sum the long way, X1+X2+X3+X4+X5 or I could use the summation symbol to
shorten it to this:

Taken literally, this could be read as “the sum, taken over all i values from 1 to 5, of the value X ”. But basically, what it means is
“add up the first five observations”. In any case, we can use this notation to write out the formula for the mean, which looks like
this:

= = 36.60

56+31+56+8+32
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In all honesty, I can’t imagine that all this mathematical notation helps clarify the concept of the mean at all. In fact, it’s really just a
fancy way of writing out the same thing I said in words: add all the values up, and then divide by the total number of items.
However, that’s not really the reason I went into all that detail. My goal was to try to make sure that everyone reading this book is
clear on the notation that we’ll be using throughout the book:  for the mean, ∑ for the idea of summation, X  for the ith
observation, and N for the total number of observations. We’re going to be re-using these symbols a fair bit, so it’s important that
you understand them well enough to be able to “read” the equations, and to be able to see that it’s just saying “add up lots of things
and then divide by another thing”.

6.1.2 Calculating the mean in R

Okay that’s the maths, how do we get the magic computing box to do the work for us? If you really wanted to, you could do this
calculation directly in R. For the first 5 AFL scores, do this just by typing it in as if R were a calculator…

(56 + 31 + 56 + 8 + 32) / 5

## [1] 36.6

… in which case R outputs the answer 36.6, just as if it were a calculator. However, that’s not the only way to do the calculations,
and when the number of observations starts to become large, it’s easily the most tedious. Besides, in almost every real world
scenario, you’ve already got the actual numbers stored in a variable of some kind, just like we have with the afl.margins
variable. Under those circumstances, what you want is a function that will just add up all the values stored in a numeric vector.
That’s what the sum()  function does. If we want to add up all 176 winning margins in the data set, we can do so using the
following command:

sum( afl.margins )

## [1] 6213

If we only want the sum of the first five observations, then we can use square brackets to pull out only the first five elements of the
vector. So the command would now be:

sum( afl.margins[1:5] )

## [1] 183

To calculate the mean, we now tell R to divide the output of this summation by five, so the command that we need to type now
becomes the following:

sum( afl.margins[1:5] ) / 5

## [1] 36.6

Although it’s pretty easy to calculate the mean using the sum()  function, we can do it in an even easier way, since R also
provides us with the mean()  function. To calculate the mean for all 176 games, we would use the following command:

mean( x = afl.margins )

## [1] 35.30114

X

¯ i
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However, since x  is the first argument to the function, I could have omitted the argument name. In any case, just to show you
that there’s nothing funny going on, here’s what we would do to calculate the mean for the first five observations:

mean( afl.margins[1:5] )  

## [1] 36.6

As you can see, this gives exactly the same answers as the previous calculations.

6.1.3 median

The second measure of central tendency that people use a lot is the median, and it’s even easier to describe than the mean. The
median of a set of observations is just the middle value. As before let’s imagine we were interested only in the first 5 AFL winning
margins: 56, 31, 56, 8 and 32. To figure out the median, we sort these numbers into ascending order:

8,31,32,56,56

From inspection, it’s obvious that the median value of these 5 observations is 32, since that’s the middle one in the sorted list (I’ve
put it in bold to make it even more obvious). Easy stuff. But what should we do if we were interested in the first 6 games rather
than the first 5? Since the sixth game in the season had a winning margin of 14 points, our sorted list is now

8,14,31,32,56,56

and there are two middle numbers, 31 and 32. The median is defined as the average of those two numbers, which is of course 31.5.
As before, it’s very tedious to do this by hand when you’ve got lots of numbers. To illustrate this, here’s what happens when you
use R to sort all 176 winning margins. First, I’ll use the sort()  function (discussed in Chapter 7) to display the winning
margins in increasing numerical order:

sort( x = afl.margins )

##   [1]   0   0   1   1   1   1   2   2   3   3   3   3   3   3   3   3   4 
##  [18]   4   5   6   7   7   8   8   8   8   8   9   9   9   9   9   9  10 
##  [35]  10  10  10  10  11  11  11  12  12  12  13  14  14  15  16  16  16 
##  [52]  16  18  19  19  19  19  19  20  20  20  21  21  22  22  22  23  23 
##  [69]  23  24  24  25  25  26  26  26  26  27  27  28  28  29  29  29  29 
##  [86]  29  29  30  31  32  32  33  35  35  35  35  36  36  36  36  36  36 
## [103]  37  38  38  38  38  38  39  39  40  41  42  43  43  44  44  44  44 
## [120]  44  47  47  47  48  48  48  49  49  50  50  50  50  52  52  53  53 
## [137]  54  54  55  55  55  56  56  56  57  60  61  61  63  64  65  65  66 
## [154]  67  68  70  71  71  72  73  75  75  76  81  82  82  83  84  89  94 
## [171]  95  98 101 104 108 116

The middle values are 30 and 31, so the median winning margin for 2010 was 30.5 points. In real life, of course, no-one actually
calculates the median by sorting the data and then looking for the middle value. In real life, we use the median command:

median( x = afl.margins )  

## [1] 30.5

which outputs the median value of 30.5.
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6.1.4 Mean or median? What’s the difference?

Figure 5.2: An illustration of the difference between how the mean and the median should be interpreted. The mean is basically the
“centre of gravity” of the data set: if you imagine that the histogram of the data is a solid object, then the point on which you could
balance it (as if on a see-saw) is the mean. In contrast, the median is the middle observation. Half of the observations are smaller,
and half of the observations are larger.

Knowing how to calculate means and medians is only a part of the story. You also need to understand what each one is saying
about the data, and what that implies for when you should use each one. This is illustrated in Figure 5.2 the mean is kind of like the
“centre of gravity” of the data set, whereas the median is the “middle value” in the data. What this implies, as far as which one you
should use, depends a little on what type of data you’ve got and what you’re trying to achieve. As a rough guide:

If your data are nominal scale, you probably shouldn’t be using either the mean or the median. Both the mean and the median
rely on the idea that the numbers assigned to values are meaningful. If the numbering scheme is arbitrary, then it’s probably best
to use the mode (Section 5.1.7) instead.
If your data are ordinal scale, you’re more likely to want to use the median than the mean. The median only makes use of the
order information in your data (i.e., which numbers are bigger), but doesn’t depend on the precise numbers involved. That’s
exactly the situation that applies when your data are ordinal scale. The mean, on the other hand, makes use of the precise
numeric values assigned to the observations, so it’s not really appropriate for ordinal data.
For interval and ratio scale data, either one is generally acceptable. Which one you pick depends a bit on what you’re trying to
achieve. The mean has the advantage that it uses all the information in the data (which is useful when you don’t have a lot of
data), but it’s very sensitive to extreme values, as we’ll see in Section 5.1.6.

Let’s expand on that last part a little. One consequence is that there’s systematic differences between the mean and the median
when the histogram is asymmetric (skewed; see Section 5.3). This is illustrated in Figure 5.2 notice that the median (right hand
side) is located closer to the “body” of the histogram, whereas the mean (left hand side) gets dragged towards the “tail” (where the
extreme values are). To give a concrete example, suppose Bob (income $50,000), Kate (income $60,000) and Jane (income
$65,000) are sitting at a table: the average income at the table is $58,333 and the median income is $60,000. Then Bill sits down
with them (income $100,000,000). The average income has now jumped to $25,043,750 but the median rises only to $62,500. If
you’re interested in looking at the overall income at the table, the mean might be the right answer; but if you’re interested in what
counts as a typical income at the table, the median would be a better choice here.

6.1.5 real life example

To try to get a sense of why you need to pay attention to the differences between the mean and the median, let’s consider a real life
example. Since I tend to mock journalists for their poor scientific and statistical knowledge, I should give credit where credit is due.
This is from an excellent article on the ABC news website  24 September, 2010:

Senior Commonwealth Bank executives have travelled the world in the past couple of weeks with a presentation showing how
Australian house prices, and the key price to income ratios, compare favourably with similar countries. “Housing affordability has
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actually been going sideways for the last five to six years,” said Craig James, the chief economist of the bank’s trading arm,
CommSec.

This probably comes as a huge surprise to anyone with a mortgage, or who wants a mortgage, or pays rent, or isn’t completely
oblivious to what’s been going on in the Australian housing market over the last several years. Back to the article:

CBA has waged its war against what it believes are housing doomsayers with graphs, numbers and international comparisons. In its
presentation, the bank rejects arguments that Australia’s housing is relatively expensive compared to incomes. It says Australia’s
house price to household income ratio of 5.6 in the major cities, and 4.3 nationwide, is comparable to many other developed
nations. It says San Francisco and New York have ratios of 7, Auckland’s is 6.7, and Vancouver comes in at 9.3.

More excellent news! Except, the article goes on to make the observation that…

Many analysts say that has led the bank to use misleading figures and comparisons. If you go to page four of CBA’s presentation
and read the source information at the bottom of the graph and table, you would notice there is an additional source on the
international comparison – Demographia. However, if the Commonwealth Bank had also used Demographia’s analysis of
Australia’s house price to income ratio, it would have come up with a figure closer to 9 rather than 5.6 or 4.3

That’s, um, a rather serious discrepancy. One group of people say 9, another says 4-5. Should we just split the difference, and say
the truth lies somewhere in between? Absolutely not: this is a situation where there is a right answer and a wrong answer.
Demographia are correct, and the Commonwealth Bank is incorrect. As the article points out

[An] obvious problem with the Commonwealth Bank’s domestic price to income figures is they compare average incomes with
median house prices (unlike the Demographia figures that compare median incomes to median prices). The median is the mid-
point, effectively cutting out the highs and lows, and that means the average is generally higher when it comes to incomes and asset
prices, because it includes the earnings of Australia’s wealthiest people. To put it another way: the Commonwealth Bank’s figures
count Ralph Norris’ multi-million dollar pay packet on the income side, but not his (no doubt) very expensive house in the property
price figures, thus understating the house price to income ratio for middle-income Australians.

Couldn’t have put it better myself. The way that Demographia calculated the ratio is the right thing to do. The way that the Bank
did it is incorrect. As for why an extremely quantitatively sophisticated organisation such as a major bank made such an elementary
mistake, well… I can’t say for sure, since I have no special insight into their thinking, but the article itself does happen to mention
the following facts, which may or may not be relevant:

[As] Australia’s largest home lender, the Commonwealth Bank has one of the biggest vested interests in house prices rising. It
effectively owns a massive swathe of Australian housing as security for its home loans as well as many small business loans.

My, my.

6.1.6 Trimmed mean
One of the fundamental rules of applied statistics is that the data are messy. Real life is never simple, and so the data sets that you
obtain are never as straightforward as the statistical theory says.  This can have awkward consequences. To illustrate, consider this
rather strange looking data set:

−100,2,3,4,5,6,7,8,9,10

If you were to observe this in a real life data set, you’d probably suspect that something funny was going on with the −100 value.
It’s probably an outlier, a value that doesn’t really belong with the others. You might consider removing it from the data set
entirely, and in this particular case I’d probably agree with that course of action. In real life, however, you don’t always get such
cut-and-dried examples. For instance, you might get this instead:

−15,2,3,4,5,6,7,8,9,12

The −15 looks a bit suspicious, but not anywhere near as much as that −100 did. In this case, it’s a little trickier. It might be a
legitimate observation, it might not.

When faced with a situation where some of the most extreme-valued observations might not be quite trustworthy, the mean is not
necessarily a good measure of central tendency. It is highly sensitive to one or two extreme values, and is thus not considered to be
a robust measure. One remedy that we’ve seen is to use the median. A more general solution is to use a “trimmed mean”. To
calculate a trimmed mean, what you do is “discard” the most extreme examples on both ends (i.e., the largest and the smallest), and
then take the mean of everything else. The goal is to preserve the best characteristics of the mean and the median: just like a
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median, you aren’t highly influenced by extreme outliers, but like the mean, you “use” more than one of the observations.
Generally, we describe a trimmed mean in terms of the percentage of observation on either side that are discarded. So, for instance,
a 10% trimmed mean discards the largest 10% of the observations and the smallest 10% of the observations, and then takes the
mean of the remaining 80% of the observations. Not surprisingly, the 0% trimmed mean is just the regular mean, and the 50%
trimmed mean is the median. In that sense, trimmed means provide a whole family of central tendency measures that span the
range from the mean to the median.

For our toy example above, we have 10 observations, and so a 10% trimmed mean is calculated by ignoring the largest value (i.e., 
12 ) and the smallest value (i.e., -15 ) and taking the mean of the remaining values. First, let’s enter the data

dataset <- c( -15,2,3,4,5,6,7,8,9,12 )

Next, let’s calculate means and medians:

mean( x = dataset )  

## [1] 4.1

median( x = dataset )  

## [1] 5.5

That’s a fairly substantial difference, but I’m tempted to think that the mean is being influenced a bit too much by the extreme
values at either end of the data set, especially the −15 one. So let’s just try trimming the mean a bit. If I take a 10% trimmed mean,
we’ll drop the extreme values on either side, and take the mean of the rest:

mean( x = dataset, trim = .1)  

## [1] 5.5

which in this case gives exactly the same answer as the median. Note that, to get a 10% trimmed mean you write trim = .1 ,
not trim = 10 . In any case, let’s finish up by calculating the 5% trimmed mean for the afl.margins  data,

mean( x = afl.margins, trim = .05)   

## [1] 33.75

6.1.7 Mode

The mode of a sample is very simple: it is the value that occurs most frequently. To illustrate the mode using the AFL data, let’s
examine a different aspect to the data set. Who has played in the most finals? The afl.finalists  variable is a factor that
contains the name of every team that played in any AFL final from 1987-2010, so let’s have a look at it. To do this we will use the 
head()  command. head()  is useful when you’re working with a data.frame with a lot of rows since you can use it to tell

you how many rows to return. There have been a lot of finals in this period so printing afl.finalists using 
print(afl.finalists)  will just fill us the screen. The command below tells R we just want the first 25 rows of the

data.frame.

head(afl.finalists, 25)
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##  [1] Hawthorn    Melbourne   Carlton     Melbourne   Hawthorn    
##  [6] Carlton     Melbourne   Carlton     Hawthorn    Melbourne   
## [11] Melbourne   Hawthorn    Melbourne   Essendon    Hawthorn    
## [16] Geelong     Geelong     Hawthorn    Collingwood Melbourne   
## [21] Collingwood West Coast  Collingwood Essendon    Collingwood 
## 17 Levels: Adelaide Brisbane Carlton Collingwood Essendon ... Western Bulldogs

There are actually 400 entries (aren’t you glad we didn’t print them all?). We could read through all 400, and count the number of
occasions on which each team name appears in our list of finalists, thereby producing a frequency table. However, that would be
mindless and boring: exactly the sort of task that computers are great at. So let’s use the table()  function (discussed in more
detail in Section 7.1) to do this task for us:

table( afl.finalists )

## afl.finalists 
##         Adelaide         Brisbane          Carlton      Collingwood  
##               26               25               26               28  
##         Essendon          Fitzroy        Fremantle          Geelong  
##               32                0                6               39  
##         Hawthorn        Melbourne  North Melbourne    Port Adelaide  
##               27               28               28               17  
##         Richmond         St Kilda           Sydney       West Coast  
##                6               24               26               38  
## Western Bulldogs  
##               24

Now that we have our frequency table, we can just look at it and see that, over the 24 years for which we have data, Geelong has
played in more finals than any other team. Thus, the mode of the finalists  data is "Geelong" . The core packages in R
don’t have a function for calculating the mode . However, I’ve included a function in the lsr  package that does this. The
function is called modeOf() , and here’s how you use it:

modeOf( x = afl.finalists )

## [1] "Geelong"

There’s also a function called maxFreq()  that tells you what the modal frequency is. If we apply this function to our finalists
data, we obtain the following:

maxFreq( x = afl.finalists )

## [1] 39

Taken together, we observe that Geelong (39 finals) played in more finals than any other team during the 1987-2010 period.

One last point to make with respect to the mode. While it’s generally true that the mode is most often calculated when you have
nominal scale data (because means and medians are useless for those sorts of variables), there are some situations in which you
really do want to know the mode of an ordinal, interval or ratio scale variable. For instance, let’s go back to thinking about our 
afl.margins  variable. This variable is clearly ratio scale (if it’s not clear to you, it may help to re-read Section 2.2), and so in

most situations the mean or the median is the measure of central tendency that you want. But consider this scenario… a friend of
yours is offering a bet. They pick a football game at random, and (without knowing who is playing) you have to guess the exact
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margin. If you guess correctly, you win $50. If you don’t, you lose $1. There are no consolation prizes for “almost” getting the right
answer. You have to guess exactly the right margin  For this bet, the mean and the median are completely useless to you. It is the
mode that you should bet on. So, we calculate this modal value

modeOf( x = afl.margins )

## [1] 3  

maxFreq( x = afl.margins )

## [1] 8

So the 2010 data suggest you should bet on a 3 point margin, and since this was observed in 8 of the 176 game (4.5% of games) the
odds are firmly in your favour.

This page titled 6.1: Measures of Central Tendency is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

5.1: Measures of Central Tendency by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.
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6.2: Measures of Variability
The statistics that we’ve discussed so far all relate to central tendency. That is, they all talk about which values are “in the middle”
or “popular” in the data. However, central tendency is not the only type of summary statistic that we want to calculate. The second
thing that we really want is a measure of the variability of the data. That is, how “spread out” are the data? How “far” away from
the mean or median do the observed values tend to be? For now, let’s assume that the data are interval or ratio scale, so we’ll
continue to use the afl.margins  data. We’ll use this data to discuss several different measures of spread, each with different
strengths and weaknesses.

6.2.1 Range
The range of a variable is very simple: it’s the biggest value minus the smallest value. For the AFL winning margins data, the
maximum value is 116, and the minimum value is 0. We can calculate these values in R using the max()  and min()
functions:

max( afl.margins )

## [1] 116

min( afl.margins )  

## [1] 0

where I’ve omitted the output because it’s not interesting. The other possibility is to use the range()  function; which outputs
both the minimum value and the maximum value in a vector, like this:

range( afl.margins )  

## [1]   0 116

Although the range is the simplest way to quantify the notion of “variability”, it’s one of the worst. Recall from our discussion of
the mean that we want our summary measure to be robust. If the data set has one or two extremely bad values in it, we’d like our
statistics not to be unduly influenced by these cases. If we look once again at our toy example of a data set containing very extreme
outliers…

−100,2,3,4,5,6,7,8,9,10

… it is clear that the range is not robust, since this has a range of 110, but if the outlier were removed we would have a range of
only 8.

6.2.2 Interquartile range

The interquartile range (IQR) is like the range, but instead of calculating the difference between the biggest and smallest value, it
calculates the difference between the 25th quantile and the 75th quantile. Probably you already know what a quantile is (they’re
more commonly called percentiles), but if not: the 10th percentile of a data set is the smallest number x such that 10% of the data is
less than x. In fact, we’ve already come across the idea: the median of a data set is its 50th quantile / percentile! R actually provides
you with a way of calculating quantiles, using the (surprise, surprise) quantile()  function. Let’s use it to calculate the
median AFL winning margin:

quantile( x = afl.margins, probs = .5)
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##  50%  
## 30.5

And not surprisingly, this agrees with the answer that we saw earlier with the median()  function. Now, we can actually input
lots of quantiles at once, by specifying a vector for the probs  argument. So lets do that, and get the 25th and 75th percentile:

quantile( x = afl.margins, probs = c(.25,.75) )

##   25%   75%  
## 12.75 50.50

And, by noting that 50.5−12.75=37.75, we can see that the interquartile range for the 2010 AFL winning margins data is 37.75. Of
course, that seems like too much work to do all that typing, so R has a built in function called IQR()  that we can use:

IQR( x = afl.margins )

## [1] 37.75

While it’s obvious how to interpret the range, it’s a little less obvious how to interpret the IQR. The simplest way to think about it is
like this: the interquartile range is the range spanned by the “middle half” of the data. That is, one quarter of the data falls below the
25th percentile, one quarter of the data is above the 75th percentile, leaving the “middle half” of the data lying in between the two.
And the IQR is the range covered by that middle half.

6.2.3 Mean absolute deviation
The two measures we’ve looked at so far, the range and the interquartile range, both rely on the idea that we can measure the
spread of the data by looking at the quantiles of the data. However, this isn’t the only way to think about the problem. A different
approach is to select a meaningful reference point (usually the mean or the median) and then report the “typical” deviations from
that reference point. What do we mean by “typical” deviation? Usually, the mean or median value of these deviations! In practice,
this leads to two different measures, the “mean absolute deviation (from the mean)” and the “median absolute deviation (from the
median)”. From what I’ve read, the measure based on the median seems to be used in statistics, and does seem to be the better of
the two, but to be honest I don’t think I’ve seen it used much in psychology. The measure based on the mean does occasionally
show up in psychology though. In this section I’ll talk about the first one, and I’ll come back to talk about the second one later.

Since the previous paragraph might sound a little abstract, let’s go through the mean absolute deviation from the mean a little more
slowly. One useful thing about this measure is that the name actually tells you exactly how to calculate it. Let’s think about our
AFL winning margins data, and once again we’ll start by pretending that there’s only 5 games in total, with winning margins of 56,
31, 56, 8 and 32. Since our calculations rely on an examination of the deviation from some reference point (in this case the mean),
the first thing we need to calculate is the mean, . For these five observations, our mean is =36.6. The next step is to convert
each of our observations X  into a deviation score. We do this by calculating the difference between the observation Xi and the
mean . That is, the deviation score is defined to be X − . For the first observation in our sample, this is equal to 56−36.6=19.4.
Okay, that’s simple enough. The next step in the process is to convert these deviations to absolute deviations. As we discussed
earlier when talking about the abs()  function in R (Section 3.5), we do this by converting any negative values to positive ones.
Mathematically, we would denote the absolute value of −3 as |−3|, and so we say that |−3|=3. We use the absolute value function
here because we don’t really care whether the value is higher than the mean or lower than the mean, we’re just interested in how
close it is to the mean. To help make this process as obvious as possible, the table below shows these calculations for all five
observations:

the observation its symbol the observed value

winning margin, game 2 X2 31 points

winning margin, game 5 X5 32 points

X

¯

X

¯

i
X

¯ i X¯
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the observation its symbol the observed value

winning margin, game 1 X1 56 points

winning margin, game 3 X3 56 points

winning margin, game 4 X4 8 points

Now that we have calculated the absolute deviation score for every observation in the data set, all that we have to do to calculate
the mean of these scores. Let’s do that:

And we’re done. The mean absolute deviation for these five scores is 15.52.

However, while our calculations for this little example are at an end, we do have a couple of things left to talk about. Firstly, we
should really try to write down a proper mathematical formula. But in order do to this I need some mathematical notation to refer to
the mean absolute deviation. Irritatingly, “mean absolute deviation” and “median absolute deviation” have the same acronym
(MAD), which leads to a certain amount of ambiguity, and since R tends to use MAD to refer to the median absolute deviation, I’d
better come up with something different for the mean absolute deviation. Sigh. What I’ll do is use AAD instead, short for average
absolute deviation. Now that we have some unambiguous notation, here’s the formula that describes what we just calculated:

The last thing we need to talk about is how to calculate AAD in R. One possibility would be to do everything using low level
commands, laboriously following the same steps that I used when describing the calculations above. However, that’s pretty tedious.
You’d end up with a series of commands that might look like this:

X <- c(56, 31,56,8,32)   # enter the data 
X.bar <- mean( X )       # step 1. the mean of the data 
AD <- abs( X - X.bar )   # step 2. the absolute deviations from the mean 
AAD <- mean( AD )        # step 3. the mean absolute deviations 
print( AAD )             # print the results

## [1] 15.52

Each of those commands is pretty simple, but there’s just too many of them. And because I find that to be too much typing, the 
lsr  package has a very simple function called aad()  that does the calculations for you. If we apply the aad()  function

to our data, we get this:

library(lsr) 
aad( X )

## [1] 15.52

No suprises there.

6.2.4 Variance
Although the mean absolute deviation measure has its uses, it’s not the best measure of variability to use. From a purely
mathematical perspective, there are some solid reasons to prefer squared deviations rather than absolute deviations. If we do that,
we obtain a measure is called the variance, which has a lot of really nice statistical properties that I’m going to ignore, (X)$ and
Var(Y) respectively. Now imagine I want to define a new variable Z that is the sum of the two, Z=X+Y. As it turns out, the variance

= 15.52
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of Z is equal to Var(X)+Var(Y). This is a very useful property, but it’s not true of the other measures that I talk about in this
section.] and one massive psychological flaw that I’m going to make a big deal out of in a moment. The variance of a data set X is
sometimes written as Var(X), but it’s more commonly denoted s  (the reason for this will become clearer shortly). The formula that
we use to calculate the variance of a set of observations is as follows:

As you can see, it’s basically the same formula that we used to calculate the mean absolute deviation, except that instead of using
“absolute deviations” we use “squared deviations”. It is for this reason that the variance is sometimes referred to as the “mean
square deviation”.

Now that we’ve got the basic idea, let’s have a look at a concrete example. Once again, let’s use the first five AFL games as our
data. If we follow the same approach that we took last time, we end up with the following table:

Table 5.1: Basic arithmetic operations in R. These five operators are used very frequently throughout the text, so it’s important to
be familiar with them at the outset.

Notation [English] i [which game] X  [value]
X −  [deviation from

mean]
(Xi− )  [absolute

deviation]

 5 32 -4.6 21.16

 2 31 -5.6 31.36

 1 56 19.4 376.36

 3 56 19.4 376.36

 4 8 -28.6 817.96

That last column contains all of our squared deviations, so all we have to do is average them. If we do that by typing all the
numbers into R by hand…

( 376.36 + 31.36 + 376.36 + 817.96 + 21.16 ) / 5  

## [1] 324.64

… we end up with a variance of 324.64. Exciting, isn’t it? For the moment, let’s ignore the burning question that you’re all
probably thinking (i.e., what the heck does a variance of 324.64 actually mean?) and instead talk a bit more about how to do the
calculations in R, because this will reveal something very weird.

As always, we want to avoid having to type in a whole lot of numbers ourselves. And as it happens, we have the vector X  lying
around, which we created in the previous section. With this in mind, we can calculate the variance of X  by using the following
command,

mean( (X - mean(X) )^2)

## [1] 324.64

and as usual we get the same answer as the one that we got when we did everything by hand. However, I still think that this is too
much typing. Fortunately, R has a built in function called var()  which does calculate variances. So we could also do this…

var(X)  
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## [1] 405.8

and you get the same… no, wait… you get a completely different answer. That’s just weird. Is R broken? Is this a typo? Is Dan an
idiot?

As it happens, the answer is no.  It’s not a typo, and R is not making a mistake. To get a feel for what’s happening, let’s stop using
the tiny data set containing only 5 data points, and switch to the full set of 176 games that we’ve got stored in our 
afl.margins  vector. First, let’s calculate the variance by using the formula that I described above:

mean( (afl.margins - mean(afl.margins) )^2)

## [1] 675.9718

Now let’s use the var()  function:

var( afl.margins )

## [1] 679.8345

Hm. These two numbers are very similar this time. That seems like too much of a coincidence to be a mistake. And of course it
isn’t a mistake. In fact, it’s very simple to explain what R is doing here, but slightly trickier to explain why R is doing it. So let’s
start with the “what”. What R is doing is evaluating a slightly different formula to the one I showed you above. Instead of
averaging the squared deviations, which requires you to divide by the number of data points N, R has chosen to divide by N−1. In
other words, the formula that R is using is this one

It’s easy enough to verify that this is what’s happening, as the following command illustrates:

sum( (X-mean(X))^2 ) / 4

## [1] 405.8

This is the same answer that R gave us originally when we calculated var(X)  originally. So that’s the what. The real question is
why R is dividing by N−1 and not by N. After all, the variance is supposed to be the mean squared deviation, right? So shouldn’t
we be dividing by N, the actual number of observations in the sample? Well, yes, we should. However, as we’ll discuss in Chapter
10, there’s a subtle distinction between “describing a sample” and “making guesses about the population from which the sample
came”. Up to this point, it’s been a distinction without a difference. Regardless of whether you’re describing a sample or drawing
inferences about the population, the mean is calculated exactly the same way. Not so for the variance, or the standard deviation, or
for many other measures besides. What I outlined to you initially (i.e., take the actual average, and thus divide by N) assumes that
you literally intend to calculate the variance of the sample. Most of the time, however, you’re not terribly interested in the sample
in and of itself. Rather, the sample exists to tell you something about the world. If so, you’re actually starting to move away from
calculating a “sample statistic”, and towards the idea of estimating a “population parameter”. However, I’m getting ahead of
myself. For now, let’s just take it on faith that R knows what it’s doing, and we’ll revisit the question later on when we talk about
estimation in Chapter 10.

Okay, one last thing. This section so far has read a bit like a mystery novel. I’ve shown you how to calculate the variance, described
the weird “N−1” thing that R does and hinted at the reason why it’s there, but I haven’t mentioned the single most important
thing… how do you interpret the variance? Descriptive statistics are supposed to describe things, after all, and right now the
variance is really just a gibberish number. Unfortunately, the reason why I haven’t given you the human-friendly interpretation of
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the variance is that there really isn’t one. This is the most serious problem with the variance. Although it has some elegant
mathematical properties that suggest that it really is a fundamental quantity for expressing variation, it’s completely useless if you
want to communicate with an actual human… variances are completely uninterpretable in terms of the original variable! All the
numbers have been squared, and they don’t mean anything anymore. This is a huge issue. For instance, according to the table I
presented earlier, the margin in game 1 was “376.36 points-squared higher than the average margin”. This is exactly as stupid as it
sounds; and so when we calculate a variance of 324.64, we’re in the same situation. I’ve watched a lot of footy games, and never
has anyone referred to “points squared”. It’s not a real unit of measurement, and since the variance is expressed in terms of this
gibberish unit, it is totally meaningless to a human.

6.2.5 Standard deviation
Okay, suppose that you like the idea of using the variance because of those nice mathematical properties that I haven’t talked about,
but – since you’re a human and not a robot – you’d like to have a measure that is expressed in the same units as the data itself (i.e.,
points, not points-squared). What should you do? The solution to the problem is obvious: take the square root of the variance,
known as the standard deviation, also called the “root mean squared deviation”, or RMSD. This solves out problem fairly neatly:
while nobody has a clue what “a variance of 324.68 points-squared” really means, it’s much easier to understand “a standard
deviation of 18.01 points”, since it’s expressed in the original units. It is traditional to refer to the standard deviation of a sample of
data as s, though “sd” and “std dev.” are also used at times. Because the standard deviation is equal to the square root of the
variance, you probably won’t be surprised to see that the formula is:

and the R function that we use to calculate it is sd() . However, as you might have guessed from our discussion of the variance,
what R actually calculates is slightly different to the formula given above. Just like the we saw with the variance, what R calculates
is a version that divides by N−1 rather than N. For reasons that will make sense when we return to this topic in
Chapter@refch:estimation I’ll refer to this new quantity as  (read as: “sigma hat”), and the formula for this is

With that in mind, calculating standard deviations in R is simple:

sd( afl.margins ) 

## [1] 26.07364

Interpreting standard deviations is slightly more complex. Because the standard deviation is derived from the variance, and the
variance is a quantity that has little to no meaning that makes sense to us humans, the standard deviation doesn’t have a simple
interpretation. As a consequence, most of us just rely on a simple rule of thumb: in general, you should expect 68% of the data to
fall within 1 standard deviation of the mean, 95% of the data to fall within 2 standard deviation of the mean, and 99.7% of the data
to fall within 3 standard deviations of the mean. This rule tends to work pretty well most of the time, but it’s not exact: it’s actually
calculated based on an assumption that the histogram is symmetric and “bell shaped.”  As you can tell from looking at the AFL
winning margins histogram in Figure 5.1, this isn’t exactly true of our data! Even so, the rule is approximately correct. As it turns
out, 65.3% of the AFL margins data fall within one standard deviation of the mean. This is shown visually in Figure 5.3.
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Figure 5.3: An illustration of the standard deviation, applied to the AFL winning margins data. The shaded bars in the histogram
show how much of the data fall within one standard deviation of the mean. In this case, 65.3% of the data set lies within this range,
which is pretty consistent with the “approximately 68% rule” discussed in the main text.

6.2.6 Median absolute deviation
The last measure of variability that I want to talk about is the median absolute deviation (MAD). The basic idea behind MAD is
very simple, and is pretty much identical to the idea behind the mean absolute deviation (Section 5.2.3). The difference is that you
use the median everywhere. If we were to frame this idea as a pair of R commands, they would look like this:

# mean absolute deviation from the mean: 
mean( abs(afl.margins - mean(afl.margins)) )

## [1] 21.10124  

# *median* absolute deviation from the *median*: 
median( abs(afl.margins - median(afl.margins)) )

## [1] 19.5

This has a straightforward interpretation: every observation in the data set lies some distance away from the typical value (the
median). So the MAD is an attempt to describe a typical deviation from a typical value in the data set. It wouldn’t be unreasonable
to interpret the MAD value of 19.5 for our AFL data by saying something like this:

The median winning margin in 2010 was 30.5, indicating that a typical game involved a winning margin of about 30 points.
However, there was a fair amount of variation from game to game: the MAD value was 19.5, indicating that a typical winning
margin would differ from this median value by about 19-20 points.

As you’d expect, R has a built in function for calculating MAD, and you will be shocked no doubt to hear that it’s called mad() .
However, it’s a little bit more complicated than the functions that we’ve been using previously. If you want to use it to calculate
MAD in the exact same way that I have described it above, the command that you need to use specifies two arguments: the data set
itself x , and a constant  that I’ll explain in a moment. For our purposes, the constant is 1, so our command becomes

mad( x = afl.margins, constant = 1 )

## [1] 19.5

Apart from the weirdness of having to type that constant = 1  part, this is pretty straightforward.
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Okay, so what exactly is this constant = 1  argument? I won’t go into all the details here, but here’s the gist. Although the
“raw” MAD value that I’ve described above is completely interpretable on its own terms, that’s not actually how it’s used in a lot of
real world contexts. Instead, what happens a lot is that the researcher actually wants to calculate the standard deviation. However,
in the same way that the mean is very sensitive to extreme values, the standard deviation is vulnerable to the exact same issue. So,
in much the same way that people sometimes use the median as a “robust” way of calculating “something that is like the mean”, it’s
not uncommon to use MAD as a method for calculating “something that is like the standard deviation”. Unfortunately, the raw
MAD value doesn’t do this. Our raw MAD value is 19.5, and our standard deviation was 26.07. However, what some clever person
has shown is that, under certain assumptions , you can multiply the raw MAD value by 1.4826 and obtain a number that is directly
comparable to the standard deviation. As a consequence, the default value of constant  is 1.4826, and so when you use the 
mad()  command without manually setting a value, here’s what you get:

mad( afl.margins )  

## [1] 28.9107

I should point out, though, that if you want to use this “corrected” MAD value as a robust version of the standard deviation, you
really are relying on the assumption that the data are (or at least, are “supposed to be” in some sense) symmetric and basically
shaped like a bell curve. That’s really not true for our afl.margins  data, so in this case I wouldn’t try to use the MAD value
this way.

6.2.7 Which measure to use?

We’ve discussed quite a few measures of spread (range, IQR, MAD, variance and standard deviation), and hinted at their strengths
and weaknesses. Here’s a quick summary:

Range. Gives you the full spread of the data. It’s very vulnerable to outliers, and as a consequence it isn’t often used unless you
have good reasons to care about the extremes in the data.
Interquartile range. Tells you where the “middle half” of the data sits. It’s pretty robust, and complements the median nicely.
This is used a lot.
Mean absolute deviation. Tells you how far “on average” the observations are from the mean. It’s very interpretable, but has a
few minor issues (not discussed here) that make it less attractive to statisticians than the standard deviation. Used sometimes,
but not often.
Variance. Tells you the average squared deviation from the mean. It’s mathematically elegant, and is probably the “right” way
to describe variation around the mean, but it’s completely uninterpretable because it doesn’t use the same units as the data.
Almost never used except as a mathematical tool; but it’s buried “under the hood” of a very large number of statistical tools.
Standard deviation. This is the square root of the variance. It’s fairly elegant mathematically, and it’s expressed in the same
units as the data so it can be interpreted pretty well. In situations where the mean is the measure of central tendency, this is the
default. This is by far the most popular measure of variation.
Median absolute deviation. The typical (i.e., median) deviation from the median value. In the raw form it’s simple and
interpretable; in the corrected form it’s a robust way to estimate the standard deviation, for some kinds of data sets. Not used
very often, but it does get reported sometimes.

In short, the IQR and the standard deviation are easily the two most common measures used to report the variability of the data; but
there are situations in which the others are used. I’ve described all of them in this book because there’s a fair chance you’ll run into
most of these somewhere.

This page titled 6.2: Measures of Variability is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

5.2: Measures of Variability by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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6.3: Skew and Kurtosis
There are two more descriptive statistics that you will sometimes see reported in the psychological literature, known as skew and
kurtosis. In practice, neither one is used anywhere near as frequently as the measures of central tendency and variability that we’ve
been talking about. Skew is pretty important, so you do see it mentioned a fair bit; but I’ve actually never seen kurtosis reported in
a scientific article to date.

## [1] -0.9174977

## [1] 0.009023979

Figure 5.4: An illustration of skewness. On the left we have a negatively skewed data set (skewness =−.93), in the middle we have
a data set with no skew (technically, skewness =−.006), and on the right we have a positively skewed data set (skewness =.93).

## [1] 0.9250898

Since it’s the more interesting of the two, let’s start by talking about the skewness. Skewness is basically a measure of asymmetry,
and the easiest way to explain it is by drawing some pictures. As Figure 5.4 illustrates, if the data tend to have a lot of extreme
small values (i.e., the lower tail is “longer” than the upper tail) and not so many extremely large values (left panel), then we say that
the data are negatively skewed. On the other hand, if there are more extremely large values than extremely small ones (right panel)
we say that the data are positively skewed. That’s the qualitative idea behind skewness. The actual formula for the skewness of a
data set is as follows

where N is the number of observations,  is the sample mean, and  is the standard deviation (the “divide by N−1” version, that
is). Perhaps more helpfully, it might be useful to point out that the psych  package contains a skew()  function that you can
use to calculate skewness. So if we wanted to use this function to calculate the skewness of the afl.margins  data, we’d first
need to load the package

library( psych )

which now makes it possible to use the following command:

skew( x = afl.margins )  
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## [1] 0.7671555

Not surprisingly, it turns out that the AFL winning margins data is fairly skewed.

The final measure that is sometimes referred to is the kurtosis of a data set. Put simply, kurtosis is a measure of the “tailedness”, or
outlier character, of the data. Historically, it was thought that this statistic measures “pointiness” or “flatness” of a distribution, but
this has been shown to be an error of interpretation. See Figure 5.5.

## [1] -0.9631805  

## [1] 0.02226287

Figure 5.5: An illustration of kurtosis. On the left, we have a “platykurtic” data set (kurtosis = −.25), meaning that the data set has
lesser outliers (extreme values) as compared to the standard normal curve (solid line). In the middle we have a “mesokurtic” data
set (kurtosis is almost exactly 0), which means that the outlier character of the data set is similar to that of the normal distribution.
Finally, on the right, we have a “leptokurtic” data set (kurtosis =6.44) indicating that the data set has more extreme outlier character
than the normal distribution. (Note that the outliers are difficult to see in the distribution graphs because the heights at the outliers
are so close to zero; a quantile-quantile plot is better to more easily visualize both outliers and kurtosis.)

## [1] 1.994329  

By mathematical calculations, the “normal curve” (black lines) has zero kurtosis, so the outlier character of a data set is assessed
relative to this curve. In this Figure, the data on the left are less outlier-prone, so the kurtosis is negative and we call the data
platykurtic. The data on the right are more outlier-prone, so the kurtosis is positive and we say that the data is leptokurtic. But the
data in the middle are similar in their outlier character, so we say that it is mesokurtic and has kurtosis zero. This is summarised in
the table below:

informal term technical name kurtosis value

just pointy enough mesokurtic zero

too pointy leptokurtic positive

too flat platykurtic negative
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The equation for kurtosis is pretty similar in spirit to the formulas we’ve seen already for the variance and the skewness (Equation 
); except that where the variance involved squared deviations and the skewness involved cubed deviations, the kurtosis

involves raising the deviations to the fourth power:

The psych  package has a function called kurtosi()  that you can use to calculate the kurtosis of your data. For instance, if
we were to do this for the AFL margins,

kurtosi( x = afl.margins )

## [1] 0.02962633

we discover that the AFL winning margins data are just pointy enough.

6.3.1 Contributors
Danielle Navarro (Associate Professor (Psychology) at University of New South Wales)
Peter H. Westfall (Paul Whitfield Horn Professor and James and Marguerite Niver Professor, Texas Tech University)

This page titled 6.3: Skew and Kurtosis is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro
via source content that was edited to the style and standards of the LibreTexts platform.

5.3: Skew and Kurtosis by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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6.4: Getting an Overall Summary of a Variable
Up to this point in the chapter I’ve explained several different summary statistics that are commonly used when analysing data,
along with specific functions that you can use in R to calculate each one. However, it’s kind of annoying to have to separately
calculate means, medians, standard deviations, skews etc. Wouldn’t it be nice if R had some helpful functions that would do all
these tedious calculations at once? Something like summary()  or describe() , perhaps? Why yes, yes it would. So much
so that both of these functions exist. The summary()  function is in the base  package, so it comes with every installation of
R. The describe()  function is part of the psych  package, which we loaded earlier in the chapter.

6.4.1 “Summarising” a variable
The summary()  function is an easy thing to use, but a tricky thing to understand in full, since it’s a generic function (see
Section 4.11. The basic idea behind the summary()  function is that it prints out some useful information about whatever object
(i.e., variable, as far as we’re concerned) you specify as the object  argument. As a consequence, the behaviour of the 
summary()  function differs quite dramatically depending on the class of the object that you give it. Let’s start by giving it a

numeric object:

summary( object = afl.margins )  

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##    0.00   12.75   30.50   35.30   50.50  116.00  

For numeric variables, we get a whole bunch of useful descriptive statistics. It gives us the minimum and maximum values (i.e., the
range), the first and third quartiles (25th and 75th percentiles; i.e., the IQR), the mean and the median. In other words, it gives us a
pretty good collection of descriptive statistics related to the central tendency and the spread of the data.

Okay, what about if we feed it a logical vector instead? Let’s say I want to know something about how many “blowouts” there were
in the 2010 AFL season. I operationalise the concept of a blowout (see Chapter 2) as a game in which the winning margin exceeds
50 points. Let’s create a logical variable blowouts  in which the i-th element is TRUE  if that game was a blowout according
to my definition,

blowouts <-  afl.margins > 50 
blowouts

##   [1]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE 
##  [12]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE 
##  [23] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE 
##  [34]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##  [45] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE 
##  [56]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE 
##  [67]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE 
##  [78] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##  [89] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE 
## [100] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE 
## [111] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE 
## [122]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE 
## [133] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE 
## [144]  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE 
## [155]  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE 
## [166] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

So that’s what the blowouts  variable looks like. Now let’s ask R for a summary()
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summary( object = blowouts )

##    Mode   FALSE    TRUE  
## logical     132      44

In this context, the summary()  function gives us a count of the number of TRUE  values, the number of FALSE  values,
and the number of missing values (i.e., the NA s). Pretty reasonable behaviour.

Next, let’s try to give it a factor. If you recall, I’ve defined the afl.finalists  vector as a factor, so let’s use that:

summary( object = afl.finalists )  

##         Adelaide         Brisbane          Carlton      Collingwood  
##               26               25               26               28  
##         Essendon          Fitzroy        Fremantle          Geelong  
##               32                0                6               39  
##         Hawthorn        Melbourne  North Melbourne    Port Adelaide  
##               27               28               28               17  
##         Richmond         St Kilda           Sydney       West Coast  
##                6               24               26               38  
## Western Bulldogs  
##               24

For factors, we get a frequency table, just like we got when we used the table()  function. Interestingly, however, if we
convert this to a character vector using the as.character()  function (see Section 7.10, we don’t get the same results:

f2 <- as.character( afl.finalists ) 
summary( object = f2 )

##    Length     Class      Mode  
##       400 character character

This is one of those situations I was referring to in Section 4.7, in which it is helpful to declare your nominal scale variable as a
factor rather than a character vector. Because I’ve defined afl.finalists  as a factor, R knows that it should treat it as a
nominal scale variable, and so it gives you a much more detailed (and helpful) summary than it would have if I’d left it as a
character vector.

6.4.2 “Summarising” a data frame
Okay what about data frames? When you pass a data frame to the summary()  function, it produces a slightly condensed
summary of each variable inside the data frame. To give you a sense of how this can be useful, let’s try this for a new data set, one
that you’ve never seen before. The data is stored in the clinicaltrial.Rdata  file, and we’ll use it a lot in Chapter 14 (you
can find a complete description of the data at the start of that chapter). Let’s load it, and see what we’ve got:

load( "./data/clinicaltrial.Rdata" ) 
who(TRUE)
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##    -- Name --    -- Class --   -- Size -- 
##    clin.trial    data.frame    18 x 3     
##     $drug        factor        18         
##     $therapy     factor        18         
##     $mood.gain   numeric       18

There’s a single data frame called clin.trial  which contains three variables, drug , therapy  and mood.gain .
Presumably then, this data is from a clinical trial of some kind, in which people were administered different drugs; and the
researchers looked to see what the drugs did to their mood. Let’s see if the summary()  function sheds a little more light on this
situation:

summary( clin.trial )

##        drug         therapy    mood.gain      
##  placebo :6   no.therapy:9   Min.   :0.1000   
##  anxifree:6   CBT       :9   1st Qu.:0.4250   
##  joyzepam:6                  Median :0.8500   
##                              Mean   :0.8833   
##                              3rd Qu.:1.3000   
##                              Max.   :1.8000

Evidently there were three drugs: a placebo, something called “anxifree” and something called “joyzepam”; and there were 6
people administered each drug. There were 9 people treated using cognitive behavioural therapy (CBT) and 9 people who received
no psychological treatment. And we can see from looking at the summary of the mood.gain  variable that most people did
show a mood gain (mean =.88), though without knowing what the scale is here it’s hard to say much more than that. Still, that’s not
too bad. Overall, I feel that I learned something from that.

6.4.3 “Describing” a data frame

The describe()  function (in the psych  package) is a little different, and it’s really only intended to be useful when your
data are interval or ratio scale. Unlike the summary()  function, it calculates the same descriptive statistics for any type of
variable you give it. By default, these are:

var . This is just an index: 1 for the first variable, 2 for the second variable, and so on.
n . This is the sample size: more precisely, it’s the number of non-missing values.
mean . This is the sample mean (Section 5.1.1).
sd . This is the (bias corrected) standard deviation (Section 5.2.5).
median . The median (Section 5.1.3).
trimmed . This is trimmed mean. By default it’s the 10% trimmed mean (Section 5.1.6).
mad . The median absolute deviation (Section 5.2.6).
min . The minimum value.
max . The maximum value.
range . The range spanned by the data (Section 5.2.1).
skew . The skewness (Section 5.3).
kurtosis . The kurtosis (Section 5.3).
se . The standard error of the mean (Chapter 10).

Notice that these descriptive statistics generally only make sense for data that are interval or ratio scale (usually encoded as
numeric vectors). For nominal or ordinal variables (usually encoded as factors), most of these descriptive statistics are not all that
useful. What the describe()  function does is convert factors and logical variables to numeric vectors in order to do the
calculations. These variables are marked with *  and most of the time, the descriptive statistics for those variables won’t make
much sense. If you try to feed it a data frame that includes a character vector as a variable, it produces an error.
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With those caveats in mind, let’s use the describe()  function to have a look at the clin.trial  data frame. Here’s what
we get:

describe( x = clin.trial )  

##           vars  n mean   sd median trimmed  mad min max range skew 
## drug*        1 18 2.00 0.84   2.00    2.00 1.48 1.0 3.0   2.0 0.00 
## therapy*     2 18 1.50 0.51   1.50    1.50 0.74 1.0 2.0   1.0 0.00 
## mood.gain    3 18 0.88 0.53   0.85    0.88 0.67 0.1 1.8   1.7 0.13 
##           kurtosis   se 
## drug*        -1.66 0.20 
## therapy*     -2.11 0.12 
## mood.gain    -1.44 0.13

As you can see, the output for the asterisked variables is pretty meaningless, and should be ignored. However, for the 
mood.gain  variable, there’s a lot of useful information.

This page titled 6.4: Getting an Overall Summary of a Variable is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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6.5: Descriptive Statistics Separately for each Group
It is very commonly the case that you find yourself needing to look at descriptive statistics, broken down by some grouping
variable. This is pretty easy to do in R, and there are three functions in particular that are worth knowing about: by() , 
describeBy()  and aggregate() . Let’s start with the describeBy()  function, which is part of the psych

package. The describeBy()  function is very similar to the describe()  function, except that it has an additional
argument called group  which specifies a grouping variable. For instance, let’s say, I want to look at the descriptive statistics for
the clin.trial  data, broken down separately by therapy  type. The command I would use here is:

describeBy( x=clin.trial, group=clin.trial$therapy )

## 
##  Descriptive statistics by group  
## group: no.therapy 
##           vars n mean   sd median trimmed  mad min max range skew kurtosis 
## drug*        1 9 2.00 0.87    2.0    2.00 1.48 1.0 3.0   2.0 0.00    -1.81 
## therapy*     2 9 1.00 0.00    1.0    1.00 0.00 1.0 1.0   0.0  NaN      NaN 
## mood.gain    3 9 0.72 0.59    0.5    0.72 0.44 0.1 1.7   1.6 0.51    -1.59 
##             se 
## drug*     0.29 
## therapy*  0.00 
## mood.gain 0.20 
## --------------------------------------------------------  
## group: CBT 
##           vars n mean   sd median trimmed  mad min max range  skew 
## drug*        1 9 2.00 0.87    2.0    2.00 1.48 1.0 3.0   2.0  0.00 
## therapy*     2 9 2.00 0.00    2.0    2.00 0.00 2.0 2.0   0.0   NaN 
## mood.gain    3 9 1.04 0.45    1.1    1.04 0.44 0.3 1.8   1.5 -0.03 
##           kurtosis   se 
## drug*        -1.81 0.29 
## therapy*       NaN 0.00 
## mood.gain    -1.12 0.15

As you can see, the output is essentially identical to the output that the describe()  function produce, except that the output
now gives you means, standard deviations etc separately for the CBT  group and the no.therapy  group. Notice that, as
before, the output displays asterisks for factor variables, in order to draw your attention to the fact that the descriptive statistics that
it has calculated won’t be very meaningful for those variables. Nevertheless, this command has given us some really useful
descriptive statistics mood.gain  variable, broken down as a function of therapy .

A somewhat more general solution is offered by the by()  function. There are three arguments that you need to specify when
using this function: the data  argument specifies the data set, the INDICES  argument specifies the grouping variable, and the 
FUN  argument specifies the name of a function that you want to apply separately to each group. To give a sense of how powerful

this is, you can reproduce the describeBy()  function by using a command like this:

by( data=clin.trial, INDICES=clin.trial$therapy, FUN=describe )

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/35665?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/06%3A_Describing_Data_With_Numbers_Using_R/6.05%3A_Descriptive_Statistics_Separately_for_each_Group


6.5.2 https://stats.libretexts.org/@go/page/35665

## clin.trial$therapy: no.therapy 
##           vars n mean   sd median trimmed  mad min max range skew kurtosis 
## drug*        1 9 2.00 0.87    2.0    2.00 1.48 1.0 3.0   2.0 0.00    -1.81 
## therapy*     2 9 1.00 0.00    1.0    1.00 0.00 1.0 1.0   0.0  NaN      NaN 
## mood.gain    3 9 0.72 0.59    0.5    0.72 0.44 0.1 1.7   1.6 0.51    -1.59 
##             se 
## drug*     0.29 
## therapy*  0.00 
## mood.gain 0.20 
## --------------------------------------------------------  
## clin.trial$therapy: CBT 
##           vars n mean   sd median trimmed  mad min max range  skew 
## drug*        1 9 2.00 0.87    2.0    2.00 1.48 1.0 3.0   2.0  0.00 
## therapy*     2 9 2.00 0.00    2.0    2.00 0.00 2.0 2.0   0.0   NaN 
## mood.gain    3 9 1.04 0.45    1.1    1.04 0.44 0.3 1.8   1.5 -0.03 
##           kurtosis   se 
## drug*        -1.81 0.29 
## therapy*       NaN 0.00 
## mood.gain    -1.12 0.15

This will produce the exact same output as the command shown earlier. However, there’s nothing special about the
describe()  function. You could just as easily use the by()  function in conjunction with the summary()  function. For

example:

by( data=clin.trial, INDICES=clin.trial$therapy, FUN=summary )  

## clin.trial$therapy: no.therapy 
##        drug         therapy    mood.gain      
##  placebo :3   no.therapy:9   Min.   :0.1000   
##  anxifree:3   CBT       :0   1st Qu.:0.3000   
##  joyzepam:3                  Median :0.5000   
##                              Mean   :0.7222   
##                              3rd Qu.:1.3000   
##                              Max.   :1.7000   
## --------------------------------------------------------  
## clin.trial$therapy: CBT 
##        drug         therapy    mood.gain     
##  placebo :3   no.therapy:0   Min.   :0.300   
##  anxifree:3   CBT       :9   1st Qu.:0.800   
##  joyzepam:3                  Median :1.100   
##                              Mean   :1.044   
##                              3rd Qu.:1.300   
##                              Max.   :1.800

Again, this output is pretty easy to interpret. It’s the output of the summary()  function, applied separately to CBT  group and
the no.therapy  group. For the two factors ( drug  and therapy ) it prints out a frequency table, whereas for the
numeric variable ( mood.gain ) it prints out the range, interquartile range, mean and median.

What if you have multiple grouping variables? Suppose, for example, you would like to look at the average mood gain separately
for all possible combinations of drug and therapy. It is actually possible to do this using the by()  and describeBy()
functions, but I usually find it more convenient to use the aggregate()  function in this situation. There are again three
arguments that you need to specify. The formula  argument is used to indicate which variable you want to analyse, and which
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variables are used to specify the groups. For instance, if you want to look at mood.gain  separately for each possible
combination of drug  and therapy , the formula you want is mood.gain ~ drug + therapy . The data
argument is used to specify the data frame containing all the data, and the FUN  argument is used to indicate what function you
want to calculate for each group (e.g., the mean ). So, to obtain group means, use this command:

##       drug    therapy mood.gain 
## 1  placebo no.therapy  0.300000 
## 2 anxifree no.therapy  0.400000 
## 3 joyzepam no.therapy  1.466667 
## 4  placebo        CBT  0.600000 
## 5 anxifree        CBT  1.033333 
## 6 joyzepam        CBT  1.500000

or, alternatively, if you want to calculate the standard deviations for each group, you would use the following command (argument
names omitted this time):

aggregate( mood.gain ~ drug + therapy, clin.trial, sd )  

##       drug    therapy mood.gain 
## 1  placebo no.therapy 0.2000000 
## 2 anxifree no.therapy 0.2000000 
## 3 joyzepam no.therapy 0.2081666 
## 4  placebo        CBT 0.3000000 
## 5 anxifree        CBT 0.2081666 
## 6 joyzepam        CBT 0.2645751

This page titled 6.5: Descriptive Statistics Separately for each Group is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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aggregate( formula = mood.gain ~ drug + therapy,  # mood.gain by drug/therapy combina
            data = clin.trial,                     # data is in the clin.trial data f
            FUN = mean                             # print out group means 
 )
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6.6: Standard Scores
Suppose my friend is putting together a new questionnaire intended to measure “grumpiness”. The survey has 50 questions, which
you can answer in a grumpy way or not. Across a big sample (hypothetically, let’s imagine a million people or so!) the data are
fairly normally distributed, with the mean grumpiness score being 17 out of 50 questions answered in a grumpy way, and the
standard deviation is 5. In contrast, when I take the questionnaire, I answer 35 out of 50 questions in a grumpy way. So, how
grumpy am I? One way to think about would be to say that I have grumpiness of 35/50, so you might say that I’m 70% grumpy.
But that’s a bit weird, when you think about it. If my friend had phrased her questions a bit differently, people might have answered
them in a different way, so the overall distribution of answers could easily move up or down depending on the precise way in which
the questions were asked. So, I’m only 70% grumpy with respect to this set of survey questions. Even if it’s a very good
questionnaire, this isn’t very a informative statement.

A simpler way around this is to describe my grumpiness by comparing me to other people. Shockingly, out of my friend’s sample
of 1,000,000 people, only 159 people were as grumpy as me (that’s not at all unrealistic, frankly), suggesting that I’m in the top
0.016% of people for grumpiness. This makes much more sense than trying to interpret the raw data. This idea – that we should
describe my grumpiness in terms of the overall distribution of the grumpiness of humans – is the qualitative idea that
standardisation attempts to get at. One way to do this is to do exactly what I just did, and describe everything in terms of
percentiles. However, the problem with doing this is that “it’s lonely at the top”. Suppose that my friend had only collected a
sample of 1000 people (still a pretty big sample for the purposes of testing a new questionnaire, I’d like to add), and this time
gotten a mean of 16 out of 50 with a standard deviation of 5, let’s say. The problem is that almost certainly, not a single person in
that sample would be as grumpy as me.

However, all is not lost. A different approach is to convert my grumpiness score into a standard score, also referred to as a z-score.
The standard score is defined as the number of standard deviations above the mean that my grumpiness score lies. To phrase it in
“pseudo-maths” the standard score is calculated like this:

standard score 

In actual maths, the equation for the z-score is

So, going back to the grumpiness data, we can now transform Dan’s raw grumpiness into a standardised grumpiness score.  If the
mean is 17 and the standard deviation is 5 then my standardised grumpiness score would be

To interpret this value, recall the rough heuristic that I provided in Section 5.2.5, in which I noted that 99.7% of values are expected
to lie within 3 standard deviations of the mean. So the fact that my grumpiness corresponds to a z score of 3.6 indicates that I’m
very grumpy indeed. Later on, in Section 9.5, I’ll introduce a function called pnorm()  that allows us to be a bit more precise
than this. Specifically, it allows us to calculate a theoretical percentile rank for my grumpiness, as follows:

pnorm( 3.6 )

## [1] 0.9998409

At this stage, this command doesn’t make too much sense, but don’t worry too much about it. It’s not important for now. But the
output is fairly straightforward: it suggests that I’m grumpier than 99.98% of people. Sounds about right.

In addition to allowing you to interpret a raw score in relation to a larger population (and thereby allowing you to make sense of
variables that lie on arbitrary scales), standard scores serve a second useful function. Standard scores can be compared to one
another in situations where the raw scores can’t. Suppose, for instance, my friend also had another questionnaire that measured
extraversion using a 24 items questionnaire. The overall mean for this measure turns out to be 13 with standard deviation 4; and I
scored a 2. As you can imagine, it doesn’t make a lot of sense to try to compare my raw score of 2 on the extraversion
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questionnaire to my raw score of 35 on the grumpiness questionnaire. The raw scores for the two variables are “about”
fundamentally different things, so this would be like comparing apples to oranges.

What about the standard scores? Well, this is a little different. If we calculate the standard scores, we get z=(35−17)/5=3.6 for
grumpiness and z=(2−13)/4=−2.75 for extraversion. These two numbers can be compared to each other.  I’m much less
extraverted than most people (z=−2.75) and much grumpier than most people (z=3.6): but the extent of my unusualness is much
more extreme for grumpiness (since 3.6 is a bigger number than 2.75). Because each standardised score is a statement about where
an observation falls relative to its own population, it is possible to compare standardised scores across completely different
variables.

This page titled 6.6: Standard Scores is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.
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6.7: Epilogue- Good Descriptive Statistics Are Descriptive!

The death of one man is a tragedy. The death of millions is a statistic.

– Josef Stalin, Potsdam 1945

950,000 – 1,200,000

– Estimate of Soviet repression deaths, 1937-1938 (Ellman 2002)

Stalin’s infamous quote about the statistical character death of millions is worth giving some thought. The clear intent of his
statement is that the death of an individual touches us personally and its force cannot be denied, but that the deaths of a multitude
are incomprehensible, and as a consequence mere statistics, more easily ignored. I’d argue that Stalin was half right. A statistic is
an abstraction, a description of events beyond our personal experience, and so hard to visualise. Few if any of us can imagine what
the deaths of millions is “really” like, but we can imagine one death, and this gives the lone death its feeling of immediate tragedy,
a feeling that is missing from Ellman’s cold statistical description.

Yet it is not so simple: without numbers, without counts, without a description of what happened, we have no chance of
understanding what really happened, no opportunity event to try to summon the missing feeling. And in truth, as I write this, sitting
in comfort on a Saturday morning, half a world and a whole lifetime away from the Gulags, when I put the Ellman estimate next to
the Stalin quote a dull dread settles in my stomach and a chill settles over me. The Stalinist repression is something truly beyond
my experience, but with a combination of statistical data and those recorded personal histories that have come down to us, it is not
entirely beyond my comprehension. Because what Ellman’s numbers tell us is this: over a two year period, Stalinist repression
wiped out the equivalent of every man, woman and child currently alive in the city where I live. Each one of those deaths had it’s
own story, was it’s own tragedy, and only some of those are known to us now. Even so, with a few carefully chosen statistics, the
scale of the atrocity starts to come into focus.

Thus it is no small thing to say that the first task of the statistician and the scientist is to summarise the data, to find some collection
of numbers that can convey to an audience a sense of what has happened. This is the job of descriptive statistics, but it’s not a job
that can be told solely using the numbers. You are a data analyst, not a statistical software package. Part of your job is to take these
statistics and turn them into a description. When you analyse data, it is not sufficient to list off a collection of numbers. Always
remember that what you’re really trying to do is communicate with a human audience. The numbers are important, but they need to
be put together into a meaningful story that your audience can interpret. That means you need to think about framing. You need to
think about context. And you need to think about the individual events that your statistics are summarising.

References

Ellman, Michael. 2002. “Soviet Repression Statistics: Some Comments.” Europe-Asia Studies 54 (7). Taylor & Francis: 1151–72.

64. Note for non-Australians: the AFL is an Australian rules football competition. You don’t need to know anything about
Australian rules in order to follow this section.

65. The choice to use Σ to denote summation isn’t arbitrary: it’s the Greek upper case letter sigma, which is the analogue of the
letter S in that alphabet. Similarly, there’s an equivalent symbol used to denote the multiplication of lots of numbers: because
multiplications are also called “products”, we use the Π symbol for this; the Greek upper case pi, which is the analogue of the
letter P.

66. Note that, just as we saw with the combine function c()  and the remove function rm() , the sum()  function has
unnamed arguments. I’ll talk about unnamed arguments later in Section 8.4.1, but for now let’s just ignore this detail.

67. www.abc.net.au/news/stories/2010/09/24/3021480.htm
68. Or at least, the basic statistical theory – these days there is a whole subfield of statistics called robust statistics that tries to

grapple with the messiness of real data and develop theory that can cope with it.
69. As we saw earlier, it does have a function called mode() , but it does something completely different.
70. This is called a “0-1 loss function”, meaning that you either win (1) or you lose (0), with no middle ground.
71. Well, I will very briefly mention the one that I think is coolest, for a very particular definition of “cool”, that is. Variances are

additive. Here’s what that means: suppose I have two variables X and Y, whose variances are $
72. With the possible exception of the third question.
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73. Strictly, the assumption is that the data are normally distributed, which is an important concept that we’ll discuss more in
Chapter 9, and will turn up over and over again later in the book.

74. The assumption again being that the data are normally-distributed!
75. The “−3” part is something that statisticians tack on to ensure that the normal curve has kurtosis zero. It looks a bit stupid, just

sticking a “-3” at the end of the formula, but there are good mathematical reasons for doing this.
76. I haven’t discussed how to compute z-scores, explicitly, but you can probably guess. For a variable X , the simplest way is to

use a command like (X - mean(X)) / sd(X) . There’s also a fancier function called scale()  that you can use, but
it relies on somewhat more complicated R concepts that I haven’t explained yet.

77. Technically, because I’m calculating means and standard deviations from a sample of data, but want to talk about my
grumpiness relative to a population, what I’m actually doing is estimating a z score. However, since we haven’t talked about
estimation yet (see Chapter 10) I think it’s best to ignore this subtlety, especially as it makes very little difference to our
calculations.

78. Though some caution is usually warranted. It’s not always the case that one standard deviation on variable A corresponds to the
same “kind” of thing as one standard deviation on variable B. Use common sense when trying to determine whether or not the z
scores of two variables can be meaningfully compared.

79. Actually, even that table is more than I’d bother with. In practice most people pick one measure of central tendency, and one
measure of variability only.

80. Just like we saw with the variance and the standard deviation, in practice we divide by N−1 rather than N.
81. This is an oversimplification, but it’ll do for our purposes.
82. If you are reading this after having already completed Chapter 11 you might be wondering about hypothesis tests for

correlations. R has a function called cor.test()  that runs a hypothesis test for a single correlation, and the psych
package contains a version called corr.test()  that can run tests for every correlation in a correlation matrix; hypothesis
tests for correlations are discussed in more detail in Section 15.6.

83. An alternative usage of cor()  is to correlate one set of variables with another subset of variables. If X  and Y  are both
data frames with the same number of rows, then cor(x = X, y = Y)  will produce a correlation matrix that correlates all
variables in X  with all variables in Y .

84. It’s worth noting that, even though we have missing data for each of these variables, the output doesn’t contain any NA
values. This is because, while describe()  also has an na.rm  argument, the default value for this function is 
na.rm = TRUE .

85. The technical term here is “missing completely at random” (often written MCAR for short). Makes sense, I suppose, but it does
sound ungrammatical to me.
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CHAPTER OVERVIEW

7: Introduction to Probability

[God] has afforded us only the twilight … of Probability.

– John Locke
Up to this point in the book, we’ve discussed some of the key ideas in experimental design, and we’ve talked a little about how you
can summarise a data set. To a lot of people, this is all there is to statistics: it’s about calculating averages, collecting all the
numbers, drawing pictures, and putting them all in a report somewhere. Kind of like stamp collecting, but with numbers. However,
statistics covers much more than that. In fact, descriptive statistics is one of the smallest parts of statistics, and one of the least
powerful. The bigger and more useful part of statistics is that it provides that let you make inferences about data.

Once you start thinking about statistics in these terms – that statistics is there to help us draw inferences from data – you start
seeing examples of it everywhere. For instance, here’s a tiny extract from a newspaper article in the Sydney Morning Herald (30
Oct 2010):

“I have a tough job,” the Premier said in response to a poll which found her government is now the most unpopular Labor
administration in polling history, with a primary vote of just 23 per cent.

This kind of remark is entirely unremarkable in the papers or in everyday life, but let’s have a think about what it entails. A polling
company has conducted a survey, usually a pretty big one because they can afford it. I’m too lazy to track down the original survey,
so let’s just imagine that they called 1000 NSW voters at random, and 230 (23%) of those claimed that they intended to vote for the
ALP. For the 2010 Federal election, the Australian Electoral Commission reported 4,610,795 enrolled voters in NSW; so the
opinions of the remaining 4,609,795 voters (about 99.98% of voters) remain unknown to us. Even assuming that no-one lied to the
polling company the only thing we can say with 100% confidence is that the true ALP primary vote is somewhere between
230/4610795 (about 0.005%) and 4610025/4610795 (about 99.83%). So, on what basis is it legitimate for the polling company, the
newspaper, and the readership to conclude that the ALP primary vote is only about 23%?

The answer to the question is pretty obvious: if I call 1000 people at random, and 230 of them say they intend to vote for the ALP,
then it seems very unlikely that these are the only 230 people out of the entire voting public who actually intend to do so. In other
words, we assume that the data collected by the polling company is pretty representative of the population at large. But how
representative? Would we be surprised to discover that the true ALP primary vote is actually 24%? 29%? 37%? At this point
everyday intuition starts to break down a bit. No-one would be surprised by 24%, and everybody would be surprised by 37%, but
it’s a bit hard to say whether 29% is plausible. We need some more powerful tools than just looking at the numbers and guessing.

Inferential statistics provides the tools that we need to answer these sorts of questions, and since these kinds of questions lie at the
heart of the scientific enterprise, they take up the lions share of every introductory course on statistics and research methods.
However, the theory of statistical inference is built on top of probability theory. And it is to probability theory that we must now
turn. This discussion of probability theory is basically background: there’s not a lot of statistics per se in this chapter, and you don’t
need to understand this material in as much depth as the other chapters in this part of the book. Nevertheless, because probability
theory does underpin so much of statistics, it’s worth covering some of the basics.

7.1: How are Probability and Statistics Different?
7.2: What Does Probability Mean?
7.3: Basic Probability Theory
7.4: The Binomial Distribution
7.5: The Normal Distribution
7.6: Other Useful Distributions
7.7: Summary
7.8: Statistical Literacy
7.E: Probability (Exercises)
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7.1: How are Probability and Statistics Different?
Before we start talking about probability theory, it’s helpful to spend a moment thinking about the relationship between probability
and statistics. The two disciplines are closely related but they’re not identical. Probability theory is “the doctrine of chances”. It’s a
branch of mathematics that tells you how often different kinds of events will happen. For example, all of these questions are things
you can answer using probability theory:

What are the chances of a fair coin coming up heads 10 times in a row?
If I roll two six sided dice, how likely is it that I’ll roll two sixes?
How likely is it that five cards drawn from a perfectly shuffled deck will all be hearts?
What are the chances that I’ll win the lottery?

Notice that all of these questions have something in common. In each case the “truth of the world” is known, and my question
relates to the “what kind of events” will happen. In the first question I know that the coin is fair, so there’s a 50% chance that any
individual coin flip will come up heads. In the second question, I know that the chance of rolling a 6 on a single die is 1 in 6. In the
third question I know that the deck is shuffled properly. And in the fourth question, I know that the lottery follows specific rules.
You get the idea. The critical point is that probabilistic questions start with a known model of the world, and we use that model to
do some calculations. The underlying model can be quite simple. For instance, in the coin flipping example, we can write down the
model like this:

P(heads)=0.5

which you can read as “the probability of heads is 0.5”. As we’ll see later, in the same way that percentages are numbers that range
from 0% to 100%, probabilities are just numbers that range from 0 to 1. When using this probability model to answer the first
question, I don’t actually know exactly what’s going to happen. Maybe I’ll get 10 heads, like the question says. But maybe I’ll get
three heads. That’s the key thing: in probability theory, the model is known, but the data are not.

So that’s probability. What about statistics? Statistical questions work the other way around. In statistics, we do not know the truth
about the world. All we have is the data, and it is from the data that we want to learn the truth about the world. Statistical questions
tend to look more like these:

If my friend flips a coin 10 times and gets 10 heads, are they playing a trick on me?
If five cards off the top of the deck are all hearts, how likely is it that the deck was shuffled? - If the lottery commissioner’s
spouse wins the lottery, how likely is it that the lottery was rigged?

This time around, the only thing we have are data. What I know is that I saw my friend flip the coin 10 times and it came up heads
every time. And what I want to infer is whether or not I should conclude that what I just saw was actually a fair coin being flipped
10 times in a row, or whether I should suspect that my friend is playing a trick on me. The data I have look like this:

H H H H H H H H H H H

and what I’m trying to do is work out which “model of the world” I should put my trust in. If the coin is fair, then the model I
should adopt is one that says that the probability of heads is 0.5; that is, P(heads)=0.5. If the coin is not fair, then I should conclude
that the probability of heads is not 0.5, which we would write as P(heads)≠0.5. In other words, the statistical inference problem is
to figure out which of these probability models is right. Clearly, the statistical question isn’t the same as the probability question,
but they’re deeply connected to one another. Because of this, a good introduction to statistical theory will start with a discussion of
what probability is and how it works.
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7.2: What Does Probability Mean?
Let’s start with the first of these questions. What is “probability”? It might seem surprising to you, but while statisticians and
mathematicians (mostly) agree on what the rules of probability are, there’s much less of a consensus on what the word really
means. It seems weird because we’re all very comfortable using words like “chance”, “likely”, “possible” and “probable”, and it
doesn’t seem like it should be a very difficult question to answer. If you had to explain “probability” to a five year old, you could
do a pretty good job. But if you’ve ever had that experience in real life, you might walk away from the conversation feeling like
you didn’t quite get it right, and that (like many everyday concepts) it turns out that you don’t really know what it’s all about.

So I’ll have a go at it. Let’s suppose I want to bet on a soccer game between two teams of robots, Arduino Arsenal and C Milan.
After thinking about it, I decide that there is an 80% probability that Arduino Arsenal winning. What do I mean by that? Here are
three possibilities…

They’re robot teams, so I can make them play over and over again, and if I did that, Arduino Arsenal would win 8 out of every
10 games on average.
For any given game, I would only agree that betting on this game is only “fair” if a $1 bet on C Milan gives a $5 payoff (i.e. I
get my $1 back plus a $4 reward for being correct), as would a $4 bet on Arduino Arsenal (i.e., my $4 bet plus a $1 reward).
My subjective “belief” or “confidence” in an Arduino Arsenal victory is four times as strong as my belief in a C Milan victory.

Each of these seems sensible. However they’re not identical, and not every statistician would endorse all of them. The reason is that
there are different statistical ideologies (yes, really!) and depending on which one you subscribe to, you might say that some of
those statements are meaningless or irrelevant. In this section, I give a brief introduction the two main approaches that exist in the
literature. These are by no means the only approaches, but they’re the two big ones.

7.2.1 frequentist view
The first of the two major approaches to probability, and the more dominant one in statistics, is referred to as the frequentist view,
and it defines probability as a long-run frequency. Suppose we were to try flipping a fair coin, over and over again. By definition,
this is a coin that has P(H)=0.5. What might we observe? One possibility is that the first 20 flips might look like this:

T,H,H,H,H,T,T,H,H,H,H,T,H,H,T,T,T,T,T,H

In this case 11 of these 20 coin flips (55%) came up heads. Now suppose that I’d been keeping a running tally of the number of
heads (which I’ll call N ) that I’ve seen, across the first N flips, and calculate the proportion of heads N /N every time. Here’s
what I’d get (I did literally flip coins to produce this!):

number.of.flips number.of.heads proportion

1 0 0.00

2 1 0.50

3 2 0.67

4 3 0.75

5 4 0.80

6 4 0.67

7 4 0.57

8 5 0.63

9 6 0.67

10 7 0.70

11 8 0.73

12 8 0.67

H H
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13 9 0.69

14 10 0.71

15 10 0.67

16 10 0.63

17 10 0.59

18 10 0.56

19 10 0.53

20 11 0.55

Notice that at the start of the sequence, the proportion of heads fluctuates wildly, starting at .00 and rising as high as .80. Later on,
one gets the impression that it dampens out a bit, with more and more of the values actually being pretty close to the “right” answer
of .50. This is the frequentist definition of probability in a nutshell: flip a fair coin over and over again, and as N grows large
(approaches infinity, denoted N→∞), the proportion of heads will converge to 50%. There are some subtle technicalities that the
mathematicians care about, but qualitatively speaking, that’s how the frequentists define probability. Unfortunately, I don’t have an
infinite number of coins, or the infinite patience required to flip a coin an infinite number of times. However, I do have a computer,
and computers excel at mindless repetitive tasks. So I asked my computer to simulate flipping a coin 1000 times, and then drew a
picture of what happens to the proportion N /N as N increases. Actually, I did it four times, just to make sure it wasn’t a fluke. The
results are shown in Figure 9.1. As you can see, the proportion of observed heads eventually stops fluctuating, and settles down;
when it does, the number at which it finally settles is the true probability of heads.

Figure 9.1: An illustration of how frequentist probability works. If you flip a fair coin over and over again, the proportion of heads
that you’ve seen eventually settles down, and converges to the true probability of 0.5. Each panel shows four different simulated
experiments: in each case, we pretend we flipped a coin 1000 times, and kept track of the proportion of flips that were heads as we
went along. Although none of these sequences actually ended up with an exact value of .5, if we’d extended the experiment for an
infinite number of coin flips they would have.

The frequentist definition of probability has some desirable characteristics. Firstly, it is objective: the probability of an event is
necessarily grounded in the world. The only way that probability statements can make sense is if they refer to (a sequence of)
events that occur in the physical universe.  Secondly, it is unambiguous: any two people watching the same sequence of events
unfold, trying to calculate the probability of an event, must inevitably come up with the same answer. However, it also has
undesirable characteristics. Firstly, infinite sequences don’t exist in the physical world. Suppose you picked up a coin from your

H
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pocket and started to flip it. Every time it lands, it impacts on the ground. Each impact wears the coin down a bit; eventually, the
coin will be destroyed. So, one might ask whether it really makes sense to pretend that an “infinite” sequence of coin flips is even a
meaningful concept, or an objective one. We can’t say that an “infinite sequence” of events is a real thing in the physical universe,
because the physical universe doesn’t allow infinite anything. More seriously, the frequentist definition has a narrow scope. There
are lots of things out there that human beings are happy to assign probability to in everyday language, but cannot (even in theory)
be mapped onto a hypothetical sequence of events. For instance, if a meteorologist comes on TV and says, “the probability of rain
in Adelaide on 2 November 2048 is 60%” we humans are happy to accept this. But it’s not clear how to define this in frequentist
terms. There’s only one city of Adelaide, and only 2 November 2048. There’s no infinite sequence of events here, just a once-off
thing. Frequentist probability genuinely forbids us from making probability statements about a single event. From the frequentist
perspective, it will either rain tomorrow or it will not; there is no “probability” that attaches to a single non-repeatable event. Now,
it should be said that there are some very clever tricks that frequentists can use to get around this. One possibility is that what the
meteorologist means is something like this: “There is a category of days for which I predict a 60% chance of rain; if we look only
across those days for which I make this prediction, then on 60% of those days it will actually rain”. It’s very weird and
counterintuitive to think of it this way, but you do see frequentists do this sometimes. And it will come up later in this book (see
Section 10.5).

7.2.2 Bayesian view
The Bayesian view of probability is often called the subjectivist view, and it is a minority view among statisticians, but one that has
been steadily gaining traction for the last several decades. There are many flavours of Bayesianism, making hard to say exactly
what “the” Bayesian view is. The most common way of thinking about subjective probability is to define the probability of an
event as the degree of belief that an intelligent and rational agent assigns to that truth of that event. From that perspective,
probabilities don’t exist in the world, but rather in the thoughts and assumptions of people and other intelligent beings. However, in
order for this approach to work, we need some way of operationalising “degree of belief”. One way that you can do this is to
formalise it in terms of “rational gambling”, though there are many other ways. Suppose that I believe that there’s a 60%
probability of rain tomorrow. If someone offers me a bet: if it rains tomorrow, then I win $5, but if it doesn’t rain then I lose $5.
Clearly, from my perspective, this is a pretty good bet. On the other hand, if I think that the probability of rain is only 40%, then it’s
a bad bet to take. Thus, we can operationalise the notion of a “subjective probability” in terms of what bets I’m willing to accept.

What are the advantages and disadvantages to the Bayesian approach? The main advantage is that it allows you to assign
probabilities to any event you want to. You don’t need to be limited to those events that are repeatable. The main disadvantage (to
many people) is that we can’t be purely objective – specifying a probability requires us to specify an entity that has the relevant
degree of belief. This entity might be a human, an alien, a robot, or even a statistician, but there has to be an intelligent agent out
there that believes in things. To many people this is uncomfortable: it seems to make probability arbitrary. While the Bayesian
approach does require that the agent in question be rational (i.e., obey the rules of probability), it does allow everyone to have their
own beliefs; I can believe the coin is fair and you don’t have to, even though we’re both rational. The frequentist view doesn’t
allow any two observers to attribute different probabilities to the same event: when that happens, then at least one of them must be
wrong. The Bayesian view does not prevent this from occurring. Two observers with different background knowledge can
legitimately hold different beliefs about the same event. In short, where the frequentist view is sometimes considered to be too
narrow (forbids lots of things that that we want to assign probabilities to), the Bayesian view is sometimes thought to be too broad
(allows too many differences between observers).

7.2.3 What’s the difference? And who is right?
Now that you’ve seen each of these two views independently, it’s useful to make sure you can compare the two. Go back to the
hypothetical robot soccer game at the start of the section. What do you think a frequentist and a Bayesian would say about these
three statements? Which statement would a frequentist say is the correct definition of probability? Which one would a Bayesian
do? Would some of these statements be meaningless to a frequentist or a Bayesian? If you’ve understood the two perspectives, you
should have some sense of how to answer those questions.

Okay, assuming you understand the different, you might be wondering which of them is right? Honestly, I don’t know that there is
a right answer. As far as I can tell there’s nothing mathematically incorrect about the way frequentists think about sequences of
events, and there’s nothing mathematically incorrect about the way that Bayesians define the beliefs of a rational agent. In fact,
when you dig down into the details, Bayesians and frequentists actually agree about a lot of things. Many frequentist methods lead
to decisions that Bayesians agree a rational agent would make. Many Bayesian methods have very good frequentist properties.
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For the most part, I’m a pragmatist so I’ll use any statistical method that I trust. As it turns out, that makes me prefer Bayesian
methods, for reasons I’ll explain towards the end of the book, but I’m not fundamentally opposed to frequentist methods. Not
everyone is quite so relaxed. For instance, consider Sir Ronald Fisher, one of the towering figures of 20th century statistics and a
vehement opponent to all things Bayesian, whose paper on the mathematical foundations of statistics referred to Bayesian
probability as “an impenetrable jungle [that] arrests progress towards precision of statistical concepts” Fisher (1922b). Or the
psychologist Paul Meehl, who suggests that relying on frequentist methods could turn you into “a potent but sterile intellectual rake
who leaves in his merry path a long train of ravished maidens but no viable scientific offspring” Meehl (1967). The history of
statistics, as you might gather, is not devoid of entertainment.

In any case, while I personally prefer the Bayesian view, the majority of statistical analyses are based on the frequentist approach.
My reasoning is pragmatic: the goal of this book is to cover roughly the same territory as a typical undergraduate stats class in
psychology, and if you want to understand the statistical tools used by most psychologists, you’ll need a good grasp of frequentist
methods. I promise you that this isn’t wasted effort. Even if you end up wanting to switch to the Bayesian perspective, you really
should read through at least one book on the “orthodox” frequentist view. And since R is the most widely used statistical language
for Bayesians, you might as well read a book that uses R. Besides, I won’t completely ignore the Bayesian perspective. Every now
and then I’ll add some commentary from a Bayesian point of view, and I’ll revisit the topic in more depth in Chapter 17.
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7.3: Basic Probability Theory
Ideological arguments between Bayesians and frequentists notwithstanding, it turns out that people mostly agree on the rules that
probabilities should obey. There are lots of different ways of arriving at these rules. The most commonly used approach is based on
the work of Andrey Kolmogorov, one of the great Soviet mathematicians of the 20th century. I won’t go into a lot of detail, but I’ll
try to give you a bit of a sense of how it works. And in order to do so, I’m going to have to talk about my pants.

7.3.1 Introducing probability distributions
One of the disturbing truths about my life is that I only own 5 pairs of pants: three pairs of jeans, the bottom half of a suit, and a
pair of tracksuit pants. Even sadder, I’ve given them names: I call them X , X , X , X  and X . I really do: that’s why they call me
Mister Imaginative. Now, on any given day, I pick out exactly one of pair of pants to wear. Not even I’m so stupid as to try to wear
two pairs of pants, and thanks to years of training I never go outside without wearing pants anymore. If I were to describe this
situation using the language of probability theory, I would refer to each pair of pants (i.e., each X) as an elementary event. The key
characteristic of elementary events is that every time we make an observation (e.g., every time I put on a pair of pants), then the
outcome will be one and only one of these events. Like I said, these days I always wear exactly one pair of pants, so my pants
satisfy this constraint. Similarly, the set of all possible events is called a sample space. Granted, some people would call it a
“wardrobe”, but that’s because they’re refusing to think about my pants in probabilistic terms. Sad.

Okay, now that we have a sample space (a wardrobe), which is built from lots of possible elementary events (pants), what we want
to do is assign a probability of one of these elementary events. For an event X, the probability of that event P(X) is a number that
lies between 0 and 1. The bigger the value of P(X), the more likely the event is to occur. So, for example, if P(X)=0, it means the
event X is impossible (i.e., I never wear those pants). On the other hand, if P(X)=1 it means that event X is certain to occur (i.e., I
always wear those pants). For probability values in the middle, it means that I sometimes wear those pants. For instance, if
P(X)=0.5 it means that I wear those pants half of the time.

At this point, we’re almost done. The last thing we need to recognise is that “something always happens”. Every time I put on
pants, I really do end up wearing pants (crazy, right?). What this somewhat trite statement means, in probabilistic terms, is that the
probabilities of the elementary events need to add up to 1. This is known as the law of total probability, not that any of us really
care. More importantly, if these requirements are satisfied, then what we have is a probability distribution. For example, this is an
example of a probability distribution

Which.pants Blue.jeans Grey.jeans Black.jeans Black.suit Blue.tracksuit

Label X X X X X

Probability P(X )=.5 P(X )=.3 P(X )=.1 P(X )=0 P(X )=.1

Each of the events has a probability that lies between 0 and 1, and if we add up the probability of all events, they sum to 1.
Awesome. We can even draw a nice bar graph (see Section 6.7) to visualise this distribution, as shown in Figure ??. And at this
point, we’ve all achieved something. You’ve learned what a probability distribution is, and I’ve finally managed to find a way to
create a graph that focuses entirely on my pants. Everyone wins!
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Figure 9.2: A visual depiction of the “pants” probability distribution. There are five “elementary events”, corresponding to the five
pairs of pants that I own. Each event has some probability of occurring: this probability is a number between 0 to 1. The sum of
these probabilities is 1.

The only other thing that I need to point out is that probability theory allows you to talk about non elementary events as well as
elementary ones. The easiest way to illustrate the concept is with an example. In the pants example, it’s perfectly legitimate to refer
to the probability that I wear jeans. In this scenario, the “Dan wears jeans” event said to have happened as long as the elementary
event that actually did occur is one of the appropriate ones; in this case “blue jeans”, “black jeans” or “grey jeans”. In mathematical
terms, we defined the “jeans” event E to correspond to the set of elementary events (X ,X ,X ). If any of these elementary events
occurs, then E is also said to have occurred. Having decided to write down the definition of the E this way, it’s pretty
straightforward to state what the probability P(E) is: we just add everything up. In this particular case

P(E)=P(X )+P(X )+P(X )

and, since the probabilities of blue, grey and black jeans respectively are .5, .3 and .1, the probability that I wear jeans is equal to .9.

At this point you might be thinking that this is all terribly obvious and simple and you’d be right. All we’ve really done is wrap
some basic mathematics around a few common sense intuitions. However, from these simple beginnings it’s possible to construct
some extremely powerful mathematical tools. I’m definitely not going to go into the details in this book, but what I will do is list –
in Table 9.1 – some of the other rules that probabilities satisfy. These rules can be derived from the simple assumptions that I’ve
outlined above, but since we don’t actually use these rules for anything in this book, I won’t do so here.

Table 9.1: Some basic rules that probabilities must satisfy. You don’t really need to know these rules in order to understand the
analyses that we’ll talk about later in the book, but they are important if you want to understand probability theory a bit more
deeply.

English Notation NANA Formula

Not A P(¬A) = 1−P(A)

A or B P(A∪B) = P(A)+P(B)−P(A∩B)

A and B P(A∩B) = P(A|B)P(B)

This page titled 7.3: Basic Probability Theory is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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7.4: The Binomial Distribution
As you might imagine, probability distributions vary enormously, and there’s an enormous range of distributions out there.
However, they aren’t all equally important. In fact, the vast majority of the content in this book relies on one of five distributions:
the binomial distribution, the normal distribution, the t distribution, the χ  (“chi-square”) distribution and the F distribution. Given
this, what I’ll do over the next few sections is provide a brief introduction to all five of these, paying special attention to the
binomial and the normal. I’ll start with the binomial distribution, since it’s the simplest of the five.

7.4.1 Introducing the binomial
The theory of probability originated in the attempt to describe how games of chance work, so it seems fitting that our discussion of
the binomial distribution should involve a discussion of rolling dice and flipping coins. Let’s imagine a simple “experiment”: in
my hot little hand I’m holding 20 identical six-sided dice. On one face of each die there’s a picture of a skull; the other five faces
are all blank. If I proceed to roll all 20 dice, what’s the probability that I’ll get exactly 4 skulls? Assuming that the dice are fair, we
know that the chance of any one die coming up skulls is 1 in 6; to say this another way, the skull probability for a single die is
approximately .167. This is enough information to answer our question, so let’s have a look at how it’s done.

As usual, we’ll want to introduce some names and some notation. We’ll let N denote the number of dice rolls in our experiment;
which is often referred to as the size parameter of our binomial distribution. We’ll also use θ to refer to the the probability that a
single die comes up skulls, a quantity that is usually called the success probability of the binomial.  Finally, we’ll use X to refer
to the results of our experiment, namely the number of skulls I get when I roll the dice. Since the actual value of X is due to chance,
we refer to it as a random variable. In any case, now that we have all this terminology and notation, we can use it to state the
problem a little more precisely. The quantity that we want to calculate is the probability that X=4 given that we know that θ=.167
and N=20. The general “form” of the thing I’m interested in calculating could be written as

P(X | θ,N)

and we’re interested in the special case where X=4, θ=.167 and N=20. There’s only one more piece of notation I want to refer to
before moving on to discuss the solution to the problem. If I want to say that X is generated randomly from a binomial distribution
with parameters θ and N, the notation I would use is as follows:

X∼Binomial(θ,N)

Yeah, yeah. I know what you’re thinking: notation, notation, notation. Really, who cares? Very few readers of this book are here for
the notation, so I should probably move on and talk about how to use the binomial distribution. I’ve included the formula for the
binomial distribution in Table 9.2, since some readers may want to play with it themselves, but since most people probably don’t
care that much and because we don’t need the formula in this book, I won’t talk about it in any detail. Instead, I just want to show
you what the binomial distribution looks like. To that end, Figure 9.3 plots the binomial probabilities for all possible values of X
for our dice rolling experiment, from X=0 (no skulls) all the way up to X=20 (all skulls). Note that this is basically a bar chart, and
is no different to the “pants probability” plot I drew in Figure 9.2. On the horizontal axis we have all the possible events, and on the
vertical axis we can read off the probability of each of those events. So, the probability of rolling 4 skulls out of 20 times is about
0.20 (the actual answer is 0.2022036, as we’ll see in a moment). In other words, you’d expect that to happen about 20% of the
times you repeated this experiment.
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Figure 9.3: The binomial distribution with size parameter of N=20 and an underlying success probability of theta=1/6. Each
vertical bar depicts the probability of one specific outcome (i.e., one possible value of X). Because this is a probability distribution,
each of the probabilities must be a number between 0 and 1, and the heights of the bars must sum to 1 as well.

7.4.2 Working with the binomial distribution in R
Although some people find it handy to know the formulas in Table 9.2, most people just want to know how to use the distributions
without worrying too much about the maths. To that end, R has a function called dbinom()  that calculates binomial
probabilities for us. The main arguments to the function are

x . This is a number, or vector of numbers, specifying the outcomes whose probability you’re trying to calculate.
size . This is a number telling R the size of the experiment.
prob . This is the success probability for any one trial in the experiment.

So, in order to calculate the probability of getting x = 4  skulls, from an experiment of size = 20  trials, in which the
probability of getting a skull on any one trial is prob = 1/6  … well, the command I would use is simply this:

dbinom( x = 4, size = 20, prob = 1/6 )

## [1] 0.2022036

To give you a feel for how the binomial distribution changes when we alter the values of θ and N, let’s suppose that instead of
rolling dice, I’m actually flipping coins. This time around, my experiment involves flipping a fair coin repeatedly, and the outcome
that I’m interested in is the number of heads that I observe. In this scenario, the success probability is now θ=1/2. Suppose I were to
flip the coin N=20 times. In this example, I’ve changed the success probability, but kept the size of the experiment the same. What
does this do to our binomial distribution? Well, as Figure 9.4 shows, the main effect of this is to shift the whole distribution, as
you’d expect. Okay, what if we flipped a coin N=100 times? Well, in that case, we get Figure 9.5. The distribution stays roughly in
the middle, but there’s a bit more variability in the possible outcomes.
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Figure 9.4: Two binomial distributions, involving a scenario in which I’m flipping a fair coin, so the underlying success probability
is theta=1/2. Here we assume I’m flipping the coin N=20 times.

Figure 9.5: Two binomial distributions, involving a scenario in which I’m flipping a fair coin, so the underlying success probability
is theta=1/2. Here we assume that the coin is flipped N=100 times.
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Table 9.2: Formulas for the binomial and normal distributions. We don’t really use these formulas for anything in this book, but
they’re pretty important for more advanced work, so I thought it might be best to put them here in a table, where they can’t get in
the way of the text. In the equation for the binomial, X! is the factorial function (i.e., multiply all whole numbers from 1 to X), and
for the normal distribution “exp” refers to the exponential function, which we discussed in the Chapter on Data Handling. If these
equations don’t make a lot of sense to you, don’t worry too much about them.

Binomial Normal

Table 9.3: The naming system for R probability distribution functions. Every probability distribution implemented in R is actually
associated with four separate functions, and there is a pretty standardised way for naming these functions.

What.it.does Prefix Normal.distribution Binomial.distribution

probability (density) of d dnorm() dbinom()

cumulative probability of p dnorm() pbinom()

generate random number from r rnorm() rbinom()

q qnorm() qbinom() q qnorm() qbinom(

At this point, I should probably explain the name of the dbinom()  function. Obviously, the “binom” part comes from the fact
that we’re working with the binomial distribution, but the “d” prefix is probably a bit of a mystery. In this section I’ll give a partial
explanation: specifically, I’ll explain why there is a prefix. As for why it’s a “d” specifically, you’ll have to wait until the next
section. What’s going on here is that R actually provides four functions in relation to the binomial distribution. These four
functions are dbinom() , pbinom() , rbinom()  and qbinom() , and each one calculates a different quantity of
interest. Not only that, R does the same thing for every probability distribution that it implements. No matter what distribution
you’re talking about, there’s a d  function, a p  function, a q  function and a r  function. This is illustrated in Table 9.3,
using the binomial distribution and the normal distribution as examples.

Let’s have a look at what all four functions do. Firstly, all four versions of the function require you to specify the size  and 
prob  arguments: no matter what you’re trying to get R to calculate, it needs to know what the parameters are. However, they

differ in terms of what the other argument is, and what the output is. So let’s look at them one at a time.

The d  form we’ve already seen: you specify a particular outcome x , and the output is the probability of obtaining exactly
that outcome. (the “d” is short for density, but ignore that for now).
The p  form calculates the cumulative probability. You specify a particular quantile q , and it tells you the probability of
obtaining an outcome smaller than or equal to q .
The q  form calculates the quantiles of the distribution. You specify a probability value p , and gives you the corresponding
percentile. That is, the value of the variable for which there’s a probability p  of obtaining an outcome lower than that value.
The r  form is a random number generator: specifically, it generates n  random outcomes from the distribution.

knitr::kable(data.frame(stringsAsFactors=FALSE, Binomial = c("$P(X | \\theta, N) = \\
\\theta^X (1-\\theta)^{N-X}$"),  
Normal = c("$p(X | \\mu, \\sigma) = \\displaystyle\\dfrac{1}{\\sqrt{2\\pi}\\sigma} \\
{2\\sigma^2} \\right)$ ")), caption = "Formulas for the binomial and normal distribut
formulas for anything in this book, but they're pretty important for more advanced wo
to put them here in a table, where they can't get in the way of the text. In the equa
factorial function (i.e., multiply all whole numbers from 1 to $X$), and for the norm
the exponential function, which we discussed in the Chapter on Data Handling. If thes
sense to you, don't worry too much about them.")

P(X|θ,N) = (1− θ

N!

X!(N−X)!

θ

X

)

N−X

p(X|μ, σ) = exp(− )

1

σ2π

−−

√

(X−μ)
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This is a little abstract, so let’s look at some concrete examples. Again, we’ve already covered dbinom()  so let’s focus on the
other three versions. We’ll start with pbinom() , and we’ll go back to the skull-dice example. Again, I’m rolling 20 dice, and
each die has a 1 in 6 chance of coming up skulls. Suppose, however, that I want to know the probability of rolling 4 or fewer skulls.
If I wanted to, I could use the dbinom()  function to calculate the exact probability of rolling 0 skulls, 1 skull, 2 skulls, 3 skulls
and 4 skulls and then add these up, but there’s a faster way. Instead, I can calculate this using the pbinom()  function. Here’s
the command:

pbinom( q= 4, size = 20, prob = 1/6)

## [1] 0.7687492

In other words, there is a 76.9% chance that I will roll 4 or fewer skulls. Or, to put it another way, R is telling us that a value of 4 is
actually the 76.9th percentile of this binomial distribution.

Next, let’s consider the qbinom()  function. Let’s say I want to calculate the 75th percentile of the binomial distribution. If
we’re sticking with our skulls example, I would use the following command to do this:

qbinom( p = 0.75, size = 20, prob = 1/6)

## [1] 4

Hm. There’s something odd going on here. Let’s think this through. What the qbinom()  function appears to be telling us is that
the 75th percentile of the binomial distribution is 4, even though we saw from the pbinom()  function that 4 is actually the
76.9th percentile. And it’s definitely the pbinom()  function that is correct. I promise. The weirdness here comes from the fact
that our binomial distribution doesn’t really have a 75th percentile. Not really. Why not? Well, there’s a 56.7% chance of rolling 3
or fewer skulls (you can type pbinom(3, 20, 1/6)  to confirm this if you want), and a 76.9% chance of rolling 4 or fewer
skulls. So there’s a sense in which the 75th percentile should lie “in between” 3 and 4 skulls. But that makes no sense at all! You
can’t roll 20 dice and get 3.9 of them come up skulls. This issue can be handled in different ways: you could report an in between
value (or interpolated value, to use the technical name) like 3.9, you could round down (to 3) or you could round up (to 4). The 
qbinom()  function rounds upwards: if you ask for a percentile that doesn’t actually exist (like the 75th in this example), R

finds the smallest value for which the the percentile rank is at least what you asked for. In this case, since the “true” 75th percentile
(whatever that would mean) lies somewhere between 3 and 4 skulls, R rounds up and gives you an answer of 4. This subtlety is
tedious, I admit, but thankfully it’s only an issue for discrete distributions like the binomial (see Section 2.2.5 for a discussion of
continuous versus discrete). The other distributions that I’ll talk about (normal, t, χ  and F) are all continuous, and so R can always
return an exact quantile whenever you ask for it.

Finally, we have the random number generator. To use the rbinom()  function, you specify how many times R should
“simulate” the experiment using the n  argument, and it will generate random outcomes from the binomial distribution. So, for
instance, suppose I were to repeat my die rolling experiment 100 times. I could get R to simulate the results of these experiments
by using the following command:

rbinom( n = 100, size = 20, prob = 1/6 )

##   [1] 3 3 3 2 3 3 3 2 3 3 6 2 5 3 1 1 4 7 5 3 3 6 3 4 3 4 5 3 3 3 7 4 5 1 2 
##  [36] 1 2 4 2 5 5 4 4 3 1 3 0 2 3 2 2 2 2 1 3 4 5 0 3 2 5 1 2 3 1 5 2 4 3 2 
##  [71] 1 2 1 5 2 3 3 2 3 3 4 2 1 2 6 2 3 2 3 3 6 2 1 1 3 3 1 5 4 3

As you can see, these numbers are pretty much what you’d expect given the distribution shown in Figure 9.3. Most of the time I
roll somewhere between 1 to 5 skulls. There are a lot of subtleties associated with random number generation using a computer,
but for the purposes of this book we don’t need to worry too much about them.
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7.5: The Normal Distribution

Figure 9.6: {The normal distribution with mean mu=0 and standard deviation sigma=1. The x-axis corresponds to the value of
some variable, and the y-axis tells us something about how likely we are to observe that value. However, notice that the y-axis is
labelled “Probability Density” and not “Probability”. There is a subtle and somewhat frustrating characteristic of continuous
distributions that makes the y axis behave a bit oddly: the height of the curve here isn’t actually the probability of observing a
particular x value. On the other hand, it is true that the heights of the curve tells you which x values are more likely (the higher
ones!).

While the binomial distribution is conceptually the simplest distribution to understand, it’s not the most important one. That
particular honour goes to the normal distribution, which is also referred to as “the bell curve” or a “Gaussian distribution”. A
normal distribution is described using two parameters, the mean of the distribution μ and the standard deviation of the distribution
σ. The notation that we sometimes use to say that a variable X is normally distributed is as follows:

X∼Normal(μ,σ)

Of course, that’s just notation. It doesn’t tell us anything interesting about the normal distribution itself. As was the case with the
binomial distribution, I have included the formula for the normal distribution in this book, because I think it’s important enough
that everyone who learns statistics should at least look at it, but since this is an introductory text I don’t want to focus on it, so I’ve
tucked it away in Table 9.2. Similarly, the R functions for the normal distribution are dnorm() , pnorm() , qnorm()  and 
rnorm() . However, they behave in pretty much exactly the same way as the corresponding functions for the binomial

distribution, so there’s not a lot that you need to know. The only thing that I should point out is that the argument names for the
parameters are mean  and sd . In pretty much every other respect, there’s nothing else to add.
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Figure 9.7: An illustration of what happens when you change the mean of a normal distribution. The solid line depicts a normal
distribution with a mean of mu=4. The dashed line shows a normal distribution with a mean of mu=7. In both cases, the standard
deviation is sigma=1. Not surprisingly, the two distributions have the same shape, but the dashed line is shifted to the right.

Figure 9.8: An illustration of what happens when you change the the standard deviation of a normal distribution. Both distributions
plotted in this figure have a mean of mu=5, but they have different standard deviations. The solid line plots a distribution with
standard deviation sigma=1, and the dashed line shows a distribution with standard deviation sigma=2. As a consequence, both
distributions are “centred” on the same spot, but the dashed line is wider than the solid one.

Instead of focusing on the maths, let’s try to get a sense for what it means for a variable to be normally distributed. To that end,
have a look at Figure 9.6, which plots a normal distribution with mean μ=0 and standard deviation σ=1. You can see where the
name “bell curve” comes from: it looks a bit like a bell. Notice that, unlike the plots that I drew to illustrate the binomial
distribution, the picture of the normal distribution in Figure 9.6 shows a smooth curve instead of “histogram-like” bars. This isn’t
an arbitrary choice: the normal distribution is continuous, whereas the binomial is discrete. For instance, in the die rolling example
from the last section, it was possible to get 3 skulls or 4 skulls, but impossible to get 3.9 skulls. The figures that I drew in the
previous section reflected this fact: in Figure 9.3, for instance, there’s a bar located at X=3 and another one at X=4, but there’s
nothing in between. Continuous quantities don’t have this constraint. For instance, suppose we’re talking about the weather. The
temperature on a pleasant Spring day could be 23 degrees, 24 degrees, 23.9 degrees, or anything in between since temperature is a
continuous variable, and so a normal distribution might be quite appropriate for describing Spring temperatures.145
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With this in mind, let’s see if we can’t get an intuition for how the normal distribution works. Firstly, let’s have a look at what
happens when we play around with the parameters of the distribution. To that end, Figure 9.7 plots normal distributions that have
different means, but have the same standard deviation. As you might expect, all of these distributions have the same “width”. The
only difference between them is that they’ve been shifted to the left or to the right. In every other respect they’re identical. In
contrast, if we increase the standard deviation while keeping the mean constant, the peak of the distribution stays in the same place,
but the distribution gets wider, as you can see in Figure 9.8. Notice, though, that when we widen the distribution, the height of the
peak shrinks. This has to happen: in the same way that the heights of the bars that we used to draw a discrete binomial distribution
have to sum to 1, the total area under the curve for the normal distribution must equal 1. Before moving on, I want to point out one
important characteristic of the normal distribution. Irrespective of what the actual mean and standard deviation are, 68.3% of the
area falls within 1 standard deviation of the mean. Similarly, 95.4% of the distribution falls within 2 standard deviations of the
mean, and 99.7% of the distribution is within 3 standard deviations. This idea is illustrated in Figure ??.

Figure 9.9: The area under the curve tells you the probability that an observation falls within a particular range. The solid lines plot
normal distributions with mean mu=0 and standard deviation sigma=1. The shaded areas illustrate “areas under the curve” for two
important cases. Here we can see that there is a 68.3% chance that an observation will fall within one standard deviation of the
mean

Figure 9.10: The area under the curve tells you the probability that an observation falls within a particular range. The solid lines
plot normal distributions with mean mu=0 and standard deviation sigma=1. The shaded areas illustrate “areas under the curve” for
two important cases. Here we see that there is a 95.4% chance that an observation will fall within two standard deviations of the
mean.
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Figure 9.11: Two more examples of the “area under the curve idea”. There is a 15.9% chance that an observation is one standard
deviation below the mean or smaller

Figure 9.12: There is a 34.1% chance that the observation is greater than one standard deviation below the mean but still below the
mean. Notice that if you add these two numbers together you get 15.9+34.1=50. For normally distributed data, there is a 50%
chance that an observation falls below the mean. And of course that also implies that there is a 50% chance that it falls above the
mean.

7.5.1 Probability density

There’s something I’ve been trying to hide throughout my discussion of the normal distribution, something that some introductory
textbooks omit completely. They might be right to do so: this “thing” that I’m hiding is weird and counterintuitive even by the
admittedly distorted standards that apply in statistics. Fortunately, it’s not something that you need to understand at a deep level in
order to do basic statistics: rather, it’s something that starts to become important later on when you move beyond the basics. So, if it
doesn’t make complete sense, don’t worry: try to make sure that you follow the gist of it.

Throughout my discussion of the normal distribution, there’s been one or two things that don’t quite make sense. Perhaps you
noticed that the y-axis in these figures is labelled “Probability Density” rather than density. Maybe you noticed that I used p(X)
instead of P(X) when giving the formula for the normal distribution. Maybe you’re wondering why R uses the “d” prefix for
functions like dnorm() . And maybe, just maybe, you’ve been playing around with the dnorm()  function, and you
accidentally typed in a command like this:

dnorm( x = 1, mean = 1, sd = 0.1 )
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## [1] 3.989423

And if you’ve done the last part, you’re probably very confused. I’ve asked R to calculate the probability that x = 1 , for a
normally distributed variable with mean = 1  and standard deviation sd = 0.1 ; and it tells me that the probability is 3.99.
But, as we discussed earlier, probabilities can’t be larger than 1. So either I’ve made a mistake, or that’s not a probability.

As it turns out, the second answer is correct. What we’ve calculated here isn’t actually a probability: it’s something else. To
understand what that something is, you have to spend a little time thinking about what it really means to say that X is a continuous
variable. Let’s say we’re talking about the temperature outside. The thermometer tells me it’s 23 degrees, but I know that’s not
really true. It’s not exactly 23 degrees. Maybe it’s 23.1 degrees, I think to myself. But I know that that’s not really true either,
because it might actually be 23.09 degrees. But, I know that… well, you get the idea. The tricky thing with genuinely continuous
quantities is that you never really know exactly what they are.

Now think about what this implies when we talk about probabilities. Suppose that tomorrow’s maximum temperature is sampled
from a normal distribution with mean 23 and standard deviation 1. What’s the probability that the temperature will be exactly 23
degrees? The answer is “zero”, or possibly, “a number so close to zero that it might as well be zero”. Why is this? It’s like trying to
throw a dart at an infinitely small dart board: no matter how good your aim, you’ll never hit it. In real life you’ll never get a value
of exactly 23. It’ll always be something like 23.1 or 22.99998 or something. In other words, it’s completely meaningless to talk
about the probability that the temperature is exactly 23 degrees. However, in everyday language, if I told you that it was 23 degrees
outside and it turned out to be 22.9998 degrees, you probably wouldn’t call me a liar. Because in everyday language, “23 degrees”
usually means something like “somewhere between 22.5 and 23.5 degrees”. And while it doesn’t feel very meaningful to ask about
the probability that the temperature is exactly 23 degrees, it does seem sensible to ask about the probability that the temperature lies
between 22.5 and 23.5, or between 20 and 30, or any other range of temperatures.

The point of this discussion is to make clear that, when we’re talking about continuous distributions, it’s not meaningful to talk
about the probability of a specific value. However, what we can talk about is the probability that the value lies within a particular
range of values. To find out the probability associated with a particular range, what you need to do is calculate the “area under the
curve”. We’ve seen this concept already: in Figures 9.9 and (fig:sdnorm1b), the shaded areas shown depict genuine probabilities
(e.g., in Figure 9.9 it shows the probability of observing a value that falls within 1 standard deviation of the mean).

Okay, so that explains part of the story. I’ve explained a little bit about how continuous probability distributions should be
interpreted (i.e., area under the curve is the key thing), but I haven’t actually explained what the dnorm()  function actually
calculates. Equivalently, what does the formula for p(x) that I described earlier actually mean? Obviously, p(x) doesn’t describe a
probability, but what is it? The name for this quantity p(x) is a probability density, and in terms of the plots we’ve been drawing, it
corresponds to the height of the curve. The densities themselves aren’t meaningful in and of themselves: but they’re “rigged” to
ensure that the area under the curve is always interpretable as genuine probabilities. To be honest, that’s about as much as you
really need to know for now.

This page titled 7.5: The Normal Distribution is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

9.5: The Normal Distribution by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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7.6: Other Useful Distributions
The normal distribution is the distribution that statistics makes most use of (for reasons to be discussed shortly), and the binomial
distribution is a very useful one for lots of purposes. But the world of statistics is filled with probability distributions, some of
which we’ll run into in passing. In particular, the three that will appear in this book are the t distribution, the χ  distribution and the
F distribution. I won’t give formulas for any of these, or talk about them in too much detail, but I will show you some pictures.

Figure 9.13: A t distribution with 3 degrees of freedom (solid line). It looks similar to a normal distribution, but it’s not quite the
same. For comparison purposes, I’ve plotted a standard normal distribution as the dashed line. Note that the “tails” of the t
distribution are “heavier” (i.e., extend further outwards) than the tails of the normal distribution? That’s the important difference
between the two.

Figure 9.14: A chi  distribution with 3 degrees of freedom. Notice that the observed values must always be greater than zero, and
that the distribution is pretty skewed. These are the key features of a chi-square distribution.
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Figure 9.15: An F distribution with 3 and 5 degrees of freedom. Qualitatively speaking, it looks pretty similar to a chi-square
distribution, but they’re not quite the same in general.

The t distribution is a continuous distribution that looks very similar to a normal distribution, but has heavier tails: see Figure
9.13. This distribution tends to arise in situations where you think that the data actually follow a normal distribution, but you
don’t know the mean or standard deviation. As you might expect, the relevant R functions are dt() , pt() , qt()  and 
rt() , and we’ll run into this distribution again in Chapter 13.

The χ  distribution is another distribution that turns up in lots of different places. The situation in which we’ll see it is when
doing categorical data analysis (Chapter 12), but it’s one of those things that actually pops up all over the place. When you dig
into the maths (and who doesn’t love doing that?), it turns out that the main reason why the χ2 distribution turns up all over the
place is that, if you have a bunch of variables that are normally distributed, square their values and then add them up (a
procedure referred to as taking a “sum of squares”), this sum has a χ  distribution. You’d be amazed how often this fact turns
out to be useful. Anyway, here’s what a χ2 distribution looks like: Figure 9.14. Once again, the R commands for this one are
pretty predictable: dchisq() , pchisq() , qchisq() , rchisq() .
The F distribution looks a bit like a χ  distribution, and it arises whenever you need to compare two χ  distributions to one
another. Admittedly, this doesn’t exactly sound like something that any sane person would want to do, but it turns out to be very
important in real world data analysis. Remember when I said that χ  turns out to be the key distribution when we’re taking a
“sum of squares”? Well, what that means is if you want to compare two different “sums of squares”, you’re probably talking
about something that has an F distribution. Of course, as yet I still haven’t given you an example of anything that involves a
sum of squares, but I will… in Chapter 14. And that’s where we’ll run into the F distribution. Oh, and here’s a picture: Figure
9.15. And of course we can get R to do things with F distributions just by using the commands df() , pf() , qf()  and 
rf() .

Because these distributions are all tightly related to the normal distribution and to each other, and because they are will turn out to
be the important distributions when doing inferential statistics later in this book, I think it’s useful to do a little demonstration using
R, just to “convince ourselves” that these distributions really are related to each other in the way that they’re supposed to be. First,
we’ll use the rnorm()  function to generate 1000 normally-distributed observations:

normal.a <- rnorm( n=1000, mean=0, sd=1 )   
print(head(normal.a))  

## [1] -0.4728528 -0.4483396 -0.5134192  2.1540478 -0.5104661  0.3013308

So the normal.a  variable contains 1000 numbers that are normally distributed, and have mean 0 and standard deviation 1, and
the actual print out of these numbers goes on for rather a long time. Note that, because the default parameters of the rnorm()
function are mean=0  and sd=1 , I could have shortened the command to rnorm( n=1000 ) . In any case, what we can
do is use the hist()  function to draw a histogram of the data, like so:
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hist( normal.a ) 

If you do this, you should see something similar to Figure ??. Your plot won’t look quite as pretty as the one in the figure, of
course, because I’ve played around with all the formatting (see Chapter 6), and I’ve also plotted the true distribution of the data as a
solid black line (i.e., a normal distribution with mean 0 and standard deviation 1) so that you can compare the data that we just
generated to the true distribution.
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In the previous example all I did was generate lots of normally distributed observations using rnorm()  and then compared
those to the true probability distribution in the figure (using dnorm()  to generate the black line in the figure, but I didn’t show
the commmands for that). Now let’s try something trickier. We’ll try to generate some observations that follow a chi-square
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distribution with 3 degrees of freedom, but instead of using rchisq() , we’ll start with variables that are normally distributed,
and see if we can exploit the known relationships between normal and chi-square distributions to do the work. As I mentioned
earlier, a chi-square distribution with k degrees of freedom is what you get when you take k normally-distributed variables (with
mean 0 and standard deviation 1), square them, and add them up. Since we want a chi-square distribution with 3 degrees of
freedom, we’ll need to supplement our normal.a  data with two more sets of normally-distributed observations, imaginatively
named normal.b  and normal.c :

normal.b <- rnorm( n=1000 )  # another set of normally distributed data 
normal.c <- rnorm( n=1000 )  # and another!

Now that we’ve done that, the theory says we should square these and add them together, like this

chi.sq.3 <- (normal.a)^2 + (normal.b)^2 + (normal.c)^2

and the resulting chi.sq.3  variable should contain 1000 observations that follow a chi-square distribution with 3 degrees of
freedom. You can use the hist()  function to have a look at these observations yourself, using a command like this,

hist( chi.sq.3 )

and you should obtain a result that looks pretty similar to the chi-square plot in Figure ??. Once again, the plot that I’ve drawn is a
little fancier: in addition to the histogram of chi.sq.3 , I’ve also plotted a chi-square distribution with 3 degrees of freedom.
It’s pretty clear that – even though I used rnorm()  to do all the work rather than rchisq()  – the observations stored in the 
chi.sq.3  variable really do follow a chi-square distribution. Admittedly, this probably doesn’t seem all that interesting right

now, but later on when we start encountering the chi-square distribution in Chapter 12, it will be useful to understand the fact that
these distributions are related to one another.

We can extend this demonstration to the t distribution and the F distribution. Earlier, I implied that the t distribution is related to the
normal distribution when the standard deviation is unknown. That’s certainly true, and that’s the what we’ll see later on in Chapter
13, but there’s a somewhat more precise relationship between the normal, chi-square and t distributions. Suppose we “scale” our
chi-square data by dividing it by the degrees of freedom, like so

scaled.chi.sq.3 <- chi.sq.3 / 3
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We then take a set of normally distributed variables and divide them by (the square root of) our scaled chi-square variable which
had df=3, and the result is a t distribution with 3 degrees of freedom:

If we plot the histogram of t.3 , we end up with something that looks very similar to the t distribution in Figure ??. Similarly,
we can obtain an F distribution by taking the ratio between two scaled chi-square distributions. Suppose, for instance, we wanted to
generate data from an F distribution with 3 and 20 degrees of freedom. We could do this using df() , but we could also do the
same thing by generating two chi-square variables, one with 3 degrees of freedom, and the other with 20 degrees of freedom. As
the example with chi.sq.3  illustrates, we can actually do this using rnorm()  if we really want to, but this time I’ll take a
short cut:

The resulting F.3.20  variable does in fact store variables that follow an F distribution with 3 and 20 degrees of freedom. This
is illustrated in Figure ??, which plots the histgram of the observations stored in F.3.20  against the true F distribution with
df1=3 and df2=20. Again, they match.

Okay, time to wrap this section up. We’ve seen three new distributions: χ , t and F. They’re all continuous distributions, and they’re
all closely related to the normal distribution. I’ve talked a little bit about the precise nature of this relationship, and shown you
some R commands that illustrate this relationship. The key thing for our purposes, however, is not that you have a deep
understanding of all these different distributions, nor that you remember the precise relationships between them. The main thing is
that you grasp the basic idea that these distributions are all deeply related to one another, and to the normal distribution. Later on in
this book, we’re going to run into data that are normally distributed, or at least assumed to be normally distributed. What I want
you to understand right now is that, if you make the assumption that your data are normally distributed, you shouldn’t be surprised
to see χ , t and F distributions popping up all over the place when you start trying to do your data analysis.

This page titled 7.6: Other Useful Distributions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

9.6: Other Useful Distributions by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.

normal.d <- rnorm( n=1000 )  # yet another set of normally distributed data 
t.3 <- normal.d / sqrt( scaled.chi.sq.3 )  # divide by square root of scaled chi-squa

chi.sq.20 <- rchisq( 1000, 20)  # generate chi square data with df = 20... 
scaled.chi.sq.20 <- chi.sq.20 / 20  # scale the chi square variable... 
F.3.20 <-  scaled.chi.sq.3  / scaled.chi.sq.20 # take the ratio of the two chi square
hist( F.3.20 ) # ... and draw a picture
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7.7: Summary
In this chapter we’ve talked about probability. We’ve talked what probability means, and why statisticians can’t agree on what it
means. We talked about the rules that probabilities have to obey. And we introduced the idea of a probability distribution, and spent
a good chunk of the chapter talking about some of the more important probability distributions that statisticians work with. The
section by section breakdown looks like this:

Probability theory versus statistics (Section 9.1)
Frequentist versus Bayesian views of probability (Section 9.2)
Basics of probability theory (Section 9.3)
Binomial distribution (Section 9.4), normal distribution (Section 9.5), and others (Section 9.6)

As you’d expect, my coverage is by no means exhaustive. Probability theory is a large branch of mathematics in its own right,
entirely separate from its application to statistics and data analysis. As such, there are thousands of books written on the subject and
universities generally offer multiple classes devoted entirely to probability theory. Even the “simpler” task of documenting standard
probability distributions is a big topic. I’ve described five standard probability distributions in this chapter, but sitting on my
bookshelf I have a 45-chapter book called “Statistical Distributions” Evans, Hastings, and Peacock (2011) that lists a lot more than
that. Fortunately for you, very little of this is necessary. You’re unlikely to need to know dozens of statistical distributions when
you go out and do real world data analysis, and you definitely won’t need them for this book, but it never hurts to know that there’s
other possibilities out there.

Picking up on that last point, there’s a sense in which this whole chapter is something of a digression. Many undergraduate
psychology classes on statistics skim over this content very quickly (I know mine did), and even the more advanced classes will
often “forget” to revisit the basic foundations of the field. Most academic psychologists would not know the difference between
probability and density, and until recently very few would have been aware of the difference between Bayesian and frequentist
probability. However, I think it’s important to understand these things before moving onto the applications. For example, there are a
lot of rules about what you’re “allowed” to say when doing statistical inference, and many of these can seem arbitrary and weird.
However, they start to make sense if you understand that there is this Bayesian/frequentist distinction. Similarly, in Chapter 13
we’re going to talk about something called the t-test, and if you really want to have a grasp of the mechanics of the t-test it really
helps to have a sense of what a t-distribution actually looks like. You get the idea, I hope.
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142. This doesn’t mean that frequentists can’t make hypothetical statements, of course; it’s just that if you want to make a statement
about probability, then it must be possible to redescribe that statement in terms of a sequence of potentially observable events,
and the relative frequencies of different outcomes that appear within that sequence.

143. Note that the term “success” is pretty arbitrary, and doesn’t actually imply that the outcome is something to be desired. If θ
referred to the probability that any one passenger gets injured in a bus crash, I’d still call it the success probability, but that
doesn’t mean I want people to get hurt in bus crashes!

144. Since computers are deterministic machines, they can’t actually produce truly random behaviour. Instead, what they do is take
advantage of various mathematical functions that share a lot of similarities with true randomness. What this means is that any
random numbers generated on a computer are pseudorandom, and the quality of those numbers depends on the specific method
used. By default R uses the “Mersenne twister” method. In any case, you can find out more by typing ?Random , but as usual
the R help files are fairly dense.

145. In practice, the normal distribution is so handy that people tend to use it even when the variable isn’t actually continuous. As
long as there are enough categories (e.g., Likert scale responses to a questionnaire), it’s pretty standard practice to use the
normal distribution as an approximation. This works out much better in practice than you’d think.

146. For those readers who know a little calculus, I’ll give a slightly more precise explanation. In the same way that probabilities are
non-negative numbers that must sum to 1, probability densities are non-negative numbers that must integrate to 1 (where the
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integral is taken across all possible values of X). To calculate the probability that X falls between a and b we calculate the
definite integral of the density function over the corresponding range, . If you don’t remember or never learned
calculus, don’t worry about this. It’s not needed for this book.

This page titled 7.7: Summary is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via source
content that was edited to the style and standards of the LibreTexts platform.
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7.8: Statistical Literacy

Learning to use the Base Rate information to compute probability

School shooting: The warning signs

This webpage gives the FBI list of warning signs for school shooters.

Do you think it is likely that someone showing a majority of these signs would actually shoot
people in school?
Solution

Fortunately the vast majority of students do not become shooters. It is necessary to take this
base rate information into account in order to compute the probability that any given student
will be a shooter. The warning signs are unlikely to be sufficiently predictive to warrant the
conclusion that a student will become a shooter. If an action is taken on the basis of these
warning signs, it is likely that the student involved would never have become a shooter even
without the action.
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7.E: Probability (Exercises)
You may want to use the Binomial Calculator for some of these exercises.

General Questions

Q1
a. What is the probability of rolling a pair of dice and obtaining a total score of  or more?
b. What is the probability of rolling a pair of dice and obtaining a total score of ? (relevant section)

Q2

A box contains four black pieces of cloth, two striped pieces, and six dotted pieces. A piece is selected randomly and then placed
back in the box. A second piece is selected randomly. What is the probability that:

a. both pieces are dotted?
b. the first piece is black and the second piece is dotted?
c. one piece is black and one piece is striped? 

(relevant section)

Q3

A card is drawn at random from a deck.

a. What is the probability that it is an ace or a king?
b. What is the probability that it is either a red card or a black card? (relevant section)

Q4

The probability that you will win a game is .

a. If you play the game  times, what is the most likely number of wins?
b. What are the mean and standard deviation of a binomial distribution with  and ? (relevant section)

Q5

A fair coin is flipped  times. What is the probability of getting exactly  heads? (relevant section)

Q6

When Susan and Jessica play a card game, Susan wins  of the time. If they play  games, what is the probability that Jessica
will have won more games than Susan? (relevant section)

Q7

You flip a coin three times.

a. What is the probability of getting heads on only one of your flips?
b. What is the probability of getting heads on at least one flip? (relevant section & relevant section)

Q8

A test correctly identifies a disease in  of people who have it. It correctly identifies no disease in  of people who do not
have it. In the population,  of the people have the disease. What is the probability that you have the disease if you tested
positive? (relevant section)

Q9

A jar contains  blue marbles,  red marbles,  green marbles, and  yellow marble. Two marbles are chosen (without
replacement).

a. What is the probability that one will be green and the other red?
b. What is the probability that one will be blue and the other yellow? (relevant section)

9

7
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Q10

You roll a fair die five times, and you get a  each time. What is the probability that you get a  on the next roll? (relevant section)

Q11

You win a game if you roll a die and get a  or a . You play this game  times.

a. What is the probability that you win between  and  times (inclusive)?
b. What is the probability that you will win the game at least  times?
c. What is the probability that you will win the game at least  times?
d. What is the most likely number of wins.
e. What is the probability of obtaining the number of wins in d? 

(relevant section)

Q12

In a baseball game, Tommy gets a hit  of the time when facing this pitcher. Joey gets a hit  of the time. They are both
coming up to bat this inning.

a. What is the probability that Joey or Tommy (but not both) will get a hit?
b. What is the probability that neither player gets a hit?
c. What is the probability that they both get a hit? (relevant section)

Q13

An unfair coin has a probability of coming up heads of . The coin is flipped  times. What is the probability it will come up
heads  or fewer times? (Give answer to at least  decimal places). (relevant section)

Q14

You draw two cards from a deck, what is the probability that

a. both of them are face cards (king, queen, or jack)?
b. What is the probability that you draw two cards from a deck and both of them are hearts? (relevant section)

Q15

True/False: You are more likely to get a pattern of  than  when you flip a coin  times.
(relevant section)

Q16

True/False: Suppose that at your regular physical exam you test positive for a relatively rare disease. You will need to start taking
medicine if you have the disease, so you ask your doctor about the accuracy of the test. It turns out that the test is  accurate.
The probability that you have Disease  is therefore  and the probability that you do not have it is . (relevant section)

Questions from Case Studies

The following questions are from the Diet and Health (DH) case study.

Q17

(DH#1)

a. What percentage of people on the AHA diet had some sort of illness or death?
b. What is the probability that if you randomly selected a person on the AHA diet, he or she would have some sort of illness or

death? (relevant section)
c. If  people on the AHA diet are chosen at random, what is the probability that they will all be healthy? (relevant section)

Q18

(DH#2)

a. What percentage of people on the Mediterranean diet had some sort of illness or death?

6 6
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b. What is the probability that if you randomly selected a person on the Mediterranean diet, he or she would have some sort of
illness or death? (relevant section)

c. What is the probability that if you randomly selected a person on the Mediterranean diet, he or she would have cancer?
(relevant section)

d. If you randomly select five people from the Mediterranean diet, what is the probability that they would all be healthy? (relevant
section)

The following questions are from (reproduced with permission) 

 
Visit the site

Q19

Five faces of a fair die are painted black, and one face is painted white. The die is rolled six times. Which of the following results is
more likely? 
a. Black side up on five of the rolls; white side up on the other roll 
b. Black side up on all six rolls 
c. a and b are equally likely

Q20

One of the items on the student survey for an introductory statistics course was "Rate your intelligence on a scale of  to ." The
distribution of this variable for the  women in the class is presented below. What is the probability of randomly selecting a
woman from the class who has an intelligence rating that is LESS than seven ( )?

Intelligence Rating Count

5 12

6 24

7 38

8 23

9 2

10 1

a. 

b. 

c. 

d. 

e. None of the above.

Q21

You roll  fair six-sided dice. Which of the following outcomes is most likely to occur on the next roll?

a. Getting double .
b. Getting a 3 and a .
c. They are equally likely. Explain your choice.

1 10

100

7

(12+24)/100 = 0.36

(12+24+38)/100 = 0.74

38/100 = 0.38

(23+2+1)/100 = 0.26
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Q22

If Tahnee flips a coin  times, and records the results (Heads or Tails), which outcome below is more likely to occur,  or ?
Explain your choice.

Throw
Number

1 2 3 4 5 6 7 8 9 10

A H T T H T H H T T T

B H T H T H T H T H T

Q23

A bowl has  wrapped hard candies in it.  are yellow,  are red, and  are blue. They are well mixed up in the bowl. Jenny
pulls out a handful of  candies, counts the number of reds, and tells her teacher. The teacher writes the number of red candies on
a list. Then, Jenny puts the candies back into the bowl, and mixes them all up again. Four of Jenny's classmates, Jack, Julie, Jason,
and Jerry do the same thing. They each pick ten candies, count the reds, and the teacher writes down the number of reds. Then they
put the candies back and mix them up again each time. The teacher's list for the number of reds is most likely to be (please select
one): 
a.  
b.  
c.  
d.  
e. 

Q24

An insurance company writes policies for a large number of newly-licensed drivers each year. Suppose  of these are low-risk
drivers,  are moderate risk, and  are high risk. The company has no way to know which group any individual driver falls
in when it writes the policies. None of the low-risk drivers will have an at-fault accident in the next year, but  of the moderate-
risk and  of the high-risk drivers will have such an accident. If a driver has an at-fault accident in the next year, what is the
probability that he or she is high-risk?

Q25

You are to participate in an exam for which you had no chance to study, and for that reason cannot do anything but guess for each
question (all questions being of the multiple choice type, so the chance of guessing the correct answer for each question is , 
being the number of options per question; so in case of a -choice question, your chance is ). Your instructor offers you the
opportunity to choose amongst the following exam formats:

a.  questions of the -choice type; you pass when  or more answers are correct
b.  questions of the -choice type; you pass when  or more answers are correct
c.  questions of the -choice type; you pass when  or more answers are correct.

Rank the three exam formats according to their attractiveness. It should be clear that the format with the highest probability to pass
is the most attractive format. Which would you choose and why?

Q26

Consider the question of whether the home team wins more than half of its games in the National Basketball Association. Suppose
that you study a simple random sample of  professional basketball games and find that  of them are won by the home team.

a. Assuming that there is no home court advantage and that the home team therefore wins  of its games in the long run,
determine the probability that the home team would win  or more of its games in a simple random sample of  games.

b. Does the sample information (that  of a random sample of  games are won by the home team) provide strong evidence that
the home team wins more than half of its games in the long run? Explain.
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Q27

A refrigerator contains  apples,  oranges,  bananas,  pears,  peaches,  plums, and  mangos.

a. Imagine you stick your hand in this refrigerator and pull out a piece of fruit at random. What is the probability that you will pull
out a pear?

b. Imagine now that you put your hand in the refrigerator and pull out a piece of fruit. You decide you do not want to eat that fruit
so you put it back into the refrigerator and pull out another piece of fruit. What is the probability that the first piece of fruit you
pull out is a banana and the second piece you pull out is an apple?

c. What is the probability that you stick your hand in the refrigerator one time and pull out a mango or an orange?

Select Answers

S1
a. 

S2
b. 

S3
a. 

S4
b. mean = ; SD = 

S5

S7
b. 

S9
a. 

S11
b. 

S12
c. 

S14
b. 

S17
c. 

S18
b. 
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CHAPTER OVERVIEW

8: Estimating Unknown Quantities from a Sample
At the start of the last chapter I highlighted the critical distinction between descriptive statistics and inferential statistics. As
discussed in Chapter 5, the role of descriptive statistics is to concisely summarise what we do know. In contrast, the purpose of
inferential statistics is to “learn what we do not know from what we do”. Now that we have a foundation in probability theory, we
are in a good position to think about the problem of statistical inference. What kinds of things would we like to learn about? And
how do we learn them? These are the questions that lie at the heart of inferential statistics, and they are traditionally divided into
two “big ideas”: estimation and hypothesis testing. The goal in this chapter is to introduce the first of these big ideas, estimation
theory, but I’m going to witter on about sampling theory first because estimation theory doesn’t make sense until you understand
sampling. As a consequence, this chapter divides naturally into two parts Sections 10.1 through 10.3 are focused on sampling
theory, and Sections 10.4 and 10.5 make use of sampling theory to discuss how statisticians think about estimation.

8.1: Samples, Populations and Sampling
8.2: The Law of Large Numbers
8.3: Sampling Distributions and the Central Limit Theorem
8.4: Estimating Population Parameters
8.5: Estimating a Confidence Interval
8.6: Summary
8.7: Statistical Literacy
8.E: Estimation (Exercises)
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8.1: Samples, Populations and Sampling
In the prelude to Part I discussed the riddle of induction, and highlighted the fact that all learning requires you to make
assumptions. Accepting that this is true, our first task to come up with some fairly general assumptions about data that make sense.
This is where sampling theory comes in. If probability theory is the foundations upon which all statistical theory builds, sampling
theory is the frame around which you can build the rest of the house. Sampling theory plays a huge role in specifying the
assumptions upon which your statistical inferences rely. And in order to talk about “making inferences” the way statisticians think
about it, we need to be a bit more explicit about what it is that we’re drawing inferences from (the sample) and what it is that we’re
drawing inferences about (the population).

In almost every situation of interest, what we have available to us as researchers is a sample of data. We might have run experiment
with some number of participants; a polling company might have phoned some number of people to ask questions about voting
intentions; etc. Regardless: the data set available to us is finite, and incomplete. We can’t possibly get every person in the world to
do our experiment; a polling company doesn’t have the time or the money to ring up every voter in the country etc. In our earlier
discussion of descriptive statistics (Chapter 5, this sample was the only thing we were interested in. Our only goal was to find ways
of describing, summarising and graphing that sample. This is about to change.

8.1.1 Defining a population
A sample is a concrete thing. You can open up a data file, and there’s the data from your sample. A population, on the other hand,
is a more abstract idea. It refers to the set of all possible people, or all possible observations, that you want to draw conclusions
about, and is generally much bigger than the sample. In an ideal world, the researcher would begin the study with a clear idea of
what the population of interest is, since the process of designing a study and testing hypotheses about the data that it produces does
depend on the population about which you want to make statements. However, that doesn’t always happen in practice: usually the
researcher has a fairly vague idea of what the population is and designs the study as best he/she can on that basis.

Sometimes it’s easy to state the population of interest. For instance, in the “polling company” example that opened the chapter, the
population consisted of all voters enrolled at the a time of the study – millions of people. The sample was a set of 1000 people who
all belong to that population. In most situations the situation is much less simple. In a typical a psychological experiment,
determining the population of interest is a bit more complicated. Suppose I run an experiment using 100 undergraduate students as
my participants. My goal, as a cognitive scientist, is to try to learn something about how the mind works. So, which of the
following would count as “the population”:

All of the undergraduate psychology students at the University of Adelaide?
Undergraduate psychology students in general, anywhere in the world?
Australians currently living?
Australians of similar ages to my sample?
Anyone currently alive?
Any human being, past, present or future?
Any biological organism with a sufficient degree of intelligence operating in a terrestrial environment?
Any intelligent being?

Each of these defines a real group of mind-possessing entities, all of which might be of interest to me as a cognitive scientist, and
it’s not at all clear which one ought to be the true population of interest. As another example, consider the Wellesley-Croker game
that we discussed in the prelude. The sample here is a specific sequence of 12 wins and 0 losses for Wellesley. What is the
population?

All outcomes until Wellesley and Croker arrived at their destination?
All outcomes if Wellesley and Croker had played the game for the rest of their lives?
All outcomes if Wellseley and Croker lived forever and played the game until the world ran out of hills?
All outcomes if we created an infinite set of parallel universes and the Wellesely/Croker pair made guesses about the same 12
hills in each universe?

Again, it’s not obvious what the population is.
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Figure 10.1: Simple random sampling without replacement from a finite population

Irrespective of how I define the population, the critical point is that the sample is a subset of the population, and our goal is to use
our knowledge of the sample to draw inferences about the properties of the population. The relationship between the two depends
on the procedure by which the sample was selected. This procedure is referred to as a sampling method, and it is important to
understand why it matters.

To keep things simple, let’s imagine that we have a bag containing 10 chips. Each chip has a unique letter printed on it, so we can
distinguish between the 10 chips. The chips come in two colours, black and white. This set of chips is the population of interest,
and it is depicted graphically on the left of Figure 10.1. As you can see from looking at the picture, there are 4 black chips and 6
white chips, but of course in real life we wouldn’t know that unless we looked in the bag. Now imagine you run the following
“experiment”: you shake up the bag, close your eyes, and pull out 4 chips without putting any of them back into the bag. First out
comes the a chip (black), then the c chip (white), then j (white) and then finally b (black). If you wanted, you could then put all the
chips back in the bag and repeat the experiment, as depicted on the right hand side of Figure 10.1. Each time you get different
results, but the procedure is identical in each case. The fact that the same procedure can lead to different results each time, we refer
to it as a random process.  However, because we shook the bag before pulling any chips out, it seems reasonable to think that
every chip has the same chance of being selected. A procedure in which every member of the population has the same chance of
being selected is called a simple random sample. The fact that we did not put the chips back in the bag after pulling them out
means that you can’t observe the same thing twice, and in such cases the observations are said to have been sampled without
replacement.

To help make sure you understand the importance of the sampling procedure, consider an alternative way in which the experiment
could have been run. Suppose that my 5-year old son had opened the bag, and decided to pull out four black chips without putting
any of them back in the bag. This biased sampling scheme is depicted in Figure 10.2. Now consider the evidentiary value of seeing
4 black chips and 0 white chips. Clearly, it depends on the sampling scheme, does it not? If you know that the sampling scheme is
biased to select only black chips, then a sample that consists of only black chips doesn’t tell you very much about the population!
For this reason, statisticians really like it when a data set can be considered a simple random sample, because it makes the data
analysis much easier.
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Figure 10.2: Biased sampling without replacement from a finite population

Figure 10.3: Simple random sampling with replacement from a finite population

A third procedure is worth mentioning. This time around we close our eyes, shake the bag, and pull out a chip. This time, however,
we record the observation and then put the chip back in the bag. Again we close our eyes, shake the bag, and pull out a chip. We
then repeat this procedure until we have 4 chips. Data sets generated in this way are still simple random samples, but because we
put the chips back in the bag immediately after drawing them it is referred to as a sample with replacement. The difference
between this situation and the first one is that it is possible to observe the same population member multiple times, as illustrated in
Figure 10.3.

In my experience, most psychology experiments tend to be sampling without replacement, because the same person is not allowed
to participate in the experiment twice. However, most statistical theory is based on the assumption that the data arise from a simple
random sample with replacement. In real life, this very rarely matters. If the population of interest is large (e.g., has more than 10
entities!) the difference between sampling with- and without- replacement is too small to be concerned with. The difference
between simple random samples and biased samples, on the other hand, is not such an easy thing to dismiss.

8.1.2 Most samples are not simple random samples
As you can see from looking at the list of possible populations that I showed above, it is almost impossible to obtain a simple
random sample from most populations of interest. When I run experiments, I’d consider it a minor miracle if my participants turned
out to be a random sampling of the undergraduate psychology students at Adelaide university, even though this is by far the
narrowest population that I might want to generalise to. A thorough discussion of other types of sampling schemes is beyond the
scope of this book, but to give you a sense of what’s out there I’ll list a few of the more important ones:

Stratified sampling. Suppose your population is (or can be) divided into several different subpopulations, or strata. Perhaps
you’re running a study at several different sites, for example. Instead of trying to sample randomly from the population as a
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whole, you instead try to collect a separate random sample from each of the strata. Stratified sampling is sometimes easier to do
than simple random sampling, especially when the population is already divided into the distinct strata. It can also be more
efficient that simple random sampling, especially when some of the subpopulations are rare. For instance, when studying
schizophrenia it would be much better to divide the population into two  strata (schizophrenic and not-schizophrenic), and
then sample an equal number of people from each group. If you selected people randomly, you would get so few schizophrenic
people in the sample that your study would be useless. This specific kind of of stratified sampling is referred to as oversampling
because it makes a deliberate attempt to over-represent rare groups.
Snowball sampling is a technique that is especially useful when sampling from a “hidden” or hard to access population, and is
especially common in social sciences. For instance, suppose the researchers want to conduct an opinion poll among transgender
people. The research team might only have contact details for a few trans folks, so the survey starts by asking them to
participate (stage 1). At the end of the survey, the participants are asked to provide contact details for other people who might
want to participate. In stage 2, those new contacts are surveyed. The process continues until the researchers have sufficient data.
The big advantage to snowball sampling is that it gets you data in situations that might otherwise be impossible to get any. On
the statistical side, the main disadvantage is that the sample is highly non-random, and non-random in ways that are difficult to
address. On the real life side, the disadvantage is that the procedure can be unethical if not handled well, because hidden
populations are often hidden for a reason. I chose transgender people as an example here to highlight this: if you weren’t careful
you might end up outing people who don’t want to be outed (very, very bad form), and even if you don’t make that mistake it
can still be intrusive to use people’s social networks to study them. It’s certainly very hard to get people’s informed consent
before contacting them, yet in many cases the simple act of contacting them and saying “hey we want to study you” can be
hurtful. Social networks are complex things, and just because you can use them to get data doesn’t always mean you should.
Convenience sampling is more or less what it sounds like. The samples are chosen in a way that is convenient to the researcher,
and not selected at random from the population of interest. Snowball sampling is one type of convenience sampling, but there
are many others. A common example in psychology are studies that rely on undergraduate psychology students. These samples
are generally non-random in two respects: firstly, reliance on undergraduate psychology students automatically means that your
data are restricted to a single subpopulation. Secondly, the students usually get to pick which studies they participate in, so the
sample is a self selected subset of psychology students not a randomly selected subset. In real life, most studies are convenience
samples of one form or another. This is sometimes a severe limitation, but not always.

8.1.3 much does it matter if you don’t have a simple random sample?
Okay, so real world data collection tends not to involve nice simple random samples. Does that matter? A little thought should
make it clear to you that it can matter if your data are not a simple random sample: just think about the difference between Figures
10.1 and 10.2. However, it’s not quite as bad as it sounds. Some types of biased samples are entirely unproblematic. For instance,
when using a stratified sampling technique you actually know what the bias is because you created it deliberately, often to increase
the effectiveness of your study, and there are statistical techniques that you can use to adjust for the biases you’ve introduced (not
covered in this book!). So in those situations it’s not a problem.

More generally though, it’s important to remember that random sampling is a means to an end, not the end in itself. Let’s assume
you’ve relied on a convenience sample, and as such you can assume it’s biased. A bias in your sampling method is only a problem
if it causes you to draw the wrong conclusions. When viewed from that perspective, I’d argue that we don’t need the sample to be
randomly generated in every respect: we only need it to be random with respect to the psychologically-relevant phenomenon of
interest. Suppose I’m doing a study looking at working memory capacity. In study 1, I actually have the ability to sample randomly
from all human beings currently alive, with one exception: I can only sample people born on a Monday. In study 2, I am able to
sample randomly from the Australian population. I want to generalise my results to the population of all living humans. Which
study is better? The answer, obviously, is study 1. Why? Because we have no reason to think that being “born on a Monday” has
any interesting relationship to working memory capacity. In contrast, I can think of several reasons why “being Australian” might
matter. Australia is a wealthy, industrialised country with a very well-developed education system. People growing up in that
system will have had life experiences much more similar to the experiences of the people who designed the tests for working
memory capacity. This shared experience might easily translate into similar beliefs about how to “take a test”, a shared assumption
about how psychological experimentation works, and so on. These things might actually matter. For instance, “test taking” style
might have taught the Australian participants how to direct their attention exclusively on fairly abstract test materials relative to
people that haven’t grown up in a similar environment; leading to a misleading picture of what working memory capacity is.
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There are two points hidden in this discussion. Firstly, when designing your own studies, it’s important to think about what
population you care about, and try hard to sample in a way that is appropriate to that population. In practice, you’re usually forced
to put up with a “sample of convenience” (e.g., psychology lecturers sample psychology students because that’s the least expensive
way to collect data, and our coffers aren’t exactly overflowing with gold), but if so you should at least spend some time thinking
about what the dangers of this practice might be.

Secondly, if you’re going to criticise someone else’s study because they’ve used a sample of convenience rather than laboriously
sampling randomly from the entire human population, at least have the courtesy to offer a specific theory as to how this might have
distorted the results. Remember, everyone in science is aware of this issue, and does what they can to alleviate it. Merely pointing
out that “the study only included people from group BLAH” is entirely unhelpful, and borders on being insulting to the researchers,
who are of course aware of the issue. They just don’t happen to be in possession of the infinite supply of time and money required
to construct the perfect sample. In short, if you want to offer a responsible critique of the sampling process, then be helpful.
Rehashing the blindingly obvious truisms that I’ve been rambling on about in this section isn’t helpful.

8.1.4 Population parameters and sample statistics

Okay. Setting aside the thorny methodological issues associated with obtaining a random sample and my rather unfortunate
tendency to rant about lazy methodological criticism, let’s consider a slightly different issue. Up to this point we have been talking
about populations the way a scientist might. To a psychologist, a population might be a group of people. To an ecologist, a
population might be a group of bears. In most cases the populations that scientists care about are concrete things that actually exist
in the real world. Statisticians, however, are a funny lot. On the one hand, they are interested in real world data and real science in
the same way that scientists are. On the other hand, they also operate in the realm of pure abstraction in the way that
mathematicians do. As a consequence, statistical theory tends to be a bit abstract in how a population is defined. In much the same
way that psychological researchers operationalise our abstract theoretical ideas in terms of concrete measurements (Section 2.1,
statisticians operationalise the concept of a “population” in terms of mathematical objects that they know how to work with.
You’ve already come across these objects in Chapter 9: they’re called probability distributions.

The idea is quite simple. Let’s say we’re talking about IQ scores. To a psychologist, the population of interest is a group of actual
humans who have IQ scores. A statistician “simplifies” this by operationally defining the population as the probability distribution
depicted in Figure ??. IQ tests are designed so that the average IQ is 100, the standard deviation of IQ scores is 15, and the
distribution of IQ scores is normal. These values are referred to as the population parameters because they are characteristics of
the entire population. That is, we say that the population mean μ is 100, and the population standard deviation σ is 15.

Figure 10.4: The population distribution of IQ scores (panel a) and two samples drawn randomly from it. In panel b we have a
sample of 100 observations, and panel c we have a sample of 10,000 observations.
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Figure 10.4: The population distribution of IQ scores (panel a) and two samples drawn randomly from it. In panel b we have a
sample of 100 observations, and panel c we have a sample of 10,000 observations.

## [1] "n= 100 mean= 99.6064025956605 sd= 16.0047604703873"

Figure 10.4: The population distribution of IQ scores (panel a) and two samples drawn randomly from it. In panel b we have a
sample of 100 observations, and panel c we have a sample of 10,000 observations.

## [1] "n= 10000 mean= 100.096924966188 sd= 14.9554812898374"

Now suppose I run an experiment. I select 100 people at random and administer an IQ test, giving me a simple random sample
from the population. My sample would consist of a collection of numbers like this:

  106 101 98 80 74 ... 107 72 100

Each of these IQ scores is sampled from a normal distribution with mean 100 and standard deviation 15. So if I plot a histogram of
the sample, I get something like the one shown in Figure 10.4b. As you can see, the histogram is roughly the right shape, but it’s a
very crude approximation to the true population distribution shown in Figure 10.4a. When I calculate the mean of my sample, I get
a number that is fairly close to the population mean 100 but not identical. In this case, it turns out that the people in my sample
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have a mean IQ of 98.5, and the standard deviation of their IQ scores is 15.9. These sample statistics are properties of my data set,
and although they are fairly similar to the true population values, they are not the same. In general, sample statistics are the things
you can calculate from your data set, and the population parameters are the things you want to learn about. Later on in this chapter
I’ll talk about how you can estimate population parameters using your sample statistics (Section 10.4 and how to work out how
confident you are in your estimates (Section 10.5 but before we get to that there’s a few more ideas in sampling theory that you
need to know about.

This page titled 8.1: Samples, Populations and Sampling is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

10.1: Samples, Populations and Sampling by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.
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8.2: The Law of Large Numbers
In the previous section I showed you the results of one fictitious IQ experiment with a sample size of N=100. The results were
somewhat encouraging: the true population mean is 100, and the sample mean of 98.5 is a pretty reasonable approximation to it. In
many scientific studies that level of precision is perfectly acceptable, but in other situations you need to be a lot more precise. If we
want our sample statistics to be much closer to the population parameters, what can we do about it?

The obvious answer is to collect more data. Suppose that we ran a much larger experiment, this time measuring the IQs of 10,000
people. We can simulate the results of this experiment using R. In Section 9.5 I introduced the rnorm()  function, which
generates random numbers sampled from a normal distribution. For an experiment with a sample size of n = 10000 , and a
population with mean = 100  and sd = 15 , R produces our fake IQ data using these commands:

IQ <- rnorm(n = 10000, mean = 100, sd = 15) # generate IQ scores 
IQ <- round(IQ) # IQs are whole numbers! 
print(head(IQ))

## [1]  82  91 123 129 104  96

I can compute the mean IQ using the command mean(IQ)  and the standard deviation using the command sd(IQ) , and I
can draw a histgram using hist() . The histogram of this much larger sample is shown in Figure 10.4c. Even a moment’s
inspections makes clear that the larger sample is a much better approximation to the true population distribution than the smaller
one. This is reflected in the sample statistics: the mean IQ for the larger sample turns out to be 99.9, and the standard deviation is
15.1. These values are now very close to the true population.

I feel a bit silly saying this, but the thing I want you to take away from this is that large samples generally give you better
information. I feel silly saying it because it’s so bloody obvious that it shouldn’t need to be said. In fact, it’s such an obvious point
that when Jacob Bernoulli – one of the founders of probability theory – formalised this idea back in 1713, he was kind of a jerk
about it. Here’s how he described the fact that we all share this intuition:

For even the most stupid of men, by some instinct of nature, by himself and without any instruction (which is a remarkable thing), is
convinced that the more observations have been made, the less danger there is of wandering from one’s goal Stigler (1986)

Okay, so the passage comes across as a bit condescending (not to mention sexist), but his main point is correct: it really does feel
obvious that more data will give you better answers. The question is, why is this so? Not surprisingly, this intuition that we all share
turns out to be correct, and statisticians refer to it as the law of large numbers. The law of large numbers is a mathematical law that
applies to many different sample statistics, but the simplest way to think about it is as a law about averages. The sample mean is the
most obvious example of a statistic that relies on averaging (because that’s what the mean is… an average), so let’s look at that.
When applied to the sample mean, what the law of large numbers states is that as the sample gets larger, the sample mean tends to
get closer to the true population mean. Or, to say it a little bit more precisely, as the sample size “approaches” infinity (written as
N→∞) the sample mean approaches the population mean ( →μ).

I don’t intend to subject you to a proof that the law of large numbers is true, but it’s one of the most important tools for statistical
theory. The law of large numbers is the thing we can use to justify our belief that collecting more and more data will eventually
lead us to the truth. For any particular data set, the sample statistics that we calculate from it will be wrong, but the law of large
numbers tells us that if we keep collecting more data those sample statistics will tend to get closer and closer to the true population
parameters.

This page titled 8.2: The Law of Large Numbers is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

10.2: The Law of Large Numbers by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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8.3: Sampling Distributions and the Central Limit Theorem
The law of large numbers is a very powerful tool, but it’s not going to be good enough to answer all our questions. Among other
things, all it gives us is a “long run guarantee”. In the long run, if we were somehow able to collect an infinite amount of data, then
the law of large numbers guarantees that our sample statistics will be correct. But as John Maynard Keynes famously argued in
economics, a long run guarantee is of little use in real life:

[The] long run is a misleading guide to current affairs. In the long run we are all dead. Economists set themselves too easy, too
useless a task, if in tempestuous seasons they can only tell us, that when the storm is long past, the ocean is flat again. Keynes
(1923)

As in economics, so too in psychology and statistics. It is not enough to know that we will eventually arrive at the right answer
when calculating the sample mean. Knowing that an infinitely large data set will tell me the exact value of the population mean is
cold comfort when my actual data set has a sample size of N=100. In real life, then, we must know something about the behaviour
of the sample mean when it is calculated from a more modest data set!

8.3.1 Sampling distribution of the mean

With this in mind, let’s abandon the idea that our studies will have sample sizes of 10000, and consider a very modest experiment
indeed. This time around we’ll sample N=5 people and measure their IQ scores. As before, I can simulate this experiment in R
using the rnorm()  function:

> IQ.1 <- round( rnorm(n=5, mean=100, sd=15 )) 
> IQ.1 
[1]  90  82  94  99 110

The mean IQ in this sample turns out to be exactly 95. Not surprisingly, this is much less accurate than the previous experiment.
Now imagine that I decided to replicate the experiment. That is, I repeat the procedure as closely as possible: I randomly sample 5
new people and measure their IQ. Again, R allows me to simulate the results of this procedure:

> IQ.2 <- round( rnorm(n=5, mean=100, sd=15 )) 
> IQ.2 
[1]  78  88 111 111 117

This time around, the mean IQ in my sample is 101. If I repeat the experiment 10 times I obtain the results shown in Table ??, and
as you can see the sample mean varies from one replication to the next.

NANA Person.1 Person.2 Person.3 Person.4 Person.5 Sample.Mean caption

Replication 1 90 82 94 99 110 95.0

Ten
replications of
the IQ
experiment,
each with a
sample size of
N=5.

Replication 2 78 88 111 111 117 101.0

Ten
replications of
the IQ
experiment,
each with a
sample size of
N=5.
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NANA Person.1 Person.2 Person.3 Person.4 Person.5 Sample.Mean caption

Replication 3 111 122 91 98 86 101.6

Ten
replications of
the IQ
experiment,
each with a
sample size of
N=5.

Replication 4 98 96 119 99 107 103.8

Ten
replications of
the IQ
experiment,
each with a
sample size of
N=5.

Replication 5 105 113 103 103 98 104.4

Ten
replications of
the IQ
experiment,
each with a
sample size of
N=5.

Replication 6 81 89 93 85 114 92.4

Ten
replications of
the IQ
experiment,
each with a
sample size of
N=5.

Replication 7 100 93 108 98 133 106.4

Ten
replications of
the IQ
experiment,
each with a
sample size of
N=5.

Replication 8 107 100 105 117 85 102.8

Ten
replications of
the IQ
experiment,
each with a
sample size of
N=5.
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NANA Person.1 Person.2 Person.3 Person.4 Person.5 Sample.Mean caption

Replication 9 86 119 108 73 116 100.4

Ten
replications of
the IQ
experiment,
each with a
sample size of
N=5.

Replication 10 95 126 112 120 76 105.8

Ten
replications of
the IQ
experiment,
each with a
sample size of
N=

Now suppose that I decided to keep going in this fashion, replicating this “five IQ scores” experiment over and over again. Every
time I replicate the experiment I write down the sample mean. Over time, I’d be amassing a new data set, in which every
experiment generates a single data point. The first 10 observations from my data set are the sample means listed in Table ??, so my
data set starts out like this:

 95.0 101.0 101.6 103.8 104.4 ...

What if I continued like this for 10,000 replications, and then drew a histogram? Using the magical powers of R that’s exactly what
I did, and you can see the results in Figure 10.5. As this picture illustrates, the average of 5 IQ scores is usually between 90 and
110. But more importantly, what it highlights is that if we replicate an experiment over and over again, what we end up with is a
distribution of sample means! This distribution has a special name in statistics: it’s called the sampling distribution of the mean.

Sampling distributions are another important theoretical idea in statistics, and they’re crucial for understanding the behaviour of
small samples. For instance, when I ran the very first “five IQ scores” experiment, the sample mean turned out to be 95. What the
sampling distribution in Figure 10.5 tells us, though, is that the “five IQ scores” experiment is not very accurate. If I repeat the
experiment, the sampling distribution tells me that I can expect to see a sample mean anywhere between 80 and 120.
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Figure 10.5: The sampling distribution of the mean for the “five IQ scores experiment”. If you sample 5 people at random and
calculate their average IQ, you’ll almost certainly get a number between 80 and 120, even though there are quite a lot of
individuals who have IQs above 120 or below 80. For comparison, the black line plots the population distribution of IQ scores.

Figure 10.6: The sampling distribution of the maximum for the “five IQ scores experiment”. If you sample 5 people at random and
select the one with the highest IQ score, you’ll probably see someone with an IQ between 100 and 140.

8.3.2 Sampling distributions exist for any sample statistic!
One thing to keep in mind when thinking about sampling distributions is that any sample statistic you might care to calculate has a
sampling distribution. For example, suppose that each time I replicated the “five IQ scores” experiment I wrote down the largest IQ
score in the experiment. This would give me a data set that started out like this:

 110 117 122 119 113 ... 

Doing this over and over again would give me a very different sampling distribution, namely the sampling distribution of the
maximum. The sampling distribution of the maximum of 5 IQ scores is shown in Figure 10.6. Not surprisingly, if you pick 5 people
at random and then find the person with the highest IQ score, they’re going to have an above average IQ. Most of the time you’ll
end up with someone whose IQ is measured in the 100 to 140 range.
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8.3.3 central limit theorem
An illustration of the how sampling distribution of the mean depends on sample size. In each panel, I generated 10,000 samples of
IQ data, and calculated the mean IQ observed within each of these data sets. The histograms in these plots show the distribution of
these means (i.e., the sampling distribution of the mean). Each individual IQ score was drawn from a normal distribution with mean
100 and standard deviation 15, which is shown as the solid black line).

Figure 10.7: Each data set contained only a single observation, so the mean of each sample is just one person’s IQ score. As a
consequence, the sampling distribution of the mean is of course identical to the population distribution of IQ scores.

Figure 10.8: When we raise the sample size to 2, the mean of any one sample tends to be closer to the population mean than a one
person’s IQ score, and so the histogram (i.e., the sampling distribution) is a bit narrower than the population distribution.
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Figure 10.9: By the time we raise the sample size to 10, we can see that the distribution of sample means tend to be fairly tightly
clustered around the true population mean.

At this point I hope you have a pretty good sense of what sampling distributions are, and in particular what the sampling
distribution of the mean is. In this section I want to talk about how the sampling distribution of the mean changes as a function of
sample size. Intuitively, you already know part of the answer: if you only have a few observations, the sample mean is likely to be
quite inaccurate: if you replicate a small experiment and recalculate the mean you’ll get a very different answer. In other words, the
sampling distribution is quite wide. If you replicate a large experiment and recalculate the sample mean you’ll probably get the
same answer you got last time, so the sampling distribution will be very narrow. You can see this visually in Figures 10.7, 10.8 and
10.9: the bigger the sample size, the narrower the sampling distribution gets. We can quantify this effect by calculating the standard
deviation of the sampling distribution, which is referred to as the standard error. The standard error of a statistic is often denoted
SE, and since we’re usually interested in the standard error of the sample mean, we often use the acronym SEM. As you can see
just by looking at the picture, as the sample size N increases, the SEM decreases.

Okay, so that’s one part of the story. However, there’s something I’ve been glossing over so far. All my examples up to this point
have been based on the “IQ scores” experiments, and because IQ scores are roughly normally distributed, I’ve assumed that the
population distribution is normal. What if it isn’t normal? What happens to the sampling distribution of the mean? The remarkable
thing is this: no matter what shape your population distribution is, as N increases the sampling distribution of the mean starts to
look more like a normal distribution. To give you a sense of this, I ran some simulations using R. To do this, I started with the
“ramped” distribution shown in the histogram in Figure 10.10. As you can see by comparing the triangular shaped histogram to the
bell curve plotted by the black line, the population distribution doesn’t look very much like a normal distribution at all. Next, I used
R to simulate the results of a large number of experiments. In each experiment I took N=2 samples from this distribution, and then
calculated the sample mean. Figure ?? plots the histogram of these sample means (i.e., the sampling distribution of the mean for
N=2). This time, the histogram produces a ∩-shaped distribution: it’s still not normal, but it’s a lot closer to the black line than the
population distribution in Figure ??. When I increase the sample size to N=4, the sampling distribution of the mean is very close to
normal (Figure ??, and by the time we reach a sample size of N=8 it’s almost perfectly normal. In other words, as long as your
sample size isn’t tiny, the sampling distribution of the mean will be approximately normal no matter what your population
distribution looks like!
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 # needed for printing 
    width <- 6 
    height <- 6  
     
    # parameters of the beta 
    a <- 2 
    b <- 1 
     
    # mean and standard deviation of the beta 
    s <- sqrt( a*b / (a+b)^2 / (a+b+1) ) 
    m <- a / (a+b) 
     
    # define function to draw a plot 
    plotOne <- function(n,N=50000) { 
         
        # generate N random sample means of size n 
        X <- matrix(rbeta(n*N,a,b),n,N) 
        X <- colMeans(X) 
         
        # plot the data 
        hist( X, breaks=seq(0,1,.025), border="white", freq=FALSE, 
            col=ifelse(colour,emphColLight,emphGrey), 
            xlab="Sample Mean", ylab="", xlim=c(0,1.2), 
            main=paste("Sample Size =",n), axes=FALSE, 
            font.main=1, ylim=c(0,5) 
        ) 
        box() 
        axis(1) 
        #axis(2) 
         
        # plot the theoretical distribution 
        lines( x <- seq(0,1.2,.01), dnorm(x,m,s/sqrt(n)),  
            lwd=2, col="black", type="l" 
        ) 
    } 
     
    for( i in c(1,2,4,8)) { 
        plotOne(i)}

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36117?pdf


8.3.8 https://stats.libretexts.org/@go/page/36117

Figure 10.10: A demonstration of the central limit theorem. In panel a, we have a non-normal population distribution; and panels b-
d show the sampling distribution of the mean for samples of size 2,4 and 8, for data drawn from the distribution in panel a. As you
can see, even though the original population distribution is non-normal, the sampling distribution of the mean becomes pretty close
to normal by the time you have a sample of even 4 observations.

Figure 10.10: A demonstration of the central limit theorem. In panel a, we have a non-normal population distribution; and panels b-
d show the sampling distribution of the mean for samples of size 2,4 and 8, for data drawn from the distribution in panel a. As you
can see, even though the original population distribution is non-normal, the sampling distribution of the mean becomes pretty close
to normal by the time you have a sample of even 4 observations.
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Figure 10.10: A demonstration of the central limit theorem. In panel a, we have a non-normal population distribution; and panels b-
d show the sampling distribution of the mean for samples of size 2,4 and 8, for data drawn from the distribution in panel a. As you
can see, even though the original population distribution is non-normal, the sampling distribution of the mean becomes pretty close
to normal by the time you have a sample of even 4 observations.

On the basis of these figures, it seems like we have evidence for all of the following claims about the sampling distribution of the
mean:

The mean of the sampling distribution is the same as the mean of the population
The standard deviation of the sampling distribution (i.e., the standard error) gets smaller as the sample size increases
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The shape of the sampling distribution becomes normal as the sample size increases

As it happens, not only are all of these statements true, there is a very famous theorem in statistics that proves all three of them,
known as the central limit theorem. Among other things, the central limit theorem tells us that if the population distribution has
mean μ and standard deviation σ, then the sampling distribution of the mean also has mean μ, and the standard error of the mean is

Because we divide the population standard devation σ by the square root of the sample size N, the SEM gets smaller as the sample
size increases. It also tells us that the shape of the sampling distribution becomes normal.

This result is useful for all sorts of things. It tells us why large experiments are more reliable than small ones, and because it gives
us an explicit formula for the standard error it tells us how much more reliable a large experiment is. It tells us why the normal
distribution is, well, normal. In real experiments, many of the things that we want to measure are actually averages of lots of
different quantities (e.g., arguably, “general” intelligence as measured by IQ is an average of a large number of “specific” skills and
abilities), and when that happens, the averaged quantity should follow a normal distribution. Because of this mathematical law, the
normal distribution pops up over and over again in real data.

This page titled 8.3: Sampling Distributions and the Central Limit Theorem is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

10.3: Sampling Distributions and the Central Limit Theorem by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.
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8.4: Estimating Population Parameters
In all the IQ examples in the previous sections, we actually knew the population parameters ahead of time. As every undergraduate
gets taught in their very first lecture on the measurement of intelligence, IQ scores are defined to have mean 100 and standard
deviation 15. However, this is a bit of a lie. How do we know that IQ scores have a true population mean of 100? Well, we know
this because the people who designed the tests have administered them to very large samples, and have then “rigged” the scoring
rules so that their sample has mean 100. That’s not a bad thing of course: it’s an important part of designing a psychological
measurement. However, it’s important to keep in mind that this theoretical mean of 100 only attaches to the population that the test
designers used to design the tests. Good test designers will actually go to some lengths to provide “test norms” that can apply to
lots of different populations (e.g., different age groups, nationalities etc).

This is very handy, but of course almost every research project of interest involves looking at a different population of people to
those used in the test norms. For instance, suppose you wanted to measure the effect of low level lead poisoning on cognitive
functioning in Port Pirie, a South Australian industrial town with a lead smelter. Perhaps you decide that you want to compare IQ
scores among people in Port Pirie to a comparable sample in Whyalla, a South Australian industrial town with a steel refinery.
Regardless of which town you’re thinking about, it doesn’t make a lot of sense simply to assume that the true population mean IQ
is 100. No-one has, to my knowledge, produced sensible norming data that can automatically be applied to South Australian
industrial towns. We’re going to have to estimate the population parameters from a sample of data. So how do we do this?

8.4.1 Estimating the population mean
Suppose we go to Port Pirie and 100 of the locals are kind enough to sit through an IQ test. The average IQ score among these
people turns out to be  =98.5. So what is the true mean IQ for the entire population of Port Pirie? Obviously, we don’t know the
answer to that question. It could be 97.2, but if could also be 103.5. Our sampling isn’t exhaustive so we cannot give a definitive
answer. Nevertheless if I was forced at gunpoint to give a “best guess” I’d have to say 98.5. That’s the essence of statistical
estimation: giving a best guess.

In this example, estimating the unknown poulation parameter is straightforward. I calculate the sample mean, and I use that as my
estimate of the population mean. It’s pretty simple, and in the next section I’ll explain the statistical justification for this intuitive
answer. However, for the moment what I want to do is make sure you recognise that the sample statistic and the estimate of the
population parameter are conceptually different things. A sample statistic is a description of your data, whereas the estimate is a
guess about the population. With that in mind, statisticians often different notation to refer to them. For instance, if true population
mean is denoted μ, then we would use  to refer to our estimate of the population mean. In contrast, the sample mean is denoted 
or sometimes m. However, in simple random samples, the estimate of the population mean is identical to the sample mean: if I
observe a sample mean of  =98.5, then my estimate of the population mean is also =98.5. To help keep the notation clear, here’s
a handy table:

knitr::kable(data.frame(stringsAsFactors=FALSE, 
                   Symbol = c("$\\bar{X}$", "$\\mu$", "$\\hat{\\mu}$"), 
              What.is.it = c("Sample mean", "True population mean", 
                              "Estimate of the population mean"), 
   Do.we.know.what.it.is = c("Yes  calculated from the raw data", 
                              "Almost never known for sure", 
                              "Yes  identical to the sample mean")))

Symbol What.is.it Do.we.know.what.it.is

Sample mean Yes calculated from the raw data

μ True population mean Almost never known for sure

Estimate of the population mean Yes identical to the sample mean

151

X

¯

μ̂ X

¯

X

¯

μ

^

X

¯

μ

^

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36118?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/08%3A_Estimating_Unknown_Quantities_from_a_Sample/8.04%3A_Estimating_Population_Parameters


8.4.2 https://stats.libretexts.org/@go/page/36118

8.4.2 Estimating the population standard deviation
So far, estimation seems pretty simple, and you might be wondering why I forced you to read through all that stuff about sampling
theory. In the case of the mean, our estimate of the population parameter (i.e.  ) turned out to identical to the corresponding
sample statistic (i.e. ). However, that’s not always true. To see this, let’s have a think about how to construct an estimate of the
population standard deviation, which we’ll denote . What shall we use as our estimate in this case? Your first thought might be
that we could do the same thing we did when estimating the mean, and just use the sample statistic as our estimate. That’s almost
the right thing to do, but not quite.

Here’s why. Suppose I have a sample that contains a single observation. For this example, it helps to consider a sample where you
have no intutions at all about what the true population values might be, so let’s use something completely fictitious. Suppose the
observation in question measures the cromulence of my shoes. It turns out that my shoes have a cromulence of 20. So here’s my
sample:

20

This is a perfectly legitimate sample, even if it does have a sample size of N=1. It has a sample mean of 20, and because every
observation in this sample is equal to the sample mean (obviously!) it has a sample standard deviation of 0. As a description of the
sample this seems quite right: the sample contains a single observation and therefore there is no variation observed within the
sample. A sample standard deviation of s=0 is the right answer here. But as an estimate of the population standard deviation, it
feels completely insane, right? Admittedly, you and I don’t know anything at all about what “cromulence” is, but we know
something about data: the only reason that we don’t see any variability in the sample is that the sample is too small to display any
variation! So, if you have a sample size of N=1, it feels like the right answer is just to say “no idea at all”.

Notice that you don’t have the same intuition when it comes to the sample mean and the population mean. If forced to make a best
guess about the population mean, it doesn’t feel completely insane to guess that the population mean is 20. Sure, you probably
wouldn’t feel very confident in that guess, because you have only the one observation to work with, but it’s still the best guess you
can make.

Let’s extend this example a little. Suppose I now make a second observation. My data set now has N=2 observations of the
cromulence of shoes, and the complete sample now looks like this:

20, 22

This time around, our sample is just large enough for us to be able to observe some variability: two observations is the bare
minimum number needed for any variability to be observed! For our new data set, the sample mean is  =21, and the sample
standard deviation is s=1. What intuitions do we have about the population? Again, as far as the population mean goes, the best
guess we can possibly make is the sample mean: if forced to guess, we’d probably guess that the population mean cromulence is
21. What about the standard deviation? This is a little more complicated. The sample standard deviation is only based on two
observations, and if you’re at all like me you probably have the intuition that, with only two observations, we haven’t given the
population “enough of a chance” to reveal its true variability to us. It’s not just that we suspect that the estimate is wrong: after all,
with only two observations we expect it to be wrong to some degree. The worry is that the error is systematic. Specifically, we
suspect that the sample standard deviation is likely to be smaller than the population standard deviation.
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Figure 10.11: The sampling distribution of the sample standard deviation for a “two IQ scores” experiment. The true population
standard deviation is 15 (dashed line), but as you can see from the histogram, the vast majority of experiments will produce a much
smaller sample standard deviation than this. On average, this experiment would produce a sample standard deviation of only 8.5,
well below the true value! In other words, the sample standard deviation is a biased estimate of the population standard deviation.

This intuition feels right, but it would be nice to demonstrate this somehow. There are in fact mathematical proofs that confirm this
intuition, but unless you have the right mathematical background they don’t help very much. Instead, what I’ll do is use R to
simulate the results of some experiments. With that in mind, let’s return to our IQ studies. Suppose the true population mean IQ is
100 and the standard deviation is 15. I can use the rnorm()  function to generate the the results of an experiment in which I
measure N=2 IQ scores, and calculate the sample standard deviation. If I do this over and over again, and plot a histogram of these
sample standard deviations, what I have is the sampling distribution of the standard deviation. I’ve plotted this distribution in
Figure 10.11. Even though the true population standard deviation is 15, the average of the sample standard deviations is only 8.5.
Notice that this is a very different result to what we found in Figure 10.8 when we plotted the sampling distribution of the mean. If
you look at that sampling distribution, what you see is that the population mean is 100, and the average of the sample means is also
100.

Now let’s extend the simulation. Instead of restricting ourselves to the situation where we have a sample size of N=2, let’s repeat
the exercise for sample sizes from 1 to 10. If we plot the average sample mean and average sample standard deviation as a function
of sample size, you get the results shown in Figure 10.12. On the left hand side (panel a), I’ve plotted the average sample mean and
on the right hand side (panel b), I’ve plotted the average standard deviation. The two plots are quite different: on average, the
average sample mean is equal to the population mean. It is an unbiased estimator, which is essentially the reason why your best
estimate for the population mean is the sample mean.  The plot on the right is quite different: on average, the sample standard
deviation s is smaller than the population standard deviation σ. It is a biased estimator. In other words, if we want to make a “best
guess”  about the value of the population standard deviation σ, we should make sure our guess is a little bit larger than the sample
standard deviation s.
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Figure 10.12: An illustration of the fact that the sample mean is an unbiased estimator of the population mean (panel a), but the
sample standard deviation is a biased estimator of the population standard deviation (panel b). To generate the figure, I generated
10,000 simulated data sets with 1 observation each, 10,000 more with 2 observations, and so on up to a sample size of 10. Each
data set consisted of fake IQ data: that is, the data were normally distributed with a true population mean of 100 and standard
deviation 15. On average, the sample means turn out to be 100, regardless of sample size (panel a). However, the sample standard
deviations turn out to be systematically too small (panel b), especially for small sample sizes.

The fix to this systematic bias turns out to be very simple. Here’s how it works. Before tackling the standard deviation, let’s look at
the variance. If you recall from Section 5.2, the sample variance is defined to be the average of the squared deviations from the
sample mean. That is:

The sample variance s  is a biased estimator of the population variance σ . But as it turns out, we only need to make a tiny tweak to
transform this into an unbiased estimator. All we have to do is divide by N−1 rather than by N. If we do that, we obtain the
following formula:

This is an unbiased estimator of the population variance σ. Moreover, this finally answers the question we raised in Section 5.2.
Why did R give us slightly different answers when we used the var()  function? Because the var()  function calculates 
not s , that’s why. A similar story applies for the standard deviation. If we divide by N−1 rather than N, our estimate of the
population standard deviation becomes:

and when we use R’s built in standard deviation function sd() , what it’s doing is calculating , not s.

One final point: in practice, a lot of people tend to refer to  (i.e., the formula where we divide by N−1) as the sample standard
deviation. Technically, this is incorrect: the sample standard deviation should be equal to s (i.e., the formula where we divide by N).
These aren’t the same thing, either conceptually or numerically. One is a property of the sample, the other is an estimated
characteristic of the population. However, in almost every real life application, what we actually care about is the estimate of the
population parameter, and so people always report  rather than s. This is the right number to report, of course, it’s that people tend
to get a little bit imprecise about terminology when they write it up, because “sample standard deviation” is shorter than “estimated
population standard deviation”. It’s no big deal, and in practice I do the same thing everyone else does. Nevertheless, I think it’s
important to keep the two concepts separate: it’s never a good idea to confuse “known properties of your sample” with “guesses
about the population from which it came”. The moment you start thinking that s and  are the same thing, you start doing exactly
that.

To finish this section off, here’s another couple of tables to help keep things clear:
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Symbol What.is.it Do.we.know.what.it.is

s Sample standard deviation Yes - calculated from the raw data

σ Population standard deviation Almost never known for sure

Estimate of the population standard
deviation

Yes - but not the same as the sample
standard deviation

s Sample variance Yes - calculated from the raw data

σ Population variance Almost never known for sure

Estimate of the population variance
Yes - but not the same as the sample
variance

This page titled 8.4: Estimating Population Parameters is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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                              "Almost never known for sure", 
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                              "Yes - calculated from the raw data", 
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8.5: Estimating a Confidence Interval
Statistics means never having to say you’re certain – Unknown origin  but I’ve never found the original source.

Up to this point in this chapter, I’ve outlined the basics of sampling theory which statisticians rely on to make guesses about
population parameters on the basis of a sample of data. As this discussion illustrates, one of the reasons we need all this sampling
theory is that every data set leaves us with a some of uncertainty, so our estimates are never going to be perfectly accurate. The
thing that has been missing from this discussion is an attempt to quantify the amount of uncertainty that attaches to our estimate.
It’s not enough to be able guess that, say, the mean IQ of undergraduate psychology students is 115 (yes, I just made that number
up). We also want to be able to say something that expresses the degree of certainty that we have in our guess. For example, it
would be nice to be able to say that there is a 95% chance that the true mean lies between 109 and 121. The name for this is a
confidence interval for the mean.

Armed with an understanding of sampling distributions, constructing a confidence interval for the mean is actually pretty easy.
Here’s how it works. Suppose the true population mean is μ and the standard deviation is σ. I’ve just finished running my study that
has N participants, and the mean IQ among those participants is . We know from our discussion of the central limit theorem
(Section 10.3.3 that the sampling distribution of the mean is approximately normal. We also know from our discussion of the
normal distribution Section 9.5 that there is a 95% chance that a normally-distributed quantity will fall within two standard
deviations of the true mean. To be more precise, we can use the qnorm()  function to compute the 2.5th and 97.5th percentiles
of the normal distribution

qnorm( p = c(.025, .975) )

## [1] -1.959964  1.959964

Okay, so I lied earlier on. The more correct answer is that 95% chance that a normally-distributed quantity will fall within 1.96
standard deviations of the true mean. Next, recall that the standard deviation of the sampling distribution is referred to as the
standard error, and the standard error of the mean is written as SEM. When we put all these pieces together, we learn that there is a
95% probability that the sample mean  that we have actually observed lies within 1.96 standard errors of the population mean.
Mathematically, we write this as:

μ−(1.96×SEM) ≤  ≤ μ+(1.96×SEM)

where the SEM is equal to σ/ , and we can be 95% confident that this is true. However, that’s not answering the question that
we’re actually interested in. The equation above tells us what we should expect about the sample mean, given that we know what
the population parameters are. What we want is to have this work the other way around: we want to know what we should believe
about the population parameters, given that we have observed a particular sample. However, it’s not too difficult to do this. Using a
little high school algebra, a sneaky way to rewrite our equation is like this:

−(1.96×SEM) ≤ μ ≤ +(1.96×SEM)

What this is telling is is that the range of values has a 95% probability of containing the population mean μ. We refer to this range
as a 95% confidence interval, denoted CI . In short, as long as N is sufficiently large – large enough for us to believe that the
sampling distribution of the mean is normal – then we can write this as our formula for the 95% confidence interval:

Of course, there’s nothing special about the number 1.96: it just happens to be the multiplier you need to use if you want a 95%
confidence interval. If I’d wanted a 70% confidence interval, I could have used the qnorm()  function to calculate the 15th and
85th quantiles:

qnorm( p = c(.15, .85) )

## [1] -1.036433  1.036433
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and so the formula for CI  would be the same as the formula for CI  except that we’d use 1.04 as our magic number rather than
1.96.

8.5.1 slight mistake in the formula
As usual, I lied. The formula that I’ve given above for the 95% confidence interval is approximately correct, but I glossed over an
important detail in the discussion. Notice my formula requires you to use the standard error of the mean, SEM, which in turn
requires you to use the true population standard deviation σ. Yet, in Section @ref(pointestimates I stressed the fact that we don’t
actually know the true population parameters. Because we don’t know the true value of σ, we have to use an estimate of the
population standard deviation  instead. This is pretty straightforward to do, but this has the consequence that we need to use the
quantiles of the t-distribution rather than the normal distribution to calculate our magic number; and the answer depends on the
sample size. When N is very large, we get pretty much the same value using qt()  that we would if we used qnorm() …

N <- 10000   # suppose our sample size is 10,000 
qt( p = .975, df = N-1)   # calculate the 97.5th quantile of the t-dist

## [1] 1.960201

But when N is small, we get a much bigger number when we use the t distribution:

N <- 10   # suppose our sample size is 10 
qt( p = .975, df = N-1)   # calculate the 97.5th quantile of the t-dist

## [1] 2.262157

There’s nothing too mysterious about what’s happening here. Bigger values mean that the confidence interval is wider, indicating
that we’re more uncertain about what the true value of μ actually is. When we use the t distribution instead of the normal
distribution, we get bigger numbers, indicating that we have more uncertainty. And why do we have that extra uncertainty? Well,
because our estimate of the population standard deviation ^σ might be wrong! If it’s wrong, it implies that we’re a bit less sure
about what our sampling distribution of the mean actually looks like… and this uncertainty ends up getting reflected in a wider
confidence interval.

8.5.2 Interpreting a confidence interval

The hardest thing about confidence intervals is understanding what they mean. Whenever people first encounter confidence
intervals, the first instinct is almost always to say that “there is a 95% probabaility that the true mean lies inside the confidence
interval”. It’s simple, and it seems to capture the common sense idea of what it means to say that I am “95% confident”.
Unfortunately, it’s not quite right. The intuitive definition relies very heavily on your own personal beliefs about the value of the
population mean. I say that I am 95% confident because those are my beliefs. In everyday life that’s perfectly okay, but if you
remember back to Section 9.2, you’ll notice that talking about personal belief and confidence is a Bayesian idea. Personally
(speaking as a Bayesian) I have no problem with the idea that the phrase “95% probability” is allowed to refer to a personal belief.
However, confidence intervals are not Bayesian tools. Like everything else in this chapter, confidence intervals are frequentist
tools, and if you are going to use frequentist methods then it’s not appropriate to attach a Bayesian interpretation to them. If you use
frequentist methods, you must adopt frequentist interpretations!

Okay, so if that’s not the right answer, what is? Remember what we said about frequentist probability: the only way we are allowed
to make “probability statements” is to talk about a sequence of events, and to count up the frequencies of different kinds of events.
From that perspective, the interpretation of a 95% confidence interval must have something to do with replication. Specifically: if
we replicated the experiment over and over again and computed a 95% confidence interval for each replication, then 95% of those
intervals would contain the true mean. More generally, 95% of all confidence intervals constructed using this procedure should
contain the true population mean. This idea is illustrated in Figure 10.13, which shows 50 confidence intervals constructed for a
“measure 10 IQ scores” experiment (top panel) and another 50 confidence intervals for a “measure 25 IQ scores” experiment
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(bottom panel). A bit fortuitously, across the 100 replications that I simulated, it turned out that exactly 95 of them contained the
true mean.

Figure 10.13: 95% confidence intervals. The top (panel a) shows 50 simulated replications of an experiment in which we measure
the IQs of 10 people. The dot marks the location of the sample mean, and the line shows the 95% confidence interval. In total 47 of
the 50 confidence intervals do contain the true mean (i.e., 100), but the three intervals marked with asterisks do not. The lower
graph (panel b) shows a similar simulation, but this time we simulate replications of an experiment that measures the IQs of 25
people.

The critical difference here is that the Bayesian claim makes a probability statement about the population mean (i.e., it refers to our
uncertainty about the population mean), which is not allowed under the frequentist interpretation of probability because you can’t
“replicate” a population! In the frequentist claim, the population mean is fixed and no probabilistic claims can be made about it.
Confidence intervals, however, are repeatable so we can replicate experiments. Therefore a frequentist is allowed to talk about the
probability that the confidence interval (a random variable) contains the true mean; but is not allowed to talk about the probability
that the true population mean (not a repeatable event) falls within the confidence interval.

I know that this seems a little pedantic, but it does matter. It matters because the difference in interpretation leads to a difference in
the mathematics. There is a Bayesian alternative to confidence intervals, known as credible intervals. In most situations credible
intervals are quite similar to confidence intervals, but in other cases they are drastically different. As promised, though, I’ll talk
more about the Bayesian perspective in Chapter 17.

8.5.3 Calculating confidence intervals in R

As far as I can tell, the core packages in R don’t include a simple function for calculating confidence intervals for the mean. They
do include a lot of complicated, extremely powerful functions that can be used to calculate confidence intervals associated with lots
of different things, such as the confint()  function that we’ll use in Chapter 15. But I figure that when you’re first learning
statistics, it might be useful to start with something simpler. As a consequence, the lsr  package includes a function called 
ciMean()  which you can use to calculate your confidence intervals. There are two arguments that you might want to

specify:

x . This should be a numeric vector containing the data.
conf . This should be a number, specifying the confidence level. By default, conf = .95 , since 95% confidence

intervals are the de facto standard in psychology.

So, for example, if I load the afl24.Rdata  file, calculate the confidence interval associated with the mean attendance:

> ciMean( x = afl$attendance ) 
    2.5%    97.5%  
31597.32 32593.12 
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Hopefully that’s fairly clear.

8.5.4 Plotting confidence intervals in R
There’s several different ways you can draw graphs that show confidence intervals as error bars. I’ll show three versions here, but
this certainly doesn’t exhaust the possibilities. In doing so, what I’m assuming is that you want to draw is a plot showing the means
and confidence intervals for one variable, broken down by different levels of a second variable. For instance, in our afl  data
that we discussed earlier, we might be interested in plotting the average attendance  by year . I’ll do this using two
different functions, bargraph.CI()  and lineplot.CI()  (both of which are in the sciplot  package). Assuming
that you’ve installed these packages on your system (see Section 4.2 if you’ve forgotten how to do this), you’ll need to load them.
You’ll also need to load the lsr  package, because we’ll make use of the ciMean()  function to actually calculate the
confidence intervals

load( "./rbook-master/data/afl24.Rdata" )  # contains the "afl" data frame 
library( sciplot )     # bargraph.CI() and lineplot.CI() functions 
library( lsr )         # ciMean() function

Here’s how to plot the means and confidence intervals drawn using bargraph.CI() .

bargraph.CI( x.factor = year,            # grouping variable  
              response = attendance,      # outcome variable 
              data = afl,                 # data frame with the variables 
              ci.fun= ciMean,             # name of the function to calculate CIs 
              xlab = "Year",              # x-axis label
              ylab = "Average Attendance" # y-axis label
 )

Figure 10.14: Means and 95% confidence intervals for AFL attendance , plotted separately for each year  from 1987 to
2010. This graph was drawn using the bargraph.CI()  function.

We can use the same arguments when calling the lineplot.CI()  function:
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lineplot.CI( x.factor = year,            # grouping variable  
             response = attendance,      # outcome variable 
             data = afl,                 # data frame with the variables 
             ci.fun= ciMean,             # name of the function to calculate CIs 
             xlab = "Year",              # x-axis label 
             ylab = "Average Attendance" # y-axis label 
)

Figure 10.15: Means and 95% confidence intervals for AFL attendance , plotted separately for each year  from 1987 to
2010. This graph was drawn using the lineplot.CI()  function.
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8.6: Summary
In this chapter I’ve covered two main topics. The first half of the chapter talks about sampling theory, and the second half talks
about how we can use sampling theory to construct estimates of the population parameters. The section breakdown looks like this:

Basic ideas about samples, sampling and populations (Section 10.1)
Statistical theory of sampling: the law of large numbers (Section 10.2), sampling distributions and the central limit theorem
(Section 10.3).
Estimating means and standard deviations (Section 10.4)
Estimating a confidence interval (Section 10.5)

As always, there’s a lot of topics related to sampling and estimation that aren’t covered in this chapter, but for an introductory
psychology class this is fairly comprehensive I think. For most applied researchers you won’t need much more theory than this.
One big question that I haven’t touched on in this chapter is what you do when you don’t have a simple random sample. There is a
lot of statistical theory you can draw on to handle this situation, but it’s well beyond the scope of this book.
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147. The proper mathematical definition of randomness is extraordinarily technical, and way beyond the scope of this book. We’ll be
non-technical here and say that a process has an element of randomness to it whenever it is possible to repeat the process and
get different answers each time.

148. Nothing in life is that simple: there’s not an obvious division of people into binary categories like “schizophrenic” and “not
schizophrenic”. But this isn’t a clinical psychology text, so please forgive me a few simplifications here and there.

149. Technically, the law of large numbers pertains to any sample statistic that can be described as an average of independent
quantities. That’s certainly true for the sample mean. However, it’s also possible to write many other sample statistics as
averages of one form or another. The variance of a sample, for instance, can be rewritten as a kind of average and so is subject
to the law of large numbers. The minimum value of a sample, however, cannot be written as an average of anything and is
therefore not governed by the law of large numbers.

150. As usual, I’m being a bit sloppy here. The central limit theorem is a bit more general than this section implies. Like most
introductory stats texts, I’ve discussed one situation where the central limit theorem holds: when you’re taking an average
across lots of independent events drawn from the same distribution. However, the central limit theorem is much broader than
this. There’s a whole class of things called “U-statistics” for instance, all of which satisfy the central limit theorem and therefore
become normally distributed for large sample sizes. The mean is one such statistic, but it’s not the only one.

151. Please note that if you were actually interested in this question, you would need to be a lot more careful than I’m being here.
You can’t just compare IQ scores in Whyalla to Port Pirie and assume that any differences are due to lead poisoning. Even if it
were true that the only differences between the two towns corresponded to the different refineries (and it isn’t, not by a long
shot), you need to account for the fact that people already believe that lead pollution causes cognitive deficits: if you recall back
to Chapter 2, this means that there are different demand effects for the Port Pirie sample than for the Whyalla sample. In other
words, you might end up with an illusory group difference in your data, caused by the fact that people think that there is a real
difference. I find it pretty implausible to think that the locals wouldn’t be well aware of what you were trying to do if a bunch of
researchers turned up in Port Pirie with lab coats and IQ tests, and even less plausible to think that a lot of people would be
pretty resentful of you for doing it. Those people won’t be as co-operative in the tests. Other people in Port Pirie might be more
motivated to do well because they don’t want their home town to look bad. The motivational effects that would apply in
Whyalla are likely to be weaker, because people don’t have any concept of “iron ore poisoning” in the same way that they have
a concept for “lead poisoning”. Psychology is hard.

152. I should note that I’m hiding something here. Unbiasedness is a desirable characteristic for an estimator, but there are other
things that matter besides bias. However, it’s beyond the scope of this book to discuss this in any detail. I just want to draw your
attention to the fact that there’s some hidden complexity here.

153. , I’m hiding something else here. In a bizarre and counterintuitive twist, since  is an unbiased estimator of σ , you’d assume
that taking the square root would be fine, and  would be an unbiased estimator of σ. Right? Weirdly, it’s not. There’s actually a
subtle, tiny bias in . This is just bizarre:  is and unbiased estimate of the population variance σ , but when you take the
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square root, it turns out that ^σ is a biased estimator of the population standard deviation σ. Weird, weird, weird, right? So, why
is  biased? The technical answer is “because non-linear transformations (e.g., the square root) don’t commute with
expectation”, but that just sounds like gibberish to everyone who hasn’t taken a course in mathematical statistics. Fortunately, it
doesn’t matter for practical purposes. The bias is small, and in real life everyone uses  and it works just fine. Sometimes
mathematics is just annoying.

154. This quote appears on a great many t-shirts and websites, and even gets a mention in a few academic papers (e.g.,
\url{http://www.amstat.org/publications/jse/v10n3/friedman.html

155. As of the current writing, these are the only arguments to the function. However, I am planning to add a bit more functionality
to ciMean() . However, regardless of what those future changes might look like, the x  and conf  arguments will
remain the same, and the commands used in this book will still work.
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8.7: Statistical Literacy

No "Large Conclusions" from "Tiny" Samples?

In July of , Gene Munster of Piper Jaffray reported the results of a survey in a note to clients. This research was reported
throughout the media. Perhaps the fullest description was presented on the CNNMoney website (A service of CNN, Fortune, and
Money) in an article entitled “Survey: iPhone retention  vs. Android .” The data were collected by asking people in food
courts and baseball stadiums what their current phone was and what phone they planned to buy next. The data were collected in the
summer of . Below is a portion of the data:

Table : Sample phone retention data

Phone Keep Change Proportion

iPhone 58 4 0.94

Android 17 19 0.47

The article contains the strong caution: “It's only a tiny sample, so large conclusions must not be drawn.” This caution appears to be
a welcome change from the overstating of findings typically found in the media. But has this report understated the importance of
the study? Perhaps it is valid to draw some "large conclusions."

Is it possible to conclude the vast majority of iPhone owners in the population sampled plan to buy another iPhone or is the
sample size too small to justify this conclusion?

Solution

The confidence interval on the proportion extends from  to  (some methods give the interval from  to ). Even
the lower bound indicates the vast majority of iPhone owners plan to buy another iPhone. A strong conclusion can be made
even with this sample size.

This page titled 8.7: Statistical Literacy is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via
source content that was edited to the style and standards of the LibreTexts platform.
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8.E: Estimation (Exercises)
You may want to use the Analysis Lab and various calculators for some of these exercises.

Calculators:

Inverse t Distribution: Finds t for a confidence interval.
t Distribution: Computes areas of the t distribution.
Fisher's r to z': Computes transformations in both directions.
Inverse Normal Distribution: Use for confidence intervals.

General Questions
Q1

When would the mean grade in a class on a final exam be considered a statistic? When would it be considered a parameter?
(relevant section)

Q2

Define bias in terms of expected value. (relevant section)

Q3

Is it possible for a statistic to be unbiased yet very imprecise? How about being very accurate but biased? (relevant section)

Q4

Why is a  confidence interval wider than a  confidence interval? (relevant section & relevant section)

Q5

When you construct a  confidence interval, what are you  confident about? (relevant section)

Q6

What is the difference in the computation of a confidence interval between cases in which you know the population standard
deviation and cases in which you have to estimate it? (relevant section & relevant section)

Q7

Assume a researcher found that the correlation between a test he or she developed and job performance was  in a study of 
employees. If correlations under  are considered unacceptable, would you have any reservations about using this test to screen
job applicants? (relevant section)

Q8

What is the effect of sample size on the width of a confidence interval? (relevant section & relevant section)

Q9

How does the  distribution compare with the normal distribution? How does this difference affect the size of confidence intervals
constructed using  relative to those constructed using ? Does sample size make a difference? (relevant section)

Q10

The effectiveness of a blood-pressure drug is being investigated. How might an experimenter demonstrate that, on average, the
reduction in systolic blood pressure is  or more? (relevant section & relevant section)

Q11

A population is known to be normally distributed with a standard deviation of .

a. Compute the  confidence interval on the mean based on the following sample of nine: .
b. Now compute the  confidence interval using the same data. (relevant section)
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Q12

A person claims to be able to predict the outcome of flipping a coin. This person is correct  times. Compute the 
confidence interval on the proportion of times this person can predict coin flips correctly. What conclusion can you draw about this
test of his ability to predict the future? (relevant section)

Q13

What does it mean that the variance (computed by dividing by ) is a biased statistic? (relevant section)

Q14

A confidence interval for the population mean computed from an  of  ranges from  to . A new sample of  observations
is going to be taken. You can't know in advance exactly what the confidence interval will be because it depends on the random
sample. Even so, you should have some idea of what it will be. Give your best estimation. (relevant section)

Q15

You take a sample of  from a population of test scores, and the mean of your sample is .

a. You know the standard deviation of the population is . What is the  confidence interval on the population mean.
b. Now assume that you do not know the population standard deviation, but the standard deviation in your sample is . What is

the  confidence interval on the mean now? (relevant section)

Q16

You read about a survey in a newspaper and find that  of the  people sampled prefer Candidate . You are surprised by this
survey because you thought that more like  of the population preferred this candidate. Based on this sample, is  a possible
population proportion? Compute the  confidence interval to be sure. (relevant section)

Q17

Heights for teenage boys and girls were calculated. The mean height for the sample of  boys was  cm and the variance was 
. For the sample of  girls, the mean was  cm and the variance was .

a. What is the  confidence interval on the difference between population means?
b. What is the  confidence interval on the difference between population means?
c. Do you think the mean difference in the population could be about ? Why or why not? (relevant section)

Q18

You were interested in how long the average psychology major at your college studies per night, so you asked  psychology
majors to tell you the amount they study. They told you the following times: .

a. Find the  confidence interval on the population mean.
b. Find the  confidence interval on the population mean. (relevant section)

Q19

True/false: As the sample size gets larger, the probability that the confidence interval will contain the population mean gets higher.
(relevant section & relevant section)

Q20

True/false: You have a sample of  men and a sample of  women. The degrees of freedom for the  value in your confidence
interval on the difference between means is . (relevant section & relevant section)

Q21

True/false: Greek letters are used for statistics as opposed to parameters. (relevant section)

Q22

True/false: In order to construct a confidence interval on the difference between means, you need to assume that the populations
have the same variance and are both normally distributed. (relevant section)
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Q23

True/false: The red distribution represents the  distribution and the blue distribution represents
the normal distribution. (relevant section)

Questions from Case Studies
The following questions are from the Angry Moods (AM) case study.

Q24

(AM#6c) Is there a difference in how much males and females use aggressive behavior to improve an angry mood? For the "Anger-
Out" scores, compute a  confidence interval on the difference between gender means. (relevant section)

Q25

(AM#10) Calculate the  confidence interval for the difference between the mean Anger-In score for the athletes and non-
athletes. What can you conclude? (relevant section)

Q26

Find the  confidence interval on the population correlation between the Anger-Out and Control-Out scores. (relevant section)

The following questions are from the Flatulence (F) case study.

Q27

(F#8) Compare men and women on the variable "perday." Compute the  confidence interval on the difference between means.
(relevant section)

Q28

(F#10) What is the  confidence interval of the mean time people wait before farting in front of a romantic partner. (relevant
section)

The following questions use data from the Animal Research (AR) case study.

Q29

(AR#3) What percentage of the women studied in this sample strongly agreed (gave a rating of ) that using animals for research is
wrong?

Q30

Use the proportion you computed in #29. Compute the  confidence interval on the population proportion of women who
strongly agree that animal research is wrong. (relevant section)

Q31

Compute a  confidence interval on the difference between the gender means with respect to their beliefs that animal research is
wrong. (relevant section)

The following question is from the ADHD Treatment (AT) case study.

t
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Q32

(AT#8) What is the correlation between the participants' correct number of responses after taking the placebo and their correct
number of responses after taking  mg/kg of MPH? Compute the  confidence interval on the population correlation.
(relevant section)

The following question is from the Weapons and Aggression (WA) case study.

Q33

(WA#4) Recall that the hypothesis is that a person can name an aggressive word more quickly if it is preceded by a weapon word
prime than if it is preceded by a neutral word prime. The first step in testing this hypothesis is to compute the difference between

i. the naming time of aggressive words when preceded by a neutral word prime and
ii. the naming time of aggressive words when preceded by a weapon word prime separately for each of the  participants. That is,

compute an  for each participant.

a. Would the hypothesis of this study be supported if the difference were positive or if it were negative?
b. What is the mean of this difference score? (relevant section)
c. What is the standard deviation of this difference score? (relevant section)
d. What is the 95% confidence interval of the mean difference score? (relevant section)
e. What does the confidence interval computed in (d) say about the hypothesis.

The following question is from the Diet and Health (WA) case study.

Q34

Compute a  confidence interval on the proportion of people who are healthy on the AHA diet.

Cancers Deaths Nonfatal illness Healthy Total

AHA

15 24 25 239 303 Mediterranean 7 14 8 273 302 Total 22 38 33 512 605

The following questions are from (reproduced with permission)  Visit the site

Q35

Suppose that you take a random sample of  Americans and find that  are left-handed. You perform a test of
significance to assess whether the sample data provide evidence that more than  of all Americans are left-handed, and you
calculate a test statistic of  and a -value of . Furthermore, you calculate a  confidence interval for the proportion
of left-handers in America to be . Consider the following statements: The sample provides strong evidence that more
than  of all Americans are left-handed. The sample provides evidence that the proportion of left-handers in America is much
larger than . Which of these two statements is the more appropriate conclusion to draw? Explain your answer based on the
results of the significance test and confidence interval.

Q36

A student wanted to study the ages of couples applying for marriage licenses in his county. He studied a sample of  marriage
licenses and found that in  cases the husband was older than the wife. Do the sample data provide strong evidence that the
husband is usually older than the wife among couples applying for marriage licenses in that county? Explain briefly and justify
your answer.

Q37

Imagine that there are  different researchers each studying the sleeping habits of college freshmen. Each researcher takes a
random sample of size  from the same population of freshmen. Each researcher is trying to estimate the mean hours of sleep that
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freshmen get at night, and each one constructs a  confidence interval for the mean. Approximately how many of these 
confidence intervals will NOT capture the true mean?

1. None
2.  or 
3.  to 
4. about half
5.  to 
6. other

Selected Answers

S11
a. 

S12

S15
b. 

S17
a. 

S18
a. 

S26

S27

S29

S33
b. 
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CHAPTER OVERVIEW

9: Hypothesis Testing

The process of induction is the process of assuming the simplest law that can be made to
harmonize with our experience. This process, however, has no logical foundation but only
a psychological one. It is clear that there are no grounds for believing that the simplest
course of events will really happen. It is an hypothesis that the sun will rise tomorrow:
and this means that we do not know whether it will rise.

– Ludwig Wittgenstein
In the last chapter, I discussed the ideas behind estimation, which is one of the two “big ideas” in inferential statistics. It’s now time
to turn out attention to the other big idea, which is hypothesis testing. In its most abstract form, hypothesis testing really a very
simple idea: the researcher has some theory about the world, and wants to determine whether or not the data actually support that
theory. However, the details are messy, and most people find the theory of hypothesis testing to be the most frustrating part of
statistics. The structure of the chapter is as follows. Firstly, I’ll describe how hypothesis testing works, in a fair amount of detail,
using a simple running example to show you how a hypothesis test is “built”. I’ll try to avoid being too dogmatic while doing so,
and focus instead on the underlying logic of the testing procedure.  Afterwards, I’ll spend a bit of time talking about the various
dogmas, rules and heresies that surround the theory of hypothesis testing.

9.1: A Menagerie of Hypotheses
9.2: Two Types of Errors
9.3: Test Statistics and Sampling Distributions
9.4: Making Decisions
9.5: The p value of a test
9.6: Reporting the Results of a Hypothesis Test
9.7: Running the Hypothesis Test in Practice
9.8: Effect Size, Sample Size and Power
9.9: Some Issues to Consider
9.10: Misconceptions of Hypothesis Testing
9.11: Summary
9.12: Statistical Literacy
9.13: Logic of Hypothesis Testing (Exercises)
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9.1: A Menagerie of Hypotheses
Eventually we all succumb to madness. For me, that day will arrive once I’m finally promoted to full professor. Safely ensconced
in my ivory tower, happily protected by tenure, I will finally be able to take leave of my senses (so to speak), and indulge in that
most thoroughly unproductive line of psychological research: the search for extrasensory perception (ESP).

Let’s suppose that this glorious day has come. My first study is a simple one, in which I seek to test whether clairvoyance exists.
Each participant sits down at a table, and is shown a card by an experimenter. The card is black on one side and white on the other.
The experimenter takes the card away, and places it on a table in an adjacent room. The card is placed black side up or white side
up completely at random, with the randomisation occurring only after the experimenter has left the room with the participant. A
second experimenter comes in and asks the participant which side of the card is now facing upwards. It’s purely a one-shot
experiment. Each person sees only one card, and gives only one answer; and at no stage is the participant actually in contact with
someone who knows the right answer. My data set, therefore, is very simple. I have asked the question of N people, and some
number X of these people have given the correct response. To make things concrete, let’s suppose that I have tested N=100 people,
and X=62 of these got the answer right… a surprisingly large number, sure, but is it large enough for me to feel safe in claiming
I’ve found evidence for ESP? This is the situation where hypothesis testing comes in useful. However, before we talk about how to
test hypotheses, we need to be clear about what we mean by hypotheses.

9.1.1 Research hypotheses versus statistical hypotheses
The first distinction that you need to keep clear in your mind is between research hypotheses and statistical hypotheses. In my ESP
study, my overall scientific goal is to demonstrate that clairvoyance exists. In this situation, I have a clear research goal: I am
hoping to discover evidence for ESP. In other situations I might actually be a lot more neutral than that, so I might say that my
research goal is to determine whether or not clairvoyance exists. Regardless of how I want to portray myself, the basic point that
I’m trying to convey here is that a research hypothesis involves making a substantive, testable scientific claim… if you are a
psychologist, then your research hypotheses are fundamentally about psychological constructs. Any of the following would count
as research hypotheses:

Listening to music reduces your ability to pay attention to other things. This is a claim about the causal relationship between
two psychologically meaningful concepts (listening to music and paying attention to things), so it’s a perfectly reasonable
research hypothesis.
Intelligence is related to personality. Like the last one, this is a relational claim about two psychological constructs (intelligence
and personality), but the claim is weaker: correlational not causal.
Intelligence is* speed of information processing. This hypothesis has a quite different character: it’s not actually a relational
claim at all. It’s an ontological claim about the fundamental character of intelligence (and I’m pretty sure it’s wrong). It’s worth
expanding on this one actually: It’s usually easier to think about how to construct experiments to test research hypotheses of the
form “does X affect Y?” than it is to address claims like “what is X?” And in practice, what usually happens is that you find
ways of testing relational claims that follow from your ontological ones. For instance, if I believe that intelligence is* speed of
information processing in the brain, my experiments will often involve looking for relationships between measures of
intelligence and measures of speed. As a consequence, most everyday research questions do tend to be relational in nature, but
they’re almost always motivated by deeper ontological questions about the state of nature.

Notice that in practice, my research hypotheses could overlap a lot. My ultimate goal in the ESP experiment might be to test an
ontological claim like “ESP exists”, but I might operationally restrict myself to a narrower hypothesis like “Some people can `see’
objects in a clairvoyant fashion”. That said, there are some things that really don’t count as proper research hypotheses in any
meaningful sense:

Love is a battlefield. This is too vague to be testable. While it’s okay for a research hypothesis to have a degree of vagueness to
it, it has to be possible to operationalise your theoretical ideas. Maybe I’m just not creative enough to see it, but I can’t see how
this can be converted into any concrete research design. If that’s true, then this isn’t a scientific research hypothesis, it’s a pop
song. That doesn’t mean it’s not interesting – a lot of deep questions that humans have fall into this category. Maybe one day
science will be able to construct testable theories of love, or to test to see if God exists, and so on; but right now we can’t, and I
wouldn’t bet on ever seeing a satisfying scientific approach to either.
The first rule of tautology club is the first rule of tautology club. This is not a substantive claim of any kind. It’s true by
definition. No conceivable state of nature could possibly be inconsistent with this claim. As such, we say that this is an
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unfalsifiable hypothesis, and as such it is outside the domain of science. Whatever else you do in science, your claims must
have the possibility of being wrong.
More people in my experiment will say “yes” than “no”. This one fails as a research hypothesis because it’s a claim about the
data set, not about the psychology (unless of course your actual research question is whether people have some kind of “yes”
bias!). As we’ll see shortly, this hypothesis is starting to sound more like a statistical hypothesis than a research hypothesis.

As you can see, research hypotheses can be somewhat messy at times; and ultimately they are scientific claims. Statistical
hypotheses are neither of these two things. Statistical hypotheses must be mathematically precise, and they must correspond to
specific claims about the characteristics of the data generating mechanism (i.e., the “population”). Even so, the intent is that
statistical hypotheses bear a clear relationship to the substantive research hypotheses that you care about! For instance, in my ESP
study my research hypothesis is that some people are able to see through walls or whatever. What I want to do is to “map” this onto
a statement about how the data were generated. So let’s think about what that statement would be. The quantity that I’m interested
in within the experiment is P("correct"), the true-but-unknown probability with which the participants in my experiment answer the
question correctly. Let’s use the Greek letter θ (theta) to refer to this probability. Here are four different statistical hypotheses:

If ESP doesn’t exist and if my experiment is well designed, then my participants are just guessing. So I should expect them to
get it right half of the time and so my statistical hypothesis is that the true probability of choosing correctly is θ=0.5.
Alternatively, suppose ESP does exist and participants can see the card. If that’s true, people will perform better than chance.
The statistical hypotheis would be that θ>0.5.
A third possibility is that ESP does exist, but the colours are all reversed and people don’t realise it (okay, that’s wacky, but you
never know…). If that’s how it works then you’d expect people’s performance to be below chance. This would correspond to a
statistical hypothesis that θ<0.5.
Finally, suppose ESP exists, but I have no idea whether people are seeing the right colour or the wrong one. In that case, the
only claim I could make about the data would be that the probability of making the correct answer is not equal to 50. This
corresponds to the statistical hypothesis that θ≠0.5.

All of these are legitimate examples of a statistical hypothesis because they are statements about a population parameter and are
meaningfully related to my experiment.

What this discussion makes clear, I hope, is that when attempting to construct a statistical hypothesis test the researcher actually
has two quite distinct hypotheses to consider. First, he or she has a research hypothesis (a claim about psychology), and this
corresponds to a statistical hypothesis (a claim about the data generating population). In my ESP example, these might be

Dan.s.research.hypothesis Dan.s.statistical.hypothesis

ESP.exists θ≠0.5

And the key thing to recognise is this: a statistical hypothesis test is a test of the statistical hypothesis, not the research hypothesis.
If your study is badly designed, then the link between your research hypothesis and your statistical hypothesis is broken. To give a
silly example, suppose that my ESP study was conducted in a situation where the participant can actually see the card reflected in a
window; if that happens, I would be able to find very strong evidence that θ≠0.5, but this would tell us nothing about whether “ESP
exists”.

9.1.2 Null hypotheses and alternative hypotheses
So far, so good. I have a research hypothesis that corresponds to what I want to believe about the world, and I can map it onto a
statistical hypothesis that corresponds to what I want to believe about how the data were generated. It’s at this point that things get
somewhat counterintuitive for a lot of people. Because what I’m about to do is invent a new statistical hypothesis (the “null”
hypothesis, H ) that corresponds to the exact opposite of what I want to believe, and then focus exclusively on that, almost to the
neglect of the thing I’m actually interested in (which is now called the “alternative” hypothesis, H ). In our ESP example, the null
hypothesis is that θ=0.5, since that’s what we’d expect if ESP didn’t exist. My hope, of course, is that ESP is totally real, and so the
alternative to this null hypothesis is θ≠0.5. In essence, what we’re doing here is dividing up the possible values of θ into two
groups: those values that I really hope aren’t true (the null), and those values that I’d be happy with if they turn out to be right (the
alternative). Having done so, the important thing to recognise is that the goal of a hypothesis test is not to show that the alternative
hypothesis is (probably) true; the goal is to show that the null hypothesis is (probably) false. Most people find this pretty weird.
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The best way to think about it, in my experience, is to imagine that a hypothesis test is a criminal trial … the trial of the null
hypothesis. The null hypothesis is the defendant, the researcher is the prosecutor, and the statistical test itself is the judge. Just like
a criminal trial, there is a presumption of innocence: the null hypothesis is deemed to be true unless you, the researcher, can prove
beyond a reasonable doubt that it is false. You are free to design your experiment however you like (within reason, obviously!), and
your goal when doing so is to maximise the chance that the data will yield a conviction… for the crime of being false. The catch is
that the statistical test sets the rules of the trial, and those rules are designed to protect the null hypothesis – specifically to ensure
that if the null hypothesis is actually true, the chances of a false conviction are guaranteed to be low. This is pretty important: after
all, the null hypothesis doesn’t get a lawyer. And given that the researcher is trying desperately to prove it to be false, someone has
to protect it.

This page titled 9.1: A Menagerie of Hypotheses is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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9.2: Two Types of Errors
Before going into details about how a statistical test is constructed, it’s useful to understand the philosophy behind it. I hinted at it
when pointing out the similarity between a null hypothesis test and a criminal trial, but I should now be explicit. Ideally, we would
like to construct our test so that we never make any errors. Unfortunately, since the world is messy, this is never possible.
Sometimes you’re just really unlucky: for instance, suppose you flip a coin 10 times in a row and it comes up heads all 10 times.
That feels like very strong evidence that the coin is biased (and it is!), but of course there’s a 1 in 1024 chance that this would
happen even if the coin was totally fair. In other words, in real life we always have to accept that there’s a chance that we did the
wrong thing. As a consequence, the goal behind statistical hypothesis testing is not to eliminate errors, but to minimise them.

At this point, we need to be a bit more precise about what we mean by “errors”. Firstly, let’s state the obvious: it is either the case
that the null hypothesis is true, or it is false; and our test will either reject the null hypothesis or retain it.  So, as the table below
illustrates, after we run the test and make our choice, one of four things might have happened:

 retain H reject H

H  is true correct decision error (type I)

H  is false error (type II) correct decision

As a consequence there are actually two different types of error here. If we reject a null hypothesis that is actually true, then we
have made a type I error. On the other hand, if we retain the null hypothesis when it is in fact false, then we have made a type II
error.

Remember how I said that statistical testing was kind of like a criminal trial? Well, I meant it. A criminal trial requires that you
establish “beyond a reasonable doubt” that the defendant did it. All of the evidentiary rules are (in theory, at least) designed to
ensure that there’s (almost) no chance of wrongfully convicting an innocent defendant. The trial is designed to protect the rights of
a defendant: as the English jurist William Blackstone famously said, it is “better that ten guilty persons escape than that one
innocent suffer.” In other words, a criminal trial doesn’t treat the two types of error in the same way~… punishing the innocent is
deemed to be much worse than letting the guilty go free. A statistical test is pretty much the same: the single most important design
principle of the test is to control the probability of a type I error, to keep it below some fixed probability. This probability, which is
denoted α, is called the significance level of the test (or sometimes, the size of the test). And I’ll say it again, because it is so central
to the whole set-up~… a hypothesis test is said to have significance level α if the type I error rate is no larger than α.

So, what about the type II error rate? Well, we’d also like to keep those under control too, and we denote this probability by β.
However, it’s much more common to refer to the power of the test, which is the probability with which we reject a null hypothesis
when it really is false, which is 1−β. To help keep this straight, here’s the same table again, but with the relevant numbers added:

 retain H reject H

H  is true 1−α (probability of correct retention) α (type I error rate)

H  is false β (type II error rate) 1−β (power of the test)

A “powerful” hypothesis test is one that has a small value of β, while still keeping α fixed at some (small) desired level. By
convention, scientists make use of three different α levels: .05, .01 and .001. Notice the asymmetry here~… the tests are designed
to ensure that the α level is kept small, but there’s no corresponding guarantee regarding β. We’d certainly like the type II error rate
to be small, and we try to design tests that keep it small, but this is very much secondary to the overwhelming need to control the
type I error rate. As Blackstone might have said if he were a statistician, it is “better to retain 10 false null hypotheses than to reject
a single true one”. To be honest, I don’t know that I agree with this philosophy – there are situations where I think it makes sense,
and situations where I think it doesn’t – but that’s neither here nor there. It’s how the tests are built.

This page titled 9.2: Two Types of Errors is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro
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9.3: Test Statistics and Sampling Distributions
At this point we need to start talking specifics about how a hypothesis test is constructed. To that end, let’s return to the ESP
example. Let’s ignore the actual data that we obtained, for the moment, and think about the structure of the experiment. Regardless
of what the actual numbers are, the form of the data is that X out of N people correctly identified the colour of the hidden card.
Moreover, let’s suppose for the moment that the null hypothesis really is true: ESP doesn’t exist, and the true probability that
anyone picks the correct colour is exactly θ=0.5. What would we expect the data to look like? Well, obviously, we’d expect the
proportion of people who make the correct response to be pretty close to 50%. Or, to phrase this in more mathematical terms, we’d
say that X/N is approximately 0.5. Of course, we wouldn’t expect this fraction to be exactly 0.5: if, for example we tested N=100
people, and X=53 of them got the question right, we’d probably be forced to concede that the data are quite consistent with the null
hypothesis. On the other hand, if X=99 of our participants got the question right, then we’d feel pretty confident that the null
hypothesis is wrong. Similarly, if only X=3 people got the answer right, we’d be similarly confident that the null was wrong. Let’s
be a little more technical about this: we have a quantity X that we can calculate by looking at our data; after looking at the value of
X, we make a decision about whether to believe that the null hypothesis is correct, or to reject the null hypothesis in favour of the
alternative. The name for this thing that we calculate to guide our choices is a test statistic.

Having chosen a test statistic, the next step is to state precisely which values of the test statistic would cause is to reject the null
hypothesis, and which values would cause us to keep it. In order to do so, we need to determine what the sampling distribution of
the test statistic would be if the null hypothesis were actually true (we talked about sampling distributions earlier in Section
10.3.1). Why do we need this? Because this distribution tells us exactly what values of X our null hypothesis would lead us to
expect. And therefore, we can use this distribution as a tool for assessing how closely the null hypothesis agrees with our data.

Figure 11.1: The sampling distribution for our test statistic X when the null hypothesis is true. For our ESP scenario, this is a
binomial distribution. Not surprisingly, since the null hypothesis says that the probability of a correct response is θ=.5, the sampling
distribution says that the most likely value is 50 (our of 100) correct responses. Most of the probability mass lies between 40 and
60.

How do we actually determine the sampling distribution of the test statistic? For a lot of hypothesis tests this step is actually quite
complicated, and later on in the book you’ll see me being slightly evasive about it for some of the tests (some of them I don’t even
understand myself). However, sometimes it’s very easy. And, fortunately for us, our ESP example provides us with one of the
easiest cases. Our population parameter θ is just the overall probability that people respond correctly when asked the question, and
our test statistic X is the count of the number of people who did so, out of a sample size of N. We’ve seen a distribution like this
before, in Section 9.4: that’s exactly what the binomial distribution describes! So, to use the notation and terminology that I
introduced in that section, we would say that the null hypothesis predicts that X is binomially distributed, which is written

X∼Binomial(θ,N)
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Since the null hypothesis states that θ=0.5 and our experiment has N=100 people, we have the sampling distribution we need. This
sampling distribution is plotted in Figure 11.1. No surprises really: the null hypothesis says that X=50 is the most likely outcome,
and it says that we’re almost certain to see somewhere between 40 and 60 correct responses.
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9.4: Making Decisions
Okay, we’re very close to being finished. We’ve constructed a test statistic (X), and we chose this test statistic in such a way that
we’re pretty confident that if X is close to N/2 then we should retain the null, and if not we should reject it. The question that
remains is this: exactly which values of the test statistic should we associate with the null hypothesis, and which exactly values go
with the alternative hypothesis? In my ESP study, for example, I’ve observed a value of X=62. What decision should I make?
Should I choose to believe the null hypothesis, or the alternative hypothesis?

9.4.1 Critical regions and critical values
To answer this question, we need to introduce the concept of a critical region for the test statistic X. The critical region of the test
corresponds to those values of X that would lead us to reject null hypothesis (which is why the critical region is also sometimes
called the rejection region). How do we find this critical region? Well, let’s consider what we know:

X should be very big or very small in order to reject the null hypothesis.
If the null hypothesis is true, the sampling distribution of X is Binomial(0.5,N).
If α=.05, the critical region must cover 5% of this sampling distribution.

It’s important to make sure you understand this last point: the critical region corresponds to those values of X for which we would
reject the null hypothesis, and the sampling distribution in question describes the probability that we would obtain a particular
value of X if the null hypothesis were actually true. Now, let’s suppose that we chose a critical region that covers 20% of the
sampling distribution, and suppose that the null hypothesis is actually true. What would be the probability of incorrectly rejecting
the null? The answer is of course 20%. And therefore, we would have built a test that had an α level of 0.2. If we want α=.05, the
critical region is only allowed to cover 5% of the sampling distribution of our test statistic.

Figure 11.2: The critical region associated with the hypothesis test for the ESP study, for a hypothesis test with a significance level
of α=.05. The plot itself shows the sampling distribution of X under the null hypothesis: the grey bars correspond to those values of
X for which we would retain the null hypothesis. The black bars show the critical region: those values of X for which we would
reject the null. Because the alternative hypothesis is two sided (i.e., allows both θ<.5 and θ>.5), the critical region covers both tails
of the distribution. To ensure an α level of .05, we need to ensure that each of the two regions encompasses 2.5% of the sampling
distribution.

As it turns out, those three things uniquely solve the problem: our critical region consists of the most extreme values, known as the
tails of the distribution. This is illustrated in Figure 11.2. As it turns out, if we want α=.05, then our critical regions correspond to
X≤40 and X≥60.  That is, if the number of people saying “true” is between 41 and 59, then we should retain the null hypothesis.
If the number is between 0 to 40 or between 60 to 100, then we should reject the null hypothesis. The numbers 40 and 60 are often
referred to as the critical values, since they define the edges of the critical region.

161

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36127?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/09%3A_Hypothesis_Testing/9.04%3A_Making_Decisions


9.4.2 https://stats.libretexts.org/@go/page/36127

At this point, our hypothesis test is essentially complete: (1) we choose an α level (e.g., α=.05, (2) come up with some test statistic
(e.g., X) that does a good job (in some meaningful sense) of comparing H0 to H1, (3) figure out the sampling distribution of the
test statistic on the assumption that the null hypothesis is true (in this case, binomial) and then (4) calculate the critical region that
produces an appropriate α level (0-40 and 60-100). All that we have to do now is calculate the value of the test statistic for the real
data (e.g., X=62) and then compare it to the critical values to make our decision. Since 62 is greater than the critical value of 60, we
would reject the null hypothesis. Or, to phrase it slightly differently, we say that the test has produced a significant result.

9.4.2 note on statistical “significance”

Like other occult techniques of divination, the statistical method has a private jargon
deliberately contrived to obscure its methods from non-practitioners.

– Attributed to G. O. Ashley

A very brief digression is in order at this point, regarding the word “significant”. The concept of statistical significance is actually a
very simple one, but has a very unfortunate name. If the data allow us to reject the null hypothesis, we say that “the result is
statistically significant”, which is often shortened to “the result is significant”. This terminology is rather old, and dates back to a
time when “significant” just meant something like “indicated”, rather than its modern meaning, which is much closer to
“important”. As a result, a lot of modern readers get very confused when they start learning statistics, because they think that a
“significant result” must be an important one. It doesn’t mean that at all. All that “statistically significant” means is that the data
allowed us to reject a null hypothesis. Whether or not the result is actually important in the real world is a very different question,
and depends on all sorts of other things.

9.4.3 difference between one sided and two sided tests
There’s one more thing I want to point out about the hypothesis test that I’ve just constructed. If we take a moment to think about
the statistical hypotheses I’ve been using,

H :θ=.5

H :θ≠.5

we notice that the alternative hypothesis covers both the possibility that θ<.5 and the possibility that θ>.5. This makes sense if I
really think that ESP could produce better-than-chance performance or worse-than-chance performance (and there are some people
who think that). In statistical language, this is an example of a two-sided test. It’s called this because the alternative hypothesis
covers the area on both “sides” of the null hypothesis, and as a consequence the critical region of the test covers both tails of the
sampling distribution (2.5% on either side if α=.05), as illustrated earlier in Figure 11.2.

However, that’s not the only possibility. It might be the case, for example, that I’m only willing to believe in ESP if it produces
better than chance performance. If so, then my alternative hypothesis would only covers the possibility that θ>.5, and as a
consequence the null hypothesis now becomes θ≤.5:

H :θ≤.5

H :θ>.5

When this happens, we have what’s called a one-sided test, and when this happens the critical region only covers one tail of the
sampling distribution. This is illustrated in Figure 11.3.
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Figure 11.3: The critical region for a one sided test. In this case, the alternative hypothesis is that θ>.05, so we would only reject the
null hypothesis for large values of X. As a consequence, the critical region only covers the upper tail of the sampling distribution;
specifically the upper 5% of the distribution. Contrast this to the two-sided version earlier)
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9.5: The p value of a test
In one sense, our hypothesis test is complete; we’ve constructed a test statistic, figured out its sampling distribution if the null
hypothesis is true, and then constructed the critical region for the test. Nevertheless, I’ve actually omitted the most important
number of all: the p value. It is to this topic that we now turn. There are two somewhat different ways of interpreting a p value, one
proposed by Sir Ronald Fisher and the other by Jerzy Neyman. Both versions are legitimate, though they reflect very different ways
of thinking about hypothesis tests. Most introductory textbooks tend to give Fisher’s version only, but I think that’s a bit of a
shame. To my mind, Neyman’s version is cleaner, and actually better reflects the logic of the null hypothesis test. You might
disagree though, so I’ve included both. I’ll start with Neyman’s version…

9.5.1 softer view of decision making
One problem with the hypothesis testing procedure that I’ve described is that it makes no distinction at all between a result this
“barely significant” and those that are “highly significant”. For instance, in my ESP study the data I obtained only just fell inside
the critical region - so I did get a significant effect, but was a pretty near thing. In contrast, suppose that I’d run a study in which
X=97 out of my N=100 participants got the answer right. This would obviously be significant too, but my a much larger margin;
there’s really no ambiguity about this at all. The procedure that I described makes no distinction between the two. If I adopt the
standard convention of allowing α=.05 as my acceptable Type I error rate, then both of these are significant results.

This is where the p value comes in handy. To understand how it works, let’s suppose that we ran lots of hypothesis tests on the
same data set: but with a different value of α in each case. When we do that for my original ESP data, what we’d get is something
like this

Value of α Reject the null?

0.05 Yes

0.04 Yes

0.03 Yes

0.02 No

0.01 No

When we test ESP data (X=62 successes out of N=100 observations) using α levels of .03 and above, we’d always find ourselves
rejecting the null hypothesis. For α levels of .02 and below, we always end up retaining the null hypothesis. Therefore, somewhere
between .02 and .03 there must be a smallest value of α that would allow us to reject the null hypothesis for this data. This is the p
value; as it turns out the ESP data has p=.021. In short:

p is defined to be the smallest Type I error rate (α) that you have to be willing to tolerate if you want to reject the null hypothesis.

If it turns out that p describes an error rate that you find intolerable, then you must retain the null. If you’re comfortable with an
error rate equal to p, then it’s okay to reject the null hypothesis in favour of your preferred alternative.

In effect, p is a summary of all the possible hypothesis tests that you could have run, taken across all possible α values. And as a
consequence it has the effect of “softening” our decision process. For those tests in which p≤α you would have rejected the null
hypothesis, whereas for those tests in which p>α you would have retained the null. In my ESP study I obtained X=62, and as a
consequence I’ve ended up with p=.021. So the error rate I have to tolerate is 2.1%. In contrast, suppose my experiment had
yielded X=97. What happens to my p value now? This time it’s shrunk to p=1.36×10−25, which is a tiny, tiny  Type I error rate.
For this second case I would be able to reject the null hypothesis with a lot more confidence, because I only have to be “willing” to
tolerate a type I error rate of about 1 in 10 trillion trillion in order to justify my decision to reject.

9.5.2 probability of extreme data
The second definition of the p-value comes from Sir Ronald Fisher, and it’s actually this one that you tend to see in most
introductory statistics textbooks. Notice how, when I constructed the critical region, it corresponded to the tails (i.e., extreme
values) of the sampling distribution? That’s not a coincidence: almost all “good” tests have this characteristic (good in the sense of
minimising our type II error rate, β). The reason for that is that a good critical region almost always corresponds to those values of
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the test statistic that are least likely to be observed if the null hypothesis is true. If this rule is true, then we can define the p-value as
the probability that we would have observed a test statistic that is at least as extreme as the one we actually did get. In other words,
if the data are extremely implausible according to the null hypothesis, then the null hypothesis is probably wrong.

9.5.3 common mistake
Okay, so you can see that there are two rather different but legitimate ways to interpret the p value, one based on Neyman’s
approach to hypothesis testing and the other based on Fisher’s. Unfortunately, there is a third explanation that people sometimes
give, especially when they’re first learning statistics, and it is absolutely and completely wrong. This mistaken approach is to refer
to the p value as “the probability that the null hypothesis is true”. It’s an intuitively appealing way to think, but it’s wrong in two
key respects: (1) null hypothesis testing is a frequentist tool, and the frequentist approach to probability does not allow you to
assign probabilities to the null hypothesis… according to this view of probability, the null hypothesis is either true or it is not; it
cannot have a “5% chance” of being true. (2) even within the Bayesian approach, which does let you assign probabilities to
hypotheses, the p value would not correspond to the probability that the null is true; this interpretation is entirely inconsistent with
the mathematics of how the p value is calculated. Put bluntly, despite the intuitive appeal of thinking this way, there is no
justification for interpreting a p value this way. Never do it.
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9.6: Reporting the Results of a Hypothesis Test
When writing up the results of a hypothesis test, there’s usually several pieces of information that you need to report, but it varies a
fair bit from test to test. Throughout the rest of the book I’ll spend a little time talking about how to report the results of different
tests (see Section 12.1.9 for a particularly detailed example), so that you can get a feel for how it’s usually done. However,
regardless of what test you’re doing, the one thing that you always have to do is say something about the p value, and whether or
not the outcome was significant.

The fact that you have to do this is unsurprising; it’s the whole point of doing the test. What might be surprising is the fact that
there is some contention over exactly how you’re supposed to do it. Leaving aside those people who completely disagree with the
entire framework underpinning null hypothesis testing, there’s a certain amount of tension that exists regarding whether or not to
report the exact p value that you obtained, or if you should state only that p<α for a significance level that you chose in advance
(e.g., p<.05).

issue
To see why this is an issue, the key thing to recognise is that p values are terribly convenient. In practice, the fact that we can
compute a p value means that we don’t actually have to specify any α level at all in order to run the test. Instead, what you can do is
calculate your p value and interpret it directly: if you get p=.062, then it means that you’d have to be willing to tolerate a Type I
error rate of 6.2% to justify rejecting the null. If you personally find 6.2% intolerable, then you retain the null. Therefore, the
argument goes, why don’t we just report the actual p value and let the reader make up their own minds about what an acceptable
Type I error rate is? This approach has the big advantage of “softening” the decision making process – in fact, if you accept the
Neyman definition of the p value, that’s the whole point of the p value. We no longer have a fixed significance level of α=.05 as a
bright line separating “accept” from “reject” decisions; and this removes the rather pathological problem of being forced to treat
p=.051 in a fundamentally different way to p=.049.

This flexibility is both the advantage and the disadvantage to the p value. The reason why a lot of people don’t like the idea of
reporting an exact p value is that it gives the researcher a bit too much freedom. In particular, it lets you change your mind about
what error tolerance you’re willing to put up with after you look at the data. For instance, consider my ESP experiment. Suppose I
ran my test, and ended up with a p value of .09. Should I accept or reject? Now, to be honest, I haven’t yet bothered to think about
what level of Type I error I’m “really” willing to accept. I don’t have an opinion on that topic. But I do have an opinion about
whether or not ESP exists, and I definitely have an opinion about whether my research should be published in a reputable scientific
journal. And amazingly, now that I’ve looked at the data I’m starting to think that a 9% error rate isn’t so bad, especially when
compared to how annoying it would be to have to admit to the world that my experiment has failed. So, to avoid looking like I just
made it up after the fact, I now say that my α is .1: a 10% type I error rate isn’t too bad, and at that level my test is significant! I
win.

In other words, the worry here is that I might have the best of intentions, and be the most honest of people, but the temptation to
just “shade” things a little bit here and there is really, really strong. As anyone who has ever run an experiment can attest, it’s a long
and difficult process, and you often get very attached to your hypotheses. It’s hard to let go and admit the experiment didn’t find
what you wanted it to find. And that’s the danger here. If we use the “raw” p-value, people will start interpreting the data in terms
of what they want to believe, not what the data are actually saying… and if we allow that, well, why are we bothering to do science
at all? Why not let everyone believe whatever they like about anything, regardless of what the facts are? Okay, that’s a bit extreme,
but that’s where the worry comes from. According to this view, you really must specify your α value in advance, and then only
report whether the test was significant or not. It’s the only way to keep ourselves honest.

proposed solutions
In practice, it’s pretty rare for a researcher to specify a single α level ahead of time. Instead, the convention is that scientists rely on
three standard significance levels: .05, .01 and .001. When reporting your results, you indicate which (if any) of these significance
levels allow you to reject the null hypothesis. This is summarised in Table 11.1. This allows us to soften the decision rule a little
bit, since p<.01 implies that the data meet a stronger evidentiary standard than p<.05 would. Nevertheless, since these levels are
fixed in advance by convention, it does prevent people choosing their α level after looking at the data.

Table 11.1: A commonly adopted convention for reporting p values: in many places it is conventional to report one of four different
things (e.g., p<.05) as shown below. I’ve included the “significance stars” notation (i.e., a * indicates p<.05) because you
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sometimes see this notation produced by statistical software. It’s also worth noting that some people will write n.s. (not significant)
rather than p>.05.

Usual notation Signif. stars Signif. stars The null is…

p>.05 NA The test wasn’t significant Retained

p<.05 *
The test was significant at $=
.05 but not at α=.01 or α=.001.$

Rejected

p<.01 **
The test was significant at
α=.05 and α=.01 but not at $=
.001

Rejected

p<.001 ***
The test was significant at all
levels

Rejected

Nevertheless, quite a lot of people still prefer to report exact p values. To many people, the advantage of allowing the reader to
make up their own mind about how to interpret p=.06 outweighs any disadvantages. In practice, however, even among those
researchers who prefer exact p values it is quite common to just write p<.001 instead of reporting an exact value for small p. This is
in part because a lot of software doesn’t actually print out the p value when it’s that small (e.g., SPSS just writes p=.000 whenever
p<.001), and in part because a very small p value can be kind of misleading. The human mind sees a number like .0000000001 and
it’s hard to suppress the gut feeling that the evidence in favour of the alternative hypothesis is a near certainty. In practice however,
this is usually wrong. Life is a big, messy, complicated thing: and every statistical test ever invented relies on simplifications,
approximations and assumptions. As a consequence, it’s probably not reasonable to walk away from any statistical analysis with a
feeling of confidence stronger than p<.001 implies. In other words, p<.001 is really code for “as far as this test is concerned, the
evidence is overwhelming.”

In light of all this, you might be wondering exactly what you should do. There’s a fair bit of contradictory advice on the topic, with
some people arguing that you should report the exact p value, and other people arguing that you should use the tiered approach
illustrated in Table 11.1. As a result, the best advice I can give is to suggest that you look at papers/reports written in your field and
see what the convention seems to be. If there doesn’t seem to be any consistent pattern, then use whichever method you prefer.
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9.7: Running the Hypothesis Test in Practice
At this point some of you might be wondering if this is a “real” hypothesis test, or just a toy example that I made up. It’s real. In the
previous discussion I built the test from first principles, thinking that it was the simplest possible problem that you might ever
encounter in real life. However, this test already exists: it’s called the binomial test, and it’s implemented by an R function called 
binom.test() . To test the null hypothesis that the response probability is one-half p = .5 ,  using data in which 
x = 62  of n = 100  people made the correct response, here’s how to do it in R:

binom.test( x=62, n=100, p=.5 )

## 
##  Exact binomial test 
## 
## data:  62 and 100 
## number of successes = 62, number of trials = 100, p-value = 
## 0.02098 
## alternative hypothesis: true probability of success is not equal to 0.5 
## 95 percent confidence interval: 
##  0.5174607 0.7152325 
## sample estimates: 
## probability of success  
##                   0.62

Right now, this output looks pretty unfamiliar to you, but you can see that it’s telling you more or less the right things. Specifically,
the p-value of 0.02 is less than the usual choice of α=.05, so you can reject the null. We’ll talk a lot more about how to read this sort
of output as we go along; and after a while you’ll hopefully find it quite easy to read and understand. For now, however, I just
wanted to make the point that R contains a whole lot of functions corresponding to different kinds of hypothesis test. And while I’ll
usually spend quite a lot of time explaining the logic behind how the tests are built, every time I discuss a hypothesis test the
discussion will end with me showing you a fairly simple R command that you can use to run the test in practice.
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9.8: Effect Size, Sample Size and Power
In previous sections I’ve emphasised the fact that the major design principle behind statistical hypothesis testing is that we try to
control our Type I error rate. When we fix α=.05 we are attempting to ensure that only 5% of true null hypotheses are incorrectly
rejected. However, this doesn’t mean that we don’t care about Type II errors. In fact, from the researcher’s perspective, the error of
failing to reject the null when it is actually false is an extremely annoying one. With that in mind, a secondary goal of hypothesis
testing is to try to minimise β, the Type II error rate, although we don’t usually talk in terms of minimising Type II errors. Instead,
we talk about maximising the power of the test. Since power is defined as 1−β, this is the same thing.

9.8.1 power function

Figure 11.4: Sampling distribution under the alternative hypothesis, for a population parameter value of θ=0.55. A reasonable
proportion of the distribution lies in the rejection region.

Let’s take a moment to think about what a Type II error actually is. A Type II error occurs when the alternative hypothesis is true,
but we are nevertheless unable to reject the null hypothesis. Ideally, we’d be able to calculate a single number β that tells us the
Type II error rate, in the same way that we can set α=.05 for the Type I error rate. Unfortunately, this is a lot trickier to do. To see
this, notice that in my ESP study the alternative hypothesis actually corresponds to lots of possible values of θ. In fact, the
alternative hypothesis corresponds to every value of θ except 0.5. Let’s suppose that the true probability of someone choosing the
correct response is 55% (i.e., θ=.55). If so, then the true sampling distribution for X is not the same one that the null hypothesis
predicts: the most likely value for X is now 55 out of 100. Not only that, the whole sampling distribution has now shifted, as shown
in Figure 11.4. The critical regions, of course, do not change: by definition, the critical regions are based on what the null
hypothesis predicts. What we’re seeing in this figure is the fact that when the null hypothesis is wrong, a much larger proportion of
the sampling distribution distribution falls in the critical region. And of course that’s what should happen: the probability of
rejecting the null hypothesis is larger when the null hypothesis is actually false! However θ=.55 is not the only possibility
consistent with the alternative hypothesis. Let’s instead suppose that the true value of θ is actually 0.7. What happens to the
sampling distribution when this occurs? The answer, shown in Figure 11.5, is that almost the entirety of the sampling distribution
has now moved into the critical region. Therefore, if θ=0.7 the probability of us correctly rejecting the null hypothesis (i.e., the
power of the test) is much larger than if θ=0.55. In short, while θ=.55 and θ=.70 are both part of the alternative hypothesis, the Type
II error rate is different.
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Figure 11.5: Sampling distribution under the alternative hypothesis, for a population parameter value of θ=0.70. Almost all of the
distribution lies in the rejection region.

Figure 11.6: The probability that we will reject the null hypothesis, plotted as a function of the true value of θ. Obviously, the test is
more powerful (greater chance of correct rejection) if the true value of θ is very different from the value that the null hypothesis
specifies (i.e., θ=.5). Notice that when θ actually is equal to .5 (plotted as a black dot), the null hypothesis is in fact true: rejecting
the null hypothesis in this instance would be a Type I error.

What all this means is that the power of a test (i.e., 1−β) depends on the true value of θ. To illustrate this, I’ve calculated the
expected probability of rejecting the null hypothesis for all values of θ, and plotted it in Figure 11.6. This plot describes what is
usually called the power function of the test. It’s a nice summary of how good the test is, because it actually tells you the power
(1−β) for all possible values of θ. As you can see, when the true value of θ is very close to 0.5, the power of the test drops very
sharply, but when it is further away, the power is large.

9.8.2 Effect size

Since all models are wrong the scientist must be alert to what is importantly wrong. It is
inappropriate to be concerned with mice when there are tigers abroad

– George Box 1976
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The plot shown in Figure 11.6 captures a fairly basic point about hypothesis testing. If the true state of the world is very different
from what the null hypothesis predicts, then your power will be very high; but if the true state of the world is similar to the null (but
not identical) then the power of the test is going to be very low. Therefore, it’s useful to be able to have some way of quantifying
how “similar” the true state of the world is to the null hypothesis. A statistic that does this is called a measure of effect size (e.g.
Cohen 1988; Ellis 2010). Effect size is defined slightly differently in different contexts,  (and so this section just talks in general
terms) but the qualitative idea that it tries to capture is always the same: how big is the difference between the true population
parameters, and the parameter values that are assumed by the null hypothesis? In our ESP example, if we let θ =0.5 denote the
value assumed by the null hypothesis, and let θ denote the true value, then a simple measure of effect size could be something like
the difference between the true value and null (i.e., θ−θ ), or possibly just the magnitude of this difference, abs(θ−θ ).

big effect size small effect size

significant result
difference is real, and of practical
importance

difference is real, but might not be
interesting

non-significant result no effect observed no effect observed

Why calculate effect size? Let’s assume that you’ve run your experiment, collected the data, and gotten a significant effect when
you ran your hypothesis test. Isn’t it enough just to say that you’ve gotten a significant effect? Surely that’s the point of hypothesis
testing? Well, sort of. Yes, the point of doing a hypothesis test is to try to demonstrate that the null hypothesis is wrong, but that’s
hardly the only thing we’re interested in. If the null hypothesis claimed that θ=.5, and we show that it’s wrong, we’ve only really
told half of the story. Rejecting the null hypothesis implies that we believe that θ≠.5, but there’s a big difference between θ=.51 and
θ=.8. If we find that θ=.8, then not only have we found that the null hypothesis is wrong, it appears to be very wrong. On the other
hand, suppose we’ve successfully rejected the null hypothesis, but it looks like the true value of θ is only .51 (this would only be
possible with a large study). Sure, the null hypothesis is wrong, but it’s not at all clear that we actually care, because the effect size
is so small. In the context of my ESP study we might still care, since any demonstration of real psychic powers would actually be
pretty cool , but in other contexts a 1% difference isn’t very interesting, even if it is a real difference. For instance, suppose we’re
looking at differences in high school exam scores between males and females, and it turns out that the female scores are 1% higher
on average than the males. If I’ve got data from thousands of students, then this difference will almost certainly be statistically
significant, but regardless of how small the p value is it’s just not very interesting. You’d hardly want to go around proclaiming a
crisis in boys education on the basis of such a tiny difference would you? It’s for this reason that it is becoming more standard
(slowly, but surely) to report some kind of standard measure of effect size along with the the results of the hypothesis test. The
hypothesis test itself tells you whether you should believe that the effect you have observed is real (i.e., not just due to chance); the
effect size tells you whether or not you should care.

9.8.3 Increasing the power of your study

Not surprisingly, scientists are fairly obsessed with maximising the power of their experiments. We want our experiments to work,
and so we want to maximise the chance of rejecting the null hypothesis if it is false (and of course we usually want to believe that it
is false!) As we’ve seen, one factor that influences power is the effect size. So the first thing you can do to increase your power is
to increase the effect size. In practice, what this means is that you want to design your study in such a way that the effect size gets
magnified. For instance, in my ESP study I might believe that psychic powers work best in a quiet, darkened room; with fewer
distractions to cloud the mind. Therefore I would try to conduct my experiments in just such an environment: if I can strengthen
people’s ESP abilities somehow, then the true value of θ will go up  and therefore my effect size will be larger. In short, clever
experimental design is one way to boost power; because it can alter the effect size.

Unfortunately, it’s often the case that even with the best of experimental designs you may have only a small effect. Perhaps, for
example, ESP really does exist, but even under the best of conditions it’s very very weak. Under those circumstances, your best bet
for increasing power is to increase the sample size. In general, the more observations that you have available, the more likely it is
that you can discriminate between two hypotheses. If I ran my ESP experiment with 10 participants, and 7 of them correctly
guessed the colour of the hidden card, you wouldn’t be terribly impressed. But if I ran it with 10,000 participants and 7,000 of them
got the answer right, you would be much more likely to think I had discovered something. In other words, power increases with the
sample size. This is illustrated in Figure 11.7, which shows the power of the test for a true parameter of θ=0.7, for all sample sizes
N from 1 to 100, where I’m assuming that the null hypothesis predicts that θ =0.5.
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##   [1] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.11837800 
##   [7] 0.08257300 0.05771362 0.19643626 0.14945203 0.11303734 0.25302172 
##  [13] 0.20255096 0.16086106 0.29695959 0.24588947 0.38879291 0.33269435 
##  [19] 0.28223844 0.41641377 0.36272868 0.31341925 0.43996501 0.38859619 
##  [25] 0.51186665 0.46049782 0.41129777 0.52752694 0.47870819 0.58881596 
##  [31] 0.54162450 0.49507894 0.59933871 0.55446069 0.65155826 0.60907715 
##  [37] 0.69828554 0.65867614 0.61815357 0.70325017 0.66542910 0.74296156 
##  [43] 0.70807163 0.77808343 0.74621569 0.71275488 0.78009449 0.74946571 
##  [49] 0.81000236 0.78219322 0.83626633 0.81119597 0.78435605 0.83676444 
##  [55] 0.81250680 0.85920268 0.83741123 0.87881491 0.85934395 0.83818214 
##  [61] 0.87858194 0.85962510 0.89539581 0.87849413 0.91004390 0.89503851 
##  [67] 0.92276845 0.90949768 0.89480727 0.92209753 0.90907263 0.93304809 
##  [73] 0.92153987 0.94254237 0.93240638 0.92108426 0.94185449 0.93185881 
##  [79] 0.95005094 0.94125189 0.95714694 0.94942195 0.96327866 0.95651332 
##  [85] 0.94886329 0.96265653 0.95594208 0.96796884 0.96208909 0.97255504 
##  [91] 0.96741721 0.97650832 0.97202770 0.97991117 0.97601093 0.97153910 
##  [97] 0.97944717 0.97554675 0.98240749 0.97901142

Figure 11.7: The power of our test, plotted as a function of the sample size N. In this case, the true value of θ is 0.7, but the null
hypothesis is that θ=0.5. Overall, larger N means greater power. (The small zig-zags in this function occur because of some odd
interactions between θ, α and the fact that the binomial distribution is discrete; it doesn’t matter for any serious purpose)

Because power is important, whenever you’re contemplating running an experiment it would be pretty useful to know how much
power you’re likely to have. It’s never possible to know for sure, since you can’t possibly know what your effect size is. However,
it’s often (well, sometimes) possible to guess how big it should be. If so, you can guess what sample size you need! This idea is
called power analysis, and if it’s feasible to do it, then it’s very helpful, since it can tell you something about whether you have
enough time or money to be able to run the experiment successfully. It’s increasingly common to see people arguing that power
analysis should be a required part of experimental design, so it’s worth knowing about. I don’t discuss power analysis in this book,
however. This is partly for a boring reason and partly for a substantive one. The boring reason is that I haven’t had time to write
about power analysis yet. The substantive one is that I’m still a little suspicious of power analysis. Speaking as a researcher, I have
very rarely found myself in a position to be able to do one – it’s either the case that (a) my experiment is a bit non-standard and I
don’t know how to define effect size properly, (b) I literally have so little idea about what the effect size will be that I wouldn’t
know how to interpret the answers. Not only that, after extensive conversations with someone who does stats consulting for a living
(my wife, as it happens), I can’t help but notice that in practice the only time anyone ever asks her for a power analysis is when
she’s helping someone write a grant application. In other words, the only time any scientist ever seems to want a power analysis in
real life is when they’re being forced to do it by bureaucratic process. It’s not part of anyone’s day to day work. In short, I’ve
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always been of the view that while power is an important concept, power analysis is not as useful as people make it sound, except
in the rare cases where (a) someone has figured out how to calculate power for your actual experimental design and (b) you have a
pretty good idea what the effect size is likely to be. Maybe other people have had better experiences than me, but I’ve personally
never been in a situation where both (a) and (b) were true. Maybe I’ll be convinced otherwise in the future, and probably a future
version of this book would include a more detailed discussion of power analysis, but for now this is about as much as I’m
comfortable saying about the topic.

This page titled 9.8: Effect Size, Sample Size and Power is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

11.8: Effect Size, Sample Size and Power by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.
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9.9: Some Issues to Consider
What I’ve described to you in this chapter is the orthodox framework for null hypothesis significance testing (NHST).
Understanding how NHST works is an absolute necessity, since it has been the dominant approach to inferential statistics ever
since it came to prominence in the early 20th century. It’s what the vast majority of working scientists rely on for their data
analysis, so even if you hate it you need to know it. However, the approach is not without problems. There are a number of quirks
in the framework, historical oddities in how it came to be, theoretical disputes over whether or not the framework is right, and a lot
of practical traps for the unwary. I’m not going to go into a lot of detail on this topic, but I think it’s worth briefly discussing a few
of these issues.

9.9.1 Neyman versus Fisher
The first thing you should be aware of is that orthodox NHST is actually a mash-up of two rather different approaches to
hypothesis testing, one proposed by Sir Ronald Fisher and the other proposed by Jerzy Neyman (for a historical summary see
Lehmann 2011). The history is messy because Fisher and Neyman were real people whose opinions changed over time, and at no
point did either of them offer “the definitive statement” of how we should interpret their work many decades later. That said, here’s
a quick summary of what I take these two approaches to be.

First, let’s talk about Fisher’s approach. As far as I can tell, Fisher assumed that you only had the one hypothesis (the null), and
what you want to do is find out if the null hypothesis is inconsistent with the data. From his perspective, what you should do is
check to see if the data are “sufficiently unlikely” according to the null. In fact, if you remember back to our earlier discussion,
that’s how Fisher defines the p-value. According to Fisher, if the null hypothesis provided a very poor account of the data, you
could safely reject it. But, since you don’t have any other hypotheses to compare it to, there’s no way of “accepting the alternative”
because you don’t necessarily have an explicitly stated alternative. That’s more or less all that there was to it.

In contrast, Neyman thought that the point of hypothesis testing was as a guide to action, and his approach was somewhat more
formal than Fisher’s. His view was that there are multiple things that you could do (accept the null or accept the alternative) and the
point of the test was to tell you which one the data support. From this perspective, it is critical to specify your alternative
hypothesis properly. If you don’t know what the alternative hypothesis is, then you don’t know how powerful the test is, or even
which action makes sense. His framework genuinely requires a competition between different hypotheses. For Neyman, the p value
didn’t directly measure the probability of the data (or data more extreme) under the null, it was more of an abstract description
about which “possible tests” were telling you to accept the null, and which “possible tests” were telling you to accept the
alternative.

As you can see, what we have today is an odd mishmash of the two. We talk about having both a null hypothesis and an alternative
(Neyman), but usually  define the p value in terms of exreme data (Fisher), but we still have α values (Neyman). Some of the
statistical tests have explicitly specified alternatives (Neyman) but others are quite vague about it (Fisher). And, according to some
people at least, we’re not allowed to talk about accepting the alternative (Fisher). It’s a mess: but I hope this at least explains why
it’s a mess.

9.9.2 Bayesians versus frequentists

Earlier on in this chapter I was quite emphatic about the fact that you cannot interpret the p value as the probability that the null
hypothesis is true. NHST is fundamentally a frequentist tool (see Chapter 9) and as such it does not allow you to assign
probabilities to hypotheses: the null hypothesis is either true or it is not. The Bayesian approach to statistics interprets probability as
a degree of belief, so it’s totally okay to say that there is a 10% chance that the null hypothesis is true: that’s just a reflection of the
degree of confidence that you have in this hypothesis. You aren’t allowed to do this within the frequentist approach. Remember, if
you’re a frequentist, a probability can only be defined in terms of what happens after a large number of independent replications
(i.e., a long run frequency). If this is your interpretation of probability, talking about the “probability” that the null hypothesis is
true is complete gibberish: a null hypothesis is either true or it is false. There’s no way you can talk about a long run frequency for
this statement. To talk about “the probability of the null hypothesis” is as meaningless as “the colour of freedom”. It doesn’t have
one!

Most importantly, this isn’t a purely ideological matter. If you decide that you are a Bayesian and that you’re okay with making
probability statements about hypotheses, you have to follow the Bayesian rules for calculating those probabilities. I’ll talk more

168

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36132?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/09%3A_Hypothesis_Testing/9.09%3A_Some_Issues_to_Consider


9.9.2 https://stats.libretexts.org/@go/page/36132

about this in Chapter 17, but for now what I want to point out to you is the p value is a terrible approximation to the probability
that H  is true. If what you want to know is the probability of the null, then the p value is not what you’re looking for!

9.9.3 Traps
As you can see, the theory behind hypothesis testing is a mess, and even now there are arguments in statistics about how it
“should” work. However, disagreements among statisticians are not our real concern here. Our real concern is practical data
analysis. And while the “orthodox” approach to null hypothesis significance testing has many drawbacks, even an unrepentant
Bayesian like myself would agree that they can be useful if used responsibly. Most of the time they give sensible answers, and you
can use them to learn interesting things. Setting aside the various ideologies and historical confusions that we’ve discussed, the fact
remains that the biggest danger in all of statistics is thoughtlessness. I don’t mean stupidity, here: I literally mean thoughtlessness.
The rush to interpret a result without spending time thinking through what each test actually says about the data, and checking
whether that’s consistent with how you’ve interpreted it. That’s where the biggest trap lies.

To give an example of this, consider the following example (see Gelman and Stern 2006). Suppose I’m running my ESP study, and
I’ve decided to analyse the data separately for the male participants and the female participants. Of the male participants, 33 out of
50 guessed the colour of the card correctly. This is a significant effect (p=.03). Of the female participants, 29 out of 50 guessed
correctly. This is not a significant effect (p=.32). Upon observing this, it is extremely tempting for people to start wondering why
there is a difference between males and females in terms of their psychic abilities. However, this is wrong. If you think about it, we
haven’t actually run a test that explicitly compares males to females. All we have done is compare males to chance (binomial test
was significant) and compared females to chance (binomial test was non significant). If we want to argue that there is a real
difference between the males and the females, we should probably run a test of the null hypothesis that there is no difference! We
can do that using a different hypothesis test,  but when we do that it turns out that we have no evidence that males and females
are significantly different (p=.54). Now do you think that there’s anything fundamentally different between the two groups? Of
course not. What’s happened here is that the data from both groups (male and female) are pretty borderline: by pure chance, one of
them happened to end up on the magic side of the p=.05 line, and the other one didn’t. That doesn’t actually imply that males and
females are different. This mistake is so common that you should always be wary of it: the difference between significant and not-
significant is not evidence of a real difference – if you want to say that there’s a difference between two groups, then you have to
test for that difference!

The example above is just that: an example. I’ve singled it out because it’s such a common one, but the bigger picture is that data
analysis can be tricky to get right. Think about what it is you want to test, why you want to test it, and whether or not the answers
that your test gives could possibly make any sense in the real world.

This page titled 9.9: Some Issues to Consider is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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9.10: Misconceptions of Hypothesis Testing

State why the probability value is not the probability the null hypothesis is false
Explain why a low probability value does not necessarily mean there is a large effect
Explain why a non-significant outcome does not mean the null hypothesis is probably true

Misconceptions about significance testing are common. This section lists three important ones.

1. Misconception: The probability value is the probability that the null hypothesis is false.  
 
Proper interpretation: The probability value is the probability of a result as extreme or more extreme given that the null
hypothesis is true. It is the probability of the data given the null hypothesis. It is not the probability that the null hypothesis is
false. 

2. Misconception: A low probability value indicates a large effect. 
 
Proper interpretation: A low probability value indicates that the sample outcome (or one more extreme) would be very
unlikely if the null hypothesis were true. A low probability value can occur with small effect sizes, particularly if the sample
size is large. 

3. Misconception: A non-significant outcome means that the null hypothesis is probably true. 
 
Proper interpretation: A non-significant outcome means that the data do not conclusively demonstrate that the null hypothesis
is false.

This page titled 9.10: Misconceptions of Hypothesis Testing is shared under a Public Domain license and was authored, remixed, and/or curated
by David Lane via source content that was edited to the style and standards of the LibreTexts platform.
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9.11: Summary
Null hypothesis testing is one of the most ubiquitous elements to statistical theory. The vast majority of scientific papers report the
results of some hypothesis test or another. As a consequence it is almost impossible to get by in science without having at least a
cursory understanding of what a p-value means, making this one of the most important chapters in the book. As usual, I’ll end the
chapter with a quick recap of the key ideas that we’ve talked about:

Research hypotheses and statistical hypotheses. Null and alternative hypotheses. (Section 11.1).
Type 1 and Type 2 errors (Section 11.2)
Test statistics and sampling distributions (Section 11.3)
Hypothesis testing as a decision making process (Section 11.4)
p-values as “soft” decisions (Section 11.5)
Writing up the results of a hypothesis test (Section 11.6)
Effect size and power (Section 11.8)
A few issues to consider regarding hypothesis testing (Section 11.9)

Later in the book, in Chapter 17, I’ll revisit the theory of null hypothesis tests from a Bayesian perspective, and introduce a number
of new tools that you can use if you aren’t particularly fond of the orthodox approach. But for now, though, we’re done with the
abstract statistical theory, and we can start discussing specific data analysis tools.
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156. The quote comes from Wittgenstein’s (1922) text, Tractatus Logico-Philosphicus.
157. A technical note. The description below differs subtly from the standard description given in a lot of introductory texts. The

orthodox theory of null hypothesis testing emerged from the work of Sir Ronald Fisher and Jerzy Neyman in the early 20th
century; but Fisher and Neyman actually had very different views about how it should work. The standard treatment of
hypothesis testing that most texts use is a hybrid of the two approaches. The treatment here is a little more Neyman-style than
the orthodox view, especially as regards the meaning of the p value.

158. My apologies to anyone who actually believes in this stuff, but on my reading of the literature on ESP, it’s just not reasonable to
think this is real. To be fair, though, some of the studies are rigorously designed; so it’s actually an interesting area for thinking
about psychological research design. And of course it’s a free country, so you can spend your own time and effort proving me
wrong if you like, but I wouldn’t think that’s a terribly practical use of your intellect.

159. This analogy only works if you’re from an adversarial legal system like UK/US/Australia. As I understand these things, the
French inquisitorial system is quite different.

160. An aside regarding the language you use to talk about hypothesis testing. Firstly, one thing you really want to avoid is the word
“prove”: a statistical test really doesn’t prove that a hypothesis is true or false. Proof implies certainty, and as the saying goes,
statistics means never having to say you’re certain. On that point almost everyone would agree. However, beyond that there’s a
fair amount of confusion. Some people argue that you’re only allowed to make statements like “rejected the null”, “failed to
reject the null”, or possibly “retained the null”. According to this line of thinking, you can’t say things like “accept the
alternative” or “accept the null”. Personally I think this is too strong: in my opinion, this conflates null hypothesis testing with
Karl Popper’s falsificationist view of the scientific process. While there are similarities between falsificationism and null
hypothesis testing, they aren’t equivalent. However, while I personally think it’s fine to talk about accepting a hypothesis (on
the proviso that “acceptance” doesn’t actually mean that it’s necessarily true, especially in the case of the null hypothesis),
many people will disagree. And more to the point, you should be aware that this particular weirdness exists, so that you’re not
caught unawares by it when writing up your own results.
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161. Strictly speaking, the test I just constructed has α=.057, which is a bit too generous. However, if I’d chosen 39 and 61 to be the
boundaries for the critical region, then the critical region only covers 3.5% of the distribution. I figured that it makes more sense
to use 40 and 60 as my critical values, and be willing to tolerate a 5.7% type I error rate, since that’s as close as I can get to a
value of α=.05.

162. The internet seems fairly convinced that Ashley said this, though I can’t for the life of me find anyone willing to give a source
for the claim.

163. That’s p=.000000000000000000000000136 for folks that don’t like scientific notation!
164. Note that the p  here has nothing to do with a p value. The p  argument in the binom.test()  function corresponds to

the probability of making a correct response, according to the null hypothesis. In other words, it’s the θ value.
165. There’s an R package called compute.es  that can be used for calculating a very broad range of effect size measures; but

for the purposes of the current book we won’t need it: all of the effect size measures that I’ll talk about here have functions in
the lsr  package

166. Although in practice a very small effect size is worrying, because even very minor methodological flaws might be responsible
for the effect; and in practice no experiment is perfect, so there are always methodological issues to worry about.

167. Notice that the true population parameter θ doesn’t necessarily correspond to an immutable fact of nature. In this context θ is
just the true probability that people would correctly guess the colour of the card in the other room. As such the population
parameter can be influenced by all sorts of things. Of course, this is all on the assumption that ESP actually exists!

168. Although this book describes both Neyman’s and Fisher’s definition of the p value, most don’t. Most introductory textbooks
will only give you the Fisher version.

169. In this case, the Pearson chi-square test of independence (Chapter 12; chisq.test()  in R) is what we use; see also the 
prop.test()  function.

This page titled 9.11: Summary is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
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9.12: Statistical Literacy

Evidence for the Higgs Boson

Research in March, 2012 reported here found evidence for the existence of the Higgs Boson particle. However, the evidence for the
existence of the particle was not statistically significant.

Did the researchers conclude that their investigation had been a failure or did they conclude they have evidence of the particle,
just not strong enough evidence to draw a confident conclusion?

Solution

One of the investigators stated, "We see some tantalizing evidence but not significant enough to make a stronger statement."
Therefore, they were encouraged by the result. In a subsequent study, the evidence was significant.

This page titled 9.12: Statistical Literacy is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via
source content that was edited to the style and standards of the LibreTexts platform.
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9.13: Logic of Hypothesis Testing (Exercises)
You may want to use the Binomial Calculator for some of these exercises.

General Questions

Q1

An experiment is conducted to test the claim that James Bond can taste the difference between a Martini that is shaken and one that
is stirred. What is the null hypothesis? (relevant section)

Q2

The following explanation is incorrect. What three words should be added to make it correct? (relevant section)

The probability value is the probability of obtaining a statistic as different from the parameter specified in the null hypothesis
as the statistic obtained in the experiment. The probability value is computed assuming that the null hypothesis is true.

Q3

Why do experimenters test hypotheses they think are false? (relevant section)

Q4

State the null hypothesis for:

a. An experiment testing whether echinacea decreases the length of colds.
b. A correlational study on the relationship between brain size and intelligence.
c. An investigation of whether a self-proclaimed psychic can predict the outcome of a coin flip.
d. A study comparing a drug with a placebo on the amount of pain relief. (A one-tailed test was used.) 

(relevant section & relevant section)

Q5

Assume the null hypothesis is that  and that the graph shown below is the sampling distribution of the mean ( ). Would a
sample value of  be significant in a two-tailed test at the  level? Roughly what value of  would be needed to be
significant? (relevant section & relevant section)

Q6

A researcher develops a new theory that predicts that vegetarians will have more of a particular vitamin in their blood than non-
vegetarians. An experiment is conducted and vegetarians do have more of the vitamin, but the difference is not significant. The
probability value is . Should the experimenter's confidence in the theory increase, decrease, or stay the same? (relevant
section)

Q7

A researcher hypothesizes that the lowering in cholesterol associated with weight loss is really due to exercise. To test this, the
researcher carefully controls for exercise while comparing the cholesterol levels of a group of subjects who lose weight by dieting
with a control group that does not diet. The difference between groups in cholesterol is not significant. Can the researcher claim
that weight loss has no effect? (relevant section)

Q8

A significance test is performed and . Why can't the experimenter claim that the probability that the null hypothesis is true
is ? (relevant section, relevant section & relevant section)

μ= 50 M

M = 60 0.05 M
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Q9

For a drug to be approved by the FDA, the drug must be shown to be safe and effective. If the drug is significantly more effective
than a placebo, then the drug is deemed effective. What do you know about the effectiveness of a drug once it has been approved
by the FDA (assuming that there has not been a Type I error)? (relevant section)

Q10

When is it valid to use a one-tailed test? What is the advantage of a one-tailed test? Give an example of a null hypothesis that
would be tested by a one-tailed test. (relevant section)

Q11

Distinguish between probability value and significance level. (relevant section)

Q12

Suppose a study was conducted on the effectiveness of a class on "How to take tests." The SAT scores of an experimental group
and a control group were compared. (There were  subjects in each group.) The mean score of the experimental group was 
and the mean score of the control group was . The difference between means was found to be significant, . What do
you conclude about the effectiveness of the class? (relevant section & relevant section)

Q13

Is it more conservative to use an alpha level of  or an alpha level of ? Would beta be higher for an alpha of  or for an
alpha of ? (relevant section)

Q14

Why is  not a proper null hypothesis? (relevant section)

Q15

An experimenter expects an effect to come out in a certain direction. Is this sufficient basis for using a one-tailed test? Why or why
not? (relevant section)

Q16

How do the Type I and Type II error rates of one-tailed and two-tailed tests differ? (relevant section & relevant section)

Q17

A two-tailed probability is . What is the one-tailed probability if the effect were in the specified direction? What would it be if
the effect were in the other direction? (relevant section)

Q18

You choose an alpha level of  and then analyze your data.

a. What is the probability that you will make a Type I error given that the null hypothesis is true?
b. What is the probability that you will make a Type I error given that the null hypothesis is false? (relevant section)

Q19

Why doesn't it make sense to test the hypothesis that the sample mean is ? (relevant section & relevant section)

Q20

True/false: It is easier to reject the null hypothesis if the researcher uses a smaller alpha ( ) level. (relevant section & relevant
section)

Q21

True/false: You are more likely to make a Type I error when using a small sample than when using a large sample. (relevant
section)
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Q22

True/false: You accept the alternative hypothesis when you reject the null hypothesis. (relevant section)

Q23

True/false: You do not accept the null hypothesis when you fail to reject it. (relevant section)

Q24

True/false: A researcher risks making a Type I error any time the null hypothesis is rejected. (relevant section)
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CHAPTER OVERVIEW

10: Categorical Data Analysis
Now that we’ve got the basic theory behind hypothesis testing, it’s time to start looking at specific tests that are commonly used in
psychology. So where should we start? Not every textbook agrees on where to start, but I’m going to start with “χ  tests” (this
chapter) and “t-tests” (Chapter 13). Both of these tools are very frequently used in scientific practice, and while they’re not as
powerful as “analysis of variance” (Chapter 14) and “regression” (Chapter 15) they’re much easier to understand.

The term “categorical data” is just another name for “nominal scale data”. It’s nothing that we haven’t already discussed, it’s just
that in the context of data analysis people tend to use the term “categorical data” rather than “nominal scale data”. I don’t know
why. In any case, categorical data analysis refers to a collection of tools that you can use when your data are nominal scale.
However, there are a lot of different tools that can be used for categorical data analysis, and this chapter only covers a few of the
more common ones.

10.1: The χ2 Goodness-of-fit Test
10.2: The χ2 test of independence (or association)
10.3: The Continuity Correction
10.4: Effect Size
10.5: Assumptions of the Test(s)
10.6: The Most Typical Way to Do Chi-square Tests in R
10.7: The Fisher Exact Test
10.8: The McNemar Test
10.9: What’s the Difference Between McNemar and Independence?
10.10: Summary
10.11: Statistical Literacy
10.12: Chi Square (Exercises)

This page titled 10: Categorical Data Analysis is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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10.1: The χ2 Goodness-of-fit Test
The χ  goodness-of-fit test is one of the oldest hypothesis tests around: it was invented by Karl Pearson around the turn of the
century (Pearson 1900), with some corrections made later by Sir Ronald Fisher (Fisher 1922a). To introduce the statistical problem
that it addresses, let’s start with some psychology…

10.1.1 cards data
Over the years, there have been a lot of studies showing that humans have a lot of difficulties in simulating randomness. Try as we
might to “act” random, we think in terms of patterns and structure, and so when asked to “do something at random”, what people
actually do is anything but random. As a consequence, the study of human randomness (or non-randomness, as the case may be)
opens up a lot of deep psychological questions about how we think about the world. With this in mind, let’s consider a very simple
study. Suppose I asked people to imagine a shuffled deck of cards, and mentally pick one card from this imaginary deck “at
random”. After they’ve chosen one card, I ask them to mentally select a second one. For both choices, what we’re going to look at
is the suit (hearts, clubs, spades or diamonds) that people chose. After asking, say, N=200 people to do this, I’d like to look at the
data and figure out whether or not the cards that people pretended to select were really random. The data are contained in the 
randomness.Rdata  file, which contains a single data frame called cards . Let’s take a look:

library( lsr ) 
load( "./rbook-master/data/randomness.Rdata" ) 
str(cards)

As you can see, the cards  data frame contains three variables, an id  variable that assigns a unique identifier to each
participant, and the two variables choice_1  and choice_2  that indicate the card suits that people chose. Here’s the first
few entries in the data frame:

head( cards )

##      id choice_1 choice_2 
## 1 subj1   spades    clubs 
## 2 subj2 diamonds    clubs 
## 3 subj3   hearts    clubs 
## 4 subj4   spades    clubs 
## 5 subj5   hearts   spades 
## 6 subj6    clubs   hearts

For the moment, let’s just focus on the first choice that people made. We’ll use the table()  function to count the number of
times that we observed people choosing each suit. I’ll save the table to a variable called observed , for reasons that will
become clear very soon:

observed <- table( cards$choice_1 ) 
observed

## 
##    clubs diamonds   hearts   spades  
##       35       51       64       50

## 'data.frame':    200 obs. of  3 variables: 
##  $ id      : Factor w/ 200 levels "subj1","subj10",..: 1 112 124 135 146 157 168 1
##  $ choice_1: Factor w/ 4 levels "clubs","diamonds",..: 4 2 3 4 3 1 3 2 4 2 ... 
##  $ choice_2: Factor w/ 4 levels "clubs","diamonds",..: 1 1 1 1 4 3 2 1 1 4 ...
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That little frequency table is quite helpful. Looking at it, there’s a bit of a hint that people might be more likely to select hearts than
clubs, but it’s not completely obvious just from looking at it whether that’s really true, or if this is just due to chance. So we’ll
probably have to do some kind of statistical analysis to find out, which is what I’m going to talk about in the next section.

Excellent. From this point on, we’ll treat this table as the data that we’re looking to analyse. However, since I’m going to have to
talk about this data in mathematical terms (sorry!) it might be a good idea to be clear about what the notation is. In R, if I wanted to
pull out the number of people that selected diamonds, I could do it by name by typing observed["diamonds"]  but, since 
"diamonds"  is second element of the observed  vector, it’s equally effective to refer to it as observed[2] . The

mathematical notation for this is pretty similar, except that we shorten the human-readable word “observed” to the letter O, and we
use subscripts rather than brackets: so the second observation in our table is written as observed[2]  in R, and is written as O
in maths. The relationship between the English descriptions, the R commands, and the mathematical symbols are illustrated below:

label index i math. symbol R command the value

clubs ♣ 1 O1 observed[1] 35

diamonds ♢ 2 O2 observed[2] 51

hearts ♡ 3 O3 observed[3] 64

spades ♠ 4 O4 observed[4] 50

Hopefully that’s pretty clear. It’s also worth nothing that mathematicians prefer to talk about things in general rather than specific
things, so you’ll also see the notation O , which refers to the number of observations that fall within the i-th category (where i could
be 1, 2, 3 or 4). Finally, if we want to refer to the set of all observed frequencies, statisticians group all of observed values into a
vector, which I’ll refer to as O.

O=(O ,O ,O ,O )

Again, there’s nothing new or interesting here: it’s just notation. If I say that O = (35,51,64,50) all I’m doing is describing the table
of observed frequencies (i.e., observed ), but I’m referring to it using mathematical notation, rather than by referring to an R
variable.

10.1.2 null hypothesis and the alternative hypothesis
As the last section indicated, our research hypothesis is that “people don’t choose cards randomly”. What we’re going to want to do
now is translate this into some statistical hypotheses, and construct a statistical test of those hypotheses. The test that I’m going to
describe to you is Pearson’s χ  goodness of fit test, and as is so often the case, we have to begin by carefully constructing our null
hypothesis. In this case, it’s pretty easy. First, let’s state the null hypothesis in words:

H

All four suits are chosen with equal probability

Now, because this is statistics, we have to be able to say the same thing in a mathematical way. To do this, let’s use the notation P
to refer to the true probability that the j-th suit is chosen. If the null hypothesis is true, then each of the four suits has a 25% chance
of being selected: in other words, our null hypothesis claims that P =.25, P2=.25, P3=.25 and finally that P =.25. However, in the
same way that we can group our observed frequencies into a vector O that summarises the entire data set, we can use P to refer to
the probabilities that correspond to our null hypothesis. So if I let the vector P=(P ,P ,P ,P ) refer to the collection of probabilities
that describe our null hypothesis, then we have

H :P=(.25,.25,.25,.25)

In this particular instance, our null hypothesis corresponds to a vector of probabilities P in which all of the probabilities are equal to
one another. But this doesn’t have to be the case. For instance, if the experimental task was for people to imagine they were
drawing from a deck that had twice as many clubs as any other suit, then the null hypothesis would correspond to something like
P=(.4,.2,.2,.2). As long as the probabilities are all positive numbers, and they all sum to 1, them it’s a perfectly legitimate choice for
the null hypothesis. However, the most common use of the goodness of fit test is to test a null hypothesis that all of the categories
are equally likely, so we’ll stick to that for our example.
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What about our alternative hypothesis, H ? All we’re really interested in is demonstrating that the probabilities involved aren’t all
identical (that is, people’s choices weren’t completely random). As a consequence, the “human friendly” versions of our hypotheses
look like this:

H H

All four suits are chosen with equal probability 
and the “mathematician friendly” version is

At least one of the suit-choice probabilities isn’t .25

H H

P=(.25,.25,.25,.25) P≠(.25,.25,.25,.25)

Conveniently, the mathematical version of the hypotheses looks quite similar to an R command defining a vector. So maybe what I
should do is store the P vector in R as well, since we’re almost certainly going to need it later. And because I’m so imaginative, I’ll
call this R vector probabilities ,

probabilities <- c(clubs = .25, diamonds = .25, hearts = .25, spades = .25)  
probabilities

##    clubs diamonds   hearts   spades  
##     0.25     0.25     0.25     0.25

10.1.3 “goodness of fit” test statistic

At this point, we have our observed frequencies O and a collection of probabilities P corresponding the null hypothesis that we
want to test. We’ve stored these in R as the corresponding variables observed  and probabilities . What we now want
to do is construct a test of the null hypothesis. As always, if we want to test H  against H , we’re going to need a test statistic. The
basic trick that a goodness of fit test uses is to construct a test statistic that measures how “close” the data are to the null hypothesis.
If the data don’t resemble what you’d “expect” to see if the null hypothesis were true, then it probably isn’t true. Okay, if the null
hypothesis were true, what would we expect to see? Or, to use the correct terminology, what are the expected frequencies. There
are N=200 observations, and (if the null is true) the probability of any one of them choosing a heart is P =.25, so I guess we’re
expecting 200×.25=50 hearts, right? Or, more specifically, if we let E  refer to “the number of category i responses that we’re
expecting if the null is true”, then

E =N×P

This is pretty easy to calculate in R:

N <- 200  # sample size 
expected <- N * probabilities # expected frequencies 
expected

##    clubs diamonds   hearts   spades  
##       50       50       50       50

None of which is very surprising: if there are 200 observation that can fall into four categories, and we think that all four categories
are equally likely, then on average we’d expect to see 50 observations in each category, right?

Now, how do we translate this into a test statistic? Clearly, what we want to do is compare the expected number of observations in
each category (E ) with the observed number of observations in that category (O ). And on the basis of this comparison, we ought to
be able to come up with a good test statistic. To start with, let’s calculate the difference between what the null hypothesis expected
us to find and what we actually did find. That is, we calculate the “observed minus expected” difference score, O −E . This is
illustrated in the following table.
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  ♣ ♢ ♡ ♠

expected frequency E 50 50 50 50

observed frequency O 35 51 64 50

difference score O −E -15 1 14 0

The same calculations can be done in R, using our expected  and observed  variables:

observed - expected 

## 
##    clubs diamonds   hearts   spades  
##      -15        1       14        0

Regardless of whether we do the calculations by hand or whether we do them in R, it’s clear that people chose more hearts and
fewer clubs than the null hypothesis predicted. However, a moment’s thought suggests that these raw differences aren’t quite what
we’re looking for. Intuitively, it feels like it’s just as bad when the null hypothesis predicts too few observations (which is what
happened with hearts) as it is when it predicts too many (which is what happened with clubs). So it’s a bit weird that we have a
negative number for clubs and a positive number for heards. One easy way to fix this is to square everything, so that we now
calculate the squared differences, (E −O ) . As before, we could do this by hand, but it’s easier to do it in R…

(observed - expected)^2

## 
##    clubs diamonds   hearts   spades  
##      225        1      196        0

Now we’re making progress. What we’ve got now is a collection of numbers that are big whenever the null hypothesis makes a bad
prediction (clubs and hearts), but are small whenever it makes a good one (diamonds and spades). Next, for some technical reasons
that I’ll explain in a moment, let’s also divide all these numbers by the expected frequency E , so we’re actually calculating 

. Since E =50 for all categories in our example, it’s not a very interesting calculation, but let’s do it anyway. The R

command becomes:

(observed - expected)^2 / expected

## 
##    clubs diamonds   hearts   spades  
##     4.50     0.02     3.92     0.00

In effect, what we’ve got here are four different “error” scores, each one telling us how big a “mistake” the null hypothesis made
when we tried to use it to predict our observed frequencies. So, in order to convert this into a useful test statistic, one thing we
could do is just add these numbers up. The result is called the goodness of fit statistic, conventionally referred to either as X  or
GOF. We can calculate it using this command in R

sum( (observed - expected)^2 / expected )

## [1] 8.44
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The formula for this statistic looks remarkably similar to the R command. If we let k refer to the total number of categories (i.e.,
k=4 for our cards data), then the X  statistic is given by:

Intuitively, it’s clear that if X  is small, then the observed data O  are very close to what the null hypothesis predicted E , so we’re
going to need a large X  statistic in order to reject the null. As we’ve seen from our calculations, in our cards data set we’ve got a
value of X =8.44. So now the question becomes, is this a big enough value to reject the null?

10.1.4 sampling distribution of the GOF statistic (advanced)
To determine whether or not a particular value of X  is large enough to justify rejecting the null hypothesis, we’re going to need to
figure out what the sampling distribution for X  would be if the null hypothesis were true. So that’s what I’m going to do in this
section. I’ll show you in a fair amount of detail how this sampling distribution is constructed, and then – in the next section – use it
to build up a hypothesis test. If you want to cut to the chase and are willing to take it on faith that the sampling distribution is a chi-
squared (χ ) distribution with k−1 degrees of freedom, you can skip the rest of this section. However, if you want to understand
why the goodness of fit test works the way it does, read on…

Okay, let’s suppose that the null hypothesis is actually true. If so, then the true probability that an observation falls in the i-th
category is P  – after all, that’s pretty much the definition of our null hypothesis. Let’s think about what this actually means. If you
think about it, this is kind of like saying that “nature” makes the decision about whether or not the observation ends up in category i
by flipping a weighted coin (i.e., one where the probability of getting a head is P ). And therefore, we can think of our observed
frequency O  by imagining that nature flipped N of these coins (one for each observation in the data set)… and exactly O  of them
came up heads. Obviously, this is a pretty weird way to think about the experiment. But what it does (I hope) is remind you that
we’ve actually seen this scenario before. It’s exactly the same set up that gave rise to the binomial distribution in Section 9.4. In
other words, if the null hypothesis is true, then it follows that our observed frequencies were generated by sampling from a
binomial distribution:

O∼Binomial(P ,N)

Now, if you remember from our discussion of the central limit theorem (Section 10.3.3), the binomial distribution starts to look
pretty much identical to the normal distribution, especially when N is large and when P  isn’t too close to 0 or 1. In other words as
long as N×P  is large enough – or, to put it another way, when the expected frequency E  is large enough – the theoretical
distribution of O  is approximately normal. Better yet, if O  is normally distributed, then so is (O −E )/  … since E  is a fixed
value, subtracting off E  and dividing by  changes the mean and standard deviation of the normal distribution; but that’s all it
does. Okay, so now let’s have a look at what our goodness of fit statistic actually is. What we’re doing is taking a bunch of things
that are normally-distributed, squaring them, and adding them up. Wait. We’ve seen that before too! As we discussed in Section
9.6, when you take a bunch of things that have a standard normal distribution (i.e., mean 0 and standard deviation 1), square them,
then add them up, then the resulting quantity has a chi-square distribution. So now we know that the null hypothesis predicts that
the sampling distribution of the goodness of fit statistic is a chi-square distribution. Cool.

There’s one last detail to talk about, namely the degrees of freedom. If you remember back to Section 9.6, I said that if the number
of things you’re adding up is k, then the degrees of freedom for the resulting chi-square distribution is k. Yet, what I said at the start
of this section is that the actual degrees of freedom for the chi-square goodness of fit test is k−1. What’s up with that? The answer
here is that what we’re supposed to be looking at is the number of genuinely independent things that are getting added together.
And, as I’ll go on to talk about in the next section, even though there’s k things that we’re adding, only k−1 of them are truly
independent; and so the degrees of freedom is actually only k−1. That’s the topic of the next section.

10.1.5 Degrees of freedom
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Figure 12.1: Chi-square distributions with different values for the “degrees of freedom”.

When I introduced the chi-square distribution in Section 9.6, I was a bit vague about what “degrees of freedom” actually means.
Obviously, it matters: looking Figure 12.1 you can see that if we change the degrees of freedom, then the chi-square distribution
changes shape quite substantially. But what exactly is it? Again, when I introduced the distribution and explained its relationship to
the normal distribution, I did offer an answer… it’s the number of “normally distributed variables” that I’m squaring and adding
together. But, for most people, that’s kind of abstract, and not entirely helpful. What we really need to do is try to understand
degrees of freedom in terms of our data. So here goes.

The basic idea behind degrees of freedom is quite simple: you calculate it by counting up the number of distinct “quantities” that
are used to describe your data; and then subtracting off all of the “constraints” that those data must satisfy.  This is a bit vague, so
let’s use our cards data as a concrete example. We describe out data using four numbers, O , O , O  and O  corresponding to the
observed frequencies of the four different categories (hearts, clubs, diamonds, spades). These four numbers are the random
outcomes of our experiment. But, my experiment actually has a fixed constraint built into it: the sample size N.  That is, if we
know how many people chose hearts, how many chose diamonds and how many chose clubs; then we’d be able to figure out
exactly how many chose spades. In other words, although our data are described using four numbers, they only actually correspond
to 4−1=3 degrees of freedom. A slightly different way of thinking about it is to notice that there are four probabilities that we’re
interested in (again, corresponding to the four different categories), but these probabilities must sum to one, which imposes a
constraint. Therefore, the degrees of freedom is 4−1=3. Regardless of whether you want to think about it in terms of the observed
frequencies or in terms of the probabilities, the answer is the same. In general, when running the chi-square goodness of fit test for
an experiment involving k groups, then the degrees of freedom will be k−1.

10.1.6 Testing the null hypothesis
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Figure 12.2: Illustration of how the hypothesis testing works for the chi-square goodness of fit test.

The final step in the process of constructing our hypothesis test is to figure out what the rejection region is. That is, what values of
X  would lead is to reject the null hypothesis. As we saw earlier, large values of X  imply that the null hypothesis has done a poor
job of predicting the data from our experiment, whereas small values of X  imply that it’s actually done pretty well. Therefore, a
pretty sensible strategy would be to say there is some critical value, such that if X  is bigger than the critical value we reject the
null; but if X  is smaller than this value we retain the null. In other words, to use the language we introduced in Chapter
@ref(hypothesistesting the chi-squared goodness of fit test is always a one-sided test. Right, so all we have to do is figure out what
this critical value is. And it’s pretty straightforward. If we want our test to have significance level of α=.05 (that is, we are willing
to tolerate a Type I error rate of 5%), then we have to choose our critical value so that there is only a 5% chance that X  could get
to be that big if the null hypothesis is true. That is to say, we want the 95th percentile of the sampling distribution. This is illustrated
in Figure 12.2.

Ah, but – I hear you ask – how do I calculate the 95th percentile of a chi-squared distribution with k−1 degrees of freedom? If only
R had some function, called… oh, I don’t know, qchisq()  … that would let you calculate this percentile (see Chapter 9 if
you’ve forgotten). Like this…

qchisq( p = .95, df = 3 )

## [1] 7.814728

So if our X  statistic is bigger than 7.81 or so, then we can reject the null hypothesis. Since we actually calculated that before (i.e.,
X =8.44) we can reject the null. If we want an exact p-value, we can calculate it using the pchisq()  function:

pchisq( q = 8.44, df = 3, lower.tail = FALSE )

## [1] 0.03774185

This is hopefully pretty straightforward, as long as you recall that the “ p ” form of the probability distribution functions in R
always calculates the probability of getting a value of less than the value you entered (in this case 8.44). We want the opposite: the
probability of getting a value of 8.44 or more. That’s why I told R to use the upper tail, not the lower tail. That said, it’s usually
easier to calculate the p-value this way:

1-pchisq( q = 8.44, df = 3 )
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## [1] 0.03774185

So, in this case we would reject the null hypothesis, since p<.05. And that’s it, basically. You now know “Pearson’s χ  test for the
goodness of fit”. Lucky you.

10.1.7 Doing the test in R
Gosh darn it. Although we did manage to do everything in R as we were going through that little example, it does rather feel as if
we’re typing too many things into the magic computing box. And I hate typing. Not surprisingly, R provides a function that will do
all of these calculations for you. In fact, there are several different ways of doing it. The one that most people use is the 
chisq.test()  function, which comes with every installation of R. I’ll show you how to use the chisq.test()  function

later on (in Section @ref(chisq.test), but to start out with I’m going to show you the goodnessOfFitTest()  function in the 
lsr  package, because it produces output that I think is easier for beginners to understand. It’s pretty straightforward: our raw

data are stored in the variable cards$choice_1 , right? If you want to test the null hypothesis that all four suits are equally
likely, then (assuming you have the lsr  package loaded) all you have to do is type this:

goodnessOfFitTest( cards$choice_1 )  

## 
##      Chi-square test against specified probabilities 
## 
## Data variable:   cards$choice_1  
## 
## Hypotheses:  
##    null:        true probabilities are as specified 
##    alternative: true probabilities differ from those specified 
## 
## Descriptives:  
##          observed freq. expected freq. specified prob. 
## clubs                35             50            0.25 
## diamonds             51             50            0.25 
## hearts               64             50            0.25 
## spades               50             50            0.25 
## 
## Test results:  
##    X-squared statistic:  8.44  
##    degrees of freedom:  3  
##    p-value:  0.038

R then runs the test, and prints several lines of text. I’ll go through the output line by line, so that you can make sure that you
understand what you’re looking at. The first two lines are just telling you things you already know:

Chi-square test against specified probabilities 
 
Data variable:   cards$choice_1 

The first line tells us what kind of hypothesis test we ran, and the second line tells us the name of the variable that we ran it on.
After that comes a statement of what the null and alternative hypotheses are:

Hypotheses:  
   null:        true probabilities are as specified 
   alternative: true probabilities differ from those specified  
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For a beginner, it’s kind of handy to have this as part of the output: it’s a nice reminder of what your null and alternative hypotheses
are. Don’t get used to seeing this though. The vast majority of hypothesis tests in R aren’t so kind to novices. Most R functions are
written on the assumption that you already understand the statistical tool that you’re using, so they don’t bother to include an
explicit statement of the null and alternative hypothesis. The only reason that goodnessOfFitTest()  actually does give you
this is that I wrote it with novices in mind.

The next part of the output shows you the comparison between the observed frequencies and the expected frequencies:

Descriptives:  
         observed freq. expected freq. specified prob. 
clubs                35             50            0.25 
diamonds             51             50            0.25 
hearts               64             50            0.25 
spades               50             50            0.25

The first column shows what the observed frequencies were, the second column shows the expected frequencies according to the
null hypothesis, and the third column shows you what the probabilities actually were according to the null. For novice users, I think
this is helpful: you can look at this part of the output and check that it makes sense: if it doesn’t you might have typed something
incorrecrtly.

The last part of the output is the “important” stuff: it’s the result of the hypothesis test itself. There are three key numbers that need
to be reported: the value of the X  statistic, the degrees of freedom, and the p-value:

Test results:  
   X-squared statistic:  8.44  
   degrees of freedom:  3  
   p-value:  0.038 

Notice that these are the same numbers that we came up with when doing the calculations the long way.

10.1.8 Specifying a different null hypothesis

At this point you might be wondering what to do if you want to run a goodness of fit test, but your null hypothesis is not that all
categories are equally likely. For instance, let’s suppose that someone had made the theoretical prediction that people should choose
red cards 60% of the time, and black cards 40% of the time (I’ve no idea why you’d predict that), but had no other preferences. If
that were the case, the null hypothesis would be to expect 30% of the choices to be hearts, 30% to be diamonds, 20% to be spades
and 20% to be clubs. This seems like a silly theory to me, and it’s pretty easy to test it using our data. All we need to do is specify
the probabilities associated with the null hypothesis. We create a vector like this:

nullProbs <- c(clubs = .2, diamonds = .3, hearts = .3, spades = .2) 
nullProbs

##    clubs diamonds   hearts   spades  
##      0.2      0.3      0.3      0.2

Now that we have an explicitly specified null hypothesis, we include it in our command. This time round I’ll use the argument
names properly. The data variable corresponds to the argument x , and the probabilities according to the null hypothesis
correspond to the argument p . So our command is:

goodnessOfFitTest( x = cards$choice_1, p = nullProbs )  
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## 
##      Chi-square test against specified probabilities 
## 
## Data variable:   cards$choice_1  
## 
## Hypotheses:  
##    null:        true probabilities are as specified 
##    alternative: true probabilities differ from those specified 
## 
## Descriptives:  
##          observed freq. expected freq. specified prob. 
## clubs                35             40             0.2 
## diamonds             51             60             0.3 
## hearts               64             60             0.3 
## spades               50             40             0.2 
## 
## Test results:  
##    X-squared statistic:  4.742  
##    degrees of freedom:  3  
##    p-value:  0.192

As you can see the null hypothesis and the expected frequencies are different to what they were last time. As a consequence our X
test statistic is different, and our p-value is different too. Annoyingly, the p-value is .192, so we can’t reject the null hypothesis.
Sadly, despite the fact that the null hypothesis corresponds to a very silly theory, these data don’t provide enough evidence against
it.

10.1.9 report the results of the test
So now you know how the test works, and you know how to do the test using a wonderful magic computing box. The next thing
you need to know is how to write up the results. After all, there’s no point in designing and running an experiment and then
analysing the data if you don’t tell anyone about it! So let’s now talk about what you need to do when reporting your analysis. Let’s
stick with our card-suits example. If I wanted to write this result up for a paper or something, the conventional way to report this
would be to write something like this:

Of the 200 participants in the experiment, 64 selected hearts for their first choice, 51 selected diamonds, 50 selected spades, and
35 selected clubs. A chi-square goodness of fit test was conducted to test whether the choice probabilities were identical for all four
suits. The results were significant (χ (3)=8.44,p<.05), suggesting that people did not select suits purely at random.

This is pretty straightforward, and hopefully it seems pretty unremarkable. That said, there’s a few things that you should note
about this description:

The statistical test is preceded by the descriptive statistics. That is, I told the reader something about what the data look like
before going on to do the test. In general, this is good practice: always remember that your reader doesn’t know your data
anywhere near as well as you do. So unless you describe it to them properly, the statistical tests won’t make any sense to them,
and they’ll get frustrated and cry.
The description tells you what the null hypothesis being tested is. To be honest, writers don’t always do this, but it’s often a
good idea in those situations where some ambiguity exists; or when you can’t rely on your readership being intimately familiar
with the statistical tools that you’re using. Quite often the reader might not know (or remember) all the details of the test that
your using, so it’s a kind of politeness to “remind” them! As far as the goodness of fit test goes, you can usually rely on a
scientific audience knowing how it works (since it’s covered in most intro stats classes). However, it’s still a good idea to be
explicit about stating the null hypothesis (briefly!) because the null hypothesis can be different depending on what you’re using
the test for. For instance, in the cards example my null hypothesis was that all the four suit probabilities were identical (i.e.,
P =P =P =P =0.25), but there’s nothing special about that hypothesis. I could just as easily have tested the null hypothesis that
P =0.7 and P =P =P =0.1 using a goodness of fit test. So it’s helpful to the reader if you explain to them what your null
hypothesis was. Also, notice that I described the null hypothesis in words, not in maths. That’s perfectly acceptable. You can
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describe it in maths if you like, but since most readers find words easier to read than symbols, most writers tend to describe the
null using words if they can.
A “stat block” is included. When reporting the results of the test itself, I didn’t just say that the result was significant, I included
a “stat block” (i.e., the dense mathematical-looking part in the parentheses), which reports all the “raw” statistical data. For the
chi-square goodness of fit test, the information that gets reported is the test statistic (that the goodness of fit statistic was 8.44),
the information about the distribution used in the test (χ  with 3 degrees of freedom, which is usually shortened to χ (3)), and
then the information about whether the result was significant (in this case p<.05). The particular information that needs to go
into the stat block is different for every test, and so each time I introduce a new test I’ll show you what the stat block should
look like.  However the general principle is that you should always provide enough information so that the reader could check
the test results themselves if they really wanted to.
The results are interpreted. In addition to indicating that the result was significant, I provided an interpretation of the result (i.e.,
that people didn’t choose randomly). This is also a kindness to the reader, because it tells them something about what they
should believe about what’s going on in your data. If you don’t include something like this, it’s really hard for your reader to
understand what’s going on.

As with everything else, your overriding concern should be that you explain things to your reader. Always remember that the point
of reporting your results is to communicate to another human being. I cannot tell you just how many times I’ve seen the results
section of a report or a thesis or even a scientific article that is just gibberish, because the writer has focused solely on making sure
they’ve included all the numbers, and forgotten to actually communicate with the human reader.

10.1.10 comment on statistical notation (advanced)

Satan delights equally in statistics and in quoting scripture

– H.G. Wells
If you’ve been reading very closely, and are as much of a mathematical pedant as I am, there is one thing about the way I wrote up
the chi-square test in the last section that might be bugging you a little bit. There’s something that feels a bit wrong with writing
“χ (3)=8.44”, you might be thinking. After all, it’s the goodness of fit statistic that is equal to 8.44, so shouldn’t I have written
X =8.44 or maybe GOF=8.44? This seems to be conflating the sampling distribution (i.e., χ  with df=3) with the test statistic (i.e.,
X ). Odds are you figured it was a typo, since χ and X look pretty similar. Oddly, it’s not. Writing χ (3)=8.44 is essentially a highly
condensed way of writing “the sampling distribution of the test statistic is χ (3), and the value of the test statistic is 8.44”.

In one sense, this is kind of stupid. There are lots of different test statistics out there that turn out to have a chi-square sampling
distribution: the X  statistic that we’ve used for our goodness of fit test is only one of many (albeit one of the most commonly
encountered ones). In a sensible, perfectly organised world, we’d always have a separate name for the test statistic and the
sampling distribution: that way, the stat block itself would tell you exactly what it was that the researcher had calculated.
Sometimes this happens. For instance, the test statistic used in the Pearson goodness of fit test is written X ; but there’s a closely
related test known as the G-test  , in which the test statistic is written as G. As it happens, the Pearson goodness of fit test and the
G-test both test the same null hypothesis; and the sampling distribution is exactly the same (i.e., chi-square with k−1 degrees of
freedom). If I’d done a G-test for the cards data rather than a goodness of fit test, then I’d have ended up with a test statistic of
G=8.65, which is slightly different from the X =8.44 value that I got earlier; and produces a slightly smaller p-value of p=.034.
Suppose that the convention was to report the test statistic, then the sampling distribution, and then the p-value. If that were true,
then these two situations would produce different stat blocks: my original result would be written X =8.44, χ (3),p=.038, whereas
the new version using the G-test would be written as G=8.65, χ (3), p=.034. However, using the condensed reporting standard, the
original result is written χ (3)=8.44, p=.038, and the new one is written χ (3)=8.65, p=.034, and so it’s actually unclear which test I
actually ran.

So why don’t we live in a world in which the contents of the stat block uniquely specifies what tests were ran? The deep reason is
that life is messy. We (as users of statistical tools) want it to be nice and neat and organised… we want it to be designed, as if it
were a product. But that’s not how life works: statistics is an intellectual discipline just as much as any other one, and as such it’s a
massively distributed, partly-collaborative and partly-competitive project that no-one really understands completely. The things that
you and I use as data analysis tools weren’t created by an Act of the Gods of Statistics; they were invented by lots of different
people, published as papers in academic journals, implemented, corrected and modified by lots of other people, and then explained
to students in textbooks by someone else. As a consequence, there’s a lot of test statistics that don’t even have names; and as a
consequence they’re just given the same name as the corresponding sampling distribution. As we’ll see later, any test statistic that
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follows a χ  distribution is commonly called a “chi-square statistic”; anything that follows a t-distribution is called a “t-statistic”
and so on. But, as the X  versus G example illustrates, two different things with the same sampling distribution are still, well,
different.

As a consequence, it’s sometimes a good idea to be clear about what the actual test was that you ran, especially if you’re doing
something unusual. If you just say “chi-square test”, it’s not actually clear what test you’re talking about. Although, since the two
most common chi-square tests are the goodness of fit test and the independence test (Section 12.2), most readers with stats training
can probably guess. Nevertheless, it’s something to be aware of.

This page titled 10.1: The χ2 Goodness-of-fit Test is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

12.1: The χ2 Goodness-of-fit Test by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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10.2: The χ2 test of independence (or association)
GUARDBOT1: Halt!

GUARDBOT2: Be you robot or human?

LEELA: Robot…we be.

FRY: Uh, yup! Just two robots out roboting it up! Eh?

GUARDBOT1: Administer the test.

GUARDBOT2:
Which of the following would you most prefer? A: A puppy, B: A
pretty flower from your sweetie, or C: A large properly-formatted
data file?

GUARDBOT1: Choose!

– Futurama, “Fear of a Bot Planet 
The other day I was watching an animated documentary examining the quaint customs of the natives of the planet Chapek 9.
Apparently, in order to gain access to their capital city, a visitor must prove that they’re a robot, not a human. In order to determine
whether or not visitor is human, they ask whether the visitor prefers puppies, flowers or large, properly formatted data files. “Pretty
clever,” I thought to myself “but what if humans and robots have the same preferences? That probably wouldn’t be a very good test
then, would it?” As it happens, I got my hands on the testing data that the civil authorities of Chapek 9 used to check this. It turns
out that what they did was very simple… they found a bunch of robots and a bunch of humans and asked them what they preferred.
I saved their data in a file called chapek9.Rdata , which I can now load and have a quick look at:

load( "./rbook-master/data/chapek9.Rdata" ) 
str(chapek9)  

## 'data.frame':    180 obs. of  2 variables: 
##  $ species: Factor w/ 2 levels "robot","human": 1 2 2 2 1 2 2 1 2 1 ... 
##  $ choice : Factor w/ 3 levels "puppy","flower",..: 2 3 3 3 3 2 3 3 1 2 ...

Okay, so we have a single data frame called chapek9 , which contains two factors, species  and choice . As always,
it’s nice to have a quick look at the data,

head(chapek9)  

##   species choice 
## 1   robot flower 
## 2   human   data 
## 3   human   data 
## 4   human   data 
## 5   robot   data 
## 6   human flower

and then take a summary() ,

summary(chapek9)  
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##   species      choice    
##  robot:87   puppy : 28   
##  human:93   flower: 43   
##             data  :109

In total there are 180 entries in the data frame, one for each person (counting both robots and humans as “people”) who was asked
to make a choice. Specifically, there’s 93 humans and 87 robots; and overwhelmingly the preferred choice is the data file. However,
these summaries don’t address the question we’re interested in. To do that, we need a more detailed description of the data. What
we want to do is look at the choices  broken down by species . That is, we need to cross-tabulate the data (see Section
7.1). There’s quite a few ways to do this, as we’ve seen, but since our data are stored in a data frame, it’s convenient to use the 
xtabs()  function.

chapekFrequencies <- xtabs( ~ choice + species, data = chapek9) 
chapekFrequencies

##         species 
## choice   robot human 
##   puppy     13    15 
##   flower    30    13 
##   data      44    65

That’s more or less what we’re after. So, if we add the row and column totals (which is convenient for the purposes of explaining
the statistical tests), we would have a table like this,

Robot Human Total

Puppy 13 15 28

Flower 30 13 43

Data file 44 65 109

Total 87 93 180

which actual ly would be a nice

way to report the descriptive
statistics for this data set. In any
case, it’s quite clear that the vast
majority of the humans chose
the data file, whereas the robots
tended to be a lot more even in
their preferences. Leaving aside
the question of why the humans
might be more likely to choose
the data file for the moment
(which does seem quite odd,
admittedly), our first order of
business is to determine if the
discrepancy between human
choices and robot choices in the
data set is statistically
significant.
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10.2.1 Constructing our hypothesis test
How do we analyse this data? Specifically, since my research hypothesis is that “humans and robots answer the question in
different ways”, how can I construct a test of the null hypothesis that “humans and robots answer the question the same way”? As
before, we begin by establishing some notation to describe the data:

Robot Human Total

Puppy O O R

Flower O O R

Data file O O R

Total C C N

In this notation we say that O  is a count (observed frequency) of the number of respondents that are of species j (robots or human)
who gave answer i (puppy, flower or data) when asked to make a choice. The total number of observations is written N, as usual.
Finally, I’ve used R  to denote the row totals (e.g., R  is the total number of people who chose the flower), and C  to denote the
column totals (e.g., C  is the total number of robots).

So now let’s think about what the null hypothesis says. If robots and humans are responding in the same way to the question, it
means that the probability that “a robot says puppy” is the same as the probability that “a human says puppy”, and so on for the
other two possibilities. So, if we use P  to denote “the probability that a member of species j gives response i” then our null
hypothesis is that:

H0: All of the following are true:

 P =P  (same probability of saying puppy)

 P =P  (same probability of saying flower) and

 P =P  (same probability of saying data).

And actually, since the null hypothesis is claiming that the true choice probabilities don’t depend on the species of the person
making the choice, we can let P  refer to this probability: e.g., P  is the true probability of choosing the puppy.

Next, in much the same way that we did with the goodness of fit test, what we need to do is calculate the expected frequencies.
That is, for each of the observed counts O , we need to figure out what the null hypothesis would tell us to expect. Let’s denote this
expected frequency by E . This time, it’s a little bit trickier. If there are a total of C  people that belong to species j, and the true
probability of anyone (regardless of species) choosing option i is P , then the expected frequency is just:

Now, this is all very well and good, but we have a problem. Unlike the situation we had with the goodness of fit test, the null
hypothesis doesn’t actually specify a particular value for P . It’s something we have to estimate (Chapter 10) from the data!
Fortunately, this is pretty easy to do. If 28 out of 180 people selected the flowers, then a natural estimate for the probability of
choosing flowers is 28/180, which is approximately .16. If we phrase this in mathematical terms, what we’re saying is that our
estimate for the probability of choosing option i is just the row total divided by the total sample size:

Therefore, our expected frequency can be written as the product (i.e. multiplication) of the row total and the column total, divided
by the total number of observations:

Now that we’ve figured out how to calculate the expected frequencies, it’s straightforward to define a test statistic; following the
exact same strategy that we used in the goodness of fit test. In fact, it’s pretty much the same statistic. For a contingency table with
r rows and c columns, the equation that defines our X  statistic is
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The only difference is that I have to include two summation sign (i.e., ∑) to indicate that we’re summing over both rows and
columns. As before, large values of X  indicate that the null hypothesis provides a poor description of the data, whereas small
values of X  suggest that it does a good job of accounting for the data. Therefore, just like last time, we want to reject the null
hypothesis if X  is too large.

Not surprisingly, this statistic is X  distributed. All we need to do is figure out how many degrees of freedom are involved, which
actually isn’t too hard. As I mentioned before, you can (usually) think of the degrees of freedom as being equal to the number of
data points that you’re analysing, minus the number of constraints. A contingency table with r rows and c columns contains a total
of r×c observed frequencies, so that’s the total number of observations. What about the constraints? Here, it’s slightly trickier. The
answer is always the same

df=(r−1)(c−1)

but the explanation for why the degrees of freedom takes this value is different depending on the experimental design. For the sake
of argument, let’s suppose that we had honestly intended to survey exactly 87 robots and 93 humans (column totals fixed by the
experimenter), but left the row totals free to vary (row totals are random variables). Let’s think about the constraints that apply
here. Well, since we deliberately fixed the column totals by Act of Experimenter, we have c constraints right there. But, there’s
actually more to it than that. Remember how our null hypothesis had some free parameters (i.e., we had to estimate the P  values)?
Those matter too. I won’t explain why in this book, but every free parameter in the null hypothesis is rather like an additional
constraint. So, how many of those are there? Well, since these probabilities have to sum to 1, there’s only r−1 of these. So our total
degrees of freedom is:

df=(number of observations)−(number of constraints)

=(rc)−(c+(r−1))

=rc−c−r+1

=(r−1)(c−1)

Alternatively, suppose that the only thing that the experimenter fixed was the total sample size N. That is, we quizzed the first 180
people that we saw, and it just turned out that 87 were robots and 93 were humans. This time around our reasoning would be
slightly different, but would still lead is to the same answer. Our null hypothesis still has r−1 free parameters corresponding to the
choice probabilities, but it now also has c−1 free parameters corresponding to the species probabilities, because we’d also have to
estimate the probability that a randomly sampled person turns out to be a robot.  Finally, since we did actually fix the total
number of observations N, that’s one more constraint. So now we have, rc observations, and (c−1)+(r−1)+1 constraints. What does
that give?

df=(number of observations)−(number of constraints)

=rc−((c−1)+(r−1)+1)

=rc−c−r+1

=(r−1)(c−1)

Amazing.

10.2.2 Doing the test in R
Okay, now that we know how the test works, let’s have a look at how it’s done in R. As tempting as it is to lead you through the
tedious calculations so that you’re forced to learn it the long way, I figure there’s no point. I already showed you how to do it the
long way for the goodness of fit test in the last section, and since the test of independence isn’t conceptually any different, you
won’t learn anything new by doing it the long way. So instead, I’ll go straight to showing you the easy way. As always, R lets you
do it multiple ways. There’s the chisq.test()  function, which I’ll talk about in Section @ref(chisq.test, but first I want to
use the associationTest()  function in the lsr  package, which I think is easier on beginners. It works in the exact same
way as the xtabs()  function. Recall that, in order to produce the contingency table, we used this command:

xtabs( formula = ~choice+species, data = chapek9 )
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##         species 
## choice   robot human 
##   puppy     13    15 
##   flower    30    13 
##   data      44    65

The associationTest()  function has exactly the same structure: it needs a formula  that specifies which variables
you’re cross-tabulating, and the name of a data  frame that contains those variables. So the command is just this:

associationTest( formula = ~choice+species, data = chapek9 )

## 
##      Chi-square test of categorical association 
## 
## Variables:   choice, species  
## 
## Hypotheses:  
##    null:        variables are independent of one another 
##    alternative: some contingency exists between variables 
## 
## Observed contingency table: 
##         species 
## choice   robot human 
##   puppy     13    15 
##   flower    30    13 
##   data      44    65 
## 
## Expected contingency table under the null hypothesis:
##         species 
## choice   robot human 
##   puppy   13.5  14.5 
##   flower  20.8  22.2 
##   data    52.7  56.3 
## 
## Test results:  
##    X-squared statistic:  10.722  
##    degrees of freedom:  2  
##    p-value:  0.005  
## 
## Other information:  
##    estimated effect size (Cramer's v):  0.244

Just like we did with the goodness of fit test, I’ll go through it line by line. The first two lines are, once again, just reminding you
what kind of test you ran and what variables were used:

Chi-square test of categorical association 
 
Variables:   choice, species  
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Next, it tells you what the null and alternative hypotheses are (and again, I want to remind you not to get used to seeing these
hypotheses written out so explicitly):

Hypotheses:  
   null:        variables are independent of one another
   alternative: some contingency exists between variables

Next, it shows you the observed contingency table that is being tested:

Observed contingency table: 
        species 
choice   robot human 
  puppy     13    15 
  flower    30    13 
  data      44    65

and it also shows you what the expected frequencies would be if the null hypothesis were true:

Expected contingency table under the null hypothesis: 
        species 
choice   robot human 
  puppy   13.5  14.5 
  flower  20.8  22.2 
  data    52.7  56.3

The next part describes the results of the hypothesis test itself:

Test results:  
   X-squared statistic:  10.722  
   degrees of freedom:  2  
   p-value:  0.005 

And finally, it reports a measure of effect size:

Other information:  
   estimated effect size (Cramer's v):  0.244 

You can ignore this bit for now. I’ll talk about it in just a moment.

This output gives us enough information to write up the result:

Pearson’s χ2 revealed a significant association between species and choice (χ (2)=10.7,p<.01): robots appeared to be more likely
to say that they prefer flowers, but the humans were more likely to say they prefer data.

Notice that, once again, I provided a little bit of interpretation to help the human reader understand what’s going on with the data.
Later on in my discussion section, I’d provide a bit more context. To illustrate the difference, here’s what I’d probably say later on:

The fact that humans appeared to have a stronger preference for raw data files than robots is somewhat counterintuitive. However,
in context it makes some sense: the civil authority on Chapek 9 has an unfortunate tendency to kill and dissect humans when they
are identified. As such it seems most likely that the human participants did not respond honestly to the question, so as to avoid
potentially undesirable consequences. This should be considered to be a substantial methodological weakness.

This could be classified as a rather extreme example of a reactivity effect, I suppose. Obviously, in this case the problem is severe
enough that the study is more or less worthless as a tool for understanding the difference preferences among humans and robots.
However, I hope this illustrates the difference between getting a statistically significant result (our null hypothesis is rejected in
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favour of the alternative), and finding something of scientific value (the data tell us nothing of interest about our research
hypothesis due to a big methodological flaw).

10.2.3 Postscript
I later found out the data were made up, and I’d been watching cartoons instead of doing work.

This page titled 10.2: The χ2 test of independence (or association) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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10.3: The Continuity Correction
Okay, time for a little bit of a digression. I’ve been lying to you a little bit so far. There’s a tiny change that you need to make to
your calculations whenever you only have 1 degree of freedom. It’s called the “continuity correction”, or sometimes the Yates
correction. Remember what I pointed out earlier: the χ2 test is based on an approximation, specifically on the assumption that
binomial distribution starts to look like a normal distribution for large N. One problem with this is that it often doesn’t quite work,
especially when you’ve only got 1 degree of freedom (e.g., when you’re doing a test of independence on a 2×2 contingency table).
The main reason for this is that the true sampling distribution for the X  statistic is actually discrete (because you’re dealing with
categorical data!) but the χ2 distribution is continuous. This can introduce systematic problems. Specifically, when N is small and
when df=1, the goodness of fit statistic tends to be “too big”, meaning that you actually have a bigger α value than you think (or,
equivalently, the p values are a bit too small). Yates (1934) suggested a simple fix, in which you redefine the goodness of fit
statistic as:

Basically, he just subtracts off 0.5 everywhere. As far as I can tell from reading Yates’ paper, the correction is basically a hack. It’s
not derived from any principled theory: rather, it’s based on an examination of the behaviour of the test, and observing that the
corrected version seems to work better. I feel obliged to explain this because you will sometimes see R (or any other software for
that matter) introduce this correction, so it’s kind of useful to know what they’re about. You’ll know when it happens, because the
R output will explicitly say that it has used a “continuity correction” or “Yates’ correction”.

This page titled 10.3: The Continuity Correction is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

12.3: The Continuity Correction by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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10.4: Effect Size
As we discussed earlier (Section 11.8), it’s becoming commonplace to ask researchers to report some measure of effect size. So,
let’s suppose that you’ve run your chi-square test, which turns out to be significant. So you now know that there is some
association between your variables (independence test) or some deviation from the specified probabilities (goodness of fit test).
Now you want to report a measure of effect size. That is, given that there is an association/deviation, how strong is it?

There are several different measures that you can choose to report, and several different tools that you can use to calculate them. I
won’t discuss all of them,  but will instead focus on the most commonly reported measures of effect size.

By default, the two measures that people tend to report most frequently are the ϕ statistic and the somewhat superior version,
known as Cram'er’s V. Mathematically, they’re very simple. To calculate the ϕ statistic, you just divide your X  value by the
sample size, and take the square root:

The idea here is that the ϕ statistic is supposed to range between 0 (no at all association) and 1 (perfect association), but it doesn’t
always do this when your contingency table is bigger than 2×2, which is a total pain. For bigger tables it’s actually possible to
obtain ϕ>1, which is pretty unsatisfactory. So, to correct for this, people usually prefer to report the V statistic proposed by Cramér
(1946). It’s a pretty simple adjustment to ϕ. If you’ve got a contingency table with r rows and c columns, then define k=min(r,c) to
be the smaller of the two values. If so, then Cram'er’s V statistic is

And you’re done. This seems to be a fairly popular measure, presumably because it’s easy to calculate, and it gives answers that
aren’t completely silly: you know that V really does range from 0 (no at all association) to 1 (perfect association).

Calculating V or ϕ is obviously pretty straightforward. So much so that the core packages in R don’t seem to have functions to do
it, though other packages do. To save you the time and effort of finding one, I’ve included one in the lsr  package, called 
cramersV() . It takes a contingency table as input, and prints out the measure of effect size:

cramersV( chapekFrequencies )

## [1] 0.244058

However, if you’re using the associationTest()  function to do your analysis, then you won’t actually need to use this at
all, because it reports the Cram'er’s V statistic as part of the output.

This page titled 10.4: Effect Size is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.
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10.5: Assumptions of the Test(s)
All statistical tests make assumptions, and it’s usually a good idea to check that those assumptions are met. For the chi-square tests
discussed so far in this chapter, the assumptions are:

Expected frequencies are sufficiently large. Remember how in the previous section we saw that the χ2 sampling distribution
emerges because the binomial distribution is pretty similar to a normal distribution? Well, like we discussed in Chapter 9 this is
only true when the number of observations is sufficiently large. What that means in practice is that all of the expected
frequencies need to be reasonably big. How big is reasonably big? Opinions differ, but the default assumption seems to be that
you generally would like to see all your expected frequencies larger than about 5, though for larger tables you would probably
be okay if at least 80% of the the expected frequencies are above 5 and none of them are below 1. However, from what I’ve
been able to discover , these seem to have been proposed as rough guidelines, not hard and fast rules; and they seem to be
somewhat conservative [Larntz1978].
Data are independent of one another. One somewhat hidden assumption of the chi-square test is that you have to genuinely
believe that the observations are independent. Here’s what I mean. Suppose I’m interested in proportion of babies born at a
particular hospital that are boys. I walk around the maternity wards, and observe 20 girls and only 10 boys. Seems like a pretty
convincing difference, right? But later on, it turns out that I’d actually walked into the same ward 10 times, and in fact I’d only
seen 2 girls and 1 boy. Not as convincing, is it? My original 30 observations were massively non-independent… and were only
in fact equivalent to 3 independent observations. Obviously this is an extreme (and extremely silly) example, but it illustrates
the basic issue. Non-independence “stuffs things up”. Sometimes it causes you to falsely reject the null, as the silly hospital
example illustrats, but it can go the other way too. To give a slightly less stupid example, let’s consider what would happen if
I’d done the cards experiment slightly differently: instead of asking 200 people to try to imagine sampling one card at random,
suppose I asked 50 people to select 4 cards. One possibility would be that everyone selects one heart, one club, one diamond
and one spade (in keeping with the “representativeness heuristic”; Tversky & Kahneman 1974). This is highly non-random
behaviour from people, but in this case, I would get an observed frequency of 50 four all four suits. For this example, the fact
that the observations are non-independent (because the four cards that you pick will be related to each other) actually leads to
the opposite effect… falsely retaining the null.

If you happen to find yourself in a situation where independence is violated, it may be possible to use the McNemar test (which
we’ll discuss) or the Cochran test (which we won’t). Similarly, if your expected cell counts are too small, check out the Fisher exact
test. It is to these topics that we now turn.
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10.6: The Most Typical Way to Do Chi-square Tests in R
When discussing how to do a chi-square goodness of fit test (Section 12.1.7) and the chi-square test of independence (Section
12.2.2), I introduced you to two separate functions in the lsr  package. We ran our goodness of fit tests using the 
goodnessOfFitTest()  function, and our tests of independence (or association) using the associationTest()

function. And both of those functions produced quite detailed output, showing you the relevant descriptive statistics, printing out
explicit reminders of what the hypotheses are, and so on. When you’re first starting out, it can be very handy to be given this sort of
guidance. However, once you start becoming a bit more proficient in statistics and in R it can start to get very tiresome. A real
statistician hardly needs to be told what the null and alternative hypotheses for a chi-square test are, and if an advanced R user
wants the descriptive statistics to be printed out, they know how to produce them!

For this reason, the basic chisq.test()  function in R is a lot more terse in its output, and because the mathematics that
underpin the goodness of fit test and the test of independence is basically the same in each case, it can run either test depending on
what kind of input it is given. First, here’s the goodness of fit test. Suppose you have the frequency table observed  that we
used earlier,

observed

## 
##    clubs diamonds   hearts   spades  
##       35       51       64       50

If you want to run the goodness of fit test against the hypothesis that all four suits are equally likely to appear, then all you need to
do is input this frequenct table to the chisq.test()  function:

chisq.test( x = observed )

## 
##  Chi-squared test for given probabilities 
## 
## data:  observed 
## X-squared = 8.44, df = 3, p-value = 0.03774

Notice that the output is very compressed in comparison to the goodnessOfFitTest()  function. It doesn’t bother to give
you any descriptive statistics, it doesn’t tell you what null hypothesis is being tested, and so on. And as long as you already
understand the test, that’s not a problem. Once you start getting familiar with R and with statistics, you’ll probably find that you
prefer this simple output rather than the rather lengthy output that goodnessOfFitTest()  produces. Anyway, if you want to
change the null hypothesis, it’s exactly the same as before, just specify the probabilities using the p  argument. For instance:

chisq.test( x = observed, p = c(.2, .3, .3, .2) )

## 
##  Chi-squared test for given probabilities 
## 
## data:  observed 
## X-squared = 4.7417, df = 3, p-value = 0.1917

Again, these are the same numbers that the goodnessOfFitTest()  function reports at the end of the output. It just hasn’t
included any of the other details.
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What about a test of independence? As it turns out, the chisq.test()  function is pretty clever.  If you input a cross-
tabulation rather than a simple frequency table, it realises that you’re asking for a test of independence and not a goodness of fit
test. Recall that we already have this cross-tabulation stored as the chapekFrequencies  variable:

chapekFrequencies

##         species 
## choice   robot human 
##   puppy     13    15 
##   flower    30    13 
##   data      44    65

To get the test of independence, all we have to do is feed this frequency table into the chisq.test()  function like so:

chisq.test( chapekFrequencies )

## 
##  Pearson's Chi-squared test 
## 
## data:  chapekFrequencies 
## X-squared = 10.722, df = 2, p-value = 0.004697

Again, the numbers are the same as last time, it’s just that the output is very terse and doesn’t really explain what’s going on in the
rather tedious way that associationTest()  does. As before, my intuition is that when you’re just getting started it’s easier
to use something like associationTest()  because it shows you more detail about what’s going on, but later on you’ll
probably find that chisq.test()  is more convenient.

This page titled 10.6: The Most Typical Way to Do Chi-square Tests in R is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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10.7: The Fisher Exact Test
What should you do if your cell counts are too small, but you’d still like to test the null hypothesis that the two variables are
independent? One answer would be “collect more data”, but that’s far too glib: there are a lot of situations in which it would be
either infeasible or unethical do that. If so, statisticians have a kind of moral obligation to provide scientists with better tests. In this
instance, Fisher (1922) kindly provided the right answer to the question. To illustrate the basic idea, let’s suppose that we’re
analysing data from a field experiment, looking at the emotional status of people who have been accused of witchcraft; some of
whom are currently being burned at the stake.  Unfortunately for the scientist (but rather fortunately for the general populace),
it’s actually quite hard to find people in the process of being set on fire, so the cell counts are awfully small in some cases. The 
salem.Rdata  file illustrates the point:

load("./rbook-master/data/salem.Rdata") 
 
salem.tabs <- table( trial ) 
print( salem.tabs )

##        on.fire 
## happy   FALSE TRUE 
##   FALSE     3    3 
##   TRUE     10    0

Looking at this data, you’d be hard pressed not to suspect that people not on fire are more likely to be happy than people on fire.
However, the chi-square test makes this very hard to test because of the small sample size. If I try to do so, R gives me a warning
message:

chisq.test( salem.tabs )

## Warning in chisq.test(salem.tabs): Chi-squared approximation may be 
## incorrect  

## 
##  Pearson's Chi-squared test with Yates' continuity correction 
## 
## data:  salem.tabs 
## X-squared = 3.3094, df = 1, p-value = 0.06888

Speaking as someone who doesn’t want to be set on fire, I’d really like to be able to get a better answer than this. This is where
Fisher’s exact test comes in very handy.

The Fisher exact test works somewhat differently to the chi-square test (or in fact any of the other hypothesis tests that I talk about
in this book) insofar as it doesn’t have a test statistic; it calculates the p-value “directly”. I’ll explain the basics of how the test
works for a 2×2 contingency table, though the test works fine for larger tables. As before, let’s have some notation:

Happy Sad Total

Set on fire O O R

Not set on fire O O R

Total C C N

In order to construct the test Fisher treats both the row and column totals (R , R , C  and C ) are known, fixed quantities; and then
calculates the probability that we would have obtained the observed frequencies that we did (O , O , O  and O ) given those
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totals. In the notation that we developed in Chapter 9 this is written:

P(O ,O ,O ,O  | R ,R ,C ,C )

and as you might imagine, it’s a slightly tricky exercise to figure out what this probability is, but it turns out that this probability is
described by a distribution known as the hypergeometric distribution.  Now that we know this, what we have to do to calculate
our p-value is calculate the probability of observing this particular table or a table that is “more extreme”.  Back in the 1920s,
computing this sum was daunting even in the simplest of situations, but these days it’s pretty easy as long as the tables aren’t too
big and the sample size isn’t too large. The conceptually tricky issue is to figure out what it means to say that one contingency table
is more “extreme” than another. The easiest solution is to say that the table with the lowest probability is the most extreme. This
then gives us the p-value.

The implementation of the test in R is via the fisher.test()  function. Here’s how it is used:

fisher.test( salem.tabs )

## 
##  Fisher's Exact Test for Count Data 
## 
## data:  salem.tabs 
## p-value = 0.03571 
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval: 
##  0.000000 1.202913 
## sample estimates: 
## odds ratio  
##          0

This is a bit more output than we got from some of our earlier tests. The main thing we’re interested in here is the p-value, which in
this case is small enough (p=.036) to justify rejecting the null hypothesis that people on fire are just as happy as people not on fire.

This page titled 10.7: The Fisher Exact Test is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

12.7: The Fisher Exact Test by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.

11 12 21 22 1 2 1 2

182

183

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36144?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/10%3A_Categorical_Data_Analysis/10.07%3A_The_Fisher_Exact_Test
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/
https://stats.libretexts.org/@go/page/8255
https://djnavarro.net/
https://creativecommons.org/licenses/by-sa/4.0/
https://bookdown.org/ekothe/navarro26/


10.8.1 https://stats.libretexts.org/@go/page/36145

10.8: The McNemar Test
Suppose you’ve been hired to work for the Australian Generic Political Party (AGPP), and part of your job is to find out how
effective the AGPP political advertisements are. So, what you do, is you put together a sample of N=100 people, and ask them to
watch the AGPP ads. Before they see anything, you ask them if they intend to vote for the AGPP; and then after showing the ads,
you ask them again, to see if anyone has changed their minds. Obviously, if you’re any good at your job, you’d also do a whole lot
of other things too, but let’s consider just this one simple experiment. One way to describe your data is via the following
contingency table:

Before After Total

Yes 30 10 40

No 70 90 160

Total 100 100 200

At first pass, you might think that this situation lends itself to the Pearson χ2 test of independence (as per Section 12.2). However, a
little bit of thought reveals that we’ve got a problem: we have 100 participants, but 200 observations. This is because each person
has provided us with an answer in both the before column and the after column. What this means is that the 200 observations aren’t
independent of each other: if voter A says “yes” the first time and voter B says “no”, then you’d expect that voter A is more likely
to say “yes” the second time than voter B! The consequence of this is that the usual χ2 test won’t give trustworthy answers due to
the violation of the independence assumption. Now, if this were a really uncommon situation, I wouldn’t be bothering to waste your
time talking about it. But it’s not uncommon at all: this is a standard repeated measures design, and none of the tests we’ve
considered so far can handle it. Eek.

The solution to the problem was published by McNemar (1947). The trick is to start by tabulating your data in a slightly different
way:

Before: Yes Before: No Total

After: Yes 5 5 10

After: No 25 65 90

Total 30 70 100

This is exactly the same data, but it’s been rewritten so that each of our 100 participants appears in only one cell. Because we’ve
written our data this way, the independence assumption is now satisfied, and this is a contingency table that we can use to construct
an X  goodness of fit statistic. However, as we’ll see, we need to do it in a slightly nonstandard way. To see what’s going on, it
helps to label the entries in our table a little differently:

Before: Yes Before: No Total

After: Yes a b a+b

After: No c d c+d

Total a+c b+d n

Next, let’s think about what our null hypothesis is: it’s that the “before” test and the “after” test have the same proportion of people
saying “Yes, I will vote for AGPP”. Because of the way that we have rewritten the data, it means that we’re now testing the
hypothesis that the row totals and column totals come from the same distribution. Thus, the null hypothesis in McNemar’s test is
that we have “marginal homogeneity”. That is, the row totals and column totals have the same distribution: P +P =P +P , and
similarly that P +P =P +P . Notice that this means that the null hypothesis actually simplifies to P =P . In other words, as far as the
McNemar test is concerned, it’s only the off-diagonal entries in this table (i.e., b and c) that matter! After noticing this, the
McNemar test of marginal homogeneity is no different to a usual χ2 test. After applying the Yates correction, our test statistic
becomes:

2

a b a c

c d b d b c
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or, to revert to the notation that we used earlier in this chapter:

and this statistic has an (approximately) χ2 distribution with df=1. However, remember that – just like the other χ2 tests – it’s only
an approximation, so you need to have reasonably large expected cell counts for it to work.

10.8.1 Doing the McNemar test in R

Now that you know what the McNemar test is all about, lets actually run one. The agpp.Rdata  file contains the raw data that I
discussed previously, so let’s have a look at it:

load("./rbook-master/data/agpp.Rdata") 
str(agpp)  

The agpp  data frame contains three variables, an id  variable that labels each participant in the data set (we’ll see why that’s
useful in a moment), a response_before  variable that records the person’s answer when they were asked the question the
first time, and a response_after  variable that shows the answer that they gave when asked the same question a second time.
As usual, here’s the first 6 entries:

head(agpp)

##       id response_before response_after 
## 1 subj.1              no            yes 
## 2 subj.2             yes             no 
## 3 subj.3             yes             no 
## 4 subj.4             yes             no 
## 5 subj.5              no             no 
## 6 subj.6              no             no

and here’s a summary:

summary(agpp) 

##         id     response_before response_after 
##  subj.1  : 1   no :70          no :90         
##  subj.10 : 1   yes:30          yes:10         
##  subj.100: 1                                  
##  subj.11 : 1                                  
##  subj.12 : 1                                  
##  subj.13 : 1                                  
##  (Other) :94

## 'data.frame':    100 obs. of  3 variables: 
##  $ id             : Factor w/ 100 levels "subj.1","subj.10",..: 1 13 24 35 46 57 6
##  $ response_before: Factor w/ 2 levels "no","yes": 1 2 2 2 1 1 1 1 1 1 ... 
##  $ response_after : Factor w/ 2 levels "no","yes": 2 1 1 1 1 1 1 2 1 1 ...
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Notice that each participant appears only once in this data frame. When we tabulate this data frame using xtabs() , we get the
appropriate table:

right.table <- xtabs( ~ response_before + response_after, data = agpp) 
print( right.table )

##                response_after 
## response_before no yes 
##             no  65   5 
##             yes 25   5

and from there, we can run the McNemar test by using the mcnemar.test()  function:

mcnemar.test( right.table )

## 
##  McNemar's Chi-squared test with continuity correction 
## 
## data:  right.table 
## McNemar's chi-squared = 12.033, df = 1, p-value = 0.0005226

And we’re done. We’ve just run a McNemar’s test to determine if people were just as likely to vote AGPP after the ads as they
were before hand. The test was significant (χ2(1)=12.04,p<.001), suggesting that they were not. And in fact, it looks like the ads
had a negative effect: people were less likely to vote AGPP after seeing the ads. Which makes a lot of sense when you consider the
quality of a typical political advertisement.
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10.9: What’s the Difference Between McNemar and Independence?
Let’s go all the way back to the beginning of the chapter, and look at the cards  data set again. If you recall, the actual
experimental design that I described involved people making two choices. Because we have information about the first choice and
the second choice that everyone made, we can construct the following contingency table that cross-tabulates the first choice against
the second choice.

cardChoices <- xtabs( ~ choice_1 + choice_2, data = cards ) 
cardChoices

##           choice_2 
## choice_1   clubs diamonds hearts spades 
##   clubs       10        9     10      6 
##   diamonds    20        4     13     14 
##   hearts      20       18      3     23 
##   spades      18       13     15      4

Suppose I wanted to know whether the choice you make the second time is dependent on the choice you made the first time. This is
where a test of independence is useful, and what we’re trying to do is see if there’s some relationship between the rows and
columns of this table. Here’s the result:

chisq.test( cardChoices )

Alternatively, suppose I wanted to know if on average, the frequencies of suit choices were different the second time than the first
time. In that situation, what I’m really trying to see if the row totals in cardChoices  (i.e., the frequencies for choice_1 )
are different from the column totals (i.e., the frequencies for choice_2 ). That’s when you use the McNemar test:

mcnemar.test( cardChoices )  

## 
##  McNemar's Chi-squared test 
## 
## data:  cardChoices 
## McNemar's chi-squared = 16.033, df = 6, p-value = 0.01358

Notice that the results are different! These aren’t the same test.
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10.10: Summary
The key ideas discussed in this chapter are:

The chi-square goodness of fit test (Section 12.1) is used when you have a table of observed frequencies of different categories;
and the null hypothesis gives you a set of “known” probabilities to compare them to. You can either use the 
goodnessOfFitTest()  function in the lsr  package to run this test, or the chisq.test()  function.

The chi-square test of independence (Section 12.2) is used when you have a contingency table (cross-tabulation) of two
categorical variables. The null hypothesis is that there is no relationship/association between the variables. You can either use
the associationTest()  function in the lsr  package, or you can use chisq.test() .
Effect size for a contingency table can be measured in several ways (Section 12.4). In particular we noted the Cramer’s V
statistic, which can be calculated using cramersV() . This is also part of the output produced by 
associationTest() .

Both versions of the Pearson test rely on two assumptions: that the expected frequencies are sufficiently large, and that the
observations are independent (Section 12.5). The Fisher exact test (Section 12.7) can be used when the expected frequencies are
small, fisher.test(x = contingency.table) . The McNemar test (Section 12.8) can be used for some kinds of
violations of independence, mcnemar.test(x = contingency.table) .

If you’re interested in learning more about categorical data analysis, a good first choice would be Agresti (1996) which, as the title
suggests, provides an Introduction to Categorical Data Analysis. If the introductory book isn’t enough for you (or can’t solve the
problem you’re working on) you could consider Agresti (2002), Categorical Data Analysis. The latter is a more advanced text, so
it’s probably not wise to jump straight from this book to that one.
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170. I should point out that this issue does complicate the story somewhat: I’m not going to cover it in this book, but there’s a sneaky
trick that you can do to rewrite the equation for the goodness of fit statistic as a sum over k−1 independent things. When we do
so we get the “proper” sampling distribution, which is chi-square with k−1 degrees of freedom. In fact, in order to get the maths
to work out properly, you actually have to rewrite things that way. But it’s beyond the scope of an introductory book to show the
maths in that much detail: all I wanted to do is give you a sense of why the goodness of fit statistic is associated with the chi-
squared distribution.

171. I feel obliged to point out that this is an over-simplification. It works nicely for quite a few situations; but every now and then
we’ll come across degrees of freedom values that aren’t whole numbers. Don’t let this worry you too much – when you come
across this, just remind yourself that “degrees of freedom” is actually a bit of a messy concept, and that the nice simple story
that I’m telling you here isn’t the whole story. For an introductory class, it’s usually best to stick to the simple story: but I figure
it’s best to warn you to expect this simple story to fall apart. If I didn’t give you this warning, you might start getting confused
when you see df=3.4 or something; and (incorrectly) thinking that you had misunderstood something that I’ve taught you, rather
than (correctly) realising that there’s something that I haven’t told you.
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172. In practice, the sample size isn’t always fixed… e.g., we might run the experiment over a fixed period of time, and the number
of people participating depends on how many people show up. That doesn’t matter for the current purposes.

173. Well, sort of. The conventions for how statistics should be reported tend to differ somewhat from discipline to discipline; I’ve
tended to stick with how things are done in psychology, since that’s what I do. But the general principle of providing enough
information to the reader to allow them to check your results is pretty universal, I think.

174. To some people, this advice might sound odd, or at least in conflict with the “usual” advice on how to write a technical report.
Very typically, students are told that the “results” section of a report is for describing the data and reporting statistical analysis;
and the “discussion” section is for providing interpretation. That’s true as far as it goes, but I think people often interpret it way
too literally. The way I usually approach it is to provide a quick and simple interpretation of the data in the results section, so
that my reader understands what the data are telling us. Then, in the discussion, I try to tell a bigger story; about how my results
fit with the rest of the scientific literature. In short; don’t let the “interpretation goes in the discussion” advice turn your results
section into incomprehensible garbage. Being understood by your reader is much more important.

175. Complicating matters, the G-test is a special case of a whole class of tests that are known as likelihood ratio tests. I don’t cover
LRTs in this book, but they are quite handy things to know about.

176. A technical note. The way I’ve described the test pretends that the column totals are fixed (i.e., the researcher intended to
survey 87 robots and 93 humans) and the row totals are random (i.e., it just turned out that 28 people chose the puppy). To use
the terminology from my mathematical statistics textbook (Hogg, McKean, and Craig 2005) I should technically refer to this
situation as a chi-square test of homogeneity; and reserve the term chi-square test of independence for the situation where both
the row and column totals are random outcomes of the experiment. In the initial drafts of this book that’s exactly what I did.
However, it turns out that these two tests are identical; and so I’ve collapsed them together.

177. Technically, E  here is an estimate, so I should probably write it . But since no-one else does, I won’t either.
178. A problem many of us worry about in real life.
179. Though I do feel that it’s worth mentioning the assocstats()  function in the vcd  package. If you install and load the 

vcd  package, then a command like assocstats( chapekFrequencies )  will run the χ2 test as well as the
likelihood ratio test (not discussed here); and then report three different measures of effect size: ϕ , Cram'er’s V, and the
contingency coefficient (not discussed here)

180. Not really.
181. This example is based on a joke article published in the Journal of Irreproducible Results.
182. The R functions for this distribution are dhyper() , phyper() , qhyper()  and rhyper() , though you don’t

need them for this book, and I haven’t given you enough information to use these to perform the Fisher exact test the long way.
183. Not surprisingly, the Fisher exact test is motivated by Fisher’s interpretation of a p-value, not Neyman’s!
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10.11: Statistical Literacy

A Spice Inhibits Liver Cancer

An experiment was conducted to test whether the spice saffron can inhibit liver cancer. Two groups of rats were tested. Both groups
were injected with chemicals known to increase the chance of liver cancer. The experimental group was fed saffron ( )
whereas the control group was not ( ). The experiment is described here.

Only  of the  subjects in the saffron group developed cancer as compared to  of the  subjects in the control group.

What method could be used to test whether this difference between the experimental and control groups is statistically
significant? Use Analysis Lab to do the test.

Solution

The Chi Square test of contingency tables could be used. It yields a  ( ) of  which has an associated  of .

This page titled 10.11: Statistical Literacy is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via
source content that was edited to the style and standards of the LibreTexts platform.
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10.12: Chi Square (Exercises)

General Questions

Q1

Which of the two Chi Square distributions shown below (  or ) has the larger degrees of freedom? How do you know? (relevant
section)

Q2

Twelve subjects were each given two flavors of ice cream to taste and then were asked whether they liked them. Two of the
subjects liked the first flavor and nine of them liked the second flavor. Is it valid to use the Chi Square test to determine whether
this difference in proportions is significant? Why or why not? (relevant section)

Q3

A die is suspected of being biased. It is rolled  times with the following result:

Outcome Frequency

1 9

2 4

3 1

4 8

5 3

6 0

Conduct a significance test to see if the die is biased.

a. What Chi Square value do you get and how many degrees of freedom does it have?
b. What is the  value? (relevant section)

Q4

A recent experiment investigated the relationship between smoking and urinary incontinence. Of the  subjects in the study who
were incontinent,  were smokers,  were former smokers, and  had never smoked. Of the  control subjects who were
not incontinent,  were smokers,  were former smokers, and  had never smoked.

A B

25

p

322

113 51 158 284

68 23 193
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a. Create a table displaying this data.
b. What is the expected frequency in each cell?
c. Conduct a significance test to see if there is a relationship between smoking and incontinence. What Chi Square value do you

get? What  value do you get?
d. What do you conclude? (relevant section)

Q5

At a school pep rally, a group of sophomore students organized a free raffle for prizes. They claim that they put the names of all of
the students in the school in the basket and that they randomly drew  names out of this basket. Of the prize winners,  were
freshmen,  were sophomores,  were juniors, and  were seniors. The results do not seem that random to you. You think it is a
little fishy that sophomores organized the raffle and also won the most prizes. Your school is composed of  freshmen, 
sophomores,  juniors, and  seniors.

a. What are the expected frequencies of winners from each class?
b. Conduct a significance test to determine whether the winners of the prizes were distributed throughout the classes as would be

expected based on the percentage of students in each group. Report your Chi Square and  values.
c. What do you conclude? (relevant section)

Q6

Some parents of the West Bay little leaguers think that they are noticing a pattern. There seems to be a relationship between the
number on the kids' jerseys and their position. These parents decide to record what they see. The hypothetical data appear below.
Conduct a Chi Square test to determine if the parents' suspicion that there is a relationship between jersey number and position is
right. Report your Chi Square and p values. (relevant section)

Infield Outfield Pitcher Total

0-9 12 5 5 22

10-19 5 10 2 17

20+ 4 4 7 15

Total 21 19 14 54

Q7

True/false: A Chi Square distribution with  has a larger mean than a Chi Square distribution with . (relevant section)

Q8

True/false: A Chi Square test is often used to determine if there is a significant relationship between two continuous variables.
(relevant section)

Q9

True/false: Imagine that you want to determine if the spinner shown below is biased. You spin it  times and write down how
many times the arrow lands in each section. You will reject the null hypothesis at the  level and determine that this spinner is
biased if you calculate a Chi Square value of  or higher. (relevant section)

p

36 6

14 9 7

30% 25%

25% 20%

p

2 df 12 df

50

0.05

7.82

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/36149?pdf


10.12.3 https://stats.libretexts.org/@go/page/36149

 
Questions from Case Studies
The following question uses data from the SAT and GPA (SG) case study.

Q10

Answer these items to determine if the math SAT scores are normally distributed. You may want to first standardize the scores.
(relevant section)

a. If these data were normally distributed, how many scores would you expect there to be in each of these brackets:
i. smaller than   below the mean
ii. in between the mean and   below the mean

iii. in between the mean and   above the mean
iv. greater than   above the mean?

b. How many scores are actually in each of these brackets?
c. Conduct a Chi Square test to determine if the math SAT scores are normally distributed based on these expected and observed

frequencies. (relevant section)

The following questions are from the Diet and Health (DH) case study.

Q11

(DH#3) Conduct a Pearson Chi Square test to determine if there is any relationship between diet and outcome. Report the Chi
Square and  values and state your conclusions. (relevant section)

The following questions are from ARTIST (reproduced with permission).

Q12

A study compared members of a medical clinic who filed complaints with a random sample of members who did not complain. The
study divided the complainers into two subgroups: those who filed complaints about medical treatment and those who filed
nonmedical complaints. Here are the data on the total number in each group and the number who voluntarily left the medical clinic.
Set up a two-way table. Analyze these data to see if there is a relationship between complaint (no, yes - medical, yes - nonmedical)
and leaving the clinic (yes or no).

No Complaint Medical Complaint Non Medical Complaint

Total 743 199 440

Left 22 26 28

Q13

Imagine that you believe there is a relationship between a person's eye color and where he or she prefers to sit in a large lecture
hall. You decide to collect data from a random sample of individuals and conduct a chi-square test of independence. What would
your two-way table look like? Use the information to construct such a table, and be sure to label the different levels of each
category.

Q14

A geologist collects hand-specimen sized pieces of limestone from a particular area. A qualitative assessment of both texture and
color is made with the following results. Is there evidence of association between color and texture for these limestones? Explain
your answer.

1 SD

1 SD

1 SD

1 SD

p
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Color

Texture Light Medium Dark

Fine 4 20 8

Medium 5 23 12

Coarse 21 23 4

Q15

Suppose that college students are asked to identify their preferences in political affiliation (Democrat, Republican, or Independent)
and in ice cream (chocolate, vanilla, or strawberry). Suppose that their responses are represented in the following two-way table
(with some of the totals left for you to calculate).

Chocolate Vanilla Strawberry Total

Democrat 26 43 13 82

Republican 45 12 8 65

Independent 9 13 4

Total 68 25 173

a. What proportion of the respondents prefer chocolate ice cream?
b. What proportion of the respondents are Independents?
c. What proportion of Independents prefer chocolate ice cream?
d. What proportion of those who prefer chocolate ice cream are Independents?
e. Analyze the data to determine if there is a relationship between political party preference and ice cream preference.

Q16

NCAA collected data on graduation rates of athletes in Division I in the mid . Among  men,  had not graduated
from college, and among  women,  had not graduated.

a. Set up a two-way table to examine the relationship between gender and graduation.
b. Identify a test procedure that would be appropriate for analyzing the relationship between gender and graduation. Carry out the

procedure and state your conclusion.

Select Answers

S3
a. , 

S4
b. Incontinent/Smoker cell: 

S5
b. 

S6

S10
i. b. Scores smaller than   below the mean: 

S11

1980s 2, 332 1, 343

959 441

Chi Square = 16.0 df = 5

96.2

p = 0.18

Chi Square = 10.2

1 SD 24

Chi Square = 16.6
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CHAPTER OVERVIEW

11: Comparing Two Means
In the previous chapter we covered the situation when your outcome variable is nominal scale and your predictor variable  is also
nominal scale. Lots of real world situations have that character, and so you’ll find that chi-square tests in particular are quite widely
used. However, you’re much more likely to find yourself in a situation where your outcome variable is interval scale or higher, and
what you’re interested in is whether the average value of the outcome variable is higher in one group or another. For instance, a
psychologist might want to know if anxiety levels are higher among parents than non-parents, or if working memory capacity is
reduced by listening to music (relative to not listening to music). In a medical context, we might want to know if a new drug
increases or decreases blood pressure. An agricultural scientist might want to know whether adding phosphorus to Australian native
plants will kill them.  In all these situations, our outcome variable is a fairly continuous, interval or ratio scale variable; and our
predictor is a binary “grouping” variable. In other words, we want to compare the means of the two groups.

The standard answer to the problem of comparing means is to use a t-test, of which there are several varieties depending on exactly
what question you want to solve. As a consequence, the majority of this chapter focuses on different types of t-test: one sample t-
tests are discussed in Section 13.2, independent samples t-tests are discussed in Sections 13.3 and 13.4, and paired samples t-tests
are discussed in Section 13.5. After that, we’ll talk a bit about Cohen’s d, which is the standard measure of effect size for a t-test
(Section 13.8). The later sections of the chapter focus on the assumptions of the t-tests, and possible remedies if they are violated.
However, before discussing any of these useful things, we’ll start with a discussion of the z-test.

11.1: The one-sample z-test
11.2: The One-sample t-test
11.3: The Independent Samples t-test (Student Test)
11.4: The Independent Samples t-test (Welch Test)
11.5: The Paired-samples t-test
11.6: One Sided Tests
11.7: Using the t.test() Function
11.8: Effect Size
11.9: Checking the Normality of a Sample
11.10: Testing Non-normal Data with Wilcoxon Tests
11.11: Summary
11.12: Statistical Literacy
11.E: Tests of Means (Exercises)

This page titled 11: Comparing Two Means is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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11.1: The one-sample z-test
In this section I’ll describe one of the most useless tests in all of statistics: the z-test. Seriously – this test is almost never used in
real life. Its only real purpose is that, when teaching statistics, it’s a very convenient stepping stone along the way towards the t-test,
which is probably the most (over)used tool in all statistics.

11.1.1 inference problem that the test addresses
To introduce the idea behind the z-test, let’s use a simple example. A friend of mine, Dr Zeppo, grades his introductory statistics
class on a curve. Let’s suppose that the average grade in his class is 67.5, and the standard deviation is 9.5. Of his many hundreds
of students, it turns out that 20 of them also take psychology classes. Out of curiosity, I find myself wondering: do the psychology
students tend to get the same grades as everyone else (i.e., mean 67.5) or do they tend to score higher or lower? He emails me the 
zeppo.Rdata  file, which I use to pull up the grades  of those students,

load( "./rbook-master/data/zeppo.Rdata" )  
print( grades )

##  [1] 50 60 60 64 66 66 67 69 70 74 76 76 77 79 79 79 81 82 82 89

and calculate the mean:

mean( grades )

## [1] 72.3

Hm. It might be that the psychology students are scoring a bit higher than normal: that sample mean of  = 72.3 is a fair bit higher
than the hypothesised population mean of μ=67.5, but on the other hand, a sample size of N=20 isn’t all that big. Maybe it’s pure
chance.

To answer the question, it helps to be able to write down what it is that I think I know. Firstly, I know that the sample mean is 
=72.3. If I’m willing to assume that the psychology students have the same standard deviation as the rest of the class then I can say
that the population standard deviation is σ=9.5. I’ll also assume that since Dr Zeppo is grading to a curve, the psychology student
grades are normally distributed.

Next, it helps to be clear about what I want to learn from the data. In this case, my research hypothesis relates to the population
mean μ for the psychology student grades, which is unknown. Specifically, I want to know if μ=67.5 or not. Given that this is what
I know, can we devise a hypothesis test to solve our problem? The data, along with the hypothesised distribution from which they
are thought to arise, are shown in Figure 13.1. Not entirely obvious what the right answer is, is it? For this, we are going to need
some statistics.

X

¯

X

¯
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Figure 13.1: The theoretical distribution (solid line) from which the psychology student grades (grey bars) are supposed to have
been generated.

11.1.2 Constructing the hypothesis test
The first step in constructing a hypothesis test is to be clear about what the null and alternative hypotheses are. This isn’t too hard
to do. Our null hypothesis, H , is that the true population mean μ for psychology student grades is 67.5%; and our alternative
hypothesis is that the population mean isn’t 67.5%. If we write this in mathematical notation, these hypotheses become,

H :μ=67.5

H :μ≠67.5

though to be honest this notation doesn’t add much to our understanding of the problem, it’s just a compact way of writing down
what we’re trying to learn from the data. The null hypotheses H  and the alternative hypothesis H  for our test are both illustrated
in Figure 13.2. In addition to providing us with these hypotheses, the scenario outlined above provides us with a fair amount of
background knowledge that might be useful. Specifically, there are two special pieces of information that we can add:

1 The psychology grades are normally distributed. 1 The true standard deviation of these scores σ is known to be 9.5.

For the moment, we’ll act as if these are absolutely trustworthy facts. In real life, this kind of absolutely trustworthy background
knowledge doesn’t exist, and so if we want to rely on these facts we’ll just have make the assumption that these things are true.
However, since these assumptions may or may not be warranted, we might need to check them. For now though, we’ll keep things
simple.

0

0

1

0 1
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Figure 13.2: Graphical illustration of the null and alternative hypotheses assumed by the one sample z-test (the two sided version,
that is). The null and alternative hypotheses both assume that the population distribution is normal, and additionally assumes that
the population standard deviation is known (fixed at some value σ ). The null hypothesis (left) is that the population mean μ is
equal to some specified value μ . The alternative hypothesis is that the population mean differs from this value, μ≠μ .

The next step is to figure out what we would be a good choice for a diagnostic test statistic; something that would help us
discriminate between H  and H . Given that the hypotheses all refer to the population mean μ, you’d feel pretty confident that the
sample mean  would be a pretty useful place to start. What we could do, is look at the difference between the sample mean 
and the value that the null hypothesis predicts for the population mean. In our example, that would mean we calculate  - 67.5.
More generally, if we let μ  refer to the value that the null hypothesis claims is our population mean, then we’d want to calculate

If this quantity equals or is very close to 0, things are looking good for the null hypothesis. If this quantity is a long way away from
0, then it’s looking less likely that the null hypothesis is worth retaining. But how far away from zero should it be for us to reject
H ?

To figure that out, we need to be a bit more sneaky, and we’ll need to rely on those two pieces of background knowledge that I
wrote down previously, namely that the raw data are normally distributed, and we know the value of the population standard
deviation σ. If the null hypothesis is actually true, and the true mean is μ , then these facts together mean that we know the
complete population distribution of the data: a normal distribution with mean μ  and standard deviation σ. Adopting the notation
from Section 9.5, a statistician might write this as:

X∼Normal(μ ,σ )

Okay, if that’s true, then what can we say about the distribution of ? Well, as we discussed earlier (see Section 10.3.3), the
sampling distribution of the mean  is also normal, and has mean μ. But the standard deviation of this sampling distribution SE (

), which is called the standard error of the mean, is

In other words, if the null hypothesis is true then the sampling distribution of the mean can be written as follows:

∼Normal(μ ,SE( ))

Now comes the trick. What we can do is convert the sample mean  into a standard score (Section 5.6). This is conventionally
written as z, but for now I’m going to refer to it as . (The reason for using this expanded notation is to help you remember that
we’re calculating standardised version of a sample mean, not a standardised version of a single observation, which is what a z-score
usually refers to). When we do so, the z-score for our sample mean is

or, equivalently
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This z-score is our test statistic. The nice thing about using this as our test statistic is that like all z-scores, it has a standard normal
distribution:

∼Normal(0,1)

(again, see Section 5.6 if you’ve forgotten why this is true). In other words, regardless of what scale the original data are on, the z-
statistic iteself always has the same interpretation: it’s equal to the number of standard errors that separate the observed sample
mean  from the population mean μ  predicted by the null hypothesis. Better yet, regardless of what the population parameters for
the raw scores actually are, the 5% critical regions for z-test are always the same, as illustrated in Figures 13.4 and 13.3. And what
this meant, way back in the days where people did all their statistics by hand, is that someone could publish a table like this:

desired α level two-sided test one-sided test

.1 1.644854 1.281552

.05 1.959964 1.644854

.01 2.575829 2.326348

.001 3.290527 3.090232

which in turn meant that researchers could calculate their z-statistic by hand, and then look up the critical value in a text book. That
was an incredibly handy thing to be able to do back then, but it’s kind of unnecessary these days, since it’s trivially easy to do it
with software like R.

Figure 13.3: Rejection regions for the two-sided z-test
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Figure 13.4: Rejection regions for the one-sided z-test

11.1.3 worked example using R

Now, as I mentioned earlier, the z-test is almost never used in practice. It’s so rarely used in real life that the basic installation of R
doesn’t have a built in function for it. However, the test is so incredibly simple that it’s really easy to do one manually. Let’s go
back to the data from Dr Zeppo’s class. Having loaded the grades  data, the first thing I need to do is calculate the sample
mean:

sample.mean <- mean( grades ) 
print( sample.mean )

## [1] 72.3

Then, I create variables corresponding to known population standard deviation (σ=9.5), and the value of the population mean that
the null hypothesis specifies (μ =67.5):

mu.null <- 67.5 
sd.true <- 9.5

Let’s also create a variable for the sample size. We could count up the number of observations ourselves, and type N <- 20  at
the command prompt, but counting is tedious and repetitive. Let’s get R to do the tedious repetitive bit by using the length()
function, which tells us how many elements there are in a vector:

N <- length( grades ) 
print( N )  

## [1] 20

Next, let’s calculate the (true) standard error of the mean:

sem.true <- sd.true / sqrt(N) 
print(sem.true)  

0

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36151?pdf


11.1.6 https://stats.libretexts.org/@go/page/36151

## [1] 2.124265

And finally, we calculate our z-score:

z.score <- (sample.mean - mu.null) / sem.true 
print( z.score )  

## [1] 2.259606

At this point, we would traditionally look up the value 2.26 in our table of critical values. Our original hypothesis was two-sided
(we didn’t really have any theory about whether psych students would be better or worse at statistics than other students) so our
hypothesis test is two-sided (or two-tailed) also. Looking at the little table that I showed earlier, we can see that 2.26 is bigger than
the critical value of 1.96 that would be required to be significant at α=.05, but smaller than the value of 2.58 that would be required
to be significant at a level of α=.01. Therefore, we can conclude that we have a significant effect, which we might write up by
saying something like this:

With a mean grade of 73.2 in the sample of psychology students, and assuming a true population standard deviation of 9.5, we can
conclude that the psychology students have significantly different statistics scores to the class average (z=2.26, N=20, p<.05).

However, what if want an exact p-value? Well, back in the day, the tables of critical values were huge, and so you could look up
your actual z-value, and find the smallest value of α for which your data would be significant (which, as discussed earlier, is the
very definition of a p-value). However, looking things up in books is tedious, and typing things into computers is awesome. So let’s
do it using R instead. Now, notice that the α level of a z-test (or any other test, for that matter) defines the total area “under the
curve” for the critical region, right? That is, if we set α=.05 for a two-sided test, then the critical region is set up such that the area
under the curve for the critical region is .05. And, for the z-test, the critical value of 1.96 is chosen that way because the area in the
lower tail (i.e., below −1.96) is exactly .025 and the area under the upper tail (i.e., above 1.96) is exactly .025. So, since our
observed z-statistic is 2.26, why not calculate the area under the curve below −2.26 or above 2.26? In R we can calculate this using
the pnorm()  function. For the upper tail:

upper.area <- pnorm( q = z.score, lower.tail = FALSE ) 
print( upper.area )

## [1] 0.01192287

The lower.tail = FALSE  is me telling R to calculate the area under the curve from 2.26 and upwards. If I’d told it that 
lower.tail = TRUE , then R would calculate the area from 2.26 and below, and it would give me an answer 0.9880771.

Alternatively, to calculate the area from −2.26 and below, we get

lower.area <- pnorm( q = -z.score, lower.tail = TRUE ) 
print( lower.area )

## [1] 0.01192287

Thus we get our p-value:

p.value <- lower.area + upper.area 
print( p.value )

## [1] 0.02384574
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11.1.4 Assumptions of the z-test
As I’ve said before, all statistical tests make assumptions. Some tests make reasonable assumptions, while other tests do not. The
test I’ve just described – the one sample z-test – makes three basic assumptions. These are:

Normality. As usually described, the z-test assumes that the true population distribution is normal.  is often pretty reasonable,
and not only that, it’s an assumption that we can check if we feel worried about it (see Section 13.9).
Independence. The second assumption of the test is that the observations in your data set are not correlated with each other, or
related to each other in some funny way. This isn’t as easy to check statistically: it relies a bit on good experimetal design. An
obvious (and stupid) example of something that violates this assumption is a data set where you “copy” the same observation
over and over again in your data file: so you end up with a massive “sample size”, consisting of only one genuine observation.
More realistically, you have to ask yourself if it’s really plausible to imagine that each observation is a completely random
sample from the population that you’re interested in. In practice, this assumption is never met; but we try our best to design
studies that minimise the problems of correlated data.
Known standard deviation. The third assumption of the z-test is that the true standard deviation of the population is known to
the researcher. This is just stupid. In no real world data analysis problem do you know the standard deviation σ of some
population, but are completely ignorant about the mean μ. In other words, this assumption is always wrong.

In view of the stupidity of assuming that σ is known, let’s see if we can live without it. This takes us out of the dreary domain of the
z-test, and into the magical kingdom of the t-test, with unicorns and fairies and leprechauns, and um…

This page titled 11.1: The one-sample z-test is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

13.1: The one-sample z-test by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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11.2: The One-sample t-test
After some thought, I decided that it might not be safe to assume that the psychology student grades necessarily have the same
standard deviation as the other students in Dr Zeppo’s class. After all, if I’m entertaining the hypothesis that they don’t have the
same mean, then why should I believe that they absolutely have the same standard deviation? In view of this, I should really stop
assuming that I know the true value of σ. This violates the assumptions of my z-test, so in one sense I’m back to square one.
However, it’s not like I’m completely bereft of options. After all, I’ve still got my raw data, and those raw data give me an estimate
of the population standard deviation:

sd( grades )

## [1] 9.520615

In other words, while I can’t say that I know that σ=9.5, I can say that =9.52.

Okay, cool. The obvious thing that you might think to do is run a z-test, but using the estimated standard deviation of 9.52 instead
of relying on my assumption that the true standard deviation is 9.5. So, we could just type this new number into R and out would
come the answer. And you probably wouldn’t be surprised to hear that this would still give us a significant result. This approach is
close, but it’s not quite correct. Because we are now relying on an estimate of the population standard deviation, we need to make
some adjustment for the fact that we have some uncertainty about what the true population standard deviation actually is. Maybe
our data are just a fluke … maybe the true population standard deviation is 11, for instance. But if that were actually true, and we
ran the z-test assuming σ=11, then the result would end up being non-significant. That’s a problem, and it’s one we’re going to have
to address.

Figure 13.4: Graphical illustration of the null and alternative hypotheses assumed by the (two sided) one sample t-test. Note the
similarity to the z-test. The null hypothesis is that the population mean μ is equal to some specified value μ , and the alternative
hypothesis is that it is not. Like the z-test, we assume that the data are normally distributed; but we do not assume that the
population standard deviation σ is known in advance.

11.2.1 Introducing the t-test
This ambiguity is annoying, and it was resolved in 1908 by a guy called William Sealy Gosset (Student 1908), who was working as
a chemist for the Guinness brewery at the time (see Box 1987). Because Guinness took a dim view of its employees publishing
statistical analysis (apparently they felt it was a trade secret), he published the work under the pseudonym “A Student”, and to this
day, the full name of the t-test is actually Student’s t-test. The key thing that Gosset figured out is how we should accommodate the
fact that we aren’t completely sure what the true standard deviation is.  The answer is that it subtly changes the sampling
distribution. In the t-test, our test statistic (now called a t-statistic) is calculated in exactly the same way I mentioned above. If our
null hypothesis is that the true mean is μ, but our sample has mean ¯X and our estimate of the population standard deviation is ,
then our t statistic is:

σ

^

0
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The only thing that has changed in the equation is that instead of using the known true value σ, we use the estimate  And if this
estimate has been constructed from N observations, then the sampling distribution turns into a t-distribution with N−1 degrees of
freedom (df). The t distribution is very similar to the normal distribution, but has “heavier” tails, as discussed earlier in Section 9.6
and illustrated in Figure 13.5. Notice, though, that as df gets larger, the t-distribution starts to look identical to the standard normal
distribution. This is as it should be: if you have a sample size of N=70,000,000 then your “estimate” of the standard deviation
would be pretty much perfect, right? So, you should expect that for large N, the t-test would behave exactly the same way as a z-
test. And that’s exactly what happens!

Figure 13.5: The t distribution with 2 degrees of freedom (left) and 10 degrees of freedom (right), with a standard normal
distribution (i.e., mean 0 and std dev 1) plotted as dotted lines for comparison purposes. Notice that the t distribution has heavier
tails (higher kurtosis) than the normal distribution; this effect is quite exaggerated when the degrees of freedom are very small, but
negligible for larger values. In other words, for large df the t distribution is essentially identical to a normal distribution.

11.2.2 Doing the test in R
As you might expect, the mechanics of the t-test are almost identical to the mechanics of the z-test. So there’s not much point in
going through the tedious exercise of showing you how to do the calculations using low level commands: it’s pretty much identical
to the calculations that we did earlier, except that we use the estimated standard deviation (i.e., something like 
se.est <- sd(grades) ), and then we test our hypothesis using the t distribution rather than the normal distribution (i.e.

we use pt()  rather than pnorm() . And so instead of going through the calculations in tedious detail for a second time, I’ll
jump straight to showing you how t-tests are actually done in practice.

The situation with t-tests is very similar to the one we encountered with chi-squared tests in Chapter 12. R comes with one function
called t.test()  that is very flexible (it can run lots of different kinds of t-tests) and is somewhat terse (the output is quite
compressed). Later on in the chapter I’ll show you how to use the t.test()  function (Section 13.7), but to start out with I’m
going to rely on some simpler functions in the lsr  package. Just like last time, what I’ve done is written a few simpler
functions, each of which does only one thing. So, if you want to run a one-sample t-test, use the oneSampleTTest()
function! It’s pretty straightforward to use: all you need to do is specify x , the variable containing the data, and mu , the true
population mean according to the null hypothesis. All you need to type is this:

library(lsr) 
 
oneSampleTTest( x=grades, mu=67.5 )

 t =

−μX

¯

/σ

^

N

√

σ̂
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## 
##    One sample t-test  
## 
## Data variable:   grades  
## 
## Descriptive statistics:  
##             grades 
##    mean     72.300 
##    std dev.  9.521 
## 
## Hypotheses:  
##    null:        population mean equals 67.5  
##    alternative: population mean not equal to 67.5  
## 
## Test results:  
##    t-statistic:  2.255  
##    degrees of freedom:  19  
##    p-value:  0.036  
## 
## Other information:  
##    two-sided 95% confidence interval:  [67.844, 76.756]  
##    estimated effect size (Cohen's d):  0.504

Easy enough. Now lets go through the output. Just like we saw in the last chapter, I’ve written the functions so that the output is
pretty verbose. It tries to describe in a lot of detail what its actually done:

 One sample t-test  
 
Data variable:   grades  
 
Descriptive statistics:  
            grades 
   mean     72.300 
   std dev.  9.521 
 
Hypotheses:  
   null:        population mean equals 67.5  
   alternative: population mean not equal to 67.5  
 
Test results:  
   t-statistic:  2.255  
   degrees of freedom:  19  
   p-value:  0.036  
 
Other information:  
   two-sided 95% confidence interval:  [67.844, 76.756] 
   estimated effect size (Cohen's d):  0.504 

Reading this output from top to bottom, you can see it’s trying to lead you through the data analysis process. The first two lines tell
you what kind of test was run and what data were used. It then gives you some basic information about the sample: specifically, the
sample mean and standard deviation of the data. It then moves towards the inferential statistics part. It starts by telling you what the
null and alternative hypotheses were, and then it reports the results of the test: the t-statistic, the degrees of freedom, and the p-
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value. Finally, it reports two other things you might care about: the confidence interval for the mean, and a measure of effect size
(we’ll talk more about effect sizes later).

So that seems straightforward enough. Now what do we do with this output? Well, since we’re pretending that we actually care
about my toy example, we’re overjoyed to discover that the result is statistically significant (i.e. p value below 0.05). We could
report the result by saying something like this:

With a mean grade of 72.3, the psychology students scored slightly higher than the average grade of 67.5 (t(19)=2.25, p<.05); the
95% confidence interval is [67.8, 76.8].

where t(19) is shorthand notation for a t-statistic that has 19 degrees of freedom. That said, it’s often the case that people don’t
report the confidence interval, or do so using a much more compressed form than I’ve done here. For instance, it’s not uncommon
to see the confidence interval included as part of the stat block, like this:

t(19)=2.25, p<.05, CI95=[67.8,76.8]

With that much jargon crammed into half a line, you know it must be really smart.

11.2.3 Assumptions of the one sample t-test
Okay, so what assumptions does the one-sample t-test make? Well, since the t-test is basically a z-test with the assumption of
known standard deviation removed, you shouldn’t be surprised to see that it makes the same assumptions as the z-test, minus the
one about the known standard deviation. That is

Normality. We’re still assuming that the the population distribution is normal^[A technical comment… in the same way that we
can weaken the assumptions of the z-test so that we’re only talking about the sampling distribution, we can weaken the t test
assumptions so that we don’t have to assume normality of the population. However, for the t-test, it’s trickier to do this. As
before, we can replace the assumption of population normality with an assumption that the sampling distribution of ¯X is
normal. However, remember that we’re also relying on a sample estimate of the standard deviation; and so we also require the
sampling distribution of ^σ to be chi-square. That makes things nastier, and this version is rarely used in practice: fortunately, if
the population is normal, then both of these two assumptions are met., and as noted earlier, there are standard tools that you can
use to check to see if this assumption is met (Section 13.9), and other tests you can do in it’s place if this assumption is violated
(Section 13.10).
Independence. Once again, we have to assume that the observations in our sample are generated independently of one another.
See the earlier discussion about the z-test for specifics (Section 13.1.4).

Overall, these two assumptions aren’t terribly unreasonable, and as a consequence the one-sample t-test is pretty widely used in
practice as a way of comparing a sample mean against a hypothesised population mean.

This page titled 11.2: The One-sample t-test is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

13.2: The One-sample t-test by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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11.3: The Independent Samples t-test (Student Test)
Although the one sample t-test has its uses, it’s not the most typical example of a t-test . A much more common situation arises
when you’ve got two different groups of observations. In psychology, this tends to correspond to two different groups of
participants, where each group corresponds to a different condition in your study. For each person in the study, you measure some
outcome variable of interest, and the research question that you’re asking is whether or not the two groups have the same
population mean. This is the situation that the independent samples t-test is designed for.

11.3.1 data
Suppose we have 33 students taking Dr Harpo’s statistics lectures, and Dr Harpo doesn’t grade to a curve. Actually, Dr Harpo’s
grading is a bit of a mystery, so we don’t really know anything about what the average grade is for the class as a whole. There are
two tutors for the class, Anastasia and Bernadette. There are N =15 students in Anastasia’s tutorials, and N =18 in Bernadette’s
tutorials. The research question I’m interested in is whether Anastasia or Bernadette is a better tutor, or if it doesn’t make much of a
difference. Dr Harpo emails me the course grades, in the harpo.Rdata  file. As usual, I’ll load the file and have a look at what
variables it contains:

load( "./rbook-master/data/harpo.Rdata" ) 
str(harpo)

## 'data.frame':    33 obs. of  2 variables: 
##  $ grade: num  65 72 66 74 73 71 66 76 69 79 ... 
##  $ tutor: Factor w/ 2 levels "Anastasia","Bernadette": 1 2 2 1 1 2 2 2 2 2 ...

As we can see, there’s a single data frame with two variables, grade  and tutor . The grade  variable is a numeric vector,
containing the grades for all N=33 students taking Dr Harpo’s class; the tutor  variable is a factor that indicates who each
student’s tutor was. The first six observations in this data set are shown below:

head( harpo )

##   grade      tutor 
## 1    65  Anastasia 
## 2    72 Bernadette 
## 3    66 Bernadette 
## 4    74  Anastasia 
## 5    73  Anastasia 
## 6    71 Bernadette

We can calculate means and standard deviations, using the mean()  and sd()  functions. Rather than show the R output,
here’s a nice little summary table:

mean std dev N

Anastasia’s students 74.53 9.00 15

Bernadette’s students 69.06 5.77 18

To give you a more detailed sense of what’s going on here, I’ve plotted histograms showing the distribution of grades for both
tutors (Figure 13.6 and 13.7). Inspection of these histograms suggests that the students in Anastasia’s class may be getting slightly
better grades on average, though they also seem a little more variable.
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Figure 13.6: Histogram showing the overall distribution of grades for students in Anastasia’s class

Figure 13.7: Histogram showing the overall distribution of grades for students in Bernadette’s class

Here is a simpler plot showing the means and corresponding confidence intervals for both groups of students (Figure 13.8).
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Figure 13.8: Plots showing the mean grade for the students in Anastasia’s and Bernadette’s tutorials. Error bars depict 95%
confidence intervals around the mean. On the basis of visual inspection, it does look like there’s a real difference between the
groups, though it’s hard to say for sure.

11.3.2 Introducing the test

The independent samples t-test comes in two different forms, Student’s and Welch’s. The original Student t-test – which is the one
I’ll describe in this section – is the simpler of the two, but relies on much more restrictive assumptions than the Welch t-test.
Assuming for the moment that you want to run a two-sided test, the goal is to determine whether two “independent samples” of
data are drawn from populations with the same mean (the null hypothesis) or different means (the alternative hypothesis). When we
say “independent” samples, what we really mean here is that there’s no special relationship between observations in the two
samples. This probably doesn’t make a lot of sense right now, but it will be clearer when we come to talk about the paired samples
t-test later on. For now, let’s just point out that if we have an experimental design where participants are randomly allocated to one
of two groups, and we want to compare the two groups’ mean performance on some outcome measure, then an independent
samples t-test (rather than a paired samples t-test) is what we’re after.

Okay, so let’s let μ  denote the true population mean for group 1 (e.g., Anastasia’s students), and μ  will be the true population
mean for group 2 (e.g., Bernadette’s students),  and as usual we’ll let  and  denote the observed sample means for both of
these groups. Our null hypothesis states that the two population means are identical (μ =μ ) and the alternative to this is that they
are not (μ ≠μ ). Written in mathematical-ese, this is…

H :μ =μ

H :μ ≠μ

1 2
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Figure 13.9: Graphical illustration of the null and alternative hypotheses assumed by the Student t-test. The null hypothesis
assumes that both groups have the same mean μ, whereas the alternative assumes that they have different means μ  and μ . Notice
that it is assumed that the population distributions are normal, and that, although the alternative hypothesis allows the group to have
different means, it assumes they have the same standard deviation

To construct a hypothesis test that handles this scenario, we start by noting that if the null hypothesis is true, then the difference
between the population means is exactly zero, μ −μ =0 As a consequence, a diagnostic test statistic will be based on the difference
between the two sample means. Because if the null hypothesis is true, then we’d expect

 - 

to be pretty close to zero. However, just like we saw with our one-sample tests (i.e., the one-sample z-test and the one-sample t-
test) we have to be precise about exactly how close to zero this difference

We just need to figure out what this standard error estimate actually is. This is a bit trickier than was the case for either of the two
tests we’ve looked at so far, so we need to go through it a lot more carefully to understand how it works.

11.3.3 “pooled estimate” of the standard deviation
In the original “Student t-test”, we make the assumption that the two groups have the same population standard deviation: that is,
regardless of whether the population means are the same, we assume that the population standard deviations are identical, σ =σ .
Since we’re assuming that the two standard deviations are the same, we drop the subscripts and refer to both of them as σ. How
should we estimate this? How should we construct a single estimate of a standard deviation when we have two samples? The
answer is, basically, we average them. Well, sort of. Actually, what we do is take a weighed average of the variance estimates,
which we use as our pooled estimate of the variance. The weight assigned to each sample is equal to the number of observations in
that sample, minus 1. Mathematically, we can write this as

=N −1

=N −1

Now that we’ve assigned weights to each sample, we calculate the pooled estimate of the variance by taking the weighted average
of the two variance estimates,  and 

Finally, we convert the pooled variance estimate to a pooled standard deviation estimate, by taking the square root. This gives us
the following formula for ,
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And if you mentally substitute =N1−1 and =N2−1 into this equation you get a very ugly looking formula; a very ugly
formula that actually seems to be the “standard” way of describing the pooled standard deviation estimate. It’s not my favourite
way of thinking about pooled standard deviations, however.

11.3.4 same pooled estimate, described differently
I prefer to think about it like this. Our data set actually corresponds to a set of N observations, which are sorted into two groups. So
let’s use the notation X  to refer to the grade received by the i-th student in the k-th tutorial group: that is, X  is the grade received
by the first student in Anastasia’s class, X  is her second student, and so on. And we have two separate group means  and ,
which we could “generically” refer to using the notation , i.e., the mean grade for the k-th tutorial group. So far, so good. Now,
since every single student falls into one of the two tutorials, and so we can describe their deviation from the group mean as the
difference

So why not just use these deviations (i.e., the extent to which each student’s grade differs from the mean grade in their tutorial?)
Remember, a variance is just the average of a bunch of squared deviations, so let’s do that. Mathematically, we could write it like
this:

where the notation “∑ ” is a lazy way of saying “calculate a sum by looking at all students in all tutorials”, since each “ik”
corresponds to one student.  But, as we saw in Chapter 10, calculating the variance by dividing by N produces a biased estimate
of the population variance. And previously, we needed to divide by N−1 to fix this. However, as I mentioned at the time, the reason
why this bias exists is because the variance estimate relies on the sample mean; and to the extent that the sample mean isn’t equal
to the population mean, it can systematically bias our estimate of the variance. But this time we’re relying on two sample means!
Does this mean that we’ve got more bias? Yes, yes it does. And does this mean we now need to divide by N−2 instead of N−1, in
order to calculate our pooled variance estimate? Why, yes…

Oh, and if you take the square root of this then you get , the pooled standard deviation estimate. In other words, the pooled
standard deviation calculation is nothing special: it’s not terribly different to the regular standard deviation calculation.

11.3.5 Completing the test
Regardless of which way you want to think about it, we now have our pooled estimate of the standard deviation. From now on, I’ll
drop the silly p subscript, and just refer to this estimate as . Great. Let’s now go back to thinking about the bloody hypothesis test,
shall we? Our whole reason for calculating this pooled estimate was that we knew it would be helpful when calculating our
standard error estimate. But, standard error of what? In the one-sample t-test, it was the standard error of the sample mean, SE (

), and since SE (  that’s what the denominator of our t-statistic looked like. This time around, however, we have two
sample means. And what we’re interested in, specifically, is the the difference between the two  - . As a consequence, the
standard error that we need to divide by is in fact the standard error of the difference between means. As long as the two variables
really do have the same standard deviation, then our estimate for the standard error is

and our t-statistic is therefore

(shocking, isn’t it?) as long as the null hypothesis is true, and all of the assumptions of the test are met. The degrees of freedom,
however, is slightly different. As usual, we can think of the degrees of freedom to be equal to the number of data points minus the
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number of constraints. In this case, we have N observations (N1 in sample 1, and N2 in sample 2), and 2 constraints (the sample
means). So the total degrees of freedom for this test are N−2.

11.3.6 Doing the test in R
Not surprisingly, you can run an independent samples t-test using the t.test()  function (Section 13.7), but once again I’m
going to start with a somewhat simpler function in the lsr  package. That function is unimaginatively called 
independentSamplesTTest() . First, recall that our data look like this:

head( harpo )

##   grade      tutor 
## 1    65  Anastasia 
## 2    72 Bernadette 
## 3    66 Bernadette 
## 4    74  Anastasia 
## 5    73  Anastasia 
## 6    71 Bernadette

The outcome variable for our test is the student grade , and the groups are defined in terms of the tutor  for each class. So
you probably won’t be too surprised to see that we’re going to describe the test that we want in terms of an R formula that reads
like this grade ~ tutor . The specific command that we need is:

## 
##    Student's independent samples t-test  
## 
## Outcome variable:   grade  
## Grouping variable:  tutor  
## 
## Descriptive statistics:  
##             Anastasia Bernadette 
##    mean        74.533     69.056 
##    std dev.     8.999      5.775 
## 
## Hypotheses:  
##    null:        population means equal for both groups 
##    alternative: different population means in each group 
## 
## Test results:  
##    t-statistic:  2.115  
##    degrees of freedom:  31  
##    p-value:  0.043  
## 
## Other information:  
##    two-sided 95% confidence interval:  [0.197, 10.759]  
##    estimated effect size (Cohen's d):  0.74

independentSamplesTTest(  
      formula = grade ~ tutor,  # formula specifying outcome and group variables 
      data = harpo,             # data frame that contains the variables 
      var.equal = TRUE          # assume that the two groups have the same variance 
  )  
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The first two arguments should be familiar to you. The first one is the formula that tells R what variables to use and the second one
tells R the name of the data frame that stores those variables. The third argument is not so obvious. By saying 
var.equal = TRUE , what we’re really doing is telling R to use the Student independent samples t-test. More on this later.

For now, lets ignore that bit and look at the output:

The output has a very familiar form. First, it tells you what test was run, and it tells you the names of the variables that you used.
The second part of the output reports the sample means and standard deviations for both groups (i.e., both tutorial groups). The
third section of the output states the null hypothesis and the alternative hypothesis in a fairly explicit form. It then reports the test
results: just like last time, the test results consist of a t-statistic, the degrees of freedom, and the p-value. The final section reports
two things: it gives you a confidence interval, and an effect size. I’ll talk about effect sizes later. The confidence interval, however,
I should talk about now.

It’s pretty important to be clear on what this confidence interval actually refers to: it is a confidence interval for the difference
between the group means. In our example, Anastasia’s students had an average grade of 74.5, and Bernadette’s students had an
average grade of 69.1, so the difference between the two sample means is 5.4. But of course the difference between population
means might be bigger or smaller than this. The confidence interval reported by the independentSamplesTTest()
function tells you that there’s a 95% chance that the true difference between means lies between 0.2 and 10.8.

In any case, the difference between the two groups is significant (just barely), so we might write up the result using text like this:

The mean grade in Anastasia’s class was 74.5% (std dev = 9.0), whereas the mean in Bernadette’s class was 69.1% (std dev = 5.8).
A Student’s independent samples t-test showed that this 5.4% difference was significant (t(31)=2.1, p<.05, CI =[0.2,10.8], d=.74),
suggesting that a genuine difference in learning outcomes has occurred.

Notice that I’ve included the confidence interval and the effect size in the stat block. People don’t always do this. At a bare
minimum, you’d expect to see the t-statistic, the degrees of freedom and the p value. So you should include something like this at a
minimum: t(31)=2.1, p<.05. If statisticians had their way, everyone would also report the confidence interval and probably the
effect size measure too, because they are useful things to know. But real life doesn’t always work the way statisticians want it to:
you should make a judgment based on whether you think it will help your readers, and (if you’re writing a scientific paper) the
editorial standard for the journal in question. Some journals expect you to report effect sizes, others don’t. Within some scientific
communities it is standard practice to report confidence intervals, in other it is not. You’ll need to figure out what your audience
expects. But, just for the sake of clarity, if you’re taking my class: my default position is that it’s usually worth includng the effect
size, but don’t worry about the confidence interval unless the assignment asks you to or implies that you should.

11.3.7 Positive and negative t values

Before moving on to talk about the assumptions of the t-test, there’s one additional point I want to make about the use of t-tests in
practice. The first one relates to the sign of the t-statistic (that is, whether it is a positive number or a negative one). One very
common worry that students have when they start running their first t-test is that they often end up with negative values for the t-
statistic, and don’t know how to interpret it. In fact, it’s not at all uncommon for two people working independently to end up with
R outputs that are almost identical, except that one person has a negative t values and the other one has a positive t value. Assuming
that you’re running a two-sided test, then the p-values will be identical. On closer inspection, the students will notice that the
confidence intervals also have the opposite signs. This is perfectly okay: whenever this happens, what you’ll find is that the two
versions of the R output arise from slightly different ways of running the t-test. What’s happening here is very simple. The t-
statistic that R is calculating here is always of the form

If “mean 1” is larger than “mean 2” the t statistic will be positive, whereas if “mean 2” is larger then the t statistic will be negative.
Similarly, the confidence interval that R reports is the confidence interval for the difference “(mean 1) minus (mean 2)”, which will
be the reverse of what you’d get if you were calculating the confidence interval for the difference “(mean 2) minus (mean 1)”.

Okay, that’s pretty straightforward when you think about it, but now consider our t-test comparing Anastasia’s class to Bernadette’s
class. Which one should we call “mean 1” and which one should we call “mean 2”. It’s arbitrary. However, you really do need to
designate one of them as “mean 1” and the other one as “mean 2”. Not surprisingly, the way that R handles this is also pretty
arbitrary. In earlier versions of the book I used to try to explain it, but after a while I gave up, because it’s not really all that
important, and to be honest I can never remember myself. Whenever I get a significant t-test result, and I want to figure out which

95
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( mean 1)−( mean 2)

(SE)
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mean is the larger one, I don’t try to figure it out by looking at the t-statistic. Why would I bother doing that? It’s foolish. It’s easier
just look at the actual group means, since the R output actually shows them!

Here’s the important thing. Because it really doesn’t matter what R printed out, I usually try to report the t-statistic in such a way
that the numbers match up with the text. Here’s what I mean… suppose that what I want to write in my report is “Anastasia’s class
had higher grades than Bernadette’s class”. The phrasing here implies that Anastasia’s group comes first, so it makes sense to report
the t-statistic as if Anastasia’s class corresponded to group 1. If so, I would write

Anastasia’s class had higher grades than Bernadette’s class (t(31)=2.1,p=.04).

(I wouldn’t actually emphasise the word “higher” in real life, I’m just doing it to emphasise the point that “higher” corresponds to
positive t values). On the other hand, suppose the phrasing I wanted to use has Bernadette’s class listed first. If so, it makes more
sense to treat her class as group 1, and if so, the write up looks like this:

Bernadette’s class had lower grades than Anastasia’s class (t(31)=−2.1,p=.04).

Because I’m talking about one group having “lower” scores this time around, it is more sensible to use the negative form of the t-
statistic. It just makes it read more cleanly.

One last thing: please note that you can’t do this for other types of test statistics. It works for t-tests, but it wouldn’t be meaningful
for chi-square testsm F-tests or indeed for most of the tests I talk about in this book. So don’t overgeneralise this advice! I’m really
just talking about t-tests here and nothing else!

11.3.8 Assumptions of the test

As always, our hypothesis test relies on some assumptions. So what are they? For the Student t-test there are three assumptions,
some of which we saw previously in the context of the one sample t-test (see Section 13.2.3):

Normality. Like the one-sample t-test, it is assumed that the data are normally distributed. Specifically, we assume that both
groups are normally distributed. In Section 13.9 we’ll discuss how to test for normality, and in Section 13.10 we’ll discuss
possible solutions.
Independence. Once again, it is assumed that the observations are independently sampled. In the context of the Student test this
has two aspects to it. Firstly, we assume that the observations within each sample are independent of one another (exactly the
same as for the one-sample test). However, we also assume that there are no cross-sample dependencies. If, for instance, it turns
out that you included some participants in both experimental conditions of your study (e.g., by accidentally allowing the same
person to sign up to different conditions), then there are some cross sample dependencies that you’d need to take into account.
Homogeneity of variance (also called “homoscedasticity”). The third assumption is that the population standard deviation is the
same in both groups. You can test this assumption using the Levene test, which I’ll talk about later on in the book (Section
14.7). However, there’s a very simple remedy for this assumption, which I’ll talk about in the next section.

This page titled 11.3: The Independent Samples t-test (Student Test) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
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11.4: The Independent Samples t-test (Welch Test)
The biggest problem with using the Student test in practice is the third assumption listed in the previous section: it assumes that
both groups have the same standard deviation. This is rarely true in real life: if two samples don’t have the same means, why
should we expect them to have the same standard deviation? There’s really no reason to expect this assumption to be true. We’ll
talk a little bit about how you can check this assumption later on because it does crop up in a few different places, not just the t-test.
But right now I’ll talk about a different form of the t-test (Welch 1947) that does not rely on this assumption. A graphical
illustration of what the Welch t test assumes about the data is shown in Figure 13.10, to provide a contrast with the Student test
version in Figure 13.9. I’ll admit it’s a bit odd to talk about the cure before talking about the diagnosis, but as it happens the Welch
test is the default t-test in R, so this is probably the best place to discuss it.

The Welch test is very similar to the Student test. For example, the t-statistic that we use in the Welch test is calculated in much the
same way as it is for the Student test. That is, we take the difference between the sample means, and then divide it by some
estimate of the standard error of that difference:

The main difference is that the standard error calculations are different. If the two populations have different standard deviations,
then it’s a complete nonsense to try to calculate a pooled standard deviation estimate, because you’re averaging apples and
oranges.  But you can still estimate the standard error of the difference between sample means; it just ends up looking different:

The reason why it’s calculated this way is beyond the scope of this book. What matters for our purposes is that the t-statistic that
comes out of the Welch test is actually somewhat different to the one that comes from the Student test.

The second difference between Welch and Student is that the degrees of freedom are calculated in a very different way. In the
Welch test, the “degrees of freedom” doesn’t have to be a whole number any more, and it doesn’t correspond all that closely to the
“number of data points minus the number of constraints” heuristic that I’ve been using up to this point. The degrees of freedom are,
in fact…

… which is all pretty straightforward and obvious, right? Well, perhaps not. It doesn’t really matter for out purposes. What matters
is that you’ll see that the “df” value that pops out of a Welch test tends to be a little bit smaller than the one used for the Student
test, and it doesn’t have to be a whole number.
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Figure 13.10: Graphical illustration of the null and alternative hypotheses assumed by the Welch t-test. Like the Student test we
assume that both samples are drawn from a normal population; but the alternative hypothesis no longer requires the two
populations to have equal variance.

11.4.1 Doing the test in R
To run a Welch test in R is pretty easy. All you have to do is not bother telling R to assume equal variances. That is, you take the
command we used to run a Student’s t-test and drop the var.equal = TRUE  bit. So the command for a Welch test becomes:

independentSamplesTTest(  
      formula = grade ~ tutor,  # formula specifying outcome and group variables 
      data = harpo              # data frame that contains the variables 
  )

## 
##    Welch's independent samples t-test  
## 
## Outcome variable:   grade  
## Grouping variable:  tutor  
## 
## Descriptive statistics:  
##             Anastasia Bernadette 
##    mean        74.533     69.056 
##    std dev.     8.999      5.775 
## 
## Hypotheses:  
##    null:        population means equal for both groups 
##    alternative: different population means in each group 
## 
## Test results:  
##    t-statistic:  2.034  
##    degrees of freedom:  23.025  
##    p-value:  0.054  
## 
## Other information:  
##    two-sided 95% confidence interval:  [-0.092, 11.048]  
##    estimated effect size (Cohen's d):  0.724
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Not too difficult, right? Not surprisingly, the output has exactly the same format as it did last time too:

The very first line is different, because it’s telling you that its run a Welch test rather than a Student test, and of course all the
numbers are a bit different. But I hope that the interpretation of this output should be fairly obvious. You read the output in the
same way that you would for the Student test. You’ve got your descriptive statistics, the hypotheses, the test results and some other
information. So that’s all pretty easy.

Except, except… our result isn’t significant anymore. When we ran the Student test, we did get a significant effect; but the Welch
test on the same data set is not (t(23.03)=2.03, p=.054). What does this mean? Should we panic? Is the sky burning? Probably not.
The fact that one test is significant and the other isn’t doesn’t itself mean very much, especially since I kind of rigged the data so
that this would happen. As a general rule, it’s not a good idea to go out of your way to try to interpret or explain the difference
between a p-value of .049 and a p-value of .051. If this sort of thing happens in real life, the difference in these p-values is almost
certainly due to chance. What does matter is that you take a little bit of care in thinking about what test you use. The Student test
and the Welch test have different strengths and weaknesses. If the two populations really do have equal variances, then the Student
test is slightly more powerful (lower Type II error rate) than the Welch test. However, if they don’t have the same variances, then
the assumptions of the Student test are violated and you may not be able to trust it: you might end up with a higher Type I error
rate. So it’s a trade off. However, in real life, I tend to prefer the Welch test; because almost no-one actually believes that the
population variances are identical.

11.4.2 Assumptions of the test
The assumptions of the Welch test are very similar to those made by the Student t-test (see Section 13.3.8), except that the Welch
test does not assume homogeneity of variance. This leaves only the assumption of normality, and the assumption of independence.
The specifics of these assumptions are the same for the Welch test as for the Student test.
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11.5: The Paired-samples t-test
Regardless of whether we’re talking about the Student test or the Welch test, an independent samples t-test is intended to be used in
a situation where you have two samples that are, well, independent of one another. This situation arises naturally when participants
are assigned randomly to one of two experimental conditions, but it provides a very poor approximation to other sorts of research
designs. In particular, a repeated measures design – in which each participant is measured (with respect to the same outcome
variable) in both experimental conditions – is not suited for analysis using independent samples t-tests. For example, we might be
interested in whether listening to music reduces people’s working memory capacity. To that end, we could measure each person’s
working memory capacity in two conditions: with music, and without music. In an experimental design such as this one,  each
participant appears in both groups. This requires us to approach the problem in a different way; by using the paired samples t-test.

11.5.1 data
The data set that we’ll use this time comes from Dr Chico’s class.  In her class, students take two major tests, one early in the
semester and one later in the semester. To hear her tell it, she runs a very hard class, one that most students find very challenging;
but she argues that by setting hard assessments, students are encouraged to work harder. Her theory is that the first test is a bit of a
“wake up call” for students: when they realise how hard her class really is, they’ll work harder for the second test and get a better
mark. Is she right? To test this, let’s have a look at the chico.Rdata  file:

load( "./rbook-master/data/chico.Rdata" ) 
str(chico)

The data frame chico  contains three variables: an id  variable that identifies each student in the class, the grade_test1
variable that records the student grade for the first test, and the grade_test2  variable that has the grades for the second test.
Here’s the first six students:

head( chico )

##         id grade_test1 grade_test2 
## 1 student1        42.9        44.6 
## 2 student2        51.8        54.0 
## 3 student3        71.7        72.3 
## 4 student4        51.6        53.4 
## 5 student5        63.5        63.8 
## 6 student6        58.0        59.3

At a glance, it does seem like the class is a hard one (most grades are between 50% and 60%), but it does look like there’s an
improvement from the first test to the second one. If we take a quick look at the descriptive statistics

library( psych ) 
describe( chico )

## 'data.frame':    20 obs. of  3 variables: 
##  $ id         : Factor w/ 20 levels "student1","student10",..: 1 12 14 15 16 17 18
##  $ grade_test1: num  42.9 51.8 71.7 51.6 63.5 58 59.8 50.8 62.5 61.9 ... 
##  $ grade_test2: num  44.6 54 72.3 53.4 63.8 59.3 60.8 51.6 64.3 63.2 ...
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##             vars  n  mean   sd median trimmed  mad  min  max range  skew 
## id*            1 20 10.50 5.92   10.5   10.50 7.41  1.0 20.0  19.0  0.00 
## grade_test1    2 20 56.98 6.62   57.7   56.92 7.71 42.9 71.7  28.8  0.05 
## grade_test2    3 20 58.38 6.41   59.7   58.35 6.45 44.6 72.3  27.7 -0.05 
##             kurtosis   se 
## id*            -1.38 1.32 
## grade_test1    -0.35 1.48 
## grade_test2    -0.39 1.43

we see that this impression seems to be supported. Across all 20 students  the mean grade for the first test is 57%, but this rises to
58% for the second test. Although, given that the standard deviations are 6.6% and 6.4% respectively, it’s starting to feel like
maybe the improvement is just illusory; maybe just random variation. This impression is reinforced when you see the means and
confidence intervals plotted in Figure 13.11. If we were to rely on this plot alone, we’d come to the same conclusion that we got
from looking at the descriptive statistics that the describe()  function produced. Looking at how wide those confidence
intervals are, we’d be tempted to think that the apparent improvement in student performance is pure chance.

Figure 13.11: Mean grade for test 1 and test 2, with associated 95% confidence intervals

Nevertheless, this impression is wrong. To see why, take a look at the scatterplot of the grades for test 1 against the grades for test
2. shown in Figure 13.12.
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Figure 13.12: Scatterplot showing the individual grades for test 1 and test 2

In this plot, each dot corresponds to the two grades for a given student: if their grade for test 1 (x co-ordinate) equals their grade for
test 2 (y co-ordinate), then the dot falls on the line. Points falling above the line are the students that performed better on the second
test. Critically, almost all of the data points fall above the diagonal line: almost all of the students do seem to have improved their
grade, if only by a small amount. This suggests that we should be looking at the improvement made by each student from one test
to the next, and treating that as our raw data. To do this, we’ll need to create a new variable for the improvement  that each
student makes, and add it to the chico  data frame. The easiest way to do this is as follows:

chico$improvement <- chico$grade_test2 - chico$grade_test1 

Notice that I assigned the output to a variable called chico$improvement . That has the effect of creating a new variable
called improvement  inside the chico  data frame. So now when I look at the chico  data frame, I get an output that
looks like this:

head( chico )

##         id grade_test1 grade_test2 improvement 
## 1 student1        42.9        44.6         1.7 
## 2 student2        51.8        54.0         2.2 
## 3 student3        71.7        72.3         0.6 
## 4 student4        51.6        53.4         1.8 
## 5 student5        63.5        63.8         0.3 
## 6 student6        58.0        59.3         1.3

Now that we’ve created and stored this improvement  variable, we can draw a histogram showing the distribution of these
improvement scores (using the hist()  function), shown in Figure 13.13.
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Figure 13.13: Histogram showing the improvement made by each student in Dr Chico’s class. Notice that almost the entire
distribution is above zero: the vast majority of students did improve their performance from the first test to the second one

When we look at histogram, it’s very clear that there is a real improvement here. The vast majority of the students scored higher on
the test 2 than on test 1, reflected in the fact that almost the entire histogram is above zero. In fact, if we use ciMean()  to
compute a confidence interval for the population mean of this new variable,

ciMean( x = chico$improvement )

##           2.5%    97.5% 
## [1,] 0.9508686 1.859131

we see that it is 95% certain that the true (population-wide) average improvement would lie between 0.95% and 1.86%. So you can
see, qualitatively, what’s going on: there is a real “within student” improvement (everyone improves by about 1%), but it is very
small when set against the quite large “between student” differences (student grades vary by about 20% or so).

11.5.2 What is the paired samples t-test?
In light of the previous exploration, let’s think about how to construct an appropriate t test. One possibility would be to try to run an
independent samples t-test using grade_test1  and grade_test2  as the variables of interest. However, this is clearly the
wrong thing to do: the independent samples t-test assumes that there is no particular relationship between the two samples. Yet
clearly that’s not true in this case, because of the repeated measures structure to the data. To use the language that I introduced in
the last section, if we were to try to do an independent samples t-test, we would be conflating the within subject differences (which
is what we’re interested in testing) with the between subject variability (which we are not).

The solution to the problem is obvious, I hope, since we already did all the hard work in the previous section. Instead of running an
independent samples t-test on grade_test1  and grade_test2 , we run a one-sample t-test on the within-subject
difference variable, improvement . To formalise this slightly, if X  is the score that the i-th participant obtained on the first
variable, and X  is the score that the same person obtained on the second one, then the difference score is:

D =X −X

Notice that the difference scores is variable 1 minus variable 2 and not the other way around, so if we want improvement to
correspond to a positive valued difference, we actually want “test 2” to be our “variable 1”. Equally, we would say that μ =μ −μ  is
the population mean for this difference variable. So, to convert this to a hypothesis test, our null hypothesis is that this mean
difference is zero; the alternative hypothesis is that it is not:

H :μ =0

H :μ ≠0

i1

i2

i i1 i2

D 1 2

0 D

1 D
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(this is assuming we’re talking about a two-sided test here). This is more or less identical to the way we described the hypotheses
for the one-sample t-test: the only difference is that the specific value that the null hypothesis predicts is 0. And so our t-statistic is
defined in more or less the same way too. If we let  denote the mean of the difference scores, then

which is

where  is the standard deviation of the difference scores. Since this is just an ordinary, one-sample t-test, with nothing special
about it, the degrees of freedom are still N−1. And that’s it: the paired samples t-test really isn’t a new test at all: it’s a one-sample
t-test, but applied to the difference between two variables. It’s actually very simple; the only reason it merits a discussion as long as
the one we’ve just gone through is that you need to be able to recognise when a paired samples test is appropriate, and to
understand why it’s better than an independent samples t test.

11.5.3 Doing the test in R, part 1
How do you do a paired samples t-test in R. One possibility is to follow the process I outlined above: create a “difference” variable
and then run a one sample t-test on that. Since we’ve already created a variable called chico$improvement , let’s do that:

oneSampleTTest( chico$improvement, mu=0 )

## 
##    One sample t-test  
## 
## Data variable:   chico$improvement  
## 
## Descriptive statistics:  
##             improvement 
##    mean           1.405 
##    std dev.       0.970 
## 
## Hypotheses:  
##    null:        population mean equals 0  
##    alternative: population mean not equal to 0  
## 
## Test results:  
##    t-statistic:  6.475  
##    degrees of freedom:  19  
##    p-value:  <.001  
## 
## Other information:  
##    two-sided 95% confidence interval:  [0.951, 1.859]  
##    estimated effect size (Cohen's d):  1.448

The output here is (obviously) formatted exactly the same was as it was the last time we used the oneSampleTTest()
function (Section 13.2), and it confirms our intuition. There’s an average improvement of 1.4% from test 1 to test 2, and this is
significantly different from 0 (t(19)=6.48, p<.001).

However, suppose you’re lazy and you don’t want to go to all the effort of creating a new variable. Or perhaps you just want to
keep the difference between one-sample and paired-samples tests clear in your head. If so, you can use the 
pairedSamplesTTest()  function, also in the lsr  package. Let’s assume that your data organised like they are in the 
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chico  data frame, where there are two separate variables, one for each measurement. The way to run the test is to input a one-
sided formula, just like you did when running a test of association using the associationTest()  function in Chapter 12.
For the chico  data frame, the formula that you need would be ~ grade_time2 + grade_time1 . As usual, you’ll also
need to input the name of the data frame too. So the command just looks like this:

## 
##    Paired samples t-test  
## 
## Variables:  grade_test2 , grade_test1  
## 
## Descriptive statistics:  
##             grade_test2 grade_test1 difference 
##    mean          58.385      56.980      1.405 
##    std dev.       6.406       6.616      0.970 
## 
## Hypotheses:  
##    null:        population means equal for both measurements 
##    alternative: different population means for each measurement 
## 
## Test results:  
##    t-statistic:  6.475  
##    degrees of freedom:  19  
##    p-value:  <.001  
## 
## Other information:  
##    two-sided 95% confidence interval:  [0.951, 1.859]  
##    estimated effect size (Cohen's d):  1.448

The numbers are identical to those that come from the one sample test, which of course they have to be given that the paired
samples t-test is just a one sample test under the hood. However, the output is a bit more detailed:

This time around the descriptive statistics block shows you the means and standard deviations for the original variables, as well as
for the difference variable (notice that it always defines the difference as the first listed variable mines the second listed one). The
null hypothesis and the alternative hypothesis are now framed in terms of the original variables rather than the difference score, but
you should keep in mind that in a paired samples test it’s still the difference score being tested. The statistical information at the
bottom about the test result is of course the same as before.

11.5.4 Doing the test in R, part 2
The paired samples t-test is a little different from the other t-tests, because it is used in repeated measures designs. For the 
chico  data, every student is “measured” twice, once for the first test, and again for the second test. Back in Section 7.7 I talked

about the fact that repeated measures data can be expressed in two standard ways, known as wide form and long form. The 
chico  data frame is in wide form: every row corresponds to a unique person. I’ve shown you the data in that form first because

that’s the form that you’re most used to seeing, and it’s also the format that you’re most likely to receive data in. However, the
majority of tools in R for dealing with repeated measures data expect to receive data in long form. The paired samples t-test is a bit
of an exception that way.

As you make the transition from a novice user to an advanced one, you’re going to have to get comfortable with long form data,
and switching between the two forms. To that end, I want to show you how to apply the pairedSamplesTTest()  function

pairedSamplesTTest(  
     formula = ~ grade_test2 + grade_test1, # one-sided formula listing the two varia
     data = chico                           # data frame containing the two variables
  )
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to long form data. First, let’s use the wideToLong()  function to create a long form version of the chico  data frame. If
you’ve forgotten how the wideToLong()  function works, it might be worth your while quickly re-reading Section 7.7.
Assuming that you’ve done so, or that you’re already comfortable with data reshaping, I’ll use it to create a new data frame called 
chico2 :

chico2 <- wideToLong( chico, within="time" ) 
head( chico2 )

##         id improvement  time grade 
## 1 student1         1.7 test1  42.9 
## 2 student2         2.2 test1  51.8 
## 3 student3         0.6 test1  71.7 
## 4 student4         1.8 test1  51.6 
## 5 student5         0.3 test1  63.5 
## 6 student6         1.3 test1  58.0

As you can see, this has created a new data frame containing three variables: an id  variable indicating which person provided
the data, a time  variable indicating which test the data refers to (i.e., test 1 or test 2), and a grade  variable that records what
score the person got on that test. Notice that this data frame is in long form: every row corresponds to a unique measurement.
Because every person provides two observations (test 1 and test 2), there are two rows for every person. To see this a little more
clearly, I’ll use the sortFrame()  function to sort the rows of chico2  by id  variable (see Section 7.6.3).

chico2 <- sortFrame( chico2, id ) 
head( chico2 )

##           id improvement  time grade 
## 1   student1         1.7 test1  42.9 
## 21  student1         1.7 test2  44.6 
## 10 student10         1.3 test1  61.9 
## 30 student10         1.3 test2  63.2 
## 11 student11         1.4 test1  50.4 
## 31 student11         1.4 test2  51.8

As you can see, there are two rows for “student1”: one showing their grade on the first test, the other showing their grade on the
second test.

Okay, suppose that we were given the chico2  data frame to analyse. How would we run our paired samples t-test now? One
possibility would be to use the longToWide()  function (Section 7.7) to force the data back into wide form, and do the same
thing that we did previously. But that’s sort of defeating the point, and besides, there’s an easier way. Let’s think about what how
the chico2  data frame is structured: there are three variables here, and they all matter. The outcome measure is stored as the 
grade , and we effectively have two “groups” of measurements (test 1 and test 2) that are defined by the time  points at

which a test is given. Finally, because we want to keep track of which measurements should be paired together, we need to know
which student obtained each grade, which is what the id  variable gives us. So, when your data are presented to you in long
form, we would want specify a two-sided formula and a data frame, in the same way that we do for an independent samples t-test:
the formula specifies the outcome variable and the groups, so in this case it would be grade ~ time , and the data frame is 
chico2 . However, we also need to tell it the id variable, which in this case is boringly called id . So our command is:

pairedSamplesTTest(  
     formula = grade ~ time,  # two sided formula: outcome ~ group 
     data = chico2,           # data frame 
     id = "id"                # name of the id variable 
  )
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## 
##    Paired samples t-test  
## 
## Outcome variable:   grade  
## Grouping variable:  time  
## ID variable:        id  
## 
## Descriptive statistics:  
##              test1  test2 difference 
##    mean     56.980 58.385     -1.405 
##    std dev.  6.616  6.406      0.970 
## 
## Hypotheses:  
##    null:        population means equal for both measurements 
##    alternative: different population means for each measurement 
## 
## Test results:  
##    t-statistic:  -6.475  
##    degrees of freedom:  19  
##    p-value:  <.001  
## 
## Other information:  
##    two-sided 95% confidence interval:  [-1.859, -0.951]  
##    estimated effect size (Cohen's d):  1.448

Note that the name of the id variable is "id"  and not id . Note that the id  variable must be a factor. As of the current
writing, you do need to include the quote marks, because the pairedSamplesTTest()  function is expecting a character
string that specifies the name of a variable. If I ever find the time I’ll try to relax this constraint.

As you can see, it’s a bit more detailed than the output from oneSampleTTest() . It gives you the descriptive statistics for the
original variables, states the null hypothesis in a fashion that is a bit more appropriate for a repeated measures design, and then
reports all the nuts and bolts from the hypothesis test itself. Not surprisingly the numbers the same as the ones that we saw last
time.

One final comment about the pairedSamplesTTest()  function. One of the reasons I designed it to be able handle long
form and wide form data is that I want you to be get comfortable thinking about repeated measures data in both formats, and also to
become familiar with the different ways in which R functions tend to specify models and tests for repeated measures data. With that
last point in mind, I want to highlight a slightly different way of thinking about what the paired samples t-test is doing. There’s a
sense in which what you’re really trying to do is look at how the outcome variable ( grade ) is related to the grouping variable (
time ), after taking account of the fact that there are individual differences between people ( id ). So there’s a sense in which 
id  is actually a second predictor: you’re trying to predict the grade  on the basis of the time  and the id . With that in

mind, the pairedSamplesTTest()  function lets you specify a formula like this one

grade ~ time + (id)

This formula tells R everything it needs to know: the variable on the left ( grade ) is the outcome variable, the bracketed term on
the right ( id ) is the id variable, and the other term on the right is the grouping variable ( time ). If you specify your formula
that way, then you only need to specify the formula  and the data  frame, and so you can get away with using a command as
simple as this one:
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pairedSamplesTTest(  
     formula = grade ~ time + (id), 
     data = chico2 
  )

or you can drop the argument names and just do this:

> pairedSamplesTTest( grade ~ time + (id), chico2 )

These commands will produce the same output as the last one, I personally find this format a lot more elegant. That being said, the
main reason for allowing you to write your formulas that way is that they’re quite similar to the way that mixed models (fancy
pants repeated measures analyses) are specified in the lme4  package. This book doesn’t talk about mixed models (yet!), but if
you go on to learn more statistics you’ll find them pretty hard to avoid, so I’ve tried to lay a little bit of the groundwork here.

This page titled 11.5: The Paired-samples t-test is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

13.5: The Paired-samples t-test by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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11.6: One Sided Tests
When introducing the theory of null hypothesis tests, I mentioned that there are some situations when it’s appropriate to specify a
one-sided test (see Section 11.4.3). So far, all of the t-tests have been two-sided tests. For instance, when we specified a one sample
t-test for the grades in Dr Zeppo’s class, the null hypothesis was that the true mean was 67.5%. The alternative hypothesis was that
the true mean was greater than or less than 67.5%. Suppose we were only interested in finding out if the true mean is greater than
67.5%, and have no interest whatsoever in testing to find out if the true mean is lower than 67.5%. If so, our null hypothesis would
be that the true mean is 67.5% or less, and the alternative hypothesis would be that the true mean is greater than 67.5%. The 
oneSampleTTest()  function lets you do this, by specifying the one.sided  argument. If you set 
one.sided="greater" , it means that you’re testing to see if the true mean is larger than mu . If you set 
one.sided="less" , then you’re testing to see if the true mean is smaller than mu . Here’s how it would work for Dr

Zeppo’s class:

oneSampleTTest( x=grades, mu=67.5, one.sided="greater" )

## 
##    One sample t-test  
## 
## Data variable:   grades  
## 
## Descriptive statistics:  
##             grades 
##    mean     72.300 
##    std dev.  9.521 
## 
## Hypotheses:  
##    null:        population mean less than or equal to 67.5  
##    alternative: population mean greater than 67.5  
## 
## Test results:  
##    t-statistic:  2.255  
##    degrees of freedom:  19  
##    p-value:  0.018  
## 
## Other information:  
##    one-sided 95% confidence interval:  [68.619, Inf] 
##    estimated effect size (Cohen's d):  0.504

Notice that there are a few changes from the output that we saw last time. Most important is the fact that the null and alternative
hypotheses have changed, to reflect the different test. The second thing to note is that, although the t-statistic and degrees of
freedom have not changed, the p-value has. This is because the one-sided test has a different rejection region from the two-sided
test. If you’ve forgotten why this is and what it means, you may find it helpful to read back over Chapter 11, and Section 11.4.3 in
particular. The third thing to note is that the confidence interval is different too: it now reports a “one-sided” confidence interval
rather than a two-sided one. In a two-sided confidence interval, we’re trying to find numbers a and b such that we’re 95% confident
that the true mean lies between a and b. In a one-sided confidence interval, we’re trying to find a single number a such that we’re
95% confident that the true mean is greater than a (or less than a if you set one.sided="less" ).

So that’s how to do a one-sided one sample t-test. However, all versions of the t-test can be one-sided. For an independent samples
t test, you could have a one-sided test if you’re only interestd in testing to see if group A has higher scores than group B, but have
no interest in finding out if group B has higher scores than group A. Let’s suppose that, for Dr Harpo’s class, you wanted to see if
Anastasia’s students had higher grades than Bernadette’s. The independentSamplesTTest()  function lets you do this,
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again by specifying the one.sided  argument. However, this time around you need to specify the name of the group that
you’re expecting to have the higher score. In our case, we’d write one.sided = "Anastasia" . So the command would be:

independentSamplesTTest(  
    formula = grade ~ tutor,  
    data = harpo,  
    one.sided = "Anastasia" 
  )

## 
##    Welch's independent samples t-test  
## 
## Outcome variable:   grade  
## Grouping variable:  tutor  
## 
## Descriptive statistics:  
##             Anastasia Bernadette 
##    mean        74.533     69.056 
##    std dev.     8.999      5.775 
## 
## Hypotheses:  
##    null:        population means are equal, or smaller for group 'Anastasia'  
##    alternative: population mean is larger for group 'Anastasia'  
## 
## Test results:  
##    t-statistic:  2.034  
##    degrees of freedom:  23.025  
##    p-value:  0.027  
## 
## Other information:  
##    one-sided 95% confidence interval:  [0.863, Inf]  
##    estimated effect size (Cohen's d):  0.724

Again, the output changes in a predictable way. The definition of the null and alternative hypotheses has changed, the p-value has
changed, and it now reports a one-sided confidence interval rather than a two-sided one.

What about the paired samples t-test? Suppose we wanted to test the hypothesis that grades go up from test 1 to test 2 in Dr
Zeppo’s class, and are not prepared to consider the idea that the grades go down. Again, we can use the one.sided  argument
to specify the one-sided test, and it works the same way it does for the independent samples t-test. You need to specify the name of
the group whose scores are expected to be larger under the alternative hypothesis. If your data are in wide form, as they are in the 
chico  data frame, you’d use this command:

pairedSamplesTTest(  
     formula = ~ grade_test2 + grade_test1,  
     data = chico,  
     one.sided = "grade_test2"  
  )
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Yet again, the output changes in a predictable way. The hypotheses have changed, the p-value has changed, and the confidence
interval is now one-sided. If your data are in long form, as they are in the chico2  data frame, it still works the same way. Either
of the following commands would work,

> pairedSamplesTTest(  
    formula = grade ~ time,  
    data = chico2,  
    id = "id",  
    one.sided = "test2"  
  )
 
> pairedSamplesTTest(  
    formula = grade ~ time + (id),  
    data = chico2,  
    one.sided = "test2"  
  )

and would produce the same answer as the output shown above.

This page titled 11.6: One Sided Tests is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.

13.6: One Sided Tests by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.

## 
##    Paired samples t-test  
## 
## Variables:  grade_test2 , grade_test1  
## 
## Descriptive statistics:  
##             grade_test2 grade_test1 difference 
##    mean          58.385      56.980      1.405 
##    std dev.       6.406       6.616      0.970 
## 
## Hypotheses:  
##    null:        population means are equal, or smaller for measurement 'grade_test
##    alternative: population mean is larger for measurement 'grade_test2'  
## 
## Test results:  
##    t-statistic:  6.475  
##    degrees of freedom:  19  
##    p-value:  <.001  
## 
## Other information:  
##    one-sided 95% confidence interval:  [1.03, Inf]  
##    estimated effect size (Cohen's d):  1.448
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11.7: Using the t.test() Function
In this chapter, we’ve talked about three different kinds of t-test: the one sample test, the independent samples test (Student’s and
Welch’s), and the paired samples test. In order to run these different tests, I’ve shown you three different functions: 
oneSampleTTest() , independentSamplesTTest()  and pairedSamplesTTest() . I wrote these as three

different functions for two reasons. Firstly, I thought it made sense to have separate functions for each test, in order to help make it
clear to beginners that there are different tests. Secondly, I wanted to show you some functions that produced “verbose” output, to
help you see what hypotheses are being tested and so on.

However, once you’ve started to become familiar with t-tests and with using R, you might find it easier to use the t.test()
function. It’s one function, but it can run all four of the different t-tests that we’ve talked about. Here’s how it works. Firstly,
suppose you want to run a one sample t-test. To run the test on the grades  data from Dr Zeppo’s class (Section 13.2), we’d use
a command like this:

t.test( x = grades, mu = 67.5 )

## 
##  One Sample t-test 
## 
## data:  grades 
## t = 2.2547, df = 19, p-value = 0.03615 
## alternative hypothesis: true mean is not equal to 67.5 
## 95 percent confidence interval: 
##  67.84422 76.75578 
## sample estimates: 
## mean of x  
##      72.3

The input is the same as for the oneSampleTTest() : we specify the sample data using the argument x , and the value
against which it is to be tested using the argument mu . The output is a lot more compressed.

As you can see, it still has all the information you need. It tells you what type of test it ran and the data it tested it on. It gives you
the t-statistic, the degrees of freedom and the p-value. And so on. There’s nothing wrong with this output, but in my experience it
can be a little confusing when you’re just starting to learn statistics, because it’s a little disorganised. Once you know what you’re
looking at though, it’s pretty easy to read off the relevant information.

What about independent samples t-tests? As it happens, the t.test()  function can be used in much the same way as the 
independentSamplesTTest()  function, by specifying a formula, a data frame, and using var.equal  to indicate

whether you want a Student test or a Welch test. If you want to run the Welch test from Section 13.4, then you’d use this command:

t.test( formula = grade ~ tutor, data = harpo )

## 
##  Welch Two Sample t-test 
## 
## data:  grade by tutor 
## t = 2.0342, df = 23.025, p-value = 0.05361 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  -0.09249349 11.04804904 
## sample estimates: 
##  mean in group Anastasia mean in group Bernadette  
##                 74.53333                 69.05556
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If you want to do the Student test, it’s exactly the same except that you need to add an additional argument indicating that 
var.equal = TRUE . This is no different to how it worked in the independentSamplesTTest()  function.

Finally, we come to the paired samples t-test. Somewhat surprisingly, given that most R functions for dealing with repeated
measures data require data to be in long form, the t.test()  function isn’t really set up to handle data in long form. Instead it
expects to be given two separate variables, x  and y , and you need to specify paired=TRUE . And on top of that, you’d
better make sure that the first element of x  and the first element of y  actually correspond to the same person! Because it
doesn’t ask for an “id” variable. I don’t know why. So, in order to run the paired samples t test on the data from Dr Chico’s class,
we’d use this command:

t.test( x = chico$grade_test2,   # variable 1 is the "test2" scores 
         y = chico$grade_test1,   # variable 2 is the "test1" scores 
         paired = TRUE           # paired test 
 )

## 
##  Paired t-test 
## 
## data:  chico$grade_test2 and chico$grade_test1 
## t = 6.4754, df = 19, p-value = 3.321e-06 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  0.9508686 1.8591314 
## sample estimates: 
## mean of the differences  
##                   1.405

Yet again, these are the same numbers that we saw in Section 13.5. Feel free to check.

This page titled 11.7: Using the t.test() Function is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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11.8: Effect Size
The most commonly used measure of effect size for a t-test is Cohen’s d (Cohen 1988). It’s a very simple measure in principle,
with quite a few wrinkles when you start digging into the details. Cohen himself defined it primarily in the context of an
independent samples t-test, specifically the Student test. In that context, a natural way of defining the effect size is to divide the
difference between the means by an estimate of the standard deviation. In other words, we’re looking to calculate something along
the lines of this:

and he suggested a rough guide for interpreting d in Table ??. You’d think that this would be pretty unambiguous, but it’s not;
largely because Cohen wasn’t too specific on what he thought should be used as the measure of the standard deviation (in his
defence, he was trying to make a broader point in his book, not nitpick about tiny details). As discussed by McGrath and Meyer
(2006), there are several different version in common usage, and each author tends to adopt slightly different notation. For the sake
of simplicity (as opposed to accuracy) I’ll use d to refer to any statistic that you calculate from the sample, and use δ to refer to a
theoretical population effect. Obviously, that does mean that there are several different things all called d. The cohensD()
function in the lsr  package uses the method  argument to distinguish between them, so that’s what I’ll do in the text.

My suspicion is that the only time that you would want Cohen’s d is when you’re running a t-test, and if you’re using the 
oneSampleTTest , independentSamplesTTest  and pairedSamplesTTest()  functions to run your t-tests,

then you don’t need to learn any new commands, because they automatically produce an estimate of Cohen’s d as part of the
output. However, if you’re using t.test()  then you’ll need to use the cohensD()  function (also in the lsr  package)
to do the calculations.

d-value rough interpretation

about 0.2 small effect

about 0.5 moderate effect

about 0.8 large effect

11.8.1 Cohen’s d from one sample
The simplest situation to consider is the one corresponding to a one-sample t-test. In this case, the one sample mean  and one
(hypothesised) population mean μ to compare it to. Not only that, there’s really only one sensible way to estimate the population
standard deviation: we just use our usual estimate . Therefore, we end up with the following as the only way to calculate d,

When writing the cohensD()  function, I’ve made some attempt to make it work in a similar way to t.test() . As a
consequence, cohensD()  can calculate your effect size regardless of which type of t-test you performed. If what you want is a
measure of Cohen’s d to accompany a one-sample t-test, there’s only two arguments that you need to care about. These are:

x . A numeric vector containing the sample data.
mu . The mean against which the mean of x  is compared (default value is mu = 0 ).

We don’t need to specify what method  to use, because there’s only one version of d that makes sense in this context. So, in
order to compute an effect size for the data from Dr Zeppo’s class (Section 13.2), we’d type something like this:

cohensD( x = grades,    # data are stored in the grades vector 
          mu = 67.5      # compare students to a mean of 67.5 
 )

## [1] 0.5041691

d =

( mean 1) −( mean 2)

 std dev 

 X

¯

o 
 σ̂

d =

−X

¯

μ

0

σ̂
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and, just so that you can see that there’s nothing fancy going on, the command below shows you how to calculate it if there weren’t
no fancypants cohensD()  function available:

( mean(grades) - 67.5 ) / sd(grades)

## [1] 0.5041691

Yep, same number. Overall, then, the psychology students in Dr Zeppo’s class are achieving grades (mean = 72.3%) that are about
.5 standard deviations higher than the level that you’d expect (67.5%) if they were performing at the same level as other students.
Judged against Cohen’s rough guide, this is a moderate effect size.

11.8.2 Cohen’s d from a Student t test

The majority of discussions of Cohen’s d focus on a situation that is analogous to Student’s independent samples t test, and it’s in
this context that the story becomes messier, since there are several different versions of d that you might want to use in this
situation, and you can use the method  argument to the cohensD()  function to pick the one you want. To understand why
there are multiple versions of d, it helps to take the time to write down a formula that corresponds to the true population effect size
δ. It’s pretty straightforward,

where, as usual, μ1 and μ2 are the population means corresponding to group 1 and group 2 respectively, and σ is the standard
deviation (the same for both populations). The obvious way to estimate δ is to do exactly the same thing that we did in the t-test
itself: use the sample means as the top line, and a pooled standard deviation estimate for the bottom line:

where  is the exact same pooled standard deviation measure that appears in the t-test. This is the most commonly used version
of Cohen’s d when applied to the outcome of a Student t-test ,and is sometimes referred to as Hedges’ g statistic (Hedges 1981). It
corresponds to method = "pooled"  in the cohensD()  function, and it’s the default.

However, there are other possibilities, which I’ll briefly describe. Firstly, you may have reason to want to use only one of the two
groups as the basis for calculating the standard deviation. This approach (often called Glass’ Δ) only makes most sense when you
have good reason to treat one of the two groups as a purer reflection of “natural variation” than the other. This can happen if, for
instance, one of the two groups is a control group. If that’s what you want, then use method = "x.sd"  or 
method = "y.sd"  when using cohensD() . Secondly, recall that in the usual calculation of the pooled standard deviation

we divide by N−2 to correct for the bias in the sample variance; in one version of Cohen’s d this correction is omitted. Instead, we
divide by N. This version ( method = "raw" ) makes sense primarily when you’re trying to calculate the effect size in the
sample; rather than estimating an effect size in the population. Finally, there is a version based on Hedges and Olkin (1985), who
point out there is a small bias in the usual (pooled) estimation for Cohen’s d. Thus they introduce a small correction (
method = "corrected" ), by multiplying the usual value of d by (N−3)/(N−2.25).

In any case, ignoring all those variations that you could make use of if you wanted, let’s have a look at how to calculate the default
version. In particular, suppose we look at the data from Dr Harpo’s class (the harpo  data frame). The command that we want to
use is very similar to the relevant t.test()  command, but also specifies a method

cohensD( formula = grade ~ tutor,  # outcome ~ group 
          data = harpo,             # data frame  
          method = "pooled"         # which version to calculate? 
)

## [1] 0.7395614
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This is the version of Cohen’s d that gets reported by the independentSamplesTTest()  function whenever it runs a
Student t-test.

11.8.3 Cohen’s d from a Welch test
Suppose the situation you’re in is more like the Welch test: you still have two independent samples, but you no longer believe that
the corresponding populations have equal variances. When this happens, we have to redefine what we mean by the population
effect size. I’ll refer to this new measure as δ′, so as to keep it distinct from the measure δ which we defined previously. What
Cohen (1988) suggests is that we could define our new population effect size by averaging the two population variances. What this
means is that we get:

where

This seems quite reasonable, but notice that none of the measures that we’ve discussed so far are attempting to estimate this new
quantity. It might just be my own ignorance of the topic, but I’m only aware of one version of Cohen’s d that actually estimates the
unequal-variance effect size δ′ rather than the equal-variance effect size δ. All we do to calculate d for this version (
method = "unequal" ) is substitute the sample means  and  and the corrected sample standard deviations  and 

 into the equation for δ′. This gives us the following equation for d,

as our estimate of the effect size. There’s nothing particularly difficult about calculating this version in R, since all we have to do is
change the method  argument:

cohensD( formula = grade ~ tutor,  
          data = harpo, 
          method = "unequal"  
 )

## [1] 0.7244995

This is the version of Cohen’s d that gets reported by the independentSamplesTTest()  function whenever it runs a
Welch t-test.

11.8.4 Cohen’s d from a paired-samples test
Finally, what should we do for a paired samples t-test? In this case, the answer depends on what it is you’re trying to do. If you
want to measure your effect sizes relative to the distribution of difference scores, the measure of d that you calculate is just (
method = "paired" )

where  is the estimate of the standard deviation of the differences. The calculation here is pretty straightforward

cohensD( x = chico$grade_test2,  
          y = chico$grade_test1, 
          method = "paired"  
 )
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## [1] 1.447952

This is the version of Cohen’s d that gets reported by the pairedSamplesTTest()  function. The only wrinkle is figuring
out whether this is the measure you want or not. To the extent that you care about the practical consequences of your research, you
often want to measure the effect size relative to the original variables, not the difference scores (e.g., the 1% improvement in Dr
Chico’s class is pretty small when measured against the amount of between-student variation in grades), in which case you use the
same versions of Cohen’s d that you would use for a Student or Welch test. For instance, when we do that for Dr Chico’s class,

cohensD( x = chico$grade_test2,  
          y = chico$grade_test1, 
          method = "pooled"  
 )

## [1] 0.2157646

what we see is that the overall effect size is quite small, when assessed on the scale of the original variables.

This page titled 11.8: Effect Size is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.
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11.9: Checking the Normality of a Sample
All of the tests that we have discussed so far in this chapter have assumed that the data are normally distributed. This assumption is
often quite reasonable, because the central limit theorem (Section 10.3.3) does tend to ensure that many real world quantities are
normally distributed: any time that you suspect that your variable is actually an average of lots of different things, there’s a pretty
good chance that it will be normally distributed; or at least close enough to normal that you can get away with using t-tests.
However, life doesn’t come with guarantees; and besides, there are lots of ways in which you can end up with variables that are
highly non-normal. For example, any time you think that your variable is actually the minimum of lots of different things, there’s a
very good chance it will end up quite skewed. In psychology, response time (RT) data is a good example of this. If you suppose that
there are lots of things that could trigger a response from a human participant, then the actual response will occur the first time one
of these trigger events occurs.  This means that RT data are systematically non-normal. Okay, so if normality is assumed by all
the tests, and is mostly but not always satisfied (at least approximately) by real world data, how can we check the normality of a
sample? In this section I discuss two methods: QQ plots, and the Shapiro-Wilk test.

11.9.1 plots

Figure 13.14: Histogram of normal.data , a normally distributed sample with 100 observations.

## Normally Distributed Data  
## skew= -0.02936155  
## kurtosis= -0.06035938  
## 
##  Shapiro-Wilk normality test 
## 
## data:  data 
## W = 0.99108, p-value = 0.7515

198
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Figure 13.15: Normal QQ plot of normal.data , a normally distributed sample with 100 observations.

The Shapiro-Wilk statistic associated with the data in Figures 13.14 and 13.15 is W=.99, indicating that no significant departures
from normality were detected (p=.73). As you can see, these data form a pretty straight line; which is no surprise given that we
sampled them from a normal distribution! In contrast, have a look at the two data sets shown in Figures 13.16, 13.17, 13.18, 13.19.
Figures 13.16 and 13.17 show the histogram and a QQ plot for a data set that is highly skewed: the QQ plot curves upwards.
Figures 13.18 and 13.19 show the same plots for a heavy tailed (i.e., high kurtosis) data set: in this case, the QQ plot flattens in the
middle and curves sharply at either end.

Figure 13.16: A histogram of the 100 observations in a skewed.data  set

## Skewed Data  
## skew= 1.889475  
## kurtosis= 4.4396  
## 
##  Shapiro-Wilk normality test 
## 
## data:  data 
## W = 0.81758, p-value = 8.908e-10
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Figure 13.17: A normal QQ plot of the 100 observations in a skewed.data  set

The skewness of the data in Figures 13.16 and 13.17 is 1.94, and is reflected in a QQ plot that curves upwards. As a consequence,
the Shapiro-Wilk statistic is W=.80, reflecting a significant departure from normality (p<.001).

Figure 13.18: A histogram of the 100 observations in a heavy tailed` data set, again consisting of 100 observations.

## Heavy-Tailed Data  
## skew= -0.05308273  
## kurtosis= 7.508765  
## 
##  Shapiro-Wilk normality test 
## 
## data:  data 
## W = 0.83892, p-value = 4.718e-09
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Figure 13.19: A histogram of the 100 observations in a heavy tailed` data set, again consisting of 100 observations.

Figures 13.18 and 13.19 shows the same plots for a heavy tailed data set, again consisting of 100 observations. In this case, the
heavy tails in the data produce a high kurtosis (2.80), and cause the QQ plot to flatten in the middle, and curve away sharply on
either side. The resulting Shapiro-Wilk statistic is W=.93, again reflecting significant non-normality (p<.001).

One way to check whether a sample violates the normality assumption is to draw a “quantile-quantile” plot (QQ plot). This allows
you to visually check whether you’re seeing any systematic violations. In a QQ plot, each observation is plotted as a single dot. The
x co-ordinate is the theoretical quantile that the observation should fall in, if the data were normally distributed (with mean and
variance estimated from the sample) and on the y co-ordinate is the actual quantile of the data within the sample. If the data are
normal, the dots should form a straight line. For instance, lets see what happens if we generate data by sampling from a normal
distribution, and then drawing a QQ plot using the R function qqnorm() . The qqnorm()  function has a few arguments, but
the only one we really need to care about here is y , a vector specifying the data whose normality we’re interested in checking.
Here’s the R commands:

normal.data <- rnorm( n = 100 )  # generate N = 100 normally distributed numbers 
hist( x = normal.data )          # draw a histogram of these numbers
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qqnorm( y = normal.data )        # draw the QQ plot

11.9.2 Shapiro-Wilk tests
Although QQ plots provide a nice way to informally check the normality of your data, sometimes you’ll want to do something a bit
more formal. And when that moment comes, the Shapiro-Wilk test (Shapiro and Wilk 1965) is probably what you’re looking
for.  As you’d expect, the null hypothesis being tested is that a set of N observations is normally distributed. The test statistic that
it calculates is conventionally denoted as W, and it’s calculated as follows. First, we sort the observations in order of increasing
size, and let X1 be the smallest value in the sample, X2 be the second smallest and so on. Then the value of W is given by

where  is the mean of the observations, and the ai values are … mumble, mumble … something complicated that is a bit beyond
the scope of an introductory text.

Because it’s a little hard to explain the maths behind the W statistic, a better idea is to give a broad brush description of how it
behaves. Unlike most of the test statistics that we’ll encounter in this book, it’s actually small values of W that indicated departure
from normality. The W statistic has a maximum value of 1, which arises when the data look “perfectly normal”. The smaller the
value of W, the less normal the data are. However, the sampling distribution for W – which is not one of the standard ones that I
discussed in Chapter 9 and is in fact a complete pain in the arse to work with – does depend on the sample size N. To give you a
feel for what these sampling distributions look like, I’ve plotted three of them in Figure 13.20. Notice that, as the sample size starts
to get large, the sampling distribution becomes very tightly clumped up near W=1, and as a consequence, for larger samples W
doesn’t have to be very much smaller than 1 in order for the test to be significant.
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Figure 13.20: Sampling distribution of the Shapiro-Wilk W statistic, under the null hypothesis that the data are normally
distributed, for samples of size 10, 20 and 50. Note that small values of W indicate departure from normality.

To run the test in R, we use the shapiro.test()  function. It has only a single argument x , which is a numeric vector
containing the data whose normality needs to be tested. For example, when we apply this function to our normal.data , we
get the following:

shapiro.test( x = normal.data )

## 
##  Shapiro-Wilk normality test 
## 
## data:  normal.data 
## W = 0.98654, p-value = 0.4076

So, not surprisingly, we have no evidence that these data depart from normality. When reporting the results for a Shapiro-Wilk test,
you should (as usual) make sure to include the test statistic W and the p value, though given that the sampling distribution depends
so heavily on N it would probably be a politeness to include N as well.

This page titled 11.9: Checking the Normality of a Sample is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

13.9: Checking the Normality of a Sample by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36159?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/11%3A_Comparing_Two_Means/11.09%3A_Checking_the_Normality_of_a_Sample
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/
https://stats.libretexts.org/@go/page/8267
https://djnavarro.net/
https://creativecommons.org/licenses/by-sa/4.0/
https://bookdown.org/ekothe/navarro26/


11.10.1 https://stats.libretexts.org/@go/page/36160

11.10: Testing Non-normal Data with Wilcoxon Tests
Okay, suppose your data turn out to be pretty substantially non-normal, but you still want to run something like a t-test? This
situation occurs a lot in real life: for the AFL winning margins data, for instance, the Shapiro-Wilk test made it very clear that the
normality assumption is violated. This is the situation where you want to use Wilcoxon tests.

Like the t-test, the Wilcoxon test comes in two forms, one-sample and two-sample, and they’re used in more or less the exact same
situations as the corresponding t-tests. Unlike the t-test, the Wilcoxon test doesn’t assume normality, which is nice. In fact, they
don’t make any assumptions about what kind of distribution is involved: in statistical jargon, this makes them nonparametric tests.
While avoiding the normality assumption is nice, there’s a drawback: the Wilcoxon test is usually less powerful than the t-test (i.e.,
higher Type II error rate). I won’t discuss the Wilcoxon tests in as much detail as the t-tests, but I’ll give you a brief overview.

11.10.1 sample Wilcoxon test
I’ll start by describing the two sample Wilcoxon test (also known as the Mann-Whitney test), since it’s actually simpler than the
one sample version. Suppose we’re looking at the scores of 10 people on some test. Since my imagination has now failed me
completely, let’s pretend it’s a “test of awesomeness”, and there are two groups of people, “A” and “B”. I’m curious to know which
group is more awesome. The data are included in the file awesome.Rdata , and like many of the data sets I’ve been using, it
contains only a single data frame, in this case called awesome . Here’s the data:

load("./rbook-master/data/awesome.Rdata") 
print( awesome )

##    scores group 
## 1     6.4     A 
## 2    10.7     A 
## 3    11.9     A 
## 4     7.3     A 
## 5    10.0     A 
## 6    14.5     B 
## 7    10.4     B 
## 8    12.9     B 
## 9    11.7     B 
## 10   13.0     B

As long as there are no ties (i.e., people with the exact same awesomeness score), then the test that we want to do is surprisingly
simple. All we have to do is construct a table that compares every observation in group A against every observation in group B.
Whenever the group A datum is larger, we place a check mark in the table:

We then count up the number of checkmarks. This is our test statistic, W.  The actual sampling distribution for W is somewhat
complicated, and I’ll skip the details. For our purposes, it’s sufficient to note that the interpretation of W is qualitatively the same as
the interpretation of t or z. That is, if we want a two-sided test, then we reject the null hypothesis when W is very large or very
small; but if we have a directional (i.e., one-sided) hypothesis, then we only use one or the other.
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The structure of the wilcox.test()  function should feel very familiar to you by now. When you have your data organised in
terms of an outcome variable and a grouping variable, then you use the formula  and data  arguments, so your command
looks like this:

wilcox.test( formula = scores ~ group, data = awesome)

## 
##  Wilcoxon rank sum test 
## 
## data:  scores by group 
## W = 3, p-value = 0.05556 
## alternative hypothesis: true location shift is not equal to 0

Just like we saw with the t.test()  function, there is an alternative  argument that you can use to switch between two-
sided tests and one-sided tests, plus a few other arguments that we don’t need to worry too much about at an introductory level.
Similarly, the wilcox.test()  function allows you to use the x  and y  arguments when you have your data stored
separately for each group. For instance, suppose we use the data from the awesome2.Rdata  file:

load( "./rbook-master/data/awesome2.Rdata" ) 
score.A

## [1]  6.4 10.7 11.9  7.3 10.0  

score.B

## [1] 14.5 10.4 12.9 11.7 13.0

When your data are organised like this, then you would use a command like this:

wilcox.test( x = score.A, y = score.B )

## 
##  Wilcoxon rank sum test 
## 
## data:  score.A and score.B 
## W = 3, p-value = 0.05556 
## alternative hypothesis: true location shift is not equal to 0

The output that R produces is pretty much the same as last time.

11.10.2 sample Wilcoxon test
What about the one sample Wilcoxon test (or equivalently, the paired samples Wilcoxon test)? Suppose I’m interested in finding
out whether taking a statistics class has any effect on the happiness of students. Here’s my data:

load( "./rbook-master/data/happy.Rdata" ) 
print( happiness )
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##    before after change 
## 1      30     6    -24 
## 2      43    29    -14 
## 3      21    11    -10 
## 4      24    31      7 
## 5      23    17     -6 
## 6      40     2    -38 
## 7      29    31      2 
## 8      56    21    -35 
## 9      38     8    -30 
## 10     16    21      5

What I’ve measured here is the happiness of each student before  taking the class and after  taking the class; the 
change  score is the difference between the two. Just like we saw with the t-test, there’s no fundamental difference between

doing a paired-samples test using before  and after , versus doing a one-sample test using the change  scores. As
before, the simplest way to think about the test is to construct a tabulation. The way to do it this time is to take those change scores
that are positive valued, and tabulate them against all the complete sample. What you end up with is a table that looks like this:

Counting up the tick marks this time, we get a test statistic of V=7. As before, if our test is two sided, then we reject the null
hypothesis when V is very large or very small. As far of running it in R goes, it’s pretty much what you’d expect. For the one-
sample version, the command you would use is

wilcox.test( x = happiness$change, 
              mu = 0 
)

## 
##  Wilcoxon signed rank test 
## 
## data:  happiness$change 
## V = 7, p-value = 0.03711 
## alternative hypothesis: true location is not equal to 0

As this shows, we have a significant effect. Evidently, taking a statistics class does have an effect on your happiness. Switching to a
paired samples version of the test won’t give us different answers, of course; but here’s the command to do it:

wilcox.test( x = happiness$after, 
              y = happiness$before, 
              paired = TRUE  
)
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## 
##  Wilcoxon signed rank test 
## 
## data:  happiness$after and happiness$before 
## V = 7, p-value = 0.03711 
## alternative hypothesis: true location shift is not equal to 0  
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11.11: Summary
A one sample t-test is used to compare a single sample mean against a hypothesised value for the population mean. (Section
13.2)
An independent samples t-test is used to compare the means of two groups, and tests the null hypothesis that they have the same
mean. It comes in two forms: the Student test (Section 13.3 assumes that the groups have the same standard deviation, the
Welch test (Section 13.4) does not.
A paired samples t-test is used when you have two scores from each person, and you want to test the null hypothesis that the
two scores have the same mean. It is equivalent to taking the difference between the two scores for each person, and then
running a one sample t-test on the difference scores. (Section 13.5)
Effect size calculations for the difference between means can be calculated via the Cohen’s d statistic. (Section 13.8).
You can check the normality of a sample using QQ plots and the Shapiro-Wilk test. (Section 13.9)
If your data are non-normal, you can use Wilcoxon tests instead of t-tests. (Section 13.10)
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184. We won’t cover multiple predictors until Chapter 15
185. Informal experimentation in my garden suggests that yes, it does. Australian natives are adapted to low phosphorus levels

relative to everywhere else on Earth, apparently, so if you’ve bought a house with a bunch of exotics and you want to plant
natives, don’t follow my example: keep them separate. Nutrients to European plants are poison to Australian ones. There’s
probably a joke in that, but I can’t figure out what it is.

186. Actually this is too strong. Strictly speaking the z test only requires that the sampling distribution of the mean be normally
distributed; if the population is normal then it necessarily follows that the sampling distribution of the mean is also normal.
However, as we saw when talking about the central limit theorem, it’s quite possible (even commonplace) for the sampling
distribution to be normal even if the population distribution itself is non-normal. However, in light of the sheer ridiculousness of
the assumption that the true standard deviation is known, there really isn’t much point in going into details on this front!

187. Well, sort of. As I understand the history, Gosset only provided a partial solution: the general solution to the problem was
provided by Sir Ronald Fisher.

188. More seriously, I tend to think the reverse is true: I get very suspicious of technical reports that fill their results sections with
nothing except the numbers. It might just be that I’m an arrogant jerk, but I often feel like an author that makes no attempt to
explain and interpret their analysis to the reader either doesn’t understand it themselves, or is being a bit lazy. Your readers are
smart, but not infinitely patient. Don’t annoy them if you can help it.

189. Although it is the simplest, which is why I started with it.
190. A funny question almost always pops up at this point: what the heck is the population being referred to in this case? Is it the set

of students actually taking Dr Harpo’s class (all 33 of them)? The set of people who might take the class (an unknown number)
of them? Or something else? Does it matter which of these we pick? It’s traditional in an introductory behavioural stats class to
mumble a lot at this point, but since I get asked this question every year by my students, I’ll give a brief answer. Technically
yes, it does matter: if you change your definition of what the “real world” population actually is, then the sampling distribution
of your observed mean ¯X changes too. The t-test relies on an assumption that the observations are sampled at random from an
infinitely large population; and to the extent that real life isn’t like that, then the t-test can be wrong. In practice, however, this
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isn’t usually a big deal: even though the assumption is almost always wrong, it doesn’t lead to a lot of pathological behaviour
from the test, so we tend to just ignore it.

191. Yes, I have a “favourite” way of thinking about pooled standard deviation estimates. So what?
192. A more correct notation will be introduced in Chapter 14.
193. Well, I guess you can average apples and oranges, and what you end up with is a delicious fruit smoothie. But no one really

thinks that a fruit smoothie is a very good way to describe the original fruits, do they?
194. This design is very similar to the one in Section 12.8 that motivated the McNemar test. This should be no surprise. Both are

standard repeated measures designs involving two measurements. The only difference is that this time our outcome variable is
interval scale (working memory capacity) rather than a binary, nominal scale variable (a yes-or-no question).

195. At this point we have Drs Harpo, Chico and Zeppo. No prizes for guessing who Dr Groucho is.
196. This is obviously a class being taught at a very small or very expensive university, or else is a postgraduate class. I’ve never

taught an intro stats class with less than 350 students.
197. The sortFrame()  function sorts factor variables like id  in alphabetical order, which is why it jumps from “student1” to

“student10”
198. This is a massive oversimplification.
199. Either that, or the Kolmogorov-Smirnov test, which is probably more traditional than the Shapiro-Wilk, though most things I’ve

read seem to suggest Shapiro-Wilk is the better test of normality; although Kolomogorov-Smirnov is a general purpose test of
distributional equivalence, so it can be adapted to handle other kinds of distribution tests; in R it’s implemented via the 
ks.test()  function.

200. Actually, there are two different versions of the test statistic; they differ from each other by a constant value. The version that
I’ve described is the one that R calculates.
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11.12: Statistical Literacy

Effectiveness of Surgery for Weight Loss

Research on the effectiveness of surgery for weight loss reported here found that "The surgery was associated with significantly
greater weight loss [than the control group who dieted] through  years (  versus  pounds, )."

What test could have been used and how would it have been computed?

Solution
For each subject a difference score between their initial weight and final weight could be computed. A t test of whether the
mean difference score differs significantly from  could then be computed. The mean difference score will equal the difference
between the mean weight losses of the two groups ( ).

This page titled 11.12: Statistical Literacy is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via
source content that was edited to the style and standards of the LibreTexts platform.
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11.E: Tests of Means (Exercises)

General Questions

Q1
The scores of a random sample of  students on a physics test are as follows: .

a. Test to see if the sample mean is significantly different from  at the  level. Report the  and  values.

b. The researcher realizes that she accidentally recorded the score that should have been  as . Are these corrected scores

significantly different from  at the  level? (relevant section)

Q2
A (hypothetical) experiment is conducted on the effect of alcohol on perceptual motor ability. Ten subjects are each tested twice,
once after having two drinks and once after having two glasses of water. The two tests were on two different days to give the
alcohol a chance to wear off. Half of the subjects were given alcohol first and half were given water first. The scores of the 
subjects are shown below. The first number for each subject is their performance in the "water" condition. Higher scores reflect
better performance. Test to see if alcohol had a significant effect. Report the  and  values. (relevant section)

water alcohol

16 13

15 13

11 10

20 18

19 17

14 11

13 10

15 15

14 11

16 16

Q3

The scores on a (hypothetical) vocabulary test of a group of  year olds and a group of  year olds are shown below.

20 yr olds 60 yr olds

27 26

26 29

21 29

24 29

15 27

18 16

17 20

12 27

13

8 60, 62, 67, 69, 70, 72, 75, 78

65 0.05 t p

76 67

65 0.05

10

t p

20 60
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a. Test the mean difference for significance using the  level. (relevant section).
b. List the assumptions made in computing your answer.(relevant section)

Q4

The sampling distribution of a statistic is normally distributed with an estimated standard error of , ( .

a. What is the probability that you would have gotten a mean of  (or more extreme) if the population parameter were ? Is
this probability significant at the  level (two-tailed)?

b. What is the probability that you would have gotten a mean of  or less (one-tailed)? Is this probability significant at the 
level? You may want to use the t Distribution calculator for this problem. (relevant section)

Q5

How do you decide whether to use an independent groups  test or a correlated  test (test of dependent means)? (relevant section
& relevant section)

Q6

An experiment compared the ability of three groups of subjects to remember briefly-presented chess positions. The data are shown
below.

Non-players Beginners Tournament players

22.1 32.5 40.1

22.3 37.1 45.6

26.2 39.1 51.2

29.6 40.5 56.4

31.7 45.5 58.1

33.5 51.3 71.1

38.9 52.6 74.9

39.7 55.7 75.9

43.2 55.9 80.3

43.2 57.7 85.3

a. Using the Tukey HSD procedure, determine which groups are significantly different from each other at the  level. (relevant
section)

b. Now compare each pair of groups using -tests. Make sure to control for the familywise error rate (at ) by using the
Bonferroni correction. Specify the alpha level you used.

Q7

Below are data showing the results of six subjects on a memory test. The three scores per subject are their scores on three trials ( , 
, and ) of a memory task. Are the subjects getting better each trial? Test the linear effect of trial for the data.

a b c

4 6 7

3 7 8

2 8 5

1 4 7

4 6 9

0.05

12 df = 20)

107 100

0.05

95 0.05

t t

0.05

t 0.05

a

b c
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2 4 2

a. Compute  for each subject using the contrast weights , , and . That is, compute  for each
subject.

b. Compute a one-sample -test on this column (with the  values for each subject) you created. (relevant section)

Q8

Participants threw darts at a target. In one condition, they used their preferred hand; in the other condition, they used their other
hand. All subjects performed in both conditions (the order of conditions was counterbalanced). Their scores are shown below.

Preferred Non-preferred

12 7

7 9

11 8

13 10

10 9

a. Which kind of -test should be used?
b. Calculate the two-tailed  and  values using this  test.
c. Calculate the one-tailed  and  values using this  test.

Q9

Assume the data in the previous problem were collected using two different groups of subjects: One group used their preferred
hand and the other group used their non-preferred hand. Analyze the data and compare the results to those for the previous problem
(relevant section)

Q10

You have  means, and you want to compare each mean to every other mean.

a. How many tests total are you going to compute?
b. What would be the chance of making at least one Type I error if the Type I error for each test was  and the tests were

independent? (relevant section & relevant section)
c. Are the tests independent and how does independence/non-independence affect the probability in (b).

Q11

In an experiment, participants were divided into  groups. There were  participants in each group, so the degrees of freedom
(error) for this study was . Tukey's HSD test was performed on the data.

a. Calculate the  value for each pair based on the  value given below. You will want to use the Studentized Range Calculator.
b. Which differences are significant at the  level? (relevant section)

Comparison of Groups Q

A - B 3.4

A - C 3.8

A - D 4.3

B - C 1.7

B - D 3.9

C - D 3.7

L −1 0 1 (−1)(a)+(0)(b)+(1)(c)

t L

t

t p t

t p t

4

0.05

4 20

80−4 = 76

p Q

0.05
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Q12

If you have  groups in your study, why shouldn't you just compute a  test of each group mean with each other group mean?
(relevant section)

Q13

You are conducting a study to see if students do better when they study all at once or in intervals. One group of  participants took
a test after studying for one hour continuously. The other group of  participants took a test after studying for three twenty minute
sessions. The first group had a mean score of  and a variance of . The second group had a mean score of  and a variance of 

.

a. What is the calculated  value? Are the mean test scores of these two groups significantly different at the  level?
b. What would the  value be if there were only  participants in each group? Would the scores be significant at the  level?

Q14

A new test was designed to have a mean of  and a standard deviation of . A random sample of  students at your school take
the test, and the mean score turns out to be . Does this score differ significantly from ? To answer this problem, you may want
to use the Normal Distribution Calculator.(relevant section)

Q15

You perform a one-sample  test and calculate a  statistic of . The mean of your sample was  and the standard deviation was 
. How many participants were used in this study? (relevant section)

Q16

True/false: The contrasts  and  are orthogonal. (relevant section)

Q17

True/false: If you are making  comparisons between means, then based on the Bonferroni correction, you should use an alpha
level of  for each test. (relevant section)

Q18

True/false: Correlated  tests almost always have greater power than independent  tests. (relevant section)

Q19

True/false:The graph below represents a violation of the homogeneity of variance assumption. (relevant section)

Q20

True/false: When you are conducting a one-sample  test and you know the population standard deviation, you look up the critical 
value in the table based on the degrees of freedom. (relevant section)

5 t

12

12

75 120 86

100

t 0.05

t 6 0.05

80 10 20

85 80

t t 3.0 1.3

2.6

(−3, 111) (0, 0, −1, 1)
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0.01

t t

t t
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Questions from Case Studies
The following questions use data from the Angry Moods (AM) case study.

Q21

(AM#17) Do athletes or non-athletes calm down more when angry? Conduct a  test to see if the difference between groups in
Control-In scores is statistically significant.

Q22

Do people in general have a higher Anger-Out or Anger-In score? Conduct a  test on the difference between means of these two
scores. Are these two means independent or dependent? (relevant section)

The following questions use data from the Smiles and Leniency (SL) case study.

Q23

Compare each mean to the neutral mean. Be sure to control for the familywise error rate. (relevant section)

Q24

Does a "felt smile" lead to more leniency than other types of smiles?

a. Calculate  (the linear combination) using the following contrast weights 
.

b. Perform a significance test on this value of . (relevant section)

The following questions are from the Animal Research (AR) case study.

Q25

(AR#8) Conduct an independent samples  test comparing males to females on the belief that animal research is necessary.
(relevant section)

Q26

(AR#9) Based on the  test you conducted in the previous problem, are you able to reject the null hypothesis if ?
What about if ? (relevant section)

Q27

(AR#10) Is there any evidence that the  test assumption of homogeneity of variance is violated in the  test you computed in #25?
(relevant section)

The following questions use data from the ADHD Treatment (AT) case study.

Q28

Compare each dosage with the dosage below it (compare  and ,  and , and  and ). Remember that the patients
completed the task after every dosage.

a. If the familywise error rate is , what is the alpha level you will use for each comparison when doing the Bonferroni
correction?

b. Which differences are significant at this level? (relevant section)

Q29

Does performance increase linearly with dosage?

a. Plot a line graph of this data.
b. Compute  for each patient. To do this, create a new variable where you multiply the following coefficients by their

corresponding dosages and then sum up the total:  (see #8). What is the mean of ?
c. Perform a significance test on . Compute the  confidence interval for . (relevant section)

t

t

L

false : −1, felt : 2, miserable : −1, neutral : 0

L

t

t alpha= 0.05

alpha= 0.1

t t

d0 d15 d15 d30 d30 d60

0.05

L

(−3)d0+(−1)d15+(1)d30+(3)d60 L

L 95% L
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Select Answers

S1
a. 

S4
b. 

S7
b. two-tailed 

S8
b. 

S11
a. 

S13
a. 

S23

S25
a. 

S29
c. 
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CHAPTER OVERVIEW

12: Comparing Several Means (One-way ANOVA)
This chapter introduces one of the most widely used tools in statistics, known as “the analysis of variance”, which is usually
referred to as ANOVA. The basic technique was developed by Sir Ronald Fisher in the early 20th century, and it is to him that we
owe the rather unfortunate terminology. The term ANOVA is a little misleading, in two respects. Firstly, although the name of the
technique refers to variances, ANOVA is concerned with investigating differences in means. Secondly, there are several different
things out there that are all referred to as ANOVAs, some of which have only a very tenuous connection to one another. Later on in
the book we’ll encounter a range of different ANOVA methods that apply in quite different situations, but for the purposes of this
chapter we’ll only consider the simplest form of ANOVA, in which we have several different groups of observations, and we’re
interested in finding out whether those groups differ in terms of some outcome variable of interest. This is the question that is
addressed by a one-way ANOVA.

The structure of this chapter is as follows: In Section 14.1 I’ll introduce a fictitious data set that we’ll use as a running example
throughout the chapter. After introducing the data, I’ll describe the mechanics of how a one-way ANOVA actually works (Section
14.2) and then focus on how you can run one in R (Section 14.3). These two sections are the core of the chapter. The remainder of
the chapter discusses a range of important topics that inevitably arise when running an ANOVA, namely how to calculate effect
sizes (Section 14.4), post hoc tests and corrections for multiple comparisons (Section 14.5) and the assumptions that ANOVA relies
upon (Section 14.6). We’ll also talk about how to check those assumptions and some of the things you can do if the assumptions
are violated (Sections 14.7 to 14.10). At the end of the chapter we’ll talk a little about the relationship between ANOVA and other
statistical tools (Section 14.11).

12.1: Summary
12.2: An Illustrative Data Set
12.3: How ANOVA Works
12.4: Running an ANOVA in R
12.5: Effect Size
12.6: Multiple Comparisons and Post Hoc Tests
12.7: Assumptions of One-way ANOVA
12.8: Checking the Homogeneity of Variance Assumption
12.9: Removing the Homogeneity of Variance Assumption
12.10: Checking the Normality Assumption
12.11: Removing the Normality Assumption
12.12: On the Relationship Between ANOVA and the Student t Test
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12.1: Summary
There’s a fair bit covered in this chapter, but there’s still a lot missing. Most obviously, I haven’t yet discussed any analog of the
paired samples t-test for more than two groups. There is a way of doing this, known as repeated measures ANOVA, which will
appear in a later version of this book. I also haven’t discussed how to run an ANOVA when you are interested in more than one
grouping variable, but that will be discussed in a lot of detail in Chapter 16. In terms of what we have discussed, the key topics
were:

The basic logic behind how ANOVA works (Section 14.2) and how to run one in R (Section 14.3).
How to compute an effect size for an ANOVA (Section 14.4)
Post hoc analysis and corrections for multiple testing (Section 14.5).
The assumptions made by ANOVA (Section 14.6).
How to check the homogeneity of variance assumption (Section 14.7) and what to do if it is violated (Section 14.8).
How to check the normality assumption (Section 14.9 and what to do if it is violated (Section 14.10).

As with all of the chapters in this book, there are quite a few different sources that I’ve relied upon, but the one stand-out text that
I’ve been most heavily influenced by is Sahai and Ageel (2000). It’s not a good book for beginners, but it’s an excellent book for
more advanced readers who are interested in understanding the mathematics behind ANOVA.
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201. When all groups have the same number of observations, the experimental design is said to be “balanced”. Balance isn’t such a
big deal for one-way ANOVA, which is the topic of this chapter. It becomes more important when you start doing more
complicated ANOVAs.

202. In a later versions I’m intending to expand on this. But because I’m writing in a rush, and am already over my deadlines, I’ll
just briefly note that if you read ahead to Chapter 16 and look at how the “treatment effect” at level k of a factor is defined in
terms of the αk values (see Section 16.2), it turns out that Q refers to a weighted mean of the squared treatment effects, 

203. we want to be sticklers for accuracy, 
204. o be precise, party like “it’s 1899 and we’ve got no friends and nothing better to do with our time than do some calculations that

wouldn’t have made any sense in 1899 because ANOVA didn’t exist until about the 1920s”.
205. Actually, it also provides a function called anova() , but that works a bit differently, so let’s just ignore it for now.
206. It’s worth noting that you can get the same result by using the command anova( my.anova ) .
207. A potentially important footnote – I wrote the etaSquared()  function for the lsr  package as a teaching exercise, but

like all the other functions in the lsr  package it hasn’t been exhaustively tested. As of this writing – lsr  package version
0.5 – there is at least one known bug in the code. In some cases at least, it doesn’t work (and can give very silly answers) when

Q = ( ) /(G−1)∑

G

k=1

N

k
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you set the weights  on the observations to something other than uniform. That doesn’t matter at all for this book, since
those kinds of analyses are well beyond the scope, but I haven’t had a chance to revisit the package in a long time; it would
probably be wise to be very cautious with the use of this function in any context other than very simple introductory analyses.
Thanks to Emil Kirkegaard for finding the bug! (Oh, and while I’m here, there’s an interesting blog post by Daniel Lakens
suggesting that eta-squared itself is perhaps not the best measure of effect size in real world data analysis:
http://daniellakens.blogspot.com.au/2015/06/why-you-should-use-omega-squared.html

208. I should point out that there are other functions in R for running multiple comparisons, and at least one of them works this way:
the TukeyHSD()  function takes an aov  object as its input, and outputs Tukey’s “honestly significant difference” tests. I
talk about Tukey’s HSD in Chapter 16.

209. If you do have some theoretical basis for wanting to investigate some comparisons but not others, it’s a different story. In those
circumstances you’re not really running “post hoc” analyses at all: you’re making “planned comparisons”. I do talk about this
situation later in the book (Section 16.9), but for now I want to keep things simple.

210. It’s worth noting in passing that not all adjustment methods try to do this. What I’ve described here is an approach for
controlling “family wise Type I error rate”. However, there are other post hoc tests seek to control the “false discovery rate”,
which is a somewhat different thing.

211. There’s also a function called p.adjust()  in which you can input a vector of raw p-values, and it will output a vector of
adjusted p-values. This can be handy sometimes. I should also note that more advanced users may wish to consider using some
of the tools provided by the multcomp  package.

212. Note that neither of these figures has been tidied up at all: if you want to create nicer looking graphs it’s always a good idea to
use the tools from Chapter 6 to help you draw cleaner looking images.

213. A technical term.
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12.2: An Illustrative Data Set
Suppose you’ve become involved in a clinical trial in which you are testing a new antidepressant drug called Joyzepam. In order to
construct a fair test of the drug’s effectiveness, the study involves three separate drugs to be administered. One is a placebo, and the
other is an existing antidepressant / anti-anxiety drug called Anxifree. A collection of 18 participants with moderate to severe
depression are recruited for your initial testing. Because the drugs are sometimes administered in conjunction with psychological
therapy, your study includes 9 people undergoing cognitive behavioural therapy (CBT) and 9 who are not. Participants are
randomly assigned (doubly blinded, of course) a treatment, such that there are 3 CBT people and 3 no-therapy people assigned to
each of the 3 drugs. A psychologist assesses the mood of each person after a 3 month run with each drug: and the overall
improvement in each person’s mood is assessed on a scale ranging from −5 to +5.

With that as the study design, let’s now look at what we’ve got in the data file:

load( "./rbook-master/data/clinicaltrial.Rdata" ) # load data 
str(clin.trial)

So we have a single data frame called clin.trial , containing three variables; drug , therapy  and mood.gain .
Next, let’s print the data frame to get a sense of what the data actually look like.

print( clin.trial )

##        drug    therapy mood.gain 
## 1   placebo no.therapy       0.5 
## 2   placebo no.therapy       0.3 
## 3   placebo no.therapy       0.1 
## 4  anxifree no.therapy       0.6 
## 5  anxifree no.therapy       0.4 
## 6  anxifree no.therapy       0.2 
## 7  joyzepam no.therapy       1.4 
## 8  joyzepam no.therapy       1.7 
## 9  joyzepam no.therapy       1.3 
## 10  placebo        CBT       0.6 
## 11  placebo        CBT       0.9 
## 12  placebo        CBT       0.3 
## 13 anxifree        CBT       1.1 
## 14 anxifree        CBT       0.8 
## 15 anxifree        CBT       1.2 
## 16 joyzepam        CBT       1.8 
## 17 joyzepam        CBT       1.3 
## 18 joyzepam        CBT       1.4

For the purposes of this chapter, what we’re really interested in is the effect of drug  on mood.gain . The first thing to do is
calculate some descriptive statistics and draw some graphs. In Chapter 5 we discussed a variety of different functions that can be
used for this purpose. For instance, we can use the xtabs()  function to see how many people we have in each group:

xtabs( ~drug, clin.trial )

## 'data.frame':    18 obs. of  3 variables: 
##  $ drug     : Factor w/ 3 levels "placebo","anxifree",..: 1 1 1 2 2 2 3 3 3 1 ... 
##  $ therapy  : Factor w/ 2 levels "no.therapy","CBT": 1 1 1 1 1 1 1 1 1 2 ... 
##  $ mood.gain: num  0.5 0.3 0.1 0.6 0.4 0.2 1.4 1.7 1.3 0.6 ...
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## drug 
##  placebo anxifree joyzepam  
##        6        6        6

Similarly, we can use the aggregate()  function to calculate means and standard deviations for the mood.gain  variable
broken down by which drug  was administered:

aggregate( mood.gain ~ drug, clin.trial, mean )

##       drug mood.gain 
## 1  placebo 0.4500000 
## 2 anxifree 0.7166667 
## 3 joyzepam 1.4833333

aggregate( mood.gain ~ drug, clin.trial, sd )

##       drug mood.gain 
## 1  placebo 0.2810694 
## 2 anxifree 0.3920034 
## 3 joyzepam 0.2136976

Finally, we can use plotmeans()  from the gplots  package to produce a pretty picture.

library(gplots) 
plotmeans(  formula = mood.gain ~ drug,  # plot mood.gain by drug 
             data = clin.trial,           # the data frame 
             xlab = "Drug Administered",  # x-axis label
             ylab = "Mood Gain",          # y-axis label
             n.label = FALSE              # don't display sample size 
 )

The results are shown in Figure 14.1, which plots the average mood gain for all three conditions; error bars show 95% confidence
intervals. As the plot makes clear, there is a larger improvement in mood for participants in the Joyzepam group than for either the
Anxifree group or the placebo group. The Anxifree group shows a larger mood gain than the control group, but the difference isn’t
as large.

The question that we want to answer is: are these difference “real”, or are they just due to chance?

## Warning: package 'gplots' was built under R version 3.5.2

## 
## Attaching package: 'gplots'  

## The following object is masked from 'package:stats': 
## 
##     lowess
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Figure 14.1: Average mood gain as a function of drug administered. Error bars depict 95% confidence intervals associated with
each of the group means.
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12.3: How ANOVA Works
In order to answer the question posed by our clinical trial data, we’re going to run a one-way ANOVA. As usual, I’m going to start
by showing you how to do it the hard way, building the statistical tool from the ground up and showing you how you could do it in
R if you didn’t have access to any of the cool built-in ANOVA functions. And, as always, I hope you’ll read it carefully, try to do it
the long way once or twice to make sure you really understand how ANOVA works, and then – once you’ve grasped the concept –
never ever do it this way again.

The experimental design that I described in the previous section strongly suggests that we’re interested in comparing the average
mood change for the three different drugs. In that sense, we’re talking about an analysis similar to the t-test (Chapter 13, but
involving more than two groups. If we let μ  denote the population mean for the mood change induced by the placebo, and let μ
and μ  denote the corresponding means for our two drugs, Anxifree and Joyzepam, then the (somewhat pessimistic) null hypothesis
that we want to test is that all three population means are identical: that is, neither of the two drugs is any more effective than a
placebo. Mathematically, we write this null hypothesis like this:

H : it is true that μ =μ =μ

As a consequence, our alternative hypothesis is that at least one of the three different treatments is different from the others. It’s a
little trickier to write this mathematically, because (as we’ll discuss) there are quite a few different ways in which the null
hypothesis can be false. So for now we’ll just write the alternative hypothesis like this:

H : it is *not* true that μ =μ =μ

This null hypothesis is a lot trickier to test than any of the ones we’ve seen previously. How shall we do it? A sensible guess would
be to “do an ANOVA”, since that’s the title of the chapter, but it’s not particularly clear why an “analysis of variances” will help us
learn anything useful about the means. In fact, this is one of the biggest conceptual difficulties that people have when first
encountering ANOVA. To see how this works, I find it most helpful to start by talking about variances. In fact, what I’m going to
do is start by playing some mathematical games with the formula that describes the variance. That is, we’ll start out by playing
around with variances, and it will turn out that this gives us a useful tool for investigating means.

12.3.1 formulas for the variance of Y
Firstly, let’s start by introducing some notation. We’ll use G to refer to the total number of groups. For our data set, there are three
drugs, so there are G=3 groups. Next, we’ll use N to refer to the total sample size: there are a total of N=18 people in our data set.
Similarly, let’s use N  to denote the number of people in the k-th group. In our fake clinical trial, the sample size is N =6 for all
three groups.  Finally, we’ll use Y to denote the outcome variable: in our case, Y refers to mood change. Specifically, we’ll use
Y  to refer to the mood change experienced by the i-th member of the k-th group. Similarly, we’ll use  to be the average mood
change, taken across all 18 people in the experiment, and  to refer to the average mood change experienced by the 6 people in
group k.

Excellent. Now that we’ve got our notation sorted out, we can start writing down formulas. To start with, let’s recall the formula for
the variance that we used in Section 5.2, way back in those kinder days when we were just doing descriptive statistics. The sample
variance of Y is defined as follows:

This formula looks pretty much identical to the formula for the variance in Section 5.2. The only difference is that this time around
I’ve got two summations here: I’m summing over groups (i.e., values for k) and over the people within the groups (i.e., values for
i). This is purely a cosmetic detail: if I’d instead used the notation Y  to refer to the value of the outcome variable for person p in
the sample, then I’d only have a single summation. The only reason that we have a double summation here is that I’ve classified
people into groups, and then assigned numbers to people within groups.

A concrete example might be useful here. Let’s consider this table, in which we have a total of N=5 people sorted into G=2 groups.
Arbitrarily, let’s say that the “cool” people are group 1, and the “uncool” people are group 2, and it turns out that we have three
cool people (N =3) and two uncool people (N =2).
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name person (p) group group num (k) index in group (i)
grumpiness (Y  or

Y )

Ann 1 cool 1 1 20

Ben 2 cool 1 2 55

Cat 3 cool 1 3 21

Dan 4 uncool 2 1 91

Egg 5 uncool 2 2 22

Notice that I’ve constructed two different labelling schemes here. We have a “person” variable p, so it would be perfectly sensible
to refer to Y  as the grumpiness of the p-th person in the sample. For instance, the table shows that Dan is the four so we’d say p=4.
So, when talking about the grumpiness Y of this “Dan” person, whoever he might be, we could refer to his grumpiness by saying
that Y =91, for person p=4 that is. However, that’s not the only way we could refer to Dan. As an alternative we could note that
Dan belongs to the “uncool” group (k=2), and is in fact the first person listed in the uncool group (i=1). So it’s equally valid to refer
to Dan’s grumpiness by saying that Y =91, where k=2 and i=1. In other words, each person p corresponds to a unique ik
combination, and so the formula that I gave above is actually identical to our original formula for the variance, which would be

In both formulas, all we’re doing is summing over all of the observations in the sample. Most of the time we would just use the
simpler Y  notation: the equation using Y  is clearly the simpler of the two. However, when doing an ANOVA it’s important to
keep track of which participants belong in which groups, and we need to use the Y  notation to do this.

12.3.2 From variances to sums of squares
Okay, now that we’ve got a good grasp on how the variance is calculated, let’s define something called the total sum of squares,
which is denoted SS . This is very simple: instead of averaging the squared deviations, which is what we do when calculating the
variance, we just add them up. So the formula for the total sum of squares is almost identical to the formula for the variance:

When we talk about analysing variances in the context of ANOVA, what we’re really doing is working with the total sums of
squares rather than the actual variance. One very nice thing about the total sum of squares is that we can break it up into two
different kinds of variation. Firstly, we can talk about the within-group sum of squares, in which we look to see how different each
individual person is from their own group mean:

where  is a group mean. In our example,  would be the average mood change experienced by those people given the k-th
drug. So, instead of comparing individuals to the average of all people in the experiment, we’re only comparing them to those
people in the the same group. As a consequence, you’d expect the value of SS  to be smaller than the total sum of squares, because
it’s completely ignoring any group differences – that is, the fact that the drugs (if they work) will have different effects on people’s
moods.

Next, we can define a third notion of variation which captures only the differences between groups. We do this by looking at the
differences between the group means  and grand mean . In order to quantify the extent of this variation, what we do is
calculate the between-group sum of squares:

It’s not too difficult to show that the total variation among people in the experiment SS  is actually the sum of the differences
between the groups SS  and the variation inside the groups SS . That is:
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SS +SS =SS

Yay.

Figure 14.2: Graphical illustration of “between groups” variation

Figure 14.3: Graphical illustration of “within groups” variation

Okay, so what have we found out? We’ve discovered that the total variability associated with the outcome variable (SS ) can be
mathematically carved up into the sum of “the variation due to the differences in the sample means for the different groups” (SS )
plus “all the rest of the variation” (SS ). How does that help me find out whether the groups have different population means? Um.
Wait. Hold on a second… now that I think about it, this is exactly what we were looking for. If the null hypothesis is true, then
you’d expect all the sample means to be pretty similar to each other, right? And that would imply that you’d expect SS  to be really
small, or at least you’d expect it to be a lot smaller than the “the variation associated with everything else”, SS . Hm. I detect a
hypothesis test coming on…

12.3.3 From sums of squares to the F-test
As we saw in the last section, the qualitative idea behind ANOVA is to compare the two sums of squares values SS  and SS  to
each other: if the between-group variation is SS  is large relative to the within-group variation SS  then we have reason to suspect
that the population means for the different groups aren’t identical to each other. In order to convert this into a workable hypothesis
test, there’s a little bit of “fiddling around” needed. What I’ll do is first show you what we do to calculate our test statistic – which
is called an F ratio – and then try to give you a feel for why we do it this way.

In order to convert our SS values into an F-ratio, the first thing we need to calculate is the degrees of freedom associated with the
SSb and SS  values. As usual, the degrees of freedom corresponds to the number of unique “data points” that contribute to a
particular calculation, minus the number of “constraints” that they need to satisfy. For the within-groups variability, what we’re
calculating is the variation of the individual observations (N data points) around the group means (G constraints). In contrast, for
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the between groups variability, we’re interested in the variation of the group means (G data points) around the grand mean (1
constraint). Therefore, the degrees of freedom here are:

df =G−1

df =N−G

Okay, that seems simple enough. What we do next is convert our summed squares value into a “mean squares” value, which we do
by dividing by the degrees of freedom:

Finally, we calculate the F-ratio by dividing the between-groups MS by the within-groups MS:

At a very general level, the intuition behind the F statistic is straightforward: bigger values of F means that the between-groups
variation is large, relative to the within-groups variation. As a consequence, the larger the value of F, the more evidence we have
against the null hypothesis. But how large does F have to be in order to actually reject H ? In order to understand this, you need a
slightly deeper understanding of what ANOVA is and what the mean squares values actually are.

The next section discusses that in a bit of detail, but for readers that aren’t interested in the details of what the test is actually
measuring, I’ll cut to the chase. In order to complete our hypothesis test, we need to know the sampling distribution for F if the null
hypothesis is true. Not surprisingly, the sampling distribution for the F statistic under the null hypothesis is an F distribution. If you
recall back to our discussion of the F distribution in Chapter @ref(probability, the F distribution has two parameters, corresponding
to the two degrees of freedom involved: the first one df1 is the between groups degrees of freedom dfb, and the second one df2 is
the within groups degrees of freedom df .

A summary of all the key quantities involved in a one-way ANOVA, including the formulas showing how they are calculated, is
shown in Table 14.1.

Table 14.1: All of the key quantities involved in an ANOVA, organised into a “standard” ANOVA table. The formulas for all
quantities (except the p-value, which has a very ugly formula and would be nightmarishly hard to calculate without a computer) are
shown.

df sum of squares mean squares F statistic p value

between groups df =G−1 [complicated]

within groups df =N−G - -

12.3.4 model for the data and the meaning of F (advanced)

At a fundamental level, ANOVA is a competition between two different statistical models, H  and H . When I described the null
and alternative hypotheses at the start of the section, I was a little imprecise about what these models actually are. I’ll remedy that
now, though you probably won’t like me for doing so. If you recall, our null hypothesis was that all of the group means are
identical to one another. If so, then a natural way to think about the outcome variable Y  is to describe individual scores in terms of
a single population mean μ, plus the deviation from that population mean. This deviation is usually denoted ϵ  and is traditionally
called the error or residual associated with that observation. Be careful though: just like we saw with the word “significant”, the
word “error” has a technical meaning in statistics that isn’t quite the same as its everyday English definition. In everyday language,
“error” implies a mistake of some kind; in statistics, it doesn’t (or at least, not necessarily). With that in mind, the word “residual”
is a better term than the word “error”. In statistics, both words mean “leftover variability”: that is, “stuff” that the model can’t
explain. In any case, here’s what the null hypothesis looks like when we write it as a statistical model:

Y =μ+ϵ
where we make the assumption (discussed later) that the residual values ϵ  are normally distributed, with mean 0 and a standard
deviation σ that is the same for all groups. To use the notation that we introduced in Chapter 9 we would write this assumption like
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this:

ϵ ∼Normal(0,σ )

What about the alternative hypothesis, H ? The only difference between the null hypothesis and the alternative hypothesis is that
we allow each group to have a different population mean. So, if we let μk denote the population mean for the k-th group in our
experiment, then the statistical model corresponding to H  is:

Y =μ +ϵ
where, once again, we assume that the error terms are normally distributed with mean 0 and standard deviation σ. That is, the
alternative hypothesis also assumes that

ϵ∼Normal(0,σ )

Okay, now that we’ve described the statistical models underpinning H  and H  in more detail, it’s now pretty straightforward to say
what the mean square values are measuring, and what this means for the interpretation of F. I won’t bore you with the proof of this,
but it turns out that the within-groups mean square, MS , can be viewed as an estimator (in the technical sense: Chapter 10 of the
error variance σ . The between-groups mean square MS  is also an estimator; but what it estimates is the error variance plus a
quantity that depends on the true differences among the group means. If we call this quantity Q, then we can see that the F-statistic
is basically

where the true value Q=0 if the null hypothesis is true, and Q>0 if the alternative hypothesis is true (e.g. ch. 10 Hays 1994).
Therefore, at a bare minimum the F value must be larger than 1 to have any chance of rejecting the null hypothesis. Note that this
doesn’t mean that it’s impossible to get an F-value less than 1. What it means is that, if the null hypothesis is true the sampling
distribution of the F ratio has a mean of 1,  and so we need to see F-values larger than 1 in order to safely reject the null.

To be a bit more precise about the sampling distribution, notice that if the null hypothesis is true, both MS  and MS  are estimators
of the variance of the residuals ϵ . If those residuals are normally distributed, then you might suspect that the estimate of the
variance of ϵ  is chi-square distributed… because (as discussed in Section 9.6 that’s what a chi-square distribution is: it’s what you
get when you square a bunch of normally-distributed things and add them up. And since the F distribution is (again, by definition)
what you get when you take the ratio between two things that are X  distributed… we have our sampling distribution. Obviously,
I’m glossing over a whole lot of stuff when I say this, but in broad terms, this really is where our sampling distribution comes from.

12.3.5 worked example
The previous discussion was fairly abstract, and a little on the technical side, so I think that at this point it might be useful to see a
worked example. For that, let’s go back to the clinical trial data that I introduced at the start of the chapter. The descriptive statistics
that we calculated at the beginning tell us our group means: an average mood gain of 0.45 for the placebo, 0.72 for Anxifree, and
1.48 for Joyzepam. With that in mind, let’s party like it’s 1899  and start doing some pencil and paper calculations. I’ll only do
this for the first 5 observations, because it’s not bloody 1899 and I’m very lazy. Let’s start by calculating SS , the within-group
sums of squares. First, let’s draw up a nice table to help us with our calculations…

group (k) outcome (Y )

placebo 0.5

placebo 0.3

placebo 0.1

anxifree 0.6

anxifree 0.4

At this stage, the only thing I’ve included in the table is the raw data itself: that is, the grouping variable (i.e., drug ) and
outcome variable (i.e. mood.gain ) for each person. Note that the outcome variable here corresponds to the Y  value in our
equation previously. The next step in the calculation is to write down, for each person in the study, the corresponding group mean;
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that is, . This is slightly repetitive, but not particularly difficult since we already calculated those group means when doing our
descriptive statistics:

group (k) outcome (Y ) group mean (

placebo 0.5 0.45

placebo 0.3 0.45

placebo 0.1 0.45

anxifree 0.6 0.72

anxifree 0.4 0.72

Now that we’ve written those down, we need to calculate – again for every person – the deviation from the corresponding group
mean. That is, we want to subtract Y − . After we’ve done that, we need to square everything. When we do that, here’s what we
get:

group (k) outcome (Y ) group mean ( )
dev. from group mean

(Y − )
squared deviation

((Y − ) )

placebo 0.5 0.45 0.05 0.0025

placebo 0.3 0.45 -0.15 0.0225

placebo 0.1 0.45 -0.35 0.1225

anxifree 0.6 0.72 -0.12 0.0136

anxifree 0.4 0.72 -0.32 0.1003

The last step is equally straightforward. In order to calculate the within-group sum of squares, we just add up the squared
deviations across all observations:

Of course, if we actually wanted to get the right answer, we’d need to do this for all 18 observations in the data set, not just the first
five. We could continue with the pencil and paper calculations if we wanted to, but it’s pretty tedious. Alternatively, it’s not too
hard to get R to do it. Here’s how:

outcome <- clin.trial$mood.gain 
group <- clin.trial$drug 
gp.means <- tapply(outcome,group,mean) 
gp.means <- gp.means[group] 
dev.from.gp.means <- outcome - gp.means 
squared.devs <- dev.from.gp.means ^2

It might not be obvious from inspection what these commands are doing: as a general rule, the human brain seems to just shut
down when faced with a big block of programming. However, I strongly suggest that – if you’re like me and tend to find that the
mere sight of this code makes you want to look away and see if there’s any beer left in the fridge or a game of footy on the telly –
you take a moment and look closely at these commands one at a time. Every single one of these commands is something you’ve
seen before somewhere else in the book. There’s nothing novel about them (though I’ll have to admit that the tapply()
function takes a while to get a handle on), so if you’re not quite sure how these commands work, this might be a good time to try
playing around with them yourself, to try to get a sense of what’s happening. On the other hand, if this does seem to make sense,
then you won’t be all that surprised at what happens when I wrap these variables in a data frame, and print it out…
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Y <- data.frame( group, outcome, gp.means, 
                  dev.from.gp.means, squared.devs ) 
print(Y, digits = 2)

##       group outcome gp.means dev.from.gp.means squared.devs 
## 1   placebo     0.5     0.45             0.050       0.0025 
## 2   placebo     0.3     0.45            -0.150       0.0225 
## 3   placebo     0.1     0.45            -0.350       0.1225 
## 4  anxifree     0.6     0.72            -0.117       0.0136 
## 5  anxifree     0.4     0.72            -0.317       0.1003 
## 6  anxifree     0.2     0.72            -0.517       0.2669 
## 7  joyzepam     1.4     1.48            -0.083       0.0069 
## 8  joyzepam     1.7     1.48             0.217       0.0469 
## 9  joyzepam     1.3     1.48            -0.183       0.0336 
## 10  placebo     0.6     0.45             0.150       0.0225 
## 11  placebo     0.9     0.45             0.450       0.2025 
## 12  placebo     0.3     0.45            -0.150       0.0225 
## 13 anxifree     1.1     0.72             0.383       0.1469 
## 14 anxifree     0.8     0.72             0.083       0.0069 
## 15 anxifree     1.2     0.72             0.483       0.2336 
## 16 joyzepam     1.8     1.48             0.317       0.1003 
## 17 joyzepam     1.3     1.48            -0.183       0.0336 
## 18 joyzepam     1.4     1.48            -0.083       0.0069

If you compare this output to the contents of the table I’ve been constructing by hand, you can see that R has done exactly the same
calculations that I was doing, and much faster too. So, if we want to finish the calculations of the within-group sum of squares in R,
we just ask for the sum()  of the squared.devs  variable:

SSw <- sum( squared.devs ) 
print( SSw )  

## [1] 1.391667

Obviously, this isn’t the same as what I calculated, because R used all 18 observations. But if I’d typed 
sum( squared.devs[1:5] )  instead, it would have given the same answer that I got earlier.

Okay. Now that we’ve calculated the within groups variation, SS , it’s time to turn our attention to the between-group sum of
squares, SS . The calculations for this case are very similar. The main difference is that, instead of calculating the differences
between an observation Y  and a group mean  for all of the observations, we calculate the differences between the group means

 and the grand mean  (in this case 0.88) for all of the groups…

group (k) group mean ( ) grand mean ( ) deviation ( )
squared deviations ((

) )

placebo 0.45 0.88 -0.43 0.18

anxifree 0.72 0.88 -0.16 0.03

joyzepam 1.48 0.88 0.60 0.36

However, for the between group calculations we need to multiply each of these squared deviations by N , the number of
observations in the group. We do this because every observation in the group (all N  of them) is associated with a between group
difference. So if there are six people in the placebo group, and the placebo group mean differs from the grand mean by 0.19, then

w

b

ik  Y

k

¯

 Y

k

¯

 Y

¯

 Y

k

¯

 Y

¯

  −Y

k

¯

Y

¯

  −Y

k

¯

Y

¯

2

k

k

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36167?pdf


12.3.8 https://stats.libretexts.org/@go/page/36167

the total between group variation associated with these six people is 6×0.16=1.14. So we have to extend our little table of
calculations…

group (k) squared deviations (( ) ) sample size (N )
weighted squared dev (N (

) )

placebo 0.18 6 1.11

anxifree 0.03 6 0.16

joyzepam 0.36 6 2.18

And so now our between group sum of squares is obtained by summing these “weighted squared deviations” over all three groups
in the study:

As you can see, the between group calculations are a lot shorter, so you probably wouldn’t usually want to bother using R as your
calculator. However, if you did decide to do so, here’s one way you could do it:

gp.means <- tapply(outcome,group,mean) 
grand.mean <- mean(outcome) 
dev.from.grand.mean <- gp.means - grand.mean 
squared.devs <- dev.from.grand.mean ^2 
gp.sizes <- tapply(outcome,group,length) 
wt.squared.devs <- gp.sizes * squared.devs

Again, I won’t actually try to explain this code line by line, but – just like last time – there’s nothing in there that we haven’t seen in
several places elsewhere in the book, so I’ll leave it as an exercise for you to make sure you understand it. Once again, we can
dump all our variables into a data frame so that we can print it out as a nice table:

Y <- data.frame( gp.means, grand.mean, dev.from.grand.mean,  
                  squared.devs, gp.sizes, wt.squared.devs ) 
print(Y, digits = 2)  

##          gp.means grand.mean dev.from.grand.mean squared.devs gp.sizes 
## placebo      0.45       0.88               -0.43        0.188        6 
## anxifree     0.72       0.88               -0.17        0.028        6 
## joyzepam     1.48       0.88                0.60        0.360        6 
##          wt.squared.devs 
## placebo             1.13 
## anxifree            0.17 
## joyzepam            2.16

Clearly, these are basically the same numbers that we got before. There are a few tiny differences, but that’s only because the hand-
calculated versions have some small errors caused by the fact that I rounded all my numbers to 2 decimal places at each step in the
calculations, whereas R only does it at the end (obviously, R s version is more accurate). Anyway, here’s the R command showing
the final step:

SSb <- sum( wt.squared.devs ) 
print( SSb )  

## [1] 3.453333
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which is (ignoring the slight differences due to rounding error) the same answer that I got when doing things by hand.

Now that we’ve calculated our sums of squares values, SS  and SS , the rest of the ANOVA is pretty painless. The next step is to
calculate the degrees of freedom. Since we have G=3 groups and N=18 observations in total, our degrees of freedom can be
calculated by simple subtraction:

df =G−1=2

df =N−G=15

Next, since we’ve now calculated the values for the sums of squares and the degrees of freedom, for both the within-groups
variability and the between-groups variability, we can obtain the mean square values by dividing one by the other:

 

We’re almost done. The mean square values can be used to calculate the F-value, which is the test statistic that we’re interested in.
We do this by dividing the between-groups MS value by the and within-groups MS value.

Woohooo! This is terribly exciting, yes? Now that we have our test statistic, the last step is to find out whether the test itself gives
us a significant result. As discussed in Chapter @ref(hypothesistesting, what we really ought to do is choose an α level (i.e.,
acceptable Type I error rate) ahead of time, construct our rejection region, etc etc. But in practice it’s just easier to directly calculate
the p-value. Back in the “old days”, what we’d do is open up a statistics textbook or something and flick to the back section which
would actually have a huge lookup table… that’s how we’d “compute” our p-value, because it’s too much effort to do it any other
way. However, since we have access to R, I’ll use the pf()  function to do it instead. Now, remember that I explained earlier that
the F-test is always one sided? And that we only reject the null hypothesis for very large F-values? That means we’re only
interested in the upper tail of the F-distribution. The command that you’d use here would be this…

pf( 18.6, df1 = 2, df2 = 15, lower.tail = FALSE)

## [1] 8.672727e-05

Therefore, our p-value comes to 0.0000867, or 8.67×10  in scientific notation. So, unless we’re being extremely conservative
about our Type I error rate, we’re pretty much guaranteed to reject the null hypothesis.

At this point, we’re basically done. Having completed our calculations, it’s traditional to organise all these numbers into an
ANOVA table like the one in Table@reftab:anovatable. For our clinical trial data, the ANOVA table would look like this:

df sum of squares mean squares F-statistic p-value

between groups 2 3.45 1.73 18.6 8.67×10

within groups 15 1.39 0.09 - -

These days, you’ll probably never have much reason to want to construct one of these tables yourself, but you will find that almost
all statistical software (R included) tends to organise the output of an ANOVA into a table like this, so it’s a good idea to get used to
reading them. However, although the software will output a full ANOVA table, there’s almost never a good reason to include the
whole table in your write up. A pretty standard way of reporting this result would be to write something like this:

One-way ANOVA showed a significant effect of drug on mood gain (F(2,15)=18.6,p<.001).

Sigh. So much work for one short sentence.

This page titled 12.3: How ANOVA Works is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

14.3: How ANOVA Works by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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12.4: Running an ANOVA in R
I’m pretty sure I know what you’re thinking after reading the last section, especially if you followed my advice and tried typing all
the commands in yourself…. doing the ANOVA calculations yourself sucks. There’s quite a lot of calculations that we needed to do
along the way, and it would be tedious to have to do this over and over again every time you wanted to do an ANOVA. One
possible solution to the problem would be to take all these calculations and turn them into some R functions yourself. You’d still
have to do a lot of typing, but at least you’d only have to do it the one time: once you’ve created the functions, you can reuse them
over and over again. However, writing your own functions is a lot of work, so this is kind of a last resort. Besides, it’s much better
if someone else does all the work for you…

12.4.1 Using the aov() function to specify your ANOVA

To make life easier for you, R provides a function called aov() , which – obviously – is an acronym of “Analysis Of
Variance.”  If you type ?aov  and have a look at the help documentation, you’ll see that there are several arguments to the 
aov()  function, but the only two that we’re interested in are formula  and data . As we’ve seen in a few places

previously, the formula  argument is what you use to specify the outcome variable and the grouping variable, and the data
argument is what you use to specify the data frame that stores these variables. In other words, to do the same ANOVA that I
laboriously calculated in the previous section, I’d use a command like this:

aov( formula = mood.gain ~ drug, data = clin.trial ) 

Actually, that’s not quite the whole story, as you’ll see as soon as you look at the output from this command, which I’ve hidden for
the moment in order to avoid confusing you. Before we go into specifics, I should point out that either of these commands will do
the same thing:

aov( clin.trial$mood.gain ~ clin.trial$drug )  
aov( mood.gain ~ drug, clin.trial ) 

In the first command, I didn’t specify a data  set, and instead relied on the $  operator to tell R how to find the variables. In
the second command, I dropped the argument names, which is okay in this case because formula  is the first argument to the 
aov()  function, and data  is the second one. Regardless of how I specify the ANOVA, I can assign the output of the 
aov()  function to a variable, like this for example:

my.anova <- aov( mood.gain ~ drug, clin.trial ) 

This is almost always a good thing to do, because there’s lots of useful things that we can do with the my.anova  variable. So
let’s assume that it’s this last command that I used to specify the ANOVA that I’m trying to run, and as a consequence I have this 
my.anova  variable sitting in my workspace, waiting for me to do something with it…

12.4.2 Understanding what the aov()  function produces

Now that we’ve seen how to use the aov()  function to create my.anova  we’d better have a look at what this variable
actually is. The first thing to do is to check to see what class of variable we’ve created, since it’s kind of interesting in this case.
When we do that…

class( my.anova )

## [1] "aov" "lm"

… we discover that my.anova  actually has two classes! The first class tells us that it’s an aov  (analysis of variance) object,
but the second tells us that it’s also an lm  (linear model) object. Later on, we’ll see that this reflects a pretty deep statistical
relationship between ANOVA and regression (Chapter 15 and it means that any function that exists in R for dealing with
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regressions can also be applied to aov  objects, which is neat; but I’m getting ahead of myself. For now, I want to note that what
we’ve created is an aov  object, and to also make the point that aov  objects are actually rather complicated beasts. I won’t be
trying to explain everything about them, since it’s way beyond the scope of an introductory statistics subject, but to give you a tiny
hint of some of the stuff that R stores inside an aov  object, let’s ask it to print out the names()  of all the stored quantities…

names( my.anova )

##  [1] "coefficients"  "residuals"     "effects"       "rank"          
##  [5] "fitted.values" "assign"        "qr"            "df.residual"   
##  [9] "contrasts"     "xlevels"       "call"          "terms"         
## [13] "model"

As we go through the rest of the book, I hope that a few of these will become a little more obvious to you, but right now that’s
going to look pretty damned opaque. That’s okay. You don’t need to know any of the details about it right now, and most of it you
don’t need at all… what you do need to understand is that the aov()  function does a lot of calculations for you, not just the
basic ones that I outlined in the previous sections. What this means is that it’s generally a good idea to create a variable like 
my.anova  that stores the output of the aov()  function… because later on, you can use my.anova  as an input to lots of

other functions: those other functions can pull out bits and pieces from the aov  object, and calculate various other things that
you might need.

Right then. The simplest thing you can do with an aov  object is to print()  it out. When we do that, it shows us a few of the
key quantities of interest:

print( my.anova )

## Call: 
##    aov(formula = mood.gain ~ drug, data = clin.trial)
## 
## Terms: 
##                     drug Residuals 
## Sum of Squares  3.453333  1.391667 
## Deg. of Freedom        2        15 
## 
## Residual standard error: 0.3045944 
## Estimated effects may be unbalanced

Specificially, it prints out a reminder of the command that you used when you called aov()  in the first place, shows you the
sums of squares values, the degrees of freedom, and a couple of other quantities that we’re not really interested in right now.
Notice, however, that R doesn’t use the names “between-group” and “within-group”. Instead, it tries to assign more meaningful
names: in our particular example, the between groups variance corresponds to the effect that the drug  has on the outcome
variable; and the within groups variance is corresponds to the “leftover” variability, so it calls that the residuals. If we compare
these numbers to the numbers that I calculated by hand in Section 14.2.5, you can see that they’re identical… the between groups
sums of squares is SS =3.45, the within groups sums of squares is SS =1.39, and the degrees of freedom are 2 and 15 repectively.

12.4.3 Running the hypothesis tests for the ANOVA

Okay, so we’ve verified that my.anova  seems to be storing a bunch of the numbers that we’re looking for, but the print()
function didn’t quite give us the output that we really wanted. Where’s the F-value? The p-value? These are the most important
numbers in our hypothesis test, but the print()  function doesn’t provide them. To get those numbers, we need to use a
different function. Instead of asking R to print()  out the aov  object, we should have asked for a summary()  of it.
When we do that…

b w
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summary( my.anova )

##             Df Sum Sq Mean Sq F value   Pr(>F)     
## drug         2  3.453  1.7267   18.61 8.65e-05 *** 
## Residuals   15  1.392  0.0928                      
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

… we get all of the key numbers that we calculated earlier. We get the sums of squares, the degrees of freedom, the mean squares,
the F-statistic, and the p-value itself. These are all identical to the numbers that we calculated ourselves when doing it the long and
tedious way, and it’s even organised into the same kind of ANOVA table that I showed in Table 14.1, and then filled out by hand in
Section 14.2.5. The only things that are even slightly different is that some of the row and column names are a bit different.

This page titled 12.4: Running an ANOVA in R is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

14.4: Running an ANOVA in R by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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12.5: Effect Size
There’s a few different ways you could measure the effect size in an ANOVA, but the most commonly used measures are η2 (eta
squared) and partial η . For a one way analysis of variance they’re identical to each other, so for the moment I’ll just explain η .
The definition of η  is actually really simple:

That’s all it is. So when I look at the ANOVA table above, I see that SS =3.45 and SS =3.45+1.39=4.84. Thus we get an η2 value
of

The interpretation of η2 is equally straightforward: it refers to the proportion of the variability in the outcome variable (
mood.gain ) that can be explained in terms of the predictor ( drug ). A value of η2=0 means that there is no relationship at

all between the two, whereas a value of η =1 means that the relationship is perfect. Better yet, the η  value is very closely related to
a squared correlation (i.e., r ). So, if you’re trying to figure out whether a particular value of η  is big or small, it’s sometimes
useful to remember that

can be interpreted as if it referred to the magnitude of a Pearson correlation. So in our drugs example, the η  value of .71
corresponds to an η value of  =.84. If we think about this as being equivalent to a correlation of about .84, we’d conclude that
the relationship between drug  and mood.gain  is strong. 
The core packages in R don’t include any functions for calculating η . However, it’s pretty straightforward to calculate it directly
from the numbers in the ANOVA table. In fact, since I’ve already got the SSw  and SSb  variables lying around from my earlier
calculations, I can do this:

SStot <- SSb + SSw          # total sums of squares 
eta.squared <- SSb / SStot  # eta-squared value 
print( eta.squared )

## [1] 0.7127623

However, since it can be tedious to do this the long way (especially when we start running more complicated ANOVAs, such as
those in Chapter 16 I’ve included an etaSquared()  function in the lsr  package which will do it for you. For now, the
only argument you need to care about is x , which should be the aov  object corresponding to your ANOVA. When we do this,
what we get as output is this:

etaSquared( x = my.anova )

##         eta.sq eta.sq.part 
## drug 0.7127623   0.7127623

The output here shows two different numbers. The first one corresponds to the η  statistic, precisely as described above. The
second one refers to “partial η ”, which is a somewhat different measure of effect size that I’ll describe later. For the simple
ANOVA that we’ve just run, they’re the same number. But this won’t always be true once we start running more complicated
ANOVAs.

This page titled 12.5: Effect Size is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.

14.5: Effect Size by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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12.6: Multiple Comparisons and Post Hoc Tests
Any time you run an ANOVA with more than two groups, and you end up with a significant effect, the first thing you’ll probably
want to ask is which groups are actually different from one another. In our drugs example, our null hypothesis was that all three
drugs (placebo, Anxifree and Joyzepam) have the exact same effect on mood. But if you think about it, the null hypothesis is
actually claiming three different things all at once here. Specifically, it claims that:

Your competitor’s drug (Anxifree) is no better than a placebo (i.e., μ =μ )
Your drug (Joyzepam) is no better than a placebo (i.e., μ =μ )
Anxifree and Joyzepam are equally effective (i.e., μ =μ )

If any one of those three claims is false, then the null hypothesis is also false. So, now that we’ve rejected our null hypothesis,
we’re thinking that at least one of those things isn’t true. But which ones? All three of these propositions are of interest: you
certainly want to know if your new drug Joyzepam is better than a placebo, and it would be nice to know how well it stacks up
against an existing commercial alternative (i.e., Anxifree). It would even be useful to check the performance of Anxifree against
the placebo: even if Anxifree has already been extensively tested against placebos by other researchers, it can still be very useful to
check that your study is producing similar results to earlier work.

When we characterise the null hypothesis in terms of these three distinct propositions, it becomes clear that there are eight possible
“states of the world” that we need to distinguish between:

possibility: is μ =μ ? is μ =μ ? is μ =μ ? which hypothesis?

1 ✓ ✓ ✓ null

2 ✓ ✓  alternative

3 ✓  ✓ alternative

4 ✓   alternative

5  ✓ ✓ alternative

6  ✓  alternative

7   ✓ alternative

8    alternative

By rejecting the null hypothesis, we’ve decided that we don’t believe that #1 is the true state of the world. The next question to ask
is, which of the other seven possibilities do we think is right? When faced with this situation, its usually helps to look at the data.
For instance, if we look at the plots in Figure 14.1, it’s tempting to conclude that Joyzepam is better than the placebo and better
than Anxifree, but there’s no real difference between Anxifree and the placebo. However, if we want to get a clearer answer about
this, it might help to run some tests.

12.6.1 Running “pairwise” t-tests

How might we go about solving our problem? Given that we’ve got three separate pairs of means (placebo versus Anxifree,
placebo versus Joyzepam, and Anxifree versus Joyzepam) to compare, what we could do is run three separate t-tests and see what
happens. There’s a couple of ways that we could do this. One method would be to construct new variables corresponding the
groups you want to compare (e.g., anxifree , placebo  and joyzepam ), and then run a t-test on these new variables:

or, you could use the subset  argument in the t.test()  function to select only those observations corresponding to one of
the two groups we’re interested in:

t.test( anxifree, placebo, var.equal = TRUE )   # Student t-test 
 
anxifree <- with(clin.trial, mood.gain[drug == "anxifree"])  # mood change due to anx
placebo <- with(clin.trial, mood.gain[drug == "placebo"])    # mood change due to pla
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t.test( formula = mood.gain ~ drug,  
       data = clin.trial,  
       subset = drug %in% c("placebo","anxifree"),  
       var.equal = TRUE  
)

See Chapter 7 if you’ve forgotten how the %in%  operator works. Regardless of which version we do, R will print out the results
of the t-test, though I haven’t included that output here. If we go on to do this for all possible pairs of variables, we can look to see
which (if any) pairs of groups are significantly different to each other. This “lots of t-tests idea” isn’t a bad strategy, though as we’ll
see later on there are some problems with it. However, for the moment our bigger problem is that it’s a pain to have to type in such
a long command over and over again: for instance, if your experiment has 10 groups, then you have to run 45 t-tests. That’s way
too much typing.

To help keep the typing to a minimum, R provides a function called pairwise.t.test()  that automatically runs all of the t-
tests for you. There are three arguments that you need to specify, the outcome variable x , the group variable g , and the 
p.adjust.method  argument, which “adjusts” the p-value in one way or another. I’ll explain p-value adjustment in a

moment, but for now we can just set p.adjust.method = "none"  since we’re not doing any adjustments. For our
example, here’s what we do:

pairwise.t.test( x = clin.trial$mood.gain,   # outcome variable 
                  g = clin.trial$drug,        # grouping variable 
                  p.adjust.method = "none"    # which correction to use? 
 )  

## 
##  Pairwise comparisons using t tests with pooled SD  
## 
## data:  clin.trial$mood.gain and clin.trial$drug  
## 
##          placebo anxifree 
## anxifree 0.15021 -        
## joyzepam 3e-05   0.00056  
## 
## P value adjustment method: none

One thing that bugs me slightly about the pairwise.t.test()  function is that you can’t just give it an aov  object, and
have it produce this output. After all, I went to all that trouble earlier of getting R to create the my.anova  variable and – as we
saw in Section 14.3.2 – R has actually stored enough information inside it that I should just be able to get it to run all the pairwise
tests using my.anova  as an input. To that end, I’ve included a posthocPairwiseT()  function in the lsr  package
that lets you do this. The idea behind this function is that you can just input the aov  object itself,  and then get the pairwise
tests as an output. As of the current writing, posthocPairwiseT()  is actually just a simple way of calling 
pairwise.t.test()  function, but you should be aware that I intend to make some changes to it later on. Here’s an example:

posthocPairwiseT( x = my.anova, p.adjust.method = "none" )
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## 
##  Pairwise comparisons using t tests with pooled SD  
## 
## data:  mood.gain and drug  
## 
##          placebo anxifree 
## anxifree 0.15021 -        
## joyzepam 3e-05   0.00056  
## 
## P value adjustment method: none

In later versions, I plan to add more functionality (e.g., adjusted confidence intervals), but for now I think it’s at least kind of
useful. To see why, let’s suppose you’ve run your ANOVA and stored the results in my.anova , and you’re happy using the
Holm correction (the default method in pairwise.t.test() , which I’ll explain this in a moment). In that case, all you have
to do is type this:

posthocPairwiseT( my.anova )

and R will output the test results. Much more convenient, I think.

12.6.2 Corrections for multiple testing

In the previous section I hinted that there’s a problem with just running lots and lots of t-tests. The concern is that when running
these analyses, what we’re doing is going on a “fishing expedition”: we’re running lots and lots of tests without much theoretical
guidance, in the hope that some of them come up significant. This kind of theory-free search for group differences is referred to as
post hoc analysis (“post hoc” being Latin for “after this”).

It’s okay to run post hoc analyses, but a lot of care is required. For instance, the analysis that I ran in the previous section is actually
pretty dangerous: each individual t-test is designed to have a 5% Type I error rate (i.e., α=.05), and I ran three of these tests.
Imagine what would have happened if my ANOVA involved 10 different groups, and I had decided to run 45 “post hoc” t-tests to
try to find out which ones were significantly different from each other, you’d expect 2 or 3 of them to come up significant by
chance alone. As we saw in Chapter 11, the central organising principle behind null hypothesis testing is that we seek to control
our Type I error rate, but now that I’m running lots of t-tests at once, in order to determine the source of my ANOVA results, my
actual Type I error rate across this whole family of tests has gotten completely out of control.

The usual solution to this problem is to introduce an adjustment to the p-value, which aims to control the total error rate across the
family of tests (see Shaffer 1995). An adjustment of this form, which is usually (but not always) applied because one is doing post
hoc analysis, is often referred to as a correction for multiple comparisons, though it is sometimes referred to as “simultaneous
inference”. In any case, there are quite a few different ways of doing this adjustment. I’ll discuss a few of them in this section and
in Section 16.8, but you should be aware that there are many other methods out there (see, e.g., Hsu 1996).

12.6.3 Bonferroni corrections
The simplest of these adjustments is called the Bonferroni correction (Dunn 1961), and it’s very very simple indeed. Suppose that
my post hoc analysis consists of m separate tests, and I want to ensure that the total probability of making any Type I errors at all is
at most α.  If so, then the Bonferroni correction just says “multiply all your raw p-values by m”. If we let p denote the original p-
value, and let p′  be the corrected value, then the Bonferroni correction tells that:

p′=m×p

And therefore, if you’re using the Bonferroni correction, you would reject the null hypothesis if p′<α. The logic behind this
correction is very straightforward. We’re doing m different tests; so if we arrange it so that each test has a Type I error rate of at
most α/m, then the total Type I error rate across these tests cannot be larger than α. That’s pretty simple, so much so that in the
original paper, the author writes:
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The method given here is so simple and so general that I am sure it must have been used before this. I do not find it, however, so
can only conclude that perhaps its very simplicity has kept statisticians from realizing that it is a very good method in some
situations (pp 52-53 Dunn 1961)

To use the Bonferroni correction in R, you can use the pairwise.t.test()  function,  making sure that you set 
p.adjust.method = "bonferroni" . Alternatively, since the whole reason why we’re doing these pairwise tests in the

first place is because we have an ANOVA that we’re trying to understand, it’s probably more convenient to use the 
posthocPairwiseT()  function in the lsr  package, since we can use my.anova  as the input:

posthocPairwiseT( my.anova, p.adjust.method = "bonferroni")

## 
##  Pairwise comparisons using t tests with pooled SD  
## 
## data:  mood.gain and drug  
## 
##          placebo anxifree 
## anxifree 0.4506  -        
## joyzepam 9.1e-05 0.0017   
## 
## P value adjustment method: bonferroni

If we compare these three p-values to those that we saw in the previous section when we made no adjustment at all, it is clear that
the only thing that R has done is multiply them by 3.

12.6.4 Holm corrections
Although the Bonferroni correction is the simplest adjustment out there, it’s not usually the best one to use. One method that is
often used instead is the Holm correction (Holm 1979). The idea behind the Holm correction is to pretend that you’re doing the
tests sequentially; starting with the smallest (raw) p-value and moving onto the largest one. For the j-th largest of the p-values, the
adjustment is either

p′ =j×p

(i.e., the biggest p-value remains unchanged, the second biggest p-value is doubled, the third biggest p-value is tripled, and so on),
or

p′ =p′

whichever one is larger. This might sound a little confusing, so let’s go through it a little more slowly. Here’s what the Holm
correction does. First, you sort all of your p-values in order, from smallest to largest. For the smallest p-value all you do is multiply
it by m, and you’re done. However, for all the other ones it’s a two-stage process. For instance, when you move to the second
smallest p value, you first multiply it by m−1. If this produces a number that is bigger than the adjusted p-value that you got last
time, then you keep it. But if it’s smaller than the last one, then you copy the last p-value. To illustrate how this works, consider the
table below, which shows the calculations of a Holm correction for a collection of five p-values:

raw p rank j p×j Holm p

.001 5 .005 .005

.005 4 .020 .020

.019 3 .057 .057

.022 2 .044 .057

.103 1 .103 .103
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Hopefully that makes things clear.

Although it’s a little harder to calculate, the Holm correction has some very nice properties: it’s more powerful than Bonferroni
(i.e., it has a lower Type II error rate), but – counterintuitive as it might seem – it has the same Type I error rate. As a consequence,
in practice there’s never any reason to use the simpler Bonferroni correction, since it is always outperformed by the slightly more
elaborate Holm correction. Because of this, the Holm correction is the default one used by pairwise.t.test()  and 
posthocPairwiseT() . To run the Holm correction in R, you could specify p.adjust.method = "Holm"  if you

wanted to, but since it’s the default you can just to do this:

posthocPairwiseT( my.anova )

## 
##  Pairwise comparisons using t tests with pooled SD  
## 
## data:  mood.gain and drug  
## 
##          placebo anxifree 
## anxifree 0.1502  -        
## joyzepam 9.1e-05 0.0011   
## 
## P value adjustment method: holm

As you can see, the biggest p-value (corresponding to the comparison between Anxifree and the placebo) is unaltered: at a value of
.15, it is exactly the same as the value we got originally when we applied no correction at all. In contrast, the smallest p-value
(Joyzepam versus placebo) has been multiplied by three.

12.6.5 Writing up the post hoc test
Finally, having run the post hoc analysis to determine which groups are significantly different to one another, you might write up
the result like this:

Post hoc tests (using the Holm correction to adjust p) indicated that Joyzepam produced a significantly larger mood change than
both Anxifree (p=.001) and the placebo (p=9.1×10 ). We found no evidence that Anxifree performed better than the placebo
(p=.15).

Or, if you don’t like the idea of reporting exact p-values, then you’d change those numbers to p<.01, p<.001 and p>.05 respectively.
Either way, the key thing is that you indicate that you used Holm’s correction to adjust the p-values. And of course, I’m assuming
that elsewhere in the write up you’ve included the relevant descriptive statistics (i.e., the group means and standard deviations),
since these p-values on their own aren’t terribly informative.
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12.7: Assumptions of One-way ANOVA
Like any statistical test, analysis of variance relies on some assumptions about the data. There are three key assumptions that you
need to be aware of: normality, homogeneity of variance and independence. If you remember back to Section 14.2.4 – which I hope
you at least skimmed even if you didn’t read the whole thing – I described the statistical models underpinning ANOVA, which I
wrote down like this:

H :Y =μ+ϵ
H :Y =μ +ϵ

In these equations μ refers to a single, grand population mean which is the same for all groups, and μ is the population mean for
the k-th group. Up to this point we’ve been mostly interested in whether our data are best described in terms of a single grand mean
(the null hypothesis) or in terms of different group-specific means (the alternative hypothesis). This makes sense, of course: that’s
actually the important research question! However, all of our testing procedures have – implicitly – relied on a specific assumption
about the residuals, ϵ , namely that

ϵ ∼Normal(0,σ )

None of the maths works properly without this bit. Or, to be precise, you can still do all the calculations, and you’ll end up with an
F-statistic, but you have no guarantee that this F-statistic actually measures what you think it’s measuring, and so any conclusions
that you might draw on the basis of the F test might be wrong.

So, how do we check whether this assumption about the residuals is accurate? Well, as I indicated above, there are three distinct
claims buried in this one statement, and we’ll consider them separately.

Normality. The residuals are assumed to be normally distributed. As we saw in Section 13.9, we can assess this by looking at
QQ plots or running a Shapiro-Wilk test. I’ll talk about this in an ANOVA context in Section 14.9.
Homogeneity of variance. Notice that we’ve only got the one value for the population standard deviation (i.e., σ), rather than
allowing each group to have it’s own value (i.e., σ ). This is referred to as the homogeneity of variance (sometimes called
homoscedasticity) assumption. ANOVA assumes that the population standard deviation is the same for all groups. We’ll talk
about this extensively in Section 14.7.
Independence. The independence assumption is a little trickier. What it basically means is that, knowing one residual tells you
nothing about any other residual. All of the ϵ  values are assumed to have been generated without any “regard for” or
“relationship to” any of the other ones. There’s not an obvious or simple way to test for this, but there are some situations that
are clear violations of this: for instance, if you have a repeated-measures design, where each participant in your study appears in
more than one condition, then independence doesn’t hold; there’s a special relationship between some observations… namely
those that correspond to the same person! When that happens, you need to use something like repeated measures ANOVA. I
don’t currently talk about repeated measures ANOVA in this book, but it will be included in later versions.

12.7.1 robust is ANOVA?

One question that people often want to know the answer to is the extent to which you can trust the results of an ANOVA if the
assumptions are violated. Or, to use the technical language, how robust is ANOVA to violations of the assumptions. Due to
deadline constraints I don’t have the time to discuss this topic. This is a topic I’ll cover in some detail in a later version of the book.
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12.8: Checking the Homogeneity of Variance Assumption
There’s more than one way to skin a cat, as the saying goes, and more than one way to test the homogeneity of variance
assumption, too (though for some reason no-one made a saying out of that). The most commonly used test for this that I’ve seen in
the literature is the Levene test (Levene 1960), and the closely related Brown-Forsythe test (Brown and Forsythe 1974), both of
which I’ll describe here. Alternatively, you could use the Bartlett test, which is implemented in R via the bartlett.test()
function, but I’ll leave it as an exercise for the reader to go check that one out if you’re interested.

Levene’s test is shockingly simple. Suppose we have our outcome variable Y . All we do is define a new variable, which I’ll call
Z , corresponding to the absolute deviation from the group mean:

Z =|Y − |

Okay, what good does this do us? Well, let’s take a moment to think about what Z  actually is, and what we’re trying to test. The
value of Z  is a measure of how the i-th observation in the k-th group deviates from its group mean. And our null hypothesis is that
all groups have the same variance; that is, the same overall deviations from the group means! So, the null hypothesis in a Levene’s
test is that the population means of Z are identical for all groups. Hm. So what we need now is a statistical test of the null
hypothesis that all group means are identical. Where have we seen that before? Oh right, that’s what ANOVA is… and so all that
the Levene’s test does is run an ANOVA on the new variable Z .

What about the Brown-Forsythe test? Does that do anything particularly different? Nope. The only change from the Levene’s test is
that it constructs the transformed variable Z in a slightly different way, using deviations from the group medians rather than
deviations from the group means. That is, for the Brown-Forsythe test,

Z =|Y −median (Y)|

where median (Y) is the median for group k. Regardless of whether you’re doing the standard Levene test or the Brown-Forsythe
test, the test statistic – which is sometimes denoted F, but sometimes written as W – is calculated in exactly the same way that the
F-statistic for the regular ANOVA is calculated, just using a Z rather than Y . With that in mind, let’s just move on and look at
how to run the test in R.

12.8.1 Running the Levene’s test in R

Okay, so how do we run the Levene test? Obviously, since the Levene test is just an ANOVA, it would be easy enough to manually
create the transformed variable Z  and then use the aov()  function to run an ANOVA on that. However, that’s the tedious way
to do it. A better way to do run your Levene’s test is to use the leveneTest()  function, which is in the car  package. As
usual, we first load the package

library( car )  

## Loading required package: carData

and now that we have, we can run our Levene test. The main argument that you need to specify is y , but you can do this in lots
of different ways. Probably the simplest way to do it is actually input the original aov  object. Since I’ve got the my.anova
variable stored from my original ANOVA, I can just do this:

leveneTest( my.anova )

## Levene's Test for Homogeneity of Variance (center = median) 
##       Df F value Pr(>F) 
## group  2  1.4672 0.2618 
##       15

If we look at the output, we see that the test is non-significant (F =1.47,p=.26), so it looks like the homogeneity of variance
assumption is fine. Remember, although R reports the test statistic as an F-value, it could equally be called W, in which case you’d
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just write W =1.47. Also, note the part of the output that says center = median . That’s telling you that, by default, the 
leveneTest()  function actually does the Brown-Forsythe test. If you want to use the mean instead, then you need to

explicitly set the center  argument, like this:

leveneTest( y = my.anova, center = mean )

## Levene's Test for Homogeneity of Variance (center = mean) 
##       Df F value Pr(>F) 
## group  2  1.4497 0.2657 
##       15

That being said, in most cases it’s probably best to stick to the default value, since the Brown-Forsythe test is a bit more robust than
the original Levene test.

12.8.2 Additional comments

Two more quick comments before I move onto a different topic. Firstly, as mentioned above, there are other ways of calling the
leveneTest()  function. Although the vast majority of situations that call for a Levene test involve checking the assumptions

of an ANOVA (in which case you probably have a variable like my.anova  lying around), sometimes you might find yourself
wanting to specify the variables directly. Two different ways that you can do this are shown below:

Secondly, I did mention that it’s possible to run a Levene test just using the aov()  function. I don’t want to waste a lot of space
on this, but just in case some readers are interested in seeing how this is done, here’s the code that creates the new variables and
runs an ANOVA. If you are interested, feel free to run this to verify that it produces the same answers as the Levene test (i.e., with 
center = mean ):

Y <- clin.trial $ mood.gain    # the original outcome variable, Y 
G <- clin.trial $ drug         # the grouping variable, G 
gp.mean <- tapply(Y, G, mean)  # calculate group means 
Ybar <- gp.mean[G]             # group mean associated with each obs 
Z <- abs(Y - Ybar)             # the transformed variable, Z 
summary( aov(Z ~ G) )          # run the ANOVA 

##             Df Sum Sq Mean Sq F value Pr(>F) 
## G            2 0.0616 0.03080    1.45  0.266 
## Residuals   15 0.3187 0.02125

That said, I don’t imagine that many people will care about this. Nevertheless, it’s nice to know that you could do it this way if you
wanted to. And for those of you who do try it, I think it helps to demystify the test a little bit when you can see – with your own
eyes – the way in which Levene’s test relates to ANOVA.
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leveneTest(y = mood.gain ~ drug, data = clin.trial)   # y is a formula in this case 
leveneTest(y = clin.trial$mood.gain, group = clin.trial$drug)   # y is the outcome  
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12.9: Removing the Homogeneity of Variance Assumption
In our example, the homogeneity of variance assumption turned out to be a pretty safe one: the Levene test came back non-
significant, so we probably don’t need to worry. However, in real life we aren’t always that lucky. How do we save our ANOVA
when the homogeneity of variance assumption is violated? If you recall from our discussion of t-tests, we’ve seen this problem
before. The Student t-test assumes equal variances, so the solution was to use the Welch t-test, which does not. In fact, Welch
(1951) also showed how we can solve this problem for ANOVA too (the Welch one-way test). It’s implemented in R using the 
oneway.test()  function. The arguments that we’ll need for our example are:

formula . This is the model formula, which (as usual) needs to specify the outcome variable on the left hand side and the
grouping variable on the right hand side: i.e., something like outcome ~ group .
data . Specifies the data frame containing the variables.
var.equal . If this is FALSE  (the default) a Welch one-way test is run. If it is TRUE  then it just runs a regular

ANOVA.

The function also has a subset  argument that lets you analyse only some of the observations and a na.action  argument
that tells it how to handle missing data, but these aren’t necessary for our purposes. So, to run the Welch one-way ANOVA for our
example, we would do this:

oneway.test(mood.gain ~ drug, data = clin.trial)

## 
##  One-way analysis of means (not assuming equal variances) 
## 
## data:  mood.gain and drug 
## F = 26.322, num df = 2.0000, denom df = 9.4932, p-value = 0.000134

To understand what’s happening here, let’s compare these numbers to what we got earlier in Section 14.3 when we ran our original
ANOVA. To save you the trouble of flicking back, here are those numbers again, this time calculated by setting 
var.equal = TRUE  for the oneway.test()  function:

oneway.test(mood.gain ~ drug, data = clin.trial, var.equal = TRUE)

## 
##  One-way analysis of means 
## 
## data:  mood.gain and drug 
## F = 18.611, num df = 2, denom df = 15, p-value = 8.646e-05

Okay, so originally our ANOVA gave us the result F(2,15)=18.6, whereas the Welch one-way test gave us F(2,9.49)=26.32. In other
words, the Welch test has reduced the within-groups degrees of freedom from 15 to 9.49, and the F-value has increased from 18.6
to 26.32.
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12.10: Checking the Normality Assumption
Testing the normality assumption is relatively straightforward. We covered most of what you need to know in Section 13.9. The
only thing we really need to know how to do is pull out the residuals (i.e., the ϵ  values) so that we can draw our QQ plot and run
our Shapiro-Wilk test. First, let’s extract the residuals. R provides a function called residuals()  that will do this for us. If we
pass our my.anova  to this function, it will return the residuals. So let’s do that:

my.anova.residuals <- residuals( object = my.anova )   # extract the residuals

We can print them out too, though it’s not exactly an edifying experience. In fact, given that I’m on the verge of putting myself to
sleep just typing this, it might be a good idea to skip that step. Instead, let’s draw some pictures and run ourselves a hypothesis test:

shapiro.test( x = my.anova.residuals )   # run Shapiro-Wilk test

hist( x = my.anova.residuals )           # plot a histogram (similar to Figure @ref{f

qqnorm( y = my.anova.residuals )         # draw a QQ plot (similar to Figure @ref{fig
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## 
##  Shapiro-Wilk normality test 
## 
## data:  my.anova.residuals 
## W = 0.96019, p-value = 0.6053

The histogram and QQ plot are both look pretty normal to me.  This is supported by the results of our Shapiro-Wilk test (W=.96,
p=.61) which finds no indication that normality is violated.
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12.11: Removing the Normality Assumption
Now that we’ve seen how to check for normality, we are led naturally to ask what we can do to address violations of normality. In
the context of a one-way ANOVA, the easiest solution is probably to switch to a non-parametric test (i.e., one that doesn’t rely on
any particular assumption about the kind of distribution involved). We’ve seen non-parametric tests before, in Chapter 13: when
you only have two groups, the Wilcoxon test provides the non-parametric alternative that you need. When you’ve got three or more
groups, you can use the Kruskal-Wallis rank sum test (Kruskal and Wallis 1952). So that’s the test we’ll talk about next.

12.11.1 logic behind the Kruskal-Wallis test
The Kruskal-Wallis test is surprisingly similar to ANOVA, in some ways. In ANOVA, we started with Y , the value of the outcome
variable for the ith person in the kth group. For the Kruskal-Wallis test, what we’ll do is rank order all of these Y  values, and
conduct our analysis on the ranked data. So let’s let R  refer to the ranking given to the ith member of the kth group. Now, let’s
calculate , the average rank given to observations in the kth group:

and let’s also calculate , the grand mean rank:

Now that we’ve done this, we can calculate the squared deviations from the grand mean rank . When we do this for the
individual scores – i.e., if we calculate (  – what we have is a “nonparametric” measure of how far the ik-th observation
deviates from the grand mean rank. When we calculate the squared deviation of the group means from the grand means – i.e., if we
calculate (  – then what we have is a nonparametric measure of how much the group deviates from the grand mean rank.
With this in mind, let’s follow the same logic that we did with ANOVA, and define our ranked sums of squares measures in much
the same way that we did earlier. First, we have our “total ranked sums of squares”:

and we can define the “between groups ranked sums of squares” like this:

So, if the null hypothesis is true and there are no true group differences at all, you’d expect the between group rank sums RSS  to
be very small, much smaller than the total rank sums RSS . Qualitatively this is very much the same as what we found when we
went about constructing the ANOVA F-statistic; but for technical reasons the Kruskal-Wallis test statistic, usually denoted K, is
constructed in a slightly different way:

and, if the null hypothesis is true, then the sampling distribution of K is approximately chi-square with G−1 degrees of freedom
(where G is the number of groups). The larger the value of K, the less consistent the data are with null hypothesis, so this is a one-
sided test: we reject H  when K is sufficiently large.

12.11.2 Additional details

The description in the previous section illustrates the logic behind the Kruskal-Wallis test. At a conceptual level, this is the right
way to think about how the test works. However, from a purely mathematical perspective it’s needlessly complicated. I won’t show
you the derivation, but you can use a bit of algebraic jiggery-pokery  to show that the equation for K can be rewritten as

It’s this last equation that you sometimes see given for K. This is way easier to calculate than the version I described in the previous
section, it’s just that it’s totally meaningless to actual humans. It’s probably best to think of K the way I described it earlier… as an
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analogue of ANOVA based on ranks. But keep in mind that the test statistic that gets calculated ends up with a rather different look
to it than the one we used for our original ANOVA.

But wait, there’s more! Dear lord, why is there always more? The story I’ve told so far is only actually true when there are no ties
in the raw data. That is, if there are no two observations that have exactly the same value. If there are ties, then we have to
introduce a correction factor to these calculations. At this point I’m assuming that even the most diligent reader has stopped caring
(or at least formed the opinion that the tie-correction factor is something that doesn’t require their immediate attention). So I’ll very
quickly tell you how it’s calculated, and omit the tedious details about why it’s done this way. Suppose we construct a frequency
table for the raw data, and let f  be the number of observations that have the j-th unique value. This might sound a bit abstract, so
here’s the R code showing a concrete example:

f <- table( clin.trial$mood.gain )   # frequency table for mood gain 
print(f)   # we have some ties

## 
## 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.1 1.2 1.3 1.4 1.7 1.8  
##   1   1   2   1   1   2   1   1   1   1   2   2   1   1

Looking at this table, notice that the third entry in the frequency table has a value of 2. Since this corresponds to a mood.gain
of 0.3, this table is telling us that two people’s mood increased by 0.3. More to the point, note that we can say that f[3]  has a
value of 2 . Or, in the mathematical notation I introduced above, this is telling us that f =2. Yay. So, now that we know this, the
tie correction factor (TCF) is:

The tie-corrected value of the Kruskal-Wallis statistic obtained by dividing the value of K by this quantity: it is this tie-corrected
version that R calculates. And at long last, we’re actually finished with the theory of the Kruskal-Wallis test. I’m sure you’re all
terribly relieved that I’ve cured you of the existential anxiety that naturally arises when you realise that you don’t know how to
calculate the tie-correction factor for the Kruskal-Wallis test. Right?

12.11.3 run the Kruskal-Wallis test in R

Despite the horror that we’ve gone through in trying to understand what the Kruskal-Wallis test actually does, it turns out that
running the test is pretty painless, since R has a function called kruskal.test() . The function is pretty flexible, and allows
you to input your data in a few different ways. Most of the time you’ll have data like the clin.trial  data set, in which you
have your outcome variable mood.gain , and a grouping variable drug . If so, you can call the kruskal.test()
function by specifying a formula, and a data frame:

kruskal.test(mood.gain ~ drug, data = clin.trial)

## 
##  Kruskal-Wallis rank sum test 
## 
## data:  mood.gain by drug 
## Kruskal-Wallis chi-squared = 12.076, df = 2, p-value = 0.002386

A second way of using the kruskal.test()  function, which you probably won’t have much reason to use, is to directly
specify the outcome variable and the grouping variable as separate input arguments, x  and g :

kruskal.test(x = clin.trial$mood.gain, g = clin.trial$drug)  
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## 
##  Kruskal-Wallis rank sum test 
## 
## data:  clin.trial$mood.gain and clin.trial$drug 
## Kruskal-Wallis chi-squared = 12.076, df = 2, p-value = 0.002386

This isn’t very interesting, since it’s just plain easier to specify a formula. However, sometimes it can be useful to specify x  as a
list. What I mean is this. Suppose you actually had data as three separate variables, placebo , anxifree  and joyzepam
. If that’s the format that your data are in, then it’s convenient to know that you can bundle all three together as a list:

mood.gain <- list( placebo, joyzepam, anxifree ) 
kruskal.test( x = mood.gain )

And again, this would give you exactly the same results as the command we tried originally.
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12.12: On the Relationship Between ANOVA and the Student t Test
There’s one last thing I want to point out before finishing. It’s something that a lot of people find kind of surprising, but it’s worth
knowing about: an ANOVA with two groups is identical to the Student t-test. No, really. It’s not just that they are similar, but they
are actually equivalent in every meaningful way. I won’t try to prove that this is always true, but I will show you a single concrete
demonstration. Suppose that, instead of running an ANOVA on our mood.gain ~ drug  model, let’s instead do it using 
therapy  as the predictor. If we run this ANOVA, here’s what we get:

summary( aov( mood.gain ~ therapy, data = clin.trial ))

##             Df Sum Sq Mean Sq F value Pr(>F) 
## therapy      1  0.467  0.4672   1.708   0.21 
## Residuals   16  4.378  0.2736

Overall, it looks like there’s no significant effect here at all but, as we’ll see in Chapter @ref(anova2 this is actually a misleading
answer! In any case, it’s irrelevant to our current goals: our interest here is in the F-statistic, which is F(1,16)=1.71, and the p-value,
which is .21. Since we only have two groups, I didn’t actually need to resort to an ANOVA, I could have just decided to run a
Student t-test. So let’s see what happens when I do that:

t.test( mood.gain ~ therapy, data = clin.trial, var.equal = TRUE )

## 
##  Two Sample t-test 
## 
## data:  mood.gain by therapy 
## t = -1.3068, df = 16, p-value = 0.2098 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  -0.8449518  0.2005073 
## sample estimates: 
## mean in group no.therapy        mean in group CBT  
##                0.7222222                1.0444444

Curiously, the p-values are identical: once again we obtain a value of p=.21. But what about the test statistic? Having run a t-test
instead of an ANOVA, we get a somewhat different answer, namely t(16)=−1.3068. However, there is a fairly straightforward
relationship here. If we square the t-statistic

1.3068 ^ 2

## [1] 1.707726

we get the F-statistic from before.
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13.1: Prelude to Linear Regression
Linear regression is a very powerful statistical technique. Many people have some familiarity with regression just from reading the
news, where graphs with straight lines are overlaid on scatterplots. Linear models can be used for prediction or to evaluate whether
there is a linear relationship between two numerical variables.

Figure  shows two variables whose relationship can be modeled perfectly with a straight line. The equation for the line is

Imagine what a perfect linear relationship would mean: you would know the exact value of  just by knowing the value of . This
is unrealistic in almost any natural process. For example, if we took family income , this value would provide some useful
information about how much financial support  a college may offer a prospective student. However, there would still be
variability in financial support, even when comparing students whose families have similar financial backgrounds.

Figure : Requests from twelve separate buyers were simultaneously placed with a trading company to purchase Target
Corporation stock (ticker TGT, April 26th, 2012), and the total cost of the shares were reported. Because the cost is computed using
a linear formula, the linear t is perfect.

Linear regression assumes that the relationship between two variables,  and , can be modeled by a straight line:

where  and  represent two model parameters (  is the Greek letter beta). These parameters are estimated using data, and we
write their point estimates as  and . When we use  to predict , we usually call  the explanatory or predictor variable, and
we call  the response.

It is rare for all of the data to fall on a straight line, as seen in the three scatterplots in Figure . In each case, the data fall
around a straight line, even if none of the observations fall exactly on the line. The first plot shows a relatively strong downward
linear trend, where the remaining variability in the data around the line is minor relative to the strength of the relationship between 

 and . The second plot shows an upward trend that, while evident, is not as strong as the first. The last plot shows a very weak
downward trend in the data, so slight we can hardly notice it. In each of these examples, we will have some uncertainty regarding
our estimates of the model parameters,  and . For instance, we might wonder, should we move the line up or down a little, or
should we tilt it more or less?
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Figure : Three data sets where a linear model may be useful even though the data do not all fall exactly on the line.

As we move forward in this chapter, we will learn different criteria for line-fitting, and we will also learn about the uncertainty
associated with estimates of model parameters.
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13.2: Line Fitting, Residuals, and Correlation
We will also see examples in this chapter where fitting a straight line to the data, even if there is a clear relationship between the
variables, is not helpful. One such case is shown in Figure  where there is a very strong relationship between the variables
even though the trend is not linear. We will discuss nonlinear trends in this chapter and the next, but the details of fitting nonlinear
models discussed elsewhere. In this section, we examine criteria for identifying a linear model and introduce a new statistic,
correlation.

Figure : A linear model is not useful in this nonlinear case. These data are from an introductory physics experiment.

Beginning with Straight Lines

Scatterplots were introduced in Chapter 1 as a graphical technique to present two numerical variables simultaneously. Such plots
permit the relationship between the variables to be examined with ease. Figure  shows a scatterplot for the head length and
total length of 104 brushtail possums from Australia. Each point represents a single possum from the data.

Figure : A scatterplot showing head length against total length for 104 brushtail possums. A point representing a possum
with head length 94.1mm and total length 89 cm is highlighted.

The head and total length variables are associated. Possums with an above average total length also tend to have above average
head lengths. While the relationship is not perfectly linear, it could be helpful to partially explain the connection between these
variables with a straight line.
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Figure : The common brushtail possum of Australia. Photo by wollombi on Flickr: www.ickr.com/photos/wollombi/58499575

Straight lines should only be used when the data appear to have a linear relationship, such as the case shown in the left panel of
Figure . The right panel of Figure  shows a case where a curved line would be more useful in understanding the
relationship between the two variables.

Figure : The figure on the left shows head length versus total length, and reveals that many of the points could be captured
by a straight band. On the right, we see that a curved band is more appropriate in the scatterplot for weight and mpgCity from the
cars data set.

We only consider models based on straight lines in this chapter. If data show a nonlinear trend, like that in the right panel of
Figure , more advanced techniques should be used.

Fitting a line "By Eye"
We want to describe the relationship between the head length and total length variables in the possum data set using a line. In this
example, we will use the total length as the predictor variable, x, to predict a possum's head length, y. We could fit the linear
relationship by eye, as in Figure . The equation for this line is

We can use this line to discuss properties of possums. For instance, the equation predicts a possum with a total length of 80 cm will
have a head length of

A "hat" on y is used to signify that this is an estimate. This estimate may be viewed as an average: the equation predicts that
possums with a total length of 80 cm will have an average head length of 88.2 mm. Absent further information about an 80 cm
possum, the prediction for head length that uses the average is a reasonable estimate.

Residuals
Residuals are the leftover variation in the data after accounting for the model fit:
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Each observation will have a residual. If an observation is above the regression line, then its residual, the vertical distance from the
observation to the line, is positive. Observations below the line have negative residuals. One goal in picking the right linear model
is for these residuals to be as small as possible.

Three observations are noted specially in Figure . The observation marked by an "X" has a small, negative residual of about
-1; the observation marked by "+" has a large residual of about +7; and the observation marked by  has a moderate residual of
about -4. The size of a residual is usually discussed in terms of its absolute value. For example, the residual for  is larger than that
of "X" because | - 4| is larger than | - 1|.

Figure : A reasonable linear model was to represent the relationship between head length and total length.

The residual of the fifth observation ( ) is the difference of the observed response ( ) and the response we would predict
based on the model fit ( ):

We typically identify  by plugging xi into the model.

The linear fit shown in Figure  is given as . Based on this line, formally compute the residual of the
observation (77.0, 85.3). This observation is denoted by "X" on the plot. Check it against the earlier visual estimate, -1.

Solution

We first compute the predicted value of point "X" based on the model:

Next we compute the difference of the actual head length and the predicted head length:

This is very close to the visual estimate of -1.

If a model underestimates an observation, will the residual be positive or negative? What about if it overestimates the
observation?

Answer

Data= Fit + Residual (13.2.3)

13.2.5

Δ

Δ

13.2.5

Residual: difference between observed and expected

,x

i

y

i

y

i

y

^

i

= −e

i

y

i

y

^

i

(13.2.4)

y

^

i

Example 13.2.1

13.2.5 = 41 +0.59xy

^

= 41 +0.59 = 41 +0.59 ×77.0 = 86.4y

^

x

x

(13.2.5)

= − = 85.3 −86.4 = −1.1e

x

y

x

y

^

x

(13.2.6)

Exercise 13.2.1A

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/3.0/
https://stats.libretexts.org/@go/page/36179?pdf


13.2.4 https://stats.libretexts.org/@go/page/36179

If a model underestimates an observation, then the model estimate is below the actual. The residual, which is the actual
observation value minus the model estimate, must then be positive. The opposite is true when the model overestimates the
observation: the residual is negative.

Compute the residuals for the observations (85.0, 98.6) ("+" in Figure ) and (95.5, 94.0) (" ") using the linear
relationship

Answer

(+) First compute the predicted value based on the model:

Then the residual is given by

This was close to the earlier estimate of 7.

, close to the estimate of -4.

Residuals are helpful in evaluating how well a linear model fits a data set. We often display them in a residual plot such as the one
shown in Figure  for the regression line in Figure . The residuals are plotted at their original horizontal locations but
with the vertical coordinate as the residual. For instance, the point (85.0, 98.6)  had a residual of 7.45, so in the residual plot it is
placed at (85.0, 7.45). Creating a residual plot is sort of like tipping the scatterplot over so the regression line is horizontal.

Figure .

One purpose of residual plots is to identify characteristics or patterns still apparent in data after fitting a model. Figure 
shows three scatterplots with linear models in the first row and residual plots in the second row. Can you identify any patterns
remaining in the residuals?
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Figure : Sample data with their best fitting lines (top row) and their corresponding residual plots (bottom row).

Solution

In the first data set (first column), the residuals show no obvious patterns. The residuals appear to be scattered randomly
around the dashed line that represents 0.

The second data set shows a pattern in the residuals. There is some curvature in the scatterplot, which is more obvious in the
residual plot. We should not use a straight line to model these data. Instead, a more advanced technique should be used.

The last plot shows very little upwards trend, and the residuals also show no obvious patterns. It is reasonable to try to fit a
linear model to the data. However, it is unclear whether there is statistically significant evidence that the slope parameter is
different from zero. The point estimate of the slope parameter, labeled b , is not zero, but we might wonder if this could just be
due to chance. We will address this sort of scenario in Section 7.4.

Describing Linear Relationships with Correlation
We can compute the correlation using a formula, just as we did with the sample mean and standard deviation. However, this
formula is rather complex, so we generally perform the calculations on a computer or calculator. Figure  shows eight plots
and their corresponding correlations. Only when the relationship is perfectly linear is the correlation either -1 or 1. If the
relationship is strong and positive, the correlation will be near +1. If it is strong and negative, it will be near -1. If there is no
apparent linear relationship between the variables, then the correlation will be near zero.

Formally, we can compute the correlation for observations  using the formula

where , and  are the sample means and standard deviations for each variable.
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Figure : Sample scatterplots and their correlations. The first row shows variables with a positive relationship, represented by
the trend up and to the right. The second row shows variables with a negative trend, where a large value in one variable is
associated with a low value in the other.

Correlation, which always takes values between -1 and 1, describes the strength of the linear relationship between two
variables. We denote the correlation by R.

The correlation is intended to quantify the strength of a linear trend. Nonlinear trends, even when strong, sometimes produce
correlations that do not reflect the strength of the relationship; see three such examples in Figure .

Figure : Sample scatterplots and their correlations. In each case, there is a strong relationship between the variables.
However, the correlation is not very strong, and the relationship is not linear.

It appears no straight line would fit any of the datasets represented in Figure . Try drawing nonlinear curves on each
plot. Once you create a curve for each, describe what is important in your fit.

Answer

We'll leave it to you to draw the lines. In general, the lines you draw should be close to most points and reflect overall
trends in the data.

This page titled 13.2: Line Fitting, Residuals, and Correlation is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated
by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the LibreTexts
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13.3: Fitting a Line by Least Squares Regression
Fitting linear models by eye is open to criticism since it is based on an individual preference. In this section, we use least squares
regression as a more rigorous approach.

This section considers family income and gift aid data from a random sample of fifty students in the 2011 freshman class of
Elmhurst College in Illinois. Gift aid is financial aid that is a gift, as opposed to a loan. A scatterplot of the data is shown in Figure 

 along with two linear fits. The lines follow a negative trend in the data; students who have higher family incomes tended to
have lower gift aid from the university.

Figure : Gift aid and family income for a random sample of 50 freshman students from Elmhufirst College. Two lines are fit
to the data, the solid line being the least squares line. These data were sampled from a table of data for all freshman from the 2011
class at Elmhurst College that accompanied an article titled What Students Really Pay to Go to College published online by The
Chronicle of Higher Education: chronicle.com/article/What-Students-Really-Pay-to-Go/131435

Is the correlation positive or negative in Figure ?

Solution

Larger family incomes are associated with lower amounts of aid, so the correlation will be negative. Using a computer, the
correlation can be computed: -0.499.

An Objective Measure for Finding the Best Line
We begin by thinking about what we mean by "best". Mathematically, we want a line that has small residuals. Perhaps our criterion
could minimize the sum of the residual magnitudes:

which we could accomplish with a computer program. The resulting dashed line shown in Figure  demonstrates this fit can
be quite reasonable. However, a more common practice is to choose the line that minimizes the sum of the squared residuals:

The line that minimizes this least squares criterion is represented as the solid line in Figure . This is commonly called the
least squares line. The following are three possible reasons to choose Criterion  over Criterion :

1. It is the most commonly used method.
2. Computing the line based on Criterion  is much easier by hand and in most statistical software.
3. In many applications, a residual twice as large as another residual is more than twice as bad. For example, being off by 4 is

usually more than twice as bad as being off by squaring the residuals accounts for this discrepancy.

The first two reasons are largely for tradition and convenience; the last reason explains why Criterion  is typically most
helpful.

There are applications where Criterion  may be more useful, and there are plenty of other criteria we might consider.
However, this book only applies the least squares criterion.
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Conditions for the Least Squares Line
When fitting a least squares line, we generally require

Linearity. The data should show a linear trend. If there is a nonlinear trend (e.g. left panel of Figure ), an advanced
regression method from another book or later course should be applied.
Nearly normal residuals. Generally the residuals must be nearly normal. When this condition is found to be unreasonable, it is
usually because of outliers or concerns about influential points, which we will discuss in greater depth in Section 7.3. An
example of non-normal residuals is shown in the second panel of Figure .
Constant variability. The variability of points around the least squares line remains roughly constant. An example of non-
constant variability is shown in the third panel of Figure .

Figure : Four examples showing when the methods in this chapter are insufficient to apply to the data. In the left panel, a
straight line does not t the data. In the second panel, there are outliers; two points on the left are relatively distant from the rest of
the data, and one of these points is very far away from the line. In the third panel, the variability of the data around the line
increases with larger values of x. In the last panel, a time series data set is shown, where successive observations are highly
correlated.

Be cautious about applying regression to data collected sequentially in what is called a time series. Such data may have an
underlying structure that should be considered in a model and analysis. There are other instances where correlations within the data
are important. This topic will be further discussed in Chapter 8.

Should we have concerns about applying least squares regression to the Elmhurst data in Figure ?

Solution

The trend appears to be linear, the data fall around the line with no obvious outliers, the variance is roughly constant. These are
also not time series observations. Least squares regression can be applied to these data.

Finding the Least Squares Line
For the Elmhurst data, we could write the equation of the least squares regression line as

Here the equation is set up to predict gift aid based on a student's family income, which would be useful to students considering
Elmhurst. These two values,  and , are the parameters of the regression line.

As in Chapters 4-6, the parameters are estimated using observed data. In practice, this estimation is done using a computer in the
same way that other estimates, like a sample mean, can be estimated using a computer or calculator. However, we can also find the
parameter estimates by applying two properties of the least squares line:

• The slope of the least squares line can be estimated by

where R is the correlation between the two variables, and  and  are the sample standard deviations of the explanatory variable
and response, respectively.
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• If  is the mean of the horizontal variable (from the data) and  is the mean of the vertical variable, then the point ( ) is on the
least squares line.

We use  and  to represent the point estimates of the parameters  and .

Table 7.14 shows the sample means for the family income and gift aid as $101,800 and $19,940, respectively. Plot the point
(101.8, 19.94) on Figure  on page 324 to verify it falls on the least squares line (the solid line).

Table 7.14: Summary statistics for family income and gift aid.

family income, in $1000s ("x") gift aid, in $1000s ("y")

mean
sd

 = 101.8
 = 63.2

 = 19.94
 = 5.46

R = -0.499

If you need help finding this location, draw a straight line up from the x-value of 100 (or thereabout). Then draw a horizontal line
at 20 (or thereabout). These lines should intersect on the least squares line.

sing the summary statistics in Table 7.14, compute the slope for the regression line of gift aid against family income.

Hint:

Apply Equation  with the summary statistics from Table 7.14 to compute the slope:

You might recall the point-slope form of a line from math class (another common form is slope-intercept). Given the slope of a line
and a point on the line, ( ), the equation for the line can be written as

A common exercise to become more familiar with foundations of least squares regression is to use basic summary statistics and
point-slope form to produce the least squares line.

To identify the least squares line from summary statistics:

Estimate the slope parameter, , using Equation .
Noting that the point ( ) is on the least squares line, use  and  along with the slope  in the point-slope
equation:

Simplify the equation.

Using the point (101.8, 19.94) from the sample means and the slope estimate  from Exercise 7.14, and the least-
squares line for predicting aid based on family income.

Solution

Apply the point-slope equation using (101.8, 19.94) and the slope :
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Expanding the right side and then adding 19.94 to each side, the equation simplifies:

Here we have replaced y with  and x with  to put the equation in context.

We mentioned earlier that a computer is usually used to compute the least squares line. A summary table based on computer
output is shown in Table 7.15 for the Elmhurst data. The first column of numbers provides estimates for b0 and b1,
respectively. Compare these to the result from Example 7.16.

Table 7.15: Summary of least squares t for the Elmhurst data. Compare the parameter estimates in the rst column to the results of Example
7.16.

Estimate Std. Error t value Pr(>|t|)

(Intercept)
family_income

24.3193
-0.0431

1.2915
0.0108

18.83
-3.98

0.0000
0.0002

Examine the second, third, and fourth columns in Table 7.15. Can you guess what they represent?

Solution

We'll describe the meaning of the columns using the second row, which corresponds to . The first column provides the point
estimate for , as we calculated in an earlier example: -0.0431. The second column is a standard error for this point estimate:
0.0108. The third column is a t test statistic for the null hypothesis that . The last column is the p-value
for the t test statistic for the null hypothesis  and a two-sided alternative hypothesis: 0.0002. We will get into more of
these details in Section 7.4.

Suppose a high school senior is considering Elmhurst College. Can she simply use the linear equation that we have estimated
to calculate her nancial aid from the university?

Solution

She may use it as an estimate, though some qualifiers on this approach are important. First, the data all come from one
freshman class, and the way aid is determined by the university may change from year to year. Second, the equation will
provide an imperfect estimate. While the linear equation is good at capturing the trend in the data, no individual student's aid
will be perfectly predicted.

Interpreting Regression Line Parameter Estimates

Interpreting parameters in a regression model is often one of the most important steps in the analysis.

The slope and intercept estimates for the Elmhurst data are -0.0431 and 24.3. What do these numbers really mean?

Solution

Interpreting the slope parameter is helpful in almost any application. For each additional $1,000 of family income, we would
expect a student to receive a net difference of  in aid on average, i.e. $43.10 less. Note that a
higher family income corresponds to less aid because the coefficient of family income is negative in the model. We must be
cautious in this interpretation: while there is a real association, we cannot interpret a causal connection between the variables
because these data are observational. That is, increasing a student's family income may not cause the student's aid to drop. (It
would be reasonable to contact the college and ask if the relationship is causal, i.e. if Elmhurst College's aid decisions are
partially based on students' family income.)

y−19.94 = −0.0431(x−101.8) (13.3.9)

= 24.3 −0.0431 × family incomeaid

^

(13.3.10)

aid

^

family

income

Example 13.3.2

β

1

β

1

= : T = −3.98β

1

β

0

= 0β

1

Example 13.3.3

Example 13.3.2

$1, 000 ×(−0.0431) = −$43.10

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/3.0/
https://stats.libretexts.org/@go/page/36180?pdf


13.3.5 https://stats.libretexts.org/@go/page/36180

The estimated intercept  (in $1000s) describes the average aid if a student's family had no income. The meaning of
the intercept is relevant to this application since the family income for some students at Elmhurst is $0. In other applications,
the intercept may have little or no practical value if there are no observations where x is near zero.

The slope describes the estimated difference in the y variable if the explanatory variable x for a case happened to be one unit
larger. The intercept describes the average outcome of y if x = 0 and the linear model is valid all the way to x = 0, which in
many applications is not the case.

Extrapolation is Treacherous

When those blizzards hit the East Coast this winter, it proved to my satisfaction that global warming was a fraud. That snow was
freezing cold. But in an alarming trend, temperatures this spring have risen. Consider this: On February 6th it was 10 degrees.
Today it hit almost 80. At this rate, by August it will be 220 degrees. So clearly folks the climate debate rages on.

http://www.colbertnation.com/the-col...videos/269929/

Linear models can be used to approximate the relationship between two variables. However, these models have real limitations.
Linear regression is simply a modeling framework. The truth is almost always much more complex than our simple line. For
example, we do not know how the data outside of our limited window will behave.

Use the model  family income to estimate the aid of another freshman student whose family had income
of $1 million.

Recall that the units of family income are in $1000s, so we want to calculate the aid for family income = 1000:

The model predicts this student will have -$18,800 in aid (!). Elmhurst College cannot (or at least does not) require any
students to pay extra on top of tuition to attend.

Applying a model estimate to values outside of the realm of the original data is called extrapolation. Generally, a linear model is
only an approximation of the real relationship between two variables. If we extrapolate, we are making an unreliable bet that the
approximate linear relationship will be valid in places where it has not been analyzed.

Using R  to describe the strength of a fit
We evaluated the strength of the linear relationship between two variables earlier using the correlation, R. However, it is more
common to explain the strength of a linear t using R , called R-squared. If provided with a linear model, we might like to describe
how closely the data cluster around the linear fit.

The R  of a linear model describes the amount of variation in the response that is explained by the least squares line. For example,
consider the Elmhurst data, shown in Figure 7.16. The variance of the response variable, aid received, is . However, if
we apply our least squares line, then this model reduces our uncertainty in predicting
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Figure 7.16: Gift aid and family income for a random sample of 50 freshman students from Elmhurst College, shown with the least
squares regression line.

aid using a student's family income. The variability in the residuals describes how much variation remains after using the model: 
. In short, there was a reduction of

or about 25% in the data's variation by using information about family income for predicting aid using a linear model. This
corresponds exactly to the R-squared value:

If a linear model has a very strong negative relationship with a correlation of -0.97, how much of the variation in the response
is explained by the explanatory variable?

Categorical Predictors with two Levels
Categorical variables are also useful in predicting outcomes. Here we consider a categorical predictor with two levels (recall that a
level is the same as a category). We'll consider Ebay auctions for a video game, Mario Kart for the Nintendo Wii, where both the
total price of the auction and the condition of the game were recorded.  Here we want to predict total price based on game
condition, which takes values used and new. A plot of the auction data is shown in Figure 7.17.
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Figure 7.17: Total auction prices for the video game Mario Kart, divided into used (x = 0) and new (x = 1) condition games. The
least squares regression line is also shown.

To incorporate the game condition variable into a regression equation, we must convert the categories into a numerical form. We
will do so using an indicator variable called cond new, which takes value 1 when the game is new and 0 when the game is used.
Using this indicator variable, the linear model may be written as

About  or 94% of the variation is explained by the linear model.

These data were collected in Fall 2009 and may be found at openintro.org.

Table 7.18: Least squares regression summary for the nal auction price against the condition of the game.

Estimate Std. Error t value Pr(>|t|)

(Intercept)
cond_new

42.87
10.90

0.81
1.26

52.67
8.66

0.0000
0.0000

The fitted model is summarized in Table 7.18, and the model with its parameter estimates is given as

For categorical predictors with just two levels, the linearity assumption will always be satis ed. However, we must evaluate whether
the residuals in each group are approximately normal and have approximately equal variance. As can be seen in Figure 7.17, both
of these conditions are reasonably satis ed by the auction data.

Example 7.22 Interpret the two parameters estimated in the model for the price of Mario Kart in eBay auctions.

The intercept is the estimated price when cond new takes value 0, i.e. when the game is in used condition. That is, the average
selling price of a used version of the game is $42.87.

The slope indicates that, on average, new games sell for about $10.90 more than used games.

The estimated intercept is the value of the response variable for the first category (i.e. the category corresponding to an
indicator value of 0). The estimated slope is the average change in the response variable between the two categories.

We'll elaborate further on this Ebay auction data in Chapter 8, where we examine the influence of many predictor variables
simultaneously using multiple regression. In multiple regression, we will consider the association of auction price with regard to
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each variable while controlling for the influence of other variables. This is especially important since some of the predictors are
associated. For example, auctions with games in new condition also often came with more accessories.

This page titled 13.3: Fitting a Line by Least Squares Regression is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or
curated by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the
LibreTexts platform.

7.3: Fitting a Line by Least Squares Regression by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel is licensed CC BY-SA 3.0.
Original source: https://www.openintro.org/book/os.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/3.0/
https://stats.libretexts.org/@go/page/36180?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/13%3A_Introduction_to_Linear_Regression/13.03%3A_Fitting_a_Line_by_Least_Squares_Regression
https://creativecommons.org/licenses/by-sa/3.0
https://www.openintro.org/
https://www.openintro.org/book/os
https://stats.libretexts.org/@go/page/314
https://www.openintro.org/
https://creativecommons.org/licenses/by-sa/3.0/
https://www.openintro.org/book/os


13.4.1 https://stats.libretexts.org/@go/page/36181

13.4: Types of Outliers in Linear Regression
In this section, we identify criteria for determining which outliers are important and influential. Outliers in regression are
observations that fall far from the "cloud" of points. These points are especially important because they can have a strong influence
on the least squares line.

There are six plots shown in Figure  along with the least squares line and residual plots. For each scatter plot and
residual plot pair, identify any obvious outliers and note how they influence the least squares line. Recall that an outlier is any
point that doesn't appear to belong with the vast majority of the other points.

1. There is one outlier far from the other points, though it only appears to slightly influence the line.
2. There is one outlier on the right, though it is quite close to the least squares line, which suggests it wasn't very influential.
3. There is one point far away from the cloud, and this outlier appears to pull the least squares line up on the right; examine

how the line around the primary cloud doesn't appear to t very well.
4. There is a primary cloud and then a small secondary cloud of four outliers. The secondary cloud appears to be influencing

the line somewhat strongly, making the least square line t poorly almost everywhere. There might be an interesting
explanation for the dual clouds, which is something that could be investigated.

5. There is no obvious trend in the main cloud of points and the outlier on the right appears to largely control the slope of the
least squares line.

6. There is one outlier far from the cloud, however, it falls quite close to the least squares line and does not appear to be very
influential.

Examine the residual plots in Figure . You will probably nd that there is some trend in the main clouds of (3) and (4). In
these cases, the outliers influenced the slope of the least squares lines. In (5), data with no clear trend were assigned a line with
a large trend simply due to one outlier (!).

Figure : Six plots, each with a least squares line and residual plot. All data sets have at least one outlier.

Points that fall horizontally away from the center of the cloud tend to pull harder on the line, so we call them points with high
leverage.

Example 13.4.1

13.4.1

13.4.1

13.4.1

Definition: Leverage
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Points that fall horizontally far from the line are points of high leverage; these points can strongly influence the slope of the least
squares line. If one of these high leverage points does appear to actually invoke its influence on the slope of the line (as in cases
(3), (4), and (5) of Example ) then we call it an influential point. Usually we can say a point is influential if, had we plotted
the line without it, the influential point would have been unusually far from the least squares line.

It is tempting to remove outliers. Do not do this without a very good reason. Models that ignore exceptional (and interesting) cases
often perform poorly. For instance, if a financial firm ignored the largest market swings - the "outliers" - they would soon go
bankrupt by making poorly thought-out investments.

If there are outliers in the data, they should not be removed or ignored without a good reason. Whatever final model is fit to the
data would not be very helpful if it ignores the most exceptional cases.

Be cautious about using a categorical predictor when one of the levels has very few observations. When this happens, those
few observations become inuential points.

This page titled 13.4: Types of Outliers in Linear Regression is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated
by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the LibreTexts
platform.

7.4: Types of Outliers in Linear Regression by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel is licensed CC BY-SA 3.0.
Original source: https://www.openintro.org/book/os.

13.4.1

Caution: Don't ignore outliers when fitting a final model

Caution: Outliers for a categorical predictor with two levels
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13.5: Inference for Linear Regression
In this section we discuss uncertainty in the estimates of the slope and y-intercept for a regression line. Just as we identified
standard errors for point estimates in previous chapters, we first discuss standard errors for these new estimates. However, in the
case of regression, we will identify standard errors using statistical software.

Midterm elections and unemployment
Elections for members of the United States House of Representatives occur every two years, coinciding every four years with the
U.S. Presidential election. The set of House elections occurring during the middle of a Presidential term are called midterm
elections. In America's two-party system, one political theory suggests the higher the unemployment rate, the worse the President's
party will do in the midterm elections.

To assess the validity of this claim, we can compile historical data and look for a connection. We consider every midterm election
from 1898 to 2010, with the exception of those elections during the Great Depression. Figure  shows these data and the least-
squares regression line:

We consider the percent change in the number of seats of the President's party (e.g. percent change in the number of seats for
Democrats in 2010) against the unemployment rate.

Figure : The percent change in House seats for the President's party in each election from 1898 to 2010 plotted against the
unemployment rate. The two points for the Great Depression have been removed, and a least squares regression line has been t to
the data.

Examining the data, there are no clear deviations from linearity, the constant variance condition, or in the normality of residuals
(though we don't examine a normal probability plot here). While the data are collected sequentially, a separate analysis was used to
check for any apparent correlation between successive observations; no such correlation was found.

The data for the Great Depression (1934 and 1938) were removed because the unemployment rate was 21% and 18%,
respectively. Do you agree that they should be removed for this investigation? Why or why not?

Answer

We will provide two considerations. Each of these points would have very high leverage on any least-squares regression
line, and years with such high unemployment may not help us understand what would happen in other years where the

13.5.1

% change in House seats for President's party (13.5.1)

= −6.71 −1.00 ×(unemployment rate) (13.5.2)

13.5.1

Exercise 13.5.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/3.0/
https://stats.libretexts.org/@go/page/36182?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/13%3A_Introduction_to_Linear_Regression/13.05%3A_Inference_for_Linear_Regression


13.5.2 https://stats.libretexts.org/@go/page/36182

unemployment is only modestly high. On the other hand, these are exceptional cases, and we would be discarding
important information if we exclude them from a final analysis.

There is a negative slope in the line shown in Figure . However, this slope (and the y-intercept) are only estimates of the
parameter values. We might wonder, is this convincing evidence that the "true" linear model has a negative slope? That is, do the
data provide strong evidence that the political theory is accurate? We can frame this investigation into a one-sided statistical
hypothesis test:

H : . The true linear model has slope zero.
HA: . The true linear model has a slope less than zero. The higher the unemployment, the greater the losses for the
President's party in the House of Representatives.

We would reject H  in favor of H  if the data provide strong evidence that the true slope parameter is less than zero. To assess the
hypotheses, we identify a standard error for the estimate, compute an appropriate test statistic, and identify the p-value.

Understanding regression output from software
Just like other point estimates we have seen before, we can compute a standard error and test statistic for . We will generally
label the test statistic using a T, since it follows the t distribution.

We will rely on statistical software to compute the standard error and leave the explanation of how this standard error is determined
to a second or third statistics course. Table  shows software output for the least squares regression line in Figure . The
row labeled unemp represents the information for the slope, which is the coefficient of the unemployment variable.

Table : Output from statistical software for the regression line modeling the midterm election losses for the President's party as a response
to unemployment.

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.7142 5.4567 -1.23 0.2300

unemp -1.0010 0.8717 -1.15 0.2617

What do the first and second columns of Table  represent?

Solution

The entries in the first column represent the least squares estimates,  and , and the values in the second column correspond
to the standard errors of each estimate.

We previously used a t test statistic for hypothesis testing in the context of numerical data. Regression is very similar. In the
hypotheses we consider, the null value for the slope is 0, so we can compute the test statistic using the T (or Z) score formula:

We can look for the one-sided p-value - shown in Figure  - using the probability table for the t distribution in Appendix
B.2

13.5.1
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Figure : The distribution shown here is the sampling distribution for b1, if the null hypothesis was true. The shaded tail
represents the p-value for the hypothesis test evaluating whether there is convincing evidence that higher unemployment
corresponds to a greater loss of House seats for the President's party during a midterm election.

Table  offers the degrees of freedom for the test statistic T: df = 25. Identify the p-value for the hypothesis test.

Answer

Add answer text here and it will automatically be hidden if you have a "AutoNum" template active on the page.

Looking in the 25 degrees of freedom row in Appendix B.2, we see that the absolute value of the test statistic is smaller than any
value listed, which means the tail area and therefore also the p-value is larger than 0.100 (one tail!). Because the p-value is so large,
we fail to reject the null hypothesis. That is, the data do not provide convincing evidence that a higher unemployment rate has any
correspondence with smaller or larger losses for the President's party in the House of Representatives in midterm elections.

We could have identified the t test statistic from the software output in Table , shown in the second row (unemp) and third
column (t value). The entry in the second row and last column in Table  represents the p-value for the two-sided hypothesis
test where the null value is zero. The corresponding one-sided test would have a p-value half of the listed value.

We usually rely on statistical software to identify point estimates and standard errors for parameters of a regression line. After
verifying conditions hold for fitting a line, we can use the methods learned in Section 5.3 for the t distribution to create con
dence intervals for regression parameters or to evaluate hypothesis tests.

The last column in regression output often lists p-values for one particular hypothesis: a two-sided test where the null value is
zero. If your test is one-sided and the point estimate is in the direction of HA, then you can halve the software's p-value to get
the one-tail area. If neither of these scenarios match your hypothesis test, be cautious about using the software output to obtain
the p-value.

Examine Figure 7.16, which relates the Elmhurst College aid and student family income. How sure are you that the slope is
statistically significantly different from zero? That is, do you think a formal hypothesis test would reject the claim that the true
slope of the line should be zero?

Solution

While the relationship between the variables is not perfect, there is an evident decreasing trend in the data. This suggests the
hypothesis test will reject the null claim that the slope is zero.

13.5.2

Exercise 13.5.2

13.5.1

13.5.1

13.5.1

Inference for regression

Caution: Don't carelessly use the p-value from regression output

Example 13.5.3
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Table  shows statistical software output from tting the least squares regression line shown in Figure 7.16. Use this output
to formally evaluate the following hypotheses.

H : The true coefficient for family income is zero.
H : The true coefficient for family income is not zero.

Table : Summary of least squares t for the Elmhurst College data.

Estimate Std. Error t value Pr(>|t|)

(Intercept)
family_income

24.3193
-0.0431

1.2915
0.0108

18.83
-3.98

0.0000
0.0002

Answer

We look in the second row corresponding to the family income variable. We see the point estimate of the slope of the line is
-0.0431, the standard error of this estimate is 0.0108, and the t test statistic is -3.98. The p-value corresponds exactly to the
two-sided test we are interested in: 0.0002. The p-value is so small that we reject the null hypothesis and conclude that
family income and nancial aid at Elmhurst College for freshman entering in the year 2011 are negatively correlated and the
true slope parameter is indeed less than 0, just as we believed in Example 7.27.

If conditions for tting the regression line do not hold, then the methods presented here should not be applied. The standard
error or distribution assumption of the point estimate - assumed to be normal when applying the t test statistic - may not be
valid.

An alternative Test Statistic
We considered the t test statistic as a way to evaluate the strength of evidence for a hypothesis test in Section 7.4.2. However, we
could focus on R . Recall that R  described the proportion of variability in the response variable (y) explained by the explanatory
variable (x). If this proportion is large, then this suggests a linear relationship exists between the variables. If this proportion is
small, then the evidence provided by the data may not be convincing.

This concept - considering the amount of variability in the response variable explained by the explanatory variable - is a key
component in some statistical techniques. The analysis of variance (ANOVA) technique introduced in Section 5.5 uses this general
principle. The method states that if enough variability is explained away by the categories, then we would conclude the mean
varied between the categories. On the other hand, we might not be convinced if only a little variability is explained. ANOVA can
be further employed in advanced regression modeling to evaluate the inclusion of explanatory variables, though we leave these
details to a later course.

This page titled 13.5: Inference for Linear Regression is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by
David Diez, Christopher Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the LibreTexts platform.

7.5: Inference for Linear Regression by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel is licensed CC BY-SA 3.0. Original
source: https://www.openintro.org/book/os.
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13.6: Exercises

Line tting, residuals, and correlation

7.1 Visualize the residuals. The scatterplots shown below each have a superimposed regression line. If we were to construct a
residual plot (residuals versus x) for each, describe what those plots would look like.

7.2 Trends in the residuals. Shown below are two plots of residuals remaining after fitting a linear model to two different sets of
data. Describe important features and determine if a linear model would be appropriate for these data. Explain your reasoning.

7.3 Identify relationships, Part I. For each of the six plots, identify the strength of the relationship (e.g. weak, moderate, or
strong) in the data and whether tting a linear model would be reasonable.

7.4 Identify relationships, Part I. For each of the six plots, identify the strength of the relationship (e.g. weak, moderate, or
strong) in the data and whether tting a linear model would be reasonable.

7.5 The two scatterplots below show the relationship between nal and mid-semester exam grades recorded during several years for
a Statistics course at a university.

(a) Based on these graphs, which of the two exams has the strongest correlation with the final exam grade? Explain.

(b) Can you think of a reason why the correlation between the exam you chose in part (a) and the final exam is higher?

7.6 Husbands and wives, Part I. The Great Britain Office of Population Census and Surveys once collected data on a random
sample of 170 married couples in Britain, recording the age (in years) and heights (converted here to inches) of the husbands and
wives.16 The scatterplot on the left shows the wife's age plotted against her husband's age, and the plot on the right shows wife's
height plotted against husband's height.

(a) Describe the relationship between husbands' and wives' ages.

(b) Describe the relationship between husbands' and wives' heights.

(c) Which plot shows a stronger correlation? Explain your reasoning.

(d) Data on heights were originally collected in centimeters, and then converted to inches. Does this conversion affect the
correlation between husbands' and wives' heights?

7.7 Match the correlation, Part I.

Match the calculated correlations to the corresponding scatterplot.

(a) R = -0.7

(b) R = 0.45

(c) R = 0.06

(d) R = 0.92

7.8 Match the correlation, Part II.

Match the calculated correlations to the corresponding scatterplot.

(a) R = 0.49

(b) R = -0.48

(c) R = -0.03

(d) R = -0.85

D.J. Hand. A handbook of small data sets. Chapman & Hall/CRC, 1994.

7.9 Speed and height. 1,302 UCLA students were asked to ll out a survey where they were asked about their height, fastest speed
they have ever driven, and gender. The scatterplot on the left displays the relationship between height and fastest speed, and the
scatterplot on the right displays the breakdown by gender in this relationship.

(a) Describe the relationship between height and fastest speed.

16
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(b) Why do you think these variables are positively associated?

(c) What role does gender play in the relationship between height and fastest driving speed?

7.10 Trees. The scatterplots below show the relationship between height, diameter, and volume of timber in 31 felled black cherry
trees. The diameter of the tree is measured 4.5 feet above the ground.17

(a) Describe the relationship between volume and height of these trees.

(b) Describe the relationship between volume and diameter of these trees.

(c) Suppose you have height and diameter measurements for another black cherry tree. Which of these variables would be
preferable to use to predict the volume of timber in this tree using a simple linear regression model? Explain your reasoning.

Source: R Dataset, http://stat.ethz.ch/R-manual/R-patch...tml/trees.html.

7.11 The Coast Starlight, Part I. The Coast Starlight Amtrak train runs from Seattle to Los Angeles. The scatterplot below
displays the distance between each stop (in miles) and the amount of time it takes to travel from one stop to another (in minutes).

(a) Describe the relationship between distance and travel time.

(b) How would the relationship change if travel time was instead measured in hours, and distance was instead measured in
kilometers?

(c) Correlation between travel time (in miles) and distance (in minutes) is R = 0.636. What is the correlation between travel time
(in kilometers) and distance (in hours)?

7.12 Crawling babies, Part I. A study conducted at the University of Denver investigated whether babies take longer to learn to
crawl in cold months, when they are often bundled in clothes that restrict their movement, than in warmer months.18 Infants born
during the study year were split into twelve groups, one for each birth month. We consider the average crawling age of babies in
each group against the average temperature when the babies are six months old (that's when babies often begin trying to crawl).
Temperature is measured in degrees Fahrenheit ( F) and age is measured in weeks.

(a) Describe the relationship between temperature and crawling age.

(b) How would the relationship change if temperature was measured in degrees Celsius ( C) and age was measured in months?

(c) The correlation between temperature in F and age in weeks was R = -0.70. If we converted the temperature to C and age to

months, what would the correlation be?

J.B. Benson. "Season of birth and onset of locomotion: Theoretical and methodological implications". In: Infant behavior and
development 16.1 (1993), pp. 69-81. issn: 0163-6383.

7.13 Body measurements, Part I. Researchers studying anthropometry collected body girth measurements and skeletal diameter
measurements, as well as age, weight, height and gender for 507 physically active individuals.19 The scatterplot below shows the
relationship between height and shoulder girth (over deltoid muscles), both measured in centimeters.

(a) Describe the relationship between shoulder girth and height.

(b) How would the relationship change if shoulder girth was measured in inches while the units of height remained in centimeters?

7.14 Body measurements, Part II. The scatterplot below shows the relationship between weight measured in kilograms and hip
girth measured in centimeters from the data described in Exercise 7.13.

(a) Describe the relationship between hip girth and weight.

(b) How would the relationship change if weight was measured in pounds while the units for hip girth remained in centimeters?

7.15 Correlation, Part I. What would be the correlation between the ages of husbands and wives if men always married woman
who were

(a) 3 years younger than themselves?

(b) 2 years older than themselves?

(c) half as old as themselves?

17
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7.16 Correlation, Part II. What would be the correlation between the annual salaries of males and females at a company if for a
certain type of position men always made

(a) $5,000 more than women?

(b) 25% more than women?

(c) 15% less than women?

G. Heinz et al. "Exploring relationships in body dimensions". In: Journal of Statistics Education 11.2 (2003).

Fitting a line by least squares regression
7.17 Tourism spending. The Association of Turkish Travel Agencies reports the number of foreign tourists visiting Turkey and
tourist spending by year.20 The scatterplot below shows the relationship between these two variables along with the least squares
fit.

(a) Describe the relationship between number of tourists and spending.

(b) What are the explanatory and response variables?

(c) Why might we want to t a regression line to these data?

(d) Do the data meet the conditions required for tting a least squares line? In addition to the scatterplot, use the residual plot and
histogram to answer this question.

7.18 Nutrition at Starbucks, Part I. The scatterplot below shows the relationship between the number of calories and amount of
carbohydrates (in grams) Starbucks food menu items contain.21 Since Starbucks only lists the number of calories on the display
items, we are interested in predicting the amount of carbs a menu item has based on its calorie content.

(a) Describe the relationship between number of calories and amount of carbohydrates (in grams) that Starbucks food menu items
contain.

(b) In this scenario, what are the explanatory and response variables?

(c) Why might we want to t a regression line to these data?

(d) Do these data meet the conditions required for tting a least squares line?

7.19 The Coast Starlight, Part II. Exercise 7.11 introduces data on the Coast Starlight Amtrak train that runs from Seattle to Los
Angeles. The mean travel time from one stop to the next on the Coast Starlight is 129 mins, with a standard deviation of 113
minutes. The mean distance traveled from one stop to the next is 107 miles with a standard deviation of 99 miles. The correlation
between travel time and distance is 0.636.

(a) Write the equation of the regression line for predicting travel time.

(b) Interpret the slope and the intercept in this context.

(c) Calculate R  of the regression line for predicting travel time from distance traveled for the Coast Starlight, and interpret R  in
the context of the application.

(d) The distance between Santa Barbara and Los Angeles is 103 miles. Use the model to estimate the time it takes for the Starlight
to travel between these two cities.

(e) It actually takes the the Coast Starlight about 168 mins to travel from Santa Barbara to Los Angeles. Calculate the residual and
explain the meaning of this residual value.

(f) Suppose Amtrak is considering adding a stop to the Coast Starlight 500 miles away from Los Angeles. Would it be appropriate
to use this linear model to predict the travel time from Los Angeles to this point?

Source: Starbucks.com, collected on March 10, 2011, www.starbucks.com/menu/nutrition.

7.20 Body measurements, Part III. Exercise 7.13 introduces data on shoulder girth and height of a group of individuals. The
mean shoulder girth is 108.20 cm with a standard deviation of 10.37 cm. The mean height is 171.14 cm with a standard deviation
of 9.41 cm. The correlation between height and shoulder girth is 0.67.

(a) Write the equation of the regression line for predicting height.

19
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(b) Interpret the slope and the intercept in this context.

(c) Calculate R2 of the regression line for predicting height from shoulder girth, and interpret it in the context of the application.

(d) A randomly selected student from your class has a shoulder girth of 100 cm. Predict the height of this student using the model.

(e) The student from part (d) is 160 cm tall. Calculate the residual, and explain what this residual means.

(f) A one year old has a shoulder girth of 56 cm. Would it be appropriate to use this linear model to predict the height of this child?

7.21 Grades and TV. Data were collected on the number of hours per week students watch TV and the grade they earned in a
biology class on a 100 point scale. Based on the scatterplot and the residual plot provided, describe the relationship between the
two variables, and determine if a simple linear model is appropriate to predict a student's grade from the number of hours per week
the student watches TV.

7.22 Nutrition at Starbucks, Part II. Exercise 7.18 introduced a data set on nutrition information on Starbucks food menu items.
Based on the scatterplot and the residual plot provided, describe the relationship between the protein content and calories of these
menu items, and determine if a simple linear model is appropriate to predict amount of protein from the number of calories.

7.23 Helmets and lunches. The scatterplot shows the relationship between socioeconomic status measured as the percentage of
children in a neighborhood receiving reduced-fee lunches at school (lunch) and the percentage of bike riders in the neighborhood
wearing helmets (helmet). The average percentage of children receiving reduced-fee lunches is 30.8% with a standard deviation of
26.7% and the average percentage of bike riders wearing helmets is 38.8% with a standard deviation of 16.9%.

(a) If the R2 for the least-squares regression line for these data is 72%, what is the correlation between lunch and helmet?

(b) Calculate the slope and intercept for the leastsquares regression line for these data.

(c) Interpret the intercept of the least-squares regression line in the context of the application.

(d) Interpret the slope of the least-squares regression line in the context of the application.

(e) What would the value of the residual be for a neighborhood where 40% of the children receive reduced-fee lunches and 40% of
the bike riders wear helmets? Interpret the meaning of this residual in the context of the application.

Types of outliers in linear regression
7.24 Outliers, Part I. Identify the outliers in the scatterplots shown below, and determine what type of outliers they are. Explain
your reasoning.

7.25 Outliers, Part II. Identify the outliers in the scatterplots shown below and determine what type of outliers they are. Explain
your reasoning.

7.26 Crawling babies, Part II. Exercise 7.12 introduces data on the average monthly temperature during the month babies first try
to crawl (about 6 months after birth) and the average rst crawling age for babies born in a given month. A scatterplot of these two
variables reveals a potential outlying month when the average temperature is about 53 F and average crawling age is about 28.5
weeks. Does this point have high leverage? Is it an inuential point?

7.27 Urban homeowners, Part I. The scatterplot below shows the percent of families who own their home vs. the percent of the
population living in urban areas in 2010.22 There are 52 observations, each corresponding to a state in the US. Puerto Rico and
District of Columbia are also included.

(a) Describe the relationship between the percent of families who own their home and the percent of the population living in urban
areas in 2010.

(b) The outlier at the bottom right corner is District of Columbia, where 100% of the population is considered urban. What type of

outlier is this observation?

Inference for linear regression

In the following exercises, visually check the conditions for tting a least squares regression line, but you do not need to report these
conditions in your solutions.

7.28 Beer and blood alcohol content. Many people believe that gender, weight, drinking habits, and many other factors are much
more important in predicting blood alcohol content (BAC) than simply considering the number of drinks a person consumed. Here

0
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we examine data from sixteen student volunteers at Ohio State University who each drank a randomly assigned number of cans of
beer. These students were evenly divided between men and women, and they differed in weight and drinking habits. Thirty minutes
later, a police officer measured their blood alcohol content (BAC) in grams of alcohol per deciliter of blood.23 The scatterplot and
regression table summarize the ndings.

Estimate Std. Error t value Pr(>|t|)

(Intercept)
beers

-0.0127
0.0180

0.0126
0.0024

-1.00
7.48

0.3320
0.0000

(a) Describe the relationship between the number of cans of beer and BAC.

(b) Write the equation of the regression line. Interpret the slope and intercept in context.

(c) Do the data provide strong evidence that drinking more cans of beer is associated with an increase in blood alcohol? State the
null and alternative hypotheses, report the p-value, and state your conclusion.

(d) The correlation coefficient for number of cans of beer and BAC is 0.89. Calculate R  and interpret it in context.

(e) Suppose we visit a bar, ask people how many drinks they have had, and also take their BAC. Do you think the relationship
between number of drinks and BAC would be as strong as the relationship found in the Ohio State study?

United States Census Bureau, 2010 Census Urban and Rural Classi cation and Urban Area Criteria and Housing
Characteristics: 2010.

J. Malkevitch and L.M. Lesser. For All Practical Purposes: Mathematical Literacy in Today's World. WH Freeman & Co, 2008.

7.29 Body measurements, Part IV. The scatterplot and least squares summary below show the relationship between weight
measured in kilograms and height measured in centimeters of 507 physically active individuals.

Estimate Std. Error t value Pr(>|t|)

(Intercept)
height

-105.0113
1.0176

7.5394
0.0440

-13.93
23.13

0.0000
0.0000

(a) Describe the relationship between height and weight.

(b) Write the equation of the regression line. Interpret the slope and intercept in context.

(c) Do the data provide strong evidence that an increase in height is associated with an increase in weight? State the null and
alternative hypotheses, report the p-value, and state your conclusion.

(d) The correlation coefficient for height and weight is 0.72. Calculate R2 and interpret it in context.

7.30 Husbands and wives, Part II. Exercise 7.6 presents a scatterplot displaying the relationship between husbands' and wives'
ages in a random sample of 170 married couples in Britain, where both partners' ages are below 65 years. Given below is summary
output of the least squares fit for predicting wife's age from husband's age.

Estimate Std. Error t value Pr(>|t|)

(Intercept)
age_husband

1.5740
0.9112

1.1501
0.0259

1.37
35.25

0.1730
0.0000

(a) We might wonder, is the age difference between husbands and wives constant over time? If this were the case, then the slope
parameter would be 1 = 1. Use the information above to evaluate if there is strong evidence that the difference in husband and wife
ages actually has changed.

(b) Write the equation of the regression line for predicting wife's age from husband's age.

(c) Interpret the slope and intercept in context.

(d) Given that R2 = 0:88, what is the correlation of ages in this data set?

2
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(e) You meet a married man from Britain who is 55 years old. What would you predict his wife's age to be? How reliable is this
prediction?

(f) You meet another married man from Britain who is 85 years old. Would it be wise to use the same linear model to predict his
wife's age? Explain.

7.31 Husbands and wives, Part III. The scatterplot below summarizes husbands' and wives' heights in a random sample of 170
married couples in Britain, where both partners' ages are below 65 years. Summary output of the least squares t for predicting
wife's height from husband's height is also provided in the table.

Estimate Std. Error t value Pr(>|t|)

(Intercept)
height_husband

43.5755
0.2863

4.6842
0.0686

9.30
4.17

0.0000
0.0000

(a) Is there strong evidence that taller men marry taller women? State the hypotheses and include any information used to conduct
the test.

(b) Write the equation of the regression line for predicting wife's height from husband's height.

(c) Interpret the slope and intercept in the context of the application.

(d) Given that R2 = 0:09, what is the correlation of heights in this data set?

(e) You meet a married man from Britain who is 5'9" (69 inches). What would you predict his wife's height to be? How reliable is
this prediction?

(f) You meet another married man from Britain who is 6'7" (79 inches). Would it be wise to use the same linear model to predict his
wife's height? Why or why not?

7.32 Urban homeowners, Part II. Exercise 7.27 gives a scatterplot displaying the relationship between the percent of families that
own their home and the percent of the population living in urban areas. Below is a similar scatterplot, excluding District of
Columbia, as well as the residuals plot. There were 51 cases.

(a) For these data, R2 = 0:28. What is the correlation? How can you tell if it is positive or negative?

(b) Examine the residual plot. What do you observe? Is a simple least squares fit appropriate for these data?

7.33 Babies. Is the gestational age (time between conception and birth) of a low birth-weight baby useful in predicting head
circumference at birth? Twenty- ve low birth-weight babies were studied at a Harvard teaching hospital; the investigators
calculated the regression of head circumference (measured in centimeters) against gestational age (measured in weeks). The
estimated regression line is

head circdumference = 3:91 + 0:78 gestational age

(a) What is the predicted head circumference for a baby whose gestational age is 28 weeks?

(b) The standard error for the coefficient of gestational age is 0.35, which is associated with df = 23. Does the model provide strong
evidence that gestational age is signi cantly associated with head circumference?

7.34 Rate my professor. Some college students critique professors' teaching at RateMyProfessors.com, a web page where students
anonymously rate their professors on quality, easiness, and attractiveness. Using the self-selected data from this public forum,
researchers examine the relations between quality, easiness, and attractiveness for professors at various universities. In this exercise
we will work with a portion of these data that the researchers made publicly available.

The scatterplot on the right shows the relationship between teaching evaluation score (higher score means better) and standardized
beauty score (a score of 0 means average, negative score means below average, and a positive score means above average) for a
sample of 463 professors. Given below are associated diagnostic plots. Also given is a regression output for predicting teaching
evaluation score from beauty score.

J. Felton et al. "Web-based student evaluations of professors: the relations between perceived quality, easiness and sexiness". In:
Assessment & Evaluation in Higher Education 29.1 (2004), pp. 91-108.

Estimate Std. Error t value Pr(>|t|)
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(Intercept)
beauty

4.010
-----------

0.0255
0.0322

157.21
4.13

0.0000
0.0000

(a) Given that the average standardized beauty score is -0.0883 and average teaching evaluation score is 3.9983, calculate the slope.
Alternatively, the slope may be computed using just the information provided in the model summary table.

(b) Do these data provide convincing evidence that the slope of the relationship between teaching evaluation and beauty is
positive? Explain your reasoning.

(c) List the conditions required for linear regression and check if each one is satis ed for this model.
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CHAPTER OVERVIEW

14: Multiple and Logistic Regression
The principles of simple linear regression lay the foundation for more sophisticated regression methods used in a wide range of
challenging settings. In Chapter 8, we explore multiple regression, which introduces the possibility of more than one predictor, and
logistic regression, a technique for predicting categorical outcomes with two possible categories.

14.1: Introduction to Multiple Regression
14.2: Model Selection
14.3: Checking Model Assumptions using Graphs
14.4: Introduction to Logistic Regression
14.5: Exercises
14.6: Statistical Literacy
14.E: Regression (Exercises)

This page titled 14: Multiple and Logistic Regression is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by
David Diez, Christopher Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the LibreTexts platform.
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14.1: Introduction to Multiple Regression
Multiple regression extends simple two-variable regression to the case that still has one response but many predictors (denoted 

). The method is motivated by scenarios where many variables may be simultaneously connected to an output.

We will consider Ebay auctions of a video game called Mario Kart for the Nintendo Wii. The outcome variable of interest is the
total price of an auction, which is the highest bid plus the shipping cost. We will try to determine how total price is related to each
characteristic in an auction while simultaneously controlling for other variables. For instance, all other characteristics held constant,
are longer auctions associated with higher or lower prices? And, on average, how much more do buyers tend to pay for additional
Wii wheels(plastic steering wheels that attach to the Wii controller) in auctions? Multiple regression will help us answer these and
other questions.

The data set mario kart includes results from 141 auctions.  Four observations from this data set are shown in Table , and
descriptions for each variable are shown in Table . Notice that the condition and stock photo variables are indicator variables.
For instance, the cond new variable takes value 1 if the game up for auction is new and 0 if it is used. Using indicator variables in
place of category names allows for these variables to be directly used in regression. See Section 7.2.7 for additional details.
Multiple regression also allows for categorical variables with many levels, though we do not have any such variables in this
analysis, and we save these details for a second or third course.

Diez DM, Barr CD, and Cetinkaya-Rundel M. 2012. openintro: OpenIntro data sets and supplemental functions. cran.r-
project.org/web/packages/openintro.

Table : Four observations from the mario kart data set.

price cond new stock photo duration wheels

1 51.55 1 1 3 1

2 37.04 0 1 3 1

140 38.76 0 0 7 0

141 54.51 1 1 1 2

Table : Variables and their descriptions for the mario kart data set.

variable description

price final auction price plus shipping costs, in US dollars

cond_new
a coded two-level categorical variable, which takes value 1 when
the game is new and 0 if the game is used

stock_photo
a coded two-level categorical variable, which takes value 1 if the
primary photo used in the auction was a stock photo and 0 if the
photo was unique to that auction

duration the length of the auction, in days, taking values from 1 to 10

wheels
the number of Wii wheels included with the auction (a Wii wheel
is a plastic racing wheel that holds the Wii controller and is an
optional but helpful accessory for playing Mario Kart)

A Single-Variable Model for the Mario Kart Data
Let's fit a linear regression model with the game's condition as a predictor of auction price. The model may be written as

Results of this model are shown in Table  and a scatterplot for price versus game condition is shown in Figure .
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Figure : Scatterplot of the total auction price against the game's condition. The least squares line is also shown.

Table : Summary of a linear model for predicting auction price based on game condition.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.8711 0.8140 52.67 0.0000

cond_new 10.8996 1.2583 8.66 0.0000

Figure . Does the linear model seem reasonable?

Answer

Yes. Constant variability, nearly normal residuals, and linearity all appear reasonable.

Interpret the coefficient for the game's condition in the model. Is this coefficient significantly different from 0?

Note that cond new is a two-level categorical variable that takes value 1 when the game is new and value 0 when the game is used.
So 10.90 means that the model predicts an extra $10.90 for those games that are new versus those that are used. (See Section 7.2.7
for a review of the interpretation for two-level categorical predictor variables.) Examining the regression output in Table , we
can see that the p-value for cond new is very close to zero, indicating there is strong evidence that the coefficient is different from
zero when using this simple one-variable model.

Including and Assessing Many Variables in a Model
Sometimes there are underlying structures or relationships between predictor variables. For instance, new games sold on Ebay tend
to come with more Wii wheels, which may have led to higher prices for those auctions. We would like to fit a model that includes
all potentially important variables simultaneously. This would help us evaluate the relationship between a predictor variable and the
outcome while controlling for the potential influence of other variables. This is the strategy used in multiple regression. While we
remain cautious about making any causal interpretations using multiple regression, such models are a common first step in
providing evidence of a causal connection.

We want to construct a model that accounts for not only the game condition, as in Section 8.1.1, but simultaneously accounts for
three other variables: stock photo, duration, and wheels.

14.1.4

14.1.3

Exercise 14.1.1

14.1.4

Exercise 14.1.2

14.1.3

= + ×cond_ new + ×stock_ photo + ×duration+ ×wheelsprice
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In this equation,  represents the total price,  indicates whether the game is new,  indicates whether a stock photo was used, 
is the duration of the auction, and  is the number of Wii wheels included with the game. Just as with the single predictor case, a
multiple regression model may be missing important components or it might not precisely represent the relationship between the
outcome and the available explanatory variables.

While no model is perfect, we wish to explore the possibility that this one may fit the data reasonably well.

We estimate the parameters  in the same way as we did in the case of a single predictor. We select  that
minimize the sum of the squared residuals:

Here there are 141 residuals, one for each observation. We typically use a computer to minimize the sum in Equation (8.4) and
compute point estimates, as shown in the sample output in Table . Using this output, we identify the point estimates  of
each , just as we did in the one-predictor case.

Table : Output for the regression model where price is the outcome and cond_new, stock_photo, duration, and wheels are the predictors.

Estimate Std. Error t value Pr(>|t|)

(Intercept)
cond_new

stock_photo
duration
wheels

36.2110
5.1306
1.0803
-0.0268
7.2852

1.5140
1.0511
1.0568
0.1904
0.5547

23.92
4.88
1.02
-0.14
13.13

0.0000
0.0000
0.3085
0.8882
0.0000

A multiple regression model is a linear model with many predictors. In general, we write the model as

when there are k predictors. We often estimate the  parameters using a computer.

Write out the model in Equation (8.3) using the point estimates from Table . How many predictors are there in this
model?

Answer

, and there are k = 4 predictor variables.

What does , the coefficient of variable  (Wii wheels), represent? What is the point estimate of ?

Answer

It is the average difference in auction price for each additional Wii wheel included when holding the other variables constant.
The point estimate is .

Compute the residual of the first observation in Table  on page 355 using the equation identified in Exercise 8.5.

Answer

, where 49.62 was computed using the variables values from the observation and the
equation identified in Exercise .
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We estimated a coefficient for cond new in Section 8.1.1 of  with a standard error of  when using
simple linear regression. Why might there be a difference between that estimate and the one in the multiple regression setting?

If we examined the data carefully, we would see that some predictors are correlated. For instance, when we estimated the
connection of the outcome price and predictor cond new using simple linear regression, we were unable to control for other
variables like the number of Wii wheels included in the auction. That model was biased by the confounding variable wheels.
When we use both variables, this particular underlying and unintentional bias is reduced or eliminated (though bias from other
confounding variables may still remain).

Example  describes a common issue in multiple regression: correlation among predictor variables. We say the two predictor
variables are collinear (pronounced as co-linear) when they are correlated, and this collinearity complicates model estimation.
While it is impossible to prevent collinearity from arising in observational data, experiments are usually designed to prevent
predictors from being collinear.

The estimated value of the intercept is 36.21, and one might be tempted to make some interpretation of this coefficient, such
as, it is the model's predicted price when each of the variables take value zero: the game is used, the primary image is not a
stock photo, the auction duration is zero days, and there are no wheels included. Is there any value gained by making this
interpretation?

Solution

Three of the variables (cond new, stock photo, and wheels) do take value 0, but the auction duration is always one or more
days. If the auction is not up for any days, then no one can bid on it! That means the total auction price would always be zero
for such an auction; the interpretation of the intercept in this setting is not insightful.

Adjusted R  as a better estimate of explained variance

We first used R  in Section 7.2 to determine the amount of variability in the response that was explained by the model:

where  represents the residuals of the model and yi the outcomes. This equation remains valid in the multiple regression
framework, but a small enhancement can often be even more informative.

The variance of the residuals for the model given in Exercise 8.7 is 23.34, and the variance of the total price in all the auctions
is 83.06. Calculate  for this model.

Solution

.

This strategy for estimating  is acceptable when there is just a single variable. However, it becomes less helpful when there are
many variables. The regular  is actually a biased estimate of the amount of variability explained by the model. To get a better
estimate, we use the adjusted .

The adjusted  is computed as

Example 14.1.1
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where n is the number of cases used to fit the model and  is the number of predictor variables in the model.

Because k is never negative, the adjusted  will be smaller - often times just a little smaller - than the unadjusted . The
reasoning behind the adjusted  lies in the degrees of freedom associated with each variance.

In multiple regression, the degrees of freedom associated with the variance of the estimate of the residuals is n - k - 1, not n - 1.
For instance, if we were to make predictions for new data using our current model, we would nd that the unadjusted R  is an
overly optimistic estimate of the reduction in variance in the response, and using the degrees of freedom in the adjusted R
formula helps correct this bias.

There were n = 141 auctions in the mario_kart data set and k = 4 predictor variables in the model. Use n, k, and the variances
from Exercise 8.10 to calculate  for the Mario Kart model.

Solution

.

Suppose you added another predictor to the model, but the variance of the errors  didn't go down. What would happen
to the ? What would happen to the adjusted ?

Solution

The unadjusted  would stay the same and the adjusted  would go down.

This page titled 14.1: Introduction to Multiple Regression is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by
David Diez, Christopher Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the LibreTexts platform.

8.1: Introduction to Multiple Regression by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel is licensed CC BY-SA 3.0. Original
source: https://www.openintro.org/book/os.
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14.2: Model Selection
The best model is not always the most complicated. Sometimes including variables that are not evidently important can actually
reduce the accuracy of predictions. In this section we discuss model selection strategies, which will help us eliminate from the
model variables that are less important. In this section, and in practice, the model that includes all available explanatory variables is
often referred to as the full model. Our goal is to assess whether the full model is the best model. If it isn't, we want to identify a
smaller model that is preferable.

Identifying Variables in the Model that may not be Helpful
Table 8.6 provides a summary of the regression output for the full model for the auction data. The last column of the table lists p-
values that can be used to assess hypotheses of the following form:

H :  = 0 when the other explanatory variables are included in the model.
H :  when the other explanatory variables are included in the model.

Table 8.6: The fit for the full regression model, including the adjusted .

Estimate Std. Error t value Pr(>|t|)

(Intercept)
cond_new

stock_photo
duration
wheels

36.2110
5.1306
1.0803
-0.0268
7.2852

1.5140
1.0511
1.0568
0.1904
0.5547

23.92
4.88
1.02
-0.14
13.13

0.0000
0.0000
0.3085
0.8882
0.0000

The coefficient of cond new has a t test statistic of T = 4.88 and a p-value for its corresponding hypotheses (
) of about zero. How can this be interpreted?

Solution

If we keep all the other variables in the model and add no others, then there is strong evidence that a game's condition (new or
used) has a real relationship with the total auction price.

Is there strong evidence that using a stock photo is related to the total auction price?

Solution

The t test statistic for stock photo is T = 1.02 and the p-value is about 0.31. After accounting for the other predictors, there is
not strong evidence that using a stock photo in an auction is related to the total price of the auction. We might consider
removing the stock photo variable from the model.

Identify the p-values for both the duration and wheels variables in the model. Is there strong evidence supporting the
connection of these variables with the total price in the model?

Answer

The p-value for the auction duration is 0.8882, which indicates that there is not statistically significant evidence that the
duration is related to the total auction price when accounting for the other variables. The p-value for the Wii wheels variable is
about zero, indicating that this variable is associated with the total auction price.

There is not statistically significant evidence that either the stock photo or duration variables contribute meaningfully to the model.
Next we consider common strategies for pruning such variables from a model.

0 β

i

A ≠ 0β

i

R

2

Example 14.2.1

: = 0, : ≠ 0H

0

β

1

H

A

β

1

Example 14.2.2

Exercise 14.2.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/3.0/
https://stats.libretexts.org/@go/page/36186?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/14%3A_Multiple_and_Logistic_Regression/14.02%3A_Model_Selection


14.2.2 https://stats.libretexts.org/@go/page/36186

The adjusted  may be used as an alternative to p-values for model selection, where a higher adjusted  represents a better
model t. For instance, we could compare two models using their adjusted , and the model with the higher adjusted 
would be preferred. This approach tends to include more variables in the final model when compared to the p-value approach.

Two model selection strategies
Two common strategies for adding or removing variables in a multiple regression model are called backward-selection and
forward-selection. These techniques are often referred to as stepwise model selection strategies, because they add or delete one
variable at a time as they "step" through the candidate predictors. We will discuss these strategies in the context of the p-value
approach. Alternatively, we could have employed an  approach.

The backward-elimination strategy starts with the model that includes all potential predictor variables. Variables are eliminated
one-at-a-time from the model until only variables with statistically significant p-values remain. The strategy within each
elimination step is to drop the variable with the largest p-value, re t the model, and reassess the inclusion of all variables.

Results corresponding to the full model for the mario kart data are shown in Table 8.6. How should we proceed under the
backward-elimination strategy?

Solution

There are two variables with coefficients that are not statistically different from zero: stock_photo and duration. We first drop
the duration variable since it has a larger corresponding p-value, then we re t the model. A regression summary for the new
model is shown in Table 8.7.

In the new model, there is not strong evidence that the coefficient for stock photo is different from zero, even though the p-
value decreased slightly, and the other p-values remain very small. Next, we again eliminate the variable with the largest non-
significant p-value, stock photo, and re t the model. The updated regression summary is shown in Table 8.8.

In the latest model, we see that the two remaining predictors have statistically significant coefficients with p-values of about zero.
Since there are no variables remaining that could be eliminated from the model, we stop. The final model includes only the
cond_new and wheels variables in predicting the total auction price:

where  represents cond new and x4 represents wheels.

An alternative to using p-values in model selection is to use the adjusted . At each elimination step, we refit the model without
each of the variables up for potential elimination. For example, in the first step, we would fit four models, where each would be
missing a different predictor. If one of these smaller models has a higher adjusted  than our current model, we pick the smaller
model with the largest adjusted . We continue in this way until removing variables does not increase . Had we used the
adjusted  criteria, we would have kept the stock photo variable along with the cond new and wheels variables.

Notice that the p-value for stock photo changed a little from the full model (0.309) to the model that did not include the duration
variable (0.275). It is common for p-values of one variable to change, due to collinearity, after eliminating a different variable. This
fluctuation emphasizes the importance of refitting a model after each variable elimination step. The p-values tend to change
dramatically when the eliminated variable is highly correlated with another variable in the model.

The forward-selection strategy is the reverse of the backward-elimination technique. Instead of eliminating variables one-at-a-
time, we add variables one-at-a-time until we cannot nd any variables that present strong evidence of their importance in the model.

Table 8.7: The output for the regression model where price is the outcome and the duration variable has been eliminated from the model.

Estimate Std. Error t value Pr(>|t|)

TIP: Using adjusted  instead of p-values for model selectionR
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Estimate Std. Error t value Pr(>|t|)

(Intercept)
cond_new

stock_photo
wheels

36.0483
5.1763
1.1177
7.2984

0.9745
0.9961
1.0192
0.5448

36.99
5.20
1.10
13.40

0.0000
0.0000
0.2747
0.0000

Table 8.8: The output for the regression model where price is the outcome and the duration and stock photo variables have been eliminated from
the model.

Estimate Std. Error t value Pr(>|t|)

(Intercept)
cond_new

wheels

36.7849
5.5848
7.2328

0.7066
0.9245
0.5419

52.06
6.04
13.35

0.0000
0.0000
0.0000

Construct a model for the mario kart data set using the forward selection strategy.

Solution

We start with the model that includes no variables. Then we t each of the possible models with just one variable. That is, we fit
the model including just the cond new predictor, then the model including just the stock photo variable, then a model with just
duration, and a model with just wheels. Each of the four models (yes, we fit four models!) provides a p-value for the
coefficient of the predictor variable. Out of these four variables, the wheels variable had the smallest p-value. Since its p-value
is less than 0.05 (the p-value was smaller than 2e-16), we add the Wii wheels variable to the model. Once a variable is added in
forward-selection, it will be included in all models considered as well as the nal model.

Since we successfully found a first variable to add, we consider adding another. We fit three new models: (1) the model
including just the cond_new and wheels variables (output in Table 8.8), (2) the model including just the stock photo and wheels
variables, and (3) the model including only the duration and wheels variables. Of these models, the first had the lowest p-value
for its new variable (the p-value corresponding to cond new was 1.4e-08). Because this p-value is below 0.05, we add the
cond_new variable to the model. Now the final model is guaranteed to include both the condition and wheels variables.

We must then repeat the process a third time, fitting two new models: (1) the model including the stock photo, cond_new, and
wheels variables (output in Table 8.7) and (2) the model including the duration, cond new, and wheels variables. The p-value
corresponding to stock photo in the first model (0.275) was smaller than the p-value corresponding to duration in the second
model (0.682). However, since this smaller p-value was not below 0.05, there was not strong evidence that it should be
included in the model. Therefore, neither variable is added and we are finished.

The final model is the same as that arrived at using the backward-selection strategy.

As before, we could have used the  criteria instead of examining p-values in selecting variables for the model. Rather than
look for variables with the smallest p-value, we look for the model with the largest . What would the result of forward-
selection be using the adjusted  approach?

Solution

Using the forward-selection strategy, we start with the model with no predictors. Next we look at each model with a single
predictor. If one of these models has a larger  than the model with no variables, we use this new model. We repeat this
procedure, adding one variable at a time, until we cannot nd a model with a larger . If we had done the forward-selection
strategy using , we would have arrived at the model including cond new, stock photo, and wheels, which is a slightly
larger model than we arrived at using the p-value approach and the same model we arrived at using the adjusted  and
backwards-elimination.

Example : forward selection strategy14.2.4
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The backward-elimination strategy begins with the largest model and eliminates variables one-by-one until we are satis ed that
all remaining variables are important to the model. The forward-selection strategy starts with no variables included in the
model, then it adds in variables according to their importance until no other important variables are found.

There is no guarantee that the backward-elimination and forward-selection strategies will arrive at the same nal model using the p-
value or adjusted  methods. If the backwards-elimination and forward-selection strategies are both tried and they arrive at
different models, choose the model with the larger  as a tie-breaker; other tie-break options exist but are beyond the scope of
this book.

It is generally acceptable to use just one strategy, usually backward-elimination with either the p-value or adjusted  criteria.
However, before reporting the model results, we must verify the model conditions are reasonable.

This page titled 14.2: Model Selection is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by David Diez,
Christopher Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the LibreTexts platform.

8.2: Model Selection by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel is licensed CC BY-SA 3.0. Original source:
https://www.openintro.org/book/os.
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14.3: Checking Model Assumptions using Graphs
Multiple regression methods using the model

generally depend on the following four assumptions:

1. the residuals of the model are nearly normal,
2. the variability of the residuals is nearly constant,
3. the residuals are independent, and
4. each variable is linearly related to the outcome.

Simple and effective plots can be used to check each of these assumptions. We will consider the model for the auction data that
uses the game condition and number of wheels as predictors.

Figure : A normal probability plot of the residuals is helpful in identifying observations that might be outliers.

Normal probability plot. A normal probability plot of the residuals is shown in Figure . While the plot exhibits some minor
irregularities, there are no outliers that might be cause for concern. In a normal probability plot for residuals, we tend to be most
worried about residuals that appear to be outliers, since these indicate long tails in the distribution of residuals.

Absolute values of residuals against fitted values. A plot of the absolute value of the residuals against their corresponding fitted
values ( ) is shown in Figure . This plot is helpful to check the condition that the variance of the residuals is approximately
constant. We do not see any obvious deviations from constant variance in this example.

Figure : Comparing the absolute value of the residuals against the fitted values ( ) is helpful in identifying deviations from
the constant variance assumption.
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Residuals in order of their data collection. A plot of the residuals in the order their corresponding auctions were observed is
shown in Figure . Such a plot is helpful in identifying any connection between cases that are close to one another, e.g. we
could look for declining prices over time or if there was a time of the day when auctions tended to fetch a higher price. Here we see
no structure that indicates a problem.

Figure : Plotting residuals in the order that their corresponding observations were collected helps identify connections
between successive observations. If it seems that consecutive observations tend to be close to each other, this indicates the
independence assumption of the observations would fail.

Residuals against each predictor variable. We consider a plot of the residuals against the cond_new variable and the residuals
against the wheels variable. These plots are shown in Figure . For the two-level condition variable, we are guaranteed not to
see any remaining trend, and instead we are checking that the variability does not fluctuate across groups. In this example, when we
consider the residuals against the wheels variable, we see some possible structure. There appears to be curvature in the residuals,
indicating the relationship is probably not linear.

An especially rigorous check would use time series methods. For instance, we could check whether consecutive residuals are
correlated. Doing so with these residuals yields no statistically significant correlations.

Figure : In the two-level variable for the game's condition, we check for differences in distribution shape or variability. For
numerical predictors, we also check for trends or other structure. We see some slight bowing in the residuals against the wheels
variable.
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It is necessary to summarize diagnostics for any model fit. If the diagnostics support the model assumptions, this would improve
credibility in the ndings. If the diagnostic assessment shows remaining underlying structure in the residuals, we should try to adjust
the model to account for that structure. If we are unable to do so, we may still report the model but must also note its shortcomings.
In the case of the auction data, we report that there may be a nonlinear relationship between the total price and the number of
wheels included for an auction. This information would be important to buyers and sellers; omitting this information could be a
setback to the very people who the model might assist.

The truth is that no model is perfect. However, even imperfect models can be useful. Reporting a awed model can be
reasonable so long as we are clear and report the model's shortcomings.

While there is a little leeway in model assumptions, do not go too far. If model assumptions are very clearly violated, consider
a new model, even if it means learning more statistical methods or hiring someone who can help.

Confidence intervals for coefficients in multiple regression can be computed using the same formula as in the single predictor
model:

where  is the appropriate t value corresponding to the confidence level and model degrees of freedom, .

This page titled 14.3: Checking Model Assumptions using Graphs is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or
curated by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the
LibreTexts platform.

8.3: Checking Model Assumptions using Graphs by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel is licensed CC BY-SA 3.0.
Original source: https://www.openintro.org/book/os.

"All models are wrong, but some are useful" -George E.P. Box

Caution: do not report results when assumptions are grossly violated

TIP: Confidence intervals in multiple regression
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14.4: Introduction to Logistic Regression
In this section we introduce logistic regression as a tool for building models when there is a categorical response variable with two
levels. Logistic regression is a type of generalized linear model (GLM) for response variables where regular multiple regression
does not work very well. In particular, the response variable in these settings often takes a form where residuals look completely
different from the normal distribution.

GLMs can be thought of as a two-stage modeling approach. We first model the response variable using a probability distribution,
such as the binomial or Poisson distribution. Second, we model the parameter of the distribution using a collection of predictors
and a special form of multiple regression.

In Section 8.4 we will revisit the email data set from Chapter 1. These emails were collected from a single email account, and we
will work on developing a basic spam filter using these data. The response variable, spam, has been encoded to take value 0 when a
message is not spam and 1 when it is spam. Our task will be to build an appropriate model that classi es messages as spam or not
spam using email characteristics coded as predictor variables. While this model will not be the same as those used in large-scale
spam filters, it shares many of the same features.

Table : Descriptions for 11 variables in the email data set. Notice that all of the variables are indicator variables, which take the value 1 if
the specified characteristic is present and 0 otherwise.

variable description

spam Specifies whether the message was spam.

to_multiple
An indicator variable for if more than one person was listed in the

To field of the email.

cc An indicator for if someone was CCed on the email.

attach
An indicator for if there was an attachment, such as a document or

image.

dollar
An indicator for if the word "dollar" or dollar symbol ($) appeared

in the email.

winner
An indicator for if the word "winner" appeared in the email

message.

inherit
An indicator for if the word "inherit" (or a variation, like

"inheritance") appeared in the email.

password An indicator for if the word "password" was present in the email.

format
Indicates if the email contained special formatting, such as

bolding, tables, or links

re_subj
Indicates whether "Re:" was included at the the start of the email

subject.

exclaim_subj
Indicates whether any exclamation point was included in the email

subject.

Email data
The email data set was first presented in Chapter 1 with a relatively small number of variables. In fact, there are many more
variables available that might be useful for classifying spam. Descriptions of these variables are presented in Table . The
spam variable will be the outcome, and the other 10 variables will be the model predictors. While we have limited the predictors
used in this section to be categorical variables (where many are represented as indicator variables), numerical predictors may also
be used in logistic regression. See the footnote for an additional discussion on this topic.
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Modeling the probability of an event

The outcome variable for a GLM is denoted by , where the index i is used to represent observation i. In the email
application,  will be used to represent whether email i is spam ( ) or not ( ). The predictor variables are
represented as follows:  is the value of variable 1 for observation i,  is the value of variable 2 for observation i, and so
on.

Logistic regression is a generalized linear model where the outcome is a two-level categorical variable. The outcome, , takes the
value 1 (in our application, this represents a spam message) with probability  and the value 0 with probability . It is the
probability pi that we model in relation to the predictor variables.

Recall from Chapter 7 that if outliers are present in predictor variables, the corresponding observations may be especially
influential on the resulting model. This is the motivation for omitting the numerical variables, such as the number of characters and
line breaks in emails, that we saw in Chapter 1. These variables exhibited extreme skew. We could resolve this issue by
transforming these variables (e.g. using a log-transformation), but we will omit this further investigation for brevity.

Figure : Values of pi against values of logit( ).

The logistic regression model relates the probability an email is spam ( ) to the predictors  through a framework
much like that of multiple regression:

We want to choose a transformation in Equation  that makes practical and mathematical sense. For example, we want a
transformation that makes the range of possibilities on the left hand side of Equation  equal to the range of possibilities for
the right hand side; if there was no transformation for this equation, the left hand side could only take values between 0 and 1, but
the right hand side could take values outside of this range. A common transformation for  is the logit transformation, which
may be written as

The logit transformation is shown in Figure 8.14. Below, we rewrite Equation  using the logit transformation of :

In our spam example, there are 10 predictor variables, so k = 10. This model isn't very intuitive, but it still has some resemblance to
multiple regression, and we can t this model using software. In fact, once we look at results from software, it will start to feel like

TIP: Notation for a logistic regression model
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we're back in multiple regression, even if the interpretation of the coefficients is more complex.

Here we create a spam lter with a single predictor: to_multiple. This variable indicates whether more than one email address
was listed in the To field of the email. The following logistic regression model was fit using statistical software:

If an email is randomly selected and it has just one address in the  field, what is the probability it is spam? What if more than
one address is listed in the  field?

Solution

If there is only one email in the  field, then to multiple takes value 0 and the right side of the model equation equals -2.12.

Solving for . Just as we labeled a tted value of  with a "hat" in single-variable and multiple

regression, we will do the same for this probability: .

If there is more than one address listed in the  field, then the right side of the model equation is ,
which corresponds to a probability . Notice that we could examine -2.12 and -3.93 in Figure 8.14 to estimate the
probability before formally calculating the value.

To convert from values on the regression-scale (e.g. -2.12 and -3.93 in Example 8.20), use the following formula, which is the
result of solving for  in the regression model:

As with most applied data problems, we substitute the point estimates for the parameters (the ) so that we may make use of this
formula. In Example , the probabilities were calculated as

While the information about whether the email is addressed to multiple people is a helpful start in classifying email as spam or not,
the probabilities of 11% and 2% are not dramatically different, and neither provides very strong evidence about which particular
email messages are spam. To get more precise estimates, we'll need to include many more variables in the model.

We used statistical software to fit the logistic regression model with all ten predictors described in Table 8.13. Like multiple
regression, the result may be presented in a summary table, which is shown in Table . The structure of this table is almost
identical to that of multiple regression; the only notable difference is that the p-values are calculated using the normal distribution
rather than the t distribution.

Just like multiple regression, we could trim some variables from the model using the p-value. Using backwards elimination with a
p-value cutoff of 0.05 (start with the full model and trim the predictors with p-values greater than 0.05), we ultimately eliminate the
exclaim_subj, dollar, inherit, and cc predictors. The remainder of this section will rely on this smaller model, which is summarized
in Table .

Examine the summary of the reduced model in Table , and in particular, examine the to_multiple row. Is the point
estimate the same as we found before, -1.81, or is it different? Explain why this might be.

Solution

The new estimate is different: -2.87. This new value represents the estimated coefficient when we are also accounting for other
variables in the logistic regression model.

Table : Summary table for the full logistic regression model for the spam lter example.
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Estimate Std. Error z value Pr(>|z|)Estimate Std. Error z value Pr(>|z|)

(Intercept)
to multiple

winner
format
re_subj

exclaim_subj
cc

attach
dollar
inherit

password

-0.8362
-2.8836
1.7038
-1.5902
-2.9082
0.1355
-0.4863
0.9790
-0.0582
0.2093
-1.4929

0.0962
0.3121
0.3254
0.1239
0.3708
0.2268
0.3054
0.2170
0.1589
0.3197
0.5295

-8.69
-9.24
5.24

-12.84
-7.84
0.60
-1.59
4.51
-0.37
0.65
-2.82

0.0000
0.0000
0.0000
0.0000
0.0000
0.5503
0.1113
0.0000
0.7144
0.5127
0.0048

Table : Summary table for the logistic regression model for the spam lter, where variable selection has been performed.

Estimate Std. Error z value Pr(>|z|)

(Intercept)
to multiple

winner
format
re_subj
attach

password

-0.8595
-2.8836
1.7370
-1.5569
-3.0482
0.8643
-1.4871

0.0910
0.3092
0.3218
0.1207
0.3630
0.2042
0.5290

-9.44
-9.18
5.40

-12.90
-8.40
4.23
-2.81

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0049

Point estimates will generally change a little - and sometimes a lot - depending on which other variables are included in the model.
This is usually due to colinearity in the predictor variables. We previously saw this in the Ebay auction example when we compared
the coefficient of cond new in a single-variable model and the corresponding coefficient in the multiple regression model that used
three additional variables (see Sections 8.1.1 and 8.1.2).

Spam lters are built to be automated, meaning a piece of software is written to collect information about emails as they arrive,
and this information is put in the form of variables. These variables are then put into an algorithm that uses a statistical model,
like the one we've t, to classify the email. Suppose we write software for a spam lter using the reduced model shown in Table 

. If an incoming email has the word "winner" in it, will this raise or lower the model's calculated probability that the
incoming email is spam?

Solution

The estimated coefficient of winner is positive (1.7370). A positive coefficient estimate in logistic regression, just like in
multiple regression, corresponds to a positive association between the predictor and response variables when accounting for the
other variables in the model. Since the response variable takes value 1 if an email is spam and 0 otherwise, the positive
coefficient indicates that the presence of "winner" in an email raises the model probability that the message is spam.

Suppose the same email from Example  was in HTML format, meaning the format variable took value 1. Does this
characteristic increase or decrease the probability that the email is spam according to the model?

Solution

Since HTML corresponds to a value of 1 in the format variable and the coefficient of this variable is negative (-1.5569), this
would lower the probability estimate returned from the model.
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Practical decisions in the email application
Examples 8.22 and 8.23 highlight a key feature of logistic and multiple regression. In the spam lter example, some email
characteristics will push an email's classification in the direction of spam while other characteristics will push it in the opposite
direction. If we were to implement a spam filter using the model we have fit, then each future email we analyze would fall into one
of three categories based on the email's characteristics:

1. The email characteristics generally indicate the email is not spam, and so the resulting probability that the email is spam is quite
low, say, under 0.05.

2. The characteristics generally indicate the email is spam, and so the resulting probability that the email is spam is quite large,
say, over 0.95.

3. The characteristics roughly balance each other out in terms of evidence for and against the message being classified as spam. Its
probability falls in the remaining range, meaning the email cannot be adequately classified as spam or not spam.

If we were managing an email service, we would have to think about what should be done in each of these three instances. In an
email application, there are usually just two possibilities: filter the email out from the regular inbox and put it in a "spambox", or let
the email go to the regular inbox.

The first and second scenarios are intuitive. If the evidence strongly suggests a message is not spam, send it to the inbox. If the
evidence strongly suggests the message is spam, send it to the spambox. How should we handle emails in the third category?

Solution

In this particular application, we should err on the side of sending more mail to the inbox rather than mistakenly putting good
messages in the spambox. So, in summary: emails in the first and last categories go to the regular inbox, and those in the
second scenario go to the spambox.

Suppose we apply the logistic model we have built as a spam filter and that 100 messages are placed in the spambox over 3
months. If we used the guidelines above for putting messages into the spambox, about how many legitimate (non-spam)
messages would you expect to find among the 100 messages?

Solution

First, note that we proposed a cutoff for the predicted probability of 0.95 for spam. In a worst case scenario, all the messages in
the spambox had the minimum probability equal to about 0.95. Thus, we should expect to nd about 5 or fewer legitimate
messages among the 100 messages placed in the spambox.

Almost any classifier will have some error. In the spam lter guidelines above, we have decided that it is okay to allow up to 5% of
the messages in the spambox to be real messages. If we wanted to make it a little harder to classify messages as spam, we could use
a cutoff of 0.99. This would have two effects. Because it raises the standard for what can be classified as spam, it reduces the
number of good emails that are classified as spam.

However, it will also fail to correctly classify an increased fraction of spam messages. No matter the complexity and the confidence
we might have in our model, these practical considerations are absolutely crucial to making a helpful spam filter. Without them, we
could actually do more harm than good by using our statistical model.

Diagnostics for the email classifier

There are two key conditions for fitting a logistic regression model:

1. The model relating the parameter  to the predictors  closely resembles the true relationship between the
parameter and the predictors.

2. Each outcome  is independent of the other outcomes.

Exercise 14.4.2

Exercise 14.4.3
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The first condition of the logistic regression model is not easily checked without a fairly sizable amount of data. Luckily, we have
3,921 emails in our data set! Let's first visualize these data by plotting the true classification of the emails against the model's fitted
probabilities, as shown in Figure . The vast majority of emails (spam or not) still have fitted probabilities below 0.5.

Figure : The predicted probability that each of the 3,912 emails is spam is classified by their grouping, spam or not. Noise
(small, random vertical shifts) have been added to each point so that points with nearly identical values aren't plotted exactly on top
of one another. This makes it possible to see more observations.

This may at first seem very discouraging: we have t a logistic model to create a spam filter, but no emails have a fitted probability
of being spam above 0.75. Don't despair; we will discuss ways to improve the model through the use of better variables in Section
8.4.5.

We'd like to assess the quality of our model. For example, we might ask: if we look at emails that we modeled as having a 10%
chance of being spam, do we nd about 10% of them actually are spam? To help us out, we'll borrow an advanced statistical method
called natural splines that estimates the local probability over the region 0.00 to 0.75 (the largest predicted probability was 0.73,
so we avoid extrapolating). All you need to know about natural splines to understand what we are doing is that they are used to fit
flexible lines rather than straight lines.

Figure : The solid black line provides the empirical estimate of the probability for observations based on their predicted
probabilities (confidence bounds are also shown for this line), which is t using natural splines. A small amount of noise was added
to the observations in the plot to allow more observations to be seen.

The curve fit using natural splines is shown in Figure  as a solid black line. If the logistic model fits well, the curve should
closely follow the dashed  line. We have added shading to represent the confidence bound for the curved line to clarify what
fluctuations might plausibly be due to chance. Even with this confidence bound, there are weaknesses in the first model
assumption. The solid curve and its confidence bound dips below the dashed line from about 0.1 to 0.3, and then it drifts above the
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dashed line from about 0.35 to 0.55. These deviations indicate the model relating the parameter to the predictors does not closely
resemble the true relationship.

We could evaluate the second logistic regression model assumption - independence of the outcomes - using the model residuals.
The residuals for a logistic regression model are calculated the same way as with multiple regression: the observed outcome minus
the expected outcome. For logistic regression, the expected value of the outcome is the fitted probability for the observation, and
the residual may be written as

We could plot these residuals against a variety of variables or in their order of collection, as we did with the residuals in multiple
regression. However, since we know the model will need to be revised to effective classify spam and you have already seen similar
residual plots in Section 8.3, we won't investigate the residuals here.

Improving the set of variables for a spam filter

If we were building a spam filter for an email service that managed many accounts (e.g. Gmail or Hotmail), we would spend much
more time thinking about additional variables that could be useful in classifying emails as spam or not. We also would use
transformations or other techniques that would help us include strongly skewed numerical variables as predictors.

Take a few minutes to think about additional variables that might be useful in identifying spam. Below is a list of variables we
think might be useful:

1. An indicator variable could be used to represent whether there was prior two-way correspondence with a message's sender. For
instance, if you sent a message to john@example.com and then John sent you an email, this variable would take value 1 for the
email that John sent. If you had never sent John an email, then the variable would be set to 0.

2. A second indicator variable could utilize an account's past spam flagging information. The variable could take value 1 if the
sender of the message has previously sent messages flagged as spam.

3. A third indicator variable could flag emails that contain links included in previous spam messages. If such a link is found, then
set the variable to 1 for the email. otherwise, set it to 0.

The variables described above take one of two approaches. Variable (1) is specially designed to capitalize on the fact that spam is
rarely sent between individuals that have two-way communication. Variables (2) and (3) are specially designed to flag common
spammers or spam messages. While we would have to verify using the data that each of the variables is effective, these seem like
promising ideas.

Table  shows a contingency table for spam and also for the new variable described in (1) above. If we look at the 1,090
emails where there was correspondence with the sender in the preceding 30 days, not one of these message was spam. This
suggests variable (1) would be very effective at accurately classifying some messages as not spam. With this single variable, we
would be able to send about 28% of messages through to the inbox with confidence that almost none are spam.

Table : A contingency table for spam and a new variable that represents whether there had been correspondence with the sender in the
preceding 30 days.

prior correspondence

no yes Total

spam
not spam

367
2464

0
1090

367
3554

Total 2831 1090 3921

The variables described in (2) and (3) would provide an excellent foundation for distinguishing messages coming from known
spammers or messages that take a known form of spam. To utilize these variables, we would need to build databases: one holding
email addresses of known spammers, and one holding URLs found in known spam messages. Our access to such information is
limited, so we cannot implement these two variables in this textbook. However, if we were hired by an email service to build a
spam filter, these would be important next steps.

In addition to finding more and better predictors, we would need to create a customized logistic regression model for each email
account. This may sound like an intimidating task, but its complexity is not as daunting as it may at first seem. We'll save the
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details for a statistics course where computer programming plays a more central role. For what is the extremely challenging task of
classifying spam messages, we have made a lot of progress. We have seen that simple email variables, such as the format, inclusion
of certain words, and other circumstantial characteristics, provide helpful information for spam classi cation. Many challenges
remain, from better understanding logistic regression to carrying out the necessary computer programming, but completing such a
task is very nearly within your reach.

This page titled 14.4: Introduction to Logistic Regression is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by
David Diez, Christopher Barr, & Mine Çetinkaya-Rundel via source content that was edited to the style and standards of the LibreTexts platform.

8.4: Introduction to Logistic Regression by David Diez, Christopher Barr, & Mine Çetinkaya-Rundel is licensed CC BY-SA 3.0. Original
source: https://www.openintro.org/book/os.
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14.5: Exercises

Introduction to multiple regression

8.1 Baby weights, Part I. The Child Health and Development Studies investigate a range of topics. One study considered all
pregnancies between 1960 and 1967 among women in the Kaiser Foundation Health Plan in the San Francisco East Bay area. Here,
we study the relationship between smoking and weight of the baby. The variable smoke is coded 1 if the mother is a smoker, and 0
if not. The summary table below shows the results of a linear regression model for predicting the average birth weight of babies,
measured in ounces, based on the smoking status of the mother.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 123.05 0.65 189.60 0.0000

smoke -8.94 1.03 -8.65 0.0000

The variability within the smokers and non-smokers are about equal and the distributions are symmetric. With these conditions
satisfied, it is reasonable to apply the model. (Note that we don't need to check linearity since the predictor has only two levels.)

1. (a) Write the equation of the regression line.
2. (b) Interpret the slope in this context, and calculate the predicted birth weight of babies born to smoker and non-smoker

mothers.
3. (c) Is there a statistically signi cant relationship between the average birth weight and smoking?

8.2 Baby weights, Part II. Exercise 8.1 introduces a data set on birth weight of babies. Another variable we consider is parity,
which is 0 if the child is the first born, and 1 otherwise. The summary table below shows the results of a linear regression model for
predicting the average birth weight of babies, measured in ounces, from parity.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 120.07 0.60 199.94 0.0000

smoke -1.93 1.19 -1.62 0.1052

1. (a) Write the equation of the regression line.
2. (b) Interpret the slope in this context, and calculate the predicted birth weight of first borns and others.
3. (c) Is there a statistically signi cant relationship between the average birth weight and parity?

Child Health and Development Studies, Baby weights data set.

8.3 Baby weights, Part III. We considered the variables smoke and parity, one at a time, in modeling birth weights of babies in
Exercises 8.1 and 8.2. A more realistic approach to modeling infant weights is to consider all possibly related variables at once.
Other variables of interest include length of pregnancy in days (gestation), mother's age in years (age), mother's height in inches
(height), and mother's pregnancy weight in pounds (weight). Below are three observations from this data set.

bwt gestation parity age height weight smoke

1 120 284 0 27 62 100 0

2 113 282 0 33 64 135 0

1236 117 297 0 38 65 129 0

The summary table below shows the results of a regression model for predicting the average birth weight of babies based on all of
the variables included in the data set.

Estimate Std. Error t value Pr(>|t|)
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Estimate Std. Error t value Pr(>|t|)

(Intercept) -80.41 14.35 -5.60 0.0000

gestation 0.44 0.03 15.26 0.0000

parity -3.33 1.13 -2.95 0.0033

age -0.01 0.09 -0.10 0.9170

height 1.15 0.21 5.63 0.0000

weight 0.05 0.03 1.99 0.0471

smoke -8.40 0.95 -8.81 0.0000

1. (a) Write the equation of the regression line that includes all of the variables.
2. (b) Interpret the slopes of gestation and age in this context.
3. (c) The coefficient for parity is different than in the linear model shown in Exercise 8.2. Why might there be a difference?
4. (d) Calculate the residual for the rst observation in the data set.
5. (e) The variance of the residuals is 249.28, and the variance of the birth weights of all babies in the data set is 332.57. Calculate

the R  and the adjusted R . Note that there are 1,236 observations in the data set.

8.4 Absenteeism. Researchers interested in the relationship between absenteeism from school and certain demographic
characteristics of children collected data from 146 randomly sampled students in rural New SouthWales, Australia, in a particular
school year. Below are three observations from this data set.

eth sex lrn days

1 0 1 1 2

2 0 1 1 11

146 1 0 0 37

The summary table below shows the results of a linear regression model for predicting the average number of days absent based on
ethnic background (eth: 0 - aboriginal, 1 - not aboriginal), sex (sex: 0 - female, 1 - male), and learner status (lrn: 0 - average learner,
1 - slow learner).

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.93 2.57 7.37 0.0000

eth -9.11 2.60 -3.51 0.0000

sex 3.10 2.64 1.18 0.2411

lrn 2.15 2.65 0.81 0.4177

(a) Write the equation of the regression line.

(b) Interpret each one of the slopes in this context.

(c) Calculate the residual for the rst observation in the data set: a student who is aboriginal, male, a slow learner, and missed 2 days
of school.

(d) The variance of the residuals is 240.57, and the variance of the number of absent days for all students in the data set is 264.17.
Calculate the R  and the adjusted R . Note that there are 146 observations in the data set.

8.5 GPA. A survey of 55 Duke University students asked about their GPA, number of hours

2 2
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they study at night, number of nights they go out, and their gender. Summary output of the

regression model is shown below. Note that male is coded as 1.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.45 0.35 9.85 0.00

studyweek 0.00 0.00 0.27 0.79

sleepnight 0.01 0.05 0.11 0.91

outnight 0.05 0.05 1.01 0.32

gender -0.08 0.12 -0.68 0.50

(a) Calculate a 95% con dence interval for the coefficient of gender in the model, and interpret it in the context of the data.

(b) Would you expect a 95% con dence interval for the slope of the remaining variables to include 0? Explain

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Fourth Edition. Data can also be found in the R MASS
package. New York: Springer, 2002.

8.6 Cherry trees. Timber yield is approximately equal to the volume of a tree, however, this value is difficult to measure without
rst cutting the tree down. Instead, other variables, such as height and diameter, may be used to predict a tree's volume and yield.
Researchers wanting to understand the relationship between these variables for black cherry trees collected data from 31 such trees
in the Allegheny National Forest, Pennsylvania. Height is measured in feet, diameter in inches (at 54 inches above ground), and
volume in cubic feet.

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.99 8.64 -6.71 0.00

height 0.34 0.13 2.61 0.01

diameter 4.71 0.26 17.82 0.00

(a) Calculate a 95% con dence interval for the coefficient of height, and interpret it in the context of the data.

(b) One tree in this sample is 79 feet tall, has a diameter of 11.3 inches, and is 24.2 cubic feet in volume. Determine if the model
overestimates or underestimates the volume of this tree, and by how much.

Model selection
8.7 Baby weights, Part IV. Exercise 8.3 considers a model that predicts a newborn's weight using several predictors. Use the
regression table below, which summarizes the model, to answer the following questions. If necessary, refer back to Exercise 8.3 for
a reminder about the meaning of each variable.

Estimate Std. Error t value Pr(>|t|)

(Intercept) -80.41 14.35 -5.60 0.0000

gestation 0.44 0.03 15.26 0.0000

parity -3.33 1.13 -2.95 0.0033

age -0.01 0.09 -0.10 0.9170

height 1.15 0.21 5.63 0.0000

weight 0.05 0.03 1.99 0.0471

smoke -8.40 0.95 -8.81 0.0000
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(a) Determine which variables, if any, do not have a signi cant linear relationship with the outcome and should be candidates for
removal from the model. If there is more than one such variable, indicate which one should be removed first.

(b) The summary table below shows the results of the model with the age variable removed. Determine if any other variable(s)
should be removed from the model.

Estimate Std. Error t value Pr(>|t|)

(Intercept) -80.64 14.04 -5.74 0.0000

gestation 0.44 0.03 15.28 0.0000

parity -3.29 1.06 -3.10 0.0020

height 1.15 0.20 5.64 0.0000

weight 0.05 0.03 2.00 0.0459

smoke -8.38 0.95 -8.82 0.0000

D.J. Hand. A handbook of small data sets. Chapman & Hall/CRC, 1994.

8.8 Absenteeism, Part II. Exercise 8.4 considers a model that predicts the number of days absent using three predictors: ethnic
background (eth), gender (sex), and learner status (lrn). Use the regression table below to answer the following questions. If
necessary, refer back to Exercise 8.4 for additional details about each variable.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.93 2.57 7.37 0.0000

eth -9.11 2.60 -3.51 0.0000

sex 3.10 2.64 1.18 0.2411

lrn 2.15 2.65 0.81 0.4177

(a) Determine which variables, if any, do not have a signi cant linear relationship with the outcome and should be candidates for
removal from the model. If there is more than one such variable, indicate which one should be removed first.

(b) The summary table below shows the results of the regression we re t after removing learner status from the model. Determine if
any other variable(s) should be removed from the model.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.98 2.22 9.01 0.0000

eth -9.06 2.60 -3.49 0.0006

sex 2.78 2.60 1.07 0.2878

8.9 Baby weights, Part V. Exercise 8.3 provides regression output for the full model (including all explanatory variables available
in the data set) for predicting birth weight of babies. In this exercise we consider a forward-selection algorithm and add variables to
the model one-at-a-time. The table below shows the p-value and adjusted  of each model where we include only the
corresponding predictor. Based on this table, which variable should be added to the model first?

variable gestation parity age height weight smoke

p-value 0.1052 0.2375

0.1657 0.0013 0.0003 0.0386 0.0229 0.0569
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8.2× 10

−8

2.2× 10

−16

R

2

adj
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8.10 Absenteeism, Part III. Exercise 8.4 provides regression output for the full model, including all explanatory variables
available in the data set, for predicting the number of days absent from school. In this exercise we consider a forward-selection
algorithm and add variables to the model one-at-a-time. The table below shows the p-value and adjusted R  of each model where
we include only the corresponding predictor. Based on this table, which variable should be added to the model first?

variable ethnicity sex learner status

p-value 0.0007 0.3142 0.5870

0.0714 0.0001 0

Checking model assumptions using graphs

8.11 Baby weights, Part V. Exercise 8.7 presents a regression model for predicting the average birth weight of babies based on
length of gestation, parity, height, weight, and smoking status of the mother. Determine if the model assumptions are met using the
plots below. If not, describe how to proceed with the analysis.

8.12 GPA and IQ. A regression model for predicting GPA from gender and IQ was fit, and both predictors were found to be
statistically signi cant. Using the plots given below, determine if this regression model is appropriate for these data.

Logistic regression

8.13 Possum classi cation, Part I. The common brushtail possum of the Australia region is a bit cuter than its distant cousin, the
American opossum (see Figure 7.5 on page 318). We consider 104 brushtail possums from two regions in Australia, where the
possums may be considered a random sample from the population. The rst region is Victoria, which is in the eastern half of
Australia and traverses the southern coast. The second region consists of New South Wales and Queensland, which make up eastern
and northeastern Australia.

We use logistic regression to differentiate between possums in these two regions. The outcome variable, called population, takes
value 1 when a possum is from Victoria and 0 when it is from New South Wales or Queensland. We consider ve predictors: sex
male (an indicator for a possum being male), head length, skull width, total length, and tail length. Each variable is summarized in
a histogram. The full logistic regression model and a reduced model after variable selection are summarized in the table.

Full Model

Estimate SE Z Pr(>|Z|)

(Intercept) 39.2349 11.5368 3.40 0.0007

sex male -1.2376 0.6662 -1.86 0.0632

head length -0.1601 0.1386 -1.16 0.2480

skull width -0.2012 0.1327 -1.52 0.1294

total length 0.6488 0.1531 4.24 0.0000

tail length -1.8708 0.3741 -5.00 0.0000

Reduced Model

Estimate SE Z Pr(>|Z|)

(Intercept) 33.5095 9.9053 3.38 0.0007

sex male -1.4207 0.6457 -2.20 0.0278

head length

skull width -0.2787 0.1226 -2.27 0.0231

total length 0.5687 0.1322 4.30 0.0000

2

R

2

adj
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tail length -1.8057 0.3599 -5.02 0.0000

(a) Examine each of the predictors. Are there any outliers that are likely to have a very large inuence on the logistic regression
model?

(b) The summary table for the full model indicates that at least one variable should be eliminated when using the p-value approach
for variable selection: head length. The second component of the table summarizes the reduced model following variable selection.
Explain why the remaining estimates change between the two models.

8.14 Challenger disaster, Part I. On January 28, 1986, a routine launch was anticipated for the Challenger space shuttle. Seventy-
three seconds into the ight, disaster happened: the shuttle broke apart, killing all seven crew members on board. An investigation
into the cause of the disaster focused on a critical seal called an O-ring, and it is believed that damage to these O-rings during a
shuttle launch may be related to the ambient temperature during the launch. The table below summarizes observational data on O-
rings for 23 shuttle missions, where the mission order is based on the temperature at the time of the launch. Temp gives the
temperature in Fahrenheit, Damaged represents the number of damaged O-rings, and Undamaged represents the number of O-rings
that were not damaged.

Shuttle
Mission

1 2 3 4 5 6 7 8 9 10 11 12

Temper
ature

53 57 58 63 66 67 67 67 68 69 70 70

Damag
ed

5 1 1 1 0 0 0 0 0 0 1 0

Undam
aged

1 5 5 5 6 6 6 6 6 6 5 6

Shuttle
Mission

13 14 15 16 17 18 19 20 21 22 23

Tempera
ture

70 70 72 73 75 75 76 76 78 79 81

Damage
d

1 0 0 0 0 1 0 0 0 0 0

Undama
ged

5 6 6 6 6 5 6 6 6 6 6

(a) Each column of the table above represents a different shuttle mission. Examine these data and describe what you observe with
respect to the relationship between temperatures and damaged O-rings.

(b) Failures have been coded as 1 for a damaged O-ring and 0 for an undamaged O-ring, and a logistic regression model was t to
these data. A summary of this model is given below. Describe the key components of this summary table in words.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.6630 3.2963 3.54 0.0004

Temperature -0.2162 0.0532 -4.07 0.0000

(c) Write out the logistic model using the point estimates of the model parameters.

(d) Based on the model, do you think concerns regarding O-rings are justi ed? Explain.

8.15 Possum classi cation, Part II. A logistic regression model was proposed for classifying common brushtail possums into their
two regions in Exercise 8.13. Use the results of the summary table for the reduced model presented in Exercise 8.13 for the
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questions below. The outcome variable took value 1 if the possum was from Victoria and 0 otherwise.

(a) Write out the form of the model. Also identify which of the following variables are positively associated (when controlling for
other variables) with a possum being from Victoria: skull width, total length, and tail length.

(b) Suppose we see a brushtail possum at a zoo in the US, and a sign says the possum had been captured in the wild in Australia,
but it doesn't say which part of Australia. However, the sign does indicate that the possum is male, its skull is about 63 mm wide,
its tail is 37 cm long, and its total length is 83 cm. What is the reduced model's computed probability that this possum is from
Victoria? How confident are you in the model's accuracy of this probability calculation?

8.16 Challenger disaster, Part II. Exercise 8.14 introduced us to O-rings that were identified as a plausible explanation for the
breakup of the Challenger space shuttle 73 seconds into takeo in 1986. The investigation found that the ambient temperature at the
time of the shuttle launch was closely related to the damage of O-rings, which are a critical component of the shuttle. See this
earlier exercise if you would like to browse the original data.

(a) The data provided in the previous exercise are shown in the plot. The logistic model fit to these data may be written as

where  is the model-estimated probability that an O-ring will become damaged. Use the model to calculate the probability that an
O-ring will become damaged at each of the following ambient temperatures: 51, 53, and 55 degrees Fahrenheit. The model-
estimated probabilities for several additional ambient temperatures are provided below, where subscripts indicate the temperature:

(b) Add the model-estimated probabilities from part (a) on the plot, then connect these dots using a smooth curve to represent the
model-estimated probabilities.

(c) Describe any concerns you may have regarding applying logistic regression in this application, and note any assumptions that
are required to accept the model's validity.

Contributors
David M Diez (Google/YouTube), Christopher D Barr (Harvard School of Public Health), Mine Çetinkaya-Rundel (Duke
University)
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14.6: Statistical Literacy

Regression Toward the Mean in American Football

In a discussion about the Dallas Cowboy football team, there was a comment that the quarterback threw far more interceptions in
the first two games than is typical (there were two interceptions per game). The author correctly pointed out that, because of
regression toward the mean, performance in the future is expected to improve. However, the author defined regression toward the
mean as, "In nerd land, that basically means that things tend to even out over the long run."

Comment on that definition.

Solution

That definition is sort of correct, but it could be stated more precisely. Things don't always tend to even out in the long run. If a
great player has an average game, then things wouldn't even out (to the average of all players) but would regress toward that
player's high mean performance.

This page titled 14.6: Statistical Literacy is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via
source content that was edited to the style and standards of the LibreTexts platform.

14.9: Statistical Literacy by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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14.E: Regression (Exercises)

General Questions

Q1

What is the equation for a regression line? What does each term in the line refer to? (relevant section)

Q2

The formula for a regression equation based on a sample size of  observations is .

a. What would be the predicted score for a person scoring  on ?
b. If someone's predicted score was , what was this person's score on ? (relevant section)

Q3

What criterion is used for deciding which regression line fits best? (relevant section)

Q4

What does the standard error of the estimate measure? What is the formula for the standard error of the estimate? (relevant section)

Q5
a. In a regression analysis, the sum of squares for the predicted scores is  and the sum of squares error is , what is ?
b. In a different regression analysis,  of the variance was explained. The sum of squares total is . What is the sum of squares of

the predicted values? (relevant section)

Q6

For the  data below, compute:

a.  and determine if it is significantly different from zero.
b. the slope of the regression line and test if it differs significantly from zero.
c. the  confidence interval for the slope.

(relevant section)

X Y

2 5

4 6

4 7

5 11

6 12

Q7

What assumptions are needed to calculate the various inferential statistics of linear regression? (relevant section)

Q8

The correlation between years of education and salary in a sample of  people from a certain company is . Is this correlation
statistically significant at the  level? (relevant section)

Q9

A sample of  and  scores is taken, and a regression line is used to predict  from . If , , and , what
is: (relevant section relevant section)

a. ?
b. the standard error of the estimate?
c. ?

25 = 2X+9Y

′

6 X

14 X

100 200 R

2

40% 1000

X,Y

r

95%

20 0.4

0.05

X Y Y X SS = 300Y

′

SSE = 500 N = 50

SSY

R

2
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Q10

Using linear regression, find the predicted post-test score for someone with a score of  on the pre-test. (relevant section)

Pre Post

59 56

52 63

44 55

51 50

42 66

42 48

41 58

45 36

27 13

63 50

54 81

44 56

50 64

47 50

55 63

49 57

45 73

57 63

46 46

60 60

65 47

64 73

50 58

74 85

59 44

Q11

The equation for a regression line predicting the number of hours of TV watched by children ( ) from the number of hours of TV watched
by their parents ( ) is . The sample size is .

a. If the standard error of  is , is the slope statistically significant at the  level? (relevant section)

43

Y

X = 4+1.2XY

′

12

b 0.4 0.05
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b. If the mean of  is , what is the mean of ? (relevant section)

Q12

Based on the table below, compute the regression line that predicts  from . (relevant section)

MX MY sX sY r

10 12 2.5 3.0 -0.6

Q13

Does  or  have a larger standard error of the estimate? (relevant section)

Q14

True/false: If the slope of a simple linear regression line is statistically significant, then the correlation will also always be significant.
(relevant section)

Q15

True/false: If the slope of the relationship between  and  is larger for  than for , the correlation will
necessarily be larger in  than in . Why or why not? (relevant section)

Q16

True/false: If the correlation is , then  of the variance is explained. (relevant section)

Q17

True/false: If the actual  score was , but the predicted score was , then the error of prediction is . (relevant section)

Questions from Case Studies
The following question is from the Angry Moods (AM) case study.

Q18

(AM#23) Find the regression line for predicting Anger-Out from Control-Out.

a. What is the slope?
b. What is the intercept?
c. Is the relationship at least approximately linear?
d. Test to see if the slope is significantly different from .
e. What is the standard error of the estimate?

(relevant section, relevant section, relevant section)

The following question is from the SAT and GPA (SG) case study.

Q19

(SG#3) Find the regression line for predicting the overall university GPA from the high school GPA.

a. What is the slope?
b. What is the -intercept?
c. If someone had a  GPA in high school, what is the best estimate of his or her college GPA?
d. If someone had a  GPA in high school, what is the best estimate of his or her college GPA?

(relevant section)

X 8 Y

Y X

A B

X Y Population 1 Population 2

Population 1 Population 1

0.8 40%

Y 31 28 3

0

y

2.2

4.0
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The following questions are from the Driving (D) case study.

Q20

(D#5) What is the correlation between age and how often the person chooses to drive in inclement weather? Is this correlation statistically
significant at the  level? Are older people more or less likely to report that they drive in inclement weather? (relevant section, relevant
section )

Q21

(D#8) What is the correlation between how often a person chooses to drive in inclement weather and the percentage of accidents the person
believes occur in inclement weather? Is this correlation significantly different from ? (relevant section, relevant section )

Q22

(D#10) Use linear regression to predict how often someone rides public transportation in inclement weather from what percentage of
accidents that person thinks occur in inclement weather. (Pubtran by Accident)

a. Create a scatter plot of this data and add a regression line.
b. What is the slope?
c. What is the intercept?
d. Is the relationship at least approximately linear?
e. Test if the slope is significantly different from .
f. Comment on possible assumption violations for the test of the slope.
g. What is the standard error of the estimate?

(relevant section, relevant section, relevant section)

Selected Answers

S2
a. 

S5
a. 

S6
b. 

S9
a. 

S12

S18
e. 

S19
c. 

S20

S22
b. 
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CHAPTER OVERVIEW

15: Regression in R
The goal in this chapter is to introduce linear regression, the standard tool that statisticians rely on when analysing the relationship
between interval scale predictors and interval scale outcomes. Stripped to its bare essentials, linear regression models are basically
a slightly fancier version of the Pearson correlation (Section 5.7) though as we’ll see, regression models are much more powerful
tools.

15.1: What Is a Linear Regression Model?
15.2: Estimating a Linear Regression Model
15.3: Multiple Linear Regression
15.4: Quantifying the Fit of the Regression Model
15.5: Hypothesis Tests for Regression Models
15.6: Correlations
15.7: Handling Missing Values
15.8: Testing the Significance of a Correlation
15.9: Regarding Regression Coefficients
15.10: Assumptions of Regression
15.11: Model Checking
15.12: Model Selection
15.13: Summary

This page titled 15: Regression in R is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.
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15.1: What Is a Linear Regression Model?

Figure 15.1: Scatterplot showing grumpiness as a function of hours slept.

Figure 15.2: Panel a shows the sleep-grumpiness scatterplot from above with the best fitting regression line drawn over the top. Not
surprisingly, the line goes through the middle of the data.
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Figure 15.3: In contrast, this plot shows the same data, but with a very poor choice of regression line drawn over the top.

Since the basic ideas in regression are closely tied to correlation, we’ll return to the parenthood.Rdata  file that we were
using to illustrate how correlations work. Recall that, in this data set, we were trying to find out why Dan is so very grumpy all the
time, and our working hypothesis was that I’m not getting enough sleep. We drew some scatterplots to help us examine the
relationship between the amount of sleep I get, and my grumpiness the following day. The actual scatterplot that we draw is the one
shown in Figure 15.1, and as we saw previously this corresponds to a correlation of r=−.90, but what we find ourselves secretly
imagining is something that looks closer to Figure 15.2. That is, we mentally draw a straight line through the middle of the data. In
statistics, this line that we’re drawing is called a regression line. Notice that – since we’re not idiots – the regression line goes
through the middle of the data. We don’t find ourselves imagining anything like the rather silly plot shown in Figure 15.3.

This is not highly surprising: the line that I’ve drawn in Figure 15.3 doesn’t “fit” the data very well, so it doesn’t make a lot of
sense to propose it as a way of summarising the data, right? This is a very simple observation to make, but it turns out to be very
powerful when we start trying to wrap just a little bit of maths around it. To do so, let’s start with a refresher of some high school
maths. The formula for a straight line is usually written like this:

y=mx+c

Or, at least, that’s what it was when I went to high school all those years ago. The two variables are x and y, and we have two
coefficients, m and c. The coefficient m represents the slope of the line, and the coefficient c represents the y-intercept of the line.
Digging further back into our decaying memories of high school (sorry, for some of us high school was a long time ago), we
remember that the intercept is interpreted as “the value of y that you get when x=0”. Similarly, a slope of m means that if you
increase the x-value by 1 unit, then the y-value goes up by m units; a negative slope means that the y-value would go down rather
than up. Ah yes, it’s all coming back to me now.

Now that we’ve remembered that, it should come as no surprise to discover that we use the exact same formula to describe a
regression line. If Y is the outcome variable (the DV) and X is the predictor variable (the IV), then the formula that describes our
regression is written like this:

Hm. Looks like the same formula, but there’s some extra frilly bits in this version. Let’s make sure we understand them. Firstly,
notice that I’ve written X  and Y rather than just plain old X and Y. This is because we want to remember that we’re dealing with
actual data. In this equation, X  is the value of predictor variable for the ith observation (i.e., the number of hours of sleep that I got
on day i of my little study), and Y  is the corresponding value of the outcome variable (i.e., my grumpiness on that day). And
although I haven’t said so explicitly in the equation, what we’re assuming is that this formula works for all observations in the data
set (i.e., for all i). Secondly, notice that I wrote  and not Yi. This is because we want to make the distinction between the actual
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data Y , and the estimate  (i.e., the prediction that our regression line is making). Thirdly, I changed the letters used to describe
the coefficients from m and c to b  and b . That’s just the way that statisticians like to refer to the coefficients in a regression
model. I’ve no idea why they chose b, but that’s what they did. In any case b  always refers to the intercept term, and b1 refers to
the slope.

Excellent, excellent. Next, I can’t help but notice that – regardless of whether we’re talking about the good regression line or the
bad one – the data don’t fall perfectly on the line. Or, to say it another way, the data Yi are not identical to the predictions of the
regression model . Since statisticians love to attach letters, names and numbers to everything, let’s refer to the difference
between the model prediction and that actual data point as a residual, and we’ll refer to it as ϵ .  Written using mathematics, the
residuals are defined as:

which in turn means that we can write down the complete linear regression model as:
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15.2: Estimating a Linear Regression Model

Figure 15.4: A depiction of the residuals associated with the best fitting regression line

Figure 15.5: The residuals associated with a poor regression line

Okay, now let’s redraw our pictures, but this time I’ll add some lines to show the size of the residual for all observations. When the
regression line is good, our residuals (the lengths of the solid black lines) all look pretty small, as shown in Figure 15.4, but when
the regression line is a bad one, the residuals are a lot larger, as you can see from looking at Figure 15.5. Hm. Maybe what we
“want” in a regression model is small residuals. Yes, that does seem to make sense. In fact, I think I’ll go so far as to say that the
“best fitting” regression line is the one that has the smallest residuals. Or, better yet, since statisticians seem to like to take squares
of everything why not say that …

The estimated regression coefficients,  and  are those that minimise the sum of the squared residuals, which we could either

write as  or as .

Yes, yes that sounds even better. And since I’ve indented it like that, it probably means that this is the right answer. And since this
is the right answer, it’s probably worth making a note of the fact that our regression coefficients are estimates (we’re trying to guess
the parameters that describe a population!), which is why I’ve added the little hats, so that we get  and  rather than b0 and b1.
Finally, I should also note that – since there’s actually more than one way to estimate a regression model – the more technical name
for this estimation process is ordinary least squares (OLS) regression.
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At this point, we now have a concrete definition for what counts as our “best” choice of regression coefficients,  and . The
natural question to ask next is, if our optimal regression coefficients are those that minimise the sum squared residuals, how do we
find these wonderful numbers? The actual answer to this question is complicated, and it doesn’t help you understand the logic of
regression.  As a result, this time I’m going to let you off the hook. Instead of showing you how to do it the long and tedious way
first, and then “revealing” the wonderful shortcut that R provides you with, let’s cut straight to the chase… and use the lm()
function (short for “linear model”) to do all the heavy lifting.

15.2.1 Using the lm()  function

The lm()  function is a fairly complicated one: if you type ?lm , the help files will reveal that there are a lot of arguments that
you can specify, and most of them won’t make a lot of sense to you. At this stage however, there’s really only two of them that you
care about, and as it turns out you’ve seen them before:

formula . A formula that specifies the regression model. For the simple linear regression models that we’ve talked about so
far, in which you have a single predictor variable as well as an intercept term, this formula is of the form 
outcome ~ predictor . However, more complicated formulas are allowed, and we’ll discuss them later.
data . The data frame containing the variables.

As we saw with aov()  in Chapter 14, the output of the lm()  function is a fairly complicated object, with quite a lot of
technical information buried under the hood. Because this technical information is used by other functions, it’s generally a good
idea to create a variable that stores the results of your regression. With this in mind, to run my linear regression, the command I
want to use is this:

regression.1 <- lm( formula = dan.grump ~ dan.sleep,   
                    data = parenthood )  

Note that I used dan.grump ~ dan.sleep  as the formula: in the model that I’m trying to estimate, dan.grump  is the
outcome variable, and dan.sleep  is the predictor variable. It’s always a good idea to remember which one is which! Anyway,
what this does is create an “ lm  object” (i.e., a variable whose class is "lm" ) called regression.1 . Let’s have a look at
what happens when we print()  it out:

print( regression.1 )

## 
## Call: 
## lm(formula = dan.grump ~ dan.sleep, data = parenthood) 
## 
## Coefficients: 
## (Intercept)    dan.sleep   
##     125.956       -8.937

This looks promising. There’s two separate pieces of information here. Firstly, R is politely reminding us what the command was
that we used to specify the model in the first place, which can be helpful. More importantly from our perspective, however, is the
second part, in which R gives us the intercept  =125.96 and the slope  =−8.94. In other words, the best-fitting regression line
that I plotted in Figure 15.2 has this formula:

15.2.2 Interpreting the estimated model

The most important thing to be able to understand is how to interpret these coefficients. Let’s start with , the slope. If we
remember the definition of the slope, a regression coefficient of  =−8.94 means that if I increase X  by 1, then I’m decreasing Y
by 8.94. That is, each additional hour of sleep that I gain will improve my mood, reducing my grumpiness by 8.94 grumpiness
points. What about the intercept? Well, since  corresponds to “the expected value of Y  when Xi equals 0”, it’s pretty
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straightforward. It implies that if I get zero hours of sleep (X =0) then my grumpiness will go off the scale, to an insane value of
(Y =125.96). Best to be avoided, I think.
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15.3: Multiple Linear Regression
The simple linear regression model that we’ve discussed up to this point assumes that there’s a single predictor variable that you’re
interested in, in this case dan.sleep . In fact, up to this point, every statistical tool that we’ve talked about has assumed that
your analysis uses one predictor variable and one outcome variable. However, in many (perhaps most) research projects you
actually have multiple predictors that you want to examine. If so, it would be nice to be able to extend the linear regression
framework to be able to include multiple predictors. Perhaps some kind of multiple regression model would be in order?

Multiple regression is conceptually very simple. All we do is add more terms to our regression equation. Let’s suppose that we’ve
got two variables that we’re interested in; perhaps we want to use both dan.sleep  and baby.sleep  to predict the 
dan.grump  variable. As before, we let Y  refer to my grumpiness on the i-th day. But now we have two X variables: the first

corresponding to the amount of sleep I got and the second corresponding to the amount of sleep my son got. So we’ll let X  refer
to the hours I slept on the i-th day, and X  refers to the hours that the baby slept on that day. If so, then we can write our regression
model like this:

Y = b X + b X + b + ϵ
As before, ϵi is the residual associated with the i-th observation, . In this model, we now have three coefficients that
need to be estimated: b  is the intercept, b  is the coefficient associated with my sleep, and b  is the coefficient associated with my
son’s sleep. However, although the number of coefficients that need to be estimated has changed, the basic idea of how the
estimation works is unchanged: our estimated coefficients ,  and  are those that minimise the sum squared residuals.

Figure 15.6: A 3D visualisation of a multiple regression model. There are two predictors in the model, dan.sleep  and 
baby.sleep ; the outcome variable is dan.grump . Together, these three variables form a 3D space: each observation (blue

dots) is a point in this space. In much the same way that a simple linear regression model forms a line in 2D space, this multiple
regression model forms a plane in 3D space. When we estimate the regression coefficients, what we’re trying to do is find a plane
that is as close to all the blue dots as possible.

15.3.1 Doing it in R
Multiple regression in R is no different to simple regression: all we have to do is specify a more complicated formula  when
using the lm()  function. For example, if we want to use both dan.sleep  and baby.sleep  as predictors in our attempt
to explain why I’m so grumpy, then the formula we need is this:

   dan.grump ~ dan.sleep + baby.sleep

Notice that, just like last time, I haven’t explicitly included any reference to the intercept term in this formula; only the two
predictor variables and the outcome. By default, the lm()  function assumes that the model should include an intercept (though
you can get rid of it if you want). In any case, I can create a new regression model – which I’ll call regression.2  – using the
following command:
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regression.2 <- lm( formula = dan.grump ~ dan.sleep + baby.sleep,   
                     data = parenthood )

And just like last time, if we print()  out this regression model we can see what the estimated regression coefficients are:

print( regression.2 )

## 
## Call: 
## lm(formula = dan.grump ~ dan.sleep + baby.sleep, data = parenthood) 
## 
## Coefficients: 
## (Intercept)    dan.sleep   baby.sleep   
##   125.96557     -8.95025      0.01052

The coefficient associated with dan.sleep  is quite large, suggesting that every hour of sleep I lose makes me a lot grumpier.
However, the coefficient for baby.sleep  is very small, suggesting that it doesn’t really matter how much sleep my son gets;
not really. What matters as far as my grumpiness goes is how much sleep I get. To get a sense of what this multiple regression
model looks like, Figure 15.6 shows a 3D plot that plots all three variables, along with the regression model itself.

15.3.2 Formula for the general case

The equation that I gave above shows you what a multiple regression model looks like when you include two predictors. Not
surprisingly, then, if you want more than two predictors all you have to do is add more X terms and more b coefficients. In other
words, if you have K predictor variables in the model then the regression equation looks like this:
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15.4: Quantifying the Fit of the Regression Model
So we now know how to estimate the coefficients of a linear regression model. The problem is, we don’t yet know if this regression
model is any good. For example, the regression.1  model claims that every hour of sleep will improve my mood by quite a
lot, but it might just be rubbish. Remember, the regression model only produces a prediction  about what my mood is like: my
actual mood is Y . If these two are very close, then the regression model has done a good job. If they are very different, then it has
done a bad job.

15.4.1 R  value

Once again, let’s wrap a little bit of mathematics around this. Firstly, we’ve got the sum of the squared residuals:

which we would hope to be pretty small. Specifically, what we’d like is for it to be very small in comparison to the total variability
in the outcome variable,

While we’re here, let’s calculate these values in R. Firstly, in order to make my R commands look a bit more similar to the
mathematical equations, I’ll create variables X  and Y :

X <- parenthood$dan.sleep  # the predictor 
Y <- parenthood$dan.grump  # the outcome

Now that we’ve done this, let’s calculate the  values and store them in a variable called Y.pred . For the simple model that
uses only a single predictor, regression.1 , we would do the following:

Y.pred <- -8.94 * X  +  125.97

Okay, now that we’ve got a variable which stores the regression model predictions for how grumpy I will be on any given day, let’s
calculate our sum of squared residuals. We would do that using the following command:

SS.resid <- sum( (Y - Y.pred)^2 ) 
print( SS.resid )

## [1] 1838.722

Wonderful. A big number that doesn’t mean very much. Still, let’s forge boldly onwards anyway, and calculate the total sum of
squares as well. That’s also pretty simple:

SS.tot <- sum( (Y - mean(Y))^2 ) 
print( SS.tot )  

## [1] 9998.59

Hm. Well, it’s a much bigger number than the last one, so this does suggest that our regression model was making good predictions.
But it’s not very interpretable.

Perhaps we can fix this. What we’d like to do is to convert these two fairly meaningless numbers into one number. A nice,
interpretable number, which for no particular reason we’ll call R . What we would like is for the value of R  to be equal to 1 if the
regression model makes no errors in predicting the data. In other words, if it turns out that the residual errors are zero – that is, if
SS =0 – then we expect R =1. Similarly, if the model is completely useless, we would like R  to be equal to 0. What do I mean by
“useless”? Tempting as it is demand that the regression model move out of the house, cut its hair and get a real job, I’m probably
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going to have to pick a more practical definition: in this case, all I mean is that the residual sum of squares is no smaller than the
total sum of squares, SS =SS . Wait, why don’t we do exactly that? The formula that provides us with out R  value is pretty
simple to write down,

and equally simple to calculate in R:

R.squared <- 1 - (SS.resid / SS.tot) 
print( R.squared )

## [1] 0.8161018

The R  value, sometimes called the coefficient of determination  has a simple interpretation: it is the proportion of the variance
in the outcome variable that can be accounted for by the predictor. So in this case, the fact that we have obtained R =.816 means
that the predictor ( my.sleep ) explains 81.6% of the variance in the outcome ( my.grump ).

Naturally, you don’t actually need to type in all these commands yourself if you want to obtain the R  value for your regression
model. As we’ll see later on in Section 15.5.3, all you need to do is use the summary()  function. However, let’s put that to one
side for the moment. There’s another property of R  that I want to point out.

15.4.2 relationship between regression and correlation
At this point we can revisit my earlier claim that regression, in this very simple form that I’ve discussed so far, is basically the same
thing as a correlation. Previously, we used the symbol r to denote a Pearson correlation. Might there be some relationship between
the value of the correlation coefficient r and the R  value from linear regression? Of course there is: the squared correlation r  is
identical to the R  value for a linear regression with only a single predictor. To illustrate this, here’s the squared correlation:

r <- cor(X, Y)  # calculate the correlation 
print( r^2 )    # print the squared correlation

## [1] 0.8161027

Yep, same number. In other words, running a Pearson correlation is more or less equivalent to running a linear regression model
that uses only one predictor variable.

15.4.3 adjusted R  value

One final thing to point out before moving on. It’s quite common for people to report a slightly different measure of model
performance, known as “adjusted R ”. The motivation behind calculating the adjusted R  value is the observation that adding more
predictors into the model will always call the R  value to increase (or at least not decrease). The adjusted R  value introduces a
slight change to the calculation, as follows. For a regression model with K predictors, fit to a data set containing N observations,
the adjusted R  is:

This adjustment is an attempt to take the degrees of freedom into account. The big advantage of the adjusted R  value is that when
you add more predictors to the model, the adjusted R  value will only increase if the new variables improve the model performance
more than you’d expect by chance. The big disadvantage is that the adjusted R  value can’t be interpreted in the elegant way that
R  can. R  has a simple interpretation as the proportion of variance in the outcome variable that is explained by the regression
model; to my knowledge, no equivalent interpretation exists for adjusted R .

An obvious question then, is whether you should report R  or adjusted R . This is probably a matter of personal preference. If you
care more about interpretability, then R  is better. If you care more about correcting for bias, then adjusted R  is probably better.
Speaking just for myself, I prefer R : my feeling is that it’s more important to be able to interpret your measure of model
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performance. Besides, as we’ll see in Section 15.5, if you’re worried that the improvement in R  that you get by adding a predictor
is just due to chance and not because it’s a better model, well, we’ve got hypothesis tests for that.
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15.5: Hypothesis Tests for Regression Models
So far we’ve talked about what a regression model is, how the coefficients of a regression model are estimated, and how we
quantify the performance of the model (the last of these, incidentally, is basically our measure of effect size). The next thing we
need to talk about is hypothesis tests. There are two different (but related) kinds of hypothesis tests that we need to talk about: those
in which we test whether the regression model as a whole is performing significantly better than a null model; and those in which
we test whether a particular regression coefficient is significantly different from zero.

At this point, you’re probably groaning internally, thinking that I’m going to introduce a whole new collection of tests. You’re
probably sick of hypothesis tests by now, and don’t want to learn any new ones. Me too. I’m so sick of hypothesis tests that I’m
going to shamelessly reuse the F-test from Chapter 14 and the t-test from Chapter 13. In fact, all I’m going to do in this section is
show you how those tests are imported wholesale into the regression framework.

15.5.1 Testing the model as a whole
Okay, suppose you’ve estimated your regression model. The first hypothesis test you might want to try is one in which the null
hypothesis that there is no relationship between the predictors and the outcome, and the alternative hypothesis is that the data are
distributed in exactly the way that the regression model predicts. Formally, our “null model” corresponds to the fairly trivial
“regression” model in which we include 0 predictors, and only include the intercept term b

H :Y =b +ϵ
If our regression model has K predictors, the “alternative model” is described using the usual formula for a multiple regression
model:

How can we test these two hypotheses against each other? The trick is to understand that just like we did with ANOVA, it’s
possible to divide up the total variance SS  into the sum of the residual variance SS  and the regression model variance SS .
I’ll skip over the technicalities, since we covered most of them in the ANOVA chapter, and just note that:

SS =SS −SS

And, just like we did with the ANOVA, we can convert the sums of squares in to mean squares by dividing by the degrees of
freedom.

 

So, how many degrees of freedom do we have? As you might expect, the df associated with the model is closely tied to the number
of predictors that we’ve included. In fact, it turns out that df =K. For the residuals, the total degrees of freedom is df =N−K−1.

and the degrees of freedom associated with this are K and N−K−1. This F statistic has exactly the same interpretation as the one we
introduced in Chapter 14. Large F values indicate that the null hypothesis is performing poorly in comparison to the alternative
hypothesis. And since we already did some tedious “do it the long way” calculations back then, I won’t waste your time repeating
them. In a moment I’ll show you how to do the test in R the easy way, but first, let’s have a look at the tests for the individual
regression coefficients.

15.5.2 Tests for individual coefficients
The F-test that we’ve just introduced is useful for checking that the model as a whole is performing better than chance. This is
important: if your regression model doesn’t produce a significant result for the F-test then you probably don’t have a very good
regression model (or, quite possibly, you don’t have very good data). However, while failing this test is a pretty strong indicator
that the model has problems, passing the test (i.e., rejecting the null) doesn’t imply that the model is good! Why is that, you might
be wondering? The answer to that can be found by looking at the coefficients for the regression.2  model:
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print( regression.2 ) 

## 
## Call: 
## lm(formula = dan.grump ~ dan.sleep + baby.sleep, data = parenthood) 
## 
## Coefficients: 
## (Intercept)    dan.sleep   baby.sleep   
##   125.96557     -8.95025      0.01052

I can’t help but notice that the estimated regression coefficient for the baby.sleep  variable is tiny (0.01), relative to the value
that we get for dan.sleep  (-8.95). Given that these two variables are absolutely on the same scale (they’re both measured in
“hours slept”), I find this suspicious. In fact, I’m beginning to suspect that it’s really only the amount of sleep that I get that matters
in order to predict my grumpiness.

Once again, we can reuse a hypothesis test that we discussed earlier, this time the t-test. The test that we’re interested has a null
hypothesis that the true regression coefficient is zero (b=0), which is to be tested against the alternative hypothesis that it isn’t
(b≠0). That is:

H : b=0

H : b≠0

How can we test this? Well, if the central limit theorem is kind to us, we might be able to guess that the sampling distribution of ,
the estimated regression coefficient, is a normal distribution with mean centred on b. What that would mean is that if the null
hypothesis were true, then the sampling distribution of  has mean zero and unknown standard deviation. Assuming that we can
come up with a good estimate for the standard error of the regression coefficient, SE ( ), then we’re in luck. That’s exactly the
situation for which we introduced the one-sample t way back in Chapter 13. So let’s define a t-statistic like this,

I’ll skip over the reasons why, but our degrees of freedom in this case are df=N−K−1. Irritatingly, the estimate of the standard error
of the regression coefficient, SE( ), is not as easy to calculate as the standard error of the mean that we used for the simpler t-tests
in Chapter 13. In fact, the formula is somewhat ugly, and not terribly helpful to look at. For our purposes it’s sufficient to point out
that the standard error of the estimated regression coefficient depends on both the predictor and outcome variables, and is
somewhat sensitive to violations of the homogeneity of variance assumption (discussed shortly).

In any case, this t-statistic can be interpreted in the same way as the t-statistics that we discussed in Chapter 13. Assuming that you
have a two-sided alternative (i.e., you don’t really care if b>0 or b<0), then it’s the extreme values of t (i.e., a lot less than zero or a
lot greater than zero) that suggest that you should reject the null hypothesis.

15.5.3 Running the hypothesis tests in R

To compute all of the quantities that we have talked about so far, all you need to do is ask for a summary()  of your regression
model. Since I’ve been using regression.2  as my example, let’s do that:

summary( regression.2 )
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## 
## Call: 
## lm(formula = dan.grump ~ dan.sleep + baby.sleep, data = parenthood) 
## 
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -11.0345  -2.2198  -0.4016   2.6775  11.7496  
## 
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 125.96557    3.04095  41.423   <2e-16 ***
## dan.sleep    -8.95025    0.55346 -16.172   <2e-16 ***
## baby.sleep    0.01052    0.27106   0.039    0.969    
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 4.354 on 97 degrees of freedom 
## Multiple R-squared:  0.8161, Adjusted R-squared:  0.8123  
## F-statistic: 215.2 on 2 and 97 DF,  p-value: < 2.2e-16

The output that this command produces is pretty dense, but we’ve already discussed everything of interest in it, so what I’ll do is go
through it line by line. The first line reminds us of what the actual regression model is:

Call: 
lm(formula = dan.grump ~ dan.sleep + baby.sleep, data = parenthood)

You can see why this is handy, since it was a little while back when we actually created the regression.2  model, and so it’s
nice to be reminded of what it was we were doing. The next part provides a quick summary of the residuals (i.e., the ϵi values),

Residuals: 
     Min       1Q   Median       3Q      Max  
-11.0345  -2.2198  -0.4016   2.6775  11.7496 

which can be convenient as a quick and dirty check that the model is okay. Remember, we did assume that these residuals were
normally distributed, with mean 0. In particular it’s worth quickly checking to see if the median is close to zero, and to see if the
first quartile is about the same size as the third quartile. If they look badly off, there’s a good chance that the assumptions of
regression are violated. These ones look pretty nice to me, so let’s move on to the interesting stuff. The next part of the R output
looks at the coefficients of the regression model:

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 125.96557    3.04095  41.423   <2e-16 *** 
dan.sleep    -8.95025    0.55346 -16.172   <2e-16 *** 
baby.sleep    0.01052    0.27106   0.039    0.969  
---
Signif. codes:  0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1 

Each row in this table refers to one of the coefficients in the regression model. The first row is the intercept term, and the later ones
look at each of the predictors. The columns give you all of the relevant information. The first column is the actual estimate of b
(e.g., 125.96 for the intercept, and -8.9 for the dan.sleep  predictor). The second column is the standard error estimate .
The third column gives you the t-statistic, and it’s worth noticing that in this table t=  /SE( ) every time. Finally, the fourth

 σ

b

^

 b

^

 b

^

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36197?pdf


15.5.4 https://stats.libretexts.org/@go/page/36197

column gives you the actual p value for each of these tests.  The only thing that the table itself doesn’t list is the degrees of
freedom used in the t-test, which is always N−K−1 and is listed immediately below, in this line:

Residual standard error: 4.354 on 97 degrees of freedom

The value of df=97 is equal to N−K−1, so that’s what we use for our t-tests. In the final part of the output we have the F-test and
the R  values which assess the performance of the model as a whole

Residual standard error: 4.354 on 97 degrees of freedom 
Multiple R-squared: 0.8161, Adjusted R-squared: 0.8123  
F-statistic: 215.2 on 2 and 97 DF,  p-value: < 2.2e-16 

So in this case, the model performs significantly better than you’d expect by chance (F(2,97)=215.2, p<.001), which isn’t all that
surprising: the R =.812 value indicate that the regression model accounts for 81.2% of the variability in the outcome measure.
However, when we look back up at the t-tests for each of the individual coefficients, we have pretty strong evidence that the 
baby.sleep  variable has no significant effect; all the work is being done by the dan.sleep  variable. Taken together,

these results suggest that regression.2  is actually the wrong model for the data: you’d probably be better off dropping the 
baby.sleep  predictor entirely. In other words, the regression.1  model that we started with is the better model.

This page titled 15.5: Hypothesis Tests for Regression Models is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

15.5: Hypothesis Tests for Regression Models by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.
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15.6: Correlations
Up to this point we have focused entirely on how to construct descriptive statistics for a single variable. What we haven’t done is
talked about how to describe the relationships between variables in the data. To do that, we want to talk mostly about the
correlation between variables. But first, we need some data.

15.6.1 data
After spending so much time looking at the AFL data, I’m starting to get bored with sports. Instead, let’s turn to a topic close to
every parent’s heart: sleep. The following data set is fictitious, but based on real events. Suppose I’m curious to find out how much
my infant son’s sleeping habits affect my mood. Let’s say that I can rate my grumpiness very precisely, on a scale from 0 (not at all
grumpy) to 100 (grumpy as a very, very grumpy old man). And, lets also assume that I’ve been measuring my grumpiness, my
sleeping patterns and my son’s sleeping patterns for quite some time now. Let’s say, for 100 days. And, being a nerd, I’ve saved the
data as a file called parenthood.Rdata . If we load the data…

load( "./data/parenthood.Rdata" ) 
who(TRUE)

##    -- Name --     -- Class --   -- Size -- 
##    parenthood     data.frame    100 x 4    
##     $dan.sleep    numeric       100        
##     $baby.sleep   numeric       100        
##     $dan.grump    numeric       100        
##     $day          integer       100

… we see that the file contains a single data frame called parenthood , which contains four variables dan.sleep , 
baby.sleep , dan.grump  and day . If we peek at the data using head()  out the data, here’s what we get:

head(parenthood,10)  

##    dan.sleep baby.sleep dan.grump day 
## 1       7.59      10.18        56   1 
## 2       7.91      11.66        60   2 
## 3       5.14       7.92        82   3 
## 4       7.71       9.61        55   4 
## 5       6.68       9.75        67   5 
## 6       5.99       5.04        72   6 
## 7       8.19      10.45        53   7 
## 8       7.19       8.27        60   8 
## 9       7.40       6.06        60   9 
## 10      6.58       7.09        71  10

Next, I’ll calculate some basic descriptive statistics:

describe( parenthood )  
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##            vars   n  mean    sd median trimmed   mad   min    max range 
## dan.sleep     1 100  6.97  1.02   7.03    7.00  1.09  4.84   9.00  4.16 
## baby.sleep    2 100  8.05  2.07   7.95    8.05  2.33  3.25  12.07  8.82 
## dan.grump     3 100 63.71 10.05  62.00   63.16  9.64 41.00  91.00 50.00 
## day           4 100 50.50 29.01  50.50   50.50 37.06  1.00 100.00 99.00 
##             skew kurtosis   se 
## dan.sleep  -0.29    -0.72 0.10 
## baby.sleep -0.02    -0.69 0.21 
## dan.grump   0.43    -0.16 1.00 
## day         0.00    -1.24 2.90

Finally, to give a graphical depiction of what each of the three interesting variables looks like, Figure 5.6 plots histograms.

Figure 5.6: Histograms for the three interesting variables in the parenthood  data set

One thing to note: just because R can calculate dozens of different statistics doesn’t mean you should report all of them. If I were
writing this up for a report, I’d probably pick out those statistics that are of most interest to me (and to my readership), and then put
them into a nice, simple table like the one in Table ??.  Notice that when I put it into a table, I gave everything “human readable”
names. This is always good practice. Notice also that I’m not getting enough sleep. This isn’t good practice, but other parents tell
me that it’s standard practice.

Table 5.2: Descriptive statistics for the parenthood data.

variable min max mean median std. dev IQR

Dan’s
grumpiness

41 91 63.71 62 10.05 14

Dan’s hours
slept

4.84 9 6.97 7.03 1.02 1.45

Dan’s son’s
hours slept

3.25 12.07 8.05 7.95 2.07 3.21

15.6.2 strength and direction of a relationship
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Figure 5.7: Scatterplot showing the relationship between dan.sleep  and dan.grump

Figure 5.8: Scatterplot showing the relationship between baby.sleep  and dan.grump

We can draw scatterplots to give us a general sense of how closely related two variables are. Ideally though, we might want to say a
bit more about it than that. For instance, let’s compare the relationship between dan.sleep  and dan.grump  (Figure 5.7
with that between baby.sleep  and dan.grump  (Figure 5.8. When looking at these two plots side by side, it’s clear that
the relationship is qualitatively the same in both cases: more sleep equals less grump! However, it’s also pretty obvious that the
relationship between dan.sleep  and dan.grump  is stronger than the relationship between baby.sleep  and 
dan.grump . The plot on the left is “neater” than the one on the right. What it feels like is that if you want to predict what my

mood is, it’d help you a little bit to know how many hours my son slept, but it’d be more helpful to know how many hours I slept.

In contrast, let’s consider Figure 5.8 vs. Figure 5.9. If we compare the scatterplot of “ baby.sleep  v dan.grump ” to the
scatterplot of “` baby.sleep  v dan.sleep ”, the overall strength of the relationship is the same, but the direction is
different. That is, if my son sleeps more, I get more sleep (positive relationship, but if he sleeps more then I get less grumpy
(negative relationship).
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Figure 5.9: Scatterplot showing the relationship between baby.sleep  and dan.sleep

15.6.3 correlation coefficient

We can make these ideas a bit more explicit by introducing the idea of a correlation coefficient (or, more specifically, Pearson’s
correlation coefficient), which is traditionally denoted by r. The correlation coefficient between two variables X and Y (sometimes
denoted rXY), which we’ll define more precisely in the next section, is a measure that varies from −1 to 1. When r=−1 it means
that we have a perfect negative relationship, and when r=1 it means we have a perfect positive relationship. When r=0, there’s no
relationship at all. If you look at Figure 5.10, you can see several plots showing what different correlations look like.
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Figure 5.10: Illustration of the effect of varying the strength and direction of a correlation

The formula for the Pearson’s correlation coefficient can be written in several different ways. I think the simplest way to write
down the formula is to break it into two steps. Firstly, let’s introduce the idea of a covariance. The covariance between two
variables X and Y is a generalisation of the notion of the variance; it’s a mathematically simple way of describing the relationship
between two variables that isn’t terribly informative to humans:

Because we’re multiplying (i.e., taking the “product” of) a quantity that depends on X by a quantity that depends on Y and then
averaging , you can think of the formula for the covariance as an “average cross product” between X and Y. The covariance has
the nice property that, if X and Y are entirely unrelated, then the covariance is exactly zero. If the relationship between them is
positive (in the sense shown in Figure@reffig:corr) then the covariance is also positive; and if the relationship is negative then the
covariance is also negative. In other words, the covariance captures the basic qualitative idea of correlation. Unfortunately, the raw
magnitude of the covariance isn’t easy to interpret: it depends on the units in which X and Y are expressed, and worse yet, the
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actual units that the covariance itself is expressed in are really weird. For instance, if X refers to the dan.sleep  variable (units:
hours) and Y refers to the dan.grump  variable (units: grumps), then the units for their covariance are “hours × grumps”. And I
have no freaking idea what that would even mean.

The Pearson correlation coefficient r fixes this interpretation problem by standardising the covariance, in pretty much the exact
same way that the z-score standardises a raw score: by dividing by the standard deviation. However, because we have two variables
that contribute to the covariance, the standardisation only works if we divide by both standard deviations.  In other words, the
correlation between X and Y can be written as follows:

By doing this standardisation, not only do we keep all of the nice properties of the covariance discussed earlier, but the actual
values of r are on a meaningful scale: r=1 implies a perfect positive relationship, and r=−1 implies a perfect negative relationship.
I’ll expand a little more on this point later, in Section@refsec:interpretingcorrelations. But before I do, let’s look at how to calculate
correlations in R.

15.6.4 Calculating correlations in R
Calculating correlations in R can be done using the cor()  command. The simplest way to use the command is to specify two
input arguments x  and y , each one corresponding to one of the variables. The following extract illustrates the basic usage of
the function:

cor( x = parenthood$dan.sleep, y = parenthood$dan.grump )

## [1] -0.903384

However, the cor()  function is a bit more powerful than this simple example suggests. For example, you can also calculate a
complete “correlation matrix”, between all pairs of variables in the data frame:

# correlate all pairs of variables in "parenthood": 
cor( x = parenthood )  

##              dan.sleep  baby.sleep   dan.grump         day 
## dan.sleep   1.00000000  0.62794934 -0.90338404 -0.09840768 
## baby.sleep  0.62794934  1.00000000 -0.56596373 -0.01043394 
## dan.grump  -0.90338404 -0.56596373  1.00000000  0.07647926 
## day        -0.09840768 -0.01043394  0.07647926  1.00000000

15.6.5 Interpreting a correlation

Naturally, in real life you don’t see many correlations of 1. So how should you interpret a correlation of, say r=.4? The honest
answer is that it really depends on what you want to use the data for, and on how strong the correlations in your field tend to be. A
friend of mine in engineering once argued that any correlation less than .95 is completely useless (I think he was exaggerating,
even for engineering). On the other hand there are real cases – even in psychology – where you should really expect correlations
that strong. For instance, one of the benchmark data sets used to test theories of how people judge similarities is so clean that any
theory that can’t achieve a correlation of at least .9 really isn’t deemed to be successful. However, when looking for (say)
elementary correlates of intelligence (e.g., inspection time, response time), if you get a correlation above .3 you’re doing very very
well. In short, the interpretation of a correlation depends a lot on the context. That said, the rough guide in Table ?? is pretty
typical.
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Correlation Strength Direction

-1.0 to -0.9 Very strong Negative

-0.9 to -0.7 Strong Negative

-0.7 to -0.4 Moderate Negative

-0.4 to -0.2 Weak Negative

-0.2 to 0 Negligible Negative

0 to 0.2 Negligible Positive

0.2 to 0.4 Weak Positive

0.4 to 0.7 Moderate Positive

0.7 to 0.9 Strong Positive

0.9 to 1.0 Very strong Positive

However, something that can never be stressed enough is that you should always look at the scatterplot before attaching any
interpretation to the data. A correlation might not mean what you think it means. The classic illustration of this is “Anscombe’s
Quartet” (??? Anscombe1973), which is a collection of four data sets. Each data set has two variables, an X and a Y. For all four
data sets the mean value for X is 9 and the mean for Y is 7.5. The, standard deviations for all X variables are almost identical, as
are those for the the Y variables. And in each case the correlation between X and Y is r=0.816. You can verify this yourself, since
the dataset comes distributed with R. The commands would be:

cor( anscombe$x1, anscombe$y1 )

## [1] 0.8164205  

cor( anscombe$x2, anscombe$y2 )

## [1] 0.8162365

and so on.

You’d think that these four data setswould look pretty similar to one another. They do not. If we draw scatterplots of X against Y
for all four variables, as shown in Figure 5.11 we see that all four of these are spectacularly different to each other.

knitr::kable( 
rbind( 
c("-1.0 to -0.9" ,"Very strong", "Negative"), 
c("-0.9 to -0.7", "Strong", "Negative") , 
c("-0.7 to -0.4", "Moderate", "Negative") , 
c("-0.4 to -0.2", "Weak", "Negative"), 
c("-0.2 to 0","Negligible", "Negative") , 
c("0 to 0.2","Negligible", "Positive"), 
c("0.2 to 0.4", "Weak", "Positive"),  
c("0.4 to 0.7", "Moderate", "Positive"),  
c("0.7 to 0.9", "Strong", "Positive"),  
c("0.9 to 1.0", "Very strong", "Positive")), col.names=c("Correlation", "Strength", "
  booktabs = TRUE)
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Figure 5.11: Anscombe’s quartet. All four of these data sets have a Pearson correlation of r=.816, but they are qualitatively different
from one another.

The lesson here, which so very many people seem to forget in real life is “always graph your raw data”. This will be the focus of
Chapter 6.

15.6.6 Spearman’s rank correlations

Figure 5.12: The relationship between hours worked and grade received, for a toy data set consisting of only 10 students (each
circle corresponds to one student). The dashed line through the middle shows the linear relationship between the two variables.
This produces a strong Pearson correlation of r=.91. However, the interesting thing to note here is that there’s actually a perfect
monotonic relationship between the two variables: in this toy example at least, increasing the hours worked always increases the
grade received, as illustrated by the solid line. This is reflected in a Spearman correlation of rho=1. With such a small data set,
however, it’s an open question as to which version better describes the actual relationship involved.

The Pearson correlation coefficient is useful for a lot of things, but it does have shortcomings. One issue in particular stands out:
what it actually measures is the strength of the linear relationship between two variables. In other words, what it gives you is a
measure of the extent to which the data all tend to fall on a single, perfectly straight line. Often, this is a pretty good approximation
to what we mean when we say “relationship”, and so the Pearson correlation is a good thing to calculation. Sometimes, it isn’t.
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One very common situation where the Pearson correlation isn’t quite the right thing to use arises when an increase in one variable
X really is reflected in an increase in another variable Y, but the nature of the relationship isn’t necessarily linear. An example of
this might be the relationship between effort and reward when studying for an exam. If you put in zero effort (X) into learning a
subject, then you should expect a grade of 0% (Y). However, a little bit of effort will cause a massive improvement: just turning up
to lectures means that you learn a fair bit, and if you just turn up to classes, and scribble a few things down so your grade might rise
to 35%, all without a lot of effort. However, you just don’t get the same effect at the other end of the scale. As everyone knows, it
takes a lot more effort to get a grade of 90% than it takes to get a grade of 55%. What this means is that, if I’ve got data looking at
study effort and grades, there’s a pretty good chance that Pearson correlations will be misleading.

To illustrate, consider the data plotted in Figure 5.12, showing the relationship between hours worked and grade received for 10
students taking some class. The curious thing about this – highly fictitious – data set is that increasing your effort always increases
your grade. It might be by a lot or it might be by a little, but increasing effort will never decrease your grade. The data are stored in 
effort.Rdata :

> load( "effort.Rdata" ) 
> who(TRUE) 
   -- Name --   -- Class --   -- Size -- 
   effort       data.frame    10 x 2     
    $hours      numeric       10         
    $grade      numeric       10        

The raw data look like this:

> effort 
   hours grade 
1      2    13 
2     76    91 
3     40    79 
4      6    14 
5     16    21 
6     28    74 
7     27    47 
8     59    85 
9     46    84 
10    68    88

If we run a standard Pearson correlation, it shows a strong relationship between hours worked and grade received,

> cor( effort$hours, effort$grade ) 
[1] 0.909402

but this doesn’t actually capture the observation that increasing hours worked always increases the grade. There’s a sense here in
which we want to be able to say that the correlation is perfect but for a somewhat different notion of what a “relationship” is. What
we’re looking for is something that captures the fact that there is a perfect ordinal relationship here. That is, if student 1 works
more hours than student 2, then we can guarantee that student 1 will get the better grade. That’s not what a correlation of r=.91 says
at all.

How should we address this? Actually, it’s really easy: if we’re looking for ordinal relationships, all we have to do is treat the data
as if it were ordinal scale! So, instead of measuring effort in terms of “hours worked”, lets rank all 10 of our students in order of
hours worked. That is, student 1 did the least work out of anyone (2 hours) so they get the lowest rank (rank = 1). Student 4 was the
next laziest, putting in only 6 hours of work in over the whole semester, so they get the next lowest rank (rank = 2). Notice that I’m
using “rank =1” to mean “low rank”. Sometimes in everyday language we talk about “rank = 1” to mean “top rank” rather than
“bottom rank”. So be careful: you can rank “from smallest value to largest value” (i.e., small equals rank 1) or you can rank “from
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largest value to smallest value” (i.e., large equals rank 1). In this case, I’m ranking from smallest to largest, because that’s the
default way that R does it. But in real life, it’s really easy to forget which way you set things up, so you have to put a bit of effort
into remembering!

Okay, so let’s have a look at our students when we rank them from worst to best in terms of effort and reward:

rank (hours worked) rank (grade received)

student 1 1

student 2 10

student 3 6

student 4 2

student 5 3

student 6 5

student 7 4

student 8 8

student 9 7

student 10 9

Hm. These are identical. The student who put in the most effort got the best grade, the student with the least effort got the worst
grade, etc. We can get R to construct these rankings using the rank()  function, like this:

> hours.rank <- rank( effort$hours )   # rank students by hours worked 
> grade.rank <- rank( effort$grade )   # rank students by grade received

As the table above shows, these two rankings are identical, so if we now correlate them we get a perfect relationship:

> cor( hours.rank, grade.rank ) 
[1] 1

What we’ve just re-invented is Spearman’s rank order correlation, usually denoted ρ to distinguish it from the Pearson correlation
r. We can calculate Spearman’s ρ using R in two different ways. Firstly we could do it the way I just showed, using the rank()
function to construct the rankings, and then calculate the Pearson correlation on these ranks. However, that’s way too much effort
to do every time. It’s much easier to just specify the method  argument of the cor()  function.

> cor( effort$hours, effort$grade, method = "spearman") 
[1] 1

The default value of the method  argument is "pearson" , which is why we didn’t have to specify it earlier on when we
were doing Pearson correlations.

15.6.7 correlate()  function

As we’ve seen, the cor()  function works pretty well, and handles many of the situations that you might be interested in. One
thing that many beginners find frustrating, however, is the fact that it’s not built to handle non-numeric variables. From a statistical
perspective, this is perfectly sensible: Pearson and Spearman correlations are only designed to work for numeric variables, so the 
cor()  function spits out an error.

Here’s what I mean. Suppose you were keeping track of how many hours  you worked in any given day, and counted how many
tasks  you completed. If you were doing the tasks for money, you might also want to keep track of how much pay  you got
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for each job. It would also be sensible to keep track of the weekday  on which you actually did the work: most of us don’t work
as much on Saturdays or Sundays. If you did this for 7 weeks, you might end up with a data set that looks like this one:

> load("work.Rdata") 
 
> who(TRUE) 
   -- Name --   -- Class --   -- Size -- 
   work         data.frame    49 x 7     
    $hours      numeric       49         
    $tasks      numeric       49         
    $pay        numeric       49         
    $day        integer       49         
    $weekday    factor        49         
    $week       numeric       49         
    $day.type   factor        49    
     
> head(work) 
  hours tasks pay day   weekday week day.type 
1   7.2    14  41   1   Tuesday    1  weekday 
2   7.4    11  39   2 Wednesday    1  weekday 
3   6.6    14  13   3  Thursday    1  weekday 
4   6.5    22  47   4    Friday    1  weekday 
5   3.1     5   4   5  Saturday    1  weekend 
6   3.0     7  12   6    Sunday    1  weekend

Obviously, I’d like to know something about how all these variables correlate with one another. I could correlate hours  with 
pay  quite using cor() , like so:

> cor(work$hours,work$pay) 
[1] 0.7604283

But what if I wanted a quick and easy way to calculate all pairwise correlations between the numeric variables? I can’t just input
the work  data frame, because it contains two factor variables, weekday  and day.type . If I try this, I get an error:

> cor(work) 
Error in cor(work) : 'x' must be numeric

It order to get the correlations that I want using the cor()  function, is create a new data frame that doesn’t contain the factor
variables, and then feed that new data frame into the cor()  function. It’s not actually very hard to do that, and I’ll talk about
how to do it properly in Section@refsec:subsetdataframe. But it would be nice to have some function that is smart enough to just
ignore the factor variables. That’s where the correlate()  function in the lsr  package can be handy. If you feed it a data
frame that contains factors, it knows to ignore them, and returns the pairwise correlations only between the numeric variables:
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> correlate(work) 
 
CORRELATIONS 
============ 
- correlation type:  pearson  
- correlations shown only when both variables are numeric 
 
          hours  tasks   pay    day weekday   week day.type 
hours         .  0.800 0.760 -0.049       .  0.018        . 
tasks     0.800      . 0.720 -0.072       . -0.013        . 
pay       0.760  0.720     .  0.137       .  0.196        . 
day      -0.049 -0.072 0.137      .       .  0.990        . 
weekday       .      .     .      .       .      .        . 
week      0.018 -0.013 0.196  0.990       .      .        . 
day.type      .      .     .      .       .      .        .

The output here shows a .  whenever one of the variables is non-numeric. It also shows a .  whenever a variable is correlated
with itself (it’s not a meaningful thing to do). The correlate()  function can also do Spearman correlations, by specifying the
corr.method  to use:

> correlate( work, corr.method="spearman" ) 
 
CORRELATIONS 
============ 
- correlation type:  spearman  
- correlations shown only when both variables are numeric 
 
          hours  tasks   pay    day weekday   week day.type 
hours         .  0.805 0.745 -0.047       .  0.010        . 
tasks     0.805      . 0.730 -0.068       . -0.008        . 
pay       0.745  0.730     .  0.094       .  0.154        . 
day      -0.047 -0.068 0.094      .       .  0.990        . 
weekday       .      .     .      .       .      .        . 
week      0.010 -0.008 0.154  0.990       .      .        . 
day.type      .      .     .      .       .      .        .

Obviously, there’s no new functionality in the correlate()  function, and any advanced R user would be perfectly capable of
using the cor()  function to get these numbers out. But if you’re not yet comfortable with extracting a subset of a data frame,
the correlate()  function is for you.

This page titled 15.6: Correlations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.

5.7: Correlations by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/35672?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/15%3A_Regression_in_R/15.06%3A_Correlations
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/
https://stats.libretexts.org/@go/page/8135
https://djnavarro.net/
https://creativecommons.org/licenses/by-sa/4.0/
https://bookdown.org/ekothe/navarro26/


15.7.1 https://stats.libretexts.org/@go/page/35673

15.7: Handling Missing Values
There’s one last topic that I want to discuss briefly in this chapter, and that’s the issue of missing data. Real data sets very
frequently turn out to have missing values: perhaps someone forgot to fill in a particular survey question, for instance. Missing data
can be the source of a lot of tricky issues, most of which I’m going to gloss over. However, at a minimum, you need to understand
the basics of handling missing data in R.

15.7.1 single variable case
Let’s start with the simplest case, in which you’re trying to calculate descriptive statistics for a single variable which has missing
data. In R, this means that there will be NA  values in your data vector. Let’s create a variable like that:

> partial <- c(10, 20, NA, 30)

Let’s assume that you want to calculate the mean of this variable. By default, R assumes that you want to calculate the mean using
all four elements of this vector, which is probably the safest thing for a dumb automaton to do, but it’s rarely what you actually
want. Why not? Well, remember that the basic interpretation of NA  is “I don’t know what this number is”. This means that 
1 + NA = NA : if I add 1 to some number that I don’t know (i.e., the NA ) then the answer is also a number that I don’t know.

As a consequence, if you don’t explicitly tell R to ignore the NA  values, and the data set does have missing values, then the
output will itself be a missing value. If I try to calculate the mean of the partial  vector, without doing anything about the
missing value, here’s what happens:

> mean( x = partial ) 
[1] NA

Technically correct, but deeply unhelpful.

To fix this, all of the descriptive statistics functions that I’ve discussed in this chapter (with the exception of cor()  which is a
special case I’ll discuss below) have an optional argument called na.rm , which is shorthand for “remove NA values”. By
default, na.rm = FALSE , so R does nothing about the missing data problem. Let’s try setting na.rm = TRUE  and see
what happens:

When calculating sums and means when missing data are present (i.e., when there are NA  values) there’s actually an additional
argument to the function that you should be aware of. This argument is called na.rm , and is a logical value indicating whether
R should ignore (or “remove”) the missing data for the purposes of doing the calculations. By default, R assumes that you want to
keep the missing values, so unless you say otherwise it will set na.rm = FALSE . However, R assumes that 1 + NA = NA
: if I add 1 to some number that I don’t know (i.e., the NA ) then the answer is also a number that I don’t know. As a consequence,
if you don’t explicitly tell R to ignore the NA  values, and the data set does have missing values, then the output will itself be a
missing value. This is illustrated in the following extract:

> mean( x = partial, na.rm = TRUE ) 
[1] 20

Notice that the mean is 20  (i.e., 60 / 3 ) and not 15 . When R ignores a NA  value, it genuinely ignores it. In effect, the
calculation above is identical to what you’d get if you asked for the mean of the three-element vector c(10, 20, 30) .

As indicated above, this isn’t unique to the mean()  function. Pretty much all of the other functions that I’ve talked about in this
chapter have an na.rm  argument that indicates whether it should ignore missing values. However, its behaviour is the same for
all these functions, so I won’t waste everyone’s time by demonstrating it separately for each one.

15.7.2 Missing values in pairwise calculations
I mentioned earlier that the cor()  function is a special case. It doesn’t have an na.rm  argument, because the story becomes
a lot more complicated when more than one variable is involved. What it does have is an argument called use  which does
roughly the same thing, but you need to think little more carefully about what you want this time. To illustrate the issues, let’s open
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up a data set that has missing values, parenthood2.Rdata . This file contains the same data as the original parenthood data,
but with some values deleted. It contains a single data frame, parenthood2 :

> load( "parenthood2.Rdata" ) 
> print( parenthood2 ) 
  dan.sleep baby.sleep dan.grump day 
1      7.59         NA        56   1 
2      7.91      11.66        60   2 
3      5.14       7.92        82   3 
4      7.71       9.61        55   4 
5      6.68       9.75        NA   5 
6      5.99       5.04        72   6 
BLAH BLAH BLAH

If I calculate my descriptive statistics using the describe()  function

> describe( parenthood2 ) 
           var   n  mean    sd median trimmed   mad   min    max    BLAH 
dan.sleep    1  91  6.98  1.02   7.03    7.02  1.13  4.84   9.00    BLAH 
baby.sleep   2  89  8.11  2.05   8.20    8.13  2.28  3.25  12.07    BLAH 
dan.grump    3  92 63.15  9.85  61.00   62.66 10.38 41.00  89.00    BLAH 
day          4 100 50.50 29.01  50.50   50.50 37.06  1.00 100.00    BLAH

we can see from the n  column that there are 9 missing values for dan.sleep , 11 missing values for baby.sleep  and 8
missing values for dan.grump .  Suppose what I would like is a correlation matrix. And let’s also suppose that I don’t bother
to tell R how to handle those missing values. Here’s what happens:

> cor( parenthood2 ) 
           dan.sleep baby.sleep dan.grump day 
dan.sleep          1         NA        NA  NA 
baby.sleep        NA          1        NA  NA 
dan.grump         NA         NA         1  NA 
day               NA         NA        NA   1

Annoying, but it kind of makes sense. If I don’t know what some of the values of dan.sleep  and baby.sleep  actually
are, then I can’t possibly know what the correlation between these two variables is either, since the formula for the correlation
coefficient makes use of every single observation in the data set. Once again, it makes sense: it’s just not particularly helpful.

To make R behave more sensibly in this situation, you need to specify the use  argument to the cor()  function. There are
several different values that you can specify for this, but the two that we care most about in practice tend to be 
"complete.obs"  and "pairwise.complete.obs" . If we specify use = "complete.obs" , R will

completely ignore all cases (i.e., all rows in our parenthood2  data frame) that have any missing values at all. So, for instance,
if you look back at the extract earlier when I used the head()  function, notice that observation 1 (i.e., day 1) of the 
parenthood2  data set is missing the value for baby.sleep , but is otherwise complete? Well, if you choose 
use = "complete.obs"  R will ignore that row completely: that is, even when it’s trying to calculate the correlation

between dan.sleep  and dan.grump , observation 1 will be ignored, because the value of baby.sleep  is missing for
that observation. Here’s what we get:
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> cor(parenthood2, use = "complete.obs") 
             dan.sleep baby.sleep   dan.grump         day 
dan.sleep   1.00000000  0.6394985 -0.89951468  0.06132891 
baby.sleep  0.63949845  1.0000000 -0.58656066  0.14555814 
dan.grump  -0.89951468 -0.5865607  1.00000000 -0.06816586 
day         0.06132891  0.1455581 -0.06816586  1.00000000

The other possibility that we care about, and the one that tends to get used more often in practice, is to set 
use = "pairwise.complete.obs" . When we do that, R only looks at the variables that it’s trying to correlate when

determining what to drop. So, for instance, since the only missing value for observation 1 of parenthood2  is for 
baby.sleep  R will only drop observation 1 when baby.sleep  is one of the variables involved: and so R keeps

observation 1 when trying to correlate dan.sleep  and dan.grump . When we do it this way, here’s what we get:

> cor(parenthood2, use = "pairwise.complete.obs")  
             dan.sleep  baby.sleep    dan.grump          day 
dan.sleep   1.00000000  0.61472303 -0.903442442 -0.076796665 
baby.sleep  0.61472303  1.00000000 -0.567802669  0.058309485 
dan.grump  -0.90344244 -0.56780267  1.000000000  0.005833399 
day        -0.07679667  0.05830949  0.005833399  1.000000000

Similar, but not quite the same. It’s also worth noting that the correlate()  function (in the lsr  package) automatically
uses the “pairwise complete” method:

> correlate(parenthood2) 
 
CORRELATIONS 
============ 
- correlation type:  pearson  
- correlations shown only when both variables are numeric 
 
           dan.sleep baby.sleep dan.grump    day 
dan.sleep          .      0.615    -0.903 -0.077 
baby.sleep     0.615          .    -0.568  0.058 
dan.grump     -0.903     -0.568         .  0.006 
day           -0.077      0.058     0.006      .

The two approaches have different strengths and weaknesses. The “pairwise complete” approach has the advantage that it keeps
more observations, so you’re making use of more of your data and (as we’ll discuss in tedious detail in Chapter 10 and it improves
the reliability of your estimated correlation. On the other hand, it means that every correlation in your correlation matrix is being
computed from a slightly different set of observations, which can be awkward when you want to compare the different correlations
that you’ve got.

So which method should you use? It depends a lot on why you think your values are missing, and probably depends a little on how
paranoid you are. For instance, if you think that the missing values were “chosen” completely randomly  then you’ll probably
want to use the pairwise method. If you think that missing data are a cue to thinking that the whole observation might be rubbish
(e.g., someone just selecting arbitrary responses in your questionnaire), but that there’s no pattern to which observations are
“rubbish” then it’s probably safer to keep only those observations that are complete. If you think there’s something systematic
going on, in that some observations are more likely to be missing than others, then you have a much trickier problem to solve, and
one that is beyond the scope of this book.

This page titled 15.7: Handling Missing Values is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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15.8: Testing the Significance of a Correlation

15.8.1 Hypothesis tests for a single correlation

I don’t want to spend too much time on this, but it’s worth very briefly returning to the point I made earlier, that Pearson
correlations are basically the same thing as linear regressions with only a single predictor added to the model. What this means is
that the hypothesis tests that I just described in a regression context can also be applied to correlation coefficients. To see this, let’s
take a summary()  of the regression.1  model:

summary( regression.1 )

## 
## Call: 
## lm(formula = dan.grump ~ dan.sleep, data = parenthood) 
## 
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -11.025  -2.213  -0.399   2.681  11.750  
## 
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 125.9563     3.0161   41.76   <2e-16 *** 
## dan.sleep    -8.9368     0.4285  -20.85   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 4.332 on 98 degrees of freedom 
## Multiple R-squared:  0.8161, Adjusted R-squared:  0.8142  
## F-statistic: 434.9 on 1 and 98 DF,  p-value: < 2.2e-16

The important thing to note here is the t test associated with the predictor, in which we get a result of t(98)=−20.85, p<.001. Now
let’s compare this to the output of a different function, which goes by the name of cor.test() . As you might expect, this
function runs a hypothesis test to see if the observed correlation between two variables is significantly different from 0. Let’s have
a look:

cor.test( x = parenthood$dan.sleep, y = parenthood$dan.grump )

## 
##  Pearson's product-moment correlation 
## 
## data:  parenthood$dan.sleep and parenthood$dan.grump 
## t = -20.854, df = 98, p-value < 2.2e-16 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  -0.9340614 -0.8594714 
## sample estimates: 
##       cor  
## -0.903384

Again, the key thing to note is the line that reports the hypothesis test itself, which seems to be saying that t(98)=−20.85, p<.001.
Hm. Looks like it’s exactly the same test, doesn’t it? And that’s exactly what it is. The test for the significance of a correlation is
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identical to the t test that we run on a coefficient in a regression model.

15.8.2 Hypothesis tests for all pairwise correlations
Okay, one more digression before I return to regression properly. In the previous section I talked about the cor.test()
function, which lets you run a hypothesis test on a single correlation. The cor.test()  function is (obviously) an extension of
the cor()  function, which we talked about in Section 5.7. However, the cor()  function isn’t restricted to computing a
single correlation: you can use it to compute all pairwise correlations among the variables in your data set. This leads people to the
natural question: can the cor.test()  function do the same thing? Can we use cor.test()  to run hypothesis tests for all
possible parwise correlations among the variables in a data frame?

The answer is no, and there’s a very good reason for this. Testing a single correlation is fine: if you’ve got some reason to be asking
“is A related to B?”, then you should absolutely run a test to see if there’s a significant correlation. But if you’ve got variables A, B,
C, D and E and you’re thinking about testing the correlations among all possible pairs of these, a statistician would want to ask:
what’s your hypothesis? If you’re in the position of wanting to test all possible pairs of variables, then you’re pretty clearly on a
fishing expedition, hunting around in search of significant effects when you don’t actually have a clear research hypothesis in mind.
This is dangerous, and the authors of cor.test()  obviously felt that they didn’t want to support that kind of behaviour.

On the other hand… a somewhat less hardline view might be to argue we’ve encountered this situation before, back in Section 14.5
when we talked about post hoc tests in ANOVA. When running post hoc tests, we didn’t have any specific comparisons in mind, so
what we did was apply a correction (e.g., Bonferroni, Holm, etc) in order to avoid the possibility of an inflated Type I error rate.
From this perspective, it’s okay to run hypothesis tests on all your pairwise correlations, but you must treat them as post hoc
analyses, and if so you need to apply a correction for multiple comparisons. That’s what the correlate()  function in the 
lsr  package does. When we use the correlate()  function in Section 5.7 all it did was print out the correlation matrix.

But you can get it to output the results of all the pairwise tests as well by specifying test=TRUE . Here’s what happens with the 
parenthood  data:

library(lsr)

## Warning: package 'lsr' was built under R version 3.5.2  

correlate(parenthood, test=TRUE)
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## 
## CORRELATIONS 
## ============ 
## - correlation type:  pearson  
## - correlations shown only when both variables are numeric 
## 
##            dan.sleep    baby.sleep    dan.grump       day    
## dan.sleep          .         0.628***    -0.903*** -0.098    
## baby.sleep     0.628***          .       -0.566*** -0.010    
## dan.grump     -0.903***     -0.566***         .     0.076    
## day           -0.098        -0.010        0.076         .    
## 
## --- 
## Signif. codes: . = p < .1, * = p<.05, ** = p<.01, *** = p<.001 
## 
## 
## p-VALUES 
## ======== 
## - total number of tests run:  6  
## - correction for multiple testing:  holm  
## 
##            dan.sleep baby.sleep dan.grump   day 
## dan.sleep          .      0.000     0.000 0.990 
## baby.sleep     0.000          .     0.000 0.990 
## dan.grump      0.000      0.000         . 0.990 
## day            0.990      0.990     0.990     . 
## 
## 
## SAMPLE SIZES 
## ============ 
## 
##            dan.sleep baby.sleep dan.grump day 
## dan.sleep        100        100       100 100 
## baby.sleep       100        100       100 100 
## dan.grump        100        100       100 100 
## day              100        100       100 100

The output here contains three matrices. First it prints out the correlation matrix. Second it prints out a matrix of p-values, using the
Holm method  to correct for multiple comparisons. Finally, it prints out a matrix indicating the sample size (number of pairwise
complete cases) that contributed to each correlation.

So there you have it. If you really desperately want to do pairwise hypothesis tests on your correlations, the correlate()
function will let you do it. But please, please be careful. I can’t count the number of times I’ve had a student panicking in my office
because they’ve run these pairwise correlation tests, and they get one or two significant results that don’t make any sense. For some
reason, the moment people see those little significance stars appear, they feel compelled to throw away all common sense and
assume that the results must correspond to something real that requires an explanation. In most such cases, my experience has been
that the right answer is “it’s a Type I error”.
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15.9: Regarding Regression Coefficients
Before moving on to discuss the assumptions underlying linear regression and what you can do to check if they’re being met,
there’s two more topics I want to briefly discuss, both of which relate to the regression coefficients. The first thing to talk about is
calculating confidence intervals for the coefficients; after that, I’ll discuss the somewhat murky question of how to determine
which of predictor is most important.

15.9.1 Confidence intervals for the coefficients
Like any population parameter, the regression coefficients b cannot be estimated with complete precision from a sample of data;
that’s part of why we need hypothesis tests. Given this, it’s quite useful to be able to report confidence intervals that capture our
uncertainty about the true value of b. This is especially useful when the research question focuses heavily on an attempt to find out
how strongly variable X is related to variable Y, since in those situations the interest is primarily in the regression weight b.
Fortunately, confidence intervals for the regression weights can be constructed in the usual fashion,

where SE( ) is the standard error of the regression coefficient, and t  is the relevant critical value of the appropriate t distribution.
For instance, if it’s a 95% confidence interval that we want, then the critical value is the 97.5th quantile of a t distribution with
N−K−1 degrees of freedom. In other words, this is basically the same approach to calculating confidence intervals that we’ve used
throughout. To do this in R we can use the confint()  function. There arguments to this function are

object . The regression model ( lm  object) for which confidence intervals are required.
parm . A vector indicating which coefficients we should calculate intervals for. This can be either a vector of numbers or

(more usefully) a character vector containing variable names. By default, all coefficients are included, so usually you don’t
bother specifying this argument.
level . A number indicating the confidence level that should be used. As is usually the case, the default value is 0.95, so you

wouldn’t usually need to specify this argument.

So, suppose I want 99% confidence intervals for the coefficients in the regression.2  model. I could do this using the
following command:

confint( object = regression.2, 
        level = .99)

##                   0.5 %      99.5 % 
## (Intercept) 117.9755724 133.9555593 
## dan.sleep   -10.4044419  -7.4960575 
## baby.sleep   -0.7016868   0.7227357

Simple enough.

15.9.2 Calculating standardised regression coefficients
One more thing that you might want to do is to calculate “standardised” regression coefficients, often denoted β. The rationale
behind standardised coefficients goes like this. In a lot of situations, your variables are on fundamentally different scales. Suppose,
for example, my regression model aims to predict people’s IQ scores, using their educational attainment (number of years of
education) and their income as predictors. Obviously, educational attainment and income are not on the same scales: the number of
years of schooling can only vary by 10s of years, whereas income would vary by 10,000s of dollars (or more). The units of
measurement have a big influence on the regression coefficients: the b coefficients only make sense when interpreted in light of the
units, both of the predictor variables and the outcome variable. This makes it very difficult to compare the coefficients of different
predictors. Yet there are situations where you really do want to make comparisons between different coefficients. Specifically, you
might want some kind of standard measure of which predictors have the strongest relationship to the outcome. This is what
standardised coefficients aim to do.
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The basic idea is quite simple: the standardised coefficients are the coefficients that you would have obtained if you’d converted all
the variables to z-scores before running the regression.  The idea here is that, by converting all the predictors to z-scores, they all
go into the regression on the same scale, thereby removing the problem of having variables on different scales. Regardless of what
the original variables were, a β value of 1 means that an increase in the predictor of 1 standard deviation will produce a
corresponding 1 standard deviation increase in the outcome variable. Therefore, if variable A has a larger absolute value of β than
variable B, it is deemed to have a stronger relationship with the outcome. Or at least that’s the idea: it’s worth being a little cautious
here, since this does rely very heavily on the assumption that “a 1 standard deviation change” is fundamentally the same kind of
thing for all variables. It’s not always obvious that this is true.

Leaving aside the interpretation issues, let’s look at how it’s calculated. What you could do is standardise all the variables yourself
and then run a regression, but there’s a much simpler way to do it. As it turns out, the β coefficient for a predictor X and outcome Y
has a very simple formula, namely

where σ  is the standard deviation of the predictor, and σY is the standard deviation of the outcome variable Y. This makes matters
a lot simpler. To make things even simpler, the lsr  package includes a function standardCoefs()  that computes the β
coefficients.

standardCoefs( regression.2 )

##                      b        beta 
## dan.sleep  -8.95024973 -0.90474809 
## baby.sleep  0.01052447  0.00217223

This clearly shows that the dan.sleep  variable has a much stronger effect than the baby.sleep  variable. However, this
is a perfect example of a situation where it would probably make sense to use the original coefficients b rather than the standardised
coefficients β. After all, my sleep and the baby’s sleep are already on the same scale: number of hours slept. Why complicate
matters by converting these to z-scores?
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15.10: Assumptions of Regression
The linear regression model that I’ve been discussing relies on several assumptions. In Section 15.9 we’ll talk a lot more about how
to check that these assumptions are being met, but first, let’s have a look at each of them.

Normality. Like half the models in statistics, standard linear regression relies on an assumption of normality. Specifically, it
assumes that the residuals are normally distributed. It’s actually okay if the predictors X and the outcome Y are non-normal, so
long as the residuals ϵ are normal. See Section 15.9.3.
Linearity. A pretty fundamental assumption of the linear regression model is that relationship between X and Y actually be
linear! Regardless of whether it’s a simple regression or a multiple regression, we assume that the relatiships involved are linear.
See Section 15.9.4.
Homogeneity of variance. Strictly speaking, the regression model assumes that each residual ϵ  is generated from a normal
distribution with mean 0, and (more importantly for the current purposes) with a standard deviation σ that is the same for every
single residual. In practice, it’s impossible to test the assumption that every residual is identically distributed. Instead, what we
care about is that the standard deviation of the residual is the same for all values of , and (if we’re being especially paranoid)
all values of every predictor X in the model. See Section 15.9.5.
Uncorrelated predictors. The idea here is that, is a multiple regression model, you don’t want your predictors to be too strongly
correlated with each other. This isn’t “technically” an assumption of the regression model, but in practice it’s required.
Predictors that are too strongly correlated with each other (referred to as “collinearity”) can cause problems when evaluating the
model. See Section 15.9.6
Residuals are independent of each other. This is really just a “catch all” assumption, to the effect that “there’s nothing else
funny going on in the residuals”. If there is something weird (e.g., the residuals all depend heavily on some other unmeasured
variable) going on, it might screw things up.
No “bad” outliers. Again, not actually a technical assumption of the model (or rather, it’s sort of implied by all the others), but
there is an implicit assumption that your regression model isn’t being too strongly influenced by one or two anomalous data
points; since this raises questions about the adequacy of the model, and the trustworthiness of the data in some cases. See
Section 15.9.2.
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15.11: Model Checking
The main focus of this section is regression diagnostics, a term that refers to the art of checking that the assumptions of your
regression model have been met, figuring out how to fix the model if the assumptions are violated, and generally to check that
nothing “funny” is going on. I refer to this as the “art” of model checking with good reason: it’s not easy, and while there are a lot
of fairly standardised tools that you can use to diagnose and maybe even cure the problems that ail your model (if there are any,
that is!), you really do need to exercise a certain amount of judgment when doing this. It’s easy to get lost in all the details of
checking this thing or that thing, and it’s quite exhausting to try to remember what all the different things are. This has the very
nasty side effect that a lot of people get frustrated when trying to learn all the tools, so instead they decide not to do any model
checking. This is a bit of a worry!

In this section, I describe several different things you can do to check that your regression model is doing what it’s supposed to. It
doesn’t cover the full space of things you could do, but it’s still much more detailed than what I see a lot of people doing in
practice; and I don’t usually cover all of this in my intro stats class myself. However, I do think it’s important that you get a sense
of what tools are at your disposal, so I’ll try to introduce a bunch of them here. Finally, I should note that this section draws quite
heavily from the Fox and Weisberg (2011) text, the book associated with the car  package. The car  package is notable for
providing some excellent tools for regression diagnostics, and the book itself talks about them in an admirably clear fashion. I don’t
want to sound too gushy about it, but I do think that Fox and Weisberg (2011) is well worth reading.

15.11.1 Three kinds of residuals
The majority of regression diagnostics revolve around looking at the residuals, and by now you’ve probably formed a sufficiently
pessimistic theory of statistics to be able to guess that – precisely because of the fact that we care a lot about the residuals – there
are several different kinds of residual that we might consider. In particular, the following three kinds of residual are referred to in
this section: “ordinary residuals”, “standardised residuals”, and “Studentised residuals”. There is a fourth kind that you’ll see
referred to in some of the Figures, and that’s the “Pearson residual”: however, for the models that we’re talking about in this
chapter, the Pearson residual is identical to the ordinary residual.

The first and simplest kind of residuals that we care about are ordinary residuals. These are the actual, raw residuals that I’ve been
talking about throughout this chapter. The ordinary residual is just the difference between the fitted value  and the observed
value Y . I’ve been using the notation ϵi to refer to the i-th ordinary residual, and by gum I’m going to stick to it. With this in mind,
we have the very simple equation

This is of course what we saw earlier, and unless I specifically refer to some other kind of residual, this is the one I’m talking
about. So there’s nothing new here: I just wanted to repeat myself. In any case, you can get R to output a vector of ordinary
residuals, you can use a command like this:

residuals( object = regression.2 )
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##           1           2           3           4           5           6  
##  -2.1403095   4.7081942   1.9553640  -2.0602806   0.7194888  -0.4066133  
##           7           8           9          10          11          12  
##   0.2269987  -1.7003077   0.2025039   3.8524589   3.9986291  -4.9120150  
##          13          14          15          16          17          18  
##   1.2060134   0.4946578  -2.6579276  -0.3966805   3.3538613   1.7261225  
##          19          20          21          22          23          24  
##  -0.4922551  -5.6405941  -0.4660764   2.7238389   9.3653697   0.2841513  
##          25          26          27          28          29          30  
##  -0.5037668  -1.4941146   8.1328623   1.9787316  -1.5126726   3.5171148  
##          31          32          33          34          35          36  
##  -8.9256951  -2.8282946   6.1030349  -7.5460717   4.5572128 -10.6510836  
##          37          38          39          40          41          42  
##  -5.6931846   6.3096506  -2.1082466  -0.5044253   0.1875576   4.8094841  
##          43          44          45          46          47          48  
##  -5.4135163  -6.2292842  -4.5725232  -5.3354601   3.9950111   2.1718745  
##          49          50          51          52          53          54  
##  -3.4766440   0.4834367   6.2839790   2.0109396  -1.5846631  -2.2166613  
##          55          56          57          58          59          60  
##   2.2033140   1.9328736  -1.8301204  -1.5401430   2.5298509  -3.3705782  
##          61          62          63          64          65          66  
##  -2.9380806   0.6590736  -0.5917559  -8.6131971   5.9781035   5.9332979  
##          67          68          69          70          71          72  
##  -1.2341956   3.0047669  -1.0802468   6.5174672  -3.0155469   2.1176720  
##          73          74          75          76          77          78  
##   0.6058757  -2.7237421  -2.2291472  -1.4053822   4.7461491  11.7495569  
##          79          80          81          82          83          84  
##   4.7634141   2.6620908 -11.0345292  -0.7588667   1.4558227  -0.4745727  
##          85          86          87          88          89          90  
##   8.9091201  -1.1409777   0.7555223  -0.4107130   0.8797237  -1.4095586  
##          91          92          93          94          95          96  
##   3.1571385  -3.4205757  -5.7228699  -2.2033958  -3.8647891   0.4982711  
##          97          98          99         100  
##  -5.5249495   4.1134221  -8.2038533   5.6800859

One drawback to using ordinary residuals is that they’re always on a different scale, depending on what the outcome variable is and
how good the regression model is. That is, Unless you’ve decided to run a regression model without an intercept term, the ordinary
residuals will have mean 0; but the variance is different for every regression. In a lot of contexts, especially where you’re only
interested in the pattern of the residuals and not their actual values, it’s convenient to estimate the standardised residuals, which
are normalised in such a way as to have standard deviation 1. The way we calculate these is to divide the ordinary residual by an
estimate of the (population) standard deviation of these residuals. For technical reasons, mumble mumble, the formula for this is:

where  in this context is the estimated population standard deviation of the ordinary residuals, and h  is the “hat value” of the ith
observation. I haven’t explained hat values to you yet (but have no fear,  it’s coming shortly), so this won’t make a lot of sense.
For now, it’s enough to interpret the standardised residuals as if we’d converted the ordinary residuals to z-scores. In fact, that is
more or less the truth, it’s just that we’re being a bit fancier. To get the standardised residuals, the command you want is this:

rstandard( model = regression.2 )
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##           1           2           3           4           5           6  
## -0.49675845  1.10430571  0.46361264 -0.47725357  0.16756281 -0.09488969  
##           7           8           9          10          11          12  
##  0.05286626 -0.39260381  0.04739691  0.89033990  0.95851248 -1.13898701  
##          13          14          15          16          17          18  
##  0.28047841  0.11519184 -0.61657092 -0.09191865  0.77692937  0.40403495  
##          19          20          21          22          23          24  
## -0.11552373 -1.31540412 -0.10819238  0.62951824  2.17129803  0.06586227  
##          25          26          27          28          29          30  
## -0.11980449 -0.34704024  1.91121833  0.45686516 -0.34986350  0.81233165  
##          31          32          33          34          35          36  
## -2.08659993 -0.66317843  1.42930082 -1.77763064  1.07452436 -2.47385780  
##          37          38          39          40          41          42  
## -1.32715114  1.49419658 -0.49115639 -0.11674947  0.04401233  1.11881912  
##          43          44          45          46          47          48  
## -1.27081641 -1.46422595 -1.06943700 -1.24659673  0.94152881  0.51069809  
##          49          50          51          52          53          54  
## -0.81373349  0.11412178  1.47938594  0.46437962 -0.37157009 -0.51609949  
##          55          56          57          58          59          60  
##  0.51800753  0.44813204 -0.42662358 -0.35575611  0.58403297 -0.78022677  
##          61          62          63          64          65          66  
## -0.67833325  0.15484699 -0.13760574 -2.05662232  1.40238029  1.37505125  
##          67          68          69          70          71          72  
## -0.28964989  0.69497632 -0.24945316  1.50709623 -0.69864682  0.49071427  
##          73          74          75          76          77          78  
##  0.14267297 -0.63246560 -0.51972828 -0.32509811  1.10842574  2.72171671  
##          79          80          81          82          83          84  
##  1.09975101  0.62057080 -2.55172097 -0.17584803  0.34340064 -0.11158952  
##          85          86          87          88          89          90  
##  2.10863391 -0.26386516  0.17624445 -0.09504416  0.20450884 -0.32730740  
##          91          92          93          94          95          96  
##  0.73475640 -0.79400855 -1.32768248 -0.51940736 -0.91512580  0.11661226  
##          97          98          99         100  
## -1.28069115  0.96332849 -1.90290258  1.31368144

Note that this function uses a different name for the input argument, but it’s still just a linear regression object that the function
wants to take as its input here.

The third kind of residuals are Studentised residuals (also called “jackknifed residuals”) and they’re even fancier than standardised
residuals. Again, the idea is to take the ordinary residual and divide it by some quantity in order to estimate some standardised
notion of the residual, but the formula for doing the calculations this time is subtly different:

Notice that our estimate of the standard deviation here is written . What this corresponds to is the estimate of the residual
standard deviation that you would have obtained, if you just deleted the ith observation from the data set. This sounds like the sort
of thing that would be a nightmare to calculate, since it seems to be saying that you have to run N new regression models (even a
modern computer might grumble a bit at that, especially if you’ve got a large data set). Fortunately, some terribly clever person has
shown that this standard deviation estimate is actually given by the following equation:
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Isn’t that a pip? Anyway, the command that you would use if you wanted to pull out the Studentised residuals for our regression
model is

rstudent( model = regression.2 )

##           1           2           3           4           5           6  
## -0.49482102  1.10557030  0.46172854 -0.47534555  0.16672097 -0.09440368  
##           7           8           9          10          11          12  
##  0.05259381 -0.39088553  0.04715251  0.88938019  0.95810710 -1.14075472  
##          13          14          15          16          17          18  
##  0.27914212  0.11460437 -0.61459001 -0.09144760  0.77533036  0.40228555  
##          19          20          21          22          23          24  
## -0.11493461 -1.32043609 -0.10763974  0.62754813  2.21456485  0.06552336  
##          25          26          27          28          29          30  
## -0.11919416 -0.34546127  1.93818473  0.45499388 -0.34827522  0.81089646  
##          31          32          33          34          35          36  
## -2.12403286 -0.66125192  1.43712830 -1.79797263  1.07539064 -2.54258876  
##          37          38          39          40          41          42  
## -1.33244515  1.50388257 -0.48922682 -0.11615428  0.04378531  1.12028904  
##          43          44          45          46          47          48  
## -1.27490649 -1.47302872 -1.07023828 -1.25020935  0.94097261  0.50874322  
##          49          50          51          52          53          54  
## -0.81230544  0.11353962  1.48863006  0.46249410 -0.36991317 -0.51413868  
##          55          56          57          58          59          60  
##  0.51604474  0.44627831 -0.42481754 -0.35414868  0.58203894 -0.77864171  
##          61          62          63          64          65          66  
## -0.67643392  0.15406579 -0.13690795 -2.09211556  1.40949469  1.38147541  
##          67          68          69          70          71          72  
## -0.28827768  0.69311245 -0.24824363  1.51717578 -0.69679156  0.48878534  
##          73          74          75          76          77          78  
##  0.14195054 -0.63049841 -0.51776374 -0.32359434  1.10974786  2.81736616  
##          79          80          81          82          83          84  
##  1.10095270  0.61859288 -2.62827967 -0.17496714  0.34183379 -0.11101996  
##          85          86          87          88          89          90  
##  2.14753375 -0.26259576  0.17536170 -0.09455738  0.20349582 -0.32579584  
##          91          92          93          94          95          96  
##  0.73300184 -0.79248469 -1.33298848 -0.51744314 -0.91435205  0.11601774  
##          97          98          99         100  
## -1.28498273  0.96296745 -1.92942389  1.31867548

Before moving on, I should point out that you don’t often need to manually extract these residuals yourself, even though they are at
the heart of almost all regression diagnostics. That is, the residuals() , rstandard()  and rstudent()  functions
are all useful to know about, but most of the time the various functions that run the diagnostics will take care of these calculations
for you. Even so, it’s always nice to know how to actually get hold of these things yourself in case you ever need to do something
non-standard.

15.11.2 Three kinds of anomalous data

One danger that you can run into with linear regression models is that your analysis might be disproportionately sensitive to a
smallish number of “unusual” or “anomalous” observations. I discussed this idea previously in Section 6.5.2 in the context of
discussing the outliers that get automatically identified by the boxplot()  function, but this time we need to be much more
precise. In the context of linear regression, there are three conceptually distinct ways in which an observation might be called
“anomalous”. All three are interesting, but they have rather different implications for your analysis.
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The first kind of unusual observation is an outlier. The definition of an outlier (in this context) is an observation that is very
different from what the regression model predicts. An example is shown in Figure 15.7. In practice, we operationalise this concept
by saying that an outlier is an observation that has a very large Studentised residual, . Outliers are interesting: a big outlier
might correspond to junk data – e.g., the variables might have been entered incorrectly, or some other defect may be detectable.
Note that you shouldn’t throw an observation away just because it’s an outlier. But the fact that it’s an outlier is often a cue to look
more closely at that case, and try to find out why it’s so different.

Figure 15.7: An illustration of outliers. The dotted lines plot the regression line that would have been estimated without the
anomalous observation included, and the corresponding residual (i.e., the Studentised residual). The solid line shows the regression
line with the anomalous observation included. The outlier has an unusual value on the outcome (y axis location) but not the
predictor (x axis location), and lies a long way from the regression line.

The second way in which an observation can be unusual is if it has high leverage: this happens when the observation is very
different from all the other observations. This doesn’t necessarily have to correspond to a large residual: if the observation happens
to be unusual on all variables in precisely the same way, it can actually lie very close to the regression line. An example of this is
shown in Figure 15.8. The leverage of an observation is operationalised in terms of its hat value, usually written hi. The formula for
the hat value is rather complicated  but its interpretation is not: h  is a measure of the extent to which the i-th observation is “in
control” of where the regression line ends up going. You can extract the hat values using the following command:

hatvalues( model = regression.2 )

 ϵ

i

∗
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##          1          2          3          4          5          6  
## 0.02067452 0.04105320 0.06155445 0.01685226 0.02734865 0.03129943  
##          7          8          9         10         11         12  
## 0.02735579 0.01051224 0.03698976 0.01229155 0.08189763 0.01882551  
##         13         14         15         16         17         18  
## 0.02462902 0.02718388 0.01964210 0.01748592 0.01691392 0.03712530  
##         19         20         21         22         23         24  
## 0.04213891 0.02994643 0.02099435 0.01233280 0.01853370 0.01804801  
##         25         26         27         28         29         30  
## 0.06722392 0.02214927 0.04472007 0.01039447 0.01381812 0.01105817  
##         31         32         33         34         35         36  
## 0.03468260 0.04048248 0.03814670 0.04934440 0.05107803 0.02208177  
##         37         38         39         40         41         42  
## 0.02919013 0.05928178 0.02799695 0.01519967 0.04195751 0.02514137  
##         43         44         45         46         47         48  
## 0.04267879 0.04517340 0.03558080 0.03360160 0.05019778 0.04587468  
##         49         50         51         52         53         54  
## 0.03701290 0.05331282 0.04814477 0.01072699 0.04047386 0.02681315  
##         55         56         57         58         59         60  
## 0.04556787 0.01856997 0.02919045 0.01126069 0.01012683 0.01546412  
##         61         62         63         64         65         66  
## 0.01029534 0.04428870 0.02438944 0.07469673 0.04135090 0.01775697  
##         67         68         69         70         71         72  
## 0.04217616 0.01384321 0.01069005 0.01340216 0.01716361 0.01751844  
##         73         74         75         76         77         78  
## 0.04863314 0.02158623 0.02951418 0.01411915 0.03276064 0.01684599  
##         79         80         81         82         83         84  
## 0.01028001 0.02920514 0.01348051 0.01752758 0.05184527 0.04583604  
##         85         86         87         88         89         90  
## 0.05825858 0.01359644 0.03054414 0.01487724 0.02381348 0.02159418  
##         91         92         93         94         95         96  
## 0.02598661 0.02093288 0.01982480 0.05063492 0.05907629 0.03682026  
##         97         98         99        100  
## 0.01817919 0.03811718 0.01945603 0.01373394
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Figure 15.8: An illustration of high leverage points. The anomalous observation in this case is unusual both in terms of the
predictor (x axis) and the outcome (y axis), but this unusualness is highly consistent with the pattern of correlations that exists
among the other observations; as a consequence, the observation falls very close to the regression line and does not distort it.

In general, if an observation lies far away from the other ones in terms of the predictor variables, it will have a large hat value (as a
rough guide, high leverage is when the hat value is more than 2-3 times the average; and note that the sum of the hat values is
constrained to be equal to K+1). High leverage points are also worth looking at in more detail, but they’re much less likely to be a
cause for concern unless they are also outliers. % guide from Venables and Ripley.

This brings us to our third measure of unusualness, the influence of an observation. A high influence observation is an outlier that
has high leverage. That is, it is an observation that is very different to all the other ones in some respect, and also lies a long way
from the regression line. This is illustrated in Figure 15.9. Notice the contrast to the previous two figures: outliers don’t move the
regression line much, and neither do high leverage points. But something that is an outlier and has high leverage… that has a big
effect on the regression line.

Figure 15.9: An illustration of high influence points. In this case, the anomalous observation is highly unusual on the predictor
variable (x axis), and falls a long way from the regression line. As a consequence, the regression line is highly distorted, even
though (in this case) the anomalous observation is entirely typical in terms of the outcome variable (y axis).

That’s why we call these points high influence; and it’s why they’re the biggest worry. We operationalise influence in terms of a
measure known as Cook’s distance,
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Notice that this is a multiplication of something that measures the outlier-ness of the observation (the bit on the left), and something
that measures the leverage of the observation (the bit on the right). In other words, in order to have a large Cook’s distance, an
observation must be a fairly substantial outlier and have high leverage. In a stunning turn of events, you can obtain these values
using the following command:

cooks.distance( model = regression.2 )

##            1            2            3            4            5  
## 1.736512e-03 1.740243e-02 4.699370e-03 1.301417e-03 2.631557e-04  
##            6            7            8            9           10  
## 9.697585e-05 2.620181e-05 5.458491e-04 2.876269e-05 3.288277e-03  
##           11           12           13           14           15  
## 2.731835e-02 8.296919e-03 6.621479e-04 1.235956e-04 2.538915e-03  
##           16           17           18           19           20  
## 5.012283e-05 3.461742e-03 2.098055e-03 1.957050e-04 1.780519e-02  
##           21           22           23           24           25  
## 8.367377e-05 1.649478e-03 2.967594e-02 2.657610e-05 3.448032e-04  
##           26           27           28           29           30  
## 9.093379e-04 5.699951e-02 7.307943e-04 5.716998e-04 2.459564e-03  
##           31           32           33           34           35  
## 5.214331e-02 6.185200e-03 2.700686e-02 5.467345e-02 2.071643e-02  
##           36           37           38           39           40  
## 4.606378e-02 1.765312e-02 4.689817e-02 2.316122e-03 7.012530e-05  
##           41           42           43           44           45  
## 2.827824e-05 1.076083e-02 2.399931e-02 3.381062e-02 1.406498e-02  
##           46           47           48           49           50  
## 1.801086e-02 1.561699e-02 4.179986e-03 8.483514e-03 2.444787e-04  
##           51           52           53           54           55  
## 3.689946e-02 7.794472e-04 1.941235e-03 2.446230e-03 4.270361e-03  
##           56           57           58           59           60  
## 1.266609e-03 1.824212e-03 4.804705e-04 1.163181e-03 3.187235e-03  
##           61           62           63           64           65  
## 1.595512e-03 3.703826e-04 1.577892e-04 1.138165e-01 2.827715e-02  
##           66           67           68           69           70  
## 1.139374e-02 1.231422e-03 2.260006e-03 2.241322e-04 1.028479e-02  
##           71           72           73           74           75  
## 2.841329e-03 1.431223e-03 3.468538e-04 2.941757e-03 2.738249e-03  
##           76           77           78           79           80  
## 5.045357e-04 1.387108e-02 4.230966e-02 4.187440e-03 3.861831e-03  
##           81           82           83           84           85  
## 2.965826e-02 1.838888e-04 2.149369e-03 1.993929e-04 9.168733e-02  
##           86           87           88           89           90  
## 3.198994e-04 3.262192e-04 4.547383e-05 3.400893e-04 7.881487e-04  
##           91           92           93           94           95  
## 4.801204e-03 4.493095e-03 1.188427e-02 4.796360e-03 1.752666e-02  
##           96           97           98           99          100  
## 1.732793e-04 1.012302e-02 1.225818e-02 2.394964e-02 8.010508e-03
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As a rough guide, Cook’s distance greater than 1 is often considered large (that’s what I typically use as a quick and dirty rule),
though a quick scan of the internet and a few papers suggests that 4/N has also been suggested as a possible rule of thumb.

As hinted above, you don’t usually need to make use of these functions, since you can have R automatically draw the critical
plots.  For the regression.2  model, these are the plots showing Cook’s distance (Figure 15.10) and the more detailed
breakdown showing the scatter plot of the Studentised residual against leverage (Figure 15.11). To draw these, we can use the 
plot()  function. When the main argument x  to this function is a linear model object, it will draw one of six different plots,

each of which is quite useful for doing regression diagnostics. You specify which one you want using the which  argument (a
number between 1 and 6). If you don’t do this then R will draw all six. The two plots of interest to us in this context are generated
using the following commands:

Figure 15.10: Cook’s distance for every observation. This is one of the standard regression plots produced by the plot()
function when the input is a linear regression object. It is obtained by setting which=4

Figure 15.11: Residuals versus leverage. This is one of the standard regression plots produced by the plot()  function when the
input is a linear regression object. It is obtained by setting which=5 .

An obvious question to ask next is, if you do have large values of Cook’s distance, what should you do? As always, there’s no hard
and fast rules. Probably the first thing to do is to try running the regression with that point excluded and see what happens to the
model performance and to the regression coefficients. If they really are substantially different, it’s time to start digging into your
data set and your notes that you no doubt were scribbling as your ran your study; try to figure out why the point is so different. If
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you start to become convinced that this one data point is badly distorting your results, you might consider excluding it, but that’s
less than ideal unless you have a solid explanation for why this particular case is qualitatively different from the others and
therefore deserves to be handled separately.  To give an example, let’s delete the observation from day 64, the observation with
the largest Cook’s distance for the regression.2  model. We can do this using the subset  argument:

lm( formula = dan.grump ~ dan.sleep + baby.sleep,  # same formula 
     data = parenthood,       # same data frame... 
     subset = -64             # ...but observation 64 is deleted 
 )

## 
## Call: 
## lm(formula = dan.grump ~ dan.sleep + baby.sleep, data = parenthood,  
##     subset = -64) 
## 
## Coefficients: 
## (Intercept)    dan.sleep   baby.sleep   
##    126.3553      -8.8283      -0.1319

As you can see, those regression coefficients have barely changed in comparison to the values we got earlier. In other words, we
really don’t have any problem as far as anomalous data are concerned.

15.11.3 Checking the normality of the residuals

Like many of the statistical tools we’ve discussed in this book, regression models rely on a normality assumption. In this case, we
assume that the residuals are normally distributed. The tools for testing this aren’t fundamentally different to those that we
discussed earlier in Section 13.9. Firstly, I firmly believe that it never hurts to draw an old fashioned histogram. The command I use
might be something like this:

hist( x = residuals( regression.2 ),   # data are the residuals 
       xlab = "Value of residual",      # x-axis label 
       main = "",                       # no title  
       breaks = 20                      # lots of breaks
 )

The resulting plot is shown in Figure 15.12, and as you can see the plot looks pretty damn close to normal, almost unnaturally so.
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Figure 15.12: A histogram of the (ordinary) residuals in the regression.2  model. These residuals look very close to being
normally distributed, much moreso than is typically seen with real data. This shouldn’t surprise you… they aren’t real data, and
they aren’t real residuals!

I could also run a Shapiro-Wilk test to check, using the shapiro.test()  function; the W value of .99, at this sample size, is
non-significant (p=.84), again suggesting that the normality assumption isn’t in any danger here. As a third measure, we might also
want to draw a QQ-plot using the qqnorm()  function. The QQ plot is an excellent one to draw, and so you might not be
surprised to discover that it’s one of the regression plots that we can produce using the plot()  function:

plot( x = regression.2, which = 2 )   # Figure @ref{fig:regressionplot2}

Figure 15.13: Plot of the theoretical quantiles according to the model, against the quantiles of the standardised residuals. This is one
of the standard regression plots produced by the plot()  function when the input is a linear regression object. It is obtained by
setting which=2 .

The output is shown in Figure 15.13, showing the standardised residuals plotted as a function of their theoretical quantiles
according to the regression model. The fact that the output appends the model specification to the picture is nice.
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15.11.4 Checking the linearity of the relationship

Figure 15.14: Plot of the fitted values against the observed values of the outcome variable. A straight line is what we’re hoping to
see here. This looks pretty good, suggesting that there’s nothing grossly wrong, but there could be hidden subtle issues.

The third thing we might want to test is the linearity of the relationships between the predictors and the outcomes. There’s a few
different things that you might want to do in order to check this. Firstly, it never hurts to just plot the relationship between the fitted
values  and the observed values Y  for the outcome variable, as illustrated in Figure 15.14. To draw this we could use the 
fitted.values()  function to extract the  values in much the same way that we used the residuals()  function to

extract the ϵ  values. So the commands to draw this figure might look like this:

 yhat.2 <- fitted.values( object = regression.2 ) 
 plot( x = yhat.2,  
       y = parenthood$dan.grump, 
       xlab = "Fitted Values", 
       ylab = "Observed Values"  
 )

One of the reasons I like to draw these plots is that they give you a kind of “big picture view”. If this plot looks approximately
linear, then we’re probably not doing too badly (though that’s not to say that there aren’t problems). However, if you can see big
departures from linearity here, then it strongly suggests that you need to make some changes.

In any case, in order to get a more detailed picture it’s often more informative to look at the relationship between the fitted values
and the residuals themselves. Again, we could draw this plot using low level commands, but there’s an easier way. Just plot()
the regression model, and select which = 1 :

plot(x = regression.2, which = 1)
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Figure 15.15: Plot of the fitted values against the residuals for regression.2 , with a line showing the relationship between
the two. If this is horizontal and straight, then we can feel reasonably confident that the “average residual” for all “fitted values” is
more or less the same. This is one of the standard regression plots produced by the plot()  function when the input is a linear
regression object. It is obtained by setting which=1 .

The output is shown in Figure 15.15. As you can see, not only does it draw the scatterplot showing the fitted value against the
residuals, it also plots a line through the data that shows the relationship between the two. Ideally, this should be a straight,
perfectly horizontal line. There’s some hint of curvature here, but it’s not clear whether or not we be concerned.

A somewhat more advanced version of the same plot is produced by the residualPlots()  function in the car  package.
This function not only draws plots comparing the fitted values to the residuals, it does so for each individual predictor. The
command is and the resulting plots are shown in Figure 15.16.

residualPlots( model = regression.2 ) 

## Loading required package: carData
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Figure 15.16: Plot of the fitted values against the residuals for regression.2 , along with similar plots for the two predictors
individually. This plot is produced by the residualPlots()  function in the car  package. Note that it refers to the
residuals as “Pearson residuals”, but in this context these are the same as ordinary residuals.

##            Test stat Pr(>|Test stat|)   
## dan.sleep     2.1604          0.03323 * 
## baby.sleep   -0.5445          0.58733   
## Tukey test    2.1615          0.03066 * 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that this function also reports the results of a bunch of curvature tests. For a predictor variable X in some regression model,
this test is equivalent to adding a new predictor to the model corresponding to X , and running the t-test on the b coefficient
associated with this new predictor. If it comes up significant, it implies that there is some nonlinear relationship between the
variable and the residuals.

The third line here is the Tukey test, which is basically the same test, except that instead of squaring one of the predictors and
adding it to the model, you square the fitted-value. In any case, the fact that the curvature tests have come up significant is hinting
that the curvature that we can see in Figures 15.15 and 15.16 is genuine;  although it still bears remembering that the pattern in
Figure 15.14 is pretty damn straight: in other words the deviations from linearity are pretty small, and probably not worth worrying
about.

In a lot of cases, the solution to this problem (and many others) is to transform one or more of the variables. We discussed the
basics of variable transformation in Sections 7.2 and (mathfunc), but I do want to make special note of one additional possibility
that I didn’t mention earlier: the Box-Cox transform. The Box-Cox function is a fairly simple one, but it’s very widely used

for all values of λ except λ=0. When λ=0 we just take the natural logarithm (i.e., ln(x)). You can calculate it using the 
boxCox()  function in the car  package. Better yet, if what you’re trying to do is convert a data to normal, or as normal as

possible, there’s the powerTransform()  function in the car  package that can estimate the best value of λ. Variable
transformation is another topic that deserves a fairly detailed treatment, but (again) due to deadline constraints, it will have to wait
until a future version of this book.

15.11.5 Checking the homogeneity of variance
The regression models that we’ve talked about all make a homogeneity of variance assumption: the variance of the residuals is
assumed to be constant. The “default” plot that R provides to help with doing this ( which = 3  when using plot() ) shows
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a plot of the square root of the size of the residual , as a function of the fitted value . We can produce the plot using the
following command,

plot(x = regression.2, which = 3)

and the resulting plot is shown in Figure 15.17. Note that this plot actually uses the standardised residuals (i.e., converted to z
scores) rather than the raw ones, but it’s immaterial from our point of view. What we’re looking to see here is a straight, horizontal
line running through the middle of the plot.

Figure 15.17: Plot of the fitted values (model predictions) against the square root of the abs standardised residuals. This plot is used
to diagnose violations of homogeneity of variance. If the variance is really constant, then the line through the middle should be
horizontal and flat. This is one of the standard regression plots produced by the plot()  function when the input is a linear
regression object. It is obtained by setting which=3 .

A slightly more formal approach is to run hypothesis tests. The car  package provides a function called ncvTest()  (non-
constant variance test) that can be used for this purpose (Cook and Weisberg 1983). I won’t explain the details of how it works,
other than to say that the idea is that what you do is run a regression to see if there is a relationship between the squared residuals ϵ
and the fitted values , or possibly to run a regression using all of the original predictors instead of just .  Using the default
settings, the ncvTest()  looks for a relationship between  and the variance of the residuals, making it a straightforward
analogue of Figure 15.17. So if we run it for our model,

ncvTest( regression.2 )

## Non-constant Variance Score Test  
## Variance formula: ~ fitted.values  
## Chisquare = 0.09317511, Df = 1, p = 0.76018

We see that our original impression was right: there’s no violations of homogeneity of variance in this data.

It’s a bit beyond the scope of this chapter to talk too much about how to deal with violations of homogeneity of variance, but I’ll
give you a quick sense of what you need to consider. The main thing to worry about, if homogeneity of variance is violated, is that
the standard error estimates associated with the regression coefficients are no longer entirely reliable, and so your t tests for the
coefficients aren’t quite right either. A simple fix to the problem is to make use of a “heteroscedasticity corrected covariance
matrix” when estimating the standard errors. These are often called sandwich estimators, for reasons that only make sense if you
understand the maths at a low level  have implemented as the default in the hccm()  function is a tweak on this, proposed by
Long and Ervin (2000). This version uses , where hi is the ith hat value. Gosh, regression is fun, isn’t it?]
You don’t need to understand what this means (not for an introductory class), but it might help to note that there’s a hccm()
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function in the car()  package that does it. Better yet, you don’t even need to use it. You can use the coeftest()  function
in the lmtest  package, but you need the car  package loaded:

library(lmtest) 
library(car) 
coeftest( regression.2, vcov= hccm )

## 
## t test of coefficients: 
## 
##               Estimate Std. Error  t value Pr(>|t|)     
## (Intercept) 125.965566   3.247285  38.7910   <2e-16 *** 
## dan.sleep    -8.950250   0.615820 -14.5339   <2e-16 *** 
## baby.sleep    0.010524   0.291565   0.0361   0.9713     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Not surprisingly, these t tests are pretty much identical to the ones that we saw when we used the summary(regression.2)
command earlier; because the homogeneity of variance assumption wasn’t violated. But if it had been, we might have seen some
more substantial differences.

15.11.6 Checking for collinearity

The last kind of regression diagnostic that I’m going to discuss in this chapter is the use of variance inflation factors (VIFs), which
are useful for determining whether or not the predictors in your regression model are too highly correlated with each other. There is
a variance inflation factor associated with each predictor X  in the model, and the formula for the k-th VIF is:

where  refers to R-squared value you would get if you ran a regression using X  as the outcome variable, and all the other X
variables as the predictors. The idea here is that  is a very good measure of the extent to which X  is correlated with all the
other variables in the model. Better yet, the square root of the VIF is pretty interpretable: it tells you how much wider the
confidence interval for the corresponding coefficient b  is, relative to what you would have expected if the predictors are all nice
and uncorrelated with one another. If you’ve only got two predictors, the VIF values are always going to be the same, as we can see
if we use the vif()  function ( car  package)…

vif( mod = regression.2 )

##  dan.sleep baby.sleep  
##   1.651038   1.651038

And since the square root of 1.65 is 1.28, we see that the correlation between our two predictors isn’t causing much of a problem.

To give a sense of how we could end up with a model that has bigger collinearity problems, suppose I were to run a much less
interesting regression model, in which I tried to predict the day  on which the data were collected, as a function of all the other
variables in the data set. To see why this would be a bit of a problem, let’s have a look at the correlation matrix for all four
variables:

cor( parenthood )
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##              dan.sleep  baby.sleep   dan.grump         day 
## dan.sleep   1.00000000  0.62794934 -0.90338404 -0.09840768 
## baby.sleep  0.62794934  1.00000000 -0.56596373 -0.01043394 
## dan.grump  -0.90338404 -0.56596373  1.00000000  0.07647926 
## day        -0.09840768 -0.01043394  0.07647926  1.00000000

We have some fairly large correlations between some of our predictor variables! When we run the regression model and look at the
VIF values, we see that the collinearity is causing a lot of uncertainty about the coefficients. First, run the regression…

regression.3 <- lm( day ~ baby.sleep + dan.sleep + dan.grump, parenthood )

and second, look at the VIFs…

vif( regression.3 )

## baby.sleep  dan.sleep  dan.grump  
##   1.651064   6.102337   5.437903

Yep, that’s some mighty fine collinearity you’ve got there.

This page titled 15.11: Model Checking is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro
via source content that was edited to the style and standards of the LibreTexts platform.
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15.12: Model Selection
One fairly major problem that remains is the problem of “model selection”. That is, if we have a data set that contains several
variables, which ones should we include as predictors, and which ones should we not include? In other words, we have a problem
of variable selection. In general, model selection is a complex business, but it’s made somewhat simpler if we restrict ourselves to
the problem of choosing a subset of the variables that ought to be included in the model. Nevertheless, I’m not going to try
covering even this reduced topic in a lot of detail. Instead, I’ll talk about two broad principles that you need to think about; and then
discuss one concrete tool that R provides to help you select a subset of variables to include in your model. Firstly, the two
principles:

It’s nice to have an actual substantive basis for your choices. That is, in a lot of situations you the researcher have good reasons
to pick out a smallish number of possible regression models that are of theoretical interest; these models will have a sensible
interpretation in the context of your field. Never discount the importance of this. Statistics serves the scientific process, not the
other way around.
To the extent that your choices rely on statistical inference, there is a trade off between simplicity and goodness of fit. As you
add more predictors to the model, you make it more complex; each predictor adds a new free parameter (i.e., a new regression
coefficient), and each new parameter increases the model’s capacity to “absorb” random variations. So the goodness of fit (e.g.,
R ) continues to rise as you add more predictors no matter what. If you want your model to be able to generalise well to new
observations, you need to avoid throwing in too many variables.

This latter principle is often referred to as Ockham’s razor, and is often summarised in terms of the following pithy saying: do not
multiply entities beyond necessity. In this context, it means: don’t chuck in a bunch of largely irrelevant predictors just to boost
your R . Hm. Yeah, the original was better.

In any case, what we need is an actual mathematical criterion that will implement the qualitative principle behind Ockham’s razor
in the context of selecting a regression model. As it turns out there are several possibilities. The one that I’ll talk about is the
Akaike information criterion (AIC; Akaike 1974) simply because it’s the default one used in the R function step() . In the
context of a linear regression model (and ignoring terms that don’t depend on the model in any way!), the AIC for a model that has
K predictor variables plus an intercept is:

The smaller the AIC value, the better the model performance is. If we ignore the low level details, it’s fairly obvious what the AIC
does: on the left we have a term that increases as the model predictions get worse; on the right we have a term that increases as the
model complexity increases. The best model is the one that fits the data well (low residuals; left hand side) using as few predictors
as possible (low K; right hand side). In short, this is a simple implementation of Ockham’s razor.

15.12.1 Backward elimination

Okay, let’s have a look at the step()  function at work. In this example I’ll keep it simple and use only the basic backward
elimination approach. That is, start with the complete regression model, including all possible predictors. Then, at each “step” we
try all possible ways of removing one of the variables, and whichever of these is best (in terms of lowest AIC value) is accepted.
This becomes our new regression model; and we then try all possible deletions from the new model, again choosing the option with
lowest AIC. This process continues until we end up with a model that has a lower AIC value than any of the other possible models
that you could produce by deleting one of its predictors. Let’s see this in action. First, I need to define the model from which the
process starts.

full.model <- lm( formula = dan.grump ~ dan.sleep + baby.sleep + day,   
                   data = parenthood   
 )

That’s nothing terribly new: yet another regression. Booooring. Still, we do need to do it: the object  argument to the 
step()  function will be this regression model. With this in mind, I would call the step()  function using the following

command:
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 step( object = full.model,     # start at the full model 
       direction = "backward"   # allow it remove predictors but not add them 
 )  

## Start:  AIC=299.08 
## dan.grump ~ dan.sleep + baby.sleep + day 
## 
##              Df Sum of Sq    RSS    AIC 
## - baby.sleep  1       0.1 1837.2 297.08 
## - day         1       1.6 1838.7 297.16 
## <none>                    1837.1 299.08 
## - dan.sleep   1    4909.0 6746.1 427.15 
## 
## Step:  AIC=297.08 
## dan.grump ~ dan.sleep + day 
## 
##             Df Sum of Sq    RSS    AIC 
## - day        1       1.6 1838.7 295.17 
## <none>                   1837.2 297.08 
## - dan.sleep  1    8103.0 9940.1 463.92 
## 
## Step:  AIC=295.17 
## dan.grump ~ dan.sleep 
## 
##             Df Sum of Sq    RSS    AIC 
## <none>                   1838.7 295.17 
## - dan.sleep  1    8159.9 9998.6 462.50

## 
## Call: 
## lm(formula = dan.grump ~ dan.sleep, data = parenthood) 
## 
## Coefficients: 
## (Intercept)    dan.sleep   
##     125.956       -8.937

although in practice I didn’t need to specify direction  because "backward"  is the default. The output is somewhat
lengthy, so I’ll go through it slowly. Firstly, the output reports the AIC value for the current best model:

Start:  AIC=299.08 
dan.grump ~ dan.sleep + baby.sleep + day

That’s our starting point. Since small AIC values are good, we want to see if we can get a value smaller than 299.08 by deleting one
of those three predictors. So what R does is try all three possibilities, calculate the AIC values for each one, and then print out a
short table with the results:

             Df Sum of Sq    RSS    AIC 
- baby.sleep  1       0.1 1837.2 297.08 
- day         1       1.6 1838.7 297.16 
<none>                    1837.1 299.08 
- dan.sleep   1    4909.0 6746.1 427.15
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To read this table, it helps to note that the text in the left hand column is telling you what change R made to the regression model.
So the line that reads <none>  is the actual model we started with, and you can see on the right hand side that this still
corresponds to an AIC value of 299.08 (obviously). The other three rows in the table correspond to the other three models that it
looked at: it tried removing the baby.sleep  variable, which is indicated by - baby.sleep , and this produced an AIC
value of 297.08. That was the best of the three moves, so it’s at the top of the table. So, this move is accepted, and now we start
again. There are two predictors left in the model, dan.sleep  and day , so it tries deleting those:

Step:  AIC=297.08 
dan.grump ~ dan.sleep + day 
 
            Df Sum of Sq    RSS    AIC 
- day        1       1.6 1838.7 295.17 
<none>                   1837.2 297.08 
- dan.sleep  1    8103.0 9940.1 463.92

Okay, so what we can see is that removing the day  variable lowers the AIC value from 297.08 to 295.17. So R decides to keep
that change too, and moves on:

Step:  AIC=295.17 
dan.grump ~ dan.sleep 
 
            Df Sum of Sq    RSS    AIC 
<none>                   1838.7 295.17 
- dan.sleep  1    8159.9 9998.6 462.50

This time around, there’s no further deletions that can actually improve the AIC value. So the step()  function stops, and prints
out the result of the best regression model it could find:

Call: 
lm(formula = dan.grump ~ dan.sleep, data = parenthood) 
 
Coefficients: 
(Intercept)    dan.sleep   
    125.956       -8.937  

which is (perhaps not all that surprisingly) the regression.1  model that we started with at the beginning of the chapter.

15.12.2 Forward selection

As an alternative, you can also try forward selection. This time around we start with the smallest possible model as our start point,
and only consider the possible additions to the model. However, there’s one complication: you also need to tell step()  what
the largest possible model you’re willing to entertain is, using the scope  argument. The simplest usage is like this:

 null.model <- lm( dan.grump ~ 1, parenthood )   # intercept only. 
 step( object = null.model,     # start with null.model 
       direction = "forward",   # only consider "addition" moves 
       scope =  dan.grump ~ dan.sleep + baby.sleep + day  # largest model allowed 
 )
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## Start:  AIC=462.5 
## dan.grump ~ 1 
## 
##              Df Sum of Sq    RSS    AIC 
## + dan.sleep   1    8159.9 1838.7 295.17 
## + baby.sleep  1    3202.7 6795.9 425.89 
## <none>                    9998.6 462.50 
## + day         1      58.5 9940.1 463.92 
## 
## Step:  AIC=295.17 
## dan.grump ~ dan.sleep 
## 
##              Df Sum of Sq    RSS    AIC 
## <none>                    1838.7 295.17 
## + day         1   1.55760 1837.2 297.08 
## + baby.sleep  1   0.02858 1838.7 297.16  

## 
## Call: 
## lm(formula = dan.grump ~ dan.sleep, data = parenthood) 
## 
## Coefficients: 
## (Intercept)    dan.sleep   
##     125.956       -8.937

If I do this, the output takes on a similar form, but now it only considers addition ( + ) moves rather than deletion ( - ) moves:

Start:  AIC=462.5 
dan.grump ~ 1 
 
             Df Sum of Sq    RSS    AIC 
+ dan.sleep   1    8159.9 1838.7 295.17 
+ baby.sleep  1    3202.7 6795.9 425.89 
<none>                    9998.6 462.50 
+ day         1      58.5 9940.1 463.92 
 
Step:  AIC=295.17 
dan.grump ~ dan.sleep 
 
             Df Sum of Sq    RSS    AIC 
<none>                    1838.7 295.17 
+ day         1   1.55760 1837.2 297.08 
+ baby.sleep  1   0.02858 1838.7 297.16 
 
Call: 
lm(formula = dan.grump ~ dan.sleep, data = parenthood) 
 
Coefficients: 
(Intercept)    dan.sleep   
    125.956       -8.937  
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As you can see, it’s found the same model. In general though, forward and backward selection don’t always have to end up in the
same place.

15.12.3 caveat
Automated variable selection methods are seductive things, especially when they’re bundled up in (fairly) simple functions like 
step() . They provide an element of objectivity to your model selection, and that’s kind of nice. Unfortunately, they’re

sometimes used as an excuse for thoughtlessness. No longer do you have to think carefully about which predictors to add to the
model and what the theoretical basis for their inclusion might be… everything is solved by the magic of AIC. And if we start
throwing around phrases like Ockham’s razor, well, it sounds like everything is wrapped up in a nice neat little package that no-one
can argue with.

Or, perhaps not. Firstly, there’s very little agreement on what counts as an appropriate model selection criterion. When I was taught
backward elimination as an undergraduate, we used F-tests to do it, because that was the default method used by the software. The
default in the step()  function is AIC, and since this is an introductory text that’s the only method I’ve described, but the AIC
is hardly the Word of the Gods of Statistics. It’s an approximation, derived under certain assumptions, and it’s guaranteed to work
only for large samples when those assumptions are met. Alter those assumptions and you get a different criterion, like the BIC for
instance. Take a different approach again and you get the NML criterion. Decide that you’re a Bayesian and you get model
selection based on posterior odds ratios. Then there are a bunch of regression specific tools that I haven’t mentioned. And so on.
All of these different methods have strengths and weaknesses, and some are easier to calculate than others (AIC is probably the
easiest of the lot, which might account for its popularity). Almost all of them produce the same answers when the answer is
“obvious” but there’s a fair amount of disagreement when the model selection problem becomes hard.

What does this mean in practice? Well, you could go and spend several years teaching yourself the theory of model selection,
learning all the ins and outs of it; so that you could finally decide on what you personally think the right thing to do is. Speaking as
someone who actually did that, I wouldn’t recommend it: you’ll probably come out the other side even more confused than when
you started. A better strategy is to show a bit of common sense… if you’re staring at the results of a step()  procedure, and the
model that makes sense is close to having the smallest AIC, but is narrowly defeated by a model that doesn’t make any sense…
trust your instincts. Statistical model selection is an inexact tool, and as I said at the beginning, interpretability matters.

15.12.4 Comparing two regression models

An alternative to using automated model selection procedures is for the researcher to explicitly select two or more regression
models to compare to each other. You can do this in a few different ways, depending on what research question you’re trying to
answer. Suppose we want to know whether or not the amount of sleep that my son got has any relationship to my grumpiness, over
and above what we might expect from the amount of sleep that I got. We also want to make sure that the day on which we took the
measurement has no influence on the relationship. That is, we’re interested in the relationship between baby.sleep  and 
dan.grump , and from that perspective dan.sleep  and day  are nuisance variable or covariates that we want to control

for. In this situation, what we would like to know is whether dan.grump ~ dan.sleep + day + baby.sleep  (which
I’ll call Model 1, or M1 ) is a better regression model for these data than dan.grump ~ dan.sleep + day  (which I’ll
call Model 0, or M0 ). There are two different ways we can compare these two models, one based on a model selection criterion
like AIC, and the other based on an explicit hypothesis test. I’ll show you the AIC based approach first because it’s simpler, and
follows naturally from the step()  function that we saw in the last section. The first thing I need to do is actually run the
regressions:

M0 <- lm( dan.grump ~ dan.sleep + day, parenthood ) 
M1 <- lm( dan.grump ~ dan.sleep + day + baby.sleep, parenthood )

Now that I have my regression models, I could use the summary()  function to run various hypothesis tests and other useful
statistics, just as we have discussed throughout this chapter. However, since the current focus on model comparison, I’ll skip this
step and go straight to the AIC calculations. Conveniently, the AIC()  function in R lets you input several regression models,
and it will spit out the AIC values for each of them:

AIC( M0, M1 )  
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##    df      AIC 
## M0  4 582.8681 
## M1  5 584.8646

Since Model 0 has the smaller AIC value, it is judged to be the better model for these data.

A somewhat different approach to the problem comes out of the hypothesis testing framework. Suppose you have two regression
models, where one of them (Model 0) contains a subset of the predictors from the other one (Model 1). That is, Model 1 contains
all of the predictors included in Model 0, plus one or more additional predictors. When this happens we say that Model 0 is nested
within Model 1, or possibly that Model 0 is a submodel of Model 1. Regardless of the terminology what this means is that we can
think of Model 0 as a null hypothesis and Model 1 as an alternative hypothesis. And in fact we can construct an F test for this in a
fairly straightforward fashion. We can fit both models to the data and obtain a residual sum of squares for both models. I’ll denote
these as  and  respectively. The superscripting here just indicates which model we’re talking about. Then our F
statistic is

where N is the number of observations, p is the number of predictors in the full model (not including the intercept), and k is the
difference in the number of parameters between the two models.  The degrees of freedom here are k and N−p−1. Note that it’s
often more convenient to think about the difference between those two SS values as a sum of squares in its own right. That is:

The reason why this his helpful is that we can express SSΔ a measure of the extent to which the two models make different
predictions about the the outcome variable. Specifically:

where  is the fitted value for y  according to model M0 and  is the is the fitted value for yi according to model M .

Okay, so that’s the hypothesis test that we use to compare two regression models to one another. Now, how do we do it in R? The
answer is to use the anova()  function. All we have to do is input the two models that we want to compare (null model first):

anova( M0, M1 )

## Analysis of Variance Table 
## 
## Model 1: dan.grump ~ dan.sleep + day 
## Model 2: dan.grump ~ dan.sleep + day + baby.sleep 
##   Res.Df    RSS Df Sum of Sq      F Pr(>F) 
## 1     97 1837.2                            
## 2     96 1837.1  1  0.063688 0.0033 0.9541

Note that, just like we saw with the output from the step()  function, R has used the acronym RSS  to refer to the residual
sum of squares from each model. That is, RSS in this output corresponds to SS  in the formula above. Since we have p>.05 we
retain the null hypothesis ( M0 ). This approach to regression, in which we add all of our covariates into a null model, and then
add the variables of interest into an alternative model, and then compare the two models in hypothesis testing framework, is often
referred to as hierarchical regression.

This page titled 15.12: Model Selection is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro
via source content that was edited to the style and standards of the LibreTexts platform.
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15.13: Summary
Basic ideas in linear regression and how regression models are estimated (Sections 15.1 and 15.2).
Multiple linear regression (Section 15.3).
Measuring the overall performance of a regression model using R  (Section 15.4)
Hypothesis tests for regression models (Section 15.5)
Calculating confidence intervals for regression coefficients, and standardised coefficients (Section 15.7)
The assumptions of regression (Section 15.8) and how to check them (Section 15.9)
Selecting a regression model (Section 15.10)
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214. The ϵ symbol is the Greek letter epsilon. It’s traditional to use ϵ  or e  to denote a residual.
215. Or at least, I’m assuming that it doesn’t help most people. But on the off chance that someone reading this is a proper kung fu

master of linear algebra (and to be fair, I always have a few of these people in my intro stats class), it will help you to know that
the solution to the estimation problem turns out to be , where  is a vector containing the estimated
regression coefficients, X is the “design matrix” that contains the predictor variables (plus an additional column containing all
ones; strictly X is a matrix of the regressors, but I haven’t discussed the distinction yet), and y is a vector containing the
outcome variable. For everyone else, this isn’t exactly helpful, and can be downright scary. However, since quite a few things in
linear regression can be written in linear algebra terms, you’ll see a bunch of footnotes like this one in this chapter. If you can
follow the maths in them, great. If not, ignore it.

216. And by “sometimes” I mean “almost never”. In practice everyone just calls it “R-squared”.
217. Note that, although R has done multiple tests here, it hasn’t done a Bonferroni correction or anything. These are standard one-

sample t-tests with a two-sided alternative. If you want to make corrections for multiple tests, you need to do that yourself.
218. You can change the kind of correction it applies by specifying the p.adjust.method  argument.
219. Strictly, you standardise all the regressors: that is, every “thing” that has a regression coefficient associated with it in the model.

For the regression models that I’ve talked about so far, each predictor variable maps onto exactly one regressor, and vice versa.
However, that’s not actually true in general: we’ll see some examples of this in Chapter 16. But for now, we don’t need to care
too much about this distinction.

220. Or have no hope, as the case may be.
221. Again, for the linear algebra fanatics: the “hat matrix” is defined to be that matrix H that converts the vector of observed values

y into a vector of fitted values , such that =Hy. The name comes from the fact that this is the matrix that “puts a hat on y”.
The hat value of the i-th observation is the i-th diagonal element of this matrix (so technically I should be writing it as hii rather
than hi). Oh, and in case you care, here’s how it’s calculated: . Pretty, isn’t it?

222. Though special mention should be made of the influenceIndexPlot()  and influencePlot()  functions in the 
car  package. These produce somewhat more detailed pictures than the default plots that I’ve shown here. There’s also an 
outlierTest()  function that tests to see if any of the Studentised residuals are significantly larger than would be

expected by chance.
223. An alternative is to run a “robust regression”; I’ll discuss robust regression in a later version of this book.
224. And, if you take the time to check the residualPlots()  for regression.1 , it’s pretty clear that this isn’t some

wacky distortion being caused by the fact that baby.sleep  is a useless predictor variable. It’s an actual nonlinearity in the
relationship between dan.sleep  and dan.grump .

225. Note that the underlying mechanics of the test aren’t the same as the ones I’ve described for regressions; the goodness of fit is
assessed using what’s known as a score-test not an F-test, and the test statistic is (approximately) χ2 distributed if there’s no
relationship
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226. Again, a footnote that should be read only by the two readers of this book that love linear algebra (mmmm… I love the smell of
matrix computations in the morning; smells like… nerd). In these estimators, the covariance matrix for b is given by 

 . See, it’s a “sandwich”? Assuming you think that  ="bread" and XTΣX="filling", that is.
Which of course everyone does, right? In any case, the usual estimator is what you get when you set . The corrected
version that I learned originally uses  (White 1980). However, the version that Fox and Weisberg (2011)

227. Note, however, that the step()  function computes the full version of AIC, including the irrelevant constants that I’ve
dropped here. As a consequence this equation won’t correctly describe the AIC values that you see in the outputs here.
However, if you calculate the AIC values using my formula for two different regression models and take the difference between
them, this will be the same as the differences between AIC values that step()  reports. In practice, this is all you care about:
the actual value of an AIC statistic isn’t very informative, but the differences between two AIC values are useful, since these
provide a measure of the extent to which one model outperforms another.

228. While I’m on this topic I should point out that there is also a function called BIC()  which computes the Bayesian
information criterion (BIC) for the models. So you could type BIC(M0,M1)  and get a very similar output. In fact, while I’m
not particularly impressed with either AIC or BIC as model selection methods, if you do find yourself using one of these two,
the empirical evidence suggests that BIC is the better criterion of the two. In most simulation studies that I’ve seen, BIC does a
much better job of selecting the correct model.

229. It’s worth noting in passing that this same F statistic can be used to test a much broader range of hypotheses than those that I’m
mentioning here. Very briefly: notice that the nested model M0 corresponds to the full model M1 when we constrain some of
the regression coefficients to zero. It is sometimes useful to construct submodels by placing other kinds of constraints on the
regression coefficients. For instance, maybe two different coefficients might have to sum to zero, or something like that. You
can construct hypothesis tests for those kind of constraints too, but it is somewhat more complicated and the sampling
distribution for F can end up being something known as the non-central F distribution, which is waaaaay beyond the scope of
this book! All I want to do is alert you to this possibility.
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CHAPTER OVERVIEW

16: Research Design
A research design is the set of methods and procedures used in collecting and analyzing measures of the variables specified in the
research problem research. The design of a study defines the study type (descriptive, correlational, semi-experimental,
experimental, review, meta-analytic) and sub-type (e.g., descriptive-longitudinal case study), research problem, hypotheses,
independent and dependent variables, experimental design, and, if applicable, data collection methods and a statistical analysis
plan. Research design is the framework that has been created to find answers to research questions.

16.1: Scientific Method
16.2: Measurement
16.3: Data Collection
16.4: Sampling Bias
16.5: Experimental Designs
16.6: Causation
16.7: Statistical Literacy
16.E: Research Design (Exercises)

Flowchart of four phases (enrollment, intervention allocation, follow-up, and data analysis) of a parallel randomized trial of two
groups. Image use with permission (CC BYT-SA 3.0; PrevMedFellow).
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16.1: Scientific Method

Brief discussion of the most important principles of the scientific method

This section contains a brief discussion of the most important principles of the scientific method. A thorough treatment of the
philosophy of science is beyond the scope of this work.

One of the hallmarks of the scientific method is that it depends on empirical data. To be a proper scientific investigation the data
must be collected systematically. However, scientific investigation does not necessarily require experimentation in the sense of
manipulating variables and observing the results. Observational studies in the fields of astronomy, developmental psychology, and
ethology are common and provide valuable scientific information.

Theories and explanations are very important in science. Theories in science can never be proved since one can never be 100%
certain that a new empirical finding inconsistent with the theory will never be found.

Scientific theories must be potentially disconfirmable. If a theory can accommodate all possible results then it is not a scientific
theory. Therefore, a scientific theory should lead to testable hypotheses. If a hypothesis is disconfirmed, then the theory from which
the hypothesis was deduced is incorrect. For example, the secondary reinforcement theory of attachment states that an infant
becomes attached to its parent by means of a pairing of the parent with a primary reinforcer (food). It is through this "secondary
reinforcement" that the child-parent bond forms. The secondary reinforcement theory has been disconfirmed by numerous
experiments. Perhaps the most notable is one in which infant monkeys were fed by a surrogate wire mother while a surrogate cloth
mother was available. The infant monkeys formed no attachment to the wire monkeys and frequently clung to the cloth surrogate
mothers.

History of Attachment Theory

If a hypothesis derived from a theory is confirmed then the theory has survived a test and it becomes more useful and better thought
of by the researchers in the field. A theory is not confirmed when correct hypotheses are derived from it.

A key difference between scientific explanations and faith-based explanations is simply that faith-based explanations are based on
faith and do not need to be testable. This does not mean that an explanation that cannot be tested is incorrect in some cosmic sense.
It just means that it is not a scientific explanation.

The method of investigation in which a hypothesis is developed from a theory and then confirmed or disconfirmed involves
deductive reasoning. However, deductive reasoning does not explain where the theory came from in the first place. In general, a
theory is developed by a scientist who is aware of many empirical findings on a topic of interest. Then, through a generally poorly
understood process called "induction" the scientist develops a way to explain all or most of the findings within a relatively simple
framework or theory.

An important attribute of a good scientific theory is that it is parsimonious. That is, that it is simple in the sense that it uses
relatively few constructs to explain many empirical findings. A theory that it so complex that it has as many assumptions as it has
predictions is not very valuable.

Although strictly speaking, disconfirming an hypothesis deduced from a theory disconfirms the theory, it rarely leads to the
abandonment of the theory. Instead, the theory will probably be modified to accommodate the inconsistent finding. If the theory has
to be modified over and over to accommodate new findings, the theory generally becomes less and less parsimonious. This can lead
to discontent with the theory and the search for a new theory. If a new theory is developed that can explain the same facts in a more
parsimonious way, then the new theory will eventually supercede the old theory.

This page titled 16.1: Scientific Method is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via
source content that was edited to the style and standards of the LibreTexts platform.
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16.2: Measurement

Describe reliability in terms of true scores and error
Define the standard error of measurement and state why it is valuable
Distinguish between reliability and validity
State the how reliability determines the upper limit to validity

The collection of data involves measurement. Measurement of some characteristics such as height and weight are relatively
straightforward. The measurement of psychological attributes such as self esteem can be complex. A good measurement scale
should be both reliable and valid. These concepts will be discussed in turn.

Reliability
The notion of reliability revolves around whether you would get at least approximately the same result if you measure something
twice with the same measurement instrument. A common way to define reliability is the correlation between parallel forms of a
test. Letting "test" represent a parallel form of the test, the symbol is used to denote the reliability of the test.

True Scores and Error

Assume you wish to measure a person's mean response time to the onset of a stimulus. For simplicity, assume that there is no
learning over tests which, of course, is not really true. The person is given  trials on the task and you obtain the response time
on each trial.

The mean response time over the  trials can be thought of as the person's "true" score, or at least a very good approximation
of it. Theoretically, the true score is the mean that would be approached as the number of trials increases indefinitely.

An individual response time can be thought of as being composed of two parts: the true score and the error of measurement. Thus if
the person's true score were  and their response on one of the trials were , then the error of measurement would be .
Similarly, if the response time were , the error of measurement would be .

Now consider the more realistic example of a class of students taking a -point true/false exam. Let's assume that each student
knows the answer to some of the questions and has no idea about the other questions. For the sake of simplicity, we are assuming
there is no partial knowledge of any of the answers and for a given question a student either knows the answer or guesses. Finally,
assume the test is scored such that a student receives one point for a correct answer and loses a point for an incorrect answer. In this
example, a student's true score is the number of questions they know the answer to and their error score is their score on the
questions they guessed on. For example, assume a student knew  of the answers and guessed correctly on  of the remaining 
(and therefore incorrectly on ). Their true score would be  since that is the number of answers they knew. Their error score
would be  and therefore their actual test score would be .

Every test score can be thought of as the sum of two independent components, the true score and the error score. This can be
written as:

The following expression follows directly from the Variance Sum Law:

Reliability in Terms of True Scores and Error

It can be shown that the reliability of a test, , is the ratio of true-score variance to test-score variance. This can be written
as:

PDF of derivation
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It is important to understand the implications of the role the variance of true scores plays in the definition of reliability: If a test
were given in two populations for which the variance of the true scores differed, the reliability of the test would be higher in the
population with the higher true-score variance. Therefore, reliability is not a property of a test per se but the reliability of a test in a
given population.

Assessing Error of Measurement
The reliability of a test does not show directly how close the test scores are to the true scores. That is, it does not reveal how much
a person's test score would vary across parallel forms of test. By definition, the mean over a large number of parallel tests would be
the true score. The standard deviation of a person's test scores would indicate how much the test scores vary from the true score.
This standard deviation is called the standard error of measurement. In practice, it is not practical to give a test over and over to the
same person and/or assume that there are no practice effects. Instead, the following formula is used to estimate the standard error of
measurement.

where is the standard error of measurement,  is the standard deviation of the test scores, and  is the
reliability of the test. Taking the extremes, if the reliability is  then the standard error of measurement is equal to the standard
deviation of the test; if the reliability is perfect ( ) then the standard error of measurement is .

Increasing Reliability

It is important to make measures as reliable as is practically possible. Suppose an investigator is studying the relationship between
spatial ability and a set of other variables. The higher the reliability of the test of spatial ability, the higher the correlations will be.
Similarly, if an experimenter seeks to determine whether a particular exercise regiment decreases blood pressure, the higher the
reliability of the measure of blood pressure, the more sensitive the experiment. More precisely, the higher the reliability the higher
the power of the experiment. Power is covered in detail here. Finally, if a test is being used to select students for college admission
or employees for jobs, the higher the reliability of the test the stronger will be the relationship to the criterion.

Two basic ways of increasing reliability are

1. to improve the quality of the items and
2. to increase the number of items.

Items that are either too easy so that almost everyone gets them correct or too difficult so that almost no one gets them correct are
not good items: they provide very little information. In most contexts, items which about half the people get correct are the best
(other things being equal).

Items that do not correlate with other items can usually be improved. Sometimes the item is confusing or ambiguous.

Increasing the number of items increases reliability in the manner shown by the following formula:

where  is the factor by which the test length is increased,  is the reliability of the new longer test, and  is the
current reliability. For example, if a test with  items has a reliability of  then the reliability of a test that is  times longer (

 items) would be calculated as follows:

which equals . Thus increasing the number of items from  to  would increase the reliability from  to .

It is important to note that this formula assumes the new items have the same characteristics as the old items. Obviously adding
poor items would not increase the reliability as expected and might even decrease the reliability.

More Information on Reliability from William Trochim's Knowledge Source
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Validity
The validity of a test refers to whether the test measures what it is supposed to measure. The three most common types of validity
are face validity, empirical validity, and construct validity. We consider these types of validity below.

Face Validity: A test's face validity refers to whether the test appears to measure what it is supposed to measure. That is, does
the test "on its face" appear to measure what it is supposed to be measuring. An Asian history test consisting of a series of
questions about Asian history would have high face validity. If the test included primarily questions about American history
then it would have little or no face validity as a test of Asian history.
Predictive Validity: Predictive validity (sometimes called empirical validity) refers to a test's ability to predict the relevant
behavior. For example, the main way in which SAT tests are validated is by their ability to predict college grades. Thus, to the
extent these tests are successful at predicting college grades they are said to possess predictive validity.
Construct Validity: Construct validity is more difficult to define. In general, a test has construct validity if its pattern of
correlations with other measures is in line with the construct it is purporting to measure. Construct validity can be established
by showing a test has both convergent and divergent validity. A test has convergent validity if it correlates with other tests that
are also measures of the construct in question. Divergent validity is established by showing the test does not correlate highly
with tests of other constructs. Of course, some constructs may overlap so the establishment of convergent and divergent validity
can be complex.

To take an example, suppose one wished to establish the construct validity of a new test of spatial ability. Convergent and divergent
validity could be established by showing the test correlates relatively highly with other measures of spatial ability but less highly
with tests of verbal ability or social intelligence.

Reliability and Predictive Validity

The reliability of a test limits the size of the correlation between the test and other measures. In general, the correlation of a test
with another measure will be lower than the test's reliability. After all, how could a test correlate with something else as high as it
correlates with a parallel form of itself? Theoretically it is possible for a test to correlate as high as the square root of the reliability
with another measure. For example, if a test has a reliability of  then it could correlate as high as  with another measure.
This could happen if the other measure were a perfectly reliable test of the same construct as the test in question. In practice, this is
very unlikely.

A correlation above the upper limit set by reliabilities can act as a red flag. For example, Vul, Harris, Winkielman, and Paschler (
) found that in many studies the correlations between various fMRI activation patterns and personality measures were higher

than their reliabilities would allow. A careful examination of these studies revealed serious flaws in the way the data were analyzed.

Vul, E., Harris, C., Winkielman, P., & Paschler, H. (2009) Puzzlingly High Correlations in fMRI Studies of Emotion, Personality,
and Social Cognition. Perspectives on Psychological Science, 4, 274-290.
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16.3: Data Collection

Describe how a variable such as height should be recorded
Choose a good response scale for a questionnaire

Most statistical analyses require that your data be in numerical rather than verbal form (you can’t punch letters into your
calculator). Therefore, data collected in verbal form must be coded so that it is represented by numbers. To illustrate, consider the
data in Table .

Table : Example Data

Student Name Hair Color Gender Major Height
Computer
Experience

Norma Brown Female Psychology 5’4” Lots

Amber Blonde Female Social Science 5’7” Very little

Paul Blonde Male History 6’1” Moderate

Christopher Black Male Biology 5’10” Lots

Sonya Brown Female Psychology 5’4” Little

Can you conduct statistical analyses on the above data or must you re-code it in some way? For example, how would you go about
computing the average height of the  students. You cannot enter students’ heights in their current form into a statistical program --
the computer would probably give you an error message because it does not understand notation such as . One solution is to
change all the numbers to inches. So,  becomes , and  becomes , and so forth. In
this way, you are converting height in feet and inches to simply height in inches. From there, it is very easy to ask a statistical
program to calculate the mean height in inches for the  students.

You may ask, “Why not simply ask subjects to write their height in inches in the first place?” Well, the number one rule of data
collection is to ask for information in such a way as it will be most accurately reported. Most people know their height in feet and
inches and cannot quickly and accurately convert it into inches “on the fly.” So, in order to preserve data accuracy, it is best for
researchers to make the necessary conversions.

Let’s take another example. Suppose you wanted to calculate the mean amount of computer experience for the five students shown
in Table . One way would be to convert the verbal descriptions to numbers as shown in Table . Thus, "Very Little"
would be converted to " " and "Little" would be converted to " ."

Table : Conversion of verbal descriptions to numbers.

1 2 3 4 5

Very Little Little Moderate Lots Very Lots

Say you are volunteering at a track meet at your college, and your job is to record each runner’s time as they pass the finish
line for each race. Their times are shown in large red numbers on a digital clock with eight digits to the right of the decimal
point, and you are told to record the entire number in your tablet. Thinking eight decimal places is a bit excessive, you only
record runners’ times to one decimal place. The track meet begins, and runner number one finishes with a time of 

 seconds. You dutifully record her time in your tablet, but only to one decimal place, that is . Race number
two finishes and you record  for the winning runner. The fastest time in Race number three is . Race number four
winning time is , Race number five is…. But wait! You suddenly realize your mistake; you now have a tie between runner
one and runner four for the title of Fastest Overall Runner! You should have recorded more information from the digital clock -
- that information is now lost, and you cannot go back in time and record running times to more decimal places.
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The point is that you should think very carefully about the scales and specificity of information needed in your research before
you begin collecting data. If you believe you might need additional information later but are not sure, measure it; you can
always decide to not use some of the data, or “collapse” your data down to lower scales if you wish, but you cannot expand
your data set to include more information after the fact. In this example, you probably would not need to record eight digits to
the right of the decimal point. But recording only one decimal digit is clearly too few.

Pretend for a moment that you are teaching five children in middle school (yikes!), and you are trying to convince them that
they must study more in order to earn better grades. To prove your point, you decide to collect actual data from their recent
math exams, and, toward this end, you develop a questionnaire to measure their study time and subsequent grades. You might
develop a questionnaire which looks like the following:

1. Please write your name: ____________________________
2. Please indicate how much you studied for this math exam:  

a lot……………moderate……….…….little
3. Please circle the grade you received on the math exam: 

Given the above questionnaire, your obtained data might look like the following:

Name Amount Studied Grade

John Little C

Sally Moderate B

Alexander Lots A

Linda Moderate A

Thomas Little B

Eyeballing the data, it seems as if the children who studied more received better grades, but it’s difficult to tell. “Little,” “lots,”
and “ ,” are imprecise, qualitative terms. You could get more precise information by asking specifically how many hours they
studied and their exact score on the exam. The data then might look as follows:

Name
Hours
studied

% Correct

John 5 71

Sally 9 83

Alexander 13 97

Linda 12 91

Thomas 7 85

Of course, this assumes the students would know how many hours they studied. Rather than trust the students' memories, you
might ask them to keep a log of their study time as they study.
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16.4: Sampling Bias

Recognize sampling bias
Distinguish among self-selection bias, undercoverage bias, and survivorship bias

Descriptions of various types of sampling such as simple random sampling and stratified random sampling are covered in another
section. This section discusses various types of sampling biases including self-selection bias and survivorship bias. Examples of
other sampling biases that are not easily categorized will also be given.

It is important to keep in mind that sampling bias refers to the method of sampling, not the sample itself. There is no guarantee that
random sampling will result in a sample representative of the population just as not every sample obtained using a biased sampling
method will be greatly non-representative of the population.

Self-Selection Bias

Imagine that a university newspaper ran an ad asking for students to volunteer for a study in which intimate details of their sex
lives would be discussed. Clearly the sample of students who would volunteer for such a study would not be representative of the
students at the university. Similarly, an online survey about computer use is likely to attract people more interested in technology
than is typical. In both of these examples, people who "self-select" themselves for the experiment are likely to differ in important
ways from the population the experimenter wishes to draw conclusions about. Many of the admittedly "non-scientific" polls taken
on television or web sites suffer greatly from self-selection bias.

A self-selection bias can result when the non-random component occurs after the potential subject has enlisted in the experiment.
Considering again the hypothetical experiment in which subjects are to be asked intimate details of their sex lives, assume that the
subjects did not know what the experiment was going to be about until they showed up.Many of the subjects would then likely
leave the experiment resulting in a biased sample.

Undercoverage Bias

A common type of sampling bias is to sample too few observations from a segment of the population. A commonly-cited example
of undercoverage is the poll taken by the Literary Digest in  that indicated that Landon would win an election against
Roosevelt by a large margin when, in fact, it was Roosevelt who won by a large margin. A common explanation is that poorer
people were undercovered because they were less likely to have telephones and that this group was more likely to support
Roosevelt.

A detailed analysis by Squire ( ) showed that it was not just an undercoverage bias that resulted in the faulty prediction of the
election results. He concluded that, in addition to the undercoverage described above, there was a nonresponse bias (a form of self-
selection bias) such that those favoring Landon were more likely to return their survey than were those favoring Roosevelt.

Survivorship Bias
Survivorship bias occurs when the observations recorded at the end of the investigation are a non-random set of those present at the
beginning of the investigation. The gains in stock funds is an area in which survivorship bias often plays a role. The basic problem
is that poorly-performing funds are often either eliminated or merged into other funds. Suppose one considers a sample of stock
funds that exist in the present and then calculates the mean -year appreciation of those funds. Can these results be validly
generalized to other stock funds of the same type? The problem is that the poorly-performing stock funds that are not still in
existence (did not survive for  years) are not included and therefore there is a bias toward selecting better-performing funds.
There is good evidence that this survivorship bias is substantial (Malkiel, ).

In World War II, the statistician Abraham Wald analyzed the distribution of hits from anti-aircraft fire on aircraft returning from
missions. The idea was that this information would be useful for deciding where to place extra armor. A naive approach would be
to put armor at locations that were frequently hit to reduce the damage there. However, this would ignore the survivorship bias
occurring because only a subset of aircraft return. Wald's approach was the opposite: if there were few hits in a certain location on
returning planes, then hits in that location were likely to bring a plane down. Therefore, he recommended that locations without hits
on the returning planes should be given extra armor. A detailed and mathematical description of Wald's work can be found in
Mangel and Samaniego ( .)
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16.5: Experimental Designs

Distinguish between between-subject and within-subject designs
State the advantages of within-subject designs
Define "multi-factor design" and "factorial design"
Identify the levels of a variable in an experimental design
Describe when counterbalancing is used

There are many ways an experiment can be designed. For example, subjects can all be tested under each of the treatment conditions
or a different group of subjects can be used for each treatment. An experiment might have just one independent variable or it might
have several. This section describes basic experimental designs and their advantages and disadvantages.

Between-Subjects Designs
In a between-subjects design, the various experimental treatments are given to different groups of subjects. For example, in the
"Teacher Ratings" case study, subjects were randomly divided into two groups. Subjects were all told they were going to see a
video of an instructor's lecture after which they would rate the quality of the lecture. The groups differed in that the subjects in one
group were told that prior teaching evaluations indicated that the instructor was charismatic whereas subjects in the other group
were told that the evaluations indicated the instructor was punitive. In this experiment, the independent variable is "Condition" and
has two levels (charismatic teacher and punitive teacher). It is a between-subjects variable because different subjects were used for
the two levels of the independent variable: subjects were in either the "charismatic teacher" or the "punitive teacher" condition.
Thus the comparison of the charismatic-teacher condition with the punitive-teacher condition is a comparison between the subjects
in one condition with the subjects in the other condition.

The two conditions were treated exactly the same except for the instructions they received. Therefore, it would appear that any
difference between conditions should be attributed to the treatments themselves. However, this ignores the possibility of chance
differences between the groups. That is, by chance, the raters in one condition might have, on average, been more lenient than the
raters in the other condition. Randomly assigning subjects to treatments ensures that all differences between conditions are chance
differences; it does not ensure there will be no differences. The key question, then, is how to distinguish real differences from
chance differences. The field of inferential statistics answers just this question. The inferential statistics applicable to testing the
difference between the means of the two conditions can be found here. Analyzing the data from this experiment reveals that the
ratings in the charismatic-teacher condition were higher than those in the punitive-teacher condition. Using inferential statistics, it
can be calculated that the probability of finding a difference as large or larger than the one obtained if the treatment had no effect is
only . Therefore it seems likely that the treatment had an effect and it is not the case that all differences were chance
differences.

Independent variables often have several levels. For example, in the "Smiles and Leniency" case study the independent variable is
"type of smile" and there are four levels of this independent variable:

1. false smile
2. felt smile
3. miserable smile
4. a neutral control

Keep in mind that although there are four levels, there is only one independent variable. Designs with more than one independent
variable are considered next.

Multi-Factor Between-Subject Designs
In the "Bias Against Associates of the Obese" experiment, the qualifications of potential job applicants were judged. Each applicant
was accompanied by an associate. The experiment had two independent variables: the weight of the associate (obese or average)
and the applicant's relationship to the associate (girl friend or acquaintance). This design can be described as an Associate's Weight
( ) x Associate's Relationship ( ) factorial design. The numbers in parentheses represent the number of levels of the independent
variable. The design was a factorial design because all four combinations of associate's weight and associate's relationship were
included. The dependent variable was a rating of the applicant's qualifications (on a -point scale).
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If two separate experiments had been conducted, one to test the effect of Associate's Weight and one to test the effect of Associate's
Relationship then there would be no way to assess whether the effect of Associate's Weight depended on the Associate's
Relationship. One might imagine that the Associate's Weight would have a larger effect if the associate were a girl friend rather
than merely an acquaintance. A factorial design allows this question to be addressed. When the effect of one variable does differ
depending on the level of the other variable then it is said that there is an interaction between the variables.

Factorial designs can have three or more independent variables. In order to be a between-subjects design there must be a separate
group of subjects for each combination of the levels of the independent variables.

Within-Subjects Designs

A within-subjects design differs from a between-subjects design in that the same subjects perform at all levels of the independent
variable. For example consider the "ADHD Treatment" case study. In this experiment, subjects diagnosed as having attention
deficit disorder were each tested on a delay of gratification task after receiving methylphenidate (MPH). All subjects were tested
four times, once after receiving one of the four doses. Since each subject was tested under each of the four levels of the
independent variable "dose," the design is a within-subjects design and dose is a within-subjects variable. Within-subjects designs
are sometimes called repeated-measures designs.

Counterbalancing
In a within-subject design it is important not to confound the order in which a task is performed with the experimental treatment.
For example, consider the problem that would have occurred if, in the ADHD study, every subject had received the doses in the
same order starting with the lowest and continuing to the highest. It is not unlikely that experience with the delay of gratification
task would have an effect. If practice on this task leads to better performance, then it would appear that higher doses caused the
better performance when, in fact, it was the practice that caused the better performance.

One way to address this problem is to counterbalance the order of presentations. In other words, subjects would be given the doses
in different orders in such a way that each dose was given in each sequential position an equal number of times. An example of
counterbalancing is shown in Table .

Table : Counterbalanced order for four subjects

Subject 0 mg/kg 0.15 mg/kg 0.30 mg/kg 0.60 mg/kg

1 First Second Third Fourth

2 Second Third Fourth First

3 Third Fourth First Second

4 Fourth First Second Third

It should be kept in mind that counterbalancing is not a satisfactory solution if there are complex dependencies between which
treatment precedes which and the dependent variable. In these cases, it is usually better to use a between-subjects design than a
within-subjects design.

Advantage of Within-Subjects Designs

An advantage of within-subjects designs is that individual differences in subjects' overall levels of performance are controlled. This
is important because subjects invariably will differ greatly from one another. In an experiment on problem solving, some subjects
will be better than others regardless of the condition they are in. Similarly, in a study of blood pressure some subjects will have
higher blood pressure than others regardless of the condition. Within-subjects designs control these individual differences by
comparing the scores of a subject in one condition to the scores of the same subject in other conditions. In this sense each subject
serves as his or her own control. This typically gives within-subjects designs considerably more power than between-subjects
designs. That is, this makes within-subjects designs more able to detect an effect of the independent variable than are between-
subjects designs.

Within-subjects designs are often called "repeated-measures" designs since repeated measurements are taken for each subject.
Similarly, a within-subject variable can be called a repeated-measures factor.
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Complex Designs
Designs can contain combinations of between-subject and within-subject variables. For example, the "Weapons and Aggression"
case study has one between-subject variable (gender) and two within-subject variables (the type of priming word and the type of
word to be responded to).
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16.6: Causation

Explain how experimentation allows causal inferences
Explain the role of unmeasured variables
Explain the "third-variable" problem
Explain how causation can be inferred in non-experimental designs

The concept of causation is a complex one in the philosophy of science. Since a full coverage of this topic is well beyond the scope
of this text, we focus on two specific topics:

1. the establishment of causation in experiments
2. the establishment of causation in non-experimental designs

Stanford's Encyclopedia of Philosophy: Causation Topics

Establishing Causation in Experiments
Consider a simple experiment in which subjects are sampled randomly from a population and then assigned randomly to either the
experimental group or the control group. Assume the condition means on the dependent variable differed. Does this mean the
treatment caused the difference?

To make this discussion more concrete, assume that the experimental group received a drug for insomnia, the control group
received a placebo, and the dependent variable was the number of minutes the subject slept that night. An obvious obstacle to
inferring causality is that there are many unmeasured variables that affect how many hours someone sleeps. Among them are how
much stress the person is under, physiological and genetic factors, how much caffeine they consumed, how much sleep they got the
night before, etc. Perhaps differences between the groups on these factors are responsible for the difference in the number of
minutes slept.

At first blush it might seem that the random assignment eliminates differences in unmeasured variables. However, this is not the
case. Random assignment ensures that differences on unmeasured variables are chance differences. It does not ensure that there are
no differences. Perhaps, by chance, many subjects in the control group were under high stress and this stress made it more difficult
to fall asleep. The fact that the greater stress in the control group was due to chance does not mean it could not be responsible for
the difference between the control and the experimental groups. In other words, the observed difference in "minutes slept" could
have been due to a chance difference between the control group and the experimental group rather than due to the drug's effect.

This problem seems intractable since, by definition, it is impossible to measure an "unmeasured variable" just as it is impossible to
measure and control all variables that affect the dependent variable. However, although it is impossible to assess the effect of any
single unmeasured variable, it is possible to assess the combined effects of all unmeasured variables. Since everyone in a given
condition is treated the same in the experiment, differences in their scores on the dependent variable must be due to the unmeasured
variables. Therefore, a measure of the differences among the subjects within a condition is a measure of the sum total of the effects
of the unmeasured variables. The most common measure of differences is the variance. By using the within-condition variance to
assess the effects of unmeasured variables, statistical methods determine the probability that these unmeasured variables could
produce a difference between conditions as large or larger than the difference obtained in the experiment. If that probability is low,
then it is inferred (that's why they call it inferential statistics) that the treatment had an effect and that the differences are not
entirely due to chance. Of course, there is always some nonzero probability that the difference occurred by chance so total certainty
is not a possibility.

Causation in Non-Experimental Designs

It is almost a cliché that correlation does not mean causation. The main fallacy in inferring causation from correlation is called the
"third variable problem" and means that a third variable is responsible for the correlation between two other variables. An excellent
example used by Li ( ) to illustrate this point is the positive correlation in Taiwan in the  between the use of
contraception and the number of electric appliances in one's house. Of course, using contraception does not induce you to buy
electrical appliances or vice versa. Instead, the third variable of education level affects both.
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Does the possibility of a third-variable problem make it impossible to draw causal inferences without doing an experiment? One
approach is to simply assume that you do not have a third-variable problem. This approach, although common, is not very
satisfactory. However, be aware that the assumption of no third-variable problem may be hidden behind a complex causal model
that contains sophisticated and elegant mathematics.

A better though, admittedly more difficult approach, is to find converging evidence. This was the approach taken to conclude that
smoking causes cancer. The analysis included converging evidence from retrospective studies, prospective studies, lab studies with
animals, and theoretical understandings of cancer causes.

A second problem is determining the direction of causality. A correlation between two variables does not indicate which variable is
causing which. For example, Reinhart and Rogoff ( ) found a strong correlation between public debt and GDP growth.
Although some have argued that public debt slows growth, most evidence supports the alternative that slow growth increases
public debt.

Excellent Video on Causality Featuring Evidence that Smoking Causes Cancer(See Chapter 11)

1. Li, C. (1975) Path analysis: A primer. Boxwood Press, Pacific Grove. CA .
2. Reinhart, C. M. and Rogoff, K. S. (2010). Growth in a Time of Debt. Working Paper 15639, National Bureau of Economic

Research, http://www.nber.org/papers/w15639
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16.7: Statistical Literacy

Design a statistical study involving niacin, HDL and heart disease

Low HDL and Niacin
A low level of High-density lipoproteins (HDL) have long been known to be a risk factor for heart disease. Taking niacin has been
shown to increase HDL levels and has been recommended for patients with low levels of HDL. The assumption of this
recommendation is that niacin causes HDL to increase thus causing a lower risk for heart disease.

What experimental design involving niacin would test whether the relationship between HDL

and heart disease is causal?
Solution

You could randomly assign patients with low levels of HDL to a condition in which they
received niacin or to one in which they did not. A finding that niacin increased HDL without
decreasing heart disease would cast doubt on the causal relationship. This is exactly what
was found in a study conducted by the NIH. See the description of the results here.
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16.E: Research Design (Exercises)

General Questions

Q1

To be a scientific theory, the theory must be potentially ______________.

Q2

What is the difference between a faith-based explanation and a scientific explanation?

Q3

What does it mean for a theory to be parsimonious?

Q4

Define reliability in terms of parallel forms.

Q5

Define true score.

Q6

What is the reliability if the true score variance is  and the test score variance is ?

Q7

What statistic relates to how close a score on one test will be to a score on a parallel form?

Q8

What is the effect of test length on the reliability of a test?

Q9

Distinguish between predictive validity and construct validity.

Q10

What is the theoretical maximum correlation of a test with a criterion if the test has a reliability of ?

Q11

An experiment solicits subjects to participate in a highly stressful experiment. What type of sampling bias is likely to occur?

Q12

Give an example of survivorship bias not presented in this text.

Q13

Distinguish "between-subject" variables from "within-subjects" variables.

Q14

Of the variables "gender" and "trials," which is likely to be a between-subjects variable and which a within-subjects variable?

Q15

Define interaction.

Q16

What is counterbalancing used for?
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Q17

How does randomization deal with the problem of pre-existing differences between groups?

Q18

Give an example of the "third variable problem" other than those in this text.
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CHAPTER OVERVIEW

17: Preparing Datasets and Other Pragmatic Matters

The garden of life never seems to confine itself to the plots philosophers have laid out for
its convenience. Maybe a few more tractors would do the trick.

–Roger Zelazny
This is a somewhat strange chapter, even by my standards. My goal in this chapter is to talk a bit more honestly about the realities
of working with data than you’ll see anywhere else in the book. The problem with real world data sets is that they are messy. Very
often the data file that you start out with doesn’t have the variables stored in the right format for the analysis you want to do.
Sometimes might be a lot of missing values in your data set. Sometimes you only want to analyse a subset of the data. Et cetera. In
other words, there’s a lot of data manipulation that you need to do, just to get all your data set into the format that you need it. The
purpose of this chapter is to provide a basic introduction to all these pragmatic topics. Although the chapter is motivated by the
kinds of practical issues that arise when manipulating real data, I’ll stick with the practice that I’ve adopted through most of the
book and rely on very small, toy data sets that illustrate the underlying issue. Because this chapter is essentially a collection of
“tricks” and doesn’t tell a single coherent story, it may be useful to start with a list of topics:

Section 7.1. Tabulating data.
Section 7.2. Transforming or recoding a variable.
Section 7.3. Some useful mathematical functions.
Section 7.4. Extracting a subset of a vector.
Section 7.5. Extracting a subset of a data frame.
Section 7.6. Sorting, flipping or merging data sets.
Section 7.7. Reshaping a data frame.
Section 7.8. Manipulating text.
Section 7.9. Opening data from different file types.
Section 7.10. Coercing data from one type to another.
Section 7.11. Other important data types.
Section 7.12. Miscellaneous topics.

As you can see, the list of topics that the chapter covers is pretty broad, and there’s a lot of content there. Even though this is one of
the longest and hardest chapters in the book, I’m really only scratching the surface of several fairly different and important topics.
My advice, as usual, is to read through the chapter once and try to follow as much of it as you can. Don’t worry too much if you
can’t grasp it all at once, especially the later sections. The rest of the book is only lightly reliant on this chapter, so you can get
away with just understanding the basics. However, what you’ll probably find is that later on you’ll need to flick back to this chapter
in order to understand some of the concepts that I refer to here.

17.1: Tabulating and Cross-tabulating Data
17.2: Transforming and Recoding a Variable
17.3: A few More Mathematical Functions and Operations
17.4: Extracting a Subset of a Vector
17.5: Extracting a Subset of a Data Frame
17.6: Sorting, Flipping and Merging Data
17.7: Reshaping a Data Frame
17.8: Working with Text
17.9: Reading Unusual Data Files
17.10: Coercing Data from One Class to Another
17.11: Other Useful Data Structures
17.12: Miscellaneous Topics
17.13: Summary
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17.1: Tabulating and Cross-tabulating Data
A very common task when analysing data is the construction of frequency tables, or cross-tabulation of one variable against
another. There are several functions that you can use in R for that purpose. In this section I’ll illustrate the use of three functions – 
table() , xtabs()  and tabulate()  – though there are other options (e.g., ftable() ) available.

17.1.1 Creating tables from vectors
Let’s start with a simple example. As the father of a small child, I naturally spend a lot of time watching TV shows like In the Night
Garden. In the nightgarden.Rdata  file, I’ve transcribed a short section of the dialogue. The file contains two variables, 
speaker  and utterance , and when we take a look at the data, it becomes very clear what happened to my sanity.

library(lsr) 
load("./rbook-master/data/nightgarden.Rdata" ) 
who()

##    -- Name --   -- Class --   -- Size -- 
##    speaker      character     10         
##    utterance    character     10

print( speaker )  

##  [1] "upsy-daisy"  "upsy-daisy"  "upsy-daisy"  "upsy-daisy"  "tombliboo"   
##  [6] "tombliboo"   "makka-pakka" "makka-pakka" "makka-pakka" "makka-pakka"

print( utterance )

##  [1] "pip" "pip" "onk" "onk" "ee"  "oo"  "pip" "pip" "onk" "onk"

With these as my data, one task I might find myself needing to do is construct a frequency count of the number of words each
character speaks during the show. The table()  function provides a simple way do to this. The basic usage of the table()
function is as follows:

table(speaker)

## speaker 
## makka-pakka   tombliboo  upsy-daisy  
##           4           2           4

The output here tells us on the first line that what we’re looking at is a tabulation of the speaker  variable. On the second line it
lists all the different speakers that exist in the data, and on the third line it tells you how many times that speaker appears in the
data. In other words, it’s a frequency table  Notice that in the command above I didn’t name the argument, since table()  is
another function that makes use of unnamed arguments. You just type in a list of the variables that you want R to tabulate, and it
tabulates them. For instance, if I type in the name of two variables, what I get as the output is a cross-tabulation:

table(speaker, utterance)
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##              utterance 
## speaker       ee onk oo pip 
##   makka-pakka  0   2  0   2 
##   tombliboo    1   0  1   0 
##   upsy-daisy   0   2  0   2

When interpreting this table, remember that these are counts: so the fact that the first row and second column corresponds to a
value of 2 indicates that Makka-Pakka (row 1) says “onk” (column 2) twice in this data set. As you’d expect, you can produce three
way or higher order cross tabulations just by adding more objects to the list of inputs. However, I won’t discuss that in this section.

17.1.2 Creating tables from data frames
Most of the time your data are stored in a data frame, not kept as separate variables in the workspace. Let’s create one:

itng <- data.frame( speaker, utterance ) 
itng

##        speaker utterance 
## 1   upsy-daisy       pip 
## 2   upsy-daisy       pip 
## 3   upsy-daisy       onk 
## 4   upsy-daisy       onk 
## 5    tombliboo        ee 
## 6    tombliboo        oo 
## 7  makka-pakka       pip 
## 8  makka-pakka       pip 
## 9  makka-pakka       onk 
## 10 makka-pakka       onk

There’s a couple of options under these circumstances. Firstly, if you just want to cross-tabulate all of the variables in the data
frame, then it’s really easy:

table(itng)  

##              utterance 
## speaker       ee onk oo pip 
##   makka-pakka  0   2  0   2 
##   tombliboo    1   0  1   0 
##   upsy-daisy   0   2  0   2

However, it’s often the case that you want to select particular variables from the data frame to tabulate. This is where the 
xtabs()  function is useful. In this function, you input a one sided formula  in order to list all the variables you want to

cross-tabulate, and the name of the data  frame that stores the data:

xtabs( formula = ~ speaker + utterance, data = itng )

##              utterance 
## speaker       ee onk oo pip 
##   makka-pakka  0   2  0   2 
##   tombliboo    1   0  1   0 
##   upsy-daisy   0   2  0   2
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Clearly, this is a totally unnecessary command in the context of the itng  data frame, but in most situations when you’re
analysing real data this is actually extremely useful, since your data set will almost certainly contain lots of variables and you’ll
only want to tabulate a few of them at a time.

17.1.3 Converting a table of counts to a table of proportions
The tabulation commands discussed so far all construct a table of raw frequencies: that is, a count of the total number of cases that
satisfy certain conditions. However, often you want your data to be organised in terms of proportions rather than counts. This is
where the prop.table()  function comes in handy. It has two arguments:

x . The frequency table that you want to convert.
margin . Which “dimension” do you want to calculate proportions for. By default, R assumes you want the proportion to be

expressed as a fraction of all possible events. See examples for details.

To see how this works:

itng.table <- table(itng)  # create the table, and assign it to a variable 
itng.table                   # display the table again, as a reminder

##              utterance 
## speaker       ee onk oo pip 
##   makka-pakka  0   2  0   2 
##   tombliboo    1   0  1   0 
##   upsy-daisy   0   2  0   2  

prop.table( x = itng.table ) # express as proportion:

##              utterance 
## speaker        ee onk  oo pip 
##   makka-pakka 0.0 0.2 0.0 0.2 
##   tombliboo   0.1 0.0 0.1 0.0 
##   upsy-daisy  0.0 0.2 0.0 0.2

Notice that there were 10 observations in our original data set, so all that R has done here is divide all our raw frequencies by 10.
That’s a sensible default, but more often you actually want to calculate the proportions separately by row ( margin = 1 ) or by
column ( margin = 2 ). Again, this is most clearly seen by looking at examples:

prop.table( x = itng.table, margin = 1)

##              utterance 
## speaker        ee onk  oo pip 
##   makka-pakka 0.0 0.5 0.0 0.5 
##   tombliboo   0.5 0.0 0.5 0.0 
##   upsy-daisy  0.0 0.5 0.0 0.5

Notice that each row now sums to 1, but that’s not true for each column. What we’re looking at here is the proportions of utterances
made by each character. In other words, 50% of Makka-Pakka’s utterances are “pip”, and the other 50% are “onk”. Let’s contrast
this with the following command:

prop.table( x = itng.table, margin = 2)
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##              utterance 
## speaker        ee onk  oo pip 
##   makka-pakka 0.0 0.5 0.0 0.5 
##   tombliboo   1.0 0.0 1.0 0.0 
##   upsy-daisy  0.0 0.5 0.0 0.5

Now the columns all sum to 1 but the rows don’t. In this version, what we’re seeing is the proportion of characters associated with
each utterance. For instance, whenever the utterance “ee” is made (in this data set), 100% of the time it’s a Tombliboo saying it.

17.1.4 level tabulation
One final function I want to mention is the tabulate()  function, since this is actually the low-level function that does most of
the hard work. It takes a numeric vector as input, and outputs frequencies as outputs:

some.data <- c(1,2,3,1,1,3,1,1,2,8,3,1,2,4,2,3,5,2) 
tabulate(some.data)

## [1] 6 5 4 1 1 0 0 1

This page titled 17.1: Tabulating and Cross-tabulating Data is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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17.2: Transforming and Recoding a Variable
It’s not uncommon in real world data analysis to find that one of your variables isn’t quite equivalent to the variable that you really
want. For instance, it’s often convenient to take a continuous-valued variable (e.g., age) and break it up into a smallish number of
categories (e.g., younger, middle, older). At other times, you may need to convert a numeric variable into a different numeric
variable (e.g., you may want to analyse at the absolute value of the original variable). In this section I’ll describe a few key tricks
that you can make use of to do this.

17.2.1 Creating a transformed variable
The first trick to discuss is the idea of transforming a variable. Taken literally, anything you do to a variable is a transformation,
but in practice what it usually means is that you apply a relatively simple mathematical function to the original variable, in order to
create new variable that either (a) provides a better way of describing the thing you’re actually interested in or (b) is more closely
in agreement with the assumptions of the statistical tests you want to do. Since – at this stage – I haven’t talked about statistical
tests or their assumptions, I’ll show you an example based on the first case.

To keep the explanation simple, the variable we’ll try to transform ( likert.raw ) isn’t inside a data frame, though in real life it
almost certainly would be. However, I think it’s useful to start with an example that doesn’t use data frames because it illustrates
the fact that you already know how to do variable transformations. To see this, let’s go through an example. Suppose I’ve run a
short study in which I ask 10 people a single question:

On a scale of 1 (strongly disagree) to 7 (strongly agree), to what extent do you agree with the proposition that “Dinosaurs are
awesome”?

Now let’s load and look at the data. The data file likert.Rdata  contains a single variable that contains the raw Likert-scale
responses:

load("./rbook-master/data/likert.Rdata") 
likert.raw

##  [1] 1 7 3 4 4 4 2 6 5 5

However, if you think about it, this isn’t the best way to represent these responses. Because of the fairly symmetric way that we set
up the response scale, there’s a sense in which the midpoint of the scale should have been coded as 0 (no opinion), and the two
endpoints should be +3 (strong agree) and −3 (strong disagree). By recoding the data in this way, it’s a bit more reflective of how
we really think about the responses. The recoding here is trivially easy: we just subtract 4 from the raw scores:

likert.centred <- likert.raw - 4 
likert.centred

##  [1] -3  3 -1  0  0  0 -2  2  1  1

One reason why it might be useful to have the data in this format is that there are a lot of situations where you might prefer to
analyse the strength of the opinion separately from the direction of the opinion. We can do two different transformations on this 
likert.centred  variable in order to distinguish between these two different concepts. Firstly, to compute an 
opinion.strength  variable, we want to take the absolute value of the centred data (using the abs()  function that we’ve

seen previously), like so:

opinion.strength <- abs( likert.centred ) 
opinion.strength

##  [1] 3 3 1 0 0 0 2 2 1 1
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Secondly, to compute a variable that contains only the direction of the opinion and ignores the strength, we can use the sign()
function to do this. If you type ?sign  you’ll see that this function is really simple: all negative numbers are converted to −1, all
positive numbers are converted to 1 and zero stays as 0. So, when we apply the sign()  function we obtain the following:

opinion.dir <- sign( likert.centred ) 
opinion.dir

##  [1] -1  1 -1  0  0  0 -1  1  1  1

And we’re done. We now have three shiny new variables, all of which are useful transformations of the original likert.raw
data. All of this should seem pretty familiar to you. The tools that you use to do regular calculations in R (e.g., Chapters 3 and 4)
are very much the same ones that you use to transform your variables! To that end, in Section 7.3 I’ll revisit the topic of doing
calculations in R because there’s a lot of other functions and operations that are worth knowing about.

Before moving on, you might be curious to see what these calculations look like if the data had started out in a data frame. To that
end, it may help to note that the following example does all of the calculations using variables inside a data frame, and stores the
variables created inside it:

df <- data.frame( likert.raw )                   # create data frame 
df$likert.centred <- df$likert.raw - 4           # create centred data 
df$opinion.strength <- abs( df$likert.centred )  # create strength variable 
df$opinion.dir <- sign( df$likert.centred )      # create direction variable 
df   

##    likert.raw likert.centred opinion.strength opinion.dir 
## 1           1             -3                3          -1 
## 2           7              3                3           1 
## 3           3             -1                1          -1 
## 4           4              0                0           0 
## 5           4              0                0           0 
## 6           4              0                0           0 
## 7           2             -2                2          -1 
## 8           6              2                2           1 
## 9           5              1                1           1 
## 10          5              1                1           1

In other words, the commands you use are basically ones as before: it’s just that every time you want to read a variable from the
data frame or write to the data frame, you use the $  operator. That’s the easiest way to do it, though I should make note of the
fact that people sometimes make use of the within()  function to do the same thing. However, since (a) I don’t use the 
within()  function anywhere else in this book, and (b) the $  operator works just fine, I won’t discuss it any further.

17.2.2 Cutting a numeric variable into categories

One pragmatic task that arises more often than you’d think is the problem of cutting a numeric variable up into discrete categories.
For instance, suppose I’m interested in looking at the age distribution of people at a social gathering:

age <- c( 60,58,24,26,34,42,31,30,33,2,9 )

In some situations it can be quite helpful to group these into a smallish number of categories. For example, we could group the data
into three broad categories: young (0-20), adult (21-40) and older (41-60). This is a quite coarse-grained classification, and the
labels that I’ve attached only make sense in the context of this data set (e.g., viewed more generally, a 42 year old wouldn’t
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consider themselves as “older”). We can slice this variable up quite easily using the cut()  function.  To make things a little
cleaner, I’ll start by creating a variable that defines the boundaries for the categories:

age.breaks <- seq( from = 0, to = 60, by = 20 ) 
age.breaks

## [1]  0 20 40 60

and another one for the labels:

age.labels <- c( "young", "adult", "older" ) 
age.labels

## [1] "young" "adult" "older"

Note that there are four numbers in the age.breaks  variable, but only three labels in the age.labels  variable; I’ve done
this because the cut()  function requires that you specify the edges of the categories rather than the mid-points. In any case,
now that we’ve done this, we can use the cut()  function to assign each observation to one of these three categories. There are
several arguments to the cut()  function, but the three that we need to care about are:

x . The variable that needs to be categorised.
breaks . This is either a vector containing the locations of the breaks separating the categories, or a number indicating how

many categories you want.
labels . The labels attached to the categories. This is optional: if you don’t specify this R will attach a boring label showing

the range associated with each category.

Since we’ve already created variables corresponding to the breaks and the labels, the command we need is just:

age.group <- cut( x = age,               # the variable to be categorised 
                   breaks = age.breaks,   # the edges of the categories 
                   labels = age.labels )  # the labels for the categories

Note that the output variable here is a factor. In order to see what this command has actually done, we could just print out the 
age.group  variable, but I think it’s actually more helpful to create a data frame that includes both the original variable and the

categorised one, so that you can see the two side by side:

data.frame(age, age.group)

##    age age.group 
## 1   60     older 
## 2   58     older 
## 3   24     adult 
## 4   26     adult 
## 5   34     adult 
## 6   42     older 
## 7   31     adult 
## 8   30     adult 
## 9   33     adult 
## 10   2     young 
## 11   9     young
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It can also be useful to tabulate the output, just to see if you’ve got a nice even division of the sample:

table( age.group )

## age.group 
## young adult older  
##     2     6     3

In the example above, I made all the decisions myself. Much like the hist()  function that we saw in Chapter 6, if you want to
you can delegate a lot of the choices to R. For instance, if you want you can specify the number of categories you want, rather than
giving explicit ranges for them, and you can allow R to come up with some labels for the categories. To give you a sense of how
this works, have a look at the following example:

age.group2 <- cut( x = age, breaks = 3 )

With this command, I’ve asked for three categories, but let R make the choices for where the boundaries should be. I won’t bother
to print out the age.group2  variable, because it’s not terribly pretty or very interesting. Instead, all of the important
information can be extracted by looking at the tabulated data:

table( age.group2 )  

## age.group2 
## (1.94,21.3] (21.3,40.7] (40.7,60.1]  
##           2           6           3

This output takes a little bit of interpretation, but it’s not complicated. What R has done is determined that the lowest age category
should run from 1.94 years up to 21.3 years, the second category should run from 21.3 years to 40.7 years, and so on. The
formatting on those labels might look a bit funny to those of you who haven’t studied a lot of maths, but it’s pretty simple. When R
describes the first category as corresponding to the range (1.94,21.3] what it’s saying is that the range consists of those numbers
that are larger than 1.94 but less than or equal to 21.3. In other words, the weird asymmetric brackets is R s way of telling you that
if there happens to be a value that is exactly equal to 21.3, then it belongs to the first category, not the second one. Obviously, this
isn’t actually possible since I’ve only specified the ages to the nearest whole number, but R doesn’t know this and so it’s trying to
be precise just in case. This notation is actually pretty standard, but I suspect not everyone reading the book will have seen it
before. In any case, those labels are pretty ugly, so it’s usually a good idea to specify your own, meaningful labels to the categories.

Before moving on, I should take a moment to talk a little about the mechanics of the cut()  function. Notice that R has tried to
divide the age  variable into three roughly equal sized bins. Unless you specify the particular breaks you want, that’s what it will
do. But suppose you want to divide the age  variable into three categories of different size, but with approximately identical
numbers of people. How would you do that? Well, if that’s the case, then what you want to do is have the breaks correspond to the
0th, 33rd, 66th and 100th percentiles of the data. One way to do this would be to calculate those values using the 
quantiles()  function and then use those quantiles as input to the cut()  function. That’s pretty easy to do, but it does

take a couple of lines to type. So instead, the lsr  package has a function called quantileCut()  that does exactly this:

age.group3 <- quantileCut( x = age, n = 3 ) 
table( age.group3 )  

## age.group3 
## (1.94,27.3] (27.3,33.7] (33.7,60.1]  
##           4           3           4
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Notice the difference in the boundaries that the quantileCut()  function selects. The first and third categories now span an
age range of about 25 years each, whereas the middle category has shrunk to a span of only 6 years. There are some situations
where this is genuinely what you want (that’s why I wrote the function!), but in general you should be careful. Usually the numeric
variable that you’re trying to cut into categories is already expressed in meaningful units (i.e., it’s interval scale), but if you cut it
into unequal bin sizes then it’s often very difficult to attach meaningful interpretations to the resulting categories.

More generally, regardless of whether you’re using the original cut()  function or the quantileCut()  version, it’s
important to take the time to figure out whether or not the resulting categories make any sense at all in terms of your research
project. If they don’t make any sense to you as meaningful categories, then any data analysis that uses those categories is likely to
be just as meaningless. More generally, in practice I’ve noticed that people have a very strong desire to carve their (continuous and
messy) data into a few (discrete and simple) categories; and then run analysis using the categorised data instead of the original
one.  I wouldn’t go so far as to say that this is an inherently bad idea, but it does have some fairly serious drawbacks at times, so I
would advise some caution if you are thinking about doing it.

This page titled 17.2: Transforming and Recoding a Variable is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

7.2: Transforming and Recoding a Variable by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.
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17.3: A few More Mathematical Functions and Operations
In Section 7.2 I discussed the ideas behind variable transformations, and showed that a lot of the transformations that you might
want to apply to your data are based on fairly simple mathematical functions and operations, of the kind that we discussed in
Chapter 3. In this section I want to return to that discussion, and mention several other mathematical functions and arithmetic
operations that I didn’t bother to mention when introducing you to R, but are actually quite useful for a lot of real world data
analysis. Table 7.1 gives a brief overview of the various mathematical functions I want to talk about (and some that I already have
talked about). Obviously this doesn’t even come close to cataloging the range of possibilities available in R, but it does cover a
very wide range of functions that are used in day to day data analysis.

Table 7.1: Some of the mathematical functions available in R.

mathematical.function R.function example.input answer

square root sqrt() sqrt(25) 5

absolute value abs() abs(-23) 23

logarithm (base 10) log10() log10(1000) 3

logarithm (base e) log() log(1000) 6.908

exponentiation exp() exp(6.908) 1000.245

rounding to nearest round() round(1.32) 1

rounding down floor() floor(1.32) 1

rounding up ceiling() ceiling(1.32) 2

17.3.1 Rounding a number

One very simple transformation that crops up surprisingly often is the need to round a number to the nearest whole number, or to a
certain number of significant digits. To start with, let’s assume that we want to round to a whole number. To that end, there are
three useful functions in R you want to know about: round() , floor()  and ceiling() . The round()  function
just rounds to the nearest whole number. So if you round the number 4.3, it “rounds down” to 4 , like so:

round( x = 4.3 )

## [1] 4

In contrast, if we want to round the number 4.7, we would round upwards to 5. In everyday life, when someone talks about
“rounding”, they usually mean “round to nearest”, so this is the function we use most of the time. However sometimes you have
reasons to want to always round up or always round down. If you want to always round down, use the floor()  function
instead; and if you want to force R to round up, then use ceiling() . That’s the only difference between the three functions.
What if you want to round to a certain number of digits? Let’s suppose you want to round to a fixed number of decimal places, say
2 decimal places. If so, what you need to do is specify the digits  argument to the round()  function. That’s pretty
straightforward:

round( x = 0.0123, digits = 2 )

## [1] 0.01

The only subtlety that you need to keep in mind is that sometimes what you want to do is round to 2 significant digits and not to
two decimal places. The difference is that, when determining the number of significant digits, zeros don’t count. To see this, let’s
apply the signif()  function instead of the round()  function:
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signif( x = 0.0123, digits = 2 )

## [1] 0.012

This time around, we get an answer of 0.012 because the zeros don’t count as significant digits. Quite often scientific journals will
ask you to report numbers to two or three significant digits, so it’s useful to remember the distinction.

17.3.2 Modulus and integer division
Table 7.2: Two more arithmetic operations that sometimes come in handy

operation operator example.input answer

integer division %/% 42 %/% 10 4

modulus %% 42 %% 10 2

Since we’re on the topic of simple calculations, there are two other arithmetic operations that I should mention, since they can
come in handy when working with real data. These operations are calculating a modulus and doing integer division. They don’t
come up anywhere else in this book, but they are worth knowing about. First, let’s consider integer division. Suppose I have $42 in
my wallet, and want to buy some sandwiches, which are selling for $10 each. How many sandwiches can I afford  to buy? The
answer is of course 4. Note that it’s not 4.2, since no shop will sell me one-fifth of a sandwich. That’s integer division. In R we
perform integer division by using the %/%  operator:

42 %/% 10

## [1] 4

Okay, that’s easy enough. What about the modulus? Basically, a modulus is the remainder after integer division, and it’s calculated
using the %%  operator. For the sake of argument, let’s suppose I buy four overpriced $10 sandwiches. If I started out with $42,
how much money do I have left? The answer, as both R and common sense tells us, is $2:

42 %% 10  

## [1] 2

So that’s also pretty easy. There is, however, one subtlety that I need to mention, and this relates to how negative numbers are
handled. Firstly, what would happen if I tried to do integer division with a negative number? Let’s have a look:

-42 %/% 10

## [1] -5

This might strike you as counterintuitive: why does 42 %/% 10  produce an answer of 4 , but -42 %/% 10  gives us an
answer of -5 ? Intuitively you might think that the answer to the second one should be -4 . The way to think about it is like
this. Suppose I owe the sandwich shop $42, but I don’t have any money. How many sandwiches would I have to give them in order
to stop them from calling security? The answer  here is 5, not 4. If I handed them 4 sandwiches, I’d still owe them $2, right? So I
actually have to give them 5 sandwiches. And since it’s me giving them the sandwiches, the answer to -42 %/% 10  is -5 .
As you might expect, the behaviour of the modulus operator has a similar pattern. If I’ve handed 5 sandwiches over to the shop in
order to pay off my debt of $42, then they now owe me $8. So the modulus is now:
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-42 %% 10

## [1] 8

17.3.3 Logarithms and exponentials

As I’ve mentioned earlier, R has an incredible range of mathematical functions built into it, and there really wouldn’t be much
point in trying to describe or even list all of them. For the most part, I’ve focused only on those functions that are strictly necessary
for this book. However I do want to make an exception for logarithms and exponentials. Although they aren’t needed anywhere
else in this book, they are everywhere in statistics more broadly, and not only that, there are a lot of situations in which it is
convenient to analyse the logarithm of a variable (i.e., to take a “log-transform” of the variable). I suspect that many (maybe most)
readers of this book will have encountered logarithms and exponentials before, but from past experience I know that there’s a
substantial proportion of students who take a social science statistics class who haven’t touched logarithms since high school, and
would appreciate a bit of a refresher.

In order to understand logarithms and exponentials, the easiest thing to do is to actually calculate them and see how they relate to
other simple calculations. There are three R functions in particular that I want to talk about, namely log() , log10()  and 
exp() . To start with, let’s consider log10() , which is known as the “logarithm in base 10”. The trick to understanding a

logarithm is to understand that it’s basically the “opposite” of taking a power. Specifically, the logarithm in base 10 is closely
related to the powers of 10. So let’s start by noting that 10-cubed is 1000. Mathematically, we would write this:

10 =1000

and in R we’d calculate it by using the command 10^3 . The trick to understanding a logarithm is to recognise that the statement
that “10 to the power of 3 is equal to 1000” is equivalent to the statement that “the logarithm (in base 10) of 1000 is equal to 3”.
Mathematically, we write this as follows,

log (1000)=3

and if we wanted to do the calculation in R we would type this:

log10( 1000 )

## [1] 3

Obviously, since you already know that 10 =1000 there’s really no point in getting R to tell you that the base-10 logarithm of 1000
is 3. However, most of the time you probably don’t know what right answer is. For instance, I can honestly say that I didn’t know
that 10 =500, so it’s rather convenient for me that I can use R to calculate the base-10 logarithm of 500:

log10( 500 )

## [1] 2.69897

Or at least it would be convenient if I had a pressing need to know the base-10 logarithm of 500.

Okay, since the log10()  function is related to the powers of 10, you might expect that there are other logarithms (in bases
other than 10) that are related to other powers too. And of course that’s true: there’s not really anything mathematically special
about the number 10. You and I happen to find it useful because decimal numbers are built around the number 10, but the big bad
world of mathematics scoffs at our decimal numbers. Sadly, the universe doesn’t actually care how we write down numbers.
Anyway, the consequence of this cosmic indifference is that there’s nothing particularly special about calculating logarithms in
base 10. You could, for instance, calculate your logarithms in base 2, and in fact R does provide a function for doing that, which is
(not surprisingly) called log2() . Since we know that 23=2×2×2=8, it’s not surprise to see that

log2( 8 )

3

10

3

2.69897
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## [1] 3

Alternatively, a third type of logarithm – and one we see a lot more of in statistics than either base 10 or base 2 – is called the
natural logarithm, and corresponds to the logarithm in base e. Since you might one day run into it, I’d better explain what e is. The
number e, known as Euler’s number, is one of those annoying “irrational” numbers whose decimal expansion is infinitely long,
and is considered one of the most important numbers in mathematics. The first few digits of e are:

e=2.718282

There are quite a few situation in statistics that require us to calculate powers of e, though none of them appear in this book.
Raising e to the power x is called the exponential of x, and so it’s very common to see e  written as exp(x). And so it’s no surprise
that R has a function that calculate exponentials, called exp() . For instance, suppose I wanted to calculate e . I could try typing
in the value of e manually, like this:

2.718282 ^ 3

## [1] 20.08554

but it’s much easier to do the same thing using the exp()  function:

exp( 3 )

## [1] 20.08554

Anyway, because the number e crops up so often in statistics, the natural logarithm (i.e., logarithm in base e) also tends to turn up.
Mathematicians often write it as loge(x) or ln(x), or sometimes even just log(x). In fact, R works the same way: the log()
function corresponds to the natural logarithm  Anyway, as a quick check, let’s calculate the natural logarithm of 20.08554 using
R:

log( 20.08554 )

## [1] 3

And with that, I think we’ve had quite enough exponentials and logarithms for this book!

This page titled 17.3: A few More Mathematical Functions and Operations is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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17.4: Extracting a Subset of a Vector
One very important kind of data handling is being able to extract a particular subset of the data. For instance, you might be
interested only in analysing the data from one experimental condition, or you may want to look closely at the data from people over
50 years in age. To do this, the first step is getting R to extract the subset of the data corresponding to the observations that you’re
interested in. In this section I’ll talk about subsetting as it applies to vectors, extending the discussion from Chapters 3 and 4. In
Section 7.5 I’ll go on to talk about how this discussion extends to data frames.

17.4.1 Refresher
This section returns to the nightgarden.Rdata  data set. If you’re reading this whole chapter in one sitting, then you should
already have this data set loaded. If not, don’t forget to use the load("nightgarden.Rdata")  command. For this section,
let’s ignore the itng  data frame that we created earlier, and focus instead on the two vectors speaker  and utterance
(see Section 7.1 if you’ve forgotten what those vectors look like). Suppose that what I want to do is pull out only those utterances
that were made by Makka-Pakka. To that end, I could first use the equality operator to have R tell me which cases correspond to
Makka-Pakka speaking:

is.MP.speaking <- speaker == "makka-pakka" 
is.MP.speaking

##  [1] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE

and then use logical indexing to get R to print out those elements of utterance  for which is.MP.speaking  is true, like
so:

utterance[ is.MP.speaking ]

## [1] "pip" "pip" "onk" "onk"

Or, since I’m lazy, I could collapse it to a single command like so:

utterance[ speaker == "makka-pakka" ]

## [1] "pip" "pip" "onk" "onk"

17.4.2 Using %in% match multiple cases

A second useful trick to be aware of is the %in%  operator . It’s actually very similar to the ==  operator, except that you can
supply a collection of acceptable values. For instance, suppose I wanted to keep only those cases when the utterance is either “pip”
or “oo”. One simple way do to this is:

utterance %in% c("pip","oo") 

##  [1]  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE

What this does if return TRUE  for those elements of utterance  that are either "pip"  or "oo"  and returns FALSE
for all the others. What that means is that if I want a list of all those instances of characters speaking either of these two words, I
could do this:

speaker[ utterance %in% c("pip","oo") ]
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## [1] "upsy-daisy"  "upsy-daisy"  "tombliboo"   "makka-pakka" "makka-pakka"

17.4.3 Using negative indices to drop elements

Before moving onto data frames, there’s a couple of other tricks worth mentioning. The first of these is to use negative values as
indices. Recall from Section 3.10 that we can use a vector of numbers to extract a set of elements that we would like to keep. For
instance, suppose I want to keep only elements 2 and 3 from utterance . I could do so like this:

utterance[2:3]

## [1] "pip" "onk"

But suppose, on the other hand, that I have discovered that observations 2 and 3 are untrustworthy, and I want to keep everything
except those two elements. To that end, R lets you use negative numbers to remove specific values, like so:

utterance [ -(2:3) ]

## [1] "pip" "onk" "ee"  "oo"  "pip" "pip" "onk" "onk"

The output here corresponds to element 1 of the original vector, followed by elements 4, 5, and so on. When all you want to do is
remove a few cases, this is a very handy convention.

17.4.4 Splitting a vector by group
One particular example of subsetting that is especially common is the problem of splitting one one variable up into several different
variables, one corresponding to each group. For instance, in our In the Night Garden example, I might want to create subsets of the 
utterance  variable for every character. One way to do this would be to just repeat the exercise that I went through earlier

separately for each character, but that quickly gets annoying. A faster way do it is to use the split()  function. The arguments
are:

x . The variable that needs to be split into groups.
f . The grouping variable.

What this function does is output a list (Section 4.9), containing one variable for each group. For instance, I could split up the 
utterance  variable by speaker  using the following command:

speech.by.char <- split( x = utterance, f = speaker ) 
speech.by.char

## $`makka-pakka` 
## [1] "pip" "pip" "onk" "onk" 
## 
## $tombliboo 
## [1] "ee" "oo" 
## 
## $`upsy-daisy` 
## [1] "pip" "pip" "onk" "onk"

Once you’re starting to become comfortable working with lists and data frames, this output is all you need, since you can work
with this list in much the same way that you would work with a data frame. For instance, if you want the first utterance made by
Makka-Pakka, all you need to do is type this:
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speech.by.char$`makka-pakka`[1]

## [1] "pip"

Just remember that R does need you to add the quoting characters (i.e. ' ). Otherwise, there’s nothing particularly new or difficult
here.

However, sometimes – especially when you’re just starting out – it can be convenient to pull these variables out of the list, and into
the workspace. This isn’t too difficult to do, though it can be a little daunting to novices. To that end, I’ve included a function
called importList()  in the lsr  package that does this.  First, here’s what you’d have if you had wiped the workspace
before the start of this section:

who()

##    -- Name --         -- Class --   -- Size -- 
##    age                numeric       11         
##    age.breaks         numeric       4          
##    age.group          factor        11         
##    age.group2         factor        11         
##    age.group3         factor        11         
##    age.labels         character     3          
##    df                 data.frame    10 x 4     
##    is.MP.speaking     logical       10         
##    itng               data.frame    10 x 2     
##    itng.table         table         3 x 4      
##    likert.centred     numeric       10         
##    likert.raw         numeric       10         
##    opinion.dir        numeric       10         
##    opinion.strength   numeric       10         
##    some.data          numeric       18         
##    speaker            character     10         
##    speech.by.char     list          3          
##    utterance          character     10

Now we use the importList()  function to copy all of the variables within the speech.by.char  list:

importList( speech.by.char, ask = FALSE)

Because the importList()  function is attempting to create new variables based on the names of the elements of the list, it
pauses to check that you’re okay with the variable names. The reason it does this is that, if one of the to-be-created variables has
the same name as a variable that you already have in your workspace, that variable will end up being overwritten, so it’s a good
idea to check. Assuming that you type y , it will go on to create the variables. Nothing appears to have happened, but if we look
at our workspace now:

who()  
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##    -- Name --         -- Class --   -- Size -- 
##    age                numeric       11         
##    age.breaks         numeric       4          
##    age.group          factor        11         
##    age.group2         factor        11         
##    age.group3         factor        11         
##    age.labels         character     3          
##    df                 data.frame    10 x 4     
##    is.MP.speaking     logical       10         
##    itng               data.frame    10 x 2     
##    itng.table         table         3 x 4      
##    likert.centred     numeric       10         
##    likert.raw         numeric       10         
##    makka.pakka        character     4          
##    opinion.dir        numeric       10         
##    opinion.strength   numeric       10         
##    some.data          numeric       18         
##    speaker            character     10         
##    speech.by.char     list          3          
##    tombliboo          character     2          
##    upsy.daisy         character     4          
##    utterance          character     10

we see that there are three new variables, called makka.pakka , tombliboo  and upsy.daisy . Notice that the 
importList()  function has converted the original character strings into valid R variable names, so the variable

corresponding to "makka-pakka"  is actually makka.pakka .  Nevertheless, even though the names can change, note
that each of these variables contains the exact same information as the original elements of the list did. For example:

> makka.pakka 
[1] "pip" "pip" "onk" "onk"  
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17.5: Extracting a Subset of a Data Frame
In this section we turn to the question of how to subset a data frame rather than a vector. To that end, the first thing I should point
out is that, if all you want to do is subset one of the variables inside the data frame, then as usual the $  operator is your friend.
For instance, suppose I’m working with the itng  data frame, and what I want to do is create the speech.by.char  list. I
can use the exact same tricks that I used last time, since what I really want to do is split()  the itng$utterance  vector,
using the itng$speaker  vector as the grouping variable. However, most of the time what you actually want to do is select
several different variables within the data frame (i.e., keep only some of the columns), or maybe a subset of cases (i.e., keep only
some of the rows). In order to understand how this works, we need to talk more specifically about data frames and how to subset
them.

Using the subset()  function
There are several different ways to subset a data frame in R, some easier than others. I’ll start by discussing the subset()
function, which is probably the conceptually simplest way do it. For our purposes there are three different arguments that you’ll be
most interested in:

x . The data frame that you want to subset.
subset . A vector of logical values indicating which cases (rows) of the data frame you want to keep. By default, all cases

will be retained.
select . This argument indicates which variables (columns) in the data frame you want to keep. This can either be a list of

variable names, or a logical vector indicating which ones to keep, or even just a numeric vector containing the relevant column
numbers. By default, all variables will be retained.

Let’s start with an example in which I use all three of these arguments. Suppose that I want to subset the itng  data frame,
keeping only the utterances made by Makka-Pakka. What that means is that I need to use the select  argument to pick out the 
utterance  variable, and I also need to use the subset  variable, to pick out the cases when Makka-Pakka is speaking (i.e., 
speaker == "makka-pakka" ). Therefore, the command I need to use is this:

##    utterance 
## 7        pip 
## 8        pip 
## 9        onk 
## 10       onk

The variable df  here is still a data frame, but it only contains one variable (called utterance ) and four cases. Notice that
the row numbers are actually the same ones from the original data frame. It’s worth taking a moment to briefly explain this. The
reason that this happens is that these “row numbers’ are actually row names. When you create a new data frame from scratch R will
assign each row a fairly boring row name, which is identical to the row number. However, when you subset the data frame, each
row keeps its original row name. This can be quite useful, since – as in the current example – it provides you a visual reminder of
what each row in the new data frame corresponds to in the original data frame. However, if it annoys you, you can change the row
names using the rownames()  function.

In any case, let’s return to the subset()  function, and look at what happens when we don’t use all three of the arguments.
Firstly, suppose that I didn’t bother to specify the select  argument. Let’s see what happens:

subset( x = itng, 
        subset = speaker == "makka-pakka" )  

df <- subset( x = itng,                            # data frame is itng 
              subset = speaker == "makka-pakka",   # keep only Makka-Pakkas speech 
              select = utterance )                 # keep only the utterance variable
print( df )
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##        speaker utterance 
## 7  makka-pakka       pip 
## 8  makka-pakka       pip 
## 9  makka-pakka       onk 
## 10 makka-pakka       onk

Not surprisingly, R has kept the same cases from the original data set (i.e., rows 7 through 10), but this time it has kept all of the
variables from the data frame. Equally unsurprisingly, if I don’t specify the subset  argument, what we find is that R keeps all
of the cases:

subset( x = itng,  
         select = utterance )  

##    utterance 
## 1        pip 
## 2        pip 
## 3        onk 
## 4        onk 
## 5         ee 
## 6         oo 
## 7        pip 
## 8        pip 
## 9        onk 
## 10       onk

Again, it’s important to note that this output is still a data frame: it’s just a data frame with only a single variable.

Using square brackets: I. Rows and columns
Throughout the book so far, whenever I’ve been subsetting a vector I’ve tended use the square brackets []  to do so. But in the
previous section when I started talking about subsetting a data frame I used the subset()  function. As a consequence, you
might be wondering whether it is possible to use the square brackets to subset a data frame. The answer, of course, is yes. Not only
can you use square brackets for this purpose, as you become more familiar with R you’ll find that this is actually much more
convenient than using subset() . Unfortunately, the use of square brackets for this purpose is somewhat complicated, and can
be very confusing to novices. So be warned: this section is more complicated than it feels like it “should” be. With that warning in
place, I’ll try to walk you through it slowly. For this section, I’ll use a slightly different data set, namely the garden  data frame
that is stored in the "nightgarden2.Rdata"  file.

load("./rbook-master/data/nightgarden2.Rdata" ) 
garden

##            speaker utterance line 
## case.1  upsy-daisy       pip    1 
## case.2  upsy-daisy       pip    2 
## case.3   tombliboo        ee    5 
## case.4 makka-pakka       pip    7 
## case.5 makka-pakka       onk    9

As you can see, the garden  data frame contains 3 variables and 5 cases, and this time around I’ve used the rownames()
function to attach slightly verbose labels to each of the cases. Moreover, let’s assume that what we want to do is to pick out rows 4
and 5 (the two cases when Makka-Pakka is speaking), and columns 1 and 2 (variables speaker  and utterance ).
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How shall we do this? As usual, there’s more than one way. The first way is based on the observation that, since a data frame is
basically a table, every element in the data frame has a row number and a column number. So, if we want to pick out a single
element, we have to specify the row number and a column number within the square brackets. By convention, the row number
comes first. So, for the data frame above, which has 5 rows and 3 columns, the numerical indexing scheme looks like this:

row col1 col2 col3

1 [1,1] [1,2] [1,3]

2 [2,1] [2,2] [2,3]

3 [3,1] [3,2] [3,3]

4 [4,1] [4,2] [4,3]

5 [5,1] [5,2] [5,3]

If I want the 3rd case of the 2nd variable, what I would type is garden[3,2] , and R would print out some output showing
that, this element corresponds to the utterance "ee" . However, let’s hold off from actually doing that for a moment, because
there’s something slightly counterintuitive about the specifics of what R does under those circumstances (see Section 7.5.4).
Instead, let’s aim to solve our original problem, which is to pull out two rows (4 and 5) and two columns (1 and 2). This is fairly
simple to do, since R allows us to specify multiple rows and multiple columns. So let’s try that:

garden[ 4:5, 1:2 ]

##            speaker utterance 
## case.4 makka-pakka       pip 
## case.5 makka-pakka       onk

Clearly, that’s exactly what we asked for: the output here is a data frame containing two variables and two cases. Note that I could
have gotten the same answer if I’d used the c()  function to produce my vectors rather than the :  operator. That is, the
following command is equivalent to the last one:

garden[ c(4,5), c(1,2) ]

##            speaker utterance 
## case.4 makka-pakka       pip 
## case.5 makka-pakka       onk  

It’s just not as pretty. However, if the columns and rows that you want to keep don’t happen to be next to each other in the original
data frame, then you might find that you have to resort to using commands like garden[ c(2,4,5), c(1,3) ]  to extract
them.

A second way to do the same thing is to use the names of the rows and columns. That is, instead of using the row numbers and
column numbers, you use the character strings that are used as the labels for the rows and columns. To apply this idea to our 
garden  data frame, we would use a command like this:

garden[ c("case.4", "case.5"), c("speaker", "utterance") ]

knitr::kable(data.frame(stringsAsFactors=FALSE, row = c("1","2","3", "4", "5"), col1 
"[5,1]"), col2 = c("[1,2]", "[2,2]", "[3,2]", "[4,2]", "[5,2]"), col3 = c("[1,3]", "[
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##            speaker utterance 
## case.4 makka-pakka       pip 
## case.5 makka-pakka       onk

Once again, this produces exactly the same output, so I haven’t bothered to show it. Note that, although this version is more
annoying to type than the previous version, it’s a bit easier to read, because it’s often more meaningful to refer to the elements by
their names rather than their numbers. Also note that you don’t have to use the same convention for the rows and columns. For
instance, I often find that the variable names are meaningful and so I sometimes refer to them by name, whereas the row names are
pretty arbitrary so it’s easier to refer to them by number. In fact, that’s more or less exactly what’s happening with the garden
data frame, so it probably makes more sense to use this as the command:

garden[ 4:5, c("speaker", "utterance") ]

##            speaker utterance 
## case.4 makka-pakka       pip 
## case.5 makka-pakka       onk  

Again, the output is identical.

Finally, both the rows and columns can be indexed using logicals vectors as well. For example, although I claimed earlier that my
goal was to extract cases 4 and 5, it’s pretty obvious that what I really wanted to do was select the cases where Makka-Pakka is
speaking. So what I could have done is create a logical vector that indicates which cases correspond to Makka-Pakka speaking:

is.MP.speaking <- garden$speaker == "makka-pakka" 
is.MP.speaking

## [1] FALSE FALSE FALSE  TRUE  TRUE

As you can see, the 4th and 5th elements of this vector are TRUE  while the others are FALSE . Now that I’ve constructed this
“indicator” variable, what I can do is use this vector to select the rows that I want to keep:

garden[ is.MP.speaking, c("speaker", "utterance") ]

##            speaker utterance 
## case.4 makka-pakka       pip 
## case.5 makka-pakka       onk

And of course the output is, yet again, the same.

Using square brackets: II. Some elaborations
There are two fairly useful elaborations on this “rows and columns” approach that I should point out. Firstly, what if you want to
keep all of the rows, or all of the columns? To do this, all we have to do is leave the corresponding entry blank, but it is crucial to
remember to keep the comma*! For instance, suppose I want to keep all the rows in the garden  data, but I only want to retain
the first two columns. The easiest way do this is to use a command like this:

garden[ , 1:2 ]
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##            speaker utterance 
## case.1  upsy-daisy       pip 
## case.2  upsy-daisy       pip 
## case.3   tombliboo        ee 
## case.4 makka-pakka       pip 
## case.5 makka-pakka       onk

Alternatively, if I want to keep all the columns but only want the last two rows, I use the same trick, but this time I leave the second
index blank. So my command becomes:

garden[ 4:5, ]

##            speaker utterance line 
## case.4 makka-pakka       pip    7 
## case.5 makka-pakka       onk    9

The second elaboration I should note is that it’s still okay to use negative indexes as a way of telling R to delete certain rows or
columns. For instance, if I want to delete the 3rd column, then I use this command:

garden[ , -3 ]  

##            speaker utterance 
## case.1  upsy-daisy       pip 
## case.2  upsy-daisy       pip 
## case.3   tombliboo        ee 
## case.4 makka-pakka       pip 
## case.5 makka-pakka       onk

whereas if I want to delete the 3rd row, then I’d use this one:

garden[ -3,  ]  

##            speaker utterance line 
## case.1  upsy-daisy       pip    1 
## case.2  upsy-daisy       pip    2 
## case.4 makka-pakka       pip    7 
## case.5 makka-pakka       onk    9

So that’s nice.

Using square brackets: III. Understanding “dropping”
At this point some of you might be wondering why I’ve been so terribly careful to choose my examples in such a way as to ensure
that the output always has are multiple rows and multiple columns. The reason for this is that I’ve been trying to hide the somewhat
curious “dropping” behaviour that R produces when the output only has a single column. I’ll start by showing you what happens,
and then I’ll try to explain it. Firstly, let’s have a look at what happens when the output contains only a single row:

garden[ 5, ]
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##            speaker utterance line 
## case.5 makka-pakka       onk    9

This is exactly what you’d expect to see: a data frame containing three variables, and only one case per variable. Okay, no
problems so far. What happens when you ask for a single column? Suppose, for instance, I try this as a command:

garden[ , 3 ]

Based on everything that I’ve shown you so far, you would be well within your rights to expect to see R produce a data frame
containing a single variable (i.e., line ) and five cases. After all, that is what the subset()  command does in this situation,
and it’s pretty consistent with everything else that I’ve shown you so far about how square brackets work. In other words, you
should expect to see this:

         line 
case.1    1 
case.2    2 
case.3    5 
case.4    7 
case.5    9

However, that is emphatically not what happens. What you actually get is this:

garden[ , 3 ]

## [1] 1 2 5 7 9

That output is not a data frame at all! That’s just an ordinary numeric vector containing 5 elements. What’s going on here is that R
has “noticed” that the output that we’ve asked for doesn’t really “need” to be wrapped up in a data frame at all, because it only
corresponds to a single variable. So what it does is “drop” the output from a data frame containing a single variable, “down” to a
simpler output that corresponds to that variable. This behaviour is actually very convenient for day to day usage once you’ve
become familiar with it – and I suppose that’s the real reason why R does this – but there’s no escaping the fact that it is deeply
confusing to novices. It’s especially confusing because the behaviour appears only for a very specific case: (a) it only works for
columns and not for rows, because the columns correspond to variables and the rows do not, and (b) it only applies to the “rows
and columns” version of the square brackets, and not to the subset()  function,  or to the “just columns” use of the square
brackets (next section). As I say, it’s very confusing when you’re just starting out. For what it’s worth, you can suppress this
behaviour if you want, by setting drop = FALSE  when you construct your bracketed expression. That is, you could do
something like this:

garden[ , 3, drop = FALSE ]

##        line 
## case.1    1 
## case.2    2 
## case.3    5 
## case.4    7 
## case.5    9

I suppose that helps a little bit, in that it gives you some control over the dropping behaviour, but I’m not sure it helps to make
things any easier to understand. Anyway, that’s the “dropping” special case. Fun, isn’t it?
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Using square brackets: IV. Columns only
As if the weird “dropping” behaviour wasn’t annoying enough, R actually provides a completely different way of using square
brackets to index a data frame. Specifically, if you only give a single index, R will assume you want the corresponding columns,
not the rows. Do not be fooled by the fact that this second method also uses square brackets: it behaves differently to the “rows and
columns” method that I’ve discussed in the last few sections. Again, what I’ll do is show you what happens first, and then I’ll try to
explain why it happens afterwards. To that end, let’s start with the following command:

garden[ 1:2 ]

##            speaker utterance 
## case.1  upsy-daisy       pip 
## case.2  upsy-daisy       pip 
## case.3   tombliboo        ee 
## case.4 makka-pakka       pip 
## case.5 makka-pakka       onk

As you can see, the output gives me the first two columns, much as if I’d typed garden[,1:2] . It doesn’t give me the first
two rows, which is what I’d have gotten if I’d used a command like garden[1:2,] . Not only that, if I ask for a single
column, R does not drop the output:

garden[3]

##        line 
## case.1    1 
## case.2    2 
## case.3    5 
## case.4    7 
## case.5    9

As I said earlier, the only case where dropping occurs by default is when you use the “row and columns” version of the square
brackets, and the output happens to correspond to a single column. However, if you really want to force R to drop the output, you
can do so using the “double brackets” notation:

garden[[3]]

## [1] 1 2 5 7 9

Note that R will only allow you to ask for one column at a time using the double brackets. If you try to ask for multiple columns in
this way, you get completely different behaviour,  which may or may not produce an error, but definitely won’t give you the
output you’re expecting. The only reason I’m mentioning it at all is that you might run into double brackets when doing further
reading, and a lot of books don’t explicitly point out the difference between [  and [[ . However, I promise that I won’t be
using [[  anywhere else in this book.

Okay, for those few readers that have persevered with this section long enough to get here without having set fire to the book, I
should explain why R has these two different systems for subsetting a data frame (i.e., “row and column” versus “just columns”),
and why they behave so differently to each other. I’m not 100% sure about this since I’m still reading through some of the old
references that describe the early development of R, but I think the answer relates to the fact that data frames are actually a very
strange hybrid of two different kinds of thing. At a low level, a data frame is a list (Section 4.9). I can demonstrate this to you by
overriding the normal print()  function  and forcing R to print out the garden  data frame using the default print method
rather than the special one that is defined only for data frames. Here’s what we get:
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print.default( garden )

## $speaker 
## [1] upsy-daisy  upsy-daisy  tombliboo   makka-pakka makka-pakka 
## Levels: makka-pakka tombliboo upsy-daisy 
## 
## $utterance 
## [1] pip pip ee  pip onk 
## Levels: ee onk oo pip 
## 
## $line 
## [1] 1 2 5 7 9 
## 
## attr(,"class") 
## [1] "data.frame"

Apart from the weird part of the output right at the bottom, this is identical to the print out that you get when you print out a list
(see Section 4.9). In other words, a data frame is a list. View from this “list based” perspective, it’s clear what garden[1]  is:
it’s the first variable stored in the list, namely speaker . In other words, when you use the “just columns” way of indexing a
data frame, using only a single index, R assumes that you’re thinking about the data frame as if it were a list of variables. In fact,
when you use the $  operator you’re taking advantage of the fact that the data frame is secretly a list.

However, a data frame is more than just a list. It’s a very special kind of list where all the variables are of the same length, and the
first element in each variable happens to correspond to the first “case” in the data set. That’s why no-one ever wants to see a data
frame printed out in the default “list-like” way that I’ve shown in the extract above. In terms of the deeper meaning behind what a
data frame is used for, a data frame really does have this rectangular shape to it:

print( garden )

##            speaker utterance line 
## case.1  upsy-daisy       pip    1 
## case.2  upsy-daisy       pip    2 
## case.3   tombliboo        ee    5 
## case.4 makka-pakka       pip    7 
## case.5 makka-pakka       onk    9

Because of the fact that a data frame is basically a table of data, R provides a second “row and column” method for interacting with
the data frame (see Section 7.11.1 for a related example). This method makes much more sense in terms of the high-level table of
data interpretation of what a data frame is, and so for the most part it’s this method that people tend to prefer. In fact, throughout
the rest of the book I will be sticking to the “row and column” approach (though I will use $  a lot), and never again referring to
the “just columns” approach. However, it does get used a lot in practice, so I think it’s important that this book explain what’s
going on.

And now let us never speak of this again.

This page titled 17.5: Extracting a Subset of a Data Frame is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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17.6: Sorting, Flipping and Merging Data
In this section I discuss a few useful operations that I feel are loosely related to one another: sorting a vector, sorting a data frame,
binding two or more vectors together into a data frame (or matrix), and flipping a data frame (or matrix) on its side. They’re all
fairly straightforward tasks, at least in comparison to some of the more obnoxious data handling problems that turn up in real life.

17.6.1 Sorting a numeric or character vector
One thing that you often want to do is sort a variable. If it’s a numeric variable you might want to sort in increasing or decreasing
order. If it’s a character vector you might want to sort alphabetically, etc. The sort()  function provides this capability.

numbers <- c(2,4,3) 
sort( x = numbers )

## [1] 2 3 4

You can ask for R to sort in decreasing order rather than increasing:

sort( x = numbers, decreasing = TRUE )

## [1] 4 3 2

And you can ask it to sort text data in alphabetical order:

text <- c("aardvark", "zebra", "swing") 
sort( text )

## [1] "aardvark" "swing"    "zebra"

That’s pretty straightforward. That being said, it’s important to note that I’m glossing over something here. When you apply 
sort()  to a character vector it doesn’t strictly sort into alphabetical order. R actually has a slightly different notion of how

characters are ordered (see Section 7.8.5 and Table 7.3), which is more closely related to how computers store text data than to how
letters are ordered in the alphabet. However, that’s a topic we’ll discuss later. For now, the only thing I should note is that the 
sort()  function doesn’t alter the original variable. Rather, it creates a new, sorted variable as the output. So if I inspect my

original text  variable:

text

## [1] "aardvark" "zebra"    "swing"

I can see that it has remained unchanged.

17.6.2 Sorting a factor
You can also sort factors, but the story here is slightly more subtle because there’s two different ways you can sort a factor:
alphabetically (by label) or by factor level. The sort()  function uses the latter. To illustrate, let’s look at the two different
examples. First, let’s create a factor in the usual way:

fac <- factor( text ) 
fac
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## [1] aardvark zebra    swing    
## Levels: aardvark swing zebra

Now let’s sort it:

sort(fac)

## [1] aardvark swing    zebra    
## Levels: aardvark swing zebra

This looks like it’s sorted things into alphabetical order, but that’s only because the factor levels themselves happen to be
alphabetically ordered. Suppose I deliberately define the factor levels in a non-alphabetical order:

fac <- factor( text, levels = c("zebra","swing","aardvark") ) 
fac

## [1] aardvark zebra    swing    
## Levels: zebra swing aardvark

Now what happens when we try to sort fac  this time? The answer:

sort(fac)

## [1] zebra    swing    aardvark 
## Levels: zebra swing aardvark

It sorts the data into the numerical order implied by the factor levels, not the alphabetical order implied by the labels attached to
those levels. Normally you never notice the distinction, because by default the factor levels are assigned in alphabetical order, but
it’s important to know the difference:

17.6.3 Sorting a data frame

The sort()  function doesn’t work properly with data frames. If you want to sort a data frame the standard advice that you’ll
find online is to use the order()  function (not described in this book) to determine what order the rows should be sorted, and
then use square brackets to do the shuffling. There’s nothing inherently wrong with this advice, I just find it tedious. To that end,
the lsr  package includes a function called sortFrame()  that you can use to do the sorting. The first argument to the
function is named ( x ), and should correspond to the data frame that you want sorted. After that, all you do is type a list of the
names of the variables that you want to use to do the sorting. For instance, if I type this:

sortFrame( garden, speaker, line)

##            speaker utterance line 
## case.4 makka-pakka       pip    7 
## case.5 makka-pakka       onk    9 
## case.3   tombliboo        ee    5 
## case.1  upsy-daisy       pip    1 
## case.2  upsy-daisy       pip    2

what R does is first sort by speaker  (factor level order). Any ties (i.e., data from the same speaker) are then sorted in order of 
line  (increasing numerical order). You can use the minus sign to indicate that numerical variables should be sorted in reverse
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order:

sortFrame( garden, speaker, -line)

##            speaker utterance line 
## case.5 makka-pakka       onk    9 
## case.4 makka-pakka       pip    7 
## case.3   tombliboo        ee    5 
## case.2  upsy-daisy       pip    2 
## case.1  upsy-daisy       pip    1

As of the current writing, the sortFrame()  function is under development. I’ve started introducing functionality to allow you
to use the -  sign to non-numeric variables or to make a distinction between sorting factors alphabetically or by factor level. The
idea is that you should be able to type in something like this:

sortFrame( garden, -speaker)

and have the output correspond to a sort of the garden  data frame in reverse alphabetical order (or reverse factor level order) of
speaker . As things stand right now, this will actually work, and it will produce sensible output:

sortFrame( garden, -speaker)

##            speaker utterance line 
## case.1  upsy-daisy       pip    1 
## case.2  upsy-daisy       pip    2 
## case.3   tombliboo        ee    5 
## case.4 makka-pakka       pip    7 
## case.5 makka-pakka       onk    9

However, I’m not completely convinced that I’ve set this up in the ideal fashion, so this may change a little bit in the future.

17.6.4 Binding vectors together

A not-uncommon task that you might find yourself needing to undertake is to combine several vectors. For instance, let’s suppose
we have the following two numeric vectors:

cake.1 <- c(100, 80, 0, 0, 0) 
cake.2 <- c(100, 100, 90, 30, 10)

The numbers here might represent the amount of each of the two cakes that are left at five different time points. Apparently the first
cake is tastier, since that one gets devoured faster. We’ve already seen one method for combining these vectors: we could use the 
data.frame()  function to convert them into a data frame with two variables, like so:

cake.df <- data.frame( cake.1, cake.2 ) 
cake.df  
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##   cake.1 cake.2 
## 1    100    100 
## 2     80    100 
## 3      0     90 
## 4      0     30 
## 5      0     10

Two other methods that I want to briefly refer to are the rbind()  and cbind()  functions, which will convert the vectors
into a matrix. I’ll discuss matrices properly in Section 7.11.1 but the details don’t matter too much for our current purposes. The 
cbind()  function (“column bind”) produces a very similar looking output to the data frame example:

cake.mat1 <- cbind( cake.1, cake.2 ) 
cake.mat1

##      cake.1 cake.2 
## [1,]    100    100 
## [2,]     80    100 
## [3,]      0     90 
## [4,]      0     30 
## [5,]      0     10

but nevertheless it’s important to keep in mind that cake.mat1  is a matrix rather than a data frame, and so has a few
differences from the cake.df  variable. The rbind()  function (“row bind”) produces a somewhat different output: it binds
the vectors together row-wise rather than column-wise, so the output now looks like this:

cake.mat2 <- rbind( cake.1, cake.2 ) 
cake.mat2  

##        [,1] [,2] [,3] [,4] [,5] 
## cake.1  100   80    0    0    0 
## cake.2  100  100   90   30   10

You can add names to a matrix by using the rownames()  and colnames()  functions, and I should also point out that
there’s a fancier function in R called merge()  that supports more complicated “database like” merging of vectors and data
frames, but I won’t go into details here.

17.6.5 Binding multiple copies of the same vector together
It is sometimes very useful to bind together multiple copies of the same vector. You could do this using the rbind  and 
cbind  functions, using comands like this one

fibonacci <- c( 1,1,2,3,5,8 ) 
rbind( fibonacci, fibonacci, fibonacci )

##           [,1] [,2] [,3] [,4] [,5] [,6] 
## fibonacci    1    1    2    3    5    8 
## fibonacci    1    1    2    3    5    8 
## fibonacci    1    1    2    3    5    8

but that can be pretty annoying, especially if you needs lots of copies. To make this a little easier, the lsr  package has two
additional functions rowCopy  and colCopy  that do the same job, but all you have to do is specify the number of copies that
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you want, instead of typing the name in over and over again. The two arguments you need to specify are x , the vector to be
copied, and times , indicating how many copies should be created:

rowCopy( x = fibonacci, times = 3 )

##      [,1] [,2] [,3] [,4] [,5] [,6] 
## [1,]    1    1    2    3    5    8 
## [2,]    1    1    2    3    5    8 
## [3,]    1    1    2    3    5    8

Of course, in practice you don’t need to name the arguments all the time. For instance, here’s an example using the colCopy()
function with the argument names omitted:

colCopy( fibonacci, 3 )

##      [,1] [,2] [,3] 
## [1,]    1    1    1 
## [2,]    1    1    1 
## [3,]    2    2    2 
## [4,]    3    3    3 
## [5,]    5    5    5 
## [6,]    8    8    8

17.6.6 Transposing a matrix or data frame

load("./rbook-master/data/cakes.Rdata" ) 
cakes

##        time.1 time.2 time.3 time.4 time.5 
## cake.1    100     80      0      0      0 
## cake.2    100    100     90     30     10 
## cake.3    100     20     20     20     20 
## cake.4    100    100    100    100    100

And just to make sure you believe me that this is actually a matrix:

class( cakes )

## [1] "matrix"

Okay, now let’s transpose the matrix:

cakes.flipped <- t( cakes ) 
cakes.flipped
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##        cake.1 cake.2 cake.3 cake.4 
## time.1    100    100    100    100 
## time.2     80    100     20    100 
## time.3      0     90     20    100 
## time.4      0     30     20    100 
## time.5      0     10     20    100

The output here is still a matrix:

class( cakes.flipped )  

## [1] "matrix"

At this point you should have two questions: (1) how do we do the same thing for data frames? and (2) why should we care about
this? Let’s start with the how question. First, I should note that you can transpose a data frame just fine using the t()  function,
but that has the slightly awkward consequence of converting the output from a data frame to a matrix, which isn’t usually what you
want. It’s quite easy to convert the output back again, of course,  but I hate typing two commands when I can do it with one. To
that end, the lsr  package has a simple “convenience” function called tFrame()  which does exactly the same thing as 
t()  but converts the output to a data frame for you. To illustrate this, let’s transpose the itng  data frame that we used earlier.

Here’s the original data frame:

itng

##        speaker utterance 
## 1   upsy-daisy       pip 
## 2   upsy-daisy       pip 
## 3   upsy-daisy       onk 
## 4   upsy-daisy       onk 
## 5    tombliboo        ee 
## 6    tombliboo        oo 
## 7  makka-pakka       pip 
## 8  makka-pakka       pip 
## 9  makka-pakka       onk 
## 10 makka-pakka       onk

and here’s what happens when you transpose it using tFrame() :

tFrame( itng )

##                   V1         V2         V3         V4        V5        V6 
## speaker   upsy-daisy upsy-daisy upsy-daisy upsy-daisy tombliboo tombliboo 
## utterance        pip        pip        onk        onk        ee        oo 
##                    V7          V8          V9         V10 
## speaker   makka-pakka makka-pakka makka-pakka makka-pakka 
## utterance         pip         pip         onk         onk

An important point to recognise is that transposing a data frame is not always a sensible thing to do: in fact, I’d go so far as to argue
that it’s usually not sensible. It depends a lot on whether the “cases” from your original data frame would make sense as variables,
and to think of each of your original “variables” as cases. I think that’s emphatically not true for our itng  data frame, so I
wouldn’t advise doing it in this situation.

118

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36221?pdf


17.6.7 https://stats.libretexts.org/@go/page/36221

That being said, sometimes it really is true. For instance, had we originally stored our cakes  variable as a data frame instead of
a matrix, then it would absolutely be sensible to flip the data frame!  There are some situations where it is useful to flip your data
frame, so it’s nice to know that you can do it. Indeed, that’s the main reason why I have spent so much time talking about this topic.
A lot of statistical tools make the assumption that the rows of your data frame (or matrix) correspond to observations, and the
columns correspond to the variables. That’s not unreasonable, of course, since that is a pretty standard convention. However, think
about our cakes  example here. This is a situation where you might want do an analysis of the different cakes (i.e. cakes as
variables, time points as cases), but equally you might want to do an analysis where you think of the times as being the things of
interest (i.e., times as variables, cakes as cases). If so, then it’s useful to know how to flip a matrix or data frame around.

This page titled 17.6: Sorting, Flipping and Merging Data is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

7.6: Sorting, Flipping and Merging Data by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.
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17.7: Reshaping a Data Frame
One of the most annoying tasks that you need to undertake on a regular basis is that of reshaping a data frame. Framed in the most
general way, reshaping the data means taking the data in whatever format it’s given to you, and converting it to the format you need
it. Of course, if we’re going to characterise the problem that broadly, then about half of this chapter can probably be thought of as a
kind of reshaping. So we’re going to have to narrow things down a little bit. To that end, I’ll talk about a few different tools that
you can use for a few different tasks. In particular, I’ll discuss a couple of easy to use (but limited) functions that I’ve included in
the lsr  package. In future versions of the book I plan to expand this discussion to include some of the more powerful tools that
are available in R, but I haven’t had the time to do so yet.

17.7.1 Long form and wide form data
The most common format in which you might obtain data is as a “case by variable” layout, commonly known as the wide form of
the data.

load("./rbook-master/data/repeated.Rdata") 
who()
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##    -- Name --         -- Class --   -- Size -- 
##    age                numeric       11         
##    age.breaks         numeric       4          
##    age.group          factor        11         
##    age.group2         factor        11         
##    age.group3         factor        11         
##    age.labels         character     3          
##    cake.1             numeric       5          
##    cake.2             numeric       5          
##    cake.df            data.frame    5 x 2      
##    cake.mat1          matrix        5 x 2      
##    cake.mat2          matrix        2 x 5      
##    cakes              matrix        4 x 5      
##    cakes.flipped      matrix        5 x 4      
##    choice             data.frame    4 x 10     
##    df                 data.frame    4 x 1      
##    drugs              data.frame    10 x 8     
##    fac                factor        3          
##    fibonacci          numeric       6          
##    garden             data.frame    5 x 3      
##    is.MP.speaking     logical       5          
##    itng               data.frame    10 x 2     
##    itng.table         table         3 x 4      
##    likert.centred     numeric       10         
##    likert.raw         numeric       10         
##    makka.pakka        character     4          
##    numbers            numeric       3          
##    opinion.dir        numeric       10         
##    opinion.strength   numeric       10         
##    some.data          numeric       18         
##    speaker            character     10         
##    speech.by.char     list          3          
##    text               character     3          
##    tombliboo          character     2          
##    upsy.daisy         character     4          
##    utterance          character     10

To get a sense of what I’m talking about, consider an experiment in which we are interested in the different effects that alcohol and
and caffeine have on people’s working memory capacity (WMC) and reaction times (RT). We recruit 10 participants, and measure
their WMC and RT under three different conditions: a “no drug” condition, in which they are not under the influence of either
caffeine or alcohol, a “caffeine” condition, in which they are under the inflence of caffeine, and an “alcohol” condition, in which…
well, you can probably guess. Ideally, I suppose, there would be a fourth condition in which both drugs are administered, but for
the sake of simplicity let’s ignore that. The drugs  data frame gives you a sense of what kind of data you might observe in an
experiment like this:

drugs
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##    id gender WMC_alcohol WMC_caffeine WMC_no.drug RT_alcohol RT_caffeine 
## 1   1 female         3.7          3.7         3.9        488         236 
## 2   2 female         6.4          7.3         7.9        607         376 
## 3   3 female         4.6          7.4         7.3        643         226 
## 4   4   male         6.4          7.8         8.2        684         206 
## 5   5 female         4.9          5.2         7.0        593         262 
## 6   6   male         5.4          6.6         7.2        492         230 
## 7   7   male         7.9          7.9         8.9        690         259 
## 8   8   male         4.1          5.9         4.5        486         230 
## 9   9 female         5.2          6.2         7.2        686         273 
## 10 10 female         6.2          7.4         7.8        645         240 
##    RT_no.drug 
## 1         371 
## 2         349 
## 3         412 
## 4         252 
## 5         439 
## 6         464 
## 7         327 
## 8         305 
## 9         327 
## 10        498

This is a data set in “wide form”, in which each participant corresponds to a single row. We have two variables that are
characteristics of the subject (i.e., their id  number and their gender ) and six variables that refer to one of the two measured
variables (WMC or RT) in one of the three testing conditions (alcohol, caffeine or no drug). Because all of the testing conditions
(i.e., the three drug types) are applied to all participants, drug type is an example of a within-subject factor.

17.7.2 Reshaping data using wideToLong()

The “wide form” of this data set is useful for some situations: it is often very useful to have each row correspond to a single
subject. However, it is not the only way in which you might want to organise this data. For instance, you might want to have a
separate row for each “testing occasion”. That is, “participant 1 under the influence of alcohol” would be one row, and “participant
1 under the influence of caffeine” would be another row. This way of organising the data is generally referred to as the long form
of the data. It’s not too difficult to switch between wide and long form, and I’ll explain how it works in a moment; for now, let’s
just have a look at what the long form of this data set looks like:

drugs.2 <- wideToLong( data = drugs, within = "drug" ) 
head(drugs.2)

##   id gender    drug WMC  RT 
## 1  1 female alcohol 3.7 488 
## 2  2 female alcohol 6.4 607 
## 3  3 female alcohol 4.6 643 
## 4  4   male alcohol 6.4 684 
## 5  5 female alcohol 4.9 593 
## 6  6   male alcohol 5.4 492

The drugs.2  data frame that we just created has 30 rows: each of the 10 participants appears in three separate rows, one
corresponding to each of the three testing conditions. And instead of having a variable like WMC_caffeine  that indicates that
we were measuring “WMC” in the “caffeine” condition, this information is now recorded in two separate variables, one called 
drug  and another called WMC . Obviously, the long and wide forms of the data contain the same information, but they
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represent quite different ways of organising that information. Sometimes you find yourself needing to analyse data in wide form,
and sometimes you find that you need long form. So it’s really useful to know how to switch between the two.

In the example I gave above, I used a function called wideToLong()  to do the transformation. The wideToLong()
function is part of the lsr  package. The key to understanding this function is that it relies on the variable names to do all the
work. Notice that the variable names in the drugs  data frame follow a very clear scheme. Whenever you have a variable with a
name like WMC_caffeine  you know that the variable being measured is “WMC”, and that the specific condition in which it is
being measured is the “caffeine” condition. Similarly, you know that RT_no.drug  refers to the “RT” variable measured in the
“no drug” condition. The measured variable comes first (e.g., WMC ), followed by a separator character (in this case the separator
is an underscore, _ ), and then the name of the condition in which it is being measured (e.g., caffeine ). There are two
different prefixes (i.e, the strings before the separator, WMC , RT ) which means that there are two separate variables being
measured. There are three different suffixes (i.e., the strings after the separtator, caffeine , alcohol , no.drug )
meaning that there are three different levels of the within-subject factor. Finally, notice that the separator string (i.e., _ ) does not
appear anywhere in two of the variables ( id , gender ), indicating that these are between-subject variables, namely variables
that do not vary within participant (e.g., a person’s gender  is the same regardless of whether they’re under the influence of
alcohol, caffeine etc).

Because of the fact that the variable naming scheme here is so informative, it’s quite possible to reshape the data frame without any
additional input from the user. For example, in this particular case, you could just type the following:

wideToLong( drugs )

##    id gender   within WMC  RT 
## 1   1 female  alcohol 3.7 488 
## 2   2 female  alcohol 6.4 607 
## 3   3 female  alcohol 4.6 643 
## 4   4   male  alcohol 6.4 684 
## 5   5 female  alcohol 4.9 593 
## 6   6   male  alcohol 5.4 492 
## 7   7   male  alcohol 7.9 690 
## 8   8   male  alcohol 4.1 486 
## 9   9 female  alcohol 5.2 686 
## 10 10 female  alcohol 6.2 645 
## 11  1 female caffeine 3.7 236 
## 12  2 female caffeine 7.3 376 
## 13  3 female caffeine 7.4 226 
## 14  4   male caffeine 7.8 206 
## 15  5 female caffeine 5.2 262 
## 16  6   male caffeine 6.6 230 
## 17  7   male caffeine 7.9 259 
## 18  8   male caffeine 5.9 230 
## 19  9 female caffeine 6.2 273 
## 20 10 female caffeine 7.4 240 
## 21  1 female  no.drug 3.9 371 
## 22  2 female  no.drug 7.9 349 
## 23  3 female  no.drug 7.3 412 
## 24  4   male  no.drug 8.2 252 
## 25  5 female  no.drug 7.0 439 
## 26  6   male  no.drug 7.2 464 
## 27  7   male  no.drug 8.9 327 
## 28  8   male  no.drug 4.5 305 
## 29  9 female  no.drug 7.2 327 
## 30 10 female  no.drug 7.8 498
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This is pretty good, actually. The only think it has gotten wrong here is that it doesn’t know what name to assign to the within-
subject factor, so instaed of calling it something sensible like drug , it has use the unimaginative name within . If you want
to ensure that the wideToLong()  function applies a sensible name, you have to specify the within  argument, which is just
a character string that specifies the name of the within-subject factor. So when I used this command earlier,

drugs.2 <- wideToLong( data = drugs, within = "drug" )

all I was doing was telling R to use drug  as the name of the within subject factor.

Now, as I was hinting earlier, the wideToLong()  function is very inflexible. It requires that the variable names all follow this
naming scheme that I outlined earlier. If you don’t follow this naming scheme it won’t work.  The only flexibility that I’ve
included here is that you can change the separator character by specifying the sep  argument. For instance, if you were using
variable names of the form WMC/caffeine , for instance, you could specify that sep="/" , using a command like this

drugs.2 <- wideToLong( data = drugs, within = "drug", sep = "/" )

and it would still work.

17.7.3 Reshaping data using longToWide()

To convert data from long form to wide form, the lsr  package also includes a function called longToWide() . Recall from
earlier that the long form of the data (i.e., the drugs.2  data frame) contains variables named id , gender , drug , 
WMC  and RT . In order to convert from long form to wide form, all you need to do is indicate which of these variables are

measured separately for each condition (i.e., WMC  and RT ), and which variable is the within-subject factor that specifies the
condition (i.e., drug ). You do this via a two-sided formula, in which the measured variables are on the left hand side, and the
within-subject factor is on the ritght hand side. In this case, the formula would be WMC + RT ~ drug . So the command that
we would use might look like this:

longToWide( data=drugs.2, formula= WMC+RT ~ drug )

##    id gender WMC_alcohol RT_alcohol WMC_caffeine RT_caffeine WMC_no.drug 
## 1   1 female         3.7        488          3.7         236         3.9 
## 2   2 female         6.4        607          7.3         376         7.9 
## 3   3 female         4.6        643          7.4         226         7.3 
## 4   4   male         6.4        684          7.8         206         8.2 
## 5   5 female         4.9        593          5.2         262         7.0 
## 6   6   male         5.4        492          6.6         230         7.2 
## 7   7   male         7.9        690          7.9         259         8.9 
## 8   8   male         4.1        486          5.9         230         4.5 
## 9   9 female         5.2        686          6.2         273         7.2 
## 10 10 female         6.2        645          7.4         240         7.8 
##    RT_no.drug 
## 1         371 
## 2         349 
## 3         412 
## 4         252 
## 5         439 
## 6         464 
## 7         327 
## 8         305 
## 9         327 
## 10        498
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or, if we chose to omit argument names, we could simplify it to this:

longToWide( drugs.2, WMC+RT ~ drug )  

##    id gender WMC_alcohol RT_alcohol WMC_caffeine RT_caffeine WMC_no.drug 
## 1   1 female         3.7        488          3.7         236         3.9 
## 2   2 female         6.4        607          7.3         376         7.9 
## 3   3 female         4.6        643          7.4         226         7.3 
## 4   4   male         6.4        684          7.8         206         8.2 
## 5   5 female         4.9        593          5.2         262         7.0 
## 6   6   male         5.4        492          6.6         230         7.2 
## 7   7   male         7.9        690          7.9         259         8.9 
## 8   8   male         4.1        486          5.9         230         4.5 
## 9   9 female         5.2        686          6.2         273         7.2 
## 10 10 female         6.2        645          7.4         240         7.8 
##    RT_no.drug 
## 1         371 
## 2         349 
## 3         412 
## 4         252 
## 5         439 
## 6         464 
## 7         327 
## 8         305 
## 9         327 
## 10        498

Note that, just like the wideToLong()  function, the longToWide()  function allows you to override the default separator
character. For instance, if the command I used had been

longToWide( drugs.2, WMC+RT ~ drug, sep="/" )
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##    id gender WMC/alcohol RT/alcohol WMC/caffeine RT/caffeine WMC/no.drug 
## 1   1 female         3.7        488          3.7         236         3.9 
## 2   2 female         6.4        607          7.3         376         7.9 
## 3   3 female         4.6        643          7.4         226         7.3 
## 4   4   male         6.4        684          7.8         206         8.2 
## 5   5 female         4.9        593          5.2         262         7.0 
## 6   6   male         5.4        492          6.6         230         7.2 
## 7   7   male         7.9        690          7.9         259         8.9 
## 8   8   male         4.1        486          5.9         230         4.5 
## 9   9 female         5.2        686          6.2         273         7.2 
## 10 10 female         6.2        645          7.4         240         7.8 
##    RT/no.drug 
## 1         371 
## 2         349 
## 3         412 
## 4         252 
## 5         439 
## 6         464 
## 7         327 
## 8         305 
## 9         327 
## 10        498

the output would contain variables with names like RT/alcohol  instead of RT_alcohol .

17.7.4 Reshaping with multiple within-subject factors
As I mentioned above, the wideToLong()  and longToWide()  functions are quite limited in terms of what they can do.
However, they do handle a broader range of situations than the one outlined above. Consider the following, fairly simple
psychological experiment. I’m interested in the effects of practice on some simple decision making problem. It doesn’t really
matter what the problem is, other than to note that I’m interested in two distinct outcome variables. Firstly, I care about people’s
accuracy, measured by the proportion of decisions that people make correctly, denoted PC. Secondly, I care about people’s speed,
measured by the mean response time taken to make those decisions, denoted MRT. That’s standard in psychological experiments:
the speed-accuracy trade-off is pretty ubiquitous, so we generally need to care about both variables.

To look at the effects of practice over the long term, I test each participant on two days, day1  and day2 , where for the sake
of argument I’ll assume that day1  and day2  are about a week apart. To look at the effects of practice over the short term, the
testing during each day is broken into two “blocks”, block1  and block2 , which are about 20 minutes apart. This isn’t the
world’s most complicated experiment, but it’s still a fair bit more complicated than the last one. This time around we have two
within-subject factors (i.e., day  and block ) and we have two measured variables for each condition (i.e., PC  and MRT ).
The choice  data frame shows what the wide form of this kind of data might look like:

choice
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##   id gender MRT/block1/day1 MRT/block1/day2 MRT/block2/day1 
## 1  1   male             415             400             455 
## 2  2   male             500             490             532 
## 3  3 female             478             468             499 
## 4  4 female             550             502             602 
##   MRT/block2/day2 PC/block1/day1 PC/block1/day2 PC/block2/day1 
## 1             450             79             88             82 
## 2             518             83             92             86 
## 3             474             91             98             90 
## 4             588             75             89             78 
##   PC/block2/day2 
## 1             93 
## 2             97 
## 3            100 
## 4             95

Notice that this time around we have variable names of the form MRT/block1/day2 . As before, the first part of the name
refers to the measured variable (response time), but there are now two suffixes, one indicating that the testing took place in block 1,
and the other indicating that it took place on day 2. And just to complicate matters, it uses /  as the separator character rather than
_ . Even so, reshaping this data set is pretty easy. The command to do it is,

choice.2 <- wideToLong( choice, within=c("block","day"), sep="/" )

which is pretty much the exact same command we used last time. The only difference here is that, because there are two within-
subject factors, the within  argument is a vector that contains two names. When we look at the long form data frame that this
creates, we get this:

choice.2

##    id gender MRT  PC  block  day 
## 1   1   male 415  79 block1 day1 
## 2   2   male 500  83 block1 day1 
## 3   3 female 478  91 block1 day1 
## 4   4 female 550  75 block1 day1 
## 5   1   male 400  88 block1 day2 
## 6   2   male 490  92 block1 day2 
## 7   3 female 468  98 block1 day2 
## 8   4 female 502  89 block1 day2 
## 9   1   male 455  82 block2 day1 
## 10  2   male 532  86 block2 day1 
## 11  3 female 499  90 block2 day1 
## 12  4 female 602  78 block2 day1 
## 13  1   male 450  93 block2 day2 
## 14  2   male 518  97 block2 day2 
## 15  3 female 474 100 block2 day2 
## 16  4 female 588  95 block2 day2

In this long form data frame we have two between-subject variables ( id  and gender ), two variables that define our within-
subject manipulations ( block  and day ), and two more contain the measurements we took ( MRT  and PC ).

To convert this back to wide form is equally straightforward. We use the longToWide()  function, but this time around we
need to alter the formula in order to tell it that we have two within-subject factors. The command is now
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longToWide( choice.2, MRT+PC ~ block+day, sep="/" ) 

##   id gender MRT/block1/day1 PC/block1/day1 MRT/block1/day2 PC/block1/day2 
## 1  1   male             415             79             400             88 
## 2  2   male             500             83             490             92 
## 3  3 female             478             91             468             98 
## 4  4 female             550             75             502             89 
##   MRT/block2/day1 PC/block2/day1 MRT/block2/day2 PC/block2/day2 
## 1             455             82             450             93 
## 2             532             86             518             97 
## 3             499             90             474            100 
## 4             602             78             588             95

and this produces a wide form data set containing the same variables as the original choice  data frame.

17.7.5 What other options are there?
The advantage to the approach described in the previous section is that it solves a quite specific problem (but a commonly
encountered one) with a minimum of fuss. The disadvantage is that the tools are quite limited in scope. They allow you to switch
your data back and forth between two different formats that are very common in everyday data analysis. However, there a number
of other tools that you can use if need be. Just within the core packages distributed with R there is the reshape()  function, as
well as the stack()  and unstack()  functions, all of which can be useful under certain circumstances. And there are of
course thousands of packages on CRAN that you can use to help you with different tasks. One popular package for this purpose is
the reshape  package, written by Hadley Wickham (??? for details see Wickham2007). There are two key functions in this
package, called melt()  and cast()  that are pretty useful for solving a lot of reshaping problems. In a future version of this
book I intend to discuss melt()  and cast()  in a fair amount of detail.

This page titled 17.7: Reshaping a Data Frame is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

7.7: Reshaping a Data Frame by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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17.8: Working with Text
Sometimes your data set is quite text heavy. This can be for a lot of different reasons. Maybe the raw data are actually taken from
text sources (e.g., newspaper articles), or maybe your data set contains a lot of free responses to survey questions, in which people
can write whatever text they like in response to some query. Or maybe you just need to rejig some of the text used to describe
nominal scale variables. Regardless of what the reason is, you’ll probably want to know a little bit about how to handle text in R.
Some things you already know how to do: I’ve discussed the use of nchar()  to calculate the number of characters in a string
(Section 3.8.1), and a lot of the general purpose tools that I’ve discussed elsewhere (e.g., the ==  operator) have been applied to
text data as well as to numeric data. However, because text data is quite rich, and generally not as well structured as numeric data,
R provides a lot of additional tools that are quite specific to text. In this section I discuss only those tools that come as part of the
base packages, but there are other possibilities out there: the stringr  package provides a powerful alternative that is a lot more
coherent than the basic tools, and is well worth looking into.

17.8.1 Shortening a string
The first task I want to talk about is how to shorten a character string. For example, suppose that I have a vector that contains the
names of several different animals:

animals <- c( "cat", "dog", "kangaroo", "whale" )

It might be useful in some contexts to extract the first three letters of each word. This is often useful when annotating figures, or
when creating variable labels: it’s often very inconvenient to use the full name, so you want to shorten it to a short code for space
reasons. The strtrim()  function can be used for this purpose. It has two arguments: x  is a vector containing the text to be
shortened and width  specifies the number of characters to keep. When applied to the animals  data, here’s what we get:

strtrim( x = animals, width = 3 )  

## [1] "cat" "dog" "kan" "wha"

Note that the only thing that strtrim()  does is chop off excess characters at the end of a string. It doesn’t insert any
whitespace characters to fill them out if the original string is shorter than the width  argument. For example, if I trim the 
animals  data to 4 characters, here’s what I get:

strtrim( x = animals, width = 4 )

## [1] "cat"  "dog"  "kang" "whal"

The "cat"  and "dog"  strings still only use 3 characters. Okay, but what if you don’t want to start from the first letter?
Suppose, for instance, I only wanted to keep the second and third letter of each word. That doesn’t happen quite as often, but there
are some situations where you need to do something like that. If that does happen, then the function you need is substr() , in
which you specify a start  point and a stop  point instead of specifying the width. For instance, to keep only the 2nd and
3rd letters of the various animals , I can do the following:

substr( x = animals, start = 2, stop = 3 )

## [1] "at" "og" "an" "ha"

17.8.2 Pasting strings together
Much more commonly, you will need either to glue several character strings together or to pull them apart. To glue several strings
together, the paste()  function is very useful. There are three arguments to the paste()  function:
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...  As usual, the dots “match” up against any number of inputs. In this case, the inputs should be the various different
strings you want to paste together.
sep . This argument should be a string, indicating what characters R should use as separators, in order to keep each of the

original strings separate from each other in the pasted output. By default the value is a single space, sep = " " . This is
made a little clearer when we look at the examples.
collapse . This is an argument indicating whether the paste()  function should interpret vector inputs as things to be

collapsed, or whether a vector of inputs should be converted into a vector of outputs. The default value is 
collapse = NULL  which is interpreted as meaning that vectors should not be collapsed. If you want to collapse vectors

into as single string, then you should specify a value for collapse . Specifically, the value of collapse  should
correspond to the separator character that you want to use for the collapsed inputs. Again, see the examples below for more
details.

That probably doesn’t make much sense yet, so let’s start with a simple example. First, let’s try to paste two words together, like
this:

paste( "hello", "world" )

## [1] "hello world"

Notice that R has inserted a space between the "hello"  and "world" . Suppose that’s not what I wanted. Instead, I might
want to use .  as the separator character, or to use no separator at all. To do either of those, I would need to specify 
sep = "."  or sep = "" .  For instance:

paste( "hello", "world", sep = "." )

## [1] "hello.world"

Now let’s consider a slightly more complicated example. Suppose I have two vectors that I want to paste()  together. Let’s say
something like this:

hw <- c( "hello", "world" ) 
ng <- c( "nasty", "government" )

And suppose I want to paste these together. However, if you think about it, this statement is kind of ambiguous. It could mean that I
want to do an “element wise” paste, in which all of the first elements get pasted together ( "hello nasty" ) and all the second
elements get pasted together ( "world government" ). Or, alternatively, I might intend to collapse everything into one big
string ( "hello nasty world government" ). By default, the paste()  function assumes that you want to do an
element-wise paste:

paste( hw, ng )

## [1] "hello nasty"      "world government"

However, there’s nothing stopping you from overriding this default. All you have to do is specify a value for the collapse
argument, and R will chuck everything into one dirty big string. To give you a sense of exactly how this works, what I’ll do in this
next example is specify different values for sep  and collapse :

paste( hw, ng, sep = ".", collapse = ":::")  

## [1] "hello.nasty:::world.government"
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17.8.3 Splitting strings
At other times you have the opposite problem to the one in the last section: you have a whole lot of text bundled together into a
single string that needs to be pulled apart and stored as several different variables. For instance, the data set that you get sent might
include a single variable containing someone’s full name, and you need to separate it into first names and last names. To do this in
R you can use the strsplit()  function, and for the sake of argument, let’s assume that the string you want to split up is the
following string:

monkey <- "It was the best of times. It was the blurst of times."

To use the strsplit()  function to break this apart, there are three arguments that you need to pay particular attention to:

x . A vector of character strings containing the data that you want to split.
split . Depending on the value of the fixed  argument, this is either a fixed string that specifies a delimiter, or a regular

expression that matches against one or more possible delimiters. If you don’t know what regular expressions are (probably most
readers of this book), don’t use this option. Just specify a separator string, just like you would for the paste()  function.
fixed . Set fixed = TRUE  if you want to use a fixed delimiter. As noted above, unless you understand regular

expressions this is definitely what you want. However, the default value is fixed = FALSE , so you have to set it
explicitly.

Let’s look at a simple example:

monkey.1 <- strsplit( x = monkey, split = " ", fixed = TRUE ) 
monkey.1  

## [[1]] 
##  [1] "It"     "was"    "the"    "best"   "of"     "times." "It"     
##  [8] "was"    "the"    "blurst" "of"     "times."

One thing to note in passing is that the output here is a list (you can tell from the part of the output), whose first and only element is
a character vector. This is useful in a lot of ways, since it means that you can input a character vector for x  and then then have
the strsplit()  function split all of them, but it’s kind of annoying when you only have a single input. To that end, it’s useful
to know that you can unlist()  the output:

unlist( monkey.1 )

##  [1] "It"     "was"    "the"    "best"   "of"     "times." "It"     
##  [8] "was"    "the"    "blurst" "of"     "times."

To understand why it’s important to remember to use the fixed = TRUE  argument, suppose we wanted to split this into two
separate sentences. That is, we want to use split = "."  as our delimiter string. As long as we tell R to remember to treat this
as a fixed separator character, then we get the right answer:

strsplit( x = monkey, split = ".", fixed = TRUE )

## [[1]] 
## [1] "It was the best of times"    " It was the blurst of times"

However, if we don’t do this, then R will assume that when you typed split = "."  you were trying to construct a “regular
expression”, and as it happens the character .  has a special meaning within a regular expression. As a consequence, if you forget
to include the fixed = TRUE  part, you won’t get the answers you’re looking for.
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17.8.4 Making simple conversions
A slightly different task that comes up quite often is making transformations to text. A simple example of this would be converting
text to lower case or upper case, which you can do using the toupper()  and tolower()  functions. Both of these
functions have a single argument x  which contains the text that needs to be converted. An example of this is shown below:

text <- c( "lIfe", "Impact" ) 
tolower( x = text )

## [1] "life"   "impact"

A slightly more powerful way of doing text transformations is to use the chartr()  function, which allows you to specify a
“character by character” substitution. This function contains three arguments, old , new  and x . As usual x  specifies the
text that needs to be transformed. The old  and new  arguments are strings of the same length, and they specify how x  is to
be converted. Every instance of the first character in old  is converted to the first character in new  and so on. For instance,
suppose I wanted to convert "albino"  to "libido" . To do this, I need to convert all of the "a"  characters (all 1 of
them) in "albino"  into "l"  characters (i.e., a  → l ). Additionally, I need to make the substitutions l  → i  and 
n  → d . To do so, I would use the following command:

old.text <- "albino" 
chartr( old = "aln", new = "lid", x = old.text )  

## [1] "libido"

17.8.5 Applying logical operations to text
In Section 3.9.5 we discussed a very basic text processing tool, namely the ability to use the equality operator ==  to test to see if
two strings are identical to each other. However, you can also use other logical operators too. For instance R also allows you to use
the <  and >  operators to determine which of two strings comes first, alphabetically speaking. Sort of. Actually, it’s a bit more
complicated than that, but let’s start with a simple example:

"cat" < "dog"

## [1] TRUE

In this case, we see that "cat"  does does come before "dog"  alphabetically, so R judges the statement to be true. However,
if we ask R to tell us if "cat"  comes before "anteater" ,

"cat" < "anteater"

## [1] FALSE

It tell us that the statement is false. So far, so good. But text data is a bit more complicated than the dictionary suggests. What about
"cat"  and "CAT" ? Which of these comes first? Let’s try it and find out:

"CAT" < "cat"

## [1] FALSE
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In other words, R assumes that uppercase letters come before lowercase ones. Fair enough. No-one is likely to be surprised by that.
What you might find surprising is that R assumes that all uppercase letters come before all lowercase ones. That is, while 
"anteater" < "zebra"  is a true statement, and the uppercase equivalent "ANTEATER" < "ZEBRA"  is also true, it is

not true to say that "anteater" < "ZEBRA" , as the following extract illustrates:

"anteater" < "ZEBRA"

## [1] TRUE

This may seem slightly counterintuitive. With that in mind, it may help to have a quick look Table 7.3, which lists various text
characters in the order that R uses.

Table 7.3: The ordering of various text characters used by the < and > operators, as well as by the sort() function. Not shown is the
“space” character, which actually comes rst on the list.

Characters

! " # $ % & ’ ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ ] ^ _ ‘ a b c d e f
g h i j k l m n o p q r s t u v w x y z } | {

One function that I want to make a point of talking about, even though it’s not quite on topic, is the cat()  function. The 
cat()  function is a of mixture of paste()  and print() . That is, what it does is concatenate strings and then print them

out. In your own work you can probably survive without it, since print()  and paste()  will actually do what you need,
but the cat()  function is so widely used that I think it’s a good idea to talk about it here. The basic idea behind cat()  is
straightforward. Like paste() , it takes several arguments as inputs, which it converts to strings, collapses (using a separator
character specified using the sep  argument), and prints on screen. If you want, you can use the file  argument to tell R to
print the output into a file rather than on screen (I won’t do that here). However, it’s important to note that the cat()  function
collapses vectors first, and then concatenates them. That is, notice that when I use cat()  to combine hw  and ng , I get a
different result than if I’d used paste()

cat( hw, ng )

## hello world nasty government

paste( hw, ng, collapse = " " )  

## [1] "hello nasty world government"

Notice the difference in the ordering of words. There’s a few additional details that I need to mention about cat() . Firstly, 
cat()  really is a function for printing, and not for creating text strings to store for later. You can’t assign the output to a

variable, as the following example illustrates:

x <- cat( hw, ng )   

## hello world nasty government  

x

## NULL
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Despite my attempt to store the output as a variable, cat()  printed the results on screen anyway, and it turns out that the
variable I created doesn’t contain anything at all.  Secondly, the cat()  function makes use of a number of “special”
characters. I’ll talk more about these in the next section, but I’ll illustrate the basic point now, using the example of "\n"  which
is interpreted as a “new line” character. For instance, compare the behaviour of print()  and cat()  when asked to print the
string "hello\nworld" :

print( "hello\nworld" )  # print literally:

## [1] "hello\nworld"  

cat( "hello\nworld" )  # interpret as newline

## hello 
## world

In fact, this behaviour is important enough that it deserves a section of its very own…

17.8.6 Using escape characters in text

The previous section brings us quite naturally to a fairly fundamental issue when dealing with strings, namely the issue of
delimiters and escape characters. Reduced to its most basic form, the problem we have is that R commands are written using text
characters, and our strings also consist of text characters. So, suppose I want to type in the word “hello”, and have R encode it as a
string. If I were to just type hello , R will think that I’m referring to a variable or a function called hello  rather than
interpret it as a string. The solution that R adopts is to require you to enclose your string by delimiter characters, which can be
either double quotes or single quotes. So, when I type "hello"  or 'hello'  then R knows that it should treat the text in
between the quote marks as a character string. However, this isn’t a complete solution to the problem: after all, "  and '  are
themselves perfectly legitimate text characters, and so we might want to include those in our string as well. For instance, suppose I
wanted to encode the name “O’Rourke” as a string. It’s not legitimate for me to type 'O'rourke'  because R is too stupid to
realise that “O’Rourke” is a real word. So it will interpret the 'O'  part as a complete string, and then will get confused when it
reaches the Rourke'  part. As a consequence, what you get is an error message:

'O'Rourke' 
Error: unexpected symbol in "'O'Rourke"

To some extent, R offers us a cheap fix to the problem because of the fact that it allows us to use either "  or '  as the delimiter
character. Although 'O'rourke'  will make R cry, it is perfectly happy with "O'Rourke" :

"O'Rourke"

## [1] "O'Rourke"

This is a real advantage to having two different delimiter characters. Unfortunately, anyone with even the slightest bit of
deviousness to them can see the problem with this. Suppose I’m reading a book that contains the following passage,

P.J. O’Rourke says, “Yay, money!”. It’s a joke, but no-one laughs.

and I want to enter this as a string. Neither the '  or "  delimiters will solve the problem here, since this string contains both a
single quote character and a double quote character. To encode strings like this one, we have to do something a little bit clever.

Table 7.4: Standard escape characters that are evaluated by some text processing commands, including cat() . This convention
dates back to the development of the C programming language in the 1970s, and as a consequence a lot of these characters make
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most sense if you pretend that R is actually a typewriter, as explained in the main text. Type ?Quotes  for the corresponding R
help file.

Escape.sequence Interpretation

\n Newline

\t Horizontal Tab

\v Vertical Tab

\b Backspace

\r Carriage Return

\f Form feed

\a Alert sound

\\ Backslash

\' Single quote

\" Double quote

The solution to the problem is to designate an escape character, which in this case is \ , the humble backslash. The escape
character is a bit of a sacrificial lamb: if you include a backslash character in your string, R will not treat it as a literal character at
all. It’s actually used as a way of inserting “special” characters into your string. For instance, if you want to force R to insert actual
quote marks into the string, then what you actually type is \'  or \"  (these are called escape sequences). So, in order to
encode the string discussed earlier, here’s a command I could use:

PJ <- "P.J. O\'Rourke says, \"Yay, money!\". It\'s a joke, but no-one laughs."

Notice that I’ve included the backslashes for both the single quotes and double quotes. That’s actually overkill: since I’ve used "
as my delimiter, I only needed to do this for the double quotes. Nevertheless, the command has worked, since I didn’t get an error
message. Now let’s see what happens when I print it out:

print( PJ )  

## [1] "P.J. O'Rourke says, \"Yay, money!\". It's a joke, but no-one laughs."

Hm. Why has R printed out the string using \" ? For the exact same reason that I needed to insert the backslash in the first place.
That is, when R prints out the PJ  string, it has enclosed it with delimiter characters, and it wants to unambiguously show us
which of the double quotes are delimiters and which ones are actually part of the string. Fortunately, if this bugs you, you can make
it go away by using the print.noquote()  function, which will just print out the literal string that you encoded in the first
place:

print.noquote( PJ )

Typing cat(PJ)  will produce a similar output.

Introducing the escape character solves a lot of problems, since it provides a mechanism by which we can insert all sorts of
characters that aren’t on the keyboard. For instance, as far as a computer is concerned, “new line” is actually a text character. It’s
the character that is printed whenever you hit the “return” key on your keyboard. If you want to insert a new line character into
your string, you can actually do this by including the escape sequence \n . Or, if you want to insert a backslash character, then
you can use \\ . A list of the standard escape sequences recognised by R is shown in Table 7.4. A lot of these actually date back
to the days of the typewriter (e.g., carriage return), so they might seem a bit counterintuitive to people who’ve never used one. In
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order to get a sense for what the various escape sequences do, we’ll have to use the cat()  function, because it’s the only
function “dumb” enough to literally print them out:

cat( "xxxx\boo" )  # \b is a backspace, so it deletes the preceding x 
cat( "xxxx\too" )  # \t is a tab, so it inserts a tab space 
cat( "xxxx\noo" )  # \n is a newline character 
cat( "xxxx\roo" )  # \r returns you to the beginning of the line

And that’s pretty much it. There are a few other escape sequence that R recognises, which you can use to insert arbitrary ASCII or
Unicode characters into your string (type ?Quotes  for more details) but I won’t go into details here.

17.8.7 Matching and substituting text
Another task that we often want to solve is find all strings that match a certain criterion, and possibly even to make alterations to
the text on that basis. There are several functions in R that allow you to do this, three of which I’ll talk about briefly here: 
grep() , gsub()  and sub() . Much like the substr()  function that I talked about earlier, all three of these functions

are intended to be used in conjunction with regular expressions (see Section 7.8.9 but you can also use them in a simpler fashion,
since they all allow you to set fixed = TRUE , which means we can ignore all this regular expression rubbish and just use
simple text matching.

So, how do these functions work? Let’s start with the grep()  function. The purpose of this function is to input a vector of
character strings x , and to extract all those strings that fit a certain pattern. In our examples, I’ll assume that the pattern  in
question is a literal sequence of characters that the string must contain (that’s what fixed = TRUE  does). To illustrate this,
let’s start with a simple data set, a vector that contains the names of three beers . Something like this:

beers <- c( "little creatures", "sierra nevada", "coopers pale" )

Next, let’s use grep()  to find out which of these strings contains the substring "er" . That is, the pattern  that we need
to match is the fixed string "er" , so the command we need to use is:

grep( pattern = "er", x = beers, fixed = TRUE )

## [1] 2 3

What the output here is telling us is that the second and third elements of beers  both contain the substring "er" .
Alternatively, however, we might prefer it if grep()  returned the actual strings themselves. We can do this by specifying 
value = TRUE  in our function call. That is, we’d use a command like this:

grep( pattern = "er", x = beers, fixed = TRUE, value = TRUE )  

## [1] "sierra nevada" "coopers pale"

The other two functions that I wanted to mention in this section are gsub()  and sub() . These are both similar in spirit to 
grep()  insofar as what they do is search through the input strings ( x ) and find all of the strings that match a pattern .

However, what these two functions do is replace the pattern with a replacement  string. The gsub()  function will replace
all instances of the pattern, whereas the sub()  function just replaces the first instance of it in each string. To illustrate how this
works, suppose I want to replace all instances of the letter "a"  with the string "BLAH" . I can do this to the beers  data
using the gsub()  function:

gsub( pattern = "a", replacement = "BLAH", x = beers, fixed = TRUE )

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36223?pdf


17.8.9 https://stats.libretexts.org/@go/page/36223

## [1] "little creBLAHtures"    "sierrBLAH nevBLAHdBLAH"
## [3] "coopers pBLAHle"

Notice that all three of the "a" s in "sierra nevada"  have been replaced. In contrast, let’s see what happens when we use
the exact same command, but this time using the sub()  function instead:

sub( pattern = "a", replacement = "BLAH", x = beers, fixed = TRUE )

## [1] "little creBLAHtures" "sierrBLAH nevada"    "coopers pBLAHle"

Only the first "a"  is changed.

17.8.8 Regular expressions (not really)

There’s one last thing I want to talk about regarding text manipulation, and that’s the concept of a regular expression. Throughout
this section we’ve often needed to specify fixed = TRUE  in order to force R to treat some of our strings as actual strings,
rather than as regular expressions. So, before moving on, I want to very briefly explain what regular expressions are. I’m not going
to talk at all about how they work or how you specify them, because they’re genuinely complicated and not at all relevant to this
book. However, they are extremely powerful tools and they’re quite widely used by people who have to work with lots of text data
(e.g., people who work with natural language data), and so it’s handy to at least have a vague idea about what they are. The basic
idea is quite simple. Suppose I want to extract all strings in my beers  vector that contain a vowel followed immediately by the
letter "s" . That is, I want to finds the beer names that contain either "as" , "es" , "is" , "os"  or "us" . One
possibility would be to manually specify all of these possibilities and then match against these as fixed strings one at a time, but
that’s tedious. The alternative is to try to write out a single “regular” expression that matches all of these. The regular expression
that does this  is "[aeiou]s" , and you can kind of see what the syntax is doing here. The bracketed expression means “any
of the things in the middle”, so the expression as a whole means “any of the things in the middle” (i.e. vowels) followed by the
letter "s" . When applied to our beer names we get this:

grep( pattern = "[aeiou]s", x = beers, value = TRUE )

## [1] "little creatures"

So it turns out that only "little creatures"  contains a vowel followed by the letter "s" . But of course, had the data
contained a beer like "fosters" , that would have matched as well because it contains the string "os" . However, I
deliberately chose not to include it because Fosters is not – in my opinion – a proper beer.  As you can tell from this example,
regular expressions are a neat tool for specifying patterns in text: in this case, “vowel then s”. So they are definitely things worth
knowing about if you ever find yourself needing to work with a large body of text. However, since they are fairly complex and not
necessary for any of the applications discussed in this book, I won’t talk about them any further.

This page titled 17.8: Working with Text is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro
via source content that was edited to the style and standards of the LibreTexts platform.

7.8: Working with Text by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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17.9: Reading Unusual Data Files
In this section I’m going to switch topics (again!) and turn to the question of how you can load data from a range of different
sources. Throughout this book I’ve assumed that your data are stored as an .Rdata  file or as a “properly” formatted CSV file.
And if so, then the basic tools that I discussed in Section 4.5 should be quite sufficient. However, in real life that’s not a terribly
plausible assumption to make, so I’d better talk about some of the other possibilities that you might run into.

17.9.1 Loading data from text files
The first thing I should point out is that if your data are saved as a text file but aren’t quite in the proper CSV format, then there’s
still a pretty good chance that the read.csv()  function (or equivalently, read.table() ) will be able to open it. You just
need to specify a few more of the optional arguments to the function. If you type ?read.csv  you’ll see that the 
read.csv()  function actually has several arguments that you can specify. Obviously you need to specify the file  that you

want it to load, but the others all have sensible default values. Nevertheless, you will sometimes need to change them. The ones that
I’ve often found myself needing to change are:

header . A lot of the time when you’re storing data as a CSV file, the first row actually contains the column names and not
data. If that’s not true, you need to set header = FALSE .
sep . As the name “comma separated value” indicates, the values in a row of a CSV file are usually separated by commas.

This isn’t universal, however. In Europe the decimal point is typically written as ,  instead of .  and as a consequence it
would be somewhat awkward to use ,  as the separator. Therefore it is not unusual to use ;  over there. At other times, I’ve
seen a TAB character used. To handle these cases, we’d need to set sep = ";"  or sep = "\t" .
quote . It’s conventional in CSV files to include a quoting character for textual data. As you can see by looking at the 
booksales.csv}  file, this is usually a double quote character, " . But sometimes there is no quoting character at all, or

you might see a single quote mark '  used instead. In those cases you’d need to specify quote = ""  or 
quote = "'" .
skip . It’s actually very common to receive CSV files in which the first few rows have nothing to do with the actual data.

Instead, they provide a human readable summary of where the data came from, or maybe they include some technical info that
doesn’t relate to the data. To tell R to ignore the first (say) three lines, you’d need to set skip = 3
na.strings . Often you’ll get given data with missing values. For one reason or another, some entries in the table are

missing. The data file needs to include a “special” string to indicate that the entry is missing. By default R assumes that this
string is NA , since that’s what it would do, but there’s no universal agreement on what to use in this situation. If the file uses 
???  instead, then you’ll need to set na.strings = "???" .

It’s kind of nice to be able to have all these options that you can tinker with. For instance, have a look at the data file shown
pictured in Figure 7.1. This file contains almost the same data as the last file (except it doesn’t have a header), and it uses a bunch
of wacky features that you don’t normally see in CSV files. In fact, it just so happens that I’m going to have to change all five of
those arguments listed above in order to load this file. Here’s how I would do it:

If I now have a look at the data I’ve loaded, I see that this is what I’ve got:

head( data )

data <- read.csv( file = "./rbook-master/data/booksales2.csv",  # specify the name of
                   header = FALSE,           # variable names in the file? 
                   skip = 8,                 # ignore the first 8 lines 
                   quote = "*",              # what indicates text data? 
                   sep = "\t",               # what separates different entries? 
                   na.strings = "NFI" )      # what is the code for missing data?
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##          V1 V2  V3   V4 
## 1   January 31   0 high 
## 2 February  28 100 high 
## 3    March  31 200  low 
## 4    April  30  50  out 
## 5    May    31  NA  out 
## 6    June   30   0 high

Because I told R to expect *  to be used as the quoting character instead of " ; to look for tabs (which we write like this: \t )
instead of commas, and to skip the first 8 lines of the file, it’s basically loaded the right data. However, since 
booksales2.csv  doesn’t contain the column names, R has made them up. Showing the kind of imagination I expect from

insentient software, R decided to call them V1 , V2 , V3  and V4 . Finally, because I told it that the file uses “NFI” to denote
missing data, R correctly figures out that the sales data for May are actually missing.

Figure 7.1: The booksales2.csv  data file. It contains more or less the same data as the original booksales.csv  data
file, but has a lot of very quirky features.

In real life you’ll rarely see data this stupidly formatted.

17.9.2 Loading data from SPSS (and other statistics packages)
The commands listed above are the main ones we’ll need for data files in this book. But in real life we have many more
possibilities. For example, you might want to read data files in from other statistics programs. Since SPSS is probably the most
widely used statistics package in psychology, it’s worth briefly showing how to open SPSS data files (file extension .sav ). It’s
surprisingly easy. The extract below should illustrate how to do so:

If you wanted to import from an SPSS file to a data frame directly, instead of importing a list and then converting the list to a data
frame, you can do that too:

X <- read.spss( file = "datafile.sav", to.data.frame = TRUE )

And that’s pretty much it, at least as far as SPSS goes. As far as other statistical software goes, the foreign  package provides a
wealth of possibilities. To open SAS files, check out the read.ssd() and read.xport()  functions. To open data from
Minitab, the read.mtp()  function is what you’re looking for. For Stata, the read.dta()  function is what you want. For
Systat, the read.systat()  function is what you’re after.

library( foreign )                 # load the package 
X <- read.spss( "./rbook-master/data/datafile.sav" )   # create a list containing the
X <- as.data.frame( X )            # convert to data frame
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17.9.3 Loading Excel files
A different problem is posed by Excel files. Despite years of yelling at people for sending data to me encoded in a proprietary data
format, I get sent a lot of Excel files. In general R does a pretty good job of opening them, but it’s bit finicky because Microsoft
don’t seem to be terribly fond of people using non-Microsoft products, and go to some lengths to make it tricky. If you get an Excel
file, my suggestion would be to open it up in Excel (or better yet, OpenOffice, since that’s free software) and then save the
spreadsheet as a CSV file. Once you’ve got the data in that format, you can open it using read.csv() . However, if for some
reason you’re desperate to open the .xls  or .xlsx  file directly, then you can use the read.xls()  function in the 
gdata  package:

library( gdata )                   # load the package 
X <- read.xls( "datafile.xlsx" )   # create a data frame

This usually works. And if it doesn’t, you’re probably justified in “suggesting” to the person that sent you the file that they should
send you a nice clean CSV file instead.

17.9.4 Loading Matlab (& Octave) files
A lot of scientific labs use Matlab as their default platform for scientific computing; or Octave as a free alternative. Opening
Matlab data files (file extension .mat ) slightly more complicated, and if it wasn’t for the fact that Matlab is so very widespread
and is an extremely good platform, I wouldn’t mention it. However, since Matlab is so widely used, I think it’s worth discussing
briefly how to get Matlab and R to play nicely together. The way to do this is to install the R.matlab  package (don’t forget to
install the dependencies too). Once you’ve installed and loaded the package, you have access to the readMat()  function. As
any Matlab user will know, the .mat  files that Matlab produces are workspace files, very much like the .Rdata  files that R
produces. So you can’t import a .mat  file as a data frame. However, you can import it as a list. So, when we do this:

library( R.matlab )                   # load the package
data <- readMat( "matlabfile.mat" )   # read the data file to a list

The data  object that gets created will be a list, containing one variable for every variable stored in the Matlab file. It’s fairly
straightforward, though there are some subtleties that I’m ignoring. In particular, note that if you don’t have the 
Rcompression  package, you can’t open Matlab files above the version 6 format. So, if like me you’ve got a recent version of

Matlab, and don’t have the Rcompression  package, you’ll need to save your files using the -v6  flag otherwise R can’t
open them.

Oh, and Octave users? The foreign  package contains a read.octave()  command. Just this once, the world makes life
easier for you folks than it does for all those cashed-up swanky Matlab bastards.

17.9.5 Saving other kinds of data

Given that I talked extensively about how to load data from non-R files, it might be worth briefly mentioning that R is also pretty
good at writing data into other file formats besides it’s own native ones. I won’t discuss them in this book, but the 
write.csv()  function can write CSV files, and the write.foreign()  function (in the foreign  package) can write

SPSS, Stata and SAS files. There are also a lot of low level commands that you can use to write very specific information to a file,
so if you really, really needed to you could create your own write.obscurefiletype()  function, but that’s also a long
way beyond the scope of this book. For now, all that I want you to recognise is that this capability is there if you need it.

17.9.6 done yet?
Of course not. If I’ve learned nothing else about R it’s that you’re never bloody done. This listing doesn’t even come close to
exhausting the possibilities. Databases are supported by the RODBC , DBI , and RMySQL  packages among others. You can
open webpages using the RCurl  package. Reading and writing JSON objects is supported through the rjson  package. And
so on. In a sense, the right question is not so much “can R do this?” so much as “whereabouts in the wilds of CRAN is the damn
package that does it?”
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17.10: Coercing Data from One Class to Another
Sometimes you want to change the variable class. This can happen for all sorts of reasons. Sometimes when you import data from
files, it can come to you in the wrong format: numbers sometimes get imported as text, dates usually get imported as text, and many
other possibilities besides. Regardless of how you’ve ended up in this situation, there’s a very good chance that sometimes you’ll
want to convert a variable from one class into another one. Or, to use the correct term, you want to coerce the variable from one
class into another. Coercion is a little tricky, and so I’ll only discuss the very basics here, using a few simple examples.

Firstly, let’s suppose we have a variable x  that is supposed to be representing a number, but the data file that you’ve been given
has encoded it as text. Let’s imagine that the variable is something like this:

x <- "100"  # the variable  
class(x)    # what class is it?

## [1] "character"

Obviously, if I want to do calculations using x  in its current state, R is going to get very annoyed at me. It thinks that x  is text,
so it’s not going to allow me to try to do mathematics using it! Obviously, we need to coerce x  from character to numeric. We
can do that in a straightforward way by using the as.numeric()  function:

x <- as.numeric(x)  # coerce the variable 
class(x)            # what class is it?

## [1] "numeric"  

x + 1               # hey, addition works!

## [1] 101

Not surprisingly, we can also convert it back again if we need to. The function that we use to do this is the as.character()
function:

x <- as.character(x)   # coerce back to text 
class(x)               # check the class:

## [1] "character"

However, there’s some fairly obvious limitations: you can’t coerce the string "hello world"  into a number because, well,
there’s isn’t a number that corresponds to it. Or, at least, you can’t do anything useful:

as.numeric( "hello world" )  # this isn't going to work.

## Warning: NAs introduced by coercion  

## [1] NA

In this case R doesn’t give you an error message; it just gives you a warning, and then says that the data is missing (see Section
4.6.1 for the interpretation of NA ).
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That gives you a feel for how to change between numeric and character data. What about logical data? To cover this briefly,
coercing text to logical data is pretty intuitive: you use the as.logical()  function, and the character strings "T" , 
"TRUE" , "True"  and "true"  all convert to the logical value of TRUE . Similarly "F" , "FALSE" , "False" ,

and "false"  all become FALSE . All other strings convert to NA . When you go back the other way using 
as.character() , TRUE  converts to "TRUE"  and FALSE  converts to "FALSE" . Converting numbers to logicals –

again using as.logical()  – is straightforward. Following the convention in the study of logic, the number 0  converts to 
FALSE . Everything else is TRUE . Going back using as.numeric() , FALSE  converts to 0  and TRUE  converts to 
1 .
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17.11: Other Useful Data Structures
Up to this point we have encountered several different kinds of variables. At the simplest level, we’ve seen numeric data, logical
data and character data. However, we’ve also encountered some more complicated kinds of variables, namely factors, formulas,
data frames and lists. We’ll see a few more specialised data structures later on in this book, but there’s a few more generic ones that
I want to talk about in passing. None of them are central to the rest of the book (and in fact, the only one we’ll even see anywhere
else is the matrix), but they do crop up a fair bit in real life.

17.11.1 Matrices
In various different places in this chapter I’ve made reference to an R data structure called a matrix, and mentioned that I’d talk a
bit more about matrices later on. That time has come. Much like a data frame, a matrix is basically a big rectangular table of data,
and in fact there are quite a few similarities between the two. However, there are also some key differences, so it’s important to talk
about matrices in a little detail. Let’s start by using rbind()  to create a small matrix:

row.1 <- c( 2,3,1 )         # create data for row 1 
row.2 <- c( 5,6,7 )         # create data for row 2 
M <- rbind( row.1, row.2 )  # row bind them into a matrix 
print( M )                  # and print it out...

##       [,1] [,2] [,3] 
## row.1    2    3    1 
## row.2    5    6    7

The variable M  is a matrix, which we can confirm by using the class()  function. Notice that, when we bound the two
vectors together, R retained the names of the original variables as row names. We could delete these if we wanted by typing 
rownames(M)<-NULL , but I generally prefer having meaningful names attached to my variables, so I’ll keep them. In fact,

let’s also add some highly unimaginative column names as well:

colnames(M) <- c( "col.1", "col.2", "col.3" ) 
print(M)

##       col.1 col.2 col.3 
## row.1     2     3     1 
## row.2     5     6     7

You can use square brackets to subset a matrix in much the same way that you can for data frames, again specifying a row index
and then a column index. For instance, M[2,3]  pulls out the entry in the 2nd row and 3rd column of the matrix (i.e., 7 ),
whereas M[2,]  pulls out the entire 2nd row, and M[,3]  pulls out the entire 3rd column. However, it’s worth noting that
when you pull out a column, R will print the results horizontally, not vertically. The reason for this relates to how matrices (and
arrays generally) are implemented. The original matrix M  is treated as a two-dimensional objects, containing 2 rows and 3
columns. However, whenever you pull out a single row or a single column, the result is considered to be one-dimensional. As far as
R is concerned there’s no real reason to distinguish between a one-dimensional object printed vertically (a column) and a one-
dimensional object printed horizontally (a row), and it prints them all out horizontally.  There is also a way of using only a single
index, but due to the internal structure to how R defines a matrix, it works very differently to what we saw previously with data
frames.

The single-index approach is illustrated in Table 7.5 but I don’t really want to focus on it since we’ll never really need it for this
book, and matrices don’t play anywhere near as large a role in this book as data frames do. The reason for these differences is that
for this is that, for both data frames and matrices, the “row and column” version exists to allow the human user to interact with the
object in the psychologically meaningful way: since both data frames and matrices are basically just tables of data, it’s the same in
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each case. However, the single-index version is really a method for you to interact with the object in terms of its internal structure,
and the internals for data frames and matrices are quite different.

Table 7.5: The row and column version, which is identical to the corresponding indexing scheme for a data frame of the same size.

Row Col.1 Col.2 Col.3

Row 1 [1,1] [1,2] [1,3]

Row 2 [2,1] [2,2] [2,3]

Table 7.5: The single-index version, which is quite different to what we would get with a data frame.

Row Col.1 Col.2 Col.3

Row 1 1 3 5

Row 2 2 4 6

The critical difference between a data frame and a matrix is that, in a data frame, we have this notion that each of the columns
corresponds to a different variable: as a consequence, the columns in a data frame can be of different data types. The first column
could be numeric, and the second column could contain character strings, and the third column could be logical data. In that sense,
there is a fundamental asymmetry build into a data frame, because of the fact that columns represent variables (which can be
qualitatively different to each other) and rows represent cases (which cannot). Matrices are intended to be thought of in a different
way. At a fundamental level, a matrix really is just one variable: it just happens that this one variable is formatted into rows and
columns. If you want a matrix of numeric data, every single element in the matrix must be a number. If you want a matrix of
character strings, every single element in the matrix must be a character string. If you try to mix data of different types together,
then R will either spit out an error, or quietly coerce the underlying data into a list. If you want to find out what class R secretly
thinks the data within the matrix is, you need to do something like this:

class( M[1] )  

## [1] "numeric"

You can’t type class(M) , because all that will happen is R will tell you that M  is a matrix: we’re not interested in the class of
the matrix itself, we want to know what class the underlying data is assumed to be. Anyway, to give you a sense of how R enforces
this, let’s try to change one of the elements of our numeric matrix into a character string:

M[1,2] <- "text" 
M

##       col.1 col.2  col.3 
## row.1 "2"   "text" "1"   
## row.2 "5"   "6"    "7"

It looks as if R has coerced all of the data in our matrix into character strings. And in fact, if we now typed in class(M[1])
we’d see that this is exactly what has happened. If you alter the contents of one element in a matrix, R will change the underlying
data type as necessary.

There’s only one more thing I want to talk about regarding matrices. The concept behind a matrix is very much a mathematical one,
and in mathematics a matrix is a most definitely a two-dimensional object. However, when doing data analysis, we often have
reasons to want to use higher dimensional tables (e.g., sometimes you need to cross-tabulate three variables against each other).
You can’t do this with matrices, but you can do it with arrays. An array is just like a matrix, except it can have more than two
dimensions if you need it to. In fact, as far as R is concerned a matrix is just a special kind of array, in much the same way that a
data frame is a special kind of list. I don’t want to talk about arrays too much, but I will very briefly show you an example of what
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a 3D array looks like. To that end, let’s cross tabulate the speaker  and utterance  variables from the 
nightgarden.Rdata  data file, but we’ll add a third variable to the cross-tabs this time, a logical variable which indicates

whether or not I was still awake at this point in the show:

dan.awake <- c( TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE )

Now that we’ve got all three variables in the workspace (assuming you loaded the nightgarden.Rdata  data earlier in the
chapter) we can construct our three way cross-tabulation, using the table()  function.

xtab.3d <- table( speaker, utterance, dan.awake ) 
xtab.3d

## , , dan.awake = FALSE 
## 
##              utterance 
## speaker       ee onk oo pip 
##   makka-pakka  0   2  0   2 
##   tombliboo    0   0  1   0 
##   upsy-daisy   0   0  0   0 
## 
## , , dan.awake = TRUE 
## 
##              utterance 
## speaker       ee onk oo pip 
##   makka-pakka  0   0  0   0 
##   tombliboo    1   0  0   0 
##   upsy-daisy   0   2  0   2

Hopefully this output is fairly straightforward: because R can’t print out text in three dimensions, what it does is show a sequence
of 2D slices through the 3D table. That is, the , , dan.awake = FALSE  part indicates that the 2D table that follows below
shows the 2D cross-tabulation of speaker  against utterance  only for the dan.awake = FALSE  instances, and so
on.

17.11.2 Ordered factors
One topic that I neglected to mention when discussing factors previously (Section 4.7 is that there are actually two different types
of factor in R, unordered factors and ordered factors. An unordered factor corresponds to a nominal scale variable, and all of the
factors we’ve discussed so far in this book have been unordered (as will all the factors used anywhere else except in this section).
However, it’s often very useful to explicitly tell R that your variable is ordinal scale, and if so you need to declare it to be an
ordered factor. For instance, earlier in this chapter we made use of a variable consisting of Likert scale data, which we represented
as the likert.raw  variable:

likert.raw

##  [1] 1 7 3 4 4 4 2 6 5 5

We can declare this to be an ordered factor in by using the factor()  function, and setting ordered = TRUE . To illustrate
how this works, let’s create an ordered factor called likert.ordinal  and have a look at it:
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##  [1] 1 7 3 4 4 4 2 6 5 5 
## Levels: 7 < 6 < 5 < 4 < 3 < 2 < 1

Notice that when we print out the ordered factor, R explicitly tells us what order the levels come in. Because I wanted to order my
levels in terms of increasing strength of agreement, and because a response of 1 corresponded to the strongest agreement and 7 to
the strongest disagreement, it was important that I tell R to encode 7 as the lowest value and 1 as the largest. Always check this
when creating an ordered factor: it’s very easy to accidentally encode your data “upside down” if you’re not paying attention. In
any case, note that we can (and should) attach meaningful names to these factor levels by using the levels()  function, like
this:

levels( likert.ordinal ) <- c( "strong.disagree", "disagree", "weak.disagree",  
                               "neutral", "weak.agree", "agree", "strong.agree" ) 
print( likert.ordinal )

##  [1] strong.agree    strong.disagree weak.agree      neutral         
##  [5] neutral         neutral         agree           disagree        
##  [9] weak.disagree   weak.disagree   
## 7 Levels: strong.disagree < disagree < weak.disagree < ... < strong.agree

One nice thing about using ordered factors is that there are a lot of analyses for which R automatically treats ordered factors
differently from unordered factors, and generally in a way that is more appropriate for ordinal data. However, since I don’t discuss
that in this book, I won’t go into details. Like so many things in this chapter, my main goal here is to make you aware that R has
this capability built into it; so if you ever need to start thinking about ordinal scale variables in more detail, you have at least some
idea where to start looking!

17.11.3 Dates and times

Times and dates are very annoying types of data. To a first approximation we can say that there are 365 days in a year, 24 hours in a
day, 60 minutes in an hour and 60 seconds in a minute, but that’s not quite correct. The length of the solar day is not exactly 24
hours, and the length of solar year is not exactly 365 days, so we have a complicated system of corrections that have to be made to
keep the time and date system working. On top of that, the measurement of time is usually taken relative to a local time zone, and
most (but not all) time zones have both a standard time and a daylight savings time, though the date at which the switch occurs is
not at all standardised. So, as a form of data, times and dates suck. Unfortunately, they’re also important. Sometimes it’s possible to
avoid having to use any complicated system for dealing with times and dates. Often you just want to know what year something
happened in, so you can just use numeric data: in quite a lot of situations something as simple as this.year <- 2011  works
just fine. If you can get away with that for your application, this is probably the best thing to do. However, sometimes you really do
need to know the actual date. Or, even worse, the actual time. In this section, I’ll very briefly introduce you to the basics of how R
deals with date and time data. As with a lot of things in this chapter, I won’t go into details because I don’t use this kind of data
anywhere else in the book. The goal here is to show you the basics of what you need to do if you ever encounter this kind of data in
real life. And then we’ll all agree never to speak of it again.

To start with, let’s talk about the date. As it happens, modern operating systems are very good at keeping track of the time and date,
and can even handle all those annoying timezone issues and daylight savings pretty well. So R takes the quite sensible view that it
can just ask the operating system what the date is. We can pull the date using the Sys.Date()  function:

today <- Sys.Date()  # ask the operating system for the date 
print(today)         # display the date

likert.ordinal <- factor( x = likert.raw,        # the raw data  
                           levels = seq(7,1,-1),  # strongest agreement is 1, weakest
                           ordered = TRUE )       # and it's ordered 
print( likert.ordinal )
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## [1] "2018-12-30"

Okay, that seems straightforward. But, it does rather look like today  is just a character string, doesn’t it? That would be a
problem, because dates really do have a numeric character to them, and it would be nice to be able to do basic addition and
subtraction to them. Well, fear not. If you type in class(today) , R will tell you that the class of the today  variable is 
"Date" . What this means is that, hidden underneath this text string that prints out an actual date, R actually has a numeric

representation.  What that means is that you actually can add and subtract days. For instance, if we add 1 to today , R will
print out the date for tomorrow:

today + 1

## [1] "2018-12-31"

Let’s see what happens when we add 365 days:

today + 365  

## [1] "2019-12-30"

This is particularly handy if you forget that a year is a leap year since in that case you’d probably get it wrong is doing this in your
head. R provides a number of functions for working with dates, but I don’t want to talk about them in any detail. I will, however,
make passing mention of the weekdays()  function which will tell you what day of the week a particular date corresponded to,
which is extremely convenient in some situations:

weekdays( today )

## [1] "Sunday"

I’ll also point out that you can use the as.Date()  to convert various different kinds of data into dates. If the data happen to be
strings formatted exactly according to the international standard notation (i.e., yyyy-mm-dd ) then the conversion is
straightforward, because that’s the format that R expects to see by default. You can convert dates from other formats too, but it’s
slightly trickier, and beyond the scope of this book.

What about times? Well, times are even more annoying, so much so that I don’t intend to talk about them at all in this book, other
than to point you in the direction of some vaguely useful things. R itself does provide you with some tools for handling time data,
and in fact there are two separate classes of data that are used to represent times, known by the odd names POSIXct  and 
POSIXlt . You can use these to work with times if you want to, but for most applications you would probably be better off

downloading the chron  package, which provides some much more user friendly tools for working with times and dates.

This page titled 17.11: Other Useful Data Structures is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

7.11: Other Useful Data Structures by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.
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17.12: Miscellaneous Topics
To finish this chapter, I have a few topics to discuss that don’t really fit in with any of the other things in this chapter. They’re all
kind of useful things to know about, but they are really just “odd topics” that don’t fit with the other examples. Here goes:

17.12.1 problems with floating point arithmetic
If I’ve learned nothing else about transfinite arithmetic (and I haven’t) it’s that infinity is a tedious and inconvenient concept. Not
only is it annoying and counterintuitive at times, but it has nasty practical consequences. As we were all taught in high school, there
are some numbers that cannot be represented as a decimal number of finite length, nor can they be represented as any kind of
fraction between two whole numbers; √2, π and e, for instance. In everyday life we mostly don’t care about this. I’m perfectly
happy to approximate π as 3.14, quite frankly. Sure, this does produce some rounding errors from time to time, and if I’d used a
more detailed approximation like 3.1415926535 I’d be less likely to run into those issues, but in all honesty I’ve never needed my
calculations to be that precise. In other words, although our pencil and paper calculations cannot represent the number π exactly as
a decimal number, we humans are smart enough to realise that we don’t care. Computers, unfortunately, are dumb … and you don’t
have to dig too deep in order to run into some very weird issues that arise because they can’t represent numbers perfectly. Here is
my favourite example:

0.1 + 0.2 == 0.3

## [1] FALSE

Obviously, R has made a mistake here, because this is definitely the wrong answer. Your first thought might be that R is broken,
and you might be considering switching to some other language. But you can reproduce the same error in dozens of different
programming languages, so the issue isn’t specific to R. Your next thought might be that it’s something in the hardware, but you
can get the same mistake on any machine. It’s something deeper than that.

The fundamental issue at hand is floating point arithmetic, which is a fancy way of saying that computers will always round a
number to fixed number of significant digits. The exact number of significant digits that the computer stores isn’t important to
us:  what matters is that whenever the number that the computer is trying to store is very long, you get rounding errors. That’s
actually what’s happening with our example above. There are teeny tiny rounding errors that have appeared in the computer’s
storage of the numbers, and these rounding errors have in turn caused the internal storage of 0.1 + 0.2  to be a tiny bit
different from the internal storage of 0.3 . How big are these differences? Let’s ask R:

0.1 + 0.2 - 0.3  

## [1] 5.551115e-17

Very tiny indeed. No sane person would care about differences that small. But R is not a sane person, and the equality operator 
==  is very literal minded. It returns a value of TRUE  only when the two values that it is given are absolutely identical to each

other. And in this case they are not. However, this only answers half of the question. The other half of the question is, why are we
getting these rounding errors when we’re only using nice simple numbers like 0.1, 0.2 and 0.3? This seems a little counterintuitive.
The answer is that, like most programming languages, R doesn’t store numbers using their decimal expansion (i.e., base 10: using
digits 0, 1, 2 …, 9). We humans like to write our numbers in base 10 because we have 10 fingers. But computers don’t have fingers,
they have transistors; and transistors are built to store 2 numbers not 10. So you can see where this is going: the internal storage of
a number in R is based on its binary expansion (i.e., base 2: using digits 0 and 1). And unfortunately, here’s what the binary
expansion of 0.1 looks like:

.1(decimal)=.00011001100110011...(binary)

and the pattern continues forever. In other words, from the perspective of your computer, which likes to encode numbers in
binary,  0.1 is not a simple number at all. To a computer, 0.1 is actually an infinitely long binary number! As a consequence, the
computer can make minor errors when doing calculations here.
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With any luck you now understand the problem, which ultimately comes down to the twin fact that (1) we usually think in decimal
numbers and computers usually compute with binary numbers, and (2) computers are finite machines and can’t store infinitely long
numbers. The only questions that remain are when you should care and what you should do about it. Thankfully, you don’t have to
care very often: because the rounding errors are small, the only practical situation that I’ve seen this issue arise for is when you
want to test whether an arithmetic fact holds exactly numbers are identical (e.g., is someone’s response time equal to exactly
2×0.33 seconds?) This is pretty rare in real world data analysis, but just in case it does occur, it’s better to use a test that allows for
a small tolerance. That is, if the difference between the two numbers is below a certain threshold value, we deem them to be equal
for all practical purposes. For instance, you could do something like this, which asks whether the difference between the two
numbers is less than a tolerance of 10−10

abs( 0.1 + 0.2 - 0.3 ) < 10^-10

## [1] TRUE

To deal with this problem, there is a function called all.equal()  that lets you test for equality but allows a small tolerance
for rounding errors:

all.equal( 0.1 + 0.2, 0.3 )

## [1] TRUE

17.12.2 recycling rule

There’s one thing that I haven’t mentioned about how vector arithmetic works in R, and that’s the recycling rule. The easiest way
to explain it is to give a simple example. Suppose I have two vectors of different length, x  and y , and I want to add them
together. It’s not obvious what that actually means, so let’s have a look at what R does:

x <- c( 1,1,1,1,1,1 )  # x is length 6 
y <- c( 0,1 )          # y is length 2 
x + y                  # now add them:

## [1] 1 2 1 2 1 2

As you can see from looking at this output, what R has done is “recycle” the value of the shorter vector (in this case y ) several
times. That is, the first element of x  is added to the first element of y , and the second element of x  is added to the second
element of y . However, when R reaches the third element of x  there isn’t any corresponding element in y , so it returns to
the beginning: thus, the third element of x  is added to the first element of y . This process continues until R reaches the last
element of x . And that’s all there is to it really. The same recycling rule also applies for subtraction, multiplication and division.
The only other thing I should note is that, if the length of the longer vector isn’t an exact multiple of the length of the shorter one, R
still does it, but also gives you a warning message:

x <- c( 1,1,1,1,1 )    # x is length 5 
y <- c( 0,1 )          # y is length 2 
x + y                  # now add them:  

## Warning in x + y: longer object length is not a multiple of shorter object 
## length

## [1] 1 2 1 2 1
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17.12.3 introduction to environments

Figure 7.2: The environment panel in Rstudio can actually show you the contents of any loaded package: each package defines a
separate environment, so you can select the one you want to look at in this panel.

In this section I want to ask a slightly different question: what is the workspace exactly? This question seems simple, but there’s a
fair bit to it. This section can be skipped if you’re not really interested in the technical details. In the description I gave earlier, I
talked about the workspace as an abstract location in which R variables are stored. That’s basically true, but it hides a couple of key
details. For example, any time you have R open, it has to store lots of things in the computer’s memory, not just your variables. For
example, the who()  function that I wrote has to be stored in memory somewhere, right? If it weren’t I wouldn’t be able to use it.
That’s pretty obvious. But equally obviously it’s not in the workspace either, otherwise you should have seen it! Here’s what’s
happening. R needs to keep track of a lot of different things, so what it does is organise them into environments, each of which can
contain lots of different variables and functions. Your workspace is one such environment. Every package that you have loaded is
another environment. And every time you call a function, R briefly creates a temporary environment in which the function itself
can work, which is then deleted after the calculations are complete. So, when I type in search()  at the command line

search()

##  [1] ".GlobalEnv"        "package:lsr"       "package:stats"     
##  [4] "package:graphics"  "package:grDevices" "package:utils"     
##  [7] "package:datasets"  "package:methods"   "Autoloads"         
## [10] "package:base"

what I’m actually looking at is a sequence of environments. The first one, ".GlobalEnv"  is the technically-correct name for
your workspace. No-one really calls it that: it’s either called the workspace or the global environment. And so when you type in 
objects()  or who()  what you’re really doing is listing the contents of ".GlobalEnv" . But there’s no reason why we

can’t look up the contents of these other environments using the objects()  function (currently who()  doesn’t support
this). You just have to be a bit more explicit in your command. If I wanted to find out what is in the package:stats
environment (i.e., the environment into which the contents of the stats  package have been loaded), here’s what I’d get

head(objects("package:stats"))

## [1] "acf"        "acf2AR"     "add.scope"  "add1"       "addmargins" 
## [6] "aggregate"
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where this time I’ve used head() to hide a lot of output because the stats package contains about 500 functions. In fact, you can
actually use the environment panel in Rstudio to browse any of your loaded packages (just click on the text that says “Global
Environment” and you’ll see a dropdown menu like the one shown in Figure 7.2). The key thing to understand then, is that you can
access any of the R variables and functions that are stored in one of these environments, precisely because those are the
environments that you have loaded!

17.12.4 Attaching a data frame
The last thing I want to mention in this section is the attach()  function, which you often see referred to in introductory R
books. Whenever it is introduced, the author of the book usually mentions that the attach()  function can be used to “attach”
the data frame to the search path, so you don’t have to use the $  operator. That is, if I use the command attach(df)  to
attach my data frame, I no longer need to type df$variable , and instead I can just type variable . This is true as far as it
goes, but it’s very misleading and novice users often get led astray by this description, because it hides a lot of critical details.

Here is the very abridged description: when you use the attach()  function, what R does is create an entirely new environment
in the search path, just like when you load a package. Then, what it does is copy all of the variables in your data frame into this new
environment. When you do this, however, you end up with two completely different versions of all your variables: one in the
original data frame, and one in the new environment. Whenever you make a statement like df$variable  you’re working with
the variable inside the data frame; but when you just type variable  you’re working with the copy in the new environment.
And here’s the part that really upsets new users: changes to one version are not reflected in the other version. As a consequence,
it’s really easy for R to end up with different value stored in the two different locations, and you end up really confused as a result.

To be fair to the writers of the attach()  function, the help documentation does actually state all this quite explicitly, and they
even give some examples of how this can cause confusion at the bottom of the help page. And I can actually see how it can be very
useful to create copies of your data in a separate location (e.g., it lets you make all kinds of modifications and deletions to the data
without having to touch the original data frame). However, I don’t think it’s helpful for new users, since it means you have to be
very careful to keep track of which copy you’re talking about. As a consequence of all this, for the purpose of this book I’ve
decided not to use the attach()  function. It’s something that you can investigate yourself once you’re feeling a little more
confident with R, but I won’t do it here.

This page titled 17.12: Miscellaneous Topics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

7.12: Miscellaneous Topics by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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17.13: Summary
Obviously, there’s no real coherence to this chapter. It’s just a grab bag of topics and tricks that can be handy to know about, so the
best wrap up I can give here is just to repeat this list:

Section 7.1. Tabulating data.
Section 7.2. Transforming or recoding a variable.
Section 7.3. Some useful mathematical functions.
Section 7.4. Extracting a subset of a vector.
Section 7.5. Extracting a subset of a data frame.
Section 7.6. Sorting, flipping or merging data sets.
Section 7.7. Reshaping a data frame.
Section 7.8. Manipulating text.
Section 7.9. Opening data from different file types.
Section 7.10. Coercing data from one type to another.
Section 7.11. Other important data types.
Section 7.12. Miscellaneous topics.

There are a number of books out there that extend this discussion. A couple of my favourites are Spector (2008) “Data
Manipulation with R” and Teetor (2011) “R Cookbook”.
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103. The quote comes from Home is the Hangman, published in 1975.
104. As usual, you can assign this output to a variable. If you type speaker.freq <- table(speaker)  at the command

prompt R will store the table as a variable. If you then type class(speaker.freq)  you’ll see that the output is actually
of class table . The key thing to note about a table object is that it’s basically a matrix (see Section 7.11.1.

105. It’s worth noting that there’s also a more powerful function called recode()  function in the car  package that I won’t
discuss in this book but is worth looking into if you’re looking for a bit more flexibility.

106. If you’ve read further into the book, and are re-reading this section, then a good example of this would be someone choosing to
do an ANOVA using age.group3  as the grouping variable, instead of running a regression using age  as a predictor.
There are sometimes good reasons for do this: for instance, if the relationship between age  and your outcome variable is
highly non-linear, and you aren’t comfortable with trying to run non-linear regression! However, unless you really do have a
good rationale for doing this, it’s best not to. It tends to introduce all sorts of other problems (e.g., the data will probably violate
the normality assumption), and you can lose a lot of power.

107. The real answer is 0: $10 for a sandwich is a total ripoff so I should go next door and buy noodles.
108. Again, I doubt that’s the right “real world” answer. I suspect that most sandwich shops won’t allow you to pay off your debts to

them in sandwiches. But you get the idea.
109. Actually, that’s a bit of a lie: the log()  function is more flexible than that, and can be used to calculate logarithms in any

base. The log()  function has a base  argument that you can specify, which has a default value of e. Thus 
log10(1000)  is actually equivalent to log(x = 1000, base = 10) .

110. It’s also worth checking out the match()  function
111. It also works on data frames if you ever feel the need to import all of your variables from the data frame into the workspace.

This can be useful at times, though it’s not a good idea if you have large data sets or if you’re working with multiple data sets at
once. In particular, if you do this, never forget that you now have two copies of all your variables, one in the workspace and
another in the data frame.

112. You can do this yourself using the make.names()  function. In fact, this is itself a handy thing to know about. For example,
if you want to convert the names of the variables in the speech.by.char  list into valid R variable names, you could use a
command like this: names(speech.by.char) <- make.names(names(speech.by.char)) . However, I won’t
go into details here.
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113. Conveniently, if you type rownames(df) <- NULL  R will renumber all the rows from scratch. For the df  data frame,
the labels that currently run from 7 to 10 will be changed to go from 1 to 4.

114. Actually, you can make the subset()  function behave this way by using the optional drop  argument, but by default 
subset()  does not drop, which is probably more sensible and more intuitive to novice users.

115. Specifically, recursive indexing, a handy tool in some contexts but not something that I want to discuss here.
116. Remember, print()  is generic: see Section 4.11.
117. Note for advanced users: both of these functions are just wrappers to the matrix()  function, which is pretty flexible in

terms of the ability to convert vectors into matrices. Also, while I’m on this topic, I’ll briefly mention the fact that if you’re a
Matlab user and looking for an equivalent of Matlab’s repmat()  function, I’d suggest checking out the matlab
package which contains R versions of a lot of handy Matlab functions.

118. The function you need for that is called as.data.frame() .
119. In truth, I suspect that most of the cases when you can sensibly flip a data frame occur when all of the original variables are

measurements of the same type (e.g., all variables are response times), and if so you could easily have chosen to encode your
data as a matrix instead of as a data frame. But since people do sometimes prefer to work with data frames, I’ve written the 
tFrame()  function for the sake of convenience. I don’t really think it’s something that is needed very often.

120. This limitation is deliberate, by the way: if you’re getting to the point where you want to do something more complicated, you
should probably start learning how to use reshape() , cast()  and melt()  or some of other the more advanced
tools. The wideToLong()  and longToWide()  functions are included only to help you out when you’re first starting
to use R.

121. To be honest, it does bother me a little that the default value of sep  is a space. Normally when I want to paste strings
together I don’t want any separator character, so I’d prefer it if the default were sep="" . To that end, it’s worth noting that
there’s also a paste0()  function, which is identical to paste()  except that it always assumes that sep="" . Type 
?paste  for more information about this.

122. Note that you can capture the output from cat()  if you want to, but you have to be sneaky and use the 
capture.output()  function. For example, the command x <- capture.output(cat(hw,ng))  would work

just fine.
123. Sigh. For advanced users: R actually supports two different ways of specifying regular expressions. One is the POSIX standard,

the other is to use Perl-style regular expressions. The default is generally POSIX. If you understand regular expressions, that
probably made sense to you. If not, don’t worry. It’s not important.

124. I thank Amy Perfors for this example.
125. If you’re lucky.
126. You can also use the matrix()  command itself, but I think the “binding” approach is a little more intuitive.
127. This has some interesting implications for how matrix algebra is implemented in R (which I’ll admit I initially found odd), but

that’s a little beyond the scope of this book. However, since there will be a small proportion of readers that do care, I’ll quickly
outline the basic thing you need to get used to: when multiplying a matrix by a vector (or one-dimensional array) using the 
\%*\%  operator R will attempt to interpret the vector (or 1D array) as either a row-vector or column-vector, depending on

whichever one makes the multiplication work. That is, suppose M is the 2×3 matrix, and v is a 1×3 row vector. It is impossible
to multiply Mv, since the dimensions don’t conform, but you can multiply by the corresponding column vector, Mvt. So, if I set 
v <- M[2,]  and then try to calculate M \%*\% v , which you’d think would fail, it actually works because R treats the

one dimensional array as if it were a column vector for the purposes of matrix multiplication. Note that if both objects are one
dimensional arrays/vectors, this leads to ambiguity since vvt (inner product) and vtv (outer product) yield different answers. In
this situation, the \%*\%  operator returns the inner product not the outer product. To understand all the details, check out the
help documentation.

128. I should note that if you type class(xtab.3d)  you’ll discover that this is a "table"  object rather than an 
"array"  object. However, this labelling is only skin deep. The underlying data structure here is actually an array. Advanced

users may wish to check this using the command class(unclass(xtab.3d)) , but it’s not important for our purposes.
All I really want to do in this section is show you what the output looks like when you encounter a 3D array.

129. Date objects are coded as the number of days that have passed since January 1, 1970.
130. For advanced users: type ?double  for more information.
131. Or at least, that’s the default. If all your numbers are integers (whole numbers), then you can explicitly tell R to store them as

integers by adding an L  suffix at the end of the number. That is, an assignment like x <- 2L  tells R to assign x  a value
of 2, and to store it as an integer rather than as a binary expansion. Type ?integer  for more details.
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132. For advanced users: that’s a little over simplistic in two respects. First, it’s a terribly imprecise way of talking about scoping.
Second, it might give you the impression that all the variables in question are actually loaded into memory. That’s not quite
true, since that would be very wasteful of memory. Instead R has a “lazy loading” mechanism, in which what R actually does is
create a “promise” to load those objects if they’re actually needed. For details, check out the delayedAssign()  function.

This page titled 17.13: Summary is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.

7.13: Summary by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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1

CHAPTER OVERVIEW

18: Basic Programming

Machine dreams hold a special vertigo.

–William Gibson
Up to this point in the book I’ve tried hard to avoid using the word “programming” too much because – at least in my experience –
it’s a word that can cause a lot of fear. For one reason or another, programming (like mathematics and statistics) is often perceived
by people on the “outside” as a black art, a magical skill that can be learned only by some kind of super-nerd. I think this is a
shame. It’s certainly true that advanced programming is a very specialised skill: several different skills actually, since there’s quite a
lot of different kinds of programming out there. However, the basics of programming aren’t all that hard, and you can accomplish a
lot of very impressive things just using those basics.

With that in mind, the goal of this chapter is to discuss a few basic programming concepts and how to apply them in R. However,
before I do, I want to make one further attempt to point out just how non-magical programming really is, via one very simple
observation: you already know how to do it. Stripped to its essentials, programming is nothing more (and nothing less) than the
process of writing out a bunch of instructions that a computer can understand. To phrase this slightly differently, when you write a
computer program, you need to write it in a programming language that the computer knows how to interpret. R is one such
language. Although I’ve been having you type all your commands at the command prompt, and all the commands in this book so
far have been shown as if that’s what I were doing, it’s also quite possible (and as you’ll see shortly, shockingly easy) to write a
program using these R commands. In other words, if this is the first time reading this book, then you’re only one short chapter
away from being able to legitimately claim that you can program in R, albeit at a beginner’s level.

18.1: Scripts
18.2: Loops
18.3: Conditional Statements
18.4: Writing Functions
18.5: Implicit Loops
18.6: Summary

This page titled 18: Basic Programming is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro
via source content that was edited to the style and standards of the LibreTexts platform.
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18.1: Scripts
Computer programs come in quite a few different forms: the kind of program that we’re mostly interested in from the perspective
of everyday data analysis using R is known as a script. The idea behind a script is that, instead of typing your commands into the R
console one at a time, instead you write them all in a text file. Then, once you’ve finished writing them and saved the text file, you
can get R to execute all the commands in your file by using the source()  function. In a moment I’ll show you exactly how
this is done, but first I’d better explain why you should care.

18.1.1 scripts?
Before discussing scripting and programming concepts in any more detail, it’s worth stopping to ask why you should bother. After
all, if you look at the R commands that I’ve used everywhere else this book, you’ll notice that they’re all formatted as if I were
typing them at the command line. Outside this chapter you won’t actually see any scripts. Do not be fooled by this. The reason that
I’ve done it that way is purely for pedagogical reasons. My goal in this book is to teach statistics and to teach R. To that end, what
I’ve needed to do is chop everything up into tiny little slices: each section tends to focus on one kind of statistical concept, and only
a smallish number of R functions. As much as possible, I want you to see what each function does in isolation, one command at a
time. By forcing myself to write everything as if it were being typed at the command line, it imposes a kind of discipline on me: it
prevents me from piecing together lots of commands into one big script. From a teaching (and learning) perspective I think that’s
the right thing to do… but from a data analysis perspective, it is not. When you start analysing real world data sets, you will
rapidly find yourself needing to write scripts.

To understand why scripts are so very useful, it may be helpful to consider the drawbacks to typing commands directly at the
command prompt. The approach that we’ve been adopting so far, in which you type commands one at a time, and R sits there
patiently in between commands, is referred to as the interactive style. Doing your data analysis this way is rather like having a
conversation … a very annoying conversation between you and your data set, in which you and the data aren’t directly speaking to
each other, and so you have to rely on R to pass messages back and forth. This approach makes a lot of sense when you’re just
trying out a few ideas: maybe you’re trying to figure out what analyses are sensible for your data, or maybe just you’re trying to
remember how the various R functions work, so you’re just typing in a few commands until you get the one you want. In other
words, the interactive style is very useful as a tool for exploring your data. However, it has a number of drawbacks:

It’s hard to save your work effectively. You can save the workspace, so that later on you can load any variables you created. You
can save your plots as images. And you can even save the history or copy the contents of the R console to a file. Taken together,
all these things let you create a reasonably decent record of what you did. But it does leave a lot to be desired. It seems like you
ought to be able to save a single file that R could use (in conjunction with your raw data files) and reproduce everything (or at
least, everything interesting) that you did during your data analysis.
It’s annoying to have to go back to the beginning when you make a mistake. Suppose you’ve just spent the last two hours typing
in commands. Over the course of this time you’ve created lots of new variables and run lots of analyses. Then suddenly you
realise that there was a nasty typo in the first command you typed, so all of your later numbers are wrong. Now you have to fix
that first command, and then spend another hour or so combing through the R history to try and recreate what you did.
You can’t leave notes for yourself. Sure, you can scribble down some notes on a piece of paper, or even save a Word document
that summarises what you did. But what you really want to be able to do is write down an English translation of your R
commands, preferably right “next to” the commands themselves. That way, you can look back at what you’ve done and actually
remember what you were doing. In the simple exercises we’ve engaged in so far, it hasn’t been all that hard to remember what
you were doing or why you were doing it, but only because everything we’ve done could be done using only a few commands,
and you’ve never been asked to reproduce your analysis six months after you originally did it! When your data analysis starts
involving hundreds of variables, and requires quite complicated commands to work, then you really, really need to leave
yourself some notes to explain your analysis to, well, yourself.
It’s nearly impossible to reuse your analyses later, or adapt them to similar problems. Suppose that, sometime in January, you
are handed a difficult data analysis problem. After working on it for ages, you figure out some really clever tricks that can be
used to solve it. Then, in September, you get handed a really similar problem. You can sort of remember what you did, but not
very well. You’d like to have a clean record of what you did last time, how you did it, and why you did it the way you did.
Something like that would really help you solve this new problem.
It’s hard to do anything except the basics. There’s a nasty side effect of these problems. Typos are inevitable. Even the best data
analyst in the world makes a lot of mistakes. So the chance that you’ll be able to string together dozens of correct R commands
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in a row are very small. So unless you have some way around this problem, you’ll never really be able to do anything other than
simple analyses.
It’s difficult to share your work other people. Because you don’t have this nice clean record of what R commands were involved
in your analysis, it’s not easy to share your work with other people. Sure, you can send them all the data files you’ve saved, and
your history and console logs, and even the little notes you wrote to yourself, but odds are pretty good that no-one else will
really understand what’s going on (trust me on this: I’ve been handed lots of random bits of output from people who’ve been
analysing their data, and it makes very little sense unless you’ve got the original person who did the work sitting right next to
you explaining what you’re looking at)

Ideally, what you’d like to be able to do is something like this… Suppose you start out with a data set myrawdata.csv . What
you want is a single document – let’s call it mydataanalysis.R  – that stores all of the commands that you’ve used in order
to do your data analysis. Kind of similar to the R history but much more focused. It would only include the commands that you
want to keep for later. Then, later on, instead of typing in all those commands again, you’d just tell R to run all of the commands
that are stored in mydataanalysis.R . Also, in order to help you make sense of all those commands, what you’d want is the
ability to add some notes or comments within the file, so that anyone reading the document for themselves would be able to
understand what each of the commands actually does. But these comments wouldn’t get in the way: when you try to get R to run 
mydataanalysis.R  it would be smart enough would recognise that these comments are for the benefit of humans, and so it

would ignore them. Later on you could tweak a few of the commands inside the file (maybe in a new file called 
mynewdatanalaysis.R ) so that you can adapt an old analysis to be able to handle a new problem. And you could email

your friends and colleagues a copy of this file so that they can reproduce your analysis themselves.

In other words, what you want is a script.

18.1.2 first script

Figure 8.1: A screenshot showing the hello.R  script if you open in using the default text editor (TextEdit) on a Mac. Using a
simple text editor like TextEdit on a Mac or Notepad on Windows isn’t actually the best way to write your scripts, but it is the
simplest. More to the point, it highlights the fact that a script really is just an ordinary text file.

Okay then. Since scripts are so terribly awesome, let’s write one. To do this, open up a simple text editing program, like TextEdit
(on a Mac) or Notebook (on Windows). Don’t use a fancy word processing program like Microsoft Word or OpenOffice: use the
simplest program you can find. Open a new text document, and type some R commands, hitting enter after each command. Let’s
try using x <- "hello world"  and print(x)  as our commands. Then save the document as hello.R , and
remember to save it as a plain text file: don’t save it as a word document or a rich text file. Just a boring old plain text file. Also,
when it asks you where to save the file, save it to whatever folder you’re using as your working directory in R. At this point, you
should be looking at something like Figure 8.1. And if so, you have now successfully written your first R program. Because I don’t
want to take screenshots for every single script, I’m going to present scripts using extracts formatted as follows:

## --- hello.R 
x <- "hello world" 
print(x)

The line at the top is the filename, and not part of the script itself. Below that, you can see the two R commands that make up the
script itself. Next to each command I’ve included the line numbers. You don’t actually type these into your script, but a lot of text
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editors (including the one built into Rstudio that I’ll show you in a moment) will show line numbers, since it’s a very useful
convention that allows you to say things like “line 1 of the script creates a new variable, and line 2 prints it out”.

So how do we run the script? Assuming that the hello.R  file has been saved to your working directory, then you can run the
script using the following command:

source( "hello.R" )

If the script file is saved in a different directory, then you need to specify the path to the file, in exactly the same way that you
would have to when loading a data file using load() . In any case, when you type this command, R opens up the script file: it
then reads each command in the file in the same order that they appear in the file, and executes those commands in that order. The
simple script that I’ve shown above contains two commands. The first one creates a variable x  and the second one prints it on
screen. So, when we run the script, this is what we see on screen:

source("./rbook-master/scripts/hello.R")

## [1] "hello world"

If we inspect the workspace using a command like who()  or objects() , we discover that R has created the new variable 
x  within the workspace, and not surprisingly x  is a character string containing the text "hello world" . And just like

that, you’ve written your first program R. It really is that simple.

Figure 8.2: A screenshot showing the hello.R  script open in Rstudio. Assuming that you’re looking at this document in
colour, you’ll notice that the “hello world” text is shown in green. This isn’t something that you do yourself: that’s Rstudio being
helpful. Because the text editor in Rstudio “knows” something about how R commands work, it will highlight different parts of
your script in different colours. This is useful, but it’s not actually part of the script itself.

18.1.3 Using Rstudio to write scripts

In the example above I assumed that you were writing your scripts using a simple text editor. However, it’s usually more
convenient to use a text editor that is specifically designed to help you write scripts. There’s a lot of these out there, and
experienced programmers will all have their own personal favourites. For our purposes, however, we can just use the one built into
Rstudio. To create new script file in R studio, go to the “File” menu, select the “New” option, and then click on “R script”. This
will open a new window within the “source” panel. Then you can type the commands you want (or code as it is generally called
when you’re typing the commands into a script file) and save it when you’re done. The nice thing about using Rstudio to do this is
that it automatically changes the colour of the text to indicate which parts of the code are comments and which are parts are actual
R commands (these colours are called syntax highlighting, but they’re not actually part of the file – it’s just Rstudio trying to be
helpful. To see an example of this, let’s open up our hello.R  script in Rstudio. To do this, go to the “File” menu again, and
select “Open…”. Once you’ve opened the file, you should be looking at something like Figure 8.2. As you can see (if you’re
looking at this book in colour) the character string “hello world” is highlighted in green.

Using Rstudio for your text editor is convenient for other reasons too. Notice in the top right hand corner of Figure 8.2 there’s a
little button that reads “Source”? If you click on that, Rstudio will construct the relevant source()  command for you, and send
it straight to the R console. So you don’t even have to type in the source()  command, which actually I think is a great thing,
because it really bugs me having to type all those extra keystrokes every time I want to run my script. Anyway, Rstudio provide
several other convenient little tools to help make scripting easier, but I won’t discuss them here.134
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18.1.4 Commenting your script
When writing up your data analysis as a script, one thing that is generally a good idea is to include a lot of comments in the code.
That way, if someone else tries to read it (or if you come back to it several days, weeks, months or years later) they can figure out
what’s going on. As a beginner, I think it’s especially useful to comment thoroughly, partly because it gets you into the habit of
commenting the code, and partly because the simple act of typing in an explanation of what the code does will help you keep it
clear in your own mind what you’re trying to achieve. To illustrate this idea, consider the following script:

## --- itngscript.R 
# A script to analyse nightgarden.Rdata_ 
#  author: Dan Navarro_ 
#  date: 22/11/2011_ 
 
# Load the data, and tell the user that this is what we're 
# doing.  
cat( "loading data from nightgarden.Rdata...\n" ) 
load( "./rbook-master/data/nightgarden.Rdata" ) 
 
# Create a cross tabulation and print it out: 
cat( "tabulating data...\n" ) 
itng.table <- table( speaker, utterance ) 
print( itng.table )

You’ll notice that I’ve gone a bit overboard with my commenting: at the top of the script I’ve explained the purpose of the script,
who wrote it, and when it was written. Then, throughout the script file itself I’ve added a lot of comments explaining what each
section of the code actually does. In real life people don’t tend to comment this thoroughly, but the basic idea is a very good one:
you really do want your script to explain itself. Nevertheless, as you’d expect R completely ignores all of the commented parts.
When we run this script, this is what we see on screen:

## --- itngscript.R 
# A script to analyse nightgarden.Rdata 
#  author: Dan Navarro 
#  date: 22/11/2011 
 
# Load the data, and tell the user that this is what we're 
# doing.  
cat( "loading data from nightgarden.Rdata...\n" )

## loading data from nightgarden.Rdata...  

load( "./rbook-master/data/nightgarden.Rdata" ) 
 
# Create a cross tabulation and print it out: 
cat( "tabulating data...\n" )

## tabulating data...

itng.table <- table( speaker, utterance ) 
print( itng.table )
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##              utterance 
## speaker       ee onk oo pip 
##   makka-pakka  0   2  0   2 
##   tombliboo    1   0  1   0 
##   upsy-daisy   0   2  0   2

Even here, notice that the script announces its behaviour. The first two lines of the output tell us a lot about what the script is
actually doing behind the scenes (the code do to this corresponds to the two cat()  commands on lines 8 and 12 of the script).
It’s usually a pretty good idea to do this, since it helps ensure that the output makes sense when the script is executed.

18.1.5 Differences between scripts and the command line
For the most part, commands that you insert into a script behave in exactly the same way as they would if you typed the same thing
in at the command line. The one major exception to this is that if you want a variable to be printed on screen, you need to explicitly
tell R to print it. You can’t just type the name of the variable. For example, our original hello.R  script produced visible output.
The following script does not:

## --- silenthello.R 
x <- "hello world" 
x

It does still create the variable x  when you source()  the script, but it won’t print anything on screen.

However, apart from the fact that scripts don’t use “auto-printing” as it’s called, there aren’t a lot of differences in the underlying
mechanics. There are a few stylistic differences though. For instance, if you want to load a package at the command line, you
would generally use the library()  function. If you want do to it from a script, it’s conventional to use require()
instead. The two commands are basically identical, the only difference being that if the package doesn’t exist, require()
produces a warning whereas library()  gives you an error. Stylistically, what this means is that if the require()
command fails in your script, R will boldly continue on and try to execute the rest of the script. Often that’s what you’d like to see
happen, so it’s better to use require() . Clearly, however, you can get by just fine using the library()  command for
everyday usage.

18.1.6 Done!

At this point, you’ve learned the basics of scripting. You are now officially allowed to say that you can program in R, though you
probably shouldn’t say it too loudly. There’s a lot more to learn, but nevertheless, if you can write scripts like these then what you
are doing is in fact basic programming. The rest of this chapter is devoted to introducing some of the key commands that you need
in order to make your programs more powerful; and to help you get used to thinking in terms of scripts, for the rest of this chapter
I’ll write up most of my extracts as scripts.

This page titled 18.1: Scripts is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via source
content that was edited to the style and standards of the LibreTexts platform.

8.1: Scripts by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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18.2: Loops
The description I gave earlier for how a script works was a tiny bit of a lie. Specifically, it’s not necessarily the case that R starts at
the top of the file and runs straight through to the end of the file. For all the scripts that we’ve seen so far that’s exactly what
happens, and unless you insert some commands to explicitly alter how the script runs, that is what will always happen. However,
you actually have quite a lot of flexibility in this respect. Depending on how you write the script, you can have R repeat several
commands, or skip over different commands, and so on. This topic is referred to as flow control, and the first concept to discuss in
this respect is the idea of a loop. The basic idea is very simple: a loop is a block of code (i.e., a sequence of commands) that R will
execute over and over again until some termination criterion is met. Looping is a very powerful idea. There are three different ways
to construct a loop in R, based on the while , for  and repeat  functions. I’ll only discuss the first two in this book.

18.2.1 while  loop

A while  loop is a simple thing. The basic format of the loop looks like this:

 while ( CONDITION ) { 
        STATEMENT1 
        STATEMENT2 
        ETC 
     }

The code corresponding to CONDITION needs to produce a logical value, either TRUE  or FALSE . Whenever R encounters a 
while  statement, it checks to see if the CONDITION is TRUE . If it is, then R goes on to execute all of the commands inside

the curly brackets, proceeding from top to bottom as usual. However, when it gets to the bottom of those statements, it moves back
up to the while  statement. Then, like the mindless automaton it is, it checks to see if the CONDITION is TRUE . If it is, then
R goes on to execute all … well, you get the idea. This continues endlessly until at some point the CONDITION turns out to be 
FALSE . Once that happens, R jumps to the bottom of the loop (i.e., to the }  character), and then continues on with whatever

commands appear next in the script.

To start with, let’s keep things simple, and use a while  loop to calculate the smallest multiple of 17 that is greater than or equal
to 1000. This is a very silly example since you can actually calculate it using simple arithmetic operations, but the point here isn’t
to do something novel. The point is to show how to write a while  loop. Here’s the script:

## --- whileexample.R 
x <- 0 
while ( x < 1000 ) { 
  x <- x + 17 
} 
print( x )

When we run this script, R starts at the top and creates a new variable called x  and assigns it a value of 0. It then moves down to
the loop, and “notices” that the condition here is x < 1000 . Since the current value of x  is zero, the condition is true, so it
enters the body of the loop (inside the curly braces). There’s only one command here  which instructs R to increase the value of 
x  by 17. R then returns to the top of the loop, and rechecks the condition. The value of x  is now 17, but that’s still less than

1000, so the loop continues. This cycle will continue for a total of 59 iterations, until finally x  reaches a value of 1003 (i.e.,
59×17=1003). At this point, the loop stops, and R finally reaches line 5 of the script, prints out the value of x  on screen, and then
halts. Let’s watch:

source( "./rbook-master/scripts/whileexample.R" )

## [1] 1003

Truly fascinating stuff.
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18.2.2 for  loop

The for  loop is also pretty simple, though not quite as simple as the while  loop. The basic format of this loop goes like this:

 for ( VAR in VECTOR ) { 
        STATEMENT1 
        STATEMENT2 
        ETC 
     }

In a for  loop, R runs a fixed number of iterations. We have a VECTOR which has several elements, each one corresponding to
a possible value of the variable VAR. In the first iteration of the loop, VAR is given a value corresponding to the first element of
VECTOR; in the second iteration of the loop VAR gets a value corresponding to the second value in VECTOR; and so on. Once
we’ve exhausted all of the values in VECTOR, the loop terminates and the flow of the program continues down the script.

Once again, let’s use some very simple examples. Firstly, here is a program that just prints out the word “hello” three times and
then stops:

## --- forexample.R 
for ( i in 1:3 ) { 
  print( "hello" ) 
}

This is the simplest example of a for  loop. The vector of possible values for the i  variable just corresponds to the numbers
from 1 to 3. Not only that, the body of the loop doesn’t actually depend on i  at all. Not surprisingly, here’s what happens when
we run it:

source( "./rbook-master/scripts/forexample.R" )

## [1] "hello" 
## [1] "hello" 
## [1] "hello"

However, there’s nothing that stops you from using something non-numeric as the vector of possible values, as the following
example illustrates. This time around, we’ll use a character vector to control our loop, which in this case will be a vector of 
words . And what we’ll do in the loop is get R to convert the word to upper case letters, calculate the length of the word, and

print it out. Here’s the script:

## --- forexample2.R 
 
#the words_ 
words <- c("it","was","the","dirty","end","of","winter")
 
#loop over the words_ 
for ( w in words ) { 
 
  w.length <- nchar( w )     # calculate the number of letters_ 
  W <- toupper( w )          # convert the word to upper case letters_ 
  msg <- paste( W, "has", w.length, "letters" )   # a message to print_ 
  print( msg )               # print it_ 
   
}
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And here’s the output:

source( "./rbook-master/scripts/forexample2.R" )  

## [1] "IT has 2 letters" 
## [1] "WAS has 3 letters" 
## [1] "THE has 3 letters" 
## [1] "DIRTY has 5 letters" 
## [1] "END has 3 letters" 
## [1] "OF has 2 letters" 
## [1] "WINTER has 6 letters"

Again, pretty straightforward I hope.

18.2.3 more realistic example of a loop

To give you a sense of how you can use a loop in a more complex situation, let’s write a simple script to simulate the progression of
a mortgage. Suppose we have a nice young couple who borrow $300000 from the bank, at an annual interest rate of 5%. The
mortgage is a 30 year loan, so they need to pay it off within 360 months total. Our happy couple decide to set their monthly
mortgage payment at $1600 per month. Will they pay off the loan in time or not? Only time will tell.  Or, alternatively, we could
simulate the whole process and get R to tell us. The script to run this is a fair bit more complicated.

## --- mortgage.R 
 
# set up 
month <- 0        # count the number of months 
balance <- 300000 # initial mortgage balance 
payments <- 1600  # monthly payments 
interest <- 0.05  # 5% interest rate per year 
total.paid <- 0   # track what you've paid the bank 
 
# convert annual interest to a monthly multiplier 
monthly.multiplier <- (1+interest) ^ (1/12) 
 
# keep looping until the loan is paid off... 
while ( balance > 0 ) { 
   
  # do the calculations for this month 
  month <- month + 1  # one more month 
  balance <- balance * monthly.multiplier  # add the interest 
  balance <- balance - payments  # make the payments 
  total.paid <- total.paid + payments # track the total paid 
   
  # print the results on screen
  cat( "month", month, ": balance", round(balance), "\n") 
   
} # end of loop 
 
# print the total payments at the end 
cat("total payments made", total.paid, "\n" )
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To explain what’s going on, let’s go through it carefully. In the first block of code (under #set up ) all we’re doing is
specifying all the variables that define the problem. The loan starts with a balance  of $300,000 owed to the bank on month
zero, and at that point in time the total.paid  money is nothing. The couple is making monthly payments  of $1600, at an
annual interest  rate of 5%. Next, we convert the annual percentage interest into a monthly multiplier. That is, the number
that you have to multiply the current balance by each month in order to produce an annual interest rate of 5%. An annual interest
rate of 5% implies that, if no payments were made over 12 months the balance would end up being 1.05 times what it was
originally, so the annual multiplier is 1.05. To calculate the monthly multiplier, we need to calculate the 12th root of 1.05 (i.e., raise
1.05 to the power of 1/12). We store this value in as the monthly.multiplier  variable, which as it happens corresponds to
a value of about 1.004. All of which is a rather long winded way of saying that the annual interest rate of 5% corresponds to a
monthly interest rate of about 0.4%.

Anyway… all of that is really just setting the stage. It’s not the interesting part of the script. The interesting part (such as it is) is the
loop. The while  statement on tells R that it needs to keep looping until the balance  reaches zero (or less, since it might be
that the final payment of $1600 pushes the balance below zero). Then, inside the body of the loop, we have two different blocks of
code. In the first bit, we do all the number crunching. Firstly we increase the value month  by 1. Next, the bank charges the
interest, so the balance  goes up. Then, the couple makes their monthly payment and the balance  goes down. Finally, we
keep track of the total amount of money that the couple has paid so far, by adding the payments  to the running tally. After
having done all this number crunching, we tell R to issue the couple with a very terse monthly statement, which just indicates how
many months they’ve been paying the loan and how much money they still owe the bank. Which is rather rude of us really. I’ve
grown attached to this couple and I really feel they deserve better than that. But, that’s banks for you.

In any case, the key thing here is the tension between the increase in balance  on and the decrease. As long as the decrease is
bigger, then the balance will eventually drop to zero and the loop will eventually terminate. If not, the loop will continue forever!
This is actually very bad programming on my part: I really should have included something to force R to stop if this goes on too
long. However, I haven’t shown you how to evaluate “if” statements yet, so we’ll just have to hope that the author of the book has
rigged the example so that the code actually runs. Hm. I wonder what the odds of that are? Anyway, assuming that the loop does
eventually terminate, there’s one last line of code that prints out the total amount of money that the couple handed over to the bank
over the lifetime of the loan.

Now that I’ve explained everything in the script in tedious detail, let’s run it and see what happens:

source( "./rbook-master/scripts/mortgage.R" )

## month 1 : balance 299622  
## month 2 : balance 299243  
## month 3 : balance 298862  
## month 4 : balance 298480  
## month 5 : balance 298096  
## month 6 : balance 297710  
## month 7 : balance 297323  
## month 8 : balance 296934  
## month 9 : balance 296544  
## month 10 : balance 296152  
## month 11 : balance 295759  
## month 12 : balance 295364  
## month 13 : balance 294967  
## month 14 : balance 294569  
## month 15 : balance 294169  
## month 16 : balance 293768  
## month 17 : balance 293364  
## month 18 : balance 292960  
## month 19 : balance 292553  
## month 20 : balance 292145  
## month 21 : balance 291735  
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## month 22 : balance 291324  
## month 23 : balance 290911  
## month 24 : balance 290496  
## month 25 : balance 290079  
## month 26 : balance 289661  
## month 27 : balance 289241  
## month 28 : balance 288820  
## month 29 : balance 288396  
## month 30 : balance 287971  
## month 31 : balance 287545  
## month 32 : balance 287116  
## month 33 : balance 286686  
## month 34 : balance 286254  
## month 35 : balance 285820  
## month 36 : balance 285385  
## month 37 : balance 284947  
## month 38 : balance 284508  
## month 39 : balance 284067  
## month 40 : balance 283625  
## month 41 : balance 283180  
## month 42 : balance 282734  
## month 43 : balance 282286  
## month 44 : balance 281836  
## month 45 : balance 281384  
## month 46 : balance 280930  
## month 47 : balance 280475  
## month 48 : balance 280018  
## month 49 : balance 279559  
## month 50 : balance 279098  
## month 51 : balance 278635  
## month 52 : balance 278170  
## month 53 : balance 277703  
## month 54 : balance 277234  
## month 55 : balance 276764  
## month 56 : balance 276292  
## month 57 : balance 275817  
## month 58 : balance 275341  
## month 59 : balance 274863  
## month 60 : balance 274382  
## month 61 : balance 273900  
## month 62 : balance 273416  
## month 63 : balance 272930  
## month 64 : balance 272442  
## month 65 : balance 271952  
## month 66 : balance 271460  
## month 67 : balance 270966  
## month 68 : balance 270470  
## month 69 : balance 269972  
## month 70 : balance 269472  
## month 71 : balance 268970  
## month 72 : balance 268465  
## month 73 : balance 267959  
## month 74 : balance 267451  
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## month 75 : balance 266941  
## month 76 : balance 266428  
## month 77 : balance 265914  
## month 78 : balance 265397  
## month 79 : balance 264878  
## month 80 : balance 264357  
## month 81 : balance 263834  
## month 82 : balance 263309  
## month 83 : balance 262782  
## month 84 : balance 262253  
## month 85 : balance 261721  
## month 86 : balance 261187  
## month 87 : balance 260651  
## month 88 : balance 260113  
## month 89 : balance 259573  
## month 90 : balance 259031  
## month 91 : balance 258486  
## month 92 : balance 257939  
## month 93 : balance 257390  
## month 94 : balance 256839  
## month 95 : balance 256285  
## month 96 : balance 255729  
## month 97 : balance 255171  
## month 98 : balance 254611  
## month 99 : balance 254048  
## month 100 : balance 253483  
## month 101 : balance 252916  
## month 102 : balance 252346  
## month 103 : balance 251774  
## month 104 : balance 251200  
## month 105 : balance 250623  
## month 106 : balance 250044  
## month 107 : balance 249463  
## month 108 : balance 248879  
## month 109 : balance 248293  
## month 110 : balance 247705  
## month 111 : balance 247114  
## month 112 : balance 246521  
## month 113 : balance 245925  
## month 114 : balance 245327  
## month 115 : balance 244727  
## month 116 : balance 244124  
## month 117 : balance 243518  
## month 118 : balance 242911  
## month 119 : balance 242300  
## month 120 : balance 241687  
## month 121 : balance 241072  
## month 122 : balance 240454  
## month 123 : balance 239834  
## month 124 : balance 239211  
## month 125 : balance 238585  
## month 126 : balance 237958  
## month 127 : balance 237327  
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## month 128 : balance 236694  
## month 129 : balance 236058  
## month 130 : balance 235420  
## month 131 : balance 234779  
## month 132 : balance 234136  
## month 133 : balance 233489  
## month 134 : balance 232841  
## month 135 : balance 232189  
## month 136 : balance 231535  
## month 137 : balance 230879  
## month 138 : balance 230219  
## month 139 : balance 229557  
## month 140 : balance 228892  
## month 141 : balance 228225  
## month 142 : balance 227555  
## month 143 : balance 226882  
## month 144 : balance 226206  
## month 145 : balance 225528  
## month 146 : balance 224847  
## month 147 : balance 224163  
## month 148 : balance 223476  
## month 149 : balance 222786  
## month 150 : balance 222094  
## month 151 : balance 221399  
## month 152 : balance 220701  
## month 153 : balance 220000  
## month 154 : balance 219296  
## month 155 : balance 218590  
## month 156 : balance 217880  
## month 157 : balance 217168  
## month 158 : balance 216453  
## month 159 : balance 215735  
## month 160 : balance 215014  
## month 161 : balance 214290  
## month 162 : balance 213563  
## month 163 : balance 212833  
## month 164 : balance 212100  
## month 165 : balance 211364  
## month 166 : balance 210625  
## month 167 : balance 209883  
## month 168 : balance 209138  
## month 169 : balance 208390  
## month 170 : balance 207639  
## month 171 : balance 206885  
## month 172 : balance 206128  
## month 173 : balance 205368  
## month 174 : balance 204605  
## month 175 : balance 203838  
## month 176 : balance 203069  
## month 177 : balance 202296  
## month 178 : balance 201520  
## month 179 : balance 200741  
## month 180 : balance 199959
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## month 180 : balance 199959  
## month 181 : balance 199174  
## month 182 : balance 198385  
## month 183 : balance 197593  
## month 184 : balance 196798  
## month 185 : balance 196000  
## month 186 : balance 195199  
## month 187 : balance 194394  
## month 188 : balance 193586  
## month 189 : balance 192775  
## month 190 : balance 191960  
## month 191 : balance 191142  
## month 192 : balance 190321  
## month 193 : balance 189496  
## month 194 : balance 188668  
## month 195 : balance 187837  
## month 196 : balance 187002  
## month 197 : balance 186164  
## month 198 : balance 185323  
## month 199 : balance 184478  
## month 200 : balance 183629  
## month 201 : balance 182777  
## month 202 : balance 181922  
## month 203 : balance 181063  
## month 204 : balance 180201  
## month 205 : balance 179335  
## month 206 : balance 178466  
## month 207 : balance 177593  
## month 208 : balance 176716  
## month 209 : balance 175836  
## month 210 : balance 174953  
## month 211 : balance 174065  
## month 212 : balance 173175  
## month 213 : balance 172280  
## month 214 : balance 171382  
## month 215 : balance 170480  
## month 216 : balance 169575  
## month 217 : balance 168666  
## month 218 : balance 167753  
## month 219 : balance 166836  
## month 220 : balance 165916  
## month 221 : balance 164992  
## month 222 : balance 164064  
## month 223 : balance 163133  
## month 224 : balance 162197  
## month 225 : balance 161258  
## month 226 : balance 160315  
## month 227 : balance 159368  
## month 228 : balance 158417  
## month 229 : balance 157463  
## month 230 : balance 156504  
## month 231 : balance 155542  
## month 232 : balance 154576  
## month 233 : balance 153605
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## month 233 : balance 153605  
## month 234 : balance 152631  
## month 235 : balance 151653  
## month 236 : balance 150671  
## month 237 : balance 149685  
## month 238 : balance 148695  
## month 239 : balance 147700  
## month 240 : balance 146702  
## month 241 : balance 145700  
## month 242 : balance 144693  
## month 243 : balance 143683  
## month 244 : balance 142668  
## month 245 : balance 141650  
## month 246 : balance 140627  
## month 247 : balance 139600  
## month 248 : balance 138568  
## month 249 : balance 137533  
## month 250 : balance 136493  
## month 251 : balance 135449  
## month 252 : balance 134401  
## month 253 : balance 133349  
## month 254 : balance 132292  
## month 255 : balance 131231  
## month 256 : balance 130166  
## month 257 : balance 129096  
## month 258 : balance 128022  
## month 259 : balance 126943  
## month 260 : balance 125861  
## month 261 : balance 124773  
## month 262 : balance 123682  
## month 263 : balance 122586  
## month 264 : balance 121485  
## month 265 : balance 120380  
## month 266 : balance 119270  
## month 267 : balance 118156  
## month 268 : balance 117038  
## month 269 : balance 115915  
## month 270 : balance 114787  
## month 271 : balance 113654  
## month 272 : balance 112518  
## month 273 : balance 111376  
## month 274 : balance 110230  
## month 275 : balance 109079  
## month 276 : balance 107923  
## month 277 : balance 106763  
## month 278 : balance 105598  
## month 279 : balance 104428  
## month 280 : balance 103254  
## month 281 : balance 102074  
## month 282 : balance 100890  
## month 283 : balance 99701  
## month 284 : balance 98507  
## month 285 : balance 97309  
## th 286 b l 96105
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## month 286 : balance 96105  
## month 287 : balance 94897  
## month 288 : balance 93683  
## month 289 : balance 92465  
## month 290 : balance 91242  
## month 291 : balance 90013  
## month 292 : balance 88780  
## month 293 : balance 87542  
## month 294 : balance 86298  
## month 295 : balance 85050  
## month 296 : balance 83797  
## month 297 : balance 82538  
## month 298 : balance 81274  
## month 299 : balance 80005  
## month 300 : balance 78731  
## month 301 : balance 77452  
## month 302 : balance 76168  
## month 303 : balance 74878  
## month 304 : balance 73583  
## month 305 : balance 72283  
## month 306 : balance 70977  
## month 307 : balance 69666  
## month 308 : balance 68350  
## month 309 : balance 67029  
## month 310 : balance 65702  
## month 311 : balance 64369  
## month 312 : balance 63032  
## month 313 : balance 61688  
## month 314 : balance 60340  
## month 315 : balance 58986  
## month 316 : balance 57626  
## month 317 : balance 56261  
## month 318 : balance 54890  
## month 319 : balance 53514  
## month 320 : balance 52132  
## month 321 : balance 50744  
## month 322 : balance 49351  
## month 323 : balance 47952  
## month 324 : balance 46547  
## month 325 : balance 45137  
## month 326 : balance 43721  
## month 327 : balance 42299  
## month 328 : balance 40871  
## month 329 : balance 39438  
## month 330 : balance 37998  
## month 331 : balance 36553  
## month 332 : balance 35102  
## month 333 : balance 33645  
## month 334 : balance 32182  
## month 335 : balance 30713  
## month 336 : balance 29238  
## month 337 : balance 27758  
## month 338 : balance 26271  
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## month 339 : balance 24778  
## month 340 : balance 23279  
## month 341 : balance 21773  
## month 342 : balance 20262  
## month 343 : balance 18745  
## month 344 : balance 17221  
## month 345 : balance 15691  
## month 346 : balance 14155  
## month 347 : balance 12613  
## month 348 : balance 11064  
## month 349 : balance 9509  
## month 350 : balance 7948  
## month 351 : balance 6380  
## month 352 : balance 4806  
## month 353 : balance 3226  
## month 354 : balance 1639  
## month 355 : balance 46  
## month 356 : balance -1554  
## total payments made 569600

So our nice young couple have paid off their $300,000 loan in just 4 months shy of the 30 year term of their loan, at a bargain
basement price of $568,046 (since 569600 - 1554 = 568046). A happy ending!

This page titled 18.2: Loops is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via source
content that was edited to the style and standards of the LibreTexts platform.
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18.3: Conditional Statements
A second kind of flow control that programming languages provide is the ability to evaluate conditional statements. Unlike loops,
which can repeat over and over again, a conditional statement only executes once, but it can switch between different possible
commands depending on a CONDITION that is specified by the programmer. The power of these commands is that they allow the
program itself to make choices, and in particular, to make different choices depending on the context in which the program is run.
The most prominent of example of a conditional statement is the if  statement, and the accompanying else  statement. The
basic format of an if  statement in R is as follows:

if ( CONDITION ) { 
        STATEMENT1 
        STATEMENT2 
        ETC 
     }

And the execution of the statement is pretty straightforward. If the CONDITION is true, then R will execute the statements
contained in the curly braces. If the CONDITION is false, then it dose not. If you want to, you can extend the if  statement to
include an else  statement as well, leading to the following syntax:

 if ( CONDITION ) { 
        STATEMENT1 
        STATEMENT2 
        ETC 
     } else { 
        STATEMENT3 
        STATEMENT4 
        ETC 
     }     

As you’d expect, the interpretation of this version is similar. If the CONDITION is true, then the contents of the first block of code
(i.e., STATEMENT1, STATEMENT2, ETC) are executed; but if it is false, then the contents of the second block of code (i.e.,
STATEMENT3, STATEMENT4, ETC) are executed instead.

To give you a feel for how you can use if  and else  to do something useful, the example that I’ll show you is a script that
prints out a different message depending on what day of the week you run it. We can do this making use of some of the tools that
we discussed in Section 7.11.3. Here’s the script:

## --- ifelseexample.R 
# find out what day it is... 
today <- Sys.Date()       # pull the date from the system clock 
day <- weekdays( today )  # what day of the week it is_ 
 
# now make a choice depending on the day... 
if ( day == "Monday" ) { 
  print( "I don't like Mondays" ) 
} else { 
  print( "I'm a happy little automaton" ) 
}

## [1] "I'm a happy little automaton"

Since today happens to be a Sunday, when I run the script here’s what happens:
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source( "./rbook-master/scripts/ifelseexample.R" )

## [1] "I'm a happy little automaton"

There are other ways of making conditional statements in R. In particular, the ifelse()  function and the switch()
functions can be very useful in different contexts. However, my main aim in this chapter is to briefly cover the very basics, so I’ll
move on.

This page titled 18.3: Conditional Statements is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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18.4: Writing Functions
In this section I want to talk about functions again. Functions were introduced in Section 3.5, but you’ve learned a lot about R since
then, so we can talk about them in more detail. In particular, I want to show you how to create your own. To stick with the same
basic framework that I used to describe loops and conditionals, here’s the syntax that you use to create a function:

 FNAME <- function ( ARG1, ARG2, ETC ) { 
        STATEMENT1 
        STATEMENT2 
        ETC 
        return( VALUE ) 
     }

What this does is create a function with the name FNAME, which has arguments ARG1, ARG2 and so forth. Whenever the
function is called, R executes the statements in the curly braces, and then outputs the contents of VALUE to the user. Note,
however, that R does not execute the commands inside the function in the workspace. Instead, what it does is create a temporary
local environment: all the internal statements in the body of the function are executed there, so they remain invisible to the user.
Only the final results in the VALUE are returned to the workspace.

To give a simple example of this, let’s create a function called quadruple()  which multiplies its inputs by four. In keeping
with the approach taken in the rest of the chapter, I’ll use a script to do this:

## --- functionexample.R 
quadruple <- function(x) { 
  y <- x*4 
  return(y) 
} 

When we run this script, as follows

source( "./rbook-master/scripts/functionexample.R" )

nothing appears to have happened, but there is a new object created in the workspace called quadruple . Not surprisingly, if
we ask R to tell us what kind of object it is, it tells us that it is a function:

class( quadruple )

## [1] "function"

And now that we’ve created the quadruple()  function, we can call it just like any other function And if I want to store the
output as a variable, I can do this:

my.var <- quadruple(10) 
print(my.var)

## [1] 40

An important thing to recognise here is that the two internal variables that the quadruple()  function makes use of, x  and 
y , stay internal. That is, if we inspect the contents of the workspace,

library(lsr)  
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## Warning: package 'lsr' was built under R version 3.5.2

who()  

##    -- Name --           -- Class --   -- Size -- 
##    balance              numeric       1          
##    day                  character     1          
##    i                    integer       1          
##    interest             numeric       1          
##    itng.table           table         3 x 4      
##    month                numeric       1          
##    monthly.multiplier   numeric       1          
##    msg                  character     1          
##    my.var               numeric       1          
##    payments             numeric       1          
##    quadruple            function                 
##    speaker              character     10         
##    today                Date          1          
##    total.paid           numeric       1          
##    utterance            character     10         
##    w                    character     1          
##    W                    character     1          
##    w.length             integer       1          
##    words                character     7          
##    x                    numeric       1

we see everything in our workspace from this chapter including the quadruple()  function itself, as well as the my.var
variable that we just created.

Now that we know how to create our own functions in R, it’s probably a good idea to talk a little more about some of the other
properties of functions that I’ve been glossing over. To start with, let’s take this opportunity to type the name of the function at the
command line without the parentheses:

quadruple  

## function (x)  
## { 
##     y <- x * 4 
##     return(y) 
## }

As you can see, when you type the name of a function at the command line, R prints out the underlying source code that we used to
define the function in the first place. In the case of the quadruple()  function, this is quite helpful to us – we can read this
code and actually see what the function does. For other functions, this is less helpful, as we saw back in Section 3.5 when we tried
typing citation  rather than citation() .

18.4.1 Function arguments revisited

Okay, now that we are starting to get a sense for how functions are constructed, let’s have a look at two, slightly more complicated
functions that I’ve created. The source code for these functions is contained within the functionexample2.R  and 
functionexample3.R  scripts. Let’s start by looking at the first one:
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## --- functionexample2.R 
pow <- function( x, y = 1) { 
  out <- x^y  # raise x to the power y 
  return( out ) 
}

and if we type source("functionexample2.R")  to load the pow()  function into our workspace, then we can make
use of it. As you can see from looking at the code for this function, it has two arguments x  and y , and all it does is raise x  to
the power of y . For instance, this command

pow(x=3, y=2)  

## [1] 9

calculates the value of 3 . The interesting thing about this function isn’t what it does, since R already has has perfectly good
mechanisms for calculating powers. Rather, notice that when I defined the function, I specified y=1  when listing the arguments?
That’s the default value for y . So if we enter a command without specifying a value for y , then the function assumes that we
want y=1 :

pow( x=3 )

## [1] 3

However, since I didn’t specify any default value for x  when I defined the pow()  function, we always need to input a value
for x . If we don’t R will spit out an error message.

So now you know how to specify default values for an argument. The other thing I should point out while I’m on this topic is the
use of the ...  argument. The ...  argument is a special construct in R which is only used within functions. It is used as a
way of matching against multiple user inputs: in other words, ...  is used as a mechanism to allow the user to enter as many
inputs as they like. I won’t talk at all about the low-level details of how this works at all, but I will show you a simple example of a
function that makes use of it. To that end, consider the following script:

## --- functionexample3.R 
doubleMax <- function( ... ) {   
  max.val <- max( ... )   # find the largest value in ...  
  out <- 2 * max.val      # double it 
  return( out ) 
}

When we type source("functionexample3.R") , R creates the doubleMax()  function. You can type in as many
inputs as you like. The doubleMax()  function identifies the largest value in the inputs, by passing all the user inputs to the 
max()  function, and then doubles it. For example:

doubleMax( 1,2,5 )  

## [1] 10

18.4.2 There’s more to functions than this

There’s a lot of other details to functions that I’ve hidden in my description in this chapter. Experienced programmers will wonder
exactly how the “scoping rules” work in R,  or want to know how to use a function to create variables in other environments ,

2
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or if function objects can be assigned as elements of a list  and probably hundreds of other things besides. However, I don’t want
to have this discussion get too cluttered with details, so I think it’s best – at least for the purposes of the current book – to stop here.

This page titled 18.4: Writing Functions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro
via source content that was edited to the style and standards of the LibreTexts platform.

8.4: Writing Functions by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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18.5: Implicit Loops
There’s one last topic I want to discuss in this chapter. In addition to providing the explicit looping structures via while  and 
for , R also provides a collection of functions for implicit loops. What I mean by this is that these are functions that carry out

operations very similar to those that you’d normally use a loop for. However, instead of typing out the whole loop, the whole thing
is done with a single command. The main reason why this can be handy is that – due to the way that R is written – these implicit
looping functions are usually about to do the same calculations much faster than the corresponding explicit loops. In most
applications that beginners might want to undertake, this probably isn’t very important, since most beginners tend to start out
working with fairly small data sets and don’t usually need to undertake extremely time consuming number crunching. However,
because you often see these functions referred to in other contexts, it may be useful to very briefly discuss a few of them.

The first and simplest of these functions is sapply() . The two most important arguments to this function are X , which
specifies a vector containing the data, and FUN , which specifies the name of a function that should be applied to each element of
the data vector. The following example illustrates the basics of how it works:

words <- c("along", "the", "loom", "of", "the", "land") 
sapply( X = words, FUN = nchar )

## along   the  loom    of   the  land  
##     5     3     4     2     3     4

Notice how similar this is to the second example of a for  loop in Section 8.2.2. The sapply()  function has implicitly
looped over the elements of words , and for each such element applied the nchar()  function to calculate the number of
letters in the corresponding word.

The second of these functions is tapply() , which has three key arguments. As before X  specifies the data, and FUN
specifies a function. However, there is also an INDEX  argument which specifies a grouping variable.  What the tapply()
function does is loop over all of the different values that appear in the INDEX  variable. Each such value defines a group: the 
tapply()  function constructs the subset of X  that corresponds to that group, and then applies the function FUN  to that

subset of the data. This probably sounds a little abstract, so let’s consider a specific example, using the nightgarden.Rdata
file that we used in Chapter 7.

gender <- c( "male","male","female","female","male" ) 
age <- c( 10,12,9,11,13 ) 
tapply( X = age, INDEX = gender, FUN = mean )

##   female     male  
## 10.00000 11.66667

In this extract, what we’re doing is using gender  to define two different groups of people, and using their ages  as the data.
We then calculate the mean()  of the ages, separately for the males and the females. A closely related function is by() . It
actually does the same thing as tapply() , but the output is formatted a bit differently. This time around the three arguments
are called data , INDICES  and FUN , but they’re pretty much the same thing. An example of how to use the by()
function is shown in the following extract:

by( data = age, INDICES = gender, FUN = mean )
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## gender: female 
## [1] 10 
## --------------------------------------------------------  
## gender: male 
## [1] 11.66667

The tapply()  and by()  functions are quite handy things to know about, and are pretty widely used. However, although I
do make passing reference to the tapply()  later on, I don’t make much use of them in this book.

Before moving on, I should mention that there are several other functions that work along similar lines, and have suspiciously
similar names: lapply , mapply , apply , vapply , rapply  and eapply . However, none of these come up
anywhere else in this book, so all I wanted to do here is draw your attention to the fact that they exist.

This page titled 18.5: Implicit Loops is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.
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18.6: Summary
In this chapter I talked about several key programming concepts, things that you should know about if you want to start converting
your simple scripts into full fledged programs:

Writing and using scripts (Section 8.1).
Using loops (Section 8.2) and implicit loops (Section 8.5).
Making conditional statements (Section 8.3)
Writing your own functions (Section 8.4)

As always, there are lots of things I’m ignoring in this chapter. It takes a lot of work to become a proper programmer, just as it
takes a lot of work to be a proper psychologist or a proper statistician, and this book is certainly not going to provide you with all
the tools you need to make that step. However, you’d be amazed at how much you can achieve using only the tools that I’ve
covered up to this point. Loops, conditionals and functions are very powerful things, especially when combined with the various
tools discussed in Chapters 3, 4 and 7. Believe it or not, you’re off to a pretty good start just by having made it to this point. If you
want to keep going, there are (as always!) several other books you might want to look at. One that I’ve read and enjoyed is “A first
course in statistical programming with R” Braun and Murdoch (2007), but quite a few people have suggested to me that “The art of
programming with R” Matloff and Matloff (2011) is worth the effort too.
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133. The quote comes from Count Zero (1986)
134. Okay, I lied. Sue me. One of the coolest features of Rstudio is the support for R Markdown, which lets you embed R code inside

a Markdown document, and you can automatically publish your R Markdown to the web on Rstudio’s servers. If you’re the
kind of nerd interested in this sort of thing, it’s really nice. And, yes, since I’m also that kind of nerd, of course I’m aware that
iPython notebooks do the same thing and that R just nicked their idea. So what? It’s still cool. And anyway, this book isn’t
called Learning Statistics with Python now, is it? Hm. Maybe I should write a Python version…

135. As an aside: if there’s only a single command that you want to include inside your loop, then you don’t actually need to bother
including the curly braces at all. However, until you’re comfortable programming in R I’d advise always using them, even when
you don’t have to.

136. Okay, fine. This example is still a bit ridiculous, in three respects. Firstly, the bank absolutely will not let the couple pay less
than the amount required to terminate the loan in 30 years. Secondly, a constant interest rate of 30 years is hilarious. Thirdly,
you can solve this much more efficiently than through brute force simulation. However, we’re not exactly in the business of
being realistic or efficient here.

137. Lexical scope.
138. The assign()  function.
139. Yes.
140. Or a list of such variables.
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CHAPTER OVERVIEW

19: Bayesian Statistics

In our reasonings concerning matter of fact, there are all imaginable degrees of
assurance, from the highest certainty to the lowest species of moral evidence. A wise man,
therefore, proportions his belief to the evidence. – David Hume .

The ideas I’ve presented to you in this book describe inferential statistics from the frequentist perspective. I’m not alone in doing
this. In fact, almost every textbook given to undergraduate psychology students presents the opinions of the frequentist statistician
as the theory of inferential statistics, the one true way to do things. I have taught this way for practical reasons. The frequentist
view of statistics dominated the academic field of statistics for most of the 20th century, and this dominance is even more extreme
among applied scientists. It was and is current practice among psychologists to use frequentist methods. Because frequentist
methods are ubiquitous in scientific papers, every student of statistics needs to understand those methods, otherwise they will be
unable to make sense of what those papers are saying! Unfortunately – in my opinion at least – the current practice in psychology is
often misguided, and the reliance on frequentist methods is partly to blame. In this chapter I explain why I think this, and provide
an introduction to Bayesian statistics, an approach that I think is generally superior to the orthodox approach.

This chapter comes in two parts. In Sections 17.1 through 17.3 I talk about what Bayesian statistics are all about, covering the basic
mathematical rules for how it works as well as an explanation for why I think the Bayesian approach is so useful. Afterwards, I
provide a brief overview of how you can do Bayesian versions of chi-square tests (Section 17.6), t-tests (Section 17.7), regression
(Section 17.8) and ANOVA (Section 17.9).

19.1: Probabilistic Reasoning by Rational Agents
19.2: Bayesian Hypothesis Tests
19.3: Why Be a Bayesian?
19.4: Evidentiary Standards You Can Believe
19.5: The p-value Is a Lie.
19.6: Bayesian Analysis of Contingency Tables
19.7: Bayesian t-tests
19.8: Bayesian Regression
19.9: Bayesian ANOVA
19.10: Summary
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19.1: Probabilistic Reasoning by Rational Agents
From a Bayesian perspective, statistical inference is all about belief revision. I start out with a set of candidate hypotheses h about
the world. I don’t know which of these hypotheses is true, but do I have some beliefs about which hypotheses are plausible and
which are not. When I observe the data d, I have to revise those beliefs. If the data are consistent with a hypothesis, my belief in
that hypothesis is strengthened. If the data inconsistent with the hypothesis, my belief in that hypothesis is weakened. That’s it! At
the end of this section I’ll give a precise description of how Bayesian reasoning works, but first I want to work through a simple
example in order to introduce the key ideas. Consider the following reasoning problem:

I’m carrying an umbrella. Do you think it will rain?

In this problem, I have presented you with a single piece of data (d= I’m carrying the umbrella), and I’m asking you to tell me your
beliefs about whether it’s raining. You have two possible hypotheses, h: either it rains today or it does not. How should you solve
this problem?

19.1.1 Priors: what you believed before

The first thing you need to do ignore what I told you about the umbrella, and write down your pre-existing beliefs about rain. This
is important: if you want to be honest about how your beliefs have been revised in the light of new evidence, then you must say
something about what you believed before those data appeared! So, what might you believe about whether it will rain today? You
probably know that I live in Australia, and that much of Australia is hot and dry. And in fact you’re right: the city of Adelaide
where I live has a Mediterranean climate, very similar to southern California, southern Europe or northern Africa. I’m writing this
in January, and so you can assume it’s the middle of summer. In fact, you might have decided to take a quick look on Wikipedia
and discovered that Adelaide gets an average of 4.4 days of rain across the 31 days of January. Without knowing anything else, you
might conclude that the probability of January rain in Adelaide is about 15%, and the probability of a dry day is 85%. If this is
really what you believe about Adelaide rainfall (and now that I’ve told it to you, I’m betting that this really is what you believe)
then what I have written here is your prior distribution, written P(h):

Hypothesis Degree of Belief

Rainy day 0.15

Dry day 0.85

19.1.2 Likelihoods: theories about the data

To solve the reasoning problem, you need a theory about my behaviour. When does Dan carry an umbrella? You might guess that
I’m not a complete idiot,  and I try to carry umbrellas only on rainy days. On the other hand, you also know that I have young
kids, and you wouldn’t be all that surprised to know that I’m pretty forgetful about this sort of thing. Let’s suppose that on rainy
days I remember my umbrella about 30% of the time (I really am awful at this). But let’s say that on dry days I’m only about 5%
likely to be carrying an umbrella. So you might write out a little table like this:

Hypothesis Umbrella No umbrella

Rainy day 0.30 0.70

Dry day 0.05 0.95

It’s important to remember that each cell in this table describes your beliefs about what data d will be observed, given the truth of a
particular hypothesis h. This “conditional probability” is written P(d|h), which you can read as “the probability of d given h”. In
Bayesian statistics, this is referred to as likelihood of data d given hypothesis h.

19.1.3 joint probability of data and hypothesis
At this point, all the elements are in place. Having written down the priors and the likelihood, you have all the information you
need to do Bayesian reasoning. The question now becomes, how do we use this information? As it turns out, there’s a very simple
equation that we can use here, but it’s important that you understand why we use it, so I’m going to try to build it up from more
basic ideas.
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Let’s start out with one of the rules of probability theory. I listed it way back in Table 9.1, but I didn’t make a big deal out of it at
the time and you probably ignored it. The rule in question is the one that talks about the probability that two things are true. In our
example, you might want to calculate the probability that today is rainy (i.e., hypothesis h is true) and I’m carrying an umbrella
(i.e., data d is observed). The joint probability of the hypothesis and the data is written P(d,h), and you can calculate it by
multiplying the prior P(h) by the likelihood P(d|h). Mathematically, we say that:

P(d,h)=P(d|h)P(h)

So, what is the probability that today is a rainy day and I remember to carry an umbrella? As we discussed earlier, the prior tells us
that the probability of a rainy day is 15%, and the likelihood tells us that the probability of me remembering my umbrella on a rainy
day is 30%. So the probability that both of these things are true is calculated by multiplying the two:

In other words, before being told anything about what actually happened, you think that there is a 4.5% probability that today will
be a rainy day and that I will remember an umbrella. However, there are of course four possible things that could happen, right? So

let’s repeat the exercise for all four. If we do that, we end up with the following table:

Umbrella No-umbrella

Rainy 0.045 0.105

Dry 0.0425 0.8075

This table captures all the information about which of the four possibilities are likely. To really get the full picture, though, it helps
to add the row totals and column totals. That gives us this table:

Umbrella No-umbrella Total

Rainy 0.0450 0.1050 0.15

Dry 0.0425 0.8075 0.85

Total 0.0875 0.9125 1

This is a very useful table, so it’s worth taking a moment to think about what all these numbers are telling us. First, notice that the
row sums aren’t telling us anything new at all. For example, the first row tells us that if we ignore all this umbrella business, the
chance that today will be a rainy day is 15%. That’s not surprising, of course: that’s our prior. The important thing isn’t the number
itself: rather, the important thing is that it gives us some confidence that our calculations are sensible! Now take a look at the
column sums, and notice that they tell us something that we haven’t explicitly stated yet. In the same way that the row sums tell us
the probability of rain, the column sums tell us the probability of me carrying an umbrella. Specifically, the first column tells us
that on average (i.e., ignoring whether it’s a rainy day or not), the probability of me carrying an umbrella is 8.75%. Finally, notice
that when we sum across all four logically-possible events, everything adds up to 1. In other words, what we have written down is a
proper probability distribution defined over all possible combinations of data and hypothesis.

Now, because this table is so useful, I want to make sure you understand what all the elements correspond to, and how they written:

Umbrella No-umbrella

Rainy P(Umbrella, Rainy) P(No-umbrella, Rainy) P(Rainy)

Dry P(Umbrella, Dry) P(No-umbrella, Dry) P(Dry)

 P(Umbrella) P(No-umbrella)

Finally, let’s use “proper” statistical notation. In the rainy day problem, the data corresponds to the observation that I do or do not
have an umbrella. So we’ll let d  refer to the possibility that you observe me carrying an umbrella, and d  refers to you observing

 (rainy, umbrella)  = P ( umbrella |rainy) ×P ( rainy )

= 0.30 ×0.15

= 0.045

1 2
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me not carrying one. Similarly, h  is your hypothesis that today is rainy, and h  is the hypothesis that it is not. Using this notation,
the table looks like this:

19.1.4 Updating beliefs using Bayes’ rule
The table we laid out in the last section is a very powerful tool for solving the rainy day problem, because it considers all four
logical possibilities and states exactly how confident you are in each of them before being given any data. It’s now time to consider
what happens to our beliefs when we are actually given the data. In the rainy day problem, you are told that I really am carrying an
umbrella. This is something of a surprising event: according to our table, the probability of me carrying an umbrella is only 8.75%.
But that makes sense, right? A guy carrying an umbrella on a summer day in a hot dry city is pretty unusual, and so you really
weren’t expecting that. Nevertheless, the problem tells you that it is true. No matter how unlikely you thought it was, you must now
adjust your beliefs to accommodate the fact that you now know that I have an umbrella.  To reflect this new knowledge, our
revised table must have the following numbers:

Umbrella No-umbrella

Rainy  0

Dry  0

Total 1 0

In other words, the facts have eliminated any possibility of “no umbrella”, so we have to put zeros into any cell in the table that
implies that I’m not carrying an umbrella. Also, you know for a fact that I am carrying an umbrella, so the column sum on the left
must be 1 to correctly describe the fact that P(umbrella)=1.

What two numbers should we put in the empty cells? Again, let’s not worry about the maths, and instead think about our intuitions.
When we wrote out our table the first time, it turned out that those two cells had almost identical numbers, right? We worked out
that the joint probability of “rain and umbrella” was 4.5%, and the joint probability of “dry and umbrella” was 4.25%. In other
words, before I told you that I am in fact carrying an umbrella, you’d have said that these two events were almost identical in
probability, yes? But notice that both of these possibilities are consistent with the fact that I actually am carrying an umbrella. From
the perspective of these two possibilities, very little has changed. I hope you’d agree that it’s still true that these two possibilities
are equally plausible. So what we expect to see in our final table is some numbers that preserve the fact that “rain and umbrella” is
slightly more plausible than “dry and umbrella”, while still ensuring that numbers in the table add up. Something like this, perhaps?

Umbrella No-umbrella

Rainy 0.514 0

Dry 0.486 0

Total 1 0

What this table is telling you is that, after being told that I’m carrying an umbrella, you believe that there’s a 51.4% chance that
today will be a rainy day, and a 48.6% chance that it won’t. That’s the answer to our problem! The posterior probability of rain
P(h|d) given that I am carrying an umbrella is 51.4%

How did I calculate these numbers? You can probably guess. To work out that there was a 0.514 probability of “rain”, all I did was
take the 0.045 probability of “rain and umbrella” and divide it by the 0.0875 chance of “umbrella”. This produces a table that
satisfies our need to have everything sum to 1, and our need not to interfere with the relative plausibility of the two events that are
actually consistent with the data. To say the same thing using fancy statistical jargon, what I’ve done here is divide the joint
probability of the hypothesis and the data P(d,h) by the marginal probability of the data P(d), and this is what gives us the posterior
probability of the hypothesis given that we know the data have been observed. To write this as an equation:

However, remember what I said at the start of the last section, namely that the joint probability P(d,h) is calculated by multiplying
the prior P(h) by the likelihood P(d|h). In real life, the things we actually know how to write down are the priors and the likelihood,

1 2
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so let’s substitute those back into the equation. This gives us the following formula for the posterior probability:

And this formula, folks, is known as Bayes’ rule. It describes how a learner starts out with prior beliefs about the plausibility of
different hypotheses, and tells you how those beliefs should be revised in the face of data. In the Bayesian paradigm, all statistical
inference flows from this one simple rule.

This page titled 19.1: Probabilistic Reasoning by Rational Agents is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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19.2: Bayesian Hypothesis Tests
In Chapter 11 I described the orthodox approach to hypothesis testing. It took an entire chapter to describe, because null hypothesis
testing is a very elaborate contraption that people find very hard to make sense of. In contrast, the Bayesian approach to hypothesis
testing is incredibly simple. Let’s pick a setting that is closely analogous to the orthodox scenario. There are two hypotheses that
we want to compare, a null hypothesis h  and an alternative hypothesis h . Prior to running the experiment we have some beliefs
P(h) about which hypotheses are true. We run an experiment and obtain data d. Unlike frequentist statistics Bayesian statistics does
allow to talk about the probability that the null hypothesis is true. Better yet, it allows us to calculate the posterior probability of
the null hypothesis, using Bayes’ rule:

This formula tells us exactly how much belief we should have in the null hypothesis after having observed the data d. Similarly, we
can work out how much belief to place in the alternative hypothesis using essentially the same equation. All we do is change the
subscript:

It’s all so simple that I feel like an idiot even bothering to write these equations down, since all I’m doing is copying Bayes rule
from the previous section.

19.2.1 Bayes factor

In practice, most Bayesian data analysts tend not to talk in terms of the raw posterior probabilities P(h |d) and P(h |d). Instead, we
tend to talk in terms of the posterior odds ratio. Think of it like betting. Suppose, for instance, the posterior probability of the null
hypothesis is 25%, and the posterior probability of the alternative is 75%. The alternative hypothesis is three times as probable as
the null, so we say that the odds are 3:1 in favour of the alternative. Mathematically, all we have to do to calculate the posterior
odds is divide one posterior probability by the other:

Or, to write the same thing in terms of the equations above:

Actually, this equation is worth expanding on. There are three different terms here that you should know. On the left hand side, we
have the posterior odds, which tells you what you believe about the relative plausibilty of the null hypothesis and the alternative
hypothesis after seeing the data. On the right hand side, we have the prior odds, which indicates what you thought before seeing the
data. In the middle, we have the Bayes factor, which describes the amount of evidence provided by the data:

The Bayes factor (sometimes abbreviated as BF) has a special place in the Bayesian hypothesis testing, because it serves a similar
role to the p-value in orthodox hypothesis testing: it quantifies the strength of evidence provided by the data, and as such it is the
Bayes factor that people tend to report when running a Bayesian hypothesis test. The reason for reporting Bayes factors rather than
posterior odds is that different researchers will have different priors. Some people might have a strong bias to believe the null
hypothesis is true, others might have a strong bias to believe it is false. Because of this, the polite thing for an applied researcher to
do is report the Bayes factor. That way, anyone reading the paper can multiply the Bayes factor by their own personal prior odds,
and they can work out for themselves what the posterior odds would be. In any case, by convention we like to pretend that we give
equal consideration to both the null hypothesis and the alternative, in which case the prior odds equals 1, and the posterior odds
becomes the same as the Bayes factor.
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19.2.2 Interpreting Bayes factors
One of the really nice things about the Bayes factor is the numbers are inherently meaningful. If you run an experiment and you
compute a Bayes factor of 4, it means that the evidence provided by your data corresponds to betting odds of 4:1 in favour of the
alternative. However, there have been some attempts to quantify the standards of evidence that would be considered meaningful in
a scientific context. The two most widely used are from Jeffreys (1961) and Kass and Raftery (1995). Of the two, I tend to prefer
the Kass and Raftery (1995) table because it’s a bit more conservative. So here it is:

Bayes factor Interpretation

1 - 3 Negligible evidence

3 - 20 Positive evidence

20 - 150 Strong evidence

$>$150 Very strong evidence

And to be perfectly honest, I think that even the Kass and Raftery standards are being a bit charitable. If it were up to me, I’d have
called the “positive evidence” category “weak evidence”. To me, anything in the range 3:1 to 20:1 is “weak” or “modest” evidence
at best. But there are no hard and fast rules here: what counts as strong or weak evidence depends entirely on how conservative you
are, and upon the standards that your community insists upon before it is willing to label a finding as “true”.

In any case, note that all the numbers listed above make sense if the Bayes factor is greater than 1 (i.e., the evidence favours the
alternative hypothesis). However, one big practical advantage of the Bayesian approach relative to the orthodox approach is that it
also allows you to quantify evidence for the null. When that happens, the Bayes factor will be less than 1. You can choose to report
a Bayes factor less than 1, but to be honest I find it confusing. For example, suppose that the likelihood of the data under the null
hypothesis P(d|h ) is equal to 0.2, and the corresponding likelihood P(d|h ) under the alternative hypothesis is 0.1. Using the
equations given above, Bayes factor here would be:

Read literally, this result tells is that the evidence in favour of the alternative is 0.5 to 1. I find this hard to understand. To me, it
makes a lot more sense to turn the equation “upside down”, and report the amount op evidence in favour of the null. In other words,
what we calculate is this:

And what we would report is a Bayes factor of 2:1 in favour of the null. Much easier to understand, and you can interpret this using
the table above.

This page titled 19.2: Bayesian Hypothesis Tests is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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19.3: Why Be a Bayesian?
Up to this point I’ve focused exclusively on the logic underpinning Bayesian statistics. We’ve talked about the idea of “probability
as a degree of belief”, and what it implies about how a rational agent should reason about the world. The question that you have to
answer for yourself is this: how do you want to do your statistics? Do you want to be an orthodox statistician, relying on sampling
distributions and p-values to guide your decisions? Or do you want to be a Bayesian, relying on Bayes factors and the rules for
rational belief revision? And to be perfectly honest, I can’t answer this question for you. Ultimately it depends on what you think is
right. It’s your call, and your call alone. That being said, I can talk a little about why I prefer the Bayesian approach.

19.3.1 Statistics that mean what you think they mean

You keep using that word. I do not think it means what you think it means 
– Inigo Montoya, The Princess Bride

To me, one of the biggest advantages to the Bayesian approach is that it answers the right questions. Within the Bayesian
framework, it is perfectly sensible and allowable to refer to “the probability that a hypothesis is true”. You can even try to calculate
this probability. Ultimately, isn’t that what you want your statistical tests to tell you? To an actual human being, this would seem to
be the whole point of doing statistics: to determine what is true and what isn’t. Any time that you aren’t exactly sure about what the
truth is, you should use the language of probability theory to say things like “there is an 80% chance that Theory A is true, but a
20% chance that Theory B is true instead”.

This seems so obvious to a human, yet it is explicitly forbidden within the orthodox framework. To a frequentist, such statements
are a nonsense because “the theory is true” is not a repeatable event. A theory is true or it is not, and no probabilistic statements are
allowed, no matter how much you might want to make them. There’s a reason why, back in Section 11.5, I repeatedly warned you
not to interpret the p-value as the probability of that the null hypothesis is true. There’s a reason why almost every textbook on
statstics is forced to repeat that warning. It’s because people desperately want that to be the correct interpretation. Frequentist
dogma notwithstanding, a lifetime of experience of teaching undergraduates and of doing data analysis on a daily basis suggests to
me that most actual humans thing that “the probability that the hypothesis is true” is not only meaningful, it’s the thing we care
most about. It’s such an appealing idea that even trained statisticians fall prey to the mistake of trying to interpret a p-value this
way. For example, here is a quote from an official Newspoll report in 2013, explaining how to interpret their (frequentist) data
analysis:

Throughout the report, where relevant, statistically significant changes have been noted. All significance tests have been based on
the 95 percent level of confidence. This means that if a change is noted as being statistically significant, there is a 95 percent
probability that a real change has occurred, and is not simply due to chance variation. (emphasis added)

Nope! That’s not what p<.05 means. That’s not what 95% confidence means to a frequentist statistician. The bolded section is just
plain wrong. Orthodox methods cannot tell you that “there is a 95% chance that a real change has occurred”, because this is not the
kind of event to which frequentist probabilities may be assigned. To an ideological frequentist, this sentence should be
meaningless. Even if you’re a more pragmatic frequentist, it’s still the wrong definition of a p-value. It is simply not an allowed or
correct thing to say if you want to rely on orthodox statistical tools.

On the other hand, let’s suppose you are a Bayesian. Although the bolded passage is the wrong definition of a p-value, it’s pretty
much exactly what a Bayesian means when they say that the posterior probability of the alternative hypothesis is greater than 95%.
And here’s the thing. If the Bayesian posterior is actually thing you want to report, why are you even trying to use orthodox
methods? If you want to make Bayesian claims, all you have to do is be a Bayesian and use Bayesian tools.

Speaking for myself, I found this to be a the most liberating thing about switching to the Bayesian view. Once you’ve made the
jump, you no longer have to wrap your head around counterinuitive definitions of p-values. You don’t have to bother remembering
why you can’t say that you’re 95% confident that the true mean lies within some interval. All you have to do is be honest about
what you believed before you ran the study, and then report what you learned from doing it. Sounds nice, doesn’t it? To me, this is
the big promise of the Bayesian approach: you do the analysis you really want to do, and express what you really believe the data
are telling you.

This page titled 19.3: Why Be a Bayesian? is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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19.4: Evidentiary Standards You Can Believe

If [p] is below .02 it is strongly indicated that the [null] hypothesis fails to account for the
whole of the facts. We shall not often be astray if we draw a conventional line at .05 and
consider that [smaller values of p] indicate a real discrepancy. 
– Sir Ronald Fisher (1925)

Consider the quote above by Sir Ronald Fisher, one of the founders of what has become the orthodox approach to statistics. If
anyone has ever been entitled to express an opinion about the intended function of p-values, it’s Fisher. In this passage, taken from
his classic guide Statistical Methods for Research Workers, he’s pretty clear about what it means to reject a null hypothesis at
p<.05. In his opinion, if we take p<.05 to mean there is “a real effect”, then “we shall not often be astray”. This view is hardly
unusual: in my experience, most practitioners express views very similar to Fisher’s. In essence, the p<.05 convention is assumed
to represent a fairly stringent evidentiary standard.

Well, how true is that? One way to approach this question is to try to convert p-values to Bayes factors, and see how the two
compare. It’s not an easy thing to do because a p-value is a fundamentally different kind of calculation to a Bayes factor, and they
don’t measure the same thing. However, there have been some attempts to work out the relationship between the two, and it’s
somewhat surprising. For example, Johnson (2013) presents a pretty compelling case that (for t-tests at least) the p<.05 threshold
corresponds roughly to a Bayes factor of somewhere between 3:1 and 5:1 in favour of the alternative. If that’s right, then Fisher’s
claim is a bit of a stretch. Let’s suppose that the null hypothesis is true about half the time (i.e., the prior probability of H  is 0.5),
and we use those numbers to work out the posterior probability of the null hypothesis given that it has been rejected at p<.05. Using
the data from Johnson (2013), we see that if you reject the null at p<.05, you’ll be correct about 80% of the time. I don’t know
about you, but in my opinion an evidentiary standard that ensures you’ll be wrong on 20% of your decisions isn’t good enough.
The fact remains that, quite contrary to Fisher’s claim, if you reject at p<.05 you shall quite often go astray. It’s not a very stringent
evidentiary threshold at all.

This page titled 19.4: Evidentiary Standards You Can Believe is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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19.5: The p-value Is a Lie.

The cake is a lie. 
The cake is a lie. 
The cake is a lie. 
The cake is a lie. 
– Portal

Okay, at this point you might be thinking that the real problem is not with orthodox statistics, just the p<.05 standard. In one sense,
that’s true. The recommendation that Johnson (2013) gives is not that “everyone must be a Bayesian now”. Instead, the suggestion
is that it would be wiser to shift the conventional standard to something like a p<.01 level. That’s not an unreasonable view to take,
but in my view the problem is a little more severe than that. In my opinion, there’s a fairly big problem built into the way most (but
not all) orthodox hypothesis tests are constructed. They are grossly naive about how humans actually do research, and because of
this most p-values are wrong.

Sounds like an absurd claim, right? Well, consider the following scenario. You’ve come up with a really exciting research
hypothesis and you design a study to test it. You’re very diligent, so you run a power analysis to work out what your sample size
should be, and you run the study. You run your hypothesis test and out pops a p-value of 0.072. Really bloody annoying, right?

What should you do? Here are some possibilities:

1. You conclude that there is no effect, and try to publish it as a null result
2. You guess that there might be an effect, and try to publish it as a “borderline significant” result
3. You give up and try a new study
4. You collect some more data to see if the p value goes up or (preferably!) drops below the “magic” criterion of p<.05

Which would you choose? Before reading any further, I urge you to take some time to think about it. Be honest with yourself. But
don’t stress about it too much, because you’re screwed no matter what you choose. Based on my own experiences as an author,
reviewer and editor, as well as stories I’ve heard from others, here’s what will happen in each case:

Let’s start with option 1. If you try to publish it as a null result, the paper will struggle to be published. Some reviewers will
think that p=.072 is not really a null result. They’ll argue it’s borderline significant. Other reviewers will agree it’s a null result,
but will claim that even though some null results are publishable, yours isn’t. One or two reviewers might even be on your side,
but you’ll be fighting an uphill battle to get it through.
Okay, let’s think about option number 2. Suppose you try to publish it as a borderline significant result. Some reviewers will
claim that it’s a null result and should not be published. Others will claim that the evidence is ambiguous, and that you should
collect more data until you get a clear significant result. Again, the publication process does not favour you.
Given the difficulties in publishing an “ambiguous” result like p=.072, option number 3 might seem tempting: give up and do
something else. But that’s a recipe for career suicide. If you give up and try a new project else every time you find yourself
faced with ambiguity, your work will never be published. And if you’re in academia without a publication record you can lose
your job. So that option is out.
It looks like you’re stuck with option 4. You don’t have conclusive results, so you decide to collect some more data and re-run
the analysis. Seems sensible, but unfortunately for you, if you do this all of your p-values are now incorrect. All of them. Not
just the p-values that you calculated for this study. All of them. All the p-values you calculated in the past and all the p-values
you will calculate in the future. Fortunately, no-one will notice. You’ll get published, and you’ll have lied.

Wait, what? How can that last part be true? I mean, it sounds like a perfectly reasonable strategy doesn’t it? You collected some
data, the results weren’t conclusive, so now what you want to do is collect more data until the the results are conclusive. What’s
wrong with that?

Honestly, there’s nothing wrong with it. It’s a reasonable, sensible and rational thing to do. In real life, this is exactly what every
researcher does. Unfortunately, the theory of null hypothesis testing as I described it in Chapter 11 forbids you from doing this.
The reason is that the theory assumes that the experiment is finished and all the data are in. And because it assumes the experiment
is over, it only considers two possible decisions. If you’re using the conventional p<.05 threshold, those decisions are:

Outcome Action
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Outcome Action

p less than .05 Reject the null

p greater than .05 Retain the null

What you’re doing is adding a third possible action to the decision making problem. Specifically, what you’re doing is using the p-
value itself as a reason to justify continuing the experiment. And as a consequence you’ve transformed the decision-making
procedure into one that looks more like this:

Outcome Action

p less than .05 Stop the experiment and reject the null

p between .05 and .1 Continue the experiment

p greater than .1 Stop the experiment and retain the null

The “basic” theory of null hypothesis testing isn’t built to handle this sort of thing, not in the form I described back in Chapter 11.
If you’re the kind of person who would choose to “collect more data” in real life, it implies that you are not making decisions in
accordance with the rules of null hypothesis testing. Even if you happen to arrive at the same decision as the hypothesis test, you
aren’t following the decision process it implies, and it’s this failure to follow the process that is causing the problem.  Your p-
values are a lie.

Worse yet, they’re a lie in a dangerous way, because they’re all too small. To give you a sense of just how bad it can be, consider
the following (worst case) scenario. Imagine you’re a really super-enthusiastic researcher on a tight budget who didn’t pay any
attention to my warnings above. You design a study comparing two groups. You desperately want to see a significant result at the
p<.05 level, but you really don’t want to collect any more data than you have to (because it’s expensive). In order to cut costs, you
start collecting data, but every time a new observation arrives you run a t-test on your data. If the t-tests says p<.05 then you stop
the experiment and report a significant result. If not, you keep collecting data. You keep doing this until you reach your pre-defined
spending limit for this experiment. Let’s say that limit kicks in at N=1000 observations. As it turns out, the truth of the matter is
that there is no real effect to be found: the null hypothesis is true. So, what’s the chance that you’ll make it to the end of the
experiment and (correctly) conclude that there is no effect? In an ideal world, the answer here should be 95%. After all, the whole
point of the p<.05 criterion is to control the Type I error rate at 5%, so what we’d hope is that there’s only a 5% chance of falsely
rejecting the null hypothesis in this situation. However, there’s no guarantee that will be true. You’re breaking the rules: you’re
running tests repeatedly, “peeking” at your data to see if you’ve gotten a significant result, and all bets are off.

264

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36241?pdf


19.5.3 https://stats.libretexts.org/@go/page/36241

Figure 17.1: How badly can things go wrong if you re-run your tests every time new data arrive? If you are a frequentist, the
answer is “very wrong”.

So how bad is it? The answer is shown as the solid black line in Figure 17.1, and it’s astoundingly bad. If you peek at your data
after every single observation, there is a 49% chance that you will make a Type I error. That’s, um, quite a bit bigger than the 5%
that it’s supposed to be. By way of comparison, imagine that you had used the following strategy. Start collecting data. Every single
time an observation arrives, run a Bayesian t-test (Section 17.7 and look at the Bayes factor. I’ll assume that Johnson (2013) is
right, and I’ll treat a Bayes factor of 3:1 as roughly equivalent to a p-value of .05.  This time around, our trigger happy researcher
uses the following procedure: if the Bayes factor is 3:1 or more in favour of the null, stop the experiment and retain the null. If it is
3:1 or more in favour of the alternative, stop the experiment and reject the null. Otherwise continue testing. Now, just like last time,
let’s assume that the null hypothesis is true. What happens? As it happens, I ran the simulations for this scenario too, and the results
are shown as the dashed line in Figure 17.1. It turns out that the Type I error rate is much much lower than the 49% rate that we
were getting by using the orthodox t-test.

In some ways, this is remarkable. The entire point of orthodox null hypothesis testing is to control the Type I error rate. Bayesian
methods aren’t actually designed to do this at all. Yet, as it turns out, when faced with a “trigger happy” researcher who keeps
running hypothesis tests as the data come in, the Bayesian approach is much more effective. Even the 3:1 standard, which most
Bayesians would consider unacceptably lax, is much safer than the p<.05 rule.

19.5.1 really this bad?
The example I gave in the previous section is a pretty extreme situation. In real life, people don’t run hypothesis tests every time a
new observation arrives. So it’s not fair to say that the p<.05 threshold “really” corresponds to a 49% Type I error rate (i.e., p=.49).
But the fact remains that if you want your p-values to be honest, then you either have to switch to a completely different way of
doing hypothesis tests, or you must enforce a strict rule: no peeking. You are not allowed to use the data to decide when to
terminate the experiment. You are not allowed to look at a “borderline” p-value and decide to collect more data. You aren’t even
allowed to change your data analyis strategy after looking at data. You are strictly required to follow these rules, otherwise the p-
values you calculate will be nonsense.

And yes, these rules are surprisingly strict. As a class exercise a couple of years back, I asked students to think about this scenario.
Suppose you started running your study with the intention of collecting N=80 people. When the study starts out you follow the
rules, refusing to look at the data or run any tests. But when you reach N=50 your willpower gives in… and you take a peek. Guess
what? You’ve got a significant result! Now, sure, you know you said that you’d keep running the study out to a sample size of
N=80, but it seems sort of pointless now, right? The result is significant with a sample size of N=50, so wouldn’t it be wasteful and
inefficient to keep collecting data? Aren’t you tempted to stop? Just a little? Well, keep in mind that if you do, your Type I error
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rate at p<.05 just ballooned out to 8%. When you report p<.05 in your paper, what you’re really saying is p<.08. That’s how bad
the consequences of “just one peek” can be.

Now consider this … the scientific literature is filled with t-tests, ANOVAs, regressions and chi-square tests. When I wrote this
book I didn’t pick these tests arbitrarily. The reason why these four tools appear in most introductory statistics texts is that these are
the bread and butter tools of science. None of these tools include a correction to deal with “data peeking”: they all assume that
you’re not doing it. But how realistic is that assumption? In real life, how many people do you think have “peeked” at their data
before the experiment was finished and adapted their subsequent behaviour after seeing what the data looked like? Except when the
sampling procedure is fixed by an external constraint, I’m guessing the answer is “most people have done it”. If that has happened,
you can infer that the reported p-values are wrong. Worse yet, because we don’t know what decision process they actually
followed, we have no way to know what the p-values should have been. You can’t compute a p-value when you don’t know the
decision making procedure that the researcher used. And so the reported p-value remains a lie.

Given all of the above, what is the take home message? It’s not that Bayesian methods are foolproof. If a researcher is determined
to cheat, they can always do so. Bayes’ rule cannot stop people from lying, nor can it stop them from rigging an experiment. That’s
not my point here. My point is the same one I made at the very beginning of the book in Section 1.1: the reason why we run
statistical tests is to protect us from ourselves. And the reason why “data peeking” is such a concern is that it’s so tempting, even
for honest researchers. A theory for statistical inference has to acknowledge this. Yes, you might try to defend p-values by saying
that it’s the fault of the researcher for not using them properly. But to my mind that misses the point. A theory of statistical
inference that is so completely naive about humans that it doesn’t even consider the possibility that the researcher might look at
their own data isn’t a theory worth having. In essence, my point is this:

Good laws have their origins in bad morals. 
– Ambrosius Macrobius

Good rules for statistical testing have to acknowledge human frailty. None of us are without sin. None of us are beyond temptation.
A good system for statistical inference should still work even when it is used by actual humans. Orthodox null hypothesis testing
does not.

This page titled 19.5: The p-value Is a Lie. is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

17.5: The p-value Is a Lie. by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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19.6: Bayesian Analysis of Contingency Tables
Time to change gears. Up to this point I’ve been talking about what Bayesian inference is and why you might consider using it. I
now want to briefly describe how to do Bayesian versions of various statistical tests. The discussions in the next few sections are
not as detailed as I’d like, but I hope they’re enough to help you get started. So let’s begin.

The first kind of statistical inference problem I discussed in this book appeared in Chapter 12, in which we discussed categorical
data analysis problems. In that chapter I talked about several different statistical problems that you might be interested in, but the
one that appears most often in real life is the analysis of contingency tables. In this kind of data analysis situation, we have a cross-
tabulation of one variable against another one, and the goal is to find out if there is some association between these variables. The
data set I used to illustrate this problem is found in the chapek9.Rdata  file, and it contains a single data frame chapek9

load("./rbook-master/data/chapek9.Rdata") 
head(chapek9)

##   species choice 
## 1   robot flower 
## 2   human   data 
## 3   human   data 
## 4   human   data 
## 5   robot   data 
## 6   human flower

In this data set, we supposedly sampled 180 beings and measured two things. First, we checked whether they were humans or
robots, as captured by the species  variable. Second, we asked them to nominate whether they most preferred flowers, puppies,
or data. When we produce the cross-tabulation, we get this as the results:

crosstab <- xtabs( ~ species + choice, chapek9 ) 
crosstab  

##        choice 
## species puppy flower data 
##   robot    13     30   44 
##   human    15     13   65

Surprisingly, the humans seemed to show a much stronger preference for data than the robots did. At the time we speculated that
this might have been because the questioner was a large robot carrying a gun, and the humans might have been scared.

19.6.1 orthodox text
Just to refresh your memory, here’s how we analysed these data back in Chapter@refch:chisquare. Because we want to determine if
there is some association between species  and choice , we used the associationTest()  function in the lsr
package to run a chi-square test of association. The results looked like this:

library(lsr)

## Warning: package 'lsr' was built under R version 3.5.2  

associationTest( ~species + choice, chapek9 )
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## 
##      Chi-square test of categorical association 
## 
## Variables:   species, choice  
## 
## Hypotheses:  
##    null:        variables are independent of one another 
##    alternative: some contingency exists between variables 
## 
## Observed contingency table: 
##        choice 
## species puppy flower data 
##   robot    13     30   44 
##   human    15     13   65 
## 
## Expected contingency table under the null hypothesis:
##        choice 
## species puppy flower data 
##   robot  13.5   20.8 52.7 
##   human  14.5   22.2 56.3 
## 
## Test results:  
##    X-squared statistic:  10.722  
##    degrees of freedom:  2  
##    p-value:  0.005  
## 
## Other information:  
##    estimated effect size (Cramer's v):  0.244

Because we found a small p value (in this case p<.01), we concluded that the data are inconsistent with the null hypothesis of no
association, and we rejected it.

19.6.2 Bayesian test
How do we run an equivalent test as a Bayesian? Well, like every other bloody thing in statistics, there’s a lot of different ways you
could do it. However, for the sake of everyone’s sanity, throughout this chapter I’ve decided to rely on one R package to do the
work. Specifically, I’m going to use the BayesFactor  package written by Jeff Rouder and Rich Morey, which as of this
writing is in version 0.9.10.

For the analysis of contingency tables, the BayesFactor  package contains a function called contingencyTableBF() .
The data that you need to give to this function is the contingency table itself (i.e., the crosstab  variable above), so you might
be expecting to use a command like this:

library( BayesFactor )           # ...because we have to load the package 
contingencyTableBF( crosstab )   # ...because that makes sense, right?

However, if you try this you’ll get an error message. This is because the contingencyTestBF()  function needs one other
piece of information from you: it needs to know what sampling plan you used to run your experiment. You can specify the
sampling plan using the sampleType  argument. So I should probably tell you what your options are! The 
contingencyTableBF()  function distinguishes between four different types of experiment:

Fixed sample size. Suppose that in our chapek9  example, our experiment was designed like this: we deliberately set out to
test 180 people, but we didn’t try to control the number of humans or robots, nor did we try to control the choices they made. In
this design, the total number of observations N is fixed, but everything else is random. This is referred to as “joint multinomial”
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sampling, and if that’s what you did you should specify sampleType = "jointMulti" . In the case of the chapek9
data, that’s actually what I had in mind when I invented the data set.
Fixed row (or column) totals. A different kind of design might work like this. We decide ahead of time that we want 180
people, but we try to be a little more systematic about it. Specifically, the experimenter constrains it so that we get a
predetermined number of humans and robots (e.g., 90 of each). In this design, either the row totals or the column totals are
fixed, but not both. This is referred to as “independent multinomial” sampling, and if that’s what you did you should specify 
sampleType = "indepMulti" .

Both row and column totals fixed. Another logical possibility is that you designed the experiment so that both the row totals
and the column totals are fixed. This doesn’t make any sense at all in the chapek9  example, but there are other deisgns that
can work this way. Suppose that I show you a collection of 20 toys, and then given them 10 stickers that say boy  and another
10 that say girl . I then give them 10 blue  stickers and 10 pink  stickers. I then ask you to put the stickers on the 20
toys such that every toy has a colour and every toy has a gender. No matter how you assign the stickers, the total number of
pink and blue toys will be 10, as will the number of boys and girls. In this design both the rows and columns of the contingency
table are fixed. This is referred to as “hypergeometric” sampling, and if that’s what you’ve done you should specify 
sampleType = "hypergeom" .

Nothing is fixed. Finally, it might be the case that nothing is fixed. Not the row columns, not the column totals, and not the total
sample size either. For instance, in the chapek9  scenario, suppose what I’d done is run the study for a fixed length of time.
By chance, it turned out that I got 180 people to turn up to study, but it could easily have been something else. This is referred
to as “Poisson” sampling, and if that’s what you’ve done you should specify sampleType="poisson" .

Okay, so now we have enough knowledge to actually run a test. For the chapek9  data, I implied that we designed the study
such that the total sample size N was fixed, so we should set sampleType = "jointMulti" . The command that we need
is,

library( BayesFactor )  

## Warning: package 'BayesFactor' was built under R version 3.5.2

## Loading required package: coda

## Warning: package 'coda' was built under R version 3.5.2  

## Loading required package: Matrix

contingencyTableBF( crosstab, sampleType = "jointMulti" )

## ************ 
## Welcome to BayesFactor 0.9.12-4.2. If you have questions, please contact Richard M
## 
## Type BFManual() to open the manual. 
## ************
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## Bayes factor analysis 
## -------------- 
## [1] Non-indep. (a=1) : 15.92684 ±0% 
## 
## Against denominator: 
##   Null, independence, a = 1  
## --- 
## Bayes factor type: BFcontingencyTable, joint multinomial

As with most R commands, the output initially looks suspiciously similar to utter gibberish. Fortunately, it’s actually pretty simple
once you get past the initial impression. Firstly, note that the stuff at the top and bottom are irrelevant fluff. You already know that
you’re doing a Bayes factor analysis. You already know that you’re analysing a contingency table, and you already know that you
specified a joint multinomial sampling plan. So let’s strip that out and take a look at what’s left over:

[1] Non-indep. (a=1) : 15.92684 @plusorminus0% 
 
Against denominator: 
  Null, independence, a = 1 

Let’s also ignore those two a=1  bits, since they’re technical details that you don’t need to know about at this stage.  The rest of
the output is actually pretty straightforward. At the bottom, the output defines the null hypothesis for you: in this case, the null
hypothesis is that there is no relationship between species  and choice . Or, to put it another way, the null hypothesis is
that these two variables are independent. Now if you look at the line above it, you might (correctly) guess that the Non-indep.
part refers to the alternative hypothesis. In this case, the alternative is that there is a relationship between species  and 
choice : that is, they are not independent. So the only thing left in the output is the bit that reads

15.92684 @plusorminus0%

The 15.9 part is the Bayes factor, and it’s telling you that the odds for the alternative hypothesis against the null are about 16:1. The
±0% part is not very interesting: essentially, all it’s telling you is that R has calculated an exact Bayes factor, so the uncertainty
about the Bayes factor is 0%.  In any case, the data are telling us that we have moderate evidence for the alternative hypothesis.

19.6.3 Writing up the results
When writing up the results, my experience has been that there aren’t quite so many “rules” for how you “should” report Bayesian
hypothesis tests. That might change in the future if Bayesian methods become standard and some task force starts writing up style
guides, but in the meantime I would suggest using some common sense. For example, I would avoid writing this:

A Bayesian test of association found a significant result (BF=15.92)

To my mind, this write up is unclear. Even assuming that you’ve already reported the relevant descriptive statistics, there are a
number of things I am unhappy with. First, the concept of “statistical significance” is pretty closely tied with p-values, so it reads
slightly strangely. Second, the “BF=15.92” part will only make sense to people who already understand Bayesian methods, and not
everyone does. Third, it is somewhat unclear exactly which test was run and what software was used to do so.

On the other hand, unless precision is extremely important, I think that this is taking things a step too far:

We ran a Bayesian test of association using version 0.9.10-1 of the BayesFactor package using default priors and a joint
multinomial sampling plan. The resulting Bayes factor of 15.92 to 1 in favour of the alternative hypothesis indicates that there is
moderately strong evidence for the non-independence of species and choice.

Everything about that passage is correct, of course. Morey and Rouder (2015) built their Bayesian tests of association using the
paper by Gunel and Dickey (1974), the specific test we used assumes that the experiment relied on a joint multinomial sampling
plan, and indeed the Bayes factor of 15.92 is moderately strong evidence. It’s just far too wordy.
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In most situations you just don’t need that much information. My preference is usually to go for something a little briefer. First, if
you’re reporting multiple Bayes factor analyses in your write up, then somewhere you only need to cite the software once, at the
beginning of the results section. So you might have one sentence like this:

All analyses were conducted using the BayesFactor package in R , and unless otherwise stated default parameter values were used

Notice that I don’t bother including the version number? That’s because the citation itself includes that information (go check my
reference list if you don’t believe me). There’s no need to clutter up your results with redundant information that almost no-one will
actually need. When you get to the actual test you can get away with this:

A test of association produced a Bayes factor of 16:1 in favour of a relationship between species and choice.

Short and sweet. I’ve rounded 15.92 to 16, because there’s not really any important difference between 15.92:1 and 16:1. I spelled
out “Bayes factor” rather than truncating it to “BF” because not everyone knows the abbreviation. I indicated exactly what the
effect is (i.e., “a relationship between species and choice”) and how strong the evidence was. I didn’t bother indicating whether this
was “moderate” evidence or “strong” evidence, because the odds themselves tell you! There’s nothing stopping you from including
that information, and I’ve done so myself on occasions, but you don’t strictly need it. Similarly, I didn’t bother to indicate that I ran
the “joint multinomial” sampling plan, because I’m assuming that the method section of my write up would make clear how the
experiment was designed. (I might change my mind about that if the method section was ambiguous.) Neither did I bother
indicating that this was a Bayesian test of association: if your reader can’t work that out from the fact that you’re reporting a Bayes
factor and the fact that you’re citing the BayesFactor  package for all your analyses, then there’s no chance they’ll understand
anything you’ve written. Besides, if you keep writing the word “Bayes” over and over again it starts to look stupid. Bayes Bayes
Bayes Bayes Bayes. See?

19.6.4 Other sampling plans
Up to this point all I’ve shown you is how to use the contingencyTableBF()  function for the joint multinomial sampling
plan (i.e., when the total sample size N is fixed, but nothing else is). For the Poisson sampling plan (i.e., nothing fixed), the
command you need is identical except for the sampleType  argument:

contingencyTableBF(crosstab, sampleType = "poisson" )

## Bayes factor analysis 
## -------------- 
## [1] Non-indep. (a=1) : 28.20757 ±0% 
## 
## Against denominator: 
##   Null, independence, a = 1  
## --- 
## Bayes factor type: BFcontingencyTable, poisson  

Notice that the Bayes factor of 28:1 here is not the identical to the Bayes factor of 16:1 that we obtained from the last test. The
sampling plan actually does matter.

What about the design in which the row columns (or column totals) are fixed? As I mentioned earlier, this corresponds to the
“independent multinomial” sampling plan. Again, you need to specify the sampleType  argument, but this time you need to
specify whether you fixed the rows or the columns. For example, suppose I deliberately sampled 87 humans and 93 robots, then I
would need to indicate that the fixedMargin  of the contingency table is the "rows" . So the command I would use is:

contingencyTableBF(crosstab, sampleType = "indepMulti", fixedMargin="rows")
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## Bayes factor analysis 
## -------------- 
## [1] Non-indep. (a=1) : 8.605897 ±0% 
## 
## Against denominator: 
##   Null, independence, a = 1  
## --- 
## Bayes factor type: BFcontingencyTable, independent multinomial

Again, the Bayes factor is different, with the evidence for the alternative dropping to a mere 9:1. As you might expect, the answers
would be diffrent again if it were the columns of the contingency table that the experimental design fixed.

Finally, if we turn to hypergeometric sampling in which everything is fixed, we get…

… an error message. Okay, some quick reading through the help files hints that support for larger contingency tables is coming, but
it’s not been implemented yet. In the meantime, let’s imagine we have data from the “toy labelling” experiment I described earlier
in this section. Specifically, let’s say our data look like this:

toys <- data.frame(stringsAsFactors=FALSE, 
        gender = c("girl", "boy"), 
        pink = c(8, 2), 
        blue = c(2, 8) 
        )

The Bayesian test with hypergeometric sampling gives us this:

contingencyTableBF(toys, sampleType = "hypergeom") 
 
#Bayes factor analysis 
#-------------- 
#[1] Non-indep. (a=1) : 8.294321 @plusorminus0% 
# 
#Against denominator: 
#  Null, independence, a = 1  
#--- 
#Bayes factor type: BFcontingencyTable, hypergeometric

The Bayes factor of 8:1 provides modest evidence that the labels were being assigned in a way that correlates gender with colour,
but it’s not conclusive.

This page titled 19.6: Bayesian Analysis of Contingency Tables is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

17.6: Bayesian Analysis of Contingency Tables by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.

contingencyTableBF(crosstab, sampleType = "hypergeom") 
#Error in contingencyHypergeometric(as.matrix(data2), a) :  
#  hypergeometric contingency tables restricted to 2 x 2 tables; see help for conting

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36242?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/19%3A_Bayesian_Statistics/19.06%3A_Bayesian_Analysis_of_Contingency_Tables
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/
https://stats.libretexts.org/@go/page/4054
https://djnavarro.net/
https://creativecommons.org/licenses/by-sa/4.0/
https://bookdown.org/ekothe/navarro26/


19.7.1 https://stats.libretexts.org/@go/page/36243

19.7: Bayesian t-tests
The second type of statistical inference problem discussed in this book is the comparison between two means, discussed in some
detail in the chapter on t-tests (Chapter 13. If you can remember back that far, you’ll recall that there are several versions of the t-
test. The BayesFactor  package contains a function called ttestBF()  that is flexible enough to run several different
versions of the t-test. I’ll talk a little about Bayesian versions of the independent samples t-tests and the paired samples t-test in this
section.

19.7.1 Independent samples t-test
The most common type of t-test is the independent samples t-test, and it arises when you have data that look something like this:

load( "./rbook-master/data/harpo.Rdata" ) 
head(harpo)

##   grade      tutor 
## 1    65  Anastasia 
## 2    72 Bernadette 
## 3    66 Bernadette 
## 4    74  Anastasia 
## 5    73  Anastasia 
## 6    71 Bernadette

In this data set, we have two groups of students, those who received lessons from Anastasia and those who took their classes with
Bernadette. The question we want to answer is whether there’s any difference in the grades received by these two groups of
student. Back in Chapter@refch:ttest I suggested you could analyse this kind of data using the 
independentSamplesTTest()  function in the lsr  package. For example, if you want to run a Student’s t-test, you’d

use a command like this:

independentSamplesTTest( 
    formula = grade ~ tutor,  
    data = harpo,  
    var.equal = TRUE  
 )
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## 
##    Student's independent samples t-test  
## 
## Outcome variable:   grade  
## Grouping variable:  tutor  
## 
## Descriptive statistics:  
##             Anastasia Bernadette 
##    mean        74.533     69.056 
##    std dev.     8.999      5.775 
## 
## Hypotheses:  
##    null:        population means equal for both groups 
##    alternative: different population means in each group 
## 
## Test results:  
##    t-statistic:  2.115  
##    degrees of freedom:  31  
##    p-value:  0.043  
## 
## Other information:  
##    two-sided 95% confidence interval:  [0.197, 10.759]  
##    estimated effect size (Cohen's d):  0.74

Like most of the functions that I wrote for this book, the independentSamplesTTest()  is very wordy. It prints out a
bunch of descriptive statistics and a reminder of what the null and alternative hypotheses are, before finally getting to the test
results. I wrote it that way deliberately, in order to help make things a little clearer for people who are new to statistics.

Again, we obtain a p-value less than 0.05, so we reject the null hypothesis.

What does the Bayesian version of the t-test look like? Using the ttestBF()  function, we can obtain a Bayesian analog of
Student’s independent samples t-test using the following command:

ttestBF( formula = grade ~ tutor, data = harpo )

## Bayes factor analysis 
## -------------- 
## [1] Alt., r=0.707 : 1.754927 ±0% 
## 
## Against denominator: 
##   Null, mu1-mu2 = 0  
## --- 
## Bayes factor type: BFindepSample, JZS

Notice that format of this command is pretty standard. As usual we have a formula  argument in which we specify the outcome
variable on the left hand side and the grouping variable on the right. The data  argument is used to specify the data frame
containing the variables. However, notice that there’s no analog of the var.equal  argument. This is because the 
BayesFactor  package does not include an analog of the Welch test, only the Student test.  In any case, when you run this

command you get this as the output:

So what does all this mean? Just as we saw with the contingencyTableBF()  function, the output is pretty dense. But, just
like last time, there’s not a lot of information here that you actually need to process. Firstly, let’s examine the bottom line. The 
BFindepSample  part just tells you that you ran an independent samples t-test, and the JZS  part is technical information
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that is a little beyond the scope of this book.  Clearly, there’s nothing to worry about in that part. In the line above, the text 
Null, mu1-mu2 = 0  is just telling you that the null hypothesis is that there are no differences between means. But you

already knew that. So the only part that really matters is this line here:

[1] Alt., r=0.707 : 1.754927 @plusorminus0%

Ignore the r=0.707  part: it refers to a technical detail that we won’t worry about in this chapter.  Instead, you should focus
on the part that reads 1.754927 . This is the Bayes factor: the evidence provided by these data are about 1.8:1 in favour of the
alternative.

Before moving on, it’s worth highlighting the difference between the orthodox test results and the Bayesian one. According to the
orthodox test, we obtained a significant result, though only barely. Nevertheless, many people would happily accept p=.043 as
reasonably strong evidence for an effect. In contrast, notice that the Bayesian test doesn’t even reach 2:1 odds in favour of an
effect, and would be considered very weak evidence at best. In my experience that’s a pretty typical outcome. Bayesian methods
usually require more evidence before rejecting the null.

19.7.2 Paired samples t-test
Back in Section 13.5 I discussed the chico  data frame in which students grades were measured on two tests, and we were
interested in finding out whether grades went up from test 1 to test 2. Because every student did both tests, the tool we used to
analyse the data was a paired samples t-test. To remind you of what the data look like, here’s the first few cases:

load("./rbook-master/data/chico.rdata") 
head(chico)

##         id grade_test1 grade_test2 
## 1 student1        42.9        44.6 
## 2 student2        51.8        54.0 
## 3 student3        71.7        72.3 
## 4 student4        51.6        53.4 
## 5 student5        63.5        63.8 
## 6 student6        58.0        59.3

We originally analysed the data using the pairedSamplesTTest()  function in the lsr  package, but this time we’ll use
the ttestBF()  function from the BayesFactor  package to do the same thing. The easiest way to do it with this data set is
to use the x  argument to specify one variable and the y  argument to specify the other. All we need to do then is specify 
paired=TRUE  to tell R that this is a paired samples test. So here’s our command:

ttestBF( 
    x = chico$grade_test1, 
    y = chico$grade_test2, 
    paired = TRUE 
 )  

## Bayes factor analysis 
## -------------- 
## [1] Alt., r=0.707 : 5992.05 ±0% 
## 
## Against denominator: 
##   Null, mu = 0  
## --- 
## Bayes factor type: BFoneSample, JZS
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At this point, I hope you can read this output without any difficulty. The data provide evidence of about 6000:1 in favour of the
alternative. We could probably reject the null with some confidence!

This page titled 19.7: Bayesian t-tests is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.

17.7: Bayesian t-tests by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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19.8: Bayesian Regression
Okay, so now we’ve seen Bayesian equivalents to orthodox chi-square tests and t-tests. What’s next? If I were to follow the same
progression that I used when developing the orthodox tests you’d expect to see ANOVA next, but I think it’s a little clearer if we
start with regression.

19.8.1 quick refresher
In Chapter 15 I used the parenthood  data to illustrate the basic ideas behind regression. To remind you of what that data set
looks like, here’s the first six observations:

load("./rbook-master/data/parenthood.Rdata") 
head(parenthood)

##   dan.sleep baby.sleep dan.grump day 
## 1      7.59      10.18        56   1 
## 2      7.91      11.66        60   2 
## 3      5.14       7.92        82   3 
## 4      7.71       9.61        55   4 
## 5      6.68       9.75        67   5 
## 6      5.99       5.04        72   6

Back in Chapter 15 I proposed a theory in which my grumpiness ( dan.grump ) on any given day is related to the amount of
sleep I got the night before ( dan.sleep ), and possibly to the amount of sleep our baby got ( baby.sleep ), though
probably not to the day  on which we took the measurement. We tested this using a regression model. In order to estimate the
regression model we used the lm()  function, like so:

model <- lm(  
  formula = dan.grump ~ dan.sleep + day + baby.sleep, 
  data = parenthood 
)

The hypothesis tests for each of the terms in the regression model were extracted using the summary()  function as shown
below:

summary(model)  
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## 
## Call: 
## lm(formula = dan.grump ~ dan.sleep + day + baby.sleep, data = parenthood) 
## 
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -10.906  -2.284  -0.295   2.652  11.880  
## 
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 126.278707   3.242492  38.945   <2e-16 *** 
## dan.sleep    -8.969319   0.560007 -16.016   <2e-16 *** 
## day          -0.004403   0.015262  -0.288    0.774     
## baby.sleep    0.015747   0.272955   0.058    0.954     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 4.375 on 96 degrees of freedom 
## Multiple R-squared:  0.8163, Adjusted R-squared:  0.8105  
## F-statistic: 142.2 on 3 and 96 DF,  p-value: < 2.2e-16

When interpreting the results, each row in this table corresponds to one of the possible predictors. The (Intercept)  term
isn’t usually interesting, though it is highly significant. The important thing for our purposes is the fact that dan.sleep  is
significant at p<.001 and neither of the other variables are.

19.8.2 Bayesian version
Okay, so how do we do the same thing using the BayesFactor  package? The easiest way is to use the regressionBF()
function instead of lm() . As before, we use formula  to indicate what the full regression model looks like, and the data
argument to specify the data frame. So the command is:

regressionBF( 
  formula = dan.grump ~ dan.sleep + day + baby.sleep, 
  data = parenthood 
)

## Bayes factor analysis 
## -------------- 
## [1] dan.sleep                    : 1.622545e+34 ±0.01% 
## [2] day                          : 0.2724027    ±0% 
## [3] baby.sleep                   : 10018411     ±0% 
## [4] dan.sleep + day              : 1.016576e+33 ±0% 
## [5] dan.sleep + baby.sleep       : 9.77022e+32  ±0% 
## [6] day + baby.sleep             : 2340755      ±0% 
## [7] dan.sleep + day + baby.sleep : 7.835625e+31 ±0% 
## 
## Against denominator: 
##   Intercept only  
## --- 
## Bayes factor type: BFlinearModel, JZS
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So that’s pretty straightforward: it’s exactly what we’ve been doing throughout the book. The output, however, is a little different
from what you get from lm() . The format of this is pretty familiar. At the bottom we have some techical rubbish, and at the top
we have some information about the Bayes factors. What’s new is the fact that we seem to have lots of Bayes factors here. What’s
all this about?

The trick to understanding this output is to recognise that if we’re interested in working out which of the 3 predictor variables are
related to dan.grump , there are actually 8 possible regression models that could be considered. One possibility is the intercept
only model, in which none of the three variables have an effect. At the other end of the spectrum is the full model in which all three
variables matter. So what regressionBF()  does is treat the intercept only model as the null hypothesis, and print out the
Bayes factors for all other models when compared against that null. For example, if we look at line 4 in the table, we see that the
evidence is about 1033 to 1 in favour of the claim that a model that includes both dan.sleep  and day  is better than the
intercept only model. Or if we look at line 1, we can see that the odds are about 1.6×1034 that a model containing the 
dan.sleep  variable (but no others) is better than the intercept only model.

19.8.3 Finding the best model

In practice, this isn’t super helpful. In most situations the intercept only model is one that you don’t really care about at all. What I
find helpful is to start out by working out which model is the best one, and then seeing how well all the alternatives compare to it.
Here’s how you do that. In this case, it’s easy enough to see that the best model is actually the one that contains dan.sleep
only (line 1), because it has the largest Bayes factor. However, if you’ve got a lot of possible models in the output, it’s handy to
know that you can use the head()  function to pick out the best few models. First, we have to go back and save the Bayes factor
information to a variable:

models <- regressionBF( 
  formula = dan.grump ~ dan.sleep + day + baby.sleep, 
  data = parenthood 
)

Let’s say I want to see the best three models. To do this, I use the head()  function specifying n=3 , and here’s what I get as
the result:

head( models, n = 3)  

## Bayes factor analysis 
## -------------- 
## [1] dan.sleep              : 1.622545e+34 ±0.01% 
## [2] dan.sleep + day        : 1.016576e+33 ±0% 
## [3] dan.sleep + baby.sleep : 9.77022e+32  ±0% 
## 
## Against denominator: 
##   Intercept only  
## --- 
## Bayes factor type: BFlinearModel, JZS

This is telling us that the model in line 1 (i.e., dan.grump ~ dan.sleep ) is the best one. That’s almost what I’m looking
for, but it’s still comparing all the models against the intercept only model. That seems silly. What I’d like to know is how big the
difference is between the best model and the other good models. For that, there’s this trick:

head( models/max(models), n = 3)
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## Bayes factor analysis 
## -------------- 
## [1] dan.sleep              : 1         ±0% 
## [2] dan.sleep + day        : 0.0626532 ±0.01% 
## [3] dan.sleep + baby.sleep : 0.0602154 ±0.01% 
## 
## Against denominator: 
##   dan.grump ~ dan.sleep  
## --- 
## Bayes factor type: BFlinearModel, JZS

Notice the bit at the bottom showing that the “denominator” has changed. What that means is that the Bayes factors are now
comparing each of those 3 models listed against the dan.grump ~ dan.sleep  model. Obviously, the Bayes factor in the
first line is exactly 1, since that’s just comparing the best model to itself. More to the point, the other two Bayes factors are both
less than 1, indicating that they’re all worse than that model. The Bayes factors of 0.06 to 1 imply that the odds for the best model
over the second best model are about 16:1. You can work this out by simple arithmetic (i.e., 0.06/1≈16), but the other way to do it
is to directly compare the models. To see what I mean, here’s the original output:

models

## Bayes factor analysis 
## -------------- 
## [1] dan.sleep                    : 1.622545e+34 ±0.01% 
## [2] day                          : 0.2724027    ±0% 
## [3] baby.sleep                   : 10018411     ±0% 
## [4] dan.sleep + day              : 1.016576e+33 ±0% 
## [5] dan.sleep + baby.sleep       : 9.77022e+32  ±0% 
## [6] day + baby.sleep             : 2340755      ±0% 
## [7] dan.sleep + day + baby.sleep : 7.835625e+31 ±0% 
## 
## Against denominator: 
##   Intercept only  
## --- 
## Bayes factor type: BFlinearModel, JZS

The best model corresponds to row 1 in this table, and the second best model corresponds to row 4. All you have to do to compare
these two models is this:

models[1] / models[4]

## Bayes factor analysis 
## -------------- 
## [1] dan.sleep : 15.96088 ±0.01% 
## 
## Against denominator: 
##   dan.grump ~ dan.sleep + day  
## --- 
## Bayes factor type: BFlinearModel, JZS
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And there you have it. You’ve found the regression model with the highest Bayes factor (i.e., dan.grump ~ dan.sleep ),
and you know that the evidence for that model over the next best alternative (i.e., dan.grump ~ dan.sleep + day ) is
about 16:1.

19.8.4 Extracting Bayes factors for all included terms
Okay, let’s say you’ve settled on a specific regression model. What Bayes factors should you report? In this example, I’m going to
pretend that you decided that dan.grump ~ dan.sleep + baby.sleep  is the model you think is best. Sometimes it’s
sensible to do this, even when it’s not the one with the highest Bayes factor. Usually this happens because you have a substantive
theoretical reason to prefer one model over the other. However, in this case I’m doing it because I want to use a model with more
than one predictor as my example!

Having figured out which model you prefer, it can be really useful to call the regressionBF()  function and specifying 
whichModels="top" . You use your “preferred” model as the formula  argument, and then the output will show you the

Bayes factors that result when you try to drop predictors from this model:

regressionBF(  
 formula = dan.grump ~ dan.sleep + baby.sleep, 
 data = parenthood, 
 whichModels = "top" 
)

## Bayes factor top-down analysis 
## -------------- 
## When effect is omitted from dan.sleep + baby.sleep , BF is... 
## [1] Omit baby.sleep : 16.60705     ±0.01% 
## [2] Omit dan.sleep  : 1.025403e-26 ±0.01% 
## 
## Against denominator: 
##   dan.grump ~ dan.sleep + baby.sleep  
## --- 
## Bayes factor type: BFlinearModel, JZS

Okay, so now you can see the results a bit more clearly. The Bayes factor when you try to drop the dan.sleep  predictor is
about 10−26, which is very strong evidence that you shouldn’t drop it. On the other hand, the Bayes factor actually goes up to 17 if
you drop baby.sleep , so you’d usually say that’s pretty strong evidence for dropping that one.

This page titled 19.8: Bayesian Regression is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

17.8: Bayesian Regression by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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19.9: Bayesian ANOVA
As you can tell, the BayesFactor  package is pretty flexible, and it can do Bayesian versions of pretty much everything in this
book. In fact, it can do a few other neat things that I haven’t covered in the book at all. However, I have to stop somewhere, and so
there’s only one other topic I want to cover: Bayesian ANOVA.

quick refresher
As with the other examples, I think it’s useful to start with a reminder of how I discussed ANOVA earlier in the book. First, let’s
remind ourselves of what the data were. The example I used originally is the clin.trial  data frame, which looks like this

load("./rbook-master/data/clinicaltrial.Rdata") 
head(clin.trial)

##       drug    therapy mood.gain 
## 1  placebo no.therapy       0.5 
## 2  placebo no.therapy       0.3 
## 3  placebo no.therapy       0.1 
## 4 anxifree no.therapy       0.6 
## 5 anxifree no.therapy       0.4 
## 6 anxifree no.therapy       0.2

To run our orthodox analysis in earlier chapters we used the aov()  function to do all the heavy lifting. In Chapter 16 I
recommended using the Anova()  function from the car  package to produce the ANOVA table, because it uses Type II tests
by default. If you’ve forgotten what “Type II tests” are, it might be a good idea to re-read Section 16.10, because it will become
relevant again in a moment. In any case, here’s what our analysis looked like:

library(car)

## Loading required package: carData  

model <- aov( mood.gain ~ drug * therapy, data = clin.trial ) 
Anova(model) 

## Anova Table (Type II tests) 
## 
## Response: mood.gain 
##              Sum Sq Df F value    Pr(>F)     
## drug         3.4533  2 31.7143 1.621e-05 *** 
## therapy      0.4672  1  8.5816   0.01262 *   
## drug:therapy 0.2711  2  2.4898   0.12460     
## Residuals    0.6533 12                       
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

That’s pretty clearly showing us evidence for a main effect of drug  at p<.001, an effect of therapy  at p<.05 and no
interaction.

Bayesian version
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How do we do the same thing using Bayesian methods? The BayesFactor  package contains a function called anovaBF()
that does this for you. It uses a pretty standard formula  and data  structure, so the command should look really familiar.
Just like we did with regression, it will be useful to save the output to a variable:

models <- anovaBF(  
 formula = mood.gain ~ drug * therapy, 
 data = clin.trial 
)

The output is quite different to the traditional ANOVA, but it’s not too bad once you understand what you’re looking for. Let’s take
a look:

models

This looks very similar to the output we obtained from the regressionBF()  function, and with good reason. Remember what
I said back in Section 16.6: under the hood, ANOVA is no different to regression, and both are just different examples of a linear
model. Becasue of this, the anovaBF()  reports the output in much the same way. For instance, if we want to identify the best
model we could use the same commands that we used in the last section. One variant that I find quite useful is this:

models/max(models)

## Bayes factor analysis 
## -------------- 
## [1] drug                          : 0.3521042   ±0.94% 
## [2] therapy                       : 0.001047568 ±0.94% 
## [3] drug + therapy                : 1           ±0% 
## [4] drug + therapy + drug:therapy : 0.978514    ±1.29% 
## 
## Against denominator: 
##   mood.gain ~ drug + therapy  
## --- 
## Bayes factor type: BFlinearModel, JZS

By “dividing” the models  output by the best model (i.e., max(models) ), what R is doing is using the best model (which in
this case is drugs + therapy ) as the denominator, which gives you a pretty good sense of how close the competitors are.
For instance, the model that contains the interaction term is almost as good as the model without the interaction, since the Bayes
factor is 0.98. In other words, the data do not clearly indicate whether there is or is not an interaction.

Constructing Bayesian Type II tests
Okay, that’s all well and good, you might be thinking, but what do I report as the alternative to the p-value? In the classical
ANOVA table, you get a single p-value for every predictor in the model, so you can talk about the significance of each effect.
What’s the Bayesian analog of this?

It’s a good question, but the answer is tricky. Remember what I said in Section 16.10 about ANOVA being complicated. Even in
the classical version of ANOVA there are several different “things” that ANOVA might correspond to. Specifically, I discussed
how you get different p-values depending on whether you use Type I tests, Type II tests or Type III tests. To work out which Bayes
factor is analogous to “the” p-value in a classical ANOVA, you need to work out which version of ANOVA you want an analog for.
For the purposes of this section, I’ll assume you want Type II tests, because those are the ones I think are most sensible in general.
As I discussed back in Section 16.10, Type II tests for a two-way ANOVA are reasonably straightforward, but if you have forgotten
that section it wouldn’t be a bad idea to read it again before continuing.
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Assuming you’ve had a refresher on Type II tests, let’s have a look at how to pull them from the Bayes factor table. Suppose we
want to test the main effect of drug . The null hypothesis for this test corresponds to a model that includes an effect of 
therapy , but no effect of drug . The alternative hypothesis is the model that includes both. In other words, what we want is

the Bayes factor corresponding to this comparison:

knitr::kable(tibble::tribble( 
                   ~V1,                            ~V2, 
         "Null model:",        "`mood.gain ~ therapy`", 
  "Alternative model:", "`mood.gain ~ therapy + drug`" 
  ), col.names = c("", ""))

Null model: mood.gain ~ therapy

Alternative model: mood.gain ~ therapy + drug

As it happens, we can read the answer to this straight off the table because it corresponds to a comparison between the model in
line 2 of the table and the model in line 3: the Bayes factor in this case represents evidence for the null of 0.001 to 1. Or, more
helpfully, the odds are about 1000 to 1 against the null.

The main effect of therapy  can be calculated in much the same way. In this case, the null model is the one that contains only
an effect of drug, and the alternative is the model that contains both. So the relevant comparison is between lines 2 and 1 in the
table. The odds in favour of the null here are only 0.35 to 1. Again, I find it useful to frame things the other way around, so I’d refer
to this as evidence of about 3 to 1 in favour of an effect of therapy .

Finally, in order to test an interaction effect, the null model here is one that contains both main effects but no interaction. The
alternative model adds the interaction. That is:

knitr::kable(tibble::tribble( 
                   ~V1,                            ~V2, 
         "Null model:",        "`mood.gain ~ drug + therapy`", 
  "Alternative model:", "`mood.gain ~ drug + therapy + drug:therapy`" 
  ), col.names = c("", ""))

Null model: mood.gain ~ drug + therapy

Alternative model: mood.gain ~ drug + therapy + drug:therapy

If we look those two models up in the table, we see that this comparison is between the models on lines 3 and 4 of the table. The
odds of 0.98 to 1 imply that these two models are fairly evenly matched.

You might be thinking that this is all pretty laborious, and I’ll concede that’s true. At some stage I might consider adding a function
to the lsr  package that would automate this process and construct something like a “Bayesian Type II ANOVA table” from the
output of the anovaBF()  function. However, I haven’t had time to do this yet, nor have I made up my mind about whether it’s
really a good idea to do this. In the meantime, I thought I should show you the trick for how I do this in practice. The command that
I use when I want to grab the right Bayes factors for a Type II ANOVA is this one:

max(models)/models
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##                 denominator 
## numerator            drug  therapy drug + therapy 
##   drug + therapy 2.840068 954.5918              1 
##                 denominator 
## numerator        drug + therapy + drug:therapy 
##   drug + therapy                      1.021958

The output isn’t quite so pretty as the last one, but the nice thing is that you can read off everything you need. The best model is 
drug + therapy , so all the other models are being compared to that. What’s the Bayes factor for the main effect of drug

? The relevant null hypothesis is the one that contains only therapy , and the Bayes factor in question is 954:1. The main effect
of therapy  is weaker, and the evidence here is only 2.8:1. Finally, the evidence against an interaction is very weak, at 1.01:1.

Reading the results off this table is sort of counterintuitive, because you have to read off the answers from the “wrong” part of the
table. For instance, the evidence for an effect of drug  can be read from the column labelled therapy , which is pretty
damned weird. To be fair to the authors of the package, I don’t think they ever intended for the anovaBF()  function to be used
this way. My understanding  is that their view is simply that you should find the best model and report that model: there’s no
inherent reason why a Bayesian ANOVA should try to follow the exact same design as an orthodox ANOVA.

In any case, if you know what you’re looking for, you can look at this table and then report the results of the Bayesian analysis in a
way that is pretty closely analogous to how you’d report a regular Type II ANOVA. As I mentioned earlier, there’s still no
convention on how to do that, but I usually go for something like this:

A Bayesian Type II ANOVA found evidence for main effects of drug (Bayes factor: 954:1) and therapy (Bayes factor: 3:1), but no
clear evidence for or against an interaction (Bayes factor: 1:1).

This page titled 19.9: Bayesian ANOVA is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro
via source content that was edited to the style and standards of the LibreTexts platform.
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19.10: Summary
The first half of this chapter was focused primarily on the theoretical underpinnings of Bayesian statistics. I introduced the
mathematics for how Bayesian inference works (Section 17.1), and gave a very basic overview of how Bayesian hypothesis testing
is typically done (Section 17.2). Finally, I devoted some space to talking about why I think Bayesian methods are worth using
(Section 17.3.

The second half of the chapter was a lot more practical, and focused on tools provided by the BayesFactor  package.
Specifically, I talked about using the contingencyTableBF()  function to do Bayesian analogs of chi-square tests (Section
17.6, the ttestBF()  function to do Bayesian t-tests, (Section 17.7), the regressionBF()  function to do Bayesian
regressions, and finally the anovaBF()  function for Bayesian ANOVA.

If you’re interested in learning more about the Bayesian approach, there are many good books you could look into. John
Kruschke’s book Doing Bayesian Data Analysis is a pretty good place to start (Kruschke 2011), and is a nice mix of theory and
practice. His approach is a little different to the “Bayes factor” approach that I’ve discussed here, so you won’t be covering the
same ground. If you’re a cognitive psychologist, you might want to check out Michael Lee and E.J. Wagenmakers’ book Bayesian
Cognitive Modeling (Lee and Wagenmakers 2014). I picked these two because I think they’re especially useful for people in my
discipline, but there’s a lot of good books out there, so look around!
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253. http://en.wikiquote.org/wiki/David_Hume
254. http://en.Wikipedia.org/wiki/Climate_of_Adelaide
255. It’s a leap of faith, I know, but let’s run with it okay?
256. Um. I hate to bring this up, but some statisticians would object to me using the word “likelihood” here. The problem is that the

word “likelihood” has a very specific meaning in frequentist statistics, and it’s not quite the same as what it means in Bayesian
statistics. As far as I can tell, Bayesians didn’t originally have any agreed upon name for the likelihood, and so it became
common practice for people to use the frequentist terminology. This wouldn’t have been a problem, except for the fact that the
way that Bayesians use the word turns out to be quite different to the way frequentists do. This isn’t the place for yet another
lengthy history lesson, but to put it crudely: when a Bayesian says “a likelihood function” they’re usually referring one of the
rows of the table. When a frequentist says the same thing, they’re referring to the same table, but to them “a likelihood
function” almost always refers to one of the columns. This distinction matters in some contexts, but it’s not important for our
purposes.

257. If we were being a bit more sophisticated, we could extend the example to accommodate the possibility that I’m lying about the
umbrella. But let’s keep things simple, shall we?

258. You might notice that this equation is actually a restatement of the same basic rule I listed at the start of the last section. If you
multiply both sides of the equation by P(d), then you get P(d)P(h|d)=P(d,h), which is the rule for how joint probabilities are
calculated. So I’m not actually introducing any “new” rules here, I’m just using the same rule in a different way.

259. Obviously, this is a highly simplified story. All the complexity of real life Bayesian hypothesis testing comes down to how you
calculate the likelihood P(d|h) when the hypothesis h is a complex and vague thing. I’m not going to talk about those
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complexities in this book, but I do want to highlight that although this simple story is true as far as it goes, real life is messier
than I’m able to cover in an introductory stats textbook.

260. http://www.imdb.com/title/tt0093779/quotes. I should note in passing that I’m not the first person to use this quote to complain
about frequentist methods. Rich Morey and colleagues had the idea first. I’m shamelessly stealing it because it’s such an
awesome pull quote to use in this context and I refuse to miss any opportunity to quote The Princess Bride.

261. http://about.abc.net.au/reports-publications/appreciation-survey-summary-report-2013/
262. http://knowyourmeme.com/memes/the-cake-is-a-lie
263. In the interests of being completely honest, I should acknowledge that not all orthodox statistical tests that rely on this silly

assumption. There are a number of sequential analysis tools that are sometimes used in clinical trials and the like. These
methods are built on the assumption that data are analysed as they arrive, and these tests aren’t horribly broken in the way I’m
complaining about here. However, sequential analysis methods are constructed in a very different fashion to the “standard”
version of null hypothesis testing. They don’t make it into any introductory textbooks, and they’re not very widely used in the
psychological literature. The concern I’m raising here is valid for every single orthodox test I’ve presented so far, and for
almost every test I’ve seen reported in the papers I read.

264. A related problem: http://xkcd.com/1478/
265. Some readers might wonder why I picked 3:1 rather than 5:1, given that Johnson (2013) suggests that p=.05 lies somewhere in

that range. I did so in order to be charitable to the p-value. If I’d chosen a 5:1 Bayes factor instead, the results would look even
better for the Bayesian approach.

266. http://www.quotationspage.com/quotes/Ambrosius_Macrobius/
267. Okay, I just know that some knowledgeable frequentists will read this and start complaining about this section. Look, I’m not

dumb. I absolutely know that if you adopt a sequential analysis perspective you can avoid these errors within the orthodox
framework. I also know that you can explictly design studies with interim analyses in mind. So yes, in one sense I’m attacking a
“straw man” version of orthodox methods. However, the straw man that I’m attacking is the one that is used by almost every
single practitioner. If it ever reaches the point where sequential methods become the norm among experimental psychologists
and I’m no longer forced to read 20 extremely dubious ANOVAs a day, I promise I’ll rewrite this section and dial down the
vitriol. But until that day arrives, I stand by my claim that default Bayes factor methods are much more robust in the face of
data analysis practices as they exist in the real world. Default orthodox methods suck, and we all know it.

268. If you’re desperate to know, you can find all the gory details in Gunel and Dickey (1974). However, that’s a pretty technical
paper. The help documentation to the contingencyTableBF()  gives this explanation: “the argument 
priorConcentration  indexes the expected deviation from the null hypothesis under the alternative, and corresponds to

Gunel and Dickey’s (1974) a parameter.” As I write this I’m about halfway through the Gunel and Dickey paper, and I agree
that setting a=1 is a pretty sensible default choice, since it corresponds to an assumption that you have very little a priori
knowledge about the contingency table.

269. In some of the later examples, you’ll see that this number is not always 0%. This is because the BayesFactor  package
often has to run some simulations to compute approximate Bayes factors. So the answers you get won’t always be identical
when you run the command a second time. That’s why the output of these functions tells you what the margin for error is.

270. Apparently this omission is deliberate. I have this vague recollection that I spoke to Jeff Rouder about this once, and his opinion
was that when homogeneity of variance is violated the results of a t-test are uninterpretable. I can see the argument for this, but
I’ve never really held a strong opinion myself. (Jeff, if you never said that, I’m sorry)

271. Just in case you’re interested: the “JZS” part of the output relates to how the Bayesian test expresses the prior uncertainty about
the variance σ2, and it’s short for the names of three people: “Jeffreys Zellner Siow”. See Rouder et al. (2009) for details.

272. Again, in case you care … the null hypothesis here specifies an effect size of 0, since the two means are identical. The
alternative hypothesis states that there is an effect, but it doesn’t specify exactly how big the effect will be. The r value here
relates to how big the effect is expected to be according to the alternative. You can type ?ttestBF  to get more details.

273. Again, guys, sorry if I’ve misread you.
274. I don’t even disagree with them: it’s not at all obvious why a Bayesian ANOVA should reproduce (say) the same set of model

comparisons that the Type II testing strategy uses. It’s precisely because of the fact that I haven’t really come to any strong
conclusions that I haven’t added anything to the lsr  package to make Bayesian Type II tests easier to produce.

This page titled 19.10: Summary is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro via
source content that was edited to the style and standards of the LibreTexts platform.
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20.1: Angry Moods

Ways to improve an angry mood: A look at gender and sports participation

Research conducted by
Emily Zitek and Mindy Ater, Rice University

Case study prepared by

Emily Zitek

Overview
People have different ways of improving their mood when angry. We have all seen people punch a wall when mad, and indeed,
previous research has indicated that some people aggress to improve their mood (Bushman, Baumeister & Phillips, ). What do
the top athletes do when angry? Striegel ( ) found that anger often hurts an athlete’s performance and that capability to control
anger is what makes good athletes even better. This study adds to the past research and examines the difference in ways to improve
an angry mood by gender and sports participation.

The participants were  Rice University undergraduates, ages  to . Of these  participants,  were females and  were
males and  were athletes and  were non-athletes. People who did not play a varsity or club sport were considered non-athletes.
The  contact sport athletes played soccer, football, rugby, or basketball, and the  non-contact sport athletes participated in
Ultimate Frisbee, baseball, tennis, swimming, volleyball, crew, or dance.

The participants were asked to respond to a questionnaire that asked about what they do to improve their mood when angry or
furious. Then they filled out a demographics questionnaire.

This study used the most recent version of the State-Trait Anger Expression Inventory (STAXI-2) (Spielberger, Sydeman,
Owen & Marsh, 1999) which was modified to create an Angry Mood Improvement Inventory similar to that created by
Bushman et al. (2001).

Questions to Answer
Do athletes and non-athletes deal with anger in the same way? Are there any gender differences? Specifically, are men more likely
to believe that aggressive behavior can improve an angry mood?

Design Issues

This study has an extremely unbalanced design. There were a lot more non-athletes than athletes in the sample. In the future, more
athletes should be used. This study originally wanted to look at contact and non-contact athletes separately, but there were not
enough participants to do this. Future studies could look at this.

Descriptions of Variables
Table : Description of Variables. Note that the description of the items comes from Spielberger et

al. (1999)

Variable Description

Sports 1 = athletes, 2 = non-athletes

Gender 1 = males, 2 = females
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Anger-Out (AO)
high scores demonstrate that people deal with anger
by expressing it in a verbally or physically
aggressive fashion

Anger-In 
(AI)

high scores demonstrate that people experience anger
but do not express it (suppress their anger)

Control-Out (CO)
high scores demonstrate that people control the
outward expression of angry feelings

Control-In (CI)
high scores demonstrate that people control angry
feelings by calming down or cooling off

Expression (AE)
index of general anger expression: 
(Anger-Out) + (Anger-In) - (Control-Out) - (Control-
In) + 48

Data files
angry_moods.xls

References
Bushman, B.J., Baumeister, R.F. & Phillips, C.M. (2001). Do people aggress to improve their mood? Catharsis beliefs, affect
regulation opportunity, and aggressive responding. Journal of Personality and Social Psychology, 81(1), 17-32.
Spielberger, C. D., Sydeman, S. J., Owen, A. E., Marsh, B. J. (1999). Measuring anxiety and anger with the State-Trait Anxiety
Inventory (STAI) and the State-Trait Anger Expression Inventory (STAXI). In M. E. Maruish (Ed.), The use of psychological
testing for treatment planning and outcomes assessment (2nd ed., pp. 993-1021). Mahwah: Lawrence Erlbaum Associates.
Striegel, D. (1994). Anger in tennis: Part 2. Effects of anger on performance, coping with anger, and using anger to one’s
benefit. Journal of Performance Psychology, 2, 56-92.
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20.2: Flatulence

Flatulence: Are you embarrassed by your flatus?

Research conducted by
Shannon E. Collins, UH-D undergraduate,

Faculty Advisor: Heidi Ziemer

Case study prepared by
Shannon E. Collins

Overview
The purpose of this study was to find out whether or not people are embarrassed by their flatulence. The participants were 
University of Houston – Downtown students. Flatulence is a normal part of being human, but it can cause an alarming rate of
embarrassment in certain situations. How many times have you been subjected to the unpleasant odor emitted from someone
around you? Medical research indicates that it is normal to have anywhere from  to  episodes of gas in a day.

Would you believe that women produce more of the bad smelling stuff than men do, and that women are more likely to complain to
their doctors about the smell of their flatulence? The smell comes from sulfur gasses, the most offensive of which is hydrogen
sulfide; it smells like rotten eggs. Still, everybody does it, we just don’t know how embarrassed they are by it.

Questions to Answer
Are people without male siblings more embarrassed by their flatulence than people with one or more male siblings? Do people that
come from households where flatulence was acceptable report less embarrassment than people that come from households where it
was not acceptable? Are women or men more embarrassed by their flatus?

Design Issues

Embarrassment scores were reported on  different measures and tallied as a total embarrassment score, then divided into seven
categories, producing one number per category. Only the scores on the seven categories are reported here. The data in this research
is self report data, and because the topic is sensitive some people may have been less than honest about their reported flatulence.

Descriptions of Variables
Table : Description of variables

Variable Description

Gender 1 = male, 2 = female

famaccp
Household acceptance of flatus 
1 to 7, 1=very acceptable and 7=very unacceptable

brother Number of brothers the participant has

howlong

How long before farting in front of partner? 
1 = 1 year, .5= 6 months, .25=3 months, and smaller
decimals represent portions of a year. Numbers
larger than 1 indicate longer than 1 year.

perday Number per day
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Embarrassing Situations
The following variables were rated on this scale:
1=extremely embarrassed and 7= not really
embarrassed

mtgwork Meeting at work

talkprof Talking to a professor

romint Romantic interest

Data files
flatulence.xls

References
Chapman, S. (2001 December 22). Hot Air? BMJ: British Medical Journal. 323(7327). Retrieved from, Health source database.
Gases of the Gut. Harvard Health Letter. August 2002. 27(10).
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from, Health source database.
Lecture Theatre Etiquette. (June 2000). Student BMJ. Vol. 8. Retrieved from, Health source database.
Manley, W. (October 1999). Noisome Rumblings. American Libraries Online. Retrieved from,
www.search.epnet.com/direct.a...4&db=hch&tg=AN
Robb-Nicholson, C. (March 2003). By The Way Doctor. Harvard Women’s Health Watch. 10(7). Retrieved from, Academic
Edition of Health Source database.

This page titled 20.2: Flatulence is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via source
content that was edited to the style and standards of the LibreTexts platform.

20.2: Flatulence by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/36249?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/20%3A_Case_Studies_and_Data/20.02%3A_Flatulence
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/20%3A_Case_Studies_and_Data/20.02%3A_Flatulence?no-cache
http://www.ruf.rice.edu/~lane/
https://onlinestatbook.com/
https://stats.libretexts.org/@go/page/2209
http://www.ruf.rice.edu/~lane/
https://en.wikipedia.org/wiki/Public_domain
https://onlinestatbook.com/


20.3.1 https://stats.libretexts.org/@go/page/36250

20.3: Physicians Reactions

Physicians' Reactions to Patient Size

 
Research conducted by
Mikki Hebl and Jingping Xu

Case study prepared by

Emily Zitek

Overview
Obese people face discrimination on a daily basis in employment, education, and relationship contexts. Past research has shown
that even doctors, who are trained to treat all their patients warmly and have access to literature suggesting uncontrollable and
hereditary aspects of obesity, believe obese individuals are undisciplined and suffer from controllability issues. This case study
examines how doctors treat overweight as compared to normal weight patients.

Various doctors at one of three major hospitals in the Texas Medical Center of Houston participated in the study. These doctors
were sent a packet containing a medical chart similar to the one they view upon seeing a patient. This chart portrayed a patient who
was displaying symptoms of a migraine headache but was otherwise healthy. This chart also contained a measure of the patient's
weight. Doctors were randomly assigned to receive the chart of a patient who was overweight or the chart of a patient who was of
normal weight. After reviewing the chart, the doctors then had to indicate how much time they believed they would spend with the
patient.

Questions to Answer

Do doctors discriminate against overweight patients? Specifically, do the doctors who review charts of overweight patients say they
would spend the same amount of time with their patients as the doctors who review charts of normal weight patients?

Design Issues
The method and data described here are only a small part of a larger study. See the reference below for a full description of the
study.

Descriptions of Variables
Table : Description of variables

Variable Description

Patient weight 1 = average weight, 2 = overweight

Time
represents how long the doctors said they would
spend with the patient

Data files
Weight.xls

References
Hebl, M., & Xu, J., "Weighing the care: Physicians' reactions to the size of a patient," International Journal of Obesity, 25
(2001): 1246-1252

Learning Objectives

20.3.1

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/36250?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/20%3A_Case_Studies_and_Data/20.03%3A_Physicians_Reactions


20.3.2 https://stats.libretexts.org/@go/page/36250

This page titled 20.3: Physicians Reactions is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via
source content that was edited to the style and standards of the LibreTexts platform.

20.3: Physicians Reactions by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/36250?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/20%3A_Case_Studies_and_Data/20.03%3A_Physicians_Reactions
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/20%3A_Case_Studies_and_Data/20.03%3A_Physicians_Reactions?no-cache
http://www.ruf.rice.edu/~lane/
https://onlinestatbook.com/
https://stats.libretexts.org/@go/page/2210
http://www.ruf.rice.edu/~lane/
https://en.wikipedia.org/wiki/Public_domain
https://onlinestatbook.com/


20.4.1 https://stats.libretexts.org/@go/page/36251

20.4: Teacher Ratings

Teacher Ratings

 
Research conducted by
Annette Towler and Robert Dipboye

Case study prepared by

Emily Zitek

Overview
How powerful are rumors? Frequently, students ask friends and/or look at instructor evaluations to decide if a class is worth taking.
Kelley ( ) found that instructor reputation has a profound impact on actual teaching ratings, and Towler and Dipboye ( )
replicated and extended this study.

Subjects were randomly assigned to one of two conditions. Before viewing the lecture, students were given a summary of the
instructors' prior teaching evaluations. There were two conditions: Charismatic instructor and Punitive instructor.

Then all subjects watched the same twenty-minute lecture given by the exact same lecturer. Following the lecture, subjects
answered three questions about the leadership qualities of the lecturer. A summary rating score was computed and used as the
variable "rating" here.

Questions to Answer
Does an instructor's prior reputation affect student ratings?

Design Issues

The data presented here are part of a larger study. See the references below to learn more.

Descriptions of Variables
Table : Description of Variables

Variable Description

Condition
this represents the content of the description that the
students were given about the professor (1 =
charismatic, 2 = punitive)

Rating
how favorably the subjects rated the professor after
hearing the lecture (higher ratings are more
favorable)

Data files
Ratings.xls

References
Kelley, H. H.(1950). The warm-cold variable in first impression of persons. Journal of Personality, 18, 431-439.
Towler, A., & Dipboye, R. L. (1998). The effect of instructor reputation and need for cognition on student behavior (poster
presented at American Psychological Society conference, May 1998).
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20.5: Diet and Health

Mediterranean Diet and Health

Research conducted by

De Longerill et al

Case study prepared by
David Lane and Emily Zite

Overview
Most doctors would probably agree that a Mediterranean diet, rich in vegetables, fruits, and grains, is healthier than a high-
saturated fat diet. Indeed, previous research has found that the diet can lower risk of heart disease. However, there is still
considerable uncertainty about whether the Mediterranean diet is superior to a low-fat diet recommended by the American Heart
Association. This study is the first to compare these two diets.

The subjects,  survivors of a heart attack, were randomly assigned follow either

1. a diet close to the "prudent diet step " of the American Heart Association (control group) or
2. a Mediterranean-type diet consisting of more bread and cereals, more fresh fruit and vegetables, more grains, more fish, fewer

delicatessen foods, less meat.

An experimental canola-oil-based margarine was used instead of butter or cream. The oils recommended for salad and food
preparation were canola and olive oils exclusively. Moderate red wine consumption was allowed.

Over a four-year period, patients in the experimental condition were initially seen by the dietician, two months later, and then once
a year. Compliance with the dietary intervention was checked by a dietary survey and analysis of plasma fatty acids. Patients in the
control group were expected to follow the dietary advice given by their physician.

The researchers collected information on number of deaths from cardiovascular causes e.g., heart attack, strokes, as well as number
of nonfatal heart-related episodes. The occurrence of malignant and nonmalignant tumors was also carefully monitored.

Questions to Answer

Is the Mediterranean diet superior to a low-fat diet recommended by the American Heart Association?

Design Issues
The strength of the design is that subjects were randomly assigned to conditions. A possible weakness is that compliance rates
depended on reports rather than observation since observation is impractical in this type of research.

Descriptions of Variables
Table : Description of Variables

Learning Objectives
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Variable Description

Type of diet AHA or Mediterranean

Various outcome measures of health and disease does the patient have cancer, etc.?

Data Files

Diet.xls

Links
More on the Mediterranean Diet

References
De Longerill, M., Salen, P., Martin, J., Monjaud, I., Boucher, P., Mamelle, N. (1998). Mediterranean Dietary pattern in a
Randomized Trial. Archives of Internal Medicine, 158, 1181-1187.
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20.6: Smiles and Leniency

To study the research on effects of smiling

Research conducted by
Marianne LaFrance and Marvin Hecht

Case study prepared by

David Lane

Overview
Dale Carnegie stated that smiling helps win friends and influence people. Research on the effects of smiling has backed this up and
shown that a smiling person is judged to be more pleasant, attractive, sincere, sociable, and competent than a non-smiling person.

There is evidence that smiling can attenuate judgments of possible wrongdoing. This phenomenon termed the "smile-leniency
effect" was the focus of a study by Marianne LaFrance & Marvin Hecht in 1995.

Questions to Answer

Does smiling increase leniency? Are different types of smiles differentially effective?

Design Issues
There was a single person used for all the conditions. This may limit the generalizeability of the results.

Descriptions of Variables
Table : Description of Variables

Variable Description

Smile

1 is false smile 
2 is felt smile 
3 is miserable smile 
4 is neutral control

Leniency
A measure of how lenient the
judgments were.

Data Files

Leniency.xls

References
LaFrance, M., & Hecht, M. A. (1995) Why smiles generate leniency. Personality and Social Psychology Bulletin, 21, 207-214.
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20.7: Animal Research

Gender difference in attitudes toward the use of animals in research

Research conducted by
Nicole Hilliard, Faculty Advisor: Heidi Ziemer

Case study prepared by

Emily Zitek

Overview
The use of animals in research is a controversial and emotionally charged issue. Personal feelings regarding the use of animals in
research vary widely. While many believe that the use of animals in research has been and continues to be essential, others want the
practice stopped by cutting off funding or the passing of legislative restrictions. Research on human attitudes toward the use of
animals in research has consistently shown systematic differences of opinion with gender differences among the largest.

In this study, a convenience sample of  University of Houston - Downtown students completed a simple survey that asked their
gender and how much they agreed with the following two statements: "The use of animals in research is wrong," and "The use of
animals in research is necessary". They rated their agreement with each of these statements on a -point scale from strongly
disagree ( ) to strongly agree ( ).

Questions to Answer
Is there a gender difference with respect to the belief that animal research is wrong? Is there a gender difference with respect to the
belief that animal research is necessary?

Design Issues
This is self-report data. It is possible that the willingness to admit to thinking animal research is wrong or necessary is what differs
by gender, not how the participants actually feel.

Descriptions of Variables
Table : Description of Variables

Variable Description

Gender 1 = female, 2 = male

Wrong
high scores indicate that the participant believes that

animal research is wrong

Necessary
high scores indicate that the participant believes that

animal research is necessary

Learning Objectives
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Data Files
Animals.xls

Links

American Association for the Advancement of Science
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20.8: ADHD Treatment

Treatment Effects of a Drug on Cognitive Functioning in Children with Mental Retardation and ADHD

Research conducted by
Pearson et al. (2003, see reference below)

Case study prepared by

David Lane and Emily Zitek

Overview
This study investigated the cognitive effects of stimulant medication in children with mental retardation and Attention-
Deficit/Hyperactivity Disorder. This case study shows the data for the Delay of Gratification (DOG) task. Children were given
various dosages of a drug, methylphenidate (MPH) and then completed this task as part of a larger battery of tests. The order of
doses was counterbalanced so that each dose appeared equally often in each position. For example, six children received the lowest
dose first, six received it second, etc. The children were on each dose one week before testing.

This task, adapted from the preschool delay task of the Gordon Diagnostic System (Gordon, 1983), measures the ability to suppress
or delay impulsive behavioral responses. Children were told that a star would appear on the computer screen if they waited “long
enough” to press a response key. If a child responded sooner in less than four seconds after their previous response, they did not
earn a star, and the 4-second counter restarted. The DOG differentiates children with and without ADHD of normal intelligence
(e.g., Mayes et al., 2001), and is sensitive to MPH treatment in these children (Hall & Kataria, 1992).

Questions to Answer

Does higher dosage lead to higher cognitive performance (measured by the number of correct responses to the DOG task)?

Design Issues
This is a repeated-measures design because each participant performed the task after each dosage.

Descriptions of Variables
Table : Description of Variables

Variable Description

d0 Number of correct responses after taking a placebo

d15
Number of correct responses after taking .15 mg/kg

of the drug

d30
Number of correct responses after taking .30 mg/kg

of the drug

d60
Number of correct responses after taking .60 mg/kg

of the drug

Data Files

ADHD.xls
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Links
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20.9: Weapons and Aggression

Study of the "Weapons" effect

Research conducted by
Anderson, Benjamin, and Bartholow

Case study prepared by

David Lane

Overview
The "weapons effect" is the finding that the presence of a weapon or even a picture of a weapon can cause people to behave more
aggressively. Although once a controversial finding, the weapons effect is now a well-established phenomenon. Based on this,
Anderson, Benjamin, and Bartholow (1998) hypothesize that the presence of a weapon-word prime (such as "dagger" or "bullet")
should increase the accessibility of an aggressive word (such as "destroy" or "wound"). The accessibility of a word can be
measured by the time it takes to name a word presented on computer screen.

The subjects were undergraduate students ranging in age from  to  years. They were told that the purpose of this study was to
test reading ability of various words. On each of the  trials, a computer presented a priming stimulus word (either a weapon or
non-weapon word) for  seconds, a blank screen for  seconds, and then a target word (aggressive or non-aggressive word).
Each subject named both aggressive and non-aggressive words following both weapon and non-weapon "primes." The
experimenter instructed the subjects to read the first word to themselves and then to read the second word out loud as quickly as
they could. The computer recorded response times and computed mean response times for each participant for each of the four
conditions.

Examples of the four types of words
Weapon word primes: shotgun, grenade
Non-weapon word primes: rabbit, fish
Aggressive word: injure, shatter
Non-aggressive word: consider, relocate

Questions to Answer

Does the mere presence of a weapon increase the accessibility of aggressive thoughts? More specifically, can a person name an
aggressive word more quickly if it is preceded by a weapon word prime than if it is preceded by a neutral (non-aggressive) word
prime?

Design Issues
This is a within-subjects design, and each participant provided four scores to the analysis.

Descriptions of Variables
Table : Description of Variables

Variable Description

gender 1 = female, 2 = male

aw
The time in milliseconds (msec) to name aggressive
word following a weapon word prime.

Learning Objectives
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an
The time in milliseconds (msec) to name aggressive
word following a non-weapon word prime.

cw
The time in milliseconds (msec) to name a control
word following a weapon word prime.

cn
The time in milliseconds (msec) to name a control
word following a non-weapon word prime.

Data Files

Guns.xls

References
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20.10: SAT and College GPA

Predicting college GPA from high school scores

 
Research conducted by
Thomas W. MacFarland

Case study prepared by

Emily Zitek

Overview
When deciding whether to admit an applicant, colleges take lots of factors, such as grades, sports, activities, leadership positions,
awards, teacher recommendations, and test scores, into consideration. Using SAT scores as a basis of whether to admit a student or
not has created some controversy. Among other things, people question whether the SATs are fair and whether they predict college
performance.

This study examines the SAT and GPA information of  students who graduated from a state university with a B.S. in computer
science. Using the grades and test scores from high school, can you predict a student's college grades?

Questions to Answer

Can the math and verbal SAT scores be used to predict college GPA? Are the high school and college GPAs related?

Design Issues
The conclusions from this study should not be generalized to students of other majors.

Descriptions of Variables
Table : Description of Variables

Variable Description

high_GPA High school grade point average

math_SAT Math SAT score

verb_SAT Verbal SAT score

comp_GPA Computer science grade point average

univ_GPA Overall university grade point average

Data Files

SAT.xls

Links
Want a job? Hand over your SAT results! Is the SAT a fair test?

References
None
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20.11: Stereograms

Study to determine the effects of information for an embedded image given ahead of time to a person

Research conducted by
Frisby, J. P. and Clatworthy, J.L.

Case study prepared by

Emily Zitek from DASL story contributed by Michael Friendly

Overview
The rectangles below appear to be composed of random dots. However, if the images are viewed with a stereo viewer, the separate
images will fuse and reveal an embedded  figure. In this example, fusing the images of these random dot stereograms will
reveal a diamond. (Another way for you to fuse the images is to fixate on a point in between them and defocus your eyes. This
technique takes practice, but you can try it out with the links below.)

This experiment sought to determine whether giving someone information about the embedded image can help speed up how long
it takes to view this image. Seventy-eight participants were given no information, verbal information, and/or visual information (a
drawing of the object) about what the embedded image should look like before attempting to fuse the images and actually view the
3D design.

Figure : Random dots form an embedded image when viewed with a stereo viewer

Questions to Answer

Does giving someone information about an embedded image in a stereogram affect the amount of time it takes to see this image?
More specifically, does the amount of time it takes to fuse the image in a stereogram differ when the person is given both verbal
and visual information about what the image should look like as opposed to when the person is only given verbal information or no
information at all?

Descriptions of Variables
Table : Description of Variables

Variable Description

Time
Time to produce a fused image of the random dot
stereogram

Group

Treatment group divided by type of information
received: 
1 = no information or only verbal information 
2 = both verbal and visual information

Data Files

Fusion.xls
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Links

View random dot stereograms. Information about random dot stereograms
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20.12: Driving

Driving in inclement weather

Research conducted by

Darin Baskin

Case study prepared by
Emily Zitek

Overview

Many people believe that weather patterns influence driving safety. As a result, there are many web sites and other publications
dedicated to giving people tips about how to drive in various weather conditions (see references and links below). Additionally, car
accidents are often attributed to bad weather (e.g., see Taylor & Quinn, 1991). This study examines the beliefs and behaviors of
people with respect to the important topic of driving in inclement weather.

The participants in this study filled out a questionnaire consisting of some demographic questions and then questions asking about
their transportation habits and other beliefs concerning inclement weather. This questionnaire was administered to a convenience
sample of  University of Houston - Downtown students at various locations (i.e., classrooms, hallways, and the food court).

Questions to Answer
Is gender or age related to the likelihood of driving in inclement weather? Does the number of accidents that someone thinks occur
during inclement weather relate to how often he or she takes public transportation or chooses to drive during inclement weather?

Design Issues

This is a correlational study, so we cannot infer causation.

Descriptions of Variables

Variable Description

Age The age of the participant in years

Gender 1 = female, 2 = male

Cho2drive
How often he or she chooses to drive in inclement
weather 
1 = always, 3 = sometimes, 5 = never
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Pubtran
% of travel time spent on public transportation in
inclement weather

Accident
% of accidents thought to occur from driving in
inclement weather

Data Files
Driving.xls

Links

Driving on Wet Roads. Jokes about Driving in Inclement Weather.
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20.13: Stroop Interference

Strrop Interference demonstration

 
Research conducted by
Statistics Class

Case study prepared by

David Lane

Overview
Naming the ink color of color words can be difficult. For example, if asked to name the color of the word "blue" is difficult because
the answer (red) conflicts with the word "blue." This interference is called "Stroop Interference" after the researcher who first
discovered the phenomenon.

This case study is a classroom demonstration. Students in an introductory statistics class were each given three tasks. In the
"words" task, students read the names of  color words written in black ink; in the "color" task, students named the colors of 
rectangles; in the "interference" task, students named the ink color of  conflicting color words. The times to read the stimuli were
recorded. There were  female and  male students.

Questions to Answer

Is naming conflicting color names faster or slower than naming color rectangles? Which is faster, naming color rectangles or
reading color names? Are there gender differences?

Design Issues
This was not a well-controlled experiment since it was just a classroom demonstration. The order in which the students performed
the tasks may not have been counterbalanced or randomized.

Descriptions of Variables
Table : Description of Variables

Variable Description

Gender 1 for female, 2 for male

Words Time in seconds to read 60 color words

Colors Time in seconds to name 60 color rectangles

Interfer Time in seconds to name colors of conflicting words

Data Files

Stroop.xls

Links
Full text of the above reference.

Learning Objectives
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20.14: TV Violence

Does Television Viewing Encourage Aggression in Children?

Research conducted by
Mariana Fernandez, University of Houston-Downtown undergraduate

Case study prepared by

Nichole Rivera

Overview
How much television is too much for children? Television advocates espouse the educational benefits that children may reap from
instructive programming. However, many researchers say that excess television watching may contribute to aggressive behavior in
children. Young boys, in particular may be susceptible to this effect. What are the effects, if any, on children’s behavior when
television is used as a babysitter?

In a survey of University of Houston-Downtown students, parents reported their children's age, characteristic behavior, and
television viewing habits. Convenience sampling was used to gather  subjects ( ).

Questions to Answer

Is there a relationship between hours of television watched and child's obedience? Will a child be more or less aggressive if he/she
watches a lot of television?

Design Issues
This survey offered a very limited sample ( ), which was further hindered by reporting participants’ filling out an individual
survey for each individual child. This contributes to some lack of true variability in responses because participants tended to report
similar behavior for each child. This may magnify errors associated with self-reported data. The sample would provide greater
reliability if each participant reported on only one child’s behavior.

The survey has broad questions which do not provide much context for reported behaviors. In some instances aggression may be
positively rated, but this survey treats all aggression as a negative characteristic. In addition, the instrument itself measures largely
nominal data, making in depth analysis difficult.

Descriptions of Variables
Table : Description of Variables

Variable Description

TV hours Total number of TV hours watched per day
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Obedience
How obedient the child is 
1 = very obedient, 5 = not obedient

Attitude
Attitude while playing with other children 
1 = non-aggressive, 5 = very aggressive

Data Files
TV.xls

Links

TV Guide - Mighty Morphin' Power Rangers v. Teenage Mutant Ninja Turtles

References
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20.15: Obesity and Bias

Bias Against Associates of the Obese

Research conducted by
Mikki Hebl and Laura Mannix

Case study prepared by

Emily Zitek

Overview
Obesity is a major stigma in our society. People who are obese face a great deal of prejudice and discrimination. For example,
Roehling (1999) showed that obese people experience a lot of discrimination in the workplace (e.g., they are less likely to be hired
and get lower wages). We know that people who are obese are stigmatized, but what about people who are somehow associated
with an obese person? Neuberg et al. (1994) found that friends of gay men and lesbians suffer from "stigma by association".
Perhaps the negative effects of the obesity stigma can also spread to other people. This study seeks to examine how the stigma of
obesity can spread to a job applicant of average weight.

As part of a larger study, participants had to rate how qualified a particular job applicant was. This applicant was sitting by a
woman. The researchers manipulated the following two variables: the weight of the woman and the relationship between the
woman and the applicant. The woman was either obese or of average weight. This woman was also portrayed as being the
applicant's girlfriend or a woman simply waiting to participate in a different experiment.

Questions to Answer

Are male applicants who are seated next to an obese woman rated as less qualified for a job? Are applicants who are seated next to
their girlfriend rated differently from applicants seated next to a woman with whom they do not have an intimate relationship?
Finally, does the effect of the type of relationship differ depending on the weight of the woman?

Design Issues
This study only looked how at how an obese woman seated next to a male job applicant could affect qualification ratings. Future
research could address other gender combinations.

Descriptions of Variables
Table : Description of Variables

Variable Description

Weight
The weight of the woman sitting next to the job
applicant 
1 = obese, 2 = average weight

Relate

Type of relationship between the job application and
the woman seated next to him 
1 = girlfriend, 2 = acquaintance (waiting for another
experiment)

Qualified
Larger numbers represent higher professional
qualification ratings
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Data Files
Weight2.xls

Links

The Obesity Society
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20.16: Shaking and Stirring Martinis

To test the difference between shaken and stirred martinis

Research conducted by

This is just made up data.

Case study prepared by
David Lane

Overview
This is an example to illustrate hypothesis testing and the binomial distribution. The statistician R. Fisher explained the concept of
hypothesis testing with a story of a lady tasting tea. Here is an example based on James Bond who insisted that Martinis should be
shaken rather than stirred. In this hypothetical experiment to determine whether Mr. Bond could tell the difference between a
shaken and a stirred martini, we gave Mr. Bond a series of  taste tests. In each test, we flipped a fair coin to determine whether to
stir or shake the martini. Then we presented the martini to Mr. Bond and asked him to decide whether it was shaken or stirred. Mr.
Bond was correct on  trials.

Questions to Answer

Does Mr. Bond have the ability to tell the difference between a Martini that is shaken and one that is stirred?

Design Issues
This is only a made-up study.

Descriptions of Variables
Table : Description of Variables

Variable Description

Y 0 = incorrect, 1 = correct

Data Files

Martini.xls

Links
The Lady Tasting Tea

References
Salsburg, D. (2002) The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. Owl Books
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20.17: Adolescent Lifestyle Choices

Adolescents and Healthy Lifestyle Choices

Research conducted by
Ka He, Ellen Kramer, Robert F. Houser, Virginia R. Chomitz, and Karen A. Hacker

Case study prepared by

Robert F. Houser, Alyssa Koomas, and Georgette Baghdady

Overview
Teen pregnancy, sexually transmitted disease, drug abuse, and suicide are some of the behaviorally-mediated negative health
outcomes that can occur during adolescence. Identifying the characteristics of adolescents who are able to make healthy lifestyle
choices is imperative toward understanding positive health behaviors in this age group. This information could be used to develop
targeted interventions that support at-risk adolescents in making healthy lifestyle choices, and hopefully prevent such negative
outcomes.

This study collected survey data from  high school students in an urban Massachusetts community. The survey assessed
health-related behaviors, stressful events, demographics, familial characteristics, perceptions of peer and parental support, and
academic performance. In collaboration with community stakeholders and parents, the researchers selected six health-related
behaviors and developed two sets of criteria to define positive health behaviors. One set used “strict” definitions, namely, not
drinking alcohol in the last  days, no attempted suicide in the past  months, and no experience at all with tobacco, hard illegal
drugs, marijuana, and sexual partners. The second set used “broad” definitions that allowed for mild use and safe experimentation
(except for suicidal behavior). Students who adhered to all six health-related behaviors according to the “strict” definitions formed
one subgroup for analysis, and those who reported behaviors in accordance with the “broad” definitions formed another subgroup.
These two lifestyle subgroups were analyzed separately in relation to the personal and social-environmental factors assessed by the
survey.

Questions to Answer

What personal and social-environmental characteristics are associated with adolescents who practice healthy lifestyle behaviors
according to the “strict” definitions? How much more likely are adolescents with these characteristics to be practicing healthy
behaviors than adolescents without these characteristics?

Design Issues
The results of this study may not be applicable to adolescents in non-urban schools, as the sample was drawn from a diverse, urban
school. As well, the definitions that make up positive health behaviors may vary by region and social group. Adolescents self-
reported their health-related behaviors and other information via the survey. Missing responses may have caused bias in the results.

Descriptions of Variables
Table : Description of Variables

Variable Description

Healthy behaviors based on the “strict” definitions
Whether or not the adolescent practices all 6 health-
related behaviors according to the “strict” definitions

Immigration status
Whether the adolescent was born in the US or is an
immigrant

Learning Objectives
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Stress score

An index from 0 to 14 assessing 14 possible stressful
events in the adolescent’s life, such as failing grades,
moving, death in the family, divorce in the family,
abuse, and violence

Stress index
Whether the adolescent’s stress score is at or above
the median stress score of 2, or below

Academic performance
The adolescent’s average academic letter grade (A,
B, C, D, F)

Links

1 in 3 Teens Text While Driving

2011 Youth Risk Behavior Surveillance Survey

References
He, K., Kramer, E., Houser, R. F., Chomitz, V. R., Hacker, K. A. (2004). Defining and understanding healthy lifestyles choices
for adolescents. Journal of Adolescent Health, 35, 26-33.
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20.18: Chocolate and Body Weight

To study chocolate’s healthful metabolic mechanisms

Research conducted by
Beatrice A. Golomb, Sabrina Koperski, and Halbert L. White

Case study prepared by

Robert F. Houser and Georgette Baghdady

Overview
Recent research has brought to light the beneficial health effects of chocolate. Studies have linked chocolate with lower blood
pressure, lower bad cholesterol, improved insulin sensitivity, and reductions in the risks of diabetes, heart disease, and stroke. The
authors of this study hypothesized that chocolate’s healthful metabolic mechanisms might also reduce fat deposition in spite of its
high caloric content.

This study used the baseline data from a clinical study that examined noncardiac effects of cholesterol-lowering drugs in healthy
adults. The baseline data included body mass index (BMI), chocolate consumption frequency, age, sex, physical activity frequency,
depression, and some dietary variables. Chocolate consumption frequency was assessed with the question: “How many times a
week do you consume chocolate?” Dietary intakes of total calories, fruits and vegetables, and saturated fat were assessed with a
validated food frequency questionnaire. A food frequency questionnaire is a limited checklist of foods and beverages with a
frequency response section for subjects to report how often each item was consumed over a specified period of time. Depression
was measured with a validated scale related to mood. BMI is a measure of body fatness that is associated with many adverse health
conditions.

Questions to Answer

What can we conclude from the researchers’ findings that there is an association between consuming chocolate frequently and
lower BMI? How do we interpret regression models?

Design Issues
The authors used baseline data from an unrelated clinical study examining noncardiac effects of cholesterol-lowering drugs. That
clinical study included men ranging in age from  to  years, but only postmenopausal women. The results of the chocolate
study cannot, therefore, be generalized to younger adult women. Except for BMI, the data for all of the study variables were “self-
reported” by the subjects via questionnaires. The assessment of critical variables, such as chocolate consumption frequency and
vigorous physical activity frequency, could differ when using different measurement tools. The study was cross-sectional in nature,
precluding conclusions about causation.

Descriptions of Variables
Table : Description of Variables

VARIABLE DESCRIPTION

BMI Body mass index, calculated as: (weight in
kilograms) / (height in meters)

Chocolate consumption frequency
Number of times per week a subject consumed
chocolate

Calories Overall calorie intake of a subject determined via
food frequency questionnaire

Learning Objectives
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Age Range of 20 to 85 years, postmenopausal if female

Sex 68% male, 32% female

Activity
Number of times per 7-day period a subject engaged
in vigorous physical activity for at least 20 minutes

Links

Golomb et al. article

Rose et al. article

What is body mass index (BMI)?

References
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Rose, N., Koperski, S., Golomb, B. A. (2010). Mood food: chocolate and depressive symptoms in a cross-sectional analysis.
Archives of Internal Medicine, 170, 699-703.
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20.19: Bedroom TV and Hispanic Children

Study of overweight and obesity in Hispanic children

Research conducted by
Du Feng, Debra B. Reed, M. Christina Esperat, and Mitsue Uchida

Case study prepared by

Robert F. Houser, Alyssa Koomas, and Georgette Baghdady

Overview
The prevalence of overweight and obesity in children in the U.S. is a growing public health concern that disproportionately affects
Hispanic youth. As noted by the authors, in  to ,  of all U.S. children aged  to  years were overweight or obese,
compared with  for boys and  for girls among Mexican-Americans in this age group. Past research has revealed
diverse environmental and behavioral factors that may contribute to this disparity. For example, studies have shown that Hispanic
children watch more television than white children.

This study examined TV viewing among  Hispanic children aged  to  years in West Texas and the possible effects of having a
TV in the child’s bedroom. Children’s weights and heights were measured, body mass indexes (BMI) calculated, and sex- and age-
adjusted BMI percentiles obtained. The  CDC Growth Charts were used to assess whether or not a child was overweight or at
risk for becoming overweight. Their parents completed a family survey assessing demographics, acculturation, parental support of
physical activity, dietary practices, the presence of a TV in the participating child’s bedroom, and the child’s TV/DVD viewing
time.

Questions to Answer

Do children with a TV in their bedroom spend more time watching TV/DVDs on a daily basis than children without a TV in their
bedroom? Do children with a TV in their bedroom have less support from their parents for physical activity than children without a
TV in their bedroom? What might account for missing responses to survey questions?

Design Issues
Except for BMI, the data for all of the study variables were “self-reported” by the parents. The study used a cross-sectional design,
which cannot be relied upon to provide conclusive evidence of causal relationships.

Descriptions of Variables
Table : Description of Variables

VARIABLE DESCRIPTION

TVIB, No TVIB
Presence or absence of a TV in the participating
child’s bedroom

Daily TV/DVD time
Average number of hours the child spent watching
TV and DVDs per day

Learning Objectives
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Parental support of physical activity

Scale score calculated as the average of parent’s
responses to 8 survey items assessing the parent’s
support of physical activity for the child. Items rated
on 4-point Likert scale (0 = never, 3 = always).
Research has shown a significant positive
relationship between parental support of physical
activity and children’s physical activity level

Daily fruit and vegetable intake
Average number of cups of fruits and vegetables
(fresh, frozen, dried, canned, and 100% juice)
consumed by the child per day

Daily sweetened beverages
Average number of ounces of soda, fruit drink, sports
drink, tea, and lemonade consumed by the child per
day

Links

New York Times article

Television and Children information guide

References
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20.20: Weight and Sleep Apnea

Excess Body Weight and Sleep Apnea

Research conducted by
Kari Johansson, Erik Hemmingsson, Richard Harlid, Ylva Trolle Lagerros, Fredrik Granath, Stephan Rössner, and Martin Neovius

Statistical article authored by

Philip Sedgwick

Case study prepared by
Robert F. Houser and Georgette Baghdady

Overview
In his statistical article, “Standard deviation versus standard error,” UK researcher Philip Sedgwick presents us with an interesting
discussion of the proper use of standard deviation (SD) and standard error of the mean (SEM). He uses an example of a weight loss
study of  obese men suffering from obstructive sleep apnea who were being treated with continuous positive airway pressure
(CPAP). The weight loss program lasted one year. Outcome measures included change in body weight measured in kilograms (kg).

More than  of people experiencing obstructive sleep apnea are obese. CPAP therapy is the most common treatment. It uses a
machine and mask to prevent the airway from collapsing, thus enabling a person to breathe more easily during sleep. Weight loss is
an effective treatment for sleep apnea.

Questions to Answer
What is the proper use of the SD? What is the proper use of the SEM?

Design Issues

None for the Sedgwick article.

Descriptions of Variables
Table : Description of Variables

Variable Description

Weight Body weight at baseline in kg

Weight change
Change in body weight at one year from baseline in
kg

Links
What Is Sleep Apnea?

t Table (two-tailed) for significance and calculation of confidence interval

Johansson et al. article

References
Sedgwick, P. (2011). Standard deviation versus standard error. BMJ, 343, d8010.
Johansson, K., Hemmingsson, E., Harlid, R., Lagerros, Y. T., Granath, F., Rössner, S., Neovius, M. (2011). Longer term effects
of very low energy diet on obstructive sleep apnoea in cohort derived from randomised controlled trial: prospective
observational follow-up study. BMJ, 342, d3017.
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20.21: Misusing SEM

Misusing Standard Error of the Mean ( )

Research conducted by
Peter Nagele

Case study prepared by

Robert F. Houser, Georgette Baghdady, and Jennifer E. Konick

Overview
Authors of published research articles often erroneously use the standard error of the mean to describe the variability of their study
sample. Nagele demonstrated this misuse of the standard error of the mean as a descriptive statistic by manually searching four
leading anesthesia journals in .

Here are quotes on key points from Nagele’s article and our notes:

“Descriptive statistics aim to describe a given study sample without regard to the entire population.”

“If normally distributed, the study sample can be described entirely by two parameters: the mean and the standard deviation ( ).”
However, a study sample variable is never exactly normally distributed. When a variable is close to normally distributed, the mean
and median are quite similar. Therefore, the mean and  would be sufficient.

“The  represents the variability within the sample.” It tells us about “the distribution of individual data points around the mean.”
The latter statement, however, is a generalization since the  cannot tell us exactly where each data point lies relative to the
mean.

“[I]nferential statistics generalize about a population on the basis of data from a sample of this population.”

The standard error of the mean ( ) “is used in inferential statistics to give an estimate of how the mean of the sample is related
to the mean of the underlying population.” It “informs us how precise our estimate of the [population] mean is.”

Thus, “the  estimates the precision and uncertainty [with which] the study sample represents the underlying population.”

The standard error of the mean is calculated by dividing the sample standard deviation by the square root of the sample size (
).

“[T]he  is always smaller than the .” However, this is only true as long as the sample size is greater than .

“In general, the use of the  should be limited to inferential statistics [for which] the author explicitly wants to inform the
reader about the precision of the study, and how well the sample truly represents the entire population [of interest].” A sample
never truly represents the population.

Questions to Answer
How prevalent is the inappropriate use of the  in describing the variability of the study sample in research publications?
What is the proper use of the ?

Design Issues

The author focused on four leading anesthesia journals in his field of expertise. The misapplication of the  in descriptive
statistics can be found in professional journals of many, if not all, fields of research.

Descriptions of Variables
Table : Description of Variables

Variable Description

Learning Objectives

SEM

2001

SD

SD

SD

SD

SEM

SEM

SEM = SD/ n

−−

√

SEM SD 1

SEM

SEM

SEM

SEM
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Incorrect use of SEM; total
Total frequency of misuse of SEM; expressed as
number of articles and percent

Laboratory studies using SEM incorrectly
A subset of the above variable; expressed as number
of articles and percent

Correct use of SD
Frequency of correct use of standard deviation;
expressed as number of articles and percent

Data Files
Sem.xls

Links

Nagele article
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20.22: School Gardens and Vegetable Consumption

School garden program benefits

Research conducted by
Michelle M. Ratcliffe, Kathleen A. Merrigan, Beatrice L. Rogers, and Jeanne P. Goldberg

Case study prepared by

Robert F. Houser and Georgette Baghdady

Overview
School garden programs are gaining popularity because of their numerous benefits for children: outdoor exercise, social skills,
connecting with nature, environmental stewardship, active learning, experiential science education, higher academic achievement,
and transformed attitudes and habits related to fruits and vegetables. By integrating the regular science class with gardening
activities in which students plant, nurture, harvest, prepare, and consume produce grown in the schoolyard, studies are showing that
garden-based learning can improve children’s consumption of fruits and vegetables.

This study investigated the impact of participating in a school garden program on the ability to identify, willingness to taste,
preference for, and consumption of vegetables. Subjects were  sixth-grade students aged  to  years at two intervention
schools and one control school. At the intervention schools, garden-based learning activities were incorporated into the regular
science class for a period of four months. The control school did not include a garden program as part of its science class. Two
questionnaires – Garden Vegetable Frequency Questionnaire and taste test – assessed the outcome variables using vegetables
typically grown in school gardens that were also ethnically and culturally appropriate for the study population. The Garden
Vegetable Frequency Questionnaire assessed the types of vegetables consumed the day before as well as usual consumption
frequency. The taste test involved tasting five raw vegetables (carrots, string beans, snow peas, broccoli, and Swiss chard). Both
questionnaires were administered at the outset and end of the study. Change scores (posttest minus pretest) were compared between
the garden (intervention) group and the control group.

Questions to Answer

Do hands-on school garden programs increase vegetable consumption in children? What are some of the potential sources of bias
in research studies?

Design Issues
This study used a “quasi-experimental” design, which differs from an experiment in that the students were selected and assigned to
the intervention group and control group by a method other than random assignment. With this type of design, there is a greater
chance that the intervention and control groups might differ at the outset of the study in ways that could bias the results of the
study. Since the study population was middle-school students living in low-income, urban communities, the results of the study
cannot be generalized to other settings. The study did not measure the actual amounts of vegetables that students consumed, so no
conclusions can be drawn about number or size of servings.

Descriptions of Variables

Tables : Description of Variables

Variable Description

School garden program group
Garden (intervention) and Control groups:
Whether or not a student experiences hands-
on gardening activities at school

Learning Objectives

320 11 13
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Consumption of vegetables at school
Assessed by the taste test, it measures
whether or not a student ate each of five
specific vegetables at school

Consumption of vegetables at home
Assessed by the taste test, it measures
whether or not a student also ate each of the
five specific vegetables at home

Links
Ratcliffe et al. article

The benefits of school gardens

First Lady Michelle Obama Hosts White House Garden Spring 2011 Planting
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20.23: TV and Hypertension

TV viewing time and adverse health

Research conducted by
Perrie E. Pardee, Gregory J. Norman, Robert H. Lustig, Daniel Preud’homme, and Jeffrey B. Schwimmer

Case study prepared by

Robert F. Houser and Andrew Kennedy

Overview
A strong, evidence-based association exists between TV viewing time and the risk of being obese in children and adolescents.
Little or no research, however, has explored adverse health outcomes associated with TV viewing among obese children. This
study aimed at identifying whether or not time spent watching TV is associated with hypertension (high blood pressure) in obese
children.

Obese children aged  to  years were recruited and evaluated at three pediatric centers. Obesity was defined as a body mass
index (BMI) greater than or equal to the  percentile for the child’s age and gender.

Questions to Answer
Is TV watching associated with hypertension in obese children?

Design Issues

The study involved a cross-sectional design, which prevented the determination of possible causality among the associations found.
There could be unmeasured factors that play a role in the association between TV viewing and hypertension.

Descriptions of Variables
Table : Description of Variables

Variable Description

Hypertension

Defined as a systolic and/or diastolic blood
pressure greater than or equal to the 95th
percentile for the child’s age, gender, and
height

Age A child’s age in years

BMI
A child's body mass index, calculated as:
(weight in kilograms) / (height in meters)

Hours of TV/day
An estimate of a child’s average daily time
spent watching TV in hours

Links
Pardee et al. article

Luma et al. article

Learning Objectives

4 17

95

th
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20.24: Dietary Supplements

Dietary supplements and health risk behaviors

Research conducted by
Wen-Bin Chiou, Chao-Chin Yang, and Chin-Sheng Wan

Case study prepared by

Robert F. Houser and Georgette Baghdady

Overview
Although the dietary-supplement market in the U.S. is enormous, there is no apparent association between the use of dietary
supplements and improved public health. The researchers of this study explored this paradox under the hypothesis that taking
dietary supplements triggers a phenomenon called the “licensing effect,” namely, the tendency for positive choices to license
subsequent self-indulgent, risky or unhealthful choices. The researchers hypothesized that supplement use confers “perceived
health credentials,” leading people to feel invulnerable to health hazards and thus more likely to engage in risky, health-related
behaviors.

The study involved two experiments. In the first experiment,  participants were randomly assigned to either a vitamin-pill
(multivitamin) group or control (placebo) group and were told the kind of pill they would be taking. However, only the control
group was given correct information. In actuality, both groups received the placebo pill. After taking the pills, the participants
completed a survey on leisure-time activities, rating the desirability of nine hedonic (pleasurable) activities, such as excessive
drinking and wild parties, and nine exercise activities, such as yoga and running, on -point scales. The survey also included a
general invulnerability scale to assess a participant’s perceived invulnerability to harm and disease. After completing the survey,
the participants were offered a free lunch, choosing freely between a buffet and a healthful, organic meal.

The second experiment involved different participants. The vitamin-pill (multivitamin) group again unknowingly took placebo
pills. After completing a questionnaire that included the general invulnerability scale and reading a medical report on the health
benefits of walking, the distance participants walked in one hour was measured with a pedometer.

Questions to Answer
Does taking dietary supplements disinhibit unhealthy behaviors, such as eating unhealthful meals? Is the study sufficiently powered
to detect significant differences between males and females?

Design Issues

The research was conducted in Taiwan, where cultural attitudes and behaviors related to dietary supplements may differ from those
in the U.S. It is possible that the results might not generalize to other countries, so more research is needed. Participants in 

 had a wide range in age, from  to  years, with a mean ( ) of  ( ) years. It would be helpful to consider
age in the analysis, especially if age is associated with invulnerability scores. Leisure-time activities and invulnerability were
assessed only post-intervention; future studies should also measure these variables before the intervention to see if the two groups
had similar scores at the start of the study. The general invulnerability scale used to assess perceived invulnerability to harm and
disease has been validated only for adolescents.

Descriptions of Variables
Table : Description of Variables

VARIABLE DESCRIPTION

Experimental condition
Vitamin-pill (multivitamin) condition or Control
(placebo) condition

Learning Objectives

82

7

Experiment 1 18 46 SD 30.9 7.8
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Meal choice Either a buffet meal or a healthful, organic meal

Gender The sex of participants

Links
The licensing effect

No Significant Difference … Says Who?
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20.25: Young People and Binge Drinking

Binge drinking and serious public health problems

Research conducted by
Richard O. de Visser and Julian D. Birch

Case study prepared by

Robert F. Houser and Georgette Baghdady

Overview
Binge drinking is a serious public health problem bringing harm to both the individual and society. It compromises a person's
health, increasing the risk of many diseases, injury, and death. It also results in a greater incidence of motor vehicle crashes,
violence, the spread of sexually-transmitted diseases, and unintended pregnancies. Binge drinking is prevalent among both young
and older adults, men and women, and high and low income levels. Governments have formulated guidelines for moderate or
sensible drinking levels. The government of the United Kingdom (UK) issued guidelines for sensible drinking as  alcohol
units per day for women and  units per day for men, an alcohol unit being  milliliters of ethanol. A binge drinking episode
is when a person drinks above double the recommended daily guidelines in a short period of time.

Questions to Answer
What can we learn about the binge drinking patterns of university students in England? Do the bingers and non-bingers differ in
their knowledge of the sensible drinking guidelines issued by the UK government?

Design Issues

The university students in the sample "self-selected" to participate in the study by responding to recruiting efforts made via email
messages and requests in lectures.

Descriptions of Variables
Table : Description of Variables

Variable Description

Sex Female or male

mo_binge_n
Number of times the university students did
binge drinking in the last month (using sex-
specific definitions)

modrunk
Number of times the university students drank in the
last month

wk_unit_prop
Familiarity with alcohol unit-based guidelines
(measured on a 5-point scale)

k_unit_sum
Knowledge of alcohol unit-based guidelines (score
out of 7)

u_fam
Familiarity with alcohol unit-based guidelines
(measured on a 5-point scale)

Learning Objectives

2−3

3−4 10
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Data Files
Binge.xls

Links

de Visser et al. article
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20.26: Sugar Consumption in the US Diet

Sugar Consumption in the US Diet between 1822 and 2005

Research conducted by
Stephan Guyenet and Jeremy Landen

Case study prepared by

Robert F. Houser and Georgette Baghdady

Overview
Sugar has many forms: cane sugar, beet sugar, honey, molasses, fruit juice concentrate, glucose, sucrose, fructose, high-fructose
corn syrup, maple syrup, brown rice syrup, barley malt syrup, agave nectar, to list a few. High-fructose corn syrup, in particular,
was introduced into the US food industry in the early  and has become ubiquitous in processed foods and soft drinks. Many
of the added sugars in packaged foods and beverages could be considered "hidden sugar" because, if we do not examine the
ingredients list on food labels or know sugar's many aliases, we are most likely unaware of how much sugar we consume each day.

To explore sugar consumption trends in the US, researchers Stephan Guyenet and Jeremy Landen compiled data on caloric
sweetener sales spanning  years. They extracted annual caloric sweetener sales per capita for  to  from US
Department of Commerce and Labor reports, and for  to  from the US Department of Agriculture (USDA) web site. The
researchers adjusted the sales data for post-production losses using the USDA's  loss estimate of  percent to
obtain reasonable estimates of annual per capita consumption of added sugars. Post-production losses of a food commodity occur at
the retail, foodservice and consumer levels from, for example, spoilage, pests, cooking losses and plate waste.

Guyenet presents a striking graph and regression analysis of sugar consumption in the US from  to  in a blog to promote
awareness and discussion.

Questions to Answer
Do different time periods between  and  reveal different trends in sugar consumption in the US diet? Can a regression
graph be used to make predictions outside the range of the study data?

Design Issues

The data represent added caloric sugars such as cane sugar, high-fructose corn syrup and maple syrup, not naturally occurring
sugars such as those in fruits and vegetables. Thus the data do not represent total sugar consumption. The data are not direct
measures of consumption, but rather estimates derived from sales figures by adjusting for losses before consumption. The
adjustment, applied across all years, is based on the USDA loss estimate from , which may or may not underestimate
sugar consumption in earlier time periods.

Descriptions of Variables
Table : Description of Variables

Variable Description

year All years from 1822 to 2005

sugar_consum
Estimated consumption of added sugars in
the US diet in pounds per year per person

Learning Objectives

1970s

184 1822 1908

1909 2005

1970−2005 28.8

1822 2005

1822 2005

1970−2005
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Data Files
Sugar.xls

Links

By 2606, the US Diet will be 100 Percent Sugar, a blog by Stephan Guyenet

How to Spot Added Sugar on Food Labels

Dietary Sugars Intake and Cardiovascular Health: A Scientific Statement From the American Heart Association

Sugar: The Bitter Truth, a lecture by Robert H. Lustig

60 Minutes: Is Sugar Toxic?
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20.27: Nutrition Information Sources and Older Adults

Better educated people and information sources

Research conducted by
Diane L. McKay, Robert F. Houser, Jeffrey B. Blumberg, and Jeanne P. Goldberg

Case study prepared by

Robert F. Houser, Alyssa Koomas, Georgette Baghdady, and Jennifer E. Konick

Overview
Various socioeconomic factors, such as occupation, income, race, and education level, are associated with health outcomes.
Prominent among them, education level has proved to be a strong predictor of diet quality, health behavior patterns, and disease
risk. Studies have found that better-educated people have healthier diets than those with less education, leading some researchers to
hypothesize that better-educated people may obtain nutrition information from more reliable sources than less-educated people.

This study examined that hypothesis among a sample of  adults aged  years or older. The participants completed a survey
which asked whether or not they primarily relied upon each of the following sources for information about nutrition: doctors, other
medical professionals, newspapers, magazines, television, radio, friends, relatives, and neighbors. Analysis involved comparing the
sources by education level. Older adults are highly vulnerable to diet-related disease. Knowing which sources they rely on can
enable nutrition educators and professionals to target those sources with high-quality nutrition messages, tailored to the needs and
education level of the older-adult audience.

Questions to Answer

What sources of nutrition information do older adults rely on? Do these sources differ according to the educational attainment and
gender of the adults? Are these sources of nutrition information related to dietary practices, such as taking supplements?

Design Issues
Given that the sample was drawn only from the New England area and that  were Caucasian, the results of this study should
not be generalized to older adults in other regions or racial and ethnic groups. The Internet as a source of nutrition information was
not included in the survey; it is likely a primary source among today's older adults.

Descriptions of Variables
Table : Description of Variables

Variable Description

coll4yrplus

Highest level of education completed: 
0 = "< 4 years of college" (i.e., secondary school,
high school, vocational school, community or junior
college) 
1 = "≥ 4 years of college" (i.e., four-year college,
graduate or professional school)

gender 1 = female, 2 = male

doctor
Is your doctor a primary source of information about
nutrition? 
1 = yes, 2 = no

Learning Objectives

176 50

93%
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magazine
Are magazines a primary source of information
about nutrition? 
1 = yes, 2 = no

tv
Is TV a primary source of information about
nutrition? 
1 = yes, 2 = no

friends
Are friends a primary source of information about
nutrition? 
1 = yes, 2 = no

supps
Are you taking any dietary supplements? 
1 = yes, 2 = no

Data Files

Nutrition_information.xls

Links
Nutrition Information For You

Evaluating Nutrition Information (see pages 36-43)

Nutrition Accuracy in Popular Magazines
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20.28: Mind Set - Exercise and the Placebo Effect

The "placebo" effect

Research conducted by
Alia J. Crum and Ellen J. Langer

Case study prepared by

Robert F. Houser and Alyssa Koomas

Overview
The "placebo effect" is an effect that cannot be attributed to a drug or remedy, but rather to a change in a person's mind-set or
perception. The placebo effect is widely accepted in clinical trials and its effects may shock you. For instance, one study found that
subjects developed real rashes after being exposed to fake poison ivy (Blakeslee, )! This study examined the placebo effect
with relation to physical activity and health. Could becoming aware of how much you exercise result in weight loss even if you
didn't make any changes to your diet or exercise routine?

The subjects were  female maids of ages  to  years at seven hotels. They were told the purpose of the study was to improve
the health and happiness of hotel maids. According to the authors, "[e]ach of seven hotels was randomly assigned to one of two
conditions: informed or control" (page ). "Four hotels were assigned to the informed condition, and three were assigned to the
control condition" (pages ). Each subject filled out a questionnaire asking about her perceived amount of exercise during
and outside of work. Physiological measurements were taken for weight, body mass index, body-fat percentage, waist-to-hip ratio,
and blood pressure. The maids in the informed condition were then given an oral presentation and handouts explaining how their
work as hotel maids is good exercise, so good in fact that it meets or exceeds the Surgeon General's recommendations for physical
activity. The maids in the control condition were not given this information. After four weeks, the researchers re-administered the
questionnaire and took follow-up physiological measurements.

Questions to Answer

Does the placebo effect play a role in the health benefits of exercise? If we alter a person's perception of the exercise she performs,
does it result in weight loss?

Design Issues
Instead of assigning individual maids randomly to either the informed or control condition, all of the maids in the same hotel were
assigned to the same condition. This was done in an effort to prevent information contamination. This type of study design is
known as a "cluster randomized trial," and calls for advanced statistical practices that we will not worry about in this case study.

Simple random sampling with a sufficient number of subjects randomly assigned to intervention and control groups ideally leads to
intervention and control groups that are similar with respect to many demographic characteristics. Simple random sampling of
individuals and random assignment of individuals to conditions were not used in this study. The authors of this study pointed out
that "[s]ubjects in the informed group were significantly younger than subjects in the control group." Consequently, they attempted
to control for age differences in their statistical analysis.

The questionnaire asked about self-reported levels of exercise and dietary intake. Future research should use more rigorous
methods to assess physical activity and diet.

Descriptions of Variables
Table : Description of Variables

VARIABLE DESCRIPTION

cond Condition: Either Informed or Control

Learning Objectives

1998

84 19 65

166

166−167
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age Age in years

ex1
Perceived amount of exercise at Time 1 (On a scale
from 0 to 10 with 0 = “none” and 10 = “a great
deal”)

ex2
Perceived amount of exercise at Time 2 (On a scale
from 0 to 10 with 0 = “none” and 10 = “a great
deal”)

wt1 Weight in pounds at Time 1

wt2 Weight in pounds at Time 2

aex
Change score for exercise equal to the perceived
amount of exercise at Time 2 minus the perceived
amount of exercise at Time 1

awt
Weight change equal to the weight at Time 2 minus
the weight at Time 1

Data Files

Mindset.xls

Links
Crum et al. article

New York Times article
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20.29: Predicting Present and Future Affect

To explore the phenomenon of future anhedonia

Research conducted by
Karim S. Kassam, Daniel T. Gilbert, Andrew Boston, and Timothy D. Wilson

Case study prepared by

Robert F. Houser and Georgette Baghdady

Overview
In Aesop's fable, "The Ant and the Grasshopper," an ant toils all summer to gather food for the winter while a grasshopper
sunbathes and enjoys the present abundance of food without concern for the upcoming winter. Consequently when winter arrives,
the grasshopper despairs that it has no food. The moral of the fable is that it is best to prepare for the days of necessity. Clearly the
grasshopper failed to predict accurately how it would feel in the winter while it sunbathed with a full belly in the summer.

The authors of this study explored the intriguing phenomenon of future anhedonia and its relation to the concept of time
discounting in order to understand people's predictions about how they might feel when a future event happens. Time discounting
occurs when people put less value on future events than present events. Future anhedonia refers to people's mistaken belief that a
future event would elicit a less intense affective reaction than if the same event happened in the present. In six experiments, the
authors asked participants to predict how happy they would feel both in the present and in the future upon receiving either 
dollars outright or  dollars in the form of a Starbucks coffeehouse gift card. The difference between the scores of present and
future happiness is a measure of future anhedonia.

Questions to Answer

Do people expect their affective reactions to an event to be less intense in the future than in the present?

Design Issues
The monetary amount ( ) may not have been enough to psychologically engage a large number of participants. The wide
age range in Experiment 1b of  to  years is unusual for a psychological study. Also in Experiment 1b, several participants
reported that they would pay  for a -gift card that Starbucks was considering selling at a discounted price, which might
indicate that they did not fully understand the question.

Descriptions of Variables
Table : Description of Variables

VARIABLE DESCRIPTION

Gender The sex of a participant

Happiness score
A participant’s estimate of his/her affective reaction
to an event using a 9-point scale with endpoints 1 =
“not at all happy” and 9 = “extremely happy”

diff_happy

A difference score equal to a participant’s predicted
present happiness score for a present event minus
his/her predicted future happiness score for the same
event in the future. A positive difference indicates
future anhedonia.

Learning Objectives

20

25

$20, $25

15 72

$25 $25
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diff_money The difference in the maximum amount of money
that a participant predicted as his/her willingness to
pay in the present minus the predicted amount he/she
would pay at a future time for a $25 Starbucks
coffeehouse gift card. A positive difference indicates
future anhedonia.

cond
Condition: Whether an event was expected or
unexpected

today
A participant’s predicted present happiness score for
a present event

future
A participant’s predicted future happiness score for a
future event

Data Files

Predicting.xls

Links
Kassam et al. article

Aesop's Fable: The Ant and the Grasshopper

Prospection: Experiencing the Future

References
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20.30: Exercise and Memory

To study the benefits of exercise on memory

Research conducted by
M. E. Hopkins, F. C. Davis, M. R. Van Tieghem, P. J. Whalen, and D. J. Bucci

Case study prepared by

Robert F. Houser and Georgette Baghdady

Overview
Physical exercise has many beneficial effects on physiological processes, including those that affect cognition and memory.
Exercise increases brain-derived neurotrophic factor (BDNF), which is a protein found in the learning and memory centers of the
brain where it supports nerve cell survival and the growth of new neurons and neuronal connections. A polymorphism of BDNF (a
variant genotype) alters the release of BDNF during exercise. The researchers of this study sought to compare the effects of a
single bout of exercise versus a -week exercise regimen on cognition and memory and to determine if BDNF genotype influences
the intensity of those effects of exercise.

Questions to Answer
How do regular exercise and/or an acute bout of exercise affect cognitive memory? Does type of BDNF genotype (Val/Val or Met
carrier) mediate the effect of exercise on memory? How do we calculate a one-way ANOVA by hand and how do different post-hoc
tests compare?

Design Issues

The group sample sizes are small, perhaps limiting the power to detect significant differences between the four exercise/control
groups.

Descriptions of Variables
Table : Description of Variables

Variable Description

Group

0W-: sedentary group 
0W+: sedentary group with one bout of exercise at
least 2 hours before Visit 2 
4W-: regularly exercising group 
4W+: regularly exercising group with a bout of
exercise at least 2 hours before Visit 2

Accuracy
The percentage of objects each group accurately
identified as old or new when performing the novel
object recognition task during each study visit

Difference score
Accuracy achieved by the subject in the novel object
recognition task during Visit 2 minus accuracy
during Visit 1, in percent

Learning Objectives

4
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BDNF genotype
Whether a subject's BDNF genotype is Val/Val or
Met carrier (Val/Met and Met/Met)

Links
How Exercise Affects the Brain: Age and Genetics Play a Role

BDNF

References
Hopkins, M. E., Davis, F. C., Van Tieghem, M. R., Whalen, P. J., Bucci, D. J. (2012). Differential effects of acute and regular
physical exercise on cognition and affect. Neuroscience, 215, 59-68.
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20.31: Parental Recognition of Child Obesity

To study the parents' perception of their children's weight status

Research conducted by
Debra Etelson, Donald A. Brand, Patricia A. Patrick, and Anushree Shirali

Case study prepared by

Robert F. Houser and Georgette Baghdady

Overview
With increasing public awareness of child obesity as a major public health problem, studies are showing that it has not translated
into an increased awareness of obesity in one’s own child. Dietary patterns and weight status in childhood tend to carry into
adolescence and adulthood, promoting the onset of chronic and other diseases. A key ingredient for combating childhood obesity is
parental involvement and commitment. However, this is predicated on whether or not parents can recognize overweight and obesity
in their children.

This study examined parents’ perceptions of their children’s weight status, their understanding of the health risks of obesity relative
to other conditions they may perceive as health risks, and their knowledge of some healthy eating practices. Children’s actual
weight status was expressed as their body mass index (BMI) percentile, as determined by the CDC growth charts based on age and
sex. According to the CDC growth charts for children, a child with a BMI percentile less than the  percentile is underweight;
from the  to less than the , a child is at a healthy weight; from the  to less than the  percentile, a child is
overweight; and a BMI percentile equal to or greater than the  percentile, a child is considered to be obese.

A visual analog scale was used to measure parents’ perceptions of their child’s weight. The visual analog scale consisted simply of
a -cm straight line anchored at the left end by the label “extremely underweight” and at the right end by the label “extremely
overweight.” A parent placed a mark along the line to indicate where they perceived their child’s weight to be. The researchers
interpreted the marks as percentiles in their analysis.

Questions to Answer

Do parents recognize when their children are overweight or obese? Do parents who make incorrect judgments about healthy food
practices also make incorrect judgments about their child’s weight status?

Design Issues
This study defines a parent’s perception of their child’s BMI percentile as “accurate” if their score on a visual analog scale fell
within  points of the child’s true BMI percentile. This wide range defining accuracy potentially allows for misclassification of a
child’s weight status among normal, overweight, and obese categories. For example, a parent who perceives their child’s weight
status as being at the  percentile, i.e., in the normal range, when in reality the child is obese with a BMI percentile of , the
parent’s assessment would be considered accurate by the operational definition used in this study. The authors explain that they
chose this definition to give parents as much leeway as possible in assessing their child’s weight on the visual analog scale.

Descriptions of Variables
Table : Description of Variables

Variable Description

Sex The sex of the participating parent’s child

Learning Objectives
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Overwt_Obese

Whether or not a child’s body mass index (BMI) is
equal to or greater than the 85th percentile for the
child’s age and sex, which means that the child is
either overweight (85th to less than 95th percentile)
or obese (95th percentile or above)

PA_overwt

Parental attitude expressing level of concern if their
child were overweight, measured on a 4-point Likert
Scale. In data analysis, the four categories were
condensed into two categories: 
0 = “not at all” or “a little” concerned 
1 = “quite” or “extremely” concerned

PA-TV

Parental attitude expressing level of concern if their
child watched >20 hours of TV per week, measured
on a 4-point Likert Scale. In data analysis, the four
categories were condensed into two categories: 
0 = "not at all" or "a little" concerned 
1 = "quite" or "extremely" concerned

Accurate

Whether or not the parent's perception of their child's
weight status was accurate. Parent's perception was
considered accurate if the BMI percentile it
corresponded to fell within 30 points of the child's
actual BMI percentile

Juice_boxes

The amount of juice that a parent thinks is healthy
for their child to drink each day (a juice box contains
eight ounces). We condensed the original four
response categories into two categories: 
0 = "1 or 2 juice boxes per day" 
1 = "3 to 8 juice boxes per day"

Fast_food_meals
How often a parent feels it is okay to eat at fast-food
restaurants. We condensed the original four response
categories into two categories: 0 = "once a month"

Links
Etelson et al. article

BMI percentiles for children

References
Debra Etelson, D., Brand, D. A., Patrick, P. A., Shirali, A. (2003). Childhood obesity: Do parents recognize this health risk?
Obesity Research, 11, 1362-1368
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20.32: Educational Attainment and Racial, Ethnic, and Gender Disparity

To study large disparities in educational attainment among various racial and ethnic groups

Research conducted by
United States Census Bureau

Case study prepared by

Robert F. Houser, Georgette Baghdady, and Jennifer E. Konick

Overview
The U.S. Census Bureau defines educational attainment as the highest level of education that a person has completed. Large
disparities in educational attainment continue to exist among racial and ethnic groups. The gender gap in educational attainment,
however, has been undergoing a dramatic social shift in recent decades. In Table  below, the U.S. Census Bureau tabulated
these trends among Whites, Blacks, Asians and Pacific Islanders, and Hispanics between  and . This case study focuses
only on college graduates. The data for "College graduate or more" represent the percentage of adults aged  years and older that
obtained a degree from regular four-year colleges and universities and graduate or professional schools in each racial and ethnic
group.

The U.S. Census Bureau defines the racial and ethnic categories in the following manner:

“White” refers to persons having origins in any of the original peoples of Europe, the Middle East, or North Africa.
“Black” refers to persons having origins in any of the Black racial groups of Africa.
“Asian” refers to persons having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian
subcontinent.
“Pacific Islander” refers to persons having origins in any of the original peoples of the Pacific Islands, such as Hawaii, Guam,
Samoa, and Tonga.
“Hispanic” refers to an ethnic group comprised of persons of any race who are of Cuban, Mexican, Puerto Rican, South or
Central American, or other Spanish culture or origin.

Figure : Educational Attainment by Race, Hispanic Origin and Sex

Educational attainment is strongly associated with future employment, income, and health status.

Questions to Answer

How has the percentage of college graduates changed over time between  and  among the racial and ethnic groups and
between the genders within each group? How might we illustrate these changes graphically?

Learning Objectives
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Design Issues
Beginning with the  U.S. Census, respondents were given the option of selecting more than one race category to indicate their
racial identities. Therefore, data on race from  and beyond are not directly comparable with earlier censuses. The data in Table

 represent persons who selected only one race category and exclude persons who selected more than one race.

In the  U.S. Census and beyond, the “Asian and Pacific Islander” category was split into two separate categories, “Asian” and
“Native Hawaiian or Other Pacific Islander.” There were several reasons for the split. The combined category was not a
homogeneous group because it put together peoples with few social or cultural similarities and who are dissimilar on important
demographic characteristics. For example, in , about  percent of Pacific Islanders aged  years and older obtained a
bachelor’s degree compared with about  percent of Asians. Since Pacific Islanders are numerically a smaller group than Asians
(in , there were about a half million Pacific Islanders versus about  million Asians), not including them in the data of
Table  starting in  biases the percentage of college graduates upwards somewhat, but not strongly.

Descriptions of Variables
Table : Description of Variables

Variable Description

College graduate or more
Obtained a degree from regular four-year colleges
and universities and graduate or professional schools

Year Decade years from 1970 to 2010

White_M 
White_F

Percentage of college graduates in U.S.
subpopulation of White males aged 25 years and
over; likewise for White females

Black_M 
Black_F

Percentage of college graduates in U.S.
subpopulation of Black males aged 25 years and
over; likewise for Black females

AsnPac_M 
AsnPac_F

Percentage of college graduates in U.S.
subpopulation of Asian and Pacific Islander males
aged 25 years and over; likewise for Asian and
Pacific Islander females

Hispan_M 
Hispan_F

Percentage of college graduates in U.S.
subpopulation of Hispanic males aged 25 years and
over; likewise for Hispanic females

Data Files
Educational_attainment.xls

Links

Overview of Race and Hispanic Origin: 2010

Latinos and Education: Explaining the Attainment Gap

Why Do Women Outnumber Men in College?

References
U.S. Census Bureau, Statistical Abstract of the United States: 2012. Section 4. Education, 143-151
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21.1.1: Comparing Fractions, Decimals, and Percents

1. Compare two fractions
2. Compare two numbers given in different forms

In this section, we will go over techniques to compare two numbers. These numbers could be presented as fractions, decimals or
percents and may not be in the same form. For example, when we look at a histogram, we can compute the fraction of the group
that occurs the most frequently. We might be interested in whether that fraction is greater than 25% of the population. By the end of
this section we will know how to make this comparison.

Comparing Two Fractions
Whether you like fractions or not, they come up frequently in statistics. For example, a probability is defined as the number of
ways a sought after event can occur over the total number of possible outcomes. It is commonly asked to compare two such
probabilities to see if they are equal, and if not, which is larger. There are two main approaches to comparing fractions.

Approach 1: Change the fractions to equivalent fractions with a common denominator and then compare the
numerators

The procedure of approach 1 is to first find the common denominator and then multiply the numerator and the denominator by the
same whole number to make the denominators common.

Compare:  and 

Solution

A common denominator is the product of the two: . We convert:

and

Next we compare the numerators and see that , hence

In statistics, we say that two events are independent if the probability of the second occurring is equal to the probability of the
second occurring given that the first occurs. The probability of rolling two dice and having the sum equal to 7 is . If you
know that the first die lands on a 4, then the probability that the sum of the two dice is a 7 is . Are these events independent?

Solution

We need to compare and . The common denominator is 36. We convert the second fraction to

Now we can see that the two fractions are equal, so the events are independent.

Learning Outcomes

Example 21.1.1.1
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Approach 2: Use a calculator or computer to convert the fractions to decimals and then compare the decimals

If it is easy to build up the fractions so that we have a common denominator, then Approach 1 works well, but often the fractions
are not simple, so it is easier to make use of the calculator or computer.

In computing probabilities for a uniform distribution, fractions come up. Given that the number of ounces in a medium sized
drink is uniformly distributed between 15 and 26 ounces, the probability that a randomly selected medium sized drink is less
than 22 ounces is . Given that the weight of in a medium sized American is uniformly distributed between 155 and 212
pounds, the probability that a randomly selected medium sized American is less than 195 pounds is . Is it more likely to
select a medium sized drink that is less than 22 ounces or to select a medium sized American who is less than 195 pounds?

Solution

We could get a common denominator and build the fractions, but it is much easier to just turn both fractions into decimal
numbers and then compare. We have:

and

Notice that

Hence, we can conclude that it is less likely to pick the medium sized 22 ounce or less drink than to pick the 195 pound or
lighter medium sized person.

If you guess on 10 true or false questions, the probability of getting at least 9 correct is . If you guess on six multiple
choice questions with three choices each, then the probability of getting at least five of the six correct is . Which of these is
more likely?

Comparing Fractions, Decimals and Percents

When you want to compare a fraction to a decimal or a percent, it is usually easiest to convert to a decimal number first, and then
compare the decimal numbers.

Compare 0.52 and .

Solution

We first convert  to a decimal by dividing to get 0.5385. Now notice that

Thus

Example 21.1.1.3
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When we preform a hypothesis test in statistics, We have to compare a number called the p-value to another number called the
level of significance. Suppose that the p-value is calculated as 0.0641 and the level of significance is 5%. Compare these two
numbers.

Solution

We first convert the level of significance, 5%, to a decimal number. Recall that to convert a percent to a decimal, we move the
decimal over two places to the right. This gives us 0.05. Now we can compare the two decimals:

Therefore, the p-value is greater than the level of significance.

This is an application of comparing fractions to probability.

Example: Comparing Fractions with Different Denominators using Inequality Symbols
Ex: Compare Fractions and Decimals using Inequality Symbols
https://youtu.be/lSzNkQjcfEU

This page titled 21.1.1: Comparing Fractions, Decimals, and Percents is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Larry Green.

Comparing Fractions, Decimals, and Percents by Larry Green is licensed CC BY 4.0.
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21.1.2: Converting Between Fractions, Decimals and Percents

1. Given a decimal, convert it to a percent
2. Given a percent, convert it to a decimal
3. Convert a fraction to a decimal and percent

In this section, we will convert from decimals to percents and back. We will also start with a fraction and convert it to a decimal
and a percent. In statistics we are often given a number as a percent and have to do calculations on it. To do so, we must first
convert it to a percent. Also, the computer or calculator shows numbers as decimals, but for presentations, percents are friendlier. It
is also much easier to compare decimals than fractions, thus converting to a decimal is helpful.

For example, we often want to see if a probability is greater than 5%. A computer will display the probability as a decimal such as
0.04836. To make the comparison we will first change it to a percent and then compare it to 5%.

Transforming a Decimal to a Percent

We have all heard of percents before. "You only have a 20% chance of winning the game", "Just 38% of all Americans approve of
Congress", and "I am 95% confident that my answer is correct" are just a few of the countless examples of percents as they come
up in statistics.

Percent means Parts Per Hundred

Thus if we are given a decimal and want to convert it to a percent, we multiply the decimal by 100. In practice, this means we
move the decimal point two places to the right.

Convert the number 0.1738 to a percent.

Solution

We move the decimal over two to the right as shown below.

We get: 17.38% for the answer.

Convert 0.7 to a percent.

Solution

We want to move the decimal two places to the right, but there is only one digit to the right of the decimal place. The good
news is that we can always add a 0 to the right of the last digit. We write:

Now move the decimal place two digits to the right to get 70%.

In regression analysis, an important number that is calculated is called R-Squared. It helps us determine how helpful one
variable is in predicting another variable. The computer and calculator always display it as a decimal, but it is more meaningful

Learning Outcomes

Defintion: Percent

Example 21.1.2.1

Example 21.1.2.2

0.7 = 0.70

Example 21.1.2.3
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as a percent. Suppose that the R-Squared value that relates the amount of studying students do to prepare for a final exam and
the score on the exam is: . Convert this to a percent rounded to the nearest whole number percent.

Solution

We move the decimal 0.8971 two places to the right to get 89.71%

Now round to the nearest whole number percent. Note that the digit to the left of the whole number is 7 > 5. Thus we add 1 to
the whole number, 89. This gives us 90%.

A standard goal in statistics is to come up with a range of values that a population proportion is likely to lie. This range is
called a confidence interval. Suppose that we want to interpret a confidence interval for the percent of patients who experience
side effects from an experimental cancer treatment. The computer calculates it as the decimal range: [0.023,0.029]. What is the
likely range for the percent of patients who experience side effects from the experimental cancer treatment?

Transforming a Percent to a Decimal
To convert a decimal to a percent, we multiply the decimal by 100 which is equivalent to moving the decimal two places to the
right. Not surprisingly, to convert a percent to a decimal, we do exactly the opposite. We divide the number by 100 which is
equivalent to moving the decimal two places to the left.

Convert the percent 89.4% to a decimal.

Solution

We move the decimal over two to the left as shown below.

We get: 0.894 for the answer.

Suppose that you want to find the value of  such that 2.5% of the entire area under the Normal curve lies to the left of . The
first step will be to convert the 2.5% to a decimal. What decimal is equivalent to 2.5%?

Solution

We want to move the decimal 2.5 two places to the left, but since there is only one digit to the left of the decimal, we add a
zero first: 02.5. Now move the decimal two places to the left to get 0.025.

Converting a Fraction to a Decimal and a Percent

Often in probability it is natural to represent probabilities as fractions, but it is easier to make comparisons as decimals. Thus, we
need to be able to convert fractions to decimals. To do so we just divide.

= 0.8971r

2

Exercise

Example 21.1.2.4

Example 21.1.2.5
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Convert the fraction  to a decimal, rounding to the nearest hundredth.

Solution

We use long division:

Next round to the nearest hundredth to get 0.57.

Although everyone's favorite thing to do is to perform long division by hand, in most statistics classes you will have a
calculator or computer to use. Thus you just have to remember to perform the division with the calculator or computer and then
round.

In statistics we need to find basic probabilities and create a table for them. Suppose that you roll two six-sided dice, what
percent of the time will the sum equal to a 4? Round to the nearest whole number percent.

Solution

First, notice that there are 36 total possibilities for rolling the dice, since there are 6 faces on the first die and for each value of
the first die roll, there are 6 possibilities for the second die roll. Multiplying: 6 x 6 = 36. This will be the denominator. To find
the numerator, we list all the possible outcome where the sum is 4:

(1,3), (2,2), and (3,1)

There are three possible outcomes with the sum equaling a 4. Thus:

Now we divide:

Next to convert this decimal to a percent, we move the decimal two places to the right to get: 8.333...%

We are asked to round to the nearest whole number percent. The digit to the right or the whole number (8) is a 3. Since 3 < 5,
we can just erase everything to the left of the 8 and leave the 8 unchanged to get 8%. Thus there is an 8% chance of getting a
sum of 4 if you roll two six sided dice.

Convert Percentages to Decimals
Relating Fractions, Decimals, and Percents
Statistics Application of Converting Decimals to Percents

This page titled 21.1.2: Converting Between Fractions, Decimals and Percents is shared under a CC BY 4.0 license and was authored, remixed,
and/or curated by Larry Green.

Converting Between Fractions, Decimals and Percents by Larry Green is licensed CC BY 4.0.
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Example 21.1.2.7

P (sum = 4) = 3/36

= 0.08333...

3
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21.1.3: Decimals- Rounding and Scientific Notation

1. Understand what it means to have a number rounded to a certain number of decimal places.
2. Round a number to a fixed number of digits.
3. Convert from scientific notation to decimal notation and back.

In this section, we will go over how to round decimals to the nearest whole number, nearest tenth, nearest hundredth, etc. In most
statistics applications that you will encounter, the numbers will not come out evenly, and you will need to round the decimal. We
will also look at how to read scientific notation. A very common error that statistics students make is not noticing that the
calculator is giving an answer in scientific notation.

For example, suppose that you used a calculator to find the probability that a randomly selected day in July will have a high
temperature of over 90 degrees. Your calculator gives the answer: 0.4987230156. This is far too many digits for practical use, so it
makes sense to round to just a few digits. By the end of this section you will be able to perform the rounding that is necessary to
make unmanageable numbers manageable.

Brief Review of Decimal Language

Consider the decimal number: 62.5739. There is a defined way to refer to each of the digits.

The digit 6 is in the "Tens Place"
The digit 2 is in the "Ones Place"
The digit 5 is in the "Tenths Place"
The digit 7 is in the "Hundredths Place"
The digit 3 is in the "Thousandths Place"
The digit 9 is in the "Ten-thousandths Place"
We also say that 62 is the "Whole Number" part.

Keeping this example in mind will help you when you are asked to round to a specific place value.

It is reported that the mean number of classes that college students take each semester is 3.2541. Then the digit in the
hundredths place is 5.

Rules of Rounding
Now that we have reviewed place values of numbers, we are ready to go over the process of rounding to a specified place value.
When asked to round to a specified place value, the answer will erase all the digits after the specified digit. The process to deal with
the other digits is best shown by examples.

Round 3.741 to the nearest tenth.

Solution

Learning Outcomes

Example 21.1.3.1

Example : Case 1 - The Test Digit is Less Than 521.1.3.2
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Since the test digit (4) is less than 5, we just erase everything to the right of the tenths digit, 7. The answer is: 3.7.

Round 8.53792 to the nearest hundredth.

Solution

Since the test digit (6) is 5 or greater, we add one to the hundredths digit and erase everything to the right of the hundredths
digit, 3. Thus the 3 becomes a 4. The answer is: 8.54.

Round 0.014952 to four decimal places.

Solution

The test digit is 5, so we must round up. The rounding position is a 9 and adding 1 gives 10, which is not a single digit number.
Instead look at the two digits to the left of the test digit: 49. If we add 1 to 49, we get 50. Thus the answer is 0.0150.

Applications
Rounding is used in most areas of statistics, since the calculator or computer will produce numerical answers with far more digits
than are useful. If you are not told how many decimal places to round to, then you often want to think about the smallest number of
decimals to keep so that no important information is lost. For example suppose you conducted a sample to find the proportion of
college students who receive financial aid and the calculator presented 0.568429314. You could turn this into a percent at
56.8429314%. There are no applications where keeping this many decimal places is useful. If, for example, you wanted to present
this finding to the student government, you might want to round to the nearest whole number. In this case the ones digit is 6 and the
test digit is 8. Since 8 > 5, you add 1 to the ones digit. You can tell the student government that 57% of all college students receive
financial aid.

Suppose that you found out that the probability that a randomly selected person with who has misused prescription opioids will
transition to heroin is 0.04998713. Round this number to four decimal places.

Solution

The first four decimal places are 0.0499 and the test digit is 8. Since 8 > 5, we would like to add 1 to the fourth digit. Since this
is a 9, we go to the next digit to the left. This is also a 9, so we go to the next one which is a 4. We can think of adding 0499 +

Example : Case 2 - The Test Digit is 5 or Greater21.1.3.3

Example : Case 3 - The Test Digit is 5 or Greater and the rounding position digit is a 921.1.3.4
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1 = 0500. Thus the answer is 0.0500. Note that we keep the last two 0's after the 5 to emphasize that this is accurate to the
fourth decimal place.

Rounding and Arithmetic

Many times, we have to do arithmetic on numbers with several decimal places and want the answer rounded to a smaller number of
decimal places. One question you might ask is should you round before you perform the arithmetic or after. For the most accurate
result, you should always round after you preform the arithmetic if possible.

When asked to do arithmetic and present you answer rounded to a fixed number of
decimal places, only round after performing the arithmetic.

Suppose you pick three cards from a 52 card deck with replacement and want to find the probability of the event, A, that none
of the three cards will be a 2 through 7 of hearts. This probability is:

Round the answer to 2 decimal places.

Solution

Note that we have to first perform the arithmetic. With a computer or calculator we get:

Now we round to two decimal places. Notice that the hundredths digit is a 9 and the test digit is a 2. Thus the 9 remains
unchanged and everything to the right of the 9 goes away. the result is

If we mistakenly rounded 0.8846 to two decimal places (0.88) and then cubed the answer we would have gotten 0.68 which is
not the correct answer.

Scientific Notation
When a calculator presents a number in scientific notation, we must pay attention to what this represents. The standard way of
writing a number in scientific notation is writing the number as a product of a number greater than or equal 1 but less than 10
followed by a power of 10. For example:

The main purpose of scientific notation is to allow us to write very large numbers or numbers very close to 0 without having to use
so many digits. Most calculators and computers use a different notation for scientific notation, most likely because the superscript
is difficult to render on a screen. For example, with a calculator:

Notice that to arrive at 3.2, the decimal needed to be moved 7 places to the right.

A calculator displays:

Write this number in decimal form.

Solution

Notice that the number following E is 6. This means move the decimal over 6 places to the right. The first 4 moves is natural,
but for the last 2 moves, there are no numbers to move the decimal place past. We can always add extra zeros after the last

Example 21.1.3.6

P (A) = (0.8846)

3

= 0.692214679730.8846

3

P (A) ≈ 0.69

602, 000, 000, 000, 000, 000, 000, 000 = 6.02×10

23

0.00000032 = 3.2E−7

Example 21.1.3.7
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number to the right of the decimal place:

Now we can move the decimal place to the right 6 places to get

If you use a calculator or computer to find the probability of flipping a coin 27 times and getting all heads, then it will display:

Write this number in decimal form.

Solution

Many students will forget to look for the "E" and just write that the probability is 7.45, but probabilities can never be bigger
than 1. You can not have a 745% chance of it occurring. Notice that the number following E is −9. Since the power is negative,
this means move the decimal to the left, and in particular 9 places to the left. There is only one digit to the left of the decimal
place, so we need to insert 8 zeros:

Now we can move the decimal place to the right 9 places to the left to get

Application of Rounding Decimal Numbers
Here is a video that explains rounding.

This page titled 21.1.3: Decimals- Rounding and Scientific Notation is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Larry Green.

Decimals: Rounding and Scientific Notation by Larry Green is licensed CC BY 4.0.

2.0541E6 = 2.054100E6

2.0541E6 = 2.054100E6 = 2, 054, 100
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7.45E−9

7.45E−9 = 000000007.45E−9

7.45E−9 = 000000007.45E−9 = 0.00000000745
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21.1.4: Using Fractions, Decimals and Percents to Describe Charts

1. Interpret bar charts using fractions, decimals and percents
2. Interpret pie charts using fractions, decimals and percents

Charts, such as bar charts and pie charts are visual ways of presenting data. You can think of each slice of the pie or each bar as a
part of the whole. The numerical versions of this are a list of fractions, decimals and percents. By the end of this section we will be
able to look at one of these charts and produce the corresponding fractions, decimals, and percents.

Reading a Bar Chart
Bar charts occur frequently and it is definitely required to understand how to read them and interpret them in statistics. Often we
want to convert the information of a bar chart to information shown numerically. We need fractions and/or percents to do this.

The above bar chart shows the demographics of California in 2019 where the numbers represent millions of people. Here are
some questions that might come up in a statistics class.

A. What fraction of Californians was Hispanic in 2019?
B. What proportion of all Californians was White in 2019? Write your answer as a decimal number rounded to four decimal

places.
C. What percent of Californians who were neither Hispanic nor White in 2019? Round your answer to the nearest percent.

Solution

A. To find the fraction of California that was Hispanic in 2019, the numerator will be the total number of Hispanics and the
denominator will be the total number of people in California in 2019. The height of the bar that represents Hispanics is 15.
Therefore the numerator is 15. To find the total number of people in California, we add up the heights of the three bars: 

 
Now we can just write down the fraction: 

To find the proportion of Californians who were White in 2019, we start in the same way. The numerator will be the
number of Whites: 13. The denominator will be the total number of Californians which we already computed as 38.
Therefore the fraction of Californians who were White is: 

To convert this to a decimal, we use a calculator to get: 

Learning Outcomes

Example 21.1.4.1

15+13+10 = 38
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38
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Next round to four decimal places. Since the digit to the right of the fourth decimal place is , we round down to: 

B. To find the percent of Californians who were neither Hispanic nor White in 2019, we first find the fraction who were
neither. The numerator will be the number of "Other" which is: 10. The denominator will be the total which is 38. Thus the
fraction is:

Next, use a calculator to divide these numbers to get:

To convert this to a percent we multiply by 100% by moving the decimal two places to the right:

Finally we round to the nearest whole number. Noting that , we round down to get: 26%

The bar chart below shows the grade distribution for a math class.

A. Find the fraction of students who received a "C" grade.
B. Find the proportion of grades below a "C". Write your answer as a decimal number rounded to the nearest hundredth.
C. What percent of the students received an "A" grade? Round your answer to the nearest whole number percent.

Reading a Pie Chart

Another important chart that is used to display the components of a whole is a pie chart. With a pie chart, it is very easy to
determine the percent of each item.

The pie chart below shows the makeup of milk. Write the proportion of fat contained in milk as a decimal.

≈ 0.342105

13

38

0 < 5

0.3421

10

38

≈ 0.263158

10

38

0.263158 ×100% = 26.3158%

3 < 5
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Example 21.1.4.2
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Solution

We see that 31% of milk is fat. To convert a percent to a decimal, we just move the decimal over two places to the left. Thus,
31% becomes 0.31.

The pie chart above shows the number of pets of each type that had to be euthanized by the humane society due to incurable
illnesses.

A. What fraction of the euthanized pets were dogs?
B. What percent of the euthanized pets were cats? Round to the nearest whole number percent.

Solution

A. We take the number of dogs over the total. There were 334 euthanized dogs. To find the total we add:

 
Therefore, the fraction of euthanized dogs is

B. To find the percent of euthanized cats, we first find the fraction. There were 737 cats over a total of 1108 pets. The fraction
is

 
Next use a calculator to get the decimal number: 0.66516. Now multiply by 100% by moving the decimal place two digits
to the right to get: 66.516%. Finally, we need to round to the nearest whole number percent. Since , we round up.

Example 21.1.4.3

737+37+334 = 1108

334

1108

737

1108

5 ≥ 5
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Thus the percent of euthanized cats is 67%.

Finding Fractions, Decimals and Percents from a Bar Chart
Ex: Find the a Percent of a Total Using an Amount in Pie Chart

This page titled 21.1.4: Using Fractions, Decimals and Percents to Describe Charts is shared under a CC BY 4.0 license and was authored,
remixed, and/or curated by Larry Green.

Using Fractions, Decimals and Percents to Describe Charts by Larry Green is licensed CC BY 4.0.
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SECTION OVERVIEW

21.2: The Number Line

21.2.1: Distance between Two Points on a Number Line

21.2.2: Plotting Points and Intervals on the Number Line

21.2.3: Represent an Inequality as an Interval on a Number Line

21.2.4: The Midpoint
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21.2.1: Distance between Two Points on a Number Line

1. Calculate the distance between two points on a number line when both are non-negative.
2. Calculate the distance between two points on a number line when at least one is negative.

The number line is the main visual base in statistics and we often want to look at two points on the number line and determine the
distance between them. This is used to find the base of a rectangle or another figure that lies above the number line. By the end of
this section, you will be able to determine the distance between any two points on a number line that comes from a statistics
application.

Finding the Distance Between Two Points with Positive Coordinates on a Number Line
The key to finding the distance between two points is to remember that the geometric definition of subtraction is the distance
between the two numbers as long as we subtract the smaller number from the larger.

Find the distance between the points 2.5 and 9.8 as shown below on the number line.

Solution

To find the distance, we just subtract:

When finding probabilities involving a uniform distribution, we have to find the base of a rectangle that lies on a number line.
Find the base of the rectangle shown below that represents a uniform distribution from 2 to 9.

Solution

We just subtract:

Learning Outcomes

Example 21.2.1.1

9.8 − 2.5 = 7.3

Example 21.2.1.2

9 − 2 = 7
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Finding the Distance Between Two Points on a Number Line When the Coordinates Are Not Both
Positive
In statistics, it is common to have points on a number line where the points are not both positive and we need to find the distance
between them.

The diagram below shows the confidence interval for the difference between the proportion of men who are planning on going
into the health care profession and the proportion of women. What is the width of the confidence interval?

Solution

Whenever we want want to find the distance between two numbers, we always subtract. Recall that subtracting a negative
number is adding.

Therefore the width of the confidence interval is 0.05.

The mean value of credit card accounts is -6358 dollars. A study was done of recent college graduates and found their mean
value for their credit card accounts was -5215 dollars. The number line below shows this situation. How far apart are these
values?

Solution

We subtract the two numbers and recall that when we subtract two negative numbers when we are looking at the right minus
the left, we make them positive and subtract the positive numbers.

Thus the mean credit card balances are $1143 apart.

In statistics, we are asked to find a z-score, which tells us how unusual an event is. The first step in finding a z-score is to
calculate the distance a value is from the mean. The number line below depicts the mean of 18.56 and the value of 20.43. Find
the distance between these two points.

Finding the Distance Between Points on a Number Line
Integer Subtracton Using the Number Line

This page titled 21.2.1: Distance between Two Points on a Number Line is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Larry Green.

Example 21.2.1.3

0.01 − (−0.04) = 0.01 + 0.04 = 0.05

Example 21.2.1.4

−5215 − (−6358) = 6358 − 5215 = 1143
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21.2.2: Plotting Points and Intervals on the Number Line

1. Plot a point on the number line
2. Plot an interval on the number line

The number line is of fundamental importance and is used repeatedly in statistics. It is a tool to visualize all of the possible
outcomes of a study and to organize the results of the study. Often a diagram is placed above the number line to provide us with a
picture of the results. By the end of this section, you will be able to plot points and intervals on a number line and use these plots to
understand the possible outcomes and actual outcomes of studies.

Drawing Points on a Number Line
A number line is just a horizontal line that is used to display all the possible outcomes. It is similar to a ruler in that it helps us
describe and compare numbers. Similar to a ruler that can be marked with many different scales such as inches or centimeters, we
get to choose the scale of the number line and where the center is.

The standard normal distribution is plotted above a number line. The most important values are the integers between -3 and 3.
The number 0 is both the mean (average) and median (center).

1. Plot the number line that best displays this information.
2. Plot the value -1.45 on this number line.

Solution

1. We sketch a line, mark 0 as the center, and label the numbers -3, -2, -1, 0, 1, 2, 3 from left to right.

2. To plot the point -1.45, we first have to understand that this number is between -1 and -2. It is close to half way between -1
and -2. We put a circle on the number line that is close to halfway between these values as shown below.

When working with box plots, we need to first set up a number line that labels what is called the five point summary:
Minimum, First Quartile, Median, Third Quartile, and Maximum. Suppose the five point summary for height in inches for a
basketball team is: 72,74,78,83,89. Plot these points on a number line

Solution

When plotting points on a number line, we first have to decide what range of the line we want to show in order to best display
the points that appear. Technically all numbers are on every number line, but that does not mean we show all numbers. In this
example, the numbers are all between 70 and 90, so we certainly don't need to display the number 0. A good idea is to let 70 be
on the far left and 90 be on the far right and then plot the points between them. We also have to decide on the spacing of the
tick marks. Since the range from 70 to 90 is 20, this may be too many numbers to display. Instead we might want to count by
5's. Below is the number line that shows the numbers 70 to 90 and counts by 5's. The five point summary is plotted on this line.

Learning Outcomes

Example 21.2.2.1

Example 21.2.2.2
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A histogram will be drawn to display the annual income that experienced registered nurses make. The boundaries of the bars of
the histogram are: $81,000, $108,000, $135,000, $162,000, and $189,000. Plot these points on a number line.

Plotting an Interval on a Number Line
Often in statistics, instead of just having to plot a few points on a number line, we need to instead plot a whole interval on the
number line. This is especially useful when we want to exhibit a range of values between two numbers, to the left of a number or to
the right of a number.

A 95% confidence interval for the proportion of Americans who work on weekends is found to be 0.24 to 0.32, with the center
at 0.28. Use a number line to display this information.

Solution

We just draw a number line, include the three key numbers: 0.24, 0.32, and 0.28 and highlight the part of the interval between
0.23 and 0.31.

In Hypothesis testing, we sketch something called the rejection region which is an interval that goes off to infinity or to
negative infinity. Suppose that the mean number of hours to work on the week's homework is 4.2. The rejection region for the
hypothesis test is all numbers larger than 7.3 hours. Plot the mean and sketch the rejection region on a number line.

Solution

We plot the point 4.2 on the number line and shade everything to the right of 7.3 on the number line.

Plot Integers on the Number Line
Intervals: Given an Inequality, Graph the Interval and State Using Interval Notation
Plotting Points on a Number Line Application

This page titled 21.2.2: Plotting Points and Intervals on the Number Line is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Larry Green.

Plotting Points and Intervals on the Number Line by Larry Green is licensed CC BY 4.0.
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21.2.3: Represent an Inequality as an Interval on a Number Line

1. Graph and inequality on a number line.
2. Graph the complement on a number line for both continuous and discrete variables.

Inequalities come up frequently in statistics and it is often helpful to plot the inequality on the number line in order to visualize the
inequality. This helps both for inequalities that involve real numbers and for inequalities that refer to just integer values. As an
extension of this idea, we often want to look at the complement of an inequality, that is all numbers that make the inequality false.
In this section we will look at examples that accomplish this task.

Sketching an Inequality on a number line where the possible values are real numbers.
There are four different inequalities: . What makes this the most challenging is when they are expressed in words.
Here are some of the words that are used for each:

: "Less Than", "Smaller", "Lower", "Younger"
: "Less Than or Equal to", "At Most", "No More Than", "Not to Exceed"
: "Greater Than", "Larger", "Higher", "Bigger", "Older", "More Than"
: "Greater Than or Equal to", "At Least", "No Less than"

These are the most common words that correspond to the inequalities, but there are others that come up less frequently.

Graph the inequality:  on a number line

Solution

First notice that the interval does not include the number 3, but does include the number 5. We can represent not including a
number with an open circle and including a number with a closed circle. The number line representation of the inequality is
shown below.

In statistics, we often want to find probabilities of an event being at least as large or no more than a given value. It helps to first
plot the interval on a number line. Suppose you want to find the probability that you will have to wait in line for at least
4minutes. Sketch this inequality on a number line.

Solution

First, notice that "At Least" has the symbol . Thus, we have a closed circle on the number 4. There is no upper bound, so we
draw a long arrow from 4 to the right of 4. The solution is shown below

Another main topic that comes up in statistics is confidence intervals. For example in recent poll to see the percent of
Americans who think that Congress is doing a good job found that a 95% confidence interval had lower bound of 0.18 and an
upper bound of 0.24. This can be written as [0.18,0,24]. Sketch this interval on the number line.

Solution

Learning Outcomes

<, ≤, >, ≥

<

≤

>

≥

Example 21.2.3.1

3 < x ≤ 5

Example 21.2.3.2

≥

Example 21.2.3.3
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The first thing we need to do is decide on the tick marks to put on the number line. If we counted by 1's, then the interval of
interest would be too small to stand out. Instead we will count by 0.1's. The number line is shown below.

Often in statistics, we deal with discrete variables. Most of the time this will mean that only whole number values can occur.
For example, you want to find out the probability that a college student is taking at most three classes. Graph this on a number
line.

Solution

First note that the outcomes can only be whole numbers. Second, note that "at most" means . Thus the possible outcomes are:
0, 1, 2, and 3. The number line below displays these outcomes.

Graphing the Complement
In statistics, we often want to graph the complement of an interval. The complement means everything that is not in the interval.

Graph the complement of the interval [2,4).

Solution

Notice that the complement of numbers inside the interval between 2 and 4 is the numbers outside that interval. This will
consist of the numbers to the left of 2 and to the right of 4. Since the number 2 is included in the original interval, it will not be
included in the complement. Since the number 4 is not included in the original interval, it will be included in the complement.
The complement is shown on the number line below.

Some calculators can only find probabilities for values less than a certain number. If we want the probability of an interval
greater than a number, we need to use the complement. Suppose that you want to find the probability that a person will have
traveled to more than two foreign countries in the last twelve months. Find the complement of this and graph it on a number
line.

Solution

First notice that only whole numbers are possible since it does not make sense to go to a fractional number of countries.
Second note that the lowest number that is more than 2 is 3. If 3 is included in the original list, then 3 will not be included in
the complement. Thus, the highest number that is in the complement of "more than 2" is 2. The number line below shows the
complement of more than 2.

Example 21.2.3.4

≤

Example 21.2.3.5

Example 21.2.3.6
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Suppose you want to find the probability that at least 4 people in your class have a last name that contains the letter "W". To
make this calculation you will need to first find the complement of "at least 4". Sketch this complement on the number line.

Intervals: Given an Inequality, Graph the Interval and State Using Interval Notation
Express Inequalities as a Graph and Interval Notation
Sketching the Complement of an Interval on a Number Line

This page titled 21.2.3: Represent an Inequality as an Interval on a Number Line is shared under a CC BY 4.0 license and was authored, remixed,
and/or curated by Larry Green.

Represent an Inequality as an Interval on a Number Line by Larry Green is licensed CC BY 4.0.
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21.2.4: The Midpoint

1. Find the midpoint between two numbers.
2. Sketch the midpoint of two numbers on a number line.

As the word sounds, "midpoint" means "the point in the middle". Finding a midpoint is not too difficult and has applications in
many areas of statistics, from confidence intervals to sketching distributions, to means.

Finding the Midpoint Between Two Numbers
If we are given two numbers, then the midpoint is just the average of the two numbers. To calculate the midpoint, we add them up
and then divide the result by 2. The formula is as follows:

Let  and  be two numbers. Then the midpoint,  of these two numbers is

Find the midpoint of the numbers  and .

Solution

The most important thing about finding the midpoint is that the addition of the two numbers must occur before the division by
2. We can either do this one step at a time in our calculator or we can enclose the sum in parentheses. In this example we will
perform the addition first:

Now we are ready to divide by 2:

Thus the midpoint of 3.5 and 7.2 is 5.35.

A major topic in statistics is the confidence interval which tells us the most likely interval that the mean or the proportion will
lie in. Often the lower and upper bound of the confidence interval are given, but the midpoint of these two numbers is the best
guess for what we are looking for. Suppose a 95% confidence interval for the difference between two means is -1.34 and 2.79.
Find the midpoint of these numbers, which is the best guess for the difference between the two means.

Solution

We use the formula for the midpoint (Equation ):

Now let's use a calculator. We will need parentheses around the numerator:

Thus, the midpoint of the numbers -1.34 and 2.79 is 0.725.

Learning Outcomes

Definition: the Midpoint

a b M

M =

a+b

2

(21.2.4.1)

Example 21.2.4.1

3.5 7.2

3.5+7.2 = 10.7

= 5.35

10.7

2

Example 21.2.4.2

21.2.4.1

M = =

a+b

2

−1.34+2.79

2

(−1.34+2.79)÷2 = 0.725
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Sketching the Midpoint on a Number Line
Visualizing the midpoint can often reveal it much better than just writing down its value. The diagrams are of fundamental
importance in statistics.

Sketch the points -3, 5 and the midpoint of these two numbers on a number line.

Solution

We start by finding the midpoint using the midpoint formula (Equation ):

Now we sketch these three points on the number line:

Another application of the midpoint involves hypothesis testing. Sometimes we are given the hypothesized mean, which is the
midpoint. We are also given the sample mean, which is either the left or right endpoint. The goal is to find the other endpoint.
Suppose that the midpoint (hypothesized mean) is at 3.8 and the right endpoint (sample mean) is at 5.1. Find the value of the
left endpoint.

Solution

It helps to sketch the diagram on the number line as shown below.

Now since 3.8 is the midpoint, the distance from the left endpoint to the midpoint is equal to the distance from 3.8 to 5.1. The
distance from 3.8 to 5.1 is:

Therefore the left endpoint is 1.3 to the left of 3.8. This can be found by subtracting the two numbers:

Therefore the left endpoint is at 2.5.

Suppose that the midpoint (hypothesized proportion) is at 0.31 and the left endpoint (sample proportion) is at 0.28. Find the
value of the right endpoint.

Midpoint on the Number line
Finding the Right Endpoint Given the Left Endpoint and Midpoint

This page titled 21.2.4: The Midpoint is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Larry Green.

The Midpoint by Larry Green is licensed CC BY 4.0.

Example 21.2.4.3

21.2.4.1

M = = (−3+5)÷2 = 1

−3+5

2

Example : hypothesis testing21.2.4.4

5.1 − 3.8 = 1.3

3.8 − 1.3 = 2.5
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SECTION OVERVIEW

21.3: Operations on Numbers

21.3.1: Area of a Rectangle

21.3.2: Factorials and Combination Notation

21.3.3: Order of Operations

21.3.4: Order of Operations in Expressions and Formulas

21.3.5: Perform Signed Number Arithmetic

21.3.6: Powers and Roots

21.3.7: Using Summation Notation
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21.3.1: Area of a Rectangle

Find the area of a rectangle.
Find the height of a rectangle given that the area is equal to 1.

Rectangles are of fundamental importance in the portion of statistics that involves the uniform distribution. Every rectangle has a
base and a height and an area. The formula for the area of a rectangle is:

When working with the uniform distribution, the area represents the probability of an event being within the bounds of the base.

Consider the rectangle shown below.

Find the area of this rectangle.

Solution

We use the Area formula (Equation ). To find the base, we notice that it runs from 2 to 8, so we subtract these numbers
to get the base:

Next multiply by the height, 3, to get

It turns out that the area of the rectangles that equal to 1 will occur the most often for a uniform distribution. Suppose that we
know that the area of a rectangle that depicts a uniform distribution is equal to 1 and that the base of the rectangle goes from 4
to 7. Find the height of the rectangle.

Solution

First sketch the rectangle below, labeling the height as .

Next, find the base of the rectangle that goes from 4 to 7 by subtracting:

Next, plug in what we know into the area equation:

Learning Outcomes

Area =Base×Height (21.3.1.1)

Example 21.3.1.1

21.3.1.1

Base = 8 − 2 = 6

Area = Base ×Height = 6 ×3 = 18

Example 21.3.1.2

h

Base = 7−4 = 3
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This tell us that 3 times a number is equal to 1. To find out what the number is, we just divide both sides by 3 to get:

Therefore the height of an area 1 rectangle with base from 4 to 7 is .

Suppose that we know that the area of a rectangle that depicts a uniform distribution is equal to 1 and that the base of the
rectangle goes from 3 to 5. There is a smaller rectangle within the larger one with the same height, but whose base goes from
3.7 to 4.4. Find the area of the smaller rectangle.

Solution

First, sketch the larger rectangle with the smaller rectangle shaded in.

Next, we find the height of the rectangle. We know that the area of the larger rectangle is 1. The base goes from 3 to 5, so the
base is  Hence:

Dividing by 2, gives us that the height is  or 0.5. Now we are ready to find the area of the smaller rectangle. We first find the
base by subtracting:

Next, use the area formula:

Suppose that elementary students' ages are uniformly distributed from 5 to 11 years old. The rectangle that depicts this has base
from 5 to 11 and area 1. The rectangle that depicts the probability that a randomly selected child will be between 6.5 and 8.6
years old has base from 6.5 to 8.6 and the same height as the larger rectangle. Find the area of the smaller rectangle

Ex: Determine the Area of a Rectangle Involving Whole Numbers
Area of a Rectangle and the Uniform Distribution

This page titled 21.3.1: Area of a Rectangle is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Larry Green.

Area of a Rectangle by Larry Green is licensed CC BY 4.0.

1 = Area = Base ×Height = 3×h

h =

1

3

1

3

Example 21.3.1.3

5−3 = 2

1 = Area = Base ×Height = 2h

1

2

Base = 4.4−3.7 = 0.7

Area = Base ×Height = 0.7 ×0.5 = 0.35

Exercise 21.3.1.1
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21.3.2: Factorials and Combination Notation

1. Evaluate a factorial.
2. Use combination notation for statistics applications.

When we need to compute probabilities, we often need to multiple descending numbers. For example, if there is a deck of 52 cards
and we want to pick five of them without replacement, then there are 52 choices for the first pick, 51 choices for the second pick
since one card has already been picked, 50 choices for the third, 49 choices for the fourth, and 48 for the fifth. If we want to find
out how many different outcomes there are, we can use what we call the multiplication principle and multiple them: 

. If we wanted to pick all 52 of the cards one at a time, then this list would be excessively long. Instead
there is a notation that describes multiplying all the way down to 1, called the factorial. It must be exciting, since we use the
symbol "!" for the factorial.

Calculate 

Solution

We use the definition which says start at 4 and multiply until we get to 1:

If we pick 5 cards from a 52 card deck without replacement and the same two sets of 5 cards, but in different orders, are
considered different, how many sets of 5 cards are there?

Solution

From the introduction, the number of sets is just:

This is not quite a factorial since it stops at 48; however, we can think of this as  with  removed from it. In other words
we need to find

We could just multiply the numbers from the original list, but it is a good idea to practice with your calculator or computer to
find this using the ! symbol. When you do use technology, you should get:

Combinations

One of the most important applications of factorials is combinations which count the number of ways of selecting a smaller
collection from a larger collection when order is not important. For example if there are 12 people in a room and you want to select
a team of 4 of them, then the number of possibilities uses combinations. Here is the definition:

The number of ways of selecting k items without replacement from a collection of n items when order does not matter is:

Learning Outcomes

52×51×50×49×48

Example 21.3.2.1

4!

4! = 4×3×2×1 = 24

Example 21.3.2.2

52×51×50×49×48

52! 47!

52!

47!

= 311, 875, 200

52!

47!

Definition: Combinations

( ) = =

n

r

n

C

r

n!

r! (n−r)!

(21.3.2.1)
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Notice that there are a few notations. The first is more of a mathematical notation while the second is the notation that a calculator
uses. For example, in the TI 84+ calculator, the notation for the number of combinations when selecting 4 from a collection of 12
is:

There are many internet sites that will perform combinations. For example the math is fun site asks you to put in  and  and also
state whether order is important and repetition is allowed. If you click to make both "no" then you will get the combinations.

Calculate

Solution

Whether you use a hand calculator or a computer you should get the number: 

The probability of winning the Powerball lottery if you buy one ticket is:

Calculate this probability.

Solution

First, let's calculate . Using a calculator or computer, you should get 11,238,513. Next, multiply by 26 to get

Thus, there is a one in 292,201,338 chance of winning the Powerball lottery if you buy a ticket. We can also write this as a
decimal by dividing:

As you can see, your chances of winning the Powerball are very small.

A classroom is full of 28 students and there will be one president of the class and a "Congress" of 4 others selected. The
number of different leadership group possibilities is:

Calculate this number to find out how many different leadership group possibilities there are.

Ex 1: Simplify Expressions with Factorials

Combinations

Combinations

This page titled 21.3.2: Factorials and Combination Notation is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Larry Green.

Factorials and Combination Notation by Larry Green is licensed CC BY 4.0.

12 4

n

C

r

n r

Example 21.3.2.3

( )

15

11

=

15

C

11

1365

Example 21.3.2.4

P (win) =

1

×26

69

C

5

69

C

5

11, 238, 513×26 = 292, 201, 338

P (win) = = 0.000000003422

1

292, 201, 338

Exercise

28×

27

C

4
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21.3.3: Order of Operations

1. Use the order of operations to correctly perform multi-step arithmetic
2. Apply the order of operations to statistics related complex questions.

When we are given multiple arithmetic operations within a calculation, there is a, established order that we must do them in based
on how the expression is written. Understanding these rules is especially important when using a calculator, since calculators are
programmed to strictly follow the order of operations. This comes up in every topic in statistics, so knowing the order of operations
is an essential skill for all successful statistics students to have.

PEMDAS
The order of operations are as follows:

1. Parentheses
2. Exponents
3. Multiplication and Division
4. Addition and Subtraction

When there is a tie, the rule is to go from left to right.

Notice that Multiplication and division are listed together as item 3. If you see multiplication and division in the same expression
the rule is to go from left to right. Similarly, if you see addition and subtraction in the same expression the rule is to from go left to
right. The same goes for two of the same arithmetic operators.

Evaluate: 

Solution

We start with what is inside the parentheses: . Since exponents comes before addition, we find  first. We now
have

We continue inside the parentheses and perform the multiplication: .

This gives

Since division comes before addition and subtraction, we next calculate  to get

Since subtraction and addition are tied, we go from left to right. We calculate:  to get

The key to arriving at the correct answer is to go slow and write down each step in the arithmetic.

Hidden Parentheses

You may think that since you always have a calculator or computer at hand, that you don't need to worry about order of operations.
Unfortunately, the way that expressions are written is not the same as the way that they are entered into a computer or calculator. In
particular, exponents need to be treated with care as do fractions bars.

Learning Outcomes

Example 21.3.3.1

20−6÷3+(2× )3

2

2+3

2

= 93

2

20−6÷3+(2×9)

2×9 = 18

20−6÷3+18

6÷3 = 2

20−2+18

20−2 = 18

18+18 = 36
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Evaluate 

Solution

First, note that we use the symbol "^" to tell a computer or calculator to exponentiate. If you were to enter 2.1^6-2 into a
computer, it would give you the answer of 83.766121 which is not correct, since the computer will first expontiate and then
subtract. Since the subtraction is within the exponent, it must be performed first. To tell a calculator or computer to perform the
subtraction first, we use parentheses:

2.1^(6 - 2) = 19.4481

The "z-score" is defined by:

Find the z-score rounded to one decimal place if:

Solution

Once again, if we put these numbers into the z-score formula and use a computer or calculator by entering 
 we will get -0.259 which is the wrong answer. Instead, we need to know that the fraction bar

separates the numerator and the denominator, so the subtraction must be done first. We compute

Now round to one decimal place to get 4.3. Notice that if you rounded before you did the arithmetic, you would get exactly 5
which is very different. 4.3 is more accurate.

Suppose the equation of the regression line for the number of pairs of socks a person owns, , based on the number of pairs of
shoes, , the person owns is

Use this regression line to predict the number of pairs of socks a person owns for a person who owns 4 pairs of shoes.

Order of Operations - The Basics
Order of Operations

This page titled 21.3.3: Order of Operations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Larry Green.

Order of Operations by Larry Green is licensed CC BY 4.0.

Example 21.3.3.3

2.1

6−2

Example : z-scores21.3.3.4

z=

x−μ

σ

x = 2.323, μ= 1.297, σ = 0.241

3.323 − 1.297 ÷ 0.241

= (2.323−1.297)÷0.241 = 4.25726141

2.323−1.297

0.241

Exercise

y

x

= 6+2xŷ
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21.3.4: Order of Operations in Expressions and Formulas

Use Order of Operations in Statistics Formulas.

We have already encountered the order of operations: Parentheses, Exponents, Multiplication and Division, Addition and
Subtraction. In this section, we will give some additional examples where the order of operations must be used properly to evaluate
statistics.

The sample standard deviation asks us to add up the squared deviations, take the square root and divide by one less than the
sample size. For example, suppose that there are three data values: 3, 5, 10. The mean of these values is 6. Then the standard
deviation is:

Evaluate this number rounded to the nearest hundredth.

Solution

The first thing in the order of operations is to do what is in the parentheses. We must subtract:

We can substitute the numbers in to get:

Next, we exponentiate:

Substitute these in to get:

We can now perform the addition inside the square root to get:

Next, perform the subtraction of the denominator to get:

We can divide to get:

We don't want to do this by hand, so in a calculator or computer type in:

Learning Outcomes

Example 21.3.4.1

s=

+ +(3−6)

2

(5−6)

2

(10−6)

2

3−1

− −−−−−−−−−−−−−−−−−−−−−−−−

√

3−6 =−3, 5−6 = −1, 10−6 = 4

=

+ +(−3)

2

(−1)

2

(4)

2

3−1

− −−−−−−−−−−−−−−−−

√

= 9, = 1, = 16(−3)

2

(−1)

2

4

2

9+1+16

3−1

− −−−−−−−−

√

26

3−1

− −−−−

√

26

2

−−−

√

13

−−

√

= 3.6113

0.5
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When calculating the probability that a value will be less than 4.6 if the value is taken randomly from a uniform distribution
between 3 and 7, we have to calculate:

Find this probability.

Solution

We can use a calculator or computer, but we must be very careful about the order of operations. Notice that there are implied
parentheses due to the fraction bar. The answer is:

Using technology, we get:

When finding the upper bound, , of a confidence interval given the lower bound, , and the margin of error, , we use the
formula

Find the upper bound of the confidence interval for the proportion of babies that are born preterm if the lower bound is 0.085
and the margin of error is 0.03.

Ex: Evaluate an Expression Using the Order of Operations
Order of Operations and Confidence Intervals

This page titled 21.3.4: Order of Operations in Expressions and Formulas is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Larry Green.
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Example 21.3.4.2

(4.6−3)×

1

7−3

(4.6−3)×1

7−3

(4.6−3)× = 0.4

1

7−3

Exercise

U L E

U = L+2E
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21.3.5: Perform Signed Number Arithmetic

1. Add signed numbers.
2. Subtract signed numbers.
3. Multiply signed numbers.
4. Divide signed numbers.

Even though negative numbers seem not that common in the real world, they do come up often when doing comparisons. For
example, a common question is how much bigger is one number than another, which involves subtraction. In statistics we don't
know the means until we collect the data and do the calculations. This often results in subtracting a larger number from a smaller
number which yields a negative number. Because of this and for many other reasons, we need to be able to perform arithmetic on
both positive and negative numbers.

Adding Signed Numbers
We will assume that you are very familiar with adding positive numbers, but when there are negative numbers involved, there are
some rules to follow:

1. When adding two negative numbers, ignore the negative signs, add the positive numbers and then make the result negative.
2. When adding two numbers such that one is positive and the other is negative, ignore the sign, subtract the smaller from the

larger. If the larger of the positive numbers was originally negative, then make the result negative. Otherwise keep the result
positive.

Add:

Solution

First we ignore the signs and add the positive numbers.

Next we make the result negative.

Add:

Solution

Since one of the numbers is positive and the other is negative, we subtract:

Of the two numbers, 2 and 5, 5 is the larger one and started positive. Hence we keep the result positive:

Subtracting Numbers

Subtraction comes up often when we want to find the width of an interval in statistics. Here are the cases for subtracting: :

Learning Outcomes

Example 21.3.5.1

−4+(−3)

4+3 = 7

−4+(−3) =−7

Example 21.3.5.2

−2+5

5−2 = 3

−2+5 = 3

a−b
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1. If , then this is just ordinary subtraction.
2. If , then find  and make the result negative.
3. If , then make both positive, add the two positive numbers and make the result negative.
4. If  then you use the rule that subtracting a negative number is the same as adding the positive number.

Evaluate 

Solution

Since 9 is bigger than 5, we subtract:

Next, we make the result negative to get:

Evaluate 

Solution

We are in the case . Therefore, we first make both positive and add the positive numbers.

The final step is to make the answer negative to get

In statistics, we call a distribution Uniform if an event is just as likely to be in any given interval within the bounds as any
other interval within the bounds as long as the intervals are both of the same width. Finding the width of a given interval is
usually the first step in solving a question involving uniform distributions. Suppose that the temperature on a winter day has a
Uniform distribution on [-8,4]. Find the width of this interval

Solution

To find the width of an interval, we subtract the left endpoint from the right endpoint:

Since we are subtracting a negative number, the "-" signs become addition:

Thus the width of the interval is 12.

Multiplying and Dividing Signed Numbers
When we have a multiplication or division problem, we just remember that two negatives make a positive. So if there are an even
number of negative numbers that are multiplied or divided, the result is negative. If there are an odd number of negative numbers
that are multiplied or divided, the result is positive.

Perform the arithmetic:

a≥ b ≥ 0

b ≥ a≥ 0 b−a

a< 0, b ≥ 0

b < 0

Example 21.3.5.3

5−9

9−5 = 4

5−9 =−4

Example 21.3.5.4

−9−4

a< 0, b ≥ 0

9+4 = 13

−9−4 =−13

Example : Uniform distributions21.3.5.5

4 − (−8)

4−(−8) = 4+8 = 12

Example 21.3.5.6
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Solution

First, just ignore all of the negative signs and multiply the numerator and denominator separately:

Now divide:

Finally, notice that there are four negative numbers in the original multiplication and division problem. Four is an even
number, so the answer is positive:

A confidence interval for the population mean difference in books read per year by men and women was was found to be
[-4,1]. Find the midpoint of this interval.

Solution

First recall that to find the midpoint of two numbers, we add then and then divide by 2. Hence, our first step is to add -4 and 1.
Since 1 is positive and -4 is negative, we first subtract the two numbers:

Of the two numbers, 4 and 1, 4 is the larger one and started negative. Hence we change the sign to negative::

The final step in finding the midpoint is to divide by 2. First we divide them as positive numbers:

Since the original quotient has a single negative number (an odd number of negative numbers), the answer is negative. Thus
the midpoint of -4 and 1 is -1.5.

The difference between the observed value and the expected value in linear regression is called the residual. Suppose that the
three observed values are: -4, 2, and 5. The expected values are -3, 7, and -1. First find the residuals and then find the sum of
the residuals.

Signed Number Operations (L1.4)
signed arithmetic

This page titled 21.3.5: Perform Signed Number Arithmetic is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Larry Green.

Perform Signed Number Arithmetic by Larry Green is licensed CC BY 4.0.

(−6) (−10)

(−4) (−5)

=

(6) (10)

(4) (5)

60

20

= = 3

60

20

6

2

= 3

(−6) (−10)

(−4) (−5)

Example 21.3.5.7

4−1 = 3

−4+1 =−3

= 1.5

3

2

Exercise

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://stats.libretexts.org/@go/page/36296?pdf
https://youtu.be/Vw7CUBX8DU4
https://youtu.be/7Cx8n-yr7So
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/21%3A_Math_Review_for_Introductory_Statistics/21.03%3A_Operations_on_Numbers/21.3.05%3A_Perform_Signed_Number_Arithmetic
https://creativecommons.org/licenses/by/4.0
http://www.ltcc.edu/academics/faculty/larrygreen.php
https://stats.libretexts.org/@go/page/4727
http://www.ltcc.edu/academics/faculty/larrygreen.php
https://creativecommons.org/licenses/by/4.0/


21.3.6.1 https://stats.libretexts.org/@go/page/36297

21.3.6: Powers and Roots

1. Raise a number to a power using technology.
2. Take the square root of a number using technology.
3. Apply the order of operations when there is root or a power.

It can be a challenge when we first try to use technology to raise a number to a power or take a square root of a number. In this
section, we will go over some pointers on how to successfully take powers and roots of a number. We will also continue our
practice with the order of operations, remembering that as long as there are no parentheses, exponents always come before all other
operations. We will see that taking a power of a number comes up in probability and taking a root comes up in finding standard
deviations.

Powers
Just about every calculator, computer, and smartphone can take powers of a number. We just need to remember that the symbol "^"
is used to mean "to the power of". We also need to remember to use parentheses if we need to force other arithmetic to come before
the exponentiation.

Evaluate:  and round to two decimal places.

Solution

This definitely calls for the use of technology. Most calculators, whether hand calculators or computer calculators, use the
symbol "^" (shift 6 on the keyboard) for exponentiation. We type in:

We are asked to round to two decimal places. Since the third decimal place is a 6 which is 5 or greater, we round up to get:

Evaluate:  and round to two decimal places.

Solution

First note that on a computer we use "*" (shift 8) to represent multiplication. If we were to put in 2.8 ^ 5.3 * 0.17 into the
calculator, we would get the wrong answer, since it will perform the exponentiation before the multiplication. Since the
original question has the multiplication inside the exponent, we have to force the calculator to perform the multiplication first.
We can ensure that multiplication occurs first by including parentheses:

Now round to decimal places to get:

If we want to find the probability that if we toss a six sided die five times that the first two rolls will each be a 1 or a 2 and the
last three die rolls will be even, then the probability is:

Learning Outcomes

Example 21.3.6.1

1.04

5

= 1.21665291.04

5

≈ 1.221.04

5

Example 21.3.6.2

2.8

5.3×0.17

= 2.528652.8

5.3×0.17

≈ 2.532.8

5.3×0.17

Example 21.3.6.3

×( )

1

3

2

( )

1

2

3
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What is this probability rounded to three decimal places?

Solution

We find:

Now round to three decimal places to get

Square Roots

Square roots come up often in statistics, especially when we are looking at standard deviations. We need to be able to use a
calculator or computer to compute a square root of a number. There are two approaches that usually work. The first approach is to
use the  symbol on the calculator if there is one. For a computer, using sqrt() usually works. For example if you put 10*sqrt(2)
in the Google search bar, it will show you 14.1421356. A second way that works for pretty much any calculator, whether it is a
hand held calculator or a computer calculator, is to realize that the square root of a number is the same thing as the number to the
1/2 power. In order to not have to wrap 1/2 in parentheses, it is easier to type in the number to the 0.5 power.

Evaluate  and round your answer to two decimal places.

Solution

Depending on the technology you are using you will either enter the square root symbol and then the number 42 and then close
the parentheses if they are presented and then hit enter. If you are using a computer, you can use sqrt(42). The third way that
will work for both is to enter:

You must then round to two decimal places. Since 0 is less than 5, we round down to get:

The "z-score" is for the value of 28 for a sampling distribution with sample size 60 coming from a population with mean 28.3
and standard deviation 5 is defined by:

Find the z-score rounded to two decimal places.

Solution

We have to be careful about the order of operations when putting it into the calculator. We enter:

Finally, we round to 2 decimal places. Since 4 is smaller than 5, we round down to get:

(1/3 (1/2 ≈ 0.013888889)

2

)

3

× ≈ 0.014( )

1

3

2

( )

1

2

3

√

Example 21.3.6.3

42

−−

√

≈ 6.480740742

0.5

≈ 6.4842

−−

√

Example 21.3.6.4

z=

28−28.3

5

60√

(28−28.3)/(5/ 0.5) =−0.46475860

∧

z= =−0.46

28−28.3

5

60√
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The standard error, which is an average of how far sample means are from the population mean is defined by:

where  is the standard error,  is the standard deviation, and  is the sample size. Find the standard error if the population
standard deviation, , is 14 and the sample size, , is 11.

Square Root on the TI-83plus and TI-84 family of Calculators
Square Roots with a Computer

This page titled 21.3.6: Powers and Roots is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Larry Green.

Powers and Roots by Larry Green is licensed CC BY 4.0.
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21.3.7: Using Summation Notation

1. Evaluate an expression that includes summation notation.
2. Apply summation notation to calculate statistics.

This notation is called summation notation and appears as:

In this notation, the  is an expression that contains the index  and you plug in 1 and then 2 and then 3 all the way to the last
number  and then add up all of the results.

Calculate

Solution

First notice that i = 1, then 2, then 3 and finally 4. We are supposed to multiply each of these by 3 and add them up:

The formula for the sample mean, sometimes called the average, is

A survey was conducted asking 8 older adults how many sexual partners they have had in their lifetime. Their answers were
{4,12,1,3,4,9,24,7}. Use the formula to find the sample mean.

Solution

Notice that the numerator of the formula just tells us to add the numbers up. Computing the numerator first gives:

Now that we have the numerator calculated, the formula tells us to divide by n, which is just 8. We have:

Thus, the sample mean number of sexual partners this group had in their lifetimes is 8.

The next most important statistic is the standard deviation. The formula for the sample standard deviation is:

Learning Outcomes

∑

i=1

n

a

i

a

i

i

n

Example 21.3.7.1

3i∑

i=1

4

3i∑

i=1

4

= 3 (1)+3 (2)+3 (3)+3 (4)

= 3+6+9+12 = 30

Example 21.3.7.2

=x̄

∑

n

i−1

x

i

n

= 4+12+1+3+4+9+24+7 = 64∑

i=1

8

x

i

= = 8x

¯

64

8

Example 21.3.7.3
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Let's consider the data in the previous example. Find the standard deviation.

Solution

The formula is quite complicated, but if tackle it one piece at a time using the order of operations properly, we can succeed in
finding the sample standard deviation for the data. Notice that there are parentheses, so based on the order of operations, we
must do the subtraction within the parentheses first. Since this is all part of the sum, we have eight different subtractions to do.
From our calculations in the previous example, the sample mean was . We compute the 8 subtractions:

The next arithmetic to do is to square each of the differences to get:

Now we have all the entries in the summation, so we add them all up:

Now we can write

We can put this into the calculator or computer to get:

The expected value, EV, is defined by the formula

Where  are the possible outcomes and  are the probabilities of the outcomes occurring. Suppose the table below shows
the number of eggs in a bald eagle clutch and the probabilities of that number occurring.

Probability Distribution Table with Outcomes, x, and probabilities, P(x)

x 1 2 3 4

P(x) 0.2 0.4 0.3 0.1

Find the expected value.

Ex 1: Find a Sum Written in Summation / Sigma Notation

Summation Notation and Expected Value

This page titled 21.3.7: Using Summation Notation is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Larry
Green.

Using Summation Notation by Larry Green is licensed CC BY 4.0.
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4− 8 = −4, 12−8 = 4, 1−8 =−7, 3−8 =−5,

4−8 =−4, 9−8 = 1, 24−8 = 16, 7−8 =−1

= 16, = 16, = 49, = 25,(−4)
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2
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2
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= 16, = 1, = 256, (−1 = 1(−4)
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2

)
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s= =

380

8−1

− −−−−

√

380

7

− −−−

√

s= = 7.3679

380

7

− −−−

√

Exercise: expected value

EV = P ( )∑
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SECTION OVERVIEW

21.4: Sets

21.4.1: Set Notation

21.4.2: The Complement of a Set

21.4.3: The Union and Intersection of Two Sets

21.4.4: Venn Diagrams
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21.4.1: Set Notation

1. Read set notation.
2. Describe sets using set notation.

A set is just a collection of items and there are different ways of representing a set. We want to be able to both read the various
ways and be able to write down the representation ourselves in order to best display the set. We have already seen how to represent
a set on a number line, but that can be cumbersome, especially if we want to just use a keyboard. Imagine how difficult it would be
to text a friend about a cool set if the only way to do this was with a number line. Fortunately, mathematicians have agreed on
notation to describe a set.

If we just have a few items to list, we enclose them in curly brackets "{" and "}" and separate the items with commas. For
example,

means the set the contains these four names.

If we just have a long collection of numbers that have a clear pattern, we use the "..." notation to mean "start here, keep going,
and end there". For example,

This set contains more than just the five numbers that are shown. It is clear that the numbers are separated by three each. After
the 12, even though it is not explicitly shown, is a 15 which is part of this set. It also contains 18, 21 and keeps going including
all the multiples of 3 until it gets to its largest number 90.

If we just have a collection of numbers that have a clear pattern, but never ends, we use the "..." without a number at the end.
For example,

This set contains an infinite number of fractions, since there is no number followed by the "...".

Sometimes we have a set that it best described by stating a rule. For example, if you want to describe the set of all people who
are over 18 years old but not 30 years old, you announce the conditions by putting them to the left of a vertical line segment.
We read the line segment as "such that".

This can be read as "the set of all numbers  such that  is greater than 18 and  is not equal to 30".

Describe using set notation the collection of all positive even whole numbers that are not equal to 20 or 50.

Set-Builder Notation

Learning Outcomes

Example 21.4.1.1

{Miguel, Kristin, Leo, Shanice}

Example 21.4.1.2

{3, 6, 9, 12, . . . , 90}

Example 21.4.1.3

{ , , , , . . .}

1

2

2

3

3

4

4

5

Example 21.4.1.4

{x | x > 18 and x ≠ 30}

x x x

Exercise
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21.4.2: The Complement of a Set

1. Determine the complement of a set.
2. Write the complement of a set using set notation.

We saw in the section "Represent an Inequality as an Interval on a Number Line" how to graph the complement for a set defined by
an inequality. Complements come up very often in statistics, so it is worth revisiting this, but instead of graphically we will focus
on set notation. Recall that the complement of a set is everything that is not in that set. Sometimes it is much easier to find the
probability of a complement than of the original set, and there is an easy relationship between the probability of an event happening
and the probability of the complement of that event happening.

Find the complement of the set:

Solution

The complement of the set of all numbers that are less than 4 is the set of all numbers that are at least as big as 4. Notice that
the number 4 is not in the set A, since the inequality is strict (does not have an "="). Therefore the number 4 is in the
complement of the set A. In set notation:

When computing probabilities the complement is sometimes much easier than the original set. For example suppose you roll a
die 6 times and want to find the probability that the number 3 comes up at least once. Find the complement of this event.

Solution

First note that the event of at least once means that there could be one 3, two 3's, three 3's, four 3's, five 3's, or six 3's. It turns
out that this would be a burden to deal with each of these possibilities. However the complement is quite easy. The
complement of getting at least one 3 is that you go no 3's.

Suppose that we want to find the probability that at least 20 people in the class have done their homework. Find the
complement of this event.

Solution

Sometimes it is easiest to list nearby outcomes and then determine the outcomes that satisfy the event. Finally, to find the
complement, you select the rest. First list numbers near 20:

Now, the ones that are at least 20 are all the ones including 20 and to the right of 20:

These are the large numbers. The complement includes all the small numbers.

We can write this in set notation as:

Learning Outcomes

P (A) = 1−P (not A)

Example 21.4.2.1

A= {x ∣ x < 4}

= {x ∣ x ≥ 4}A

c

Example 21.4.2.2

Example 21.4.2.3

. . . , 17, 18, 19, 20, 21, 22, . . .

20, 21, 22, . . .

. . . , 17, 18, 19
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or equivalently

Suppose a number is picked at random from the whole numbers from 1 to 10. Let A be the event that a number is both even
and less than 8. Find the complement of A.

Solution

First, the set of numbers that are both even and less than 8 is:

The complement of this set is all the numbers from 1 to 10 that are not in A:

Suppose that two six sided dice are rolled. Let the A be the event that either the first die is even or the sum of the dice is greater
than 5 or both have occurred. Find the complement of A.

Ex: Find the Intersection of a Set and A Complement Using a Venn Diagram
https://youtu.be/ek3QwY2gw4w
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{x ∣ x ≤ 19}

{x ∣ x < 20}

Example 21.4.2.4

A = {2, 4, 6}

= {1, 3, 5, 7, 8, 9, 10}A

c
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21.4.3: The Union and Intersection of Two Sets

1. Find the union of two sets.
2. Find the intersection of two sets.
3. Combine unions intersections and complements.

All statistics classes include questions about probabilities involving the union and intersections of sets. In English, we use the
words "Or", and "And" to describe these concepts. For example, "Find the probability that a student is taking a mathematics class
or a science class." That is expressing the union of the two sets in words. "What is the probability that a nurse has a bachelor's
degree and more than five years of experience working in a hospital." That is expressing the intersection of two sets. In this section
we will learn how to decipher these types of sentences and will learn about the meaning of unions and intersections.

Unions
An element is in the union of two sets if it is in the first set, the second set, or both. The symbol we use for the union is . The
word that you will often see that indicates a union is "or".

Let:

and

Find 

Solution

We include in the union every number that is in A or is in B:

Consider the following sentence, "Find the probability that a household has fewer than 6 windows or has a dozen windows."
Write this in set notation as the union of two sets and then write out this union.

Solution

First, let A be the set of the number of windows that represents "fewer than 6 windows". This set includes all the numbers from
0 through 5:

Next, let B be the set of the number of windows that represents "has a dozen windows". This is just the set that contains the
single number 12:

We can now find the union of these two sets:

Learning Outcomes

∪

Example : Union of Two sets21.4.3.1

A= {2, 5, 7, 8}

B= {1, 4, 5, 7, 9}

A∪B

A∪B= {1, 2, 4, 5, 7, 8, 9}

Example : Union of Two sets21.4.3.2

A= {0, 1, 2, 3, 4, 5}

B= {12}

A∪B= {0, 1, 2, 3, 4, 5, 12}
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Intersections
An element is in the intersection of two sets if it is in the first set and it is in the second set. The symbol we use for the intersection
is . The word that you will often see that indicates an intersection is "and".

Let:

and

Find .

Solution

We only include in the intersection that numbers that are in both A and B:

Consider the following sentence, "Find the probability that the number of units that a student is taking is more than 12 units
and less than 18 units." Assuming that students only take a whole number of units, write this in set notation as the intersection
of two sets and then write out this intersection.

Solution

First, let A be the set of numbers of units that represents "more than 12 units". This set includes all the numbers starting at 13
and continuing forever:

Next, let B be the set of the number of units that represents "less than 18 units". This is the set that contains the numbers from 1
through 17:

We can now find the intersection of these two sets:

Combining Unions, Intersections, and Complements
One of the biggest challenges in statistics is deciphering a sentence and turning it into symbols. This can be particularly difficult
when there is a sentence that does not have the words "union", "intersection", or "complement", but it does implicitly refer to these
words. The best way to become proficient in this skill is to practice, practice, and practice more.

Consider the following sentence, "If you roll a six sided die, find the probability that it is not even and it is not a 3." Write this
in set notation.

Solution

First, let A be the set of even numbers and B be the set that contains just 3. We can write:

Next, since we want "not even" we need to consider the complement of A:

∩

Example : Intersection of Two sets21.4.3.3

A= {3, 4, 5, 8, 9, 10, 11, 12}

B= {5, 6, 7, 8, 9}

A∩B

A∩B= {5, 8, 9}

Example : Intersection of Two sets21.4.3.4

A= {13, 14, 15, . . . }

B= {1, 2, 3, . . . , 17}

A∩B= {13, 14, 15, 16, 17}

Example 21.4.3.5

A= {2, 4, 6} , B = {3}

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://stats.libretexts.org/@go/page/36302?pdf


21.4.3.3 https://stats.libretexts.org/@go/page/36302

Similarly since we want "not a 3", we need to consider the complement of B:

Finally, we notice the key word "and". Thus, we are asked to find:

Consider the following sentence, "If you randomly select a person, find the probability that the person is older than 8 or is both
younger than 6 and is not younger than 3." Write this in set notation.

Solution

First, let A be the set of people older than 8, B be the set of people younger than 6, and C be the set of people younger than 3.
We can write:

We are asked to find

Notice that the complement of " " is " ". Thus:

Next we find:

Finally, we find:

The clearest way to display this union is on a number line. The number line below displays the answer:

Suppose that we pick a person at random and are interested in finding the probability that the person's birth month came after
July and did not come after September. Write this event using set notation.

Ex: Find the Intersection of a Set and A Complement Using a Venn Diagram
Intersection and Complements of Sets

This page titled 21.4.3: The Union and Intersection of Two Sets is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by Larry Green.

The Union and Intersection of Two Sets by Larry Green is licensed CC BY 4.0.

= {1, 3, 5}A

c

= {1, 2, 4, 5, 6}B

c

∩ = {1, 3, 5} ∩{1, 2, 4, 5, 6} = {1, 5}A

c

B

c

Example 21.4.3.6

A= {x ∣ x > 8} , B = {x ∣ x < 6} , C = {x ∣ x < 3}

A∪ (B∩ )C

c

< ≥

= {x ∣ x ≥ 3}C

c

B∩ = {x ∣ x < 6}∩{x ∣ x ≥ 3} = {x ∣ 3 ≤ x < 6}C

c

A∪ (B∩ ) = {x ∣ x > 8}∪{x ∣ 3 ≤ x < 6}C

c

Exercise

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://stats.libretexts.org/@go/page/36302?pdf
https://youtu.be/c3Hla1xcv54
https://youtu.be/jdsXHuXzSeI
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/21%3A_Math_Review_for_Introductory_Statistics/21.04%3A_Sets/21.4.03%3A_The_Union_and_Intersection_of_Two_Sets
https://creativecommons.org/licenses/by/4.0
http://www.ltcc.edu/academics/faculty/larrygreen.php
https://stats.libretexts.org/@go/page/4738
http://www.ltcc.edu/academics/faculty/larrygreen.php
https://creativecommons.org/licenses/by/4.0/


21.4.4.1 https://stats.libretexts.org/@go/page/36303

21.4.4: Venn Diagrams

1. Read a Venn Diagram to extract information.
2. Draw a Venn Diagram.

Venn Diagrams are a simple way of visualizing how sets interact. Many times we will see a long wordy sentence that describes a
numerical situation, but it is a challenge to understand. As the saying goes, "A picture is worth a thousand words." In particular, a
Venn Diagram describes how many elements are in each set displayed and how many elements are in their intersections and
complements.

Consider the Venn Diagram shown below.

Describe how many elements are in each of the sets.

Solution

Once we understand how to read the Venn Diagram we can use it in many applications. For the Venn Diagram above, there are
12 from A that are not in B, there are 5 in both A and B, and there are 14 in B that are not in A. If we wanted to find the total in
A, we would just add 12 and 5 to get 17 total in A. Similarly, there are 19 total in B.

Consider the Venn Diagram below that shows the results of a study asking students whether their first college class was at the
same place they are at now, whether they are right handed, and whether they are enjoying their experience at their college.

Determine how many students are:

1. Right handed and enjoy college.
2. At the same place but not right handed.
3. Enjoy college.

Solution

1. To be right handed and enjoy college they must be in both the Right circle and the Enjoying circle. Notice that the numbers
12 and 15 are in both these circles. Thus, there are 12 + 15 = 27 total students who are right handed and enjoy college.

Learning Outcomes
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2. To be in the same place and not be right handed, the number must be in the same place circle but not in the right circle. We
see that 2 and 22 are the numbers in the same place circle but not in the right circle. Adding these gives 2 + 22 = 24 total
students who are at the same place but not right handed.

3. We must count all the numbers in the Enjoying circle. These are 2, 10, 12, and 15. Adding these up gives: 2 + 10 + 12 + 15
= 39. Thus, 39 students enjoy college.

Suppose that a group of 40 households was looked at. 24 of them housed dogs, 30 of them housed cats, and 18 of them housed
both cats and dogs. Sketch a Venn Diagram that displays this information.

Solution

To get ready to sketch the Venn Diagram, we first plan on what it will look like. There are two main groups here: houses with
dogs and houses with cats. Therefore we will have two circles. The intersection will have the number 18. Since there are 24
houses with dogs and 18 also have cats, we subtract 24 - 18 = 6 to find the houses with dogs but no cats. Similarly, we subtract
30 - 18 = 12 houses with cats and no dogs. If we add 18 + 6 + 12 = 36, we find the total number of houses with a dog, cat or
both. Therefore there are 40 - 36 = 4 houses without any pets. Now we are ready to put in the numbers into the Venn Diagram.
It is shown below.

Suppose that a group of 55 businesses was researched. 29 of them were open on the weekends, 25 of them paid more than
minimum wage for everyone , 17 of them were both open on the weekends and paid more than minimum wage for everyone,
and 4 of them were government consulting businesses. None of the government consulting businesses were open on the
weekend nor did they pay more than minimum wage for everyone. Sketch a Venn Diagram that displays this information.

Solving Problems with Venn Diagrams
https://youtu.be/t67RMAWGMdY

This page titled 21.4.4: Venn Diagrams is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Larry Green.

Venn Diagrams by Larry Green is licensed CC BY 4.0.
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21.5.1: Evaluate Algebraic Expressions

1. Evaluate an algebraic expression given values for the variables.
2. Recognize given values in a word problem and evaluate an expression using these values.

There are many formulas that are encountered in a statistics class and the values of each variable will be given. It will be your task
to carefully evaluate the expression after plugging in each of the given values into the formula. In order to be successful you should
not rush through the process and you need to be aware of the order of operations and use parentheses when necessary.

Suppose that equation of the regression line for the number of days a week, , a person exercises and the number of days, , a
year a person is sick is:

We use  instead of  since this is a prediction instead of an actual data value's y-coordinate. Use this regression line to predict
the number of times a person who exercises 4 days a week will be sick this year.

Solution

The first step is always to identify the variable or variables that are given. In this case, we have 4 days of exercise a week, so:

Next, we plug in to get:

Since we are predicting the number of days a year being sick, it is a good idea to round to the nearest whole number. We get
that the best prediction for the number of sick days for a person who exercises 4 days per week is that they will be sick 6 days
this year.

For a yes/no question, a sample size is considered large enough to use a Normal distribution if

 and 

where  is the sample size,  is the proportion of Yes answers, and  is the proportion of No answers. A survey was given to
59 American adults asking them if they were food insecure today. 6.8% of them said they were food insecure today. Was the
sample size large enough to use the Normal distribution?

Solution

Our first task is to list out each of the needed variables. Let's start with , the sample size. We are given that 59 Americans
were surveyed. Thus

Next, we will find , the proportion of Yes answers. We are given that 6.8% said Yes. Since this is a percent and not a
proportion, we must convert the percent to a proportion by moving the decimal place two places to the right. It helps to place a
0 to the left of the 6, so that the decimal point has a place to go. A common error is to rush through this and wrongly write
down 0.68. Instead, the proportion is:

Our next task is to find , the proportion of No answers. For a Yes/No question, the proportion of Yes answers and the
proportion of No answers must always add up to 1. Thus:

Learning Outcomes
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Now we are ready to plug into the two inequalities:

and

Although , we have , so the sample size was not large enough to use the Normal
distribution.

For a quantitative study, the sample size, , needed in order to produce a confidence interval with a margin of error no more
than , is

where  is a value that is determined from the confidence level and  is the population standard deviation. You want to conduct
a survey to estimate the population mean amount of years it takes psychologists to get through college and you require a
margin of error of no more than  years. Suppose that you know that the population standard deviation is 1.3 years. If you
want a 95% confidence interval that comes with a , at least how many psychologists must you survey? Round your
answer up.

Solution

We start out by identifying the given values for each variable. Since we want a margin of error of no more than , we have:

We are told that the population standard is 1.3, so:

We are also given the value of :

Now put this into the formula to get:

We put this into a calculator or computer to get:

We round up and can conclude that we need to survey 650 psychologists.

Based on the Central Limit Theorem, the standard deviation of the sampling distribution when samples of size  are taken
from a population with standard deviation, , is given by:

If the population standard deviation for the number of customers who walk into a fast food restaurant is 12, what is the
standard deviation of the sampling distribution for samples of size 35? Round your answer to two decimal places.

Solution

q = 1−0.068 = 0.932

np = 59×0.068 = 4.012

nq = 59×0.932 = 54.988

nq = 54.988 > 5 np = 4.012 < 5
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First we identify each of the given variables. Since the population standard deviation was 12, we have:

We are told that the sample size is 35, so:

Now we put these numbers into the formula for the standard deviation of the sampling distribution to get:

We are now ready to put this into our calculator or computer. We put in:

Rounded to two decimal places, we can say that the standard deviation of the sampling distribution is 2.03.

The z-score for a given sample mean  for a sampling distribution with population mean , population standard deviation ,
and sample size  is given by:

An environmental scientist collected data on the amount of glacier retreat. She measured 45 glaciers. The population mean
retreat is 22 meters and the population standard deviation is 16 meters. The sample mean for her data was 27 meters and the
sample standard deviation for her data was 18 meters. What was the z-score?

Solution

First we identify each of the given variables. Since the sample mean was 27, we have:

We are told that the population mean is 22 meters, so:

We are also given that the population standard deviation is 16 meters, hence:

Finally, since she measured 45 glaciers, we have:

Now we put the numbers into the formula for the z-score to get:

We are now ready to put this into our calculator or computer. We must pay attention to the order of operations and put
parentheses around the numerator, since the subtraction happens for this expression before the division. We also must put
parentheses around the denominator. We put in:

σ = 12

n= 35

=σ
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You want to come up with a 90% confidence interval for the proportion of people in your community who are obese and
require a margin of error of no more than . According to the Journal of the American Medical Association (JAMA) 34%
of all Americans are obese. The equation to find the sample size, , needed in order to come up with a confidence interval is:

where  is the preliminary estimate for the population proportion. Based on calculations, . How many people in your
community must you survey?

Evaluating Algebraic Expressions (L2.1)

https://youtu.be/HLjUT8Kvc5U

This page titled 21.5.1: Evaluate Algebraic Expressions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Larry
Green.

Evaluate Algebraic Expressions by Larry Green is licensed CC BY 4.0.

Exercise

±3%

n

n= p (1−p)( )

z

E

2

p z= 1.645

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://stats.libretexts.org/@go/page/36305?pdf
https://youtu.be/rHcR3vUx8-o
https://youtu.be/HLjUT8Kvc5U
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/21%3A_Math_Review_for_Introductory_Statistics/21.05%3A_Expressions_Equations_and_Inequalities/21.5.01%3A_Evaluate_Algebraic_Expressions
https://creativecommons.org/licenses/by/4.0
http://www.ltcc.edu/academics/faculty/larrygreen.php
https://stats.libretexts.org/@go/page/4716
http://www.ltcc.edu/academics/faculty/larrygreen.php
https://creativecommons.org/licenses/by/4.0/


21.5.2.1 https://stats.libretexts.org/@go/page/36306

21.5.2: Inequalities and Midpoints

Write out an inequality from words.
Go from a midpoint and error to an inequality.
Go from inequality to a midpoint and error.

Inequalities are an essential component of statistics. One very important use of inequalities is when we have found a mean or
proportion from a sample and want to write out an inequality that gives where the population mean or proportion is likely to lie.
Another application is in probability where we want to find the probability of a value being more than a number, less than a
number, or between two numbers.

Converting Words to Inequalities

You want to find the probability that it will a patient will "take at least three hours to wake up after surgery". Write an
inequality for this situation.

Solution

The key words here are "at least". These words can be written symbolically as " ≤". Therefore we can write "take at least three
hours to wake up after surgery" as:

Suppose you want to find the probability that a relationship will last "more than 1 week and at most 8 weeks". Write an
inequality for this situation.

Solution

Let's first translate the words "more than". This is equivalent to ">". Next translate the words "at most". This is equivalent to
"≤". Now we can put this together to get:

Midpoints and Inequalities
There are two ways of thinking about an interval. The first is that x is greater than the lower bound and less than the upper bound.
The second is that the center or midpoint of the interval is a given value and the interval goes no more than a certain distance from
that value. In statistics, this is important when we look at confidence intervals. Both ways of presenting the interval are commonly
used, so we need to be able to go from one way to the other.

A researcher observed 45 startup companies to find a 95% confidence interval for the population mean amount of time it takes
to make a profit. The sample mean was 14 months and the margin of error was plus or minus 8 months. In symbols the
confidence interval can be written as:

Express this as a trilinear inequality.

Solution

We first find the lower bound by subtracting:

Learning Objectives

Example 21.5.2.1

x ≤ 3

Example 21.5.2.2

1 < x ≤ 8

Example 21.5.2.3

14±8

https://libretexts.org/
https://stats.libretexts.org/@go/page/36306?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/21%3A_Math_Review_for_Introductory_Statistics/21.05%3A_Expressions_Equations_and_Inequalities/21.5.02%3A_Inequalities_and_Midpoints


21.5.2.2 https://stats.libretexts.org/@go/page/36306

Next, we find the upper bound by adding:

We can now put this together as a trilinear inequality:

A researcher interviewed 1000 Americans to asking them if they thought abortion should be against the law. The following
95% confidence interval was given for the population proportion of all Americans who are against abortion:

Find the midpoint and the margin or error. That is write this interval in the form:

Solution

Let's first find the midpoint. This is the average of the left and right endpoints:

Next, find the distance from the midpoint to either boundary:

Finally we can put these two together to get:

A study was done to see how many years longer it takes low income students to finish college compared to high income
students. The confidence interval for the population mean difference was found to be:

Find the midpoint and the margin of error. That is write this interval as in the form:

Converting an Inequality from Interval Notation to Midpoint and Error Notation (Links to an external site.)

Writing Equations and Inequalities for Scenarios

21.5.2: Inequalities and Midpoints is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

Inequalities and Midpoints has no license indicated.
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21.5.3: Solve Equations with Roots

Solve equations that include square roots.

Square roots occur frequently in a statistics course, especially when dealing with standard deviations and sample sizes. In this
section we will learn how to solve for a variable when that variable lies under the square root sign. The key thing to remember is
that the square of a square root is what lies inside. In other words, squaring a square root cancels the square root.

Solve the following equation for .

Solution

What makes this a challenge is the square root. The strategy for solving is to isolate the square root on the left side of the
equation and then square both sides. First subtract 2 from both sides:

Now that the square root is isolated, we can square both sides of the equation:

Since the square and the square root cancel we get:

Finally add 3 to both sides to arrive at:

It's always a good idea to check your work. We do this by plugging the answer back in and seeing if it works. We plug in 
 to get

Yes, the solution is correct.

The standard deviation, , of the sampling distribution for a proportion follows the formula:

Where  is the population proportion and  is the sample size. If the population proportion is 0.24 and you need the standard
deviation of the sampling distribution to be 0.03, how large a sample do you need?

Solution

We are given that  and 

Plug in to get:

Learning Outcomes
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We want to solve for , so we want  on the left hand side of the equation. Just switch to get:

Next, we subtract:

And them multiply:

This gives us

To get rid of the square root, square both sides:

The square cancels the square root, and squaring the right hand side gives:

We can write:

Cross multiply to get:

Finally, divide both sides by 0.0009:

Round up and we can conclude that we need a sample size of 203 to get a standard error that is 0.03. We can check to see if
this is reasonable by plugging  back into the equation. We use a calculator to get:

Since this is very close to 0.03, the answer is reasonable.

The standard deviation, , of the sampling distribution for a mean follows the formula:

Where  is the population standard deviation and  is the sample size. If the population standard deviation is 3.8 and you need
the standard deviation of the sampling distribution to be 0.5, how large a sample do you need?

Ex 1: Solve a Basic Radical Equation - Square Roots
https://youtu.be/u1aGMkJIlMI
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21.5.4: Solving Linear Equations in One Variable

Solve linear equations for the variable.

It is a common task in algebra to solve an equation for a variable. The goal will be to get the variable on one side of the equation all
by itself and have the other side of the equation just be a number. The process will involve identifying the operations that are done
on the variable and apply the inverse operation to both sides of the equation. This will be managed in the reverse of the order of
operations.

Solve the following equation for .

Solution

We begin by looking at the operations that are done to , keeping track the order. The first operation is "multiply by 3" and the
second is "add 4". We now do everything backwards. Since the last operation is "add 4", our first step is to subtract 4 from both
sides of Equation .

which simplifies the equation

Next, the way to undo "multiply by 3" is to divide both sides by 3. We get

or

The rectangle above is a diagram for a uniform distribution from 2 to 9 that asks for the first quartile. The area of the smaller
red rectangle that has base from 2 to Q1 and height 1/7 is 1/4. Find Q1.

Solution

We start by using the area formula for a rectangle:

We have:

Area = 
Base = 
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Height = 

Plug this into Equation  to get:

We need to solve for . First multiple both sides of Equation  by 7 to get:

Now add 2 to both sides of Equation  to get:

or

Putting this into a calculator gives:

The z-score for a given value  for a distribution with population mean  and population standard deviation  is given by:

An online retailer has found that the population mean sales per day is $2,841 and the population standard deviation is $895. A
value of  is considered an outlier if the z-score is less than -2 or greater than 2. How many sales must be made to have a z-
score of 2?

Solution

First we identify each of the given variables. Since the population mean is 2,841, we have:

We are told that the population standard deviation is 895 meters, so:

We are also given that the z-score is 2, hence:

Now we put the numbers into the formula for the z-score to get:

We can next switch the order of the equation so that the  is on the left hand side of the equation:

1
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Next, we solve for . First multiply both sides of the equation by 895 to get

Finally, we can add 2841 to both sides of the equation to get  by itself:

We can conclude that if the day's sales is at $4631, the z-score is 2.

The rectangle below is a diagram for a uniform distribution from 5 to 11 that asks for the 72  percentile. The area of the
smaller red rectangle that has base from 5 to the 72  percentile, , and height 1/6 is 0.72. Find .

Solving Two Step Equations: The Basics
Solving Linear Equations

This page titled 21.5.4: Solving Linear Equations in One Variable is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by Larry Green.

Solving Linear Equations in One Variable by Larry Green is licensed CC BY 4.0.
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21.6.4: Graph a Line given its Equation

21.6.5: Interpreting the Slope of a Line

21.6.6: Interpreting the y-intercept of a Line

21.6.7: Plot an Ordered Pair
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21.6.1: Finding Residuals

Given a Regression line and a data point, find the residual

In the linear regression part of statistics we are often asked to find the residuals. Given a data point and the regression line, the
residual is defined by the vertical difference between the observed value of  and the computed value of  based on the equation of
the regression line:

A study was conducted asking female college students how tall they are and how tall their mother is. The results are show in
the table below:

Table of Mother and Daughter Heights

Mother's
Height

63 67 64 60 65 67 59 60

Daughter's
Height

58 64 65 61 65 67 61 64

The equation of the regression line is

Find the residual for the mother who is 59 inches tall.

Solution

First note that the Daughter's Height associated with the mother who is 59 inches tall is 61 inches. This is . Next we use the
equation of the regression line to find . Since , we have

We can use a calculator to get:

Now we are ready to put the values into the residual formula:

Therefore the residual for the 59 inch tall mother is 0.04. Since this residual is very close to 0, this means that the regression
line was an accurate predictor of the daughter's height.

An online retailer wanted to see how much bang for the buck was obtained from online advertising. The retailer experimented
with different weekly advertising budgets and logged the number of visitors who came to the retailer's online site. The
regression line for this is shown below.
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Find the residual for the week when the retailer spent $600 on advertising.

Solution

First notice that the point of the scatterplot with x-coordinate of 600 has y-coordinate 800. Thus . Next note that the
point on the line with x-coordinate 600 has y-coordinate 700. Thus . Now we are ready to put the values into the
residual formula:

Therefore the residual for the $600 advertising budget is -100.

Data was taken from the recent Olympics on the GDP in trillions of dollars of 8 of the countries that competed and the number
of gold medals that they won. The equation of the regression line is:

The table below shows the data:

GDP 21 1.6 16 1.8 4 5.4 3.1 2.3

Medals 46 8 26 19 17 12 10 9

Find the residual for the country with a GDP of 4 trillion dollars.

Calculating residual example | Exploring bivariate numerical data | AP Statistics | Khan Academy
Finding a Residual

This page titled 21.6.1: Finding Residuals is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Larry Green.

Finding Residuals by Larry Green is licensed CC BY 4.0.
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21.6.2: Find the Equation of a Line given its Graph

1. Find the slope of a line given its graph.
2. Find the y-intercept of a line given its graph.
3. Find the equation of a line given its graph.

There are two main ways of representing a line: the first is with its graph, and the second is with its equation. In this section, we
will practice how to find the equation of the line if we are given the graph of the line. The two key numbers in the equation of a line
are the slope and the y-intercept. Thus the main steps in finding the equation of a line are finding the slope and finding the y-
intercept. In statistics we are often presented with a scatterplot where we can eyeball the line. Once we have the graph of the line,
getting the equation is helpful for making predictions based on the line.

Finding the Slope of a Line Given Its Graph
The steps to follow to fine the slope of the line given its graph are the following.

Step 1: Identify two points on the line. Any two points will do, but it is recommended to find points with nice  and  coordinates.

Step 2: The slope is the rise over the run. Thus if the points have coordinates  and , then the slope is:

Find the slope of the line shown below.

Solution

First, we locate points on the line that are as easy as possible to work with. The points with integer coordinates are (0,-4) and
(2,2).

Next, we use the rise over run formula to find the slope of the line.

Finding the y-intercept from the graph
If the portion of the graph that is in view includes the y-axis, then the y-intercept is very easy to spot. You just see where it crosses
the y-axis. On the other hand, if the portion of the graph in view does not contain the y-axis, then it is best to first find the equation
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of the line and then use the equation to find the y-intercept.

Find the y-intercept of the line shown below.

Solution

We just look at the line and notice that it crosses the y-axis at . Therefore, the y-intercept is 1 or (0,1).

Finding the equation of the line given its graph

If you are given the graph of a line and want to find its equation, then you first find the slope as in Example . Then you use
one of the points you found  when you computed the slope, , and put it into the point slope equation:

Then you multiply the slope through and add  to both sides to get  by itself.

Find the equation of the line shown below.

Solution

First we find the slope by identifying two nice points. Notice that the line passes through (0,-1) and (3,1). Now compute the
slope using the rise over run formula:

Next use the point slope equation with the point (0,-1).

Now simplify:

Finally subtract 1 from both sides to get:
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A study was done to look at the relationship between the square footage of a house and the price of the house. The scatter plot
and regression line are shown below. Find the equation of the regression line.

Solution

First we find the slope by identifying two nice points. You will have to eyeball it and notice that the line passes through (1600,
300000) and (2000,400000). Now compute the slope using the rise over run formula:

Next use the point slope equation with the point (2000,400000).

Now simplify:

Finally add 400000 to both sides to get:

Notice that although the y-intercept is not visible from the graph of the line, we can see from the equation of the line that the y-
intercept is -100000 or (0,-100000).

The regression line and scatterplot below show the result of surveys that were taken in multiple years to find out the percent of
households that had a landline telephone.

Find the equation of this regression line.

Example 21.6.2.4
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Ex 1: Find the Equation of a Line in Slope Intercept Form Given the Graph of a Line

Finding the Equation of a Line Given Its Graph

This page titled 21.6.2: Find the Equation of a Line given its Graph is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Larry Green.

Find the Equation of a Line given its Graph by Larry Green is licensed CC BY 4.0.
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21.6.3: Find y given x and the Equation of a Line

1. Find the value of y given x and the equation of a line.
2. Use a line to make predictions.

A line can be thought of as a function, which means that if a value of  is given, the equation of the line produces exactly one value
of ; This is particularly useful in regression analysis where the line is used to make a prediction of one variable given the value of
the other variable.

Consider the line with equation:

Find the value of  when  is 5.

Solution

Just replace the variable  with the number 5 in the equation and perform the arithmetic:

A survey was done to look at the relationship between a woman's height,  and the woman's weight, . The equation of the
regression line was found to be:

Use this equation to estimate the weight in pounds of a woman who is 5' 2" (62 inches) tall.

Solution

Just replace the variable  with the number 62 in the equation and perform the arithmetic:

We can put this into a calculator or computer to get:

Therefore, our best prediction for the weight of a woman who is 5' 2'' tall is that she is 121 lbs.

A biologist has collected data on the girth (how far around) of pine trees and the pine tree's height. She found the equation of
the regression line to be:

Where the girth, , is measured in inches and the height, , is measured in feet. Use the regression line to predict the height of
a tree with girth 28 inches.
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21.6.4: Graph a Line given its Equation

1. Identify the slope and y-intercept from the equation of a line.
2. Plot the y-intercept of a line given its equation.
3. Plot a second point on a line given the y-intercept and the slope.
4. Graph a line given its equation in slope y-intercept form.

Often we are given an equation of a line and we want to visualize it. For this reason, it is important to be able to graph a line given
its equation. We will look at lines that are in slope intercept form:  where  is the y-intercept of the line and  is the
slope of the line. The y-intercept is the value of  where the line crosses the y-axis. The slope is the rise over run. If we write the
slope as a fraction, then the numerator tells us how far to move up (or down if it is negative) and the denominator tells us how far to
the right we need to go. the main application to statistics is in regression analysis which is the study of how to use a line to make a
prediction about one variable based on the value of the other variable.

Graph the line given by the equation:

Solution

We follow the three step process:

Step 1: Plot the y-intercept

The y-intercept is the number that is not associated with the . For this example, it is 1. The x-coordinate of the y-intercept is
always 0. So the coordinates of the y-intercept are (0,1). Thus start at the origin and move up 1:

Step 2: Plot the Slope.

The slope of a line is the coefficient of the  term. Here it is . What this means is that we rise 3 and run to the right 2. Rising
3 from an original y-coordinate of 1 gives a new y-coordinate of 4. Running 2 to the right from an initial x-coordinate of 0gives
a new x-coordinate of 2. Thus we next plot the point (2,4).
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Step 3: Connect the Dots

The last thing we need to do is connect the dots with a line:

A study was done to look at the relationship between the weight of a car, , in tons and its gas mileage in mpg, . The equation
of the regression line was found to be:

Graph this line.

Solution

The fist step is to note that the y-intercept is 110, hence the graph goes through the point (0,110). The next step is to see that
the slope is -70. We can always put a number over 1 in order to make it a fraction. The slope of  tells us that  goes down
by 70 if  goes up by 1. We use this to find the second point. The y-coordinate is: . The x-coordinate is 1.
Thus, a second point is (1,40). We can now plot the two points and connect the dots with a line.

Example 21.6.4.2

x y

y = 110−70x (21.6.4.1)

−
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x 110 − 70 = 40
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The regression line that relates the ounces of beer consumed just before a test, , and the score on the test, , is given by

Graph this line.

Graphing a Line in Slope-Intercept Form

https://youtu.be/z3rM-ZidXaw

This page titled 21.6.4: Graph a Line given its Equation is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Larry
Green.

Graph a Line given its Equation by Larry Green is licensed CC BY 4.0.

Exercise

x y

y = 93−1.2x

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://stats.libretexts.org/@go/page/36313?pdf
https://youtu.be/eDf9Kxh3XAA
https://youtu.be/z3rM-ZidXaw
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/21%3A_Math_Review_for_Introductory_Statistics/21.06%3A_Graphing_Points_and_Lines_in_Two_Dimensions/21.6.04%3A_Graph_a_Line_given_its_Equation
https://creativecommons.org/licenses/by/4.0
http://www.ltcc.edu/academics/faculty/larrygreen.php
https://stats.libretexts.org/@go/page/4722
http://www.ltcc.edu/academics/faculty/larrygreen.php
https://creativecommons.org/licenses/by/4.0/


21.6.5.1 https://stats.libretexts.org/@go/page/36314

21.6.5: Interpreting the Slope of a Line

1. Interpret the slope of a line as the change in  when  changes by 1.

For every increase in the -variable by 1, the -variable tends to change by (xxx the slope).

A common issue when we learn about the equation of a line in algebra is to state the slope as a number, but have no idea what it
represents in the real world. The slope of a line is the rise over the run. If the slope is given by an integer or decimal value we can
always put it over the number 1. In this case, the line rises by the slope when it runs 1. "Runs 1" means that the x value increases by
1 unit. Therefore the slope represents how much the y value changes when the x value changes by 1 unit. In statistics, especially
regression analysis, the x value has real life meaning and so does the y value.

A study was done to see the relationship between the time it takes, , to complete a college degree and the student loan debt
incurred, . The equation of the regression line was found to be:

Interpret the slope of the regression line in the context of the study.

Solution

First, note that the slope is the coefficient in front of the . Thus, the slope is 14,329. Next, the slope is the rise over the run, so
it helps to write the slope as a fraction:

The rise is the change in  and  represents student loan debt. Thus, the numerator represents an increase of $14,329 of student
loan debt. The run is the change in  and  represents the time it takes to complete a college degree. Thus, the denominator
represents an increase of 1 year to complete a college degree. We can put this all together and interpret the slope as telling us
that

For every additional year it takes to complete a college degree, on average the student loan debt tends to increase by $14,329.

Suppose that a research group tested the cholesterol level of a sample of 40 year old women and then waited many years to see
the relationship between a woman's HDL cholesterol level in mg/dl, , and her age of death, . The equation of the regression
line was found to be:

Interpret the slope of the regression line in the context of the study.

Solution

The slope of the regression line is -0.3. The slope as a fraction is:

The rise is the change in  and  represents age of death. Since the slope is negative, the numerator indicates a decrease in
lifespan. Thus, the numerator represents a decrease in lifespan of 0.3 years. The run is the change in  and  represents the
HDL cholesterol level. Thus, the denominator represents an HDL cholesterol level increase of 1 mg/dl. Now, put this all
together and interpret the slope as telling us that

For every additional 1 mg/dl of HDL cholesterol, on average women are predicted to die 0.3 years younger.

Learning Outcomes

y x

Template for Interpreting the Slope of a Line

x y

Example 21.6.5.1

x

y

y = 25142 +14329x (21.6.5.1)

x

Slope = =

rise

run

14, 329

1

(21.6.5.2)

y y

x x

Example 21.6.5.2

x y

y = 103 −0.3x (21.6.5.3)

Slope = = " width =" 233

rise

run

−0.3

1

y y

x x
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A researcher asked several employees who worked overtime "How many hours of overtime did you work last week?" and "On
a scale from 1 to 10 how satisfied are you with your job?". The scatterplot and the regression line from this study are shown
below.

Interpret the slope of the regression line in the context of the study.

Solution

We first need to determine the slope of the regression line. To find the slope, we get two points that have as nice coordinates as
possible. From the graph, we see that the line goes through the points (10,6) and (15,4). The slope of the regression line can
now be found using the rise over the run formula:

The rise is the change in  and  represents job satisfaction rating. Since the slope is negative, the numerator indicates a
decrease in job satisfaction. Thus, the numerator represents a decrease in job satisfaction of 2 on the scale from 1 to 10. The
run is the change in  and  represents the overtime work hours. Thus, the denominator represents an increase of 5 hours of
overtime work. Now, put this all together and interpret the slope as telling us that

For every additional 5 hours of overtime work that employees are asked to do, their job satisfaction tends to go down an
average of 2 points.

The scatterplot and regression line below are from a study that collected data on the population (in hundred thousands) of cities
and the average number of hours per week the city's residents spend outdoors.

Interpret the slope of this regression line in the context of the study.

Interpret the Meaning of the Slope of a Linear Equation - Smokers

Interpreting the Slope of a Regression Line

Example 21.6.5.3

Slope = = =

rise

run

4−6

15−10

−2

5

(21.6.5.4)
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21.6.6: Interpreting the y-intercept of a Line

1. Interpret the -intercept of a line as the value of  when  equals to 0.
2. Determine whether the -intercept is useful for interpreting the relationship between  and 

Just like the slope of a line, many algebra classes go over the y-intercept of a line without explaining how to use it in the real world.
The y-intercept of a line is the value of  where the line crosses the y-axis. In other words, it is the value of  when the value of 
is equal to 0. Sometimes this has true meaning for the model that the line provides, but other times it is meaningless. We will
encounter examples of both types in this section.

When the value for the -variable is 0, the best prediction for the value of the -variable is (xxx the y-intercept).

A study was done to see the relationship between the ounces of meat, , that people eat each day on average and the hours per
week,  they watch sports. The equation of the regression line was found to be:

Interpret the y-intercept of the regression line in the context of the study or explain why it has no practical meaning.

Solution

First, note that the y-intercept is the number that is not in front of the . Thus, the y-intercept is 1.3. Next, the y-intercept is the
value of  when  equals zero. For this example,  represents the ounces of meat consumed each day.

When the consumption of meat is 0, the best prediction for the value of the hours of sports each week is 1.3.

If  is equal to 0, this means the person does not consume any meat. Since there are people, called vegetarians, who consume
no meat, it is meaningful to have an x-value of 0. The y-value of 1.3 represents the hours of sports the person watches. Putting
this all together we can state:

A vegetarian is predicted to watch 1.3 hours of sports each week.

A neonatal nurse at Children's Hospital has collected data on the birth weight, , in pounds the number of days, , that the
newborns stay in the hospital. The equation of the regression line was found to be

Interpret the y-intercept of the regression line in the context of the study or explain why it has no practical meaning.

Solution

Again, we note that the y-intercept is the number that is not in front of the . Thus, the y-intercept is 45. Next, the y-intercept is
the value of  when  equals zero.

When the birth weight in pounds is 0, the best prediction for the value of the number of days the newborn is predicted to stay in
the hospital is 45 days.

For this example,  represents the new born baby's birth weight in pounds. If  is equal to 0,
this means the baby was born with a weight of 0 pounds. Since it makes no sense for a baby
to weigh 0 pounds, we can say that the y-intercept of this regression line has no practical
meaning.

Learning Outcomes

y y x

y x y

y y x

Template for the y-Intercept Interpretation

x y

Example 21.6.6.1

x

y

y = 1.3 +0.4x

x

y x x

x

Example 21.6.6.2

x y

y = 45 −3.9x
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y x
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A researcher asked several people "How many cups of coffee did you drink last week?" and "How many times did you go to a
shop or restaurant for a meal or a drink last week?" The scatterplot and the regression line from this study are shown below.

Interpret the y-intercept of the regression line in the context of the study or explain why it has no practical meaning.

Solution

The y-intercept of a line is where it crosses the y-axis. In this case, the line crosses at around y = -1. The value of , by
definition is 0 and the x-axis represents the number of cups of coffee a person drank last week. Since there are people who
don't drink coffee, it does male sense to have an x-value of 0. The y-axis represents the number of times the person went to a
shop or restaurant last week to purchase a meal or a drink. It makes no sense to say that a person went -1 times to a shop or
restaurant last week to purchase a meal or a drink. Therefore the y-intercept of this regression line has no practical meaning.

The scatterplot and regression line below are from a study that collected data from a group of college students on the number
of hours per week during the school year they work at a paid job and the number of units they are taking. Interpret the y-
intercept of the regression line or explain why it has no practical meaning.

Interpret the Meaning of the y-intercept Given a Linear Equation
Interpreting the y-Intercept

This page titled 21.6.6: Interpreting the y-intercept of a Line is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Larry Green.

Interpreting the y-intercept of a Line by Larry Green is licensed CC BY 4.0.
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21.6.7: Plot an Ordered Pair

1. Draw  and  axes.
2. Plot a point in the xy-plane

We have already gone into detail about how to plot points on a number line, and that is very useful for single variable presentations.
Now we will move to questions that involve comparing two variables. Working with two variables is frequently encountered in
statistical studies and we would like to be able to display the results graphically. This is best done by plotting points in the xy-
plane.

Plot the points: , , and 

Solution

The first thing to do when plotting points is to sketch the x-axis and y-axis and decide on the tick marks. Here the numbers are
all less than 5, so it is reasonable to count by 1's. Next, we plot the first point, . This means to start at the origin, where
the axes intersect. Then move 3 units to the right and 4 units up. After arriving there, we just draw a dot. For the next point, 

, we start at the origin, move 2 units to the left and 1 unit up and draw the dot. For the third point, , we don't
move left or right at all since the x-coordinate is 0, but we do move 1 unit down and draw the dot. The plot is shown below.

A survey was done to look at the relationship between a person's age and their income. The first three answers are shown in the
table below:

Table of ages and income

Age 49 24 35

Income 69,000 32,000 40,000

Graph the three points on the xy-plane.

Solution

Notice that the numbers are all relatively large. Therefore counting by 1's would not make sense. Instead, it makes better sense
to count the Age axis, , by 10's and the Income axis, , by 1000's. The points are plotted below.

Learning Outcomes

x y

Example 21.6.7.1

(3, 4) (−2, 1) (0, −1)
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(−2, 1) (0, −1)
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A hotel manager was interested in seeing the relationship between the price per night, , that the hotel charged and the number
of occupied rooms, . The results were (75,83), (100,60), (110,55), and (125,40). Plot these points in the xy-plane.

Ex: Plotting Points on the Coordinate Plane

Plotting Points

This page titled 21.6.7: Plot an Ordered Pair is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Larry Green.

Plot an Ordered Pair by Larry Green is licensed CC BY 4.0.
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