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9.5: The p value of a test

In one sense, our hypothesis test is complete; we’ve constructed a test statistic, figured out its sampling distribution if the null
hypothesis is true, and then constructed the critical region for the test. Nevertheless, I’ve actually omitted the most important
number of all: the p value. It is to this topic that we now turn. There are two somewhat different ways of interpreting a p value, one
proposed by Sir Ronald Fisher and the other by Jerzy Neyman. Both versions are legitimate, though they reflect very different ways
of thinking about hypothesis tests. Most introductory textbooks tend to give Fisher’s version only, but I think that’s a bit of a
shame. To my mind, Neyman’s version is cleaner, and actually better reflects the logic of the null hypothesis test. You might
disagree though, so I’ve included both. I’ll start with Neyman’s version...

9.5.1 softer view of decision making

One problem with the hypothesis testing procedure that I’ve described is that it makes no distinction at all between a result this
“barely significant” and those that are “highly significant”. For instance, in my ESP study the data I obtained only just fell inside
the critical region - so I did get a significant effect, but was a pretty near thing. In contrast, suppose that I’d run a study in which
X=97 out of my N=100 participants got the answer right. This would obviously be significant too, but my a much larger margin;
there’s really no ambiguity about this at all. The procedure that I described makes no distinction between the two. If I adopt the
standard convention of allowing a=.05 as my acceptable Type I error rate, then both of these are significant results.

This is where the p value comes in handy. To understand how it works, let’s suppose that we ran lots of hypothesis tests on the
same data set: but with a different value of o in each case. When we do that for my original ESP data, what we’d get is something

like this
Value of o Reject the null?
0.05 Yes
0.04 Yes
0.03 Yes
0.02 No
0.01 No

When we test ESP data (X=62 successes out of N=100 observations) using o levels of .03 and above, we’d always find ourselves
rejecting the null hypothesis. For a levels of .02 and below, we always end up retaining the null hypothesis. Therefore, somewhere
between .02 and .03 there must be a smallest value of o that would allow us to reject the null hypothesis for this data. This is the p
value; as it turns out the ESP data has p=.021. In short:

p is defined to be the smallest Type I error rate («) that you have to be willing to tolerate if you want to reject the null hypothesis.

If it turns out that p describes an error rate that you find intolerable, then you must retain the null. If you’re comfortable with an
error rate equal to p, then it’s okay to reject the null hypothesis in favour of your preferred alternative.

In effect, p is a summary of all the possible hypothesis tests that you could have run, taken across all possible a values. And as a
consequence it has the effect of “softening” our decision process. For those tests in which p<a you would have rejected the null
hypothesis, whereas for those tests in which p>a you would have retained the null. In my ESP study I obtained X=62, and as a
consequence I’ve ended up with p=.021. So the error rate I have to tolerate is 2.1%. In contrast, suppose my experiment had
yielded X=97. What happens to my p value now? This time it’s shrunk to p=1.36x10-25, which is a tiny, tiny'® Type I error rate.
For this second case I would be able to reject the null hypothesis with a lot more confidence, because I only have to be “willing” to
tolerate a type I error rate of about 1 in 10 trillion trillion in order to justify my decision to reject.

9.5.2 probability of extreme data

The second definition of the p-value comes from Sir Ronald Fisher, and it’s actually this one that you tend to see in most
introductory statistics textbooks. Notice how, when I constructed the critical region, it corresponded to the tails (i.e., extreme
values) of the sampling distribution? That’s not a coincidence: almost all “good” tests have this characteristic (good in the sense of
minimising our type II error rate, ). The reason for that is that a good critical region almost always corresponds to those values of
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the test statistic that are least likely to be observed if the null hypothesis is true. If this rule is true, then we can define the p-value as
the probability that we would have observed a test statistic that is at least as extreme as the one we actually did get. In other words,
if the data are extremely implausible according to the null hypothesis, then the null hypothesis is probably wrong.

9.5.3 common mistake

Okay, so you can see that there are two rather different but legitimate ways to interpret the p value, one based on Neyman’s
approach to hypothesis testing and the other based on Fisher’s. Unfortunately, there is a third explanation that people sometimes
give, especially when they’re first learning statistics, and it is absolutely and completely wrong. This mistaken approach is to refer
to the p value as “the probability that the null hypothesis is true”. It’s an intuitively appealing way to think, but it’s wrong in two
key respects: (1) null hypothesis testing is a frequentist tool, and the frequentist approach to probability does not allow you to
assign probabilities to the null hypothesis... according to this view of probability, the null hypothesis is either true or it is not; it
cannot have a “5% chance” of being true. (2) even within the Bayesian approach, which does let you assign probabilities to
hypotheses, the p value would not correspond to the probability that the null is true; this interpretation is entirely inconsistent with
the mathematics of how the p value is calculated. Put bluntly, despite the intuitive appeal of thinking this way, there is no
justification for interpreting a p value this way. Never do it.
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