LibreTextsw

2.16: Useful Things to Know about Variables

In Chapter 3 I talked a lot about variables, how they’re assigned and some of the things you can do with them, but there’s a lot of
additional complexities. That’s not a surprise of course. However, some of those issues are worth drawing your attention to now. So
that’s the goal of this section; to cover a few extra topics. As a consequence, this section is basically a bunch of things that I want to
briefly mention, but don’t really fit in anywhere else. In short, I’ll talk about several different issues in this section, which are only
loosely connected to one another.

2.16.1 Special values

The first thing I want to mention are some of the “special” values that you might see R produce. Most likely you’ll see them in
situations where you were expecting a number, but there are quite a few other ways you can encounter them. These values are

Inf , NaN , NA and NULL . These values can crop up in various different places, and so it’s important to understand what
they mean.

e Infinity (InT). The easiest of the special values to explainis Inf , since it corresponds to a value that is infinitely large.
You can also have -Inf . The easiest way to get Inf is to divide a positive number by 0:

IZL/O

I ## [1] Inf

In most real world data analysis situations, if you’re ending up with infinite numbers in your data, then something has gone awry.
Hopefully you’ll never have to see them.

e Not a Number (Nal). The special value of NaN is short for “not a number”, and it’s basically a reserved keyword that
means “there isn’t a mathematically defined number for this”. If you can remember your high school maths, remember that it is
conventional to say that 0/0 doesn’t have a proper answer: mathematicians would say that 0/0 is undefined. R says that it’s not a
number:

I 0/ 0

I ## [1] NaN

Nevertheless, it’s still treated as a “numeric” value. To oversimplify, NaN corresponds to cases where you asked a proper
numerical question that genuinely has no meaningful answer.

e Not available (NA). NA indicates that the value that is “supposed” to be stored here is missing. To understand what this
means, it helps to recognise that the NA wvalue is something that you’re most likely to see when analysing data from real world
experiments. Sometimes you get equipment failures, or you lose some of the data, or whatever. The point is that some of the
information that you were “expecting” to get from your study is just plain missing. Note the difference between NA and

NaN . For NaN , we really do know what’s supposed to be stored; it’s just that it happens to correspond to something like
0/0 that doesn’t make any sense at all. In contrast, NA indicates that we actually don’t know what was supposed to be there.
The information is missing.

e Novalue (NULL). The NULL value takes this “absence” concept even further. It basically asserts that the variable
genuinely has no value whatsoever. This is quite different to both NaN and NA .For NaN we actually know what the
value is, because it’s something insane like 0/0. For NA , we believe that there is supposed to be a value “out there”, but a dog
ate our homework and so we don’t quite know what it is. But for NULL we strongly believe that there is no value at all.

2.16.2 Assigning names to vector elements

One thing that is sometimes a little unsatisfying about the way that R prints out a vector is that the elements come out unlabelled.
Here’s what I mean. Suppose I've got data reporting the quarterly profits for some company. If I just create a no-frills vector, I have
to rely on memory to know which element corresponds to which event. That is:

https://stats.libretexts.org/@go/page/35625

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/35625?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/02%3A_Introduction_to_R/2.16%3A_Useful_Things_to_Know_about_Variables

LibreTextsw

profit <- ¢(3.1, 0.1, -1.4, 1.1)
profit

I ## [1] 3.1 0.1 -1.4 1.1

You can probably guess that the first element corresponds to the first quarter, the second element to the second quarter, and so on,
but that’s only because I’ve told you the back story and because this happens to be a very simple example. In general, it can be
quite difficult. This is where it can be helpful to assign names to each of the elements. Here’s how you do it:

nameS(prOflt) <- c(”Ql”,”Q2","Q3","Q4")
profit

Q1 Q2 Q3 Q4
3.1 0.1 -1.4 1.1

This is a slightly odd looking command, admittedly, but it’s not too difficult to follow. All we’re doing is assigning a vector of
labels (character strings) to names(profit) . You can always delete the names again by using the command

names(profit) <- NULL .It’s also worth noting that you don’t have to do this as a two stage process. You can get the same
result with this command:

profit <- ¢("Q1" = 3.1, "Q2" = 0.1, "Q3" = -1.4, "Q4" = 1.1)
profit

Q1 Q2 Q3 04
3.1 0.1 -1.4 1.1

The important things to notice are that (a) this does make things much easier to read, but (b) the names at the top aren’t the “real”
data. The value of profit[1] isstill 3.1 ;all I’ve done is added a name to profit[1] as well. Nevertheless, names
aren’t purely cosmetic, since R allows you to pull out particular elements of the vector by referring to their names:

I profit["Q1"]

Q1
3.1

And if T ever need to pull out the names themselves, then I just type names(profit) .

2.16.3 Variable classes

As we’ve seen, R allows you to store different kinds of data. In particular, the variables we’ve defined so far have either been
character data (text), numeric data, or logical data.>6 It’s important that we remember what kind of information each variable stores
(and even more important that R remembers) since different kinds of variables allow you to do different things to them. For
instance, if your variables have numerical information in them, then it’s okay to multiply them together:

X <- 5 # X 1S numeric
y <- 4 # y 1s numeric
X *y

I ## [1] 20

https://stats.libretexts.org/@go/page/35625

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/35625?pdf

LibreTextsm

But if they contain character data, multiplication makes no sense whatsoever, and R will complain if you try to do it:

X <- "apples" # x 1s character
y <- "oranges" # y 1is character
X *y

I ## Error in x * y: non-numeric argument to binary operator

Even R is smart enough to know you can’t multiply "apples" by "oranges" .It knows this because the quote marks are
indicators that the variable is supposed to be treated as text, not as a number.

This is quite useful, but notice that it means that R makes a big distinction between 5 and "5'" . Without quote marks, R treats

5 as the number five, and will allow you to do calculations with it. With the quote marks, R treats "5'" as the textual character
five, and doesn’t recognise it as a number any more than it recognises "'p" or "five" asnumbers. As a consequence, there’s
a big difference between typing x <- 5 andtyping x <- "5'" . In the former, we’re storing the number 5 ; in the latter,
we’re storing the character "5'" . Thus, if we try to do multiplication with the character versions, R gets stroppy:

X <- "g" # x 1s character
y <- "4" # y 1s character
X *y

I ## Error in x * y: non-numeric argument to binary operator

Okay, let’s suppose that I've forgotten what kind of data I stored in the variable x (which happens depressingly often). R
provides a function that will let us find out. Or, more precisely, it provides three functions: class() , mode() and

typeof () . Why the heck does it provide three functions, you might be wondering? Basically, because R actually keeps track
of three different kinds of information about a variable:

1. The class of a variable is a “high level” classification, and it captures psychologically (or statistically) meaningful distinctions.
Forinstance "2011-09-12" and "my birthday" are both text strings, but there’s an important difference between
the two: one of them is a date. So it would be nice if we could get R to recognise that "2011-09-12" is a date, and allow
us to do things like add or subtract from it. The class of a variable is what R uses to keep track of things like that. Because the
class of a variable is critical for determining what R can or can’t do with it, the class() function is very handy.

2. The mode of a variable refers to the format of the information that the variable stores. It tells you whether R has stored text data
or numeric data, for instance, which is kind of useful, but it only makes these “simple” distinctions. It can be useful to know
about, but it’s not the main thing we care about. So I’m not going to use the mode () function very much.>”

3. The type of a variable is a very low level classification. We won’t use it in this book, but (for those of you that care about these
details) this is where you can see the distinction between integer data, double precision numeric, etc. Almost none of you
actually will care about this, so I’m not even going to bother demonstrating the typeof () function.

For purposes, it’sthe class() of the variable that we care most about. Later on, I’ll talk a bit about how you can convince R to
“coerce” a variable to change from one class to another (Section 7.10). That’s a useful skill for real world data analysis, but it’s not
something that we need right now. In the meantime, the following examples illustrate the use of the class() function:

X <- "hello world" # x 1s text
class(x)

I ## [1] "character"

X <- TRUE # x 1s logical
class(x)

https://stats.libretexts.org/@go/page/35625

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/35625?pdf

LibreTextsw

I ## [1] "logical"

X <- 100 # x 1s a number
class(x)

I ## [1] "numeric"

Exciting, no?

This page titled 2.16: Useful Things to Know about Variables is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

e 4.6: Useful Things to Know about Variables by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.

https://stats.libretexts.org/@go/page/35625

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/35625?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/02%3A_Introduction_to_R/2.16%3A_Useful_Things_to_Know_about_Variables
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/
https://stats.libretexts.org/@go/page/3963
https://djnavarro.net/
https://creativecommons.org/licenses/by-sa/4.0/
https://bookdown.org/ekothe/navarro26/

