
17.4.1 https://stats.libretexts.org/@go/page/36219

17.4: Extracting a Subset of a Vector
One very important kind of data handling is being able to extract a particular subset of the data. For instance, you might be
interested only in analysing the data from one experimental condition, or you may want to look closely at the data from people over
50 years in age. To do this, the first step is getting R to extract the subset of the data corresponding to the observations that you’re
interested in. In this section I’ll talk about subsetting as it applies to vectors, extending the discussion from Chapters 3 and 4. In
Section 7.5 I’ll go on to talk about how this discussion extends to data frames.

17.4.1 Refresher
This section returns to the nightgarden.Rdata data set. If you’re reading this whole chapter in one sitting, then you should
already have this data set loaded. If not, don’t forget to use the load("nightgarden.Rdata") command. For this section,
let’s ignore the itng data frame that we created earlier, and focus instead on the two vectors speaker and utterance
(see Section 7.1 if you’ve forgotten what those vectors look like). Suppose that what I want to do is pull out only those utterances
that were made by Makka-Pakka. To that end, I could first use the equality operator to have R tell me which cases correspond to
Makka-Pakka speaking:

is.MP.speaking <- speaker == "makka-pakka"
is.MP.speaking

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

and then use logical indexing to get R to print out those elements of utterance for which is.MP.speaking is true, like
so:

utterance[is.MP.speaking]

[1] "pip" "pip" "onk" "onk"

Or, since I’m lazy, I could collapse it to a single command like so:

utterance[speaker == "makka-pakka"]

[1] "pip" "pip" "onk" "onk"

17.4.2 Using %in% match multiple cases

A second useful trick to be aware of is the %in% operator . It’s actually very similar to the == operator, except that you can
supply a collection of acceptable values. For instance, suppose I wanted to keep only those cases when the utterance is either “pip”
or “oo”. One simple way do to this is:

utterance %in% c("pip","oo")

[1] TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE

What this does if return TRUE for those elements of utterance that are either "pip" or "oo" and returns FALSE
for all the others. What that means is that if I want a list of all those instances of characters speaking either of these two words, I
could do this:

speaker[utterance %in% c("pip","oo")]

110

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36219?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/17%3A_Preparing_Datasets_and_Other_Pragmatic_Matters/17.04%3A_Extracting_a_Subset_of_a_Vector

17.4.2 https://stats.libretexts.org/@go/page/36219

[1] "upsy-daisy" "upsy-daisy" "tombliboo" "makka-pakka" "makka-pakka"

17.4.3 Using negative indices to drop elements

Before moving onto data frames, there’s a couple of other tricks worth mentioning. The first of these is to use negative values as
indices. Recall from Section 3.10 that we can use a vector of numbers to extract a set of elements that we would like to keep. For
instance, suppose I want to keep only elements 2 and 3 from utterance . I could do so like this:

utterance[2:3]

[1] "pip" "onk"

But suppose, on the other hand, that I have discovered that observations 2 and 3 are untrustworthy, and I want to keep everything
except those two elements. To that end, R lets you use negative numbers to remove specific values, like so:

utterance [-(2:3)]

[1] "pip" "onk" "ee" "oo" "pip" "pip" "onk" "onk"

The output here corresponds to element 1 of the original vector, followed by elements 4, 5, and so on. When all you want to do is
remove a few cases, this is a very handy convention.

17.4.4 Splitting a vector by group
One particular example of subsetting that is especially common is the problem of splitting one one variable up into several different
variables, one corresponding to each group. For instance, in our In the Night Garden example, I might want to create subsets of the
utterance variable for every character. One way to do this would be to just repeat the exercise that I went through earlier

separately for each character, but that quickly gets annoying. A faster way do it is to use the split() function. The arguments
are:

x . The variable that needs to be split into groups.
f . The grouping variable.

What this function does is output a list (Section 4.9), containing one variable for each group. For instance, I could split up the
utterance variable by speaker using the following command:

speech.by.char <- split(x = utterance, f = speaker)
speech.by.char

$`makka-pakka`
[1] "pip" "pip" "onk" "onk"

$tombliboo
[1] "ee" "oo"

$`upsy-daisy`
[1] "pip" "pip" "onk" "onk"

Once you’re starting to become comfortable working with lists and data frames, this output is all you need, since you can work
with this list in much the same way that you would work with a data frame. For instance, if you want the first utterance made by
Makka-Pakka, all you need to do is type this:

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36219?pdf

17.4.3 https://stats.libretexts.org/@go/page/36219

speech.by.char$`makka-pakka`[1]

[1] "pip"

Just remember that R does need you to add the quoting characters (i.e. '). Otherwise, there’s nothing particularly new or difficult
here.

However, sometimes – especially when you’re just starting out – it can be convenient to pull these variables out of the list, and into
the workspace. This isn’t too difficult to do, though it can be a little daunting to novices. To that end, I’ve included a function
called importList() in the lsr package that does this. First, here’s what you’d have if you had wiped the workspace
before the start of this section:

who()

-- Name -- -- Class -- -- Size --
age numeric 11
age.breaks numeric 4
age.group factor 11
age.group2 factor 11
age.group3 factor 11
age.labels character 3
df data.frame 10 x 4
is.MP.speaking logical 10
itng data.frame 10 x 2
itng.table table 3 x 4
likert.centred numeric 10
likert.raw numeric 10
opinion.dir numeric 10
opinion.strength numeric 10
some.data numeric 18
speaker character 10
speech.by.char list 3
utterance character 10

Now we use the importList() function to copy all of the variables within the speech.by.char list:

importList(speech.by.char, ask = FALSE)

Because the importList() function is attempting to create new variables based on the names of the elements of the list, it
pauses to check that you’re okay with the variable names. The reason it does this is that, if one of the to-be-created variables has
the same name as a variable that you already have in your workspace, that variable will end up being overwritten, so it’s a good
idea to check. Assuming that you type y , it will go on to create the variables. Nothing appears to have happened, but if we look
at our workspace now:

who()

111

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36219?pdf

17.4.4 https://stats.libretexts.org/@go/page/36219

-- Name -- -- Class -- -- Size --
age numeric 11
age.breaks numeric 4
age.group factor 11
age.group2 factor 11
age.group3 factor 11
age.labels character 3
df data.frame 10 x 4
is.MP.speaking logical 10
itng data.frame 10 x 2
itng.table table 3 x 4
likert.centred numeric 10
likert.raw numeric 10
makka.pakka character 4
opinion.dir numeric 10
opinion.strength numeric 10
some.data numeric 18
speaker character 10
speech.by.char list 3
tombliboo character 2
upsy.daisy character 4
utterance character 10

we see that there are three new variables, called makka.pakka , tombliboo and upsy.daisy . Notice that the
importList() function has converted the original character strings into valid R variable names, so the variable

corresponding to "makka-pakka" is actually makka.pakka . Nevertheless, even though the names can change, note
that each of these variables contains the exact same information as the original elements of the list did. For example:

> makka.pakka
[1] "pip" "pip" "onk" "onk"

This page titled 17.4: Extracting a Subset of a Vector is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

7.4: Extracting a Subset of a Vector by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.

112

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36219?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/17%3A_Preparing_Datasets_and_Other_Pragmatic_Matters/17.04%3A_Extracting_a_Subset_of_a_Vector
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/
https://stats.libretexts.org/@go/page/3982
https://djnavarro.net/
https://creativecommons.org/licenses/by-sa/4.0/
https://bookdown.org/ekothe/navarro26/

