
17.7.1 https://stats.libretexts.org/@go/page/36222

17.7: Reshaping a Data Frame
One of the most annoying tasks that you need to undertake on a regular basis is that of reshaping a data frame. Framed in the most
general way, reshaping the data means taking the data in whatever format it’s given to you, and converting it to the format you need
it. Of course, if we’re going to characterise the problem that broadly, then about half of this chapter can probably be thought of as a
kind of reshaping. So we’re going to have to narrow things down a little bit. To that end, I’ll talk about a few different tools that
you can use for a few different tasks. In particular, I’ll discuss a couple of easy to use (but limited) functions that I’ve included in
the lsr package. In future versions of the book I plan to expand this discussion to include some of the more powerful tools that
are available in R, but I haven’t had the time to do so yet.

17.7.1 Long form and wide form data
The most common format in which you might obtain data is as a “case by variable” layout, commonly known as the wide form of
the data.

load("./rbook-master/data/repeated.Rdata")
who()

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36222?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/17%3A_Preparing_Datasets_and_Other_Pragmatic_Matters/17.07%3A_Reshaping_a_Data_Frame

17.7.2 https://stats.libretexts.org/@go/page/36222

-- Name -- -- Class -- -- Size --
age numeric 11
age.breaks numeric 4
age.group factor 11
age.group2 factor 11
age.group3 factor 11
age.labels character 3
cake.1 numeric 5
cake.2 numeric 5
cake.df data.frame 5 x 2
cake.mat1 matrix 5 x 2
cake.mat2 matrix 2 x 5
cakes matrix 4 x 5
cakes.flipped matrix 5 x 4
choice data.frame 4 x 10
df data.frame 4 x 1
drugs data.frame 10 x 8
fac factor 3
fibonacci numeric 6
garden data.frame 5 x 3
is.MP.speaking logical 5
itng data.frame 10 x 2
itng.table table 3 x 4
likert.centred numeric 10
likert.raw numeric 10
makka.pakka character 4
numbers numeric 3
opinion.dir numeric 10
opinion.strength numeric 10
some.data numeric 18
speaker character 10
speech.by.char list 3
text character 3
tombliboo character 2
upsy.daisy character 4
utterance character 10

To get a sense of what I’m talking about, consider an experiment in which we are interested in the different effects that alcohol and
and caffeine have on people’s working memory capacity (WMC) and reaction times (RT). We recruit 10 participants, and measure
their WMC and RT under three different conditions: a “no drug” condition, in which they are not under the influence of either
caffeine or alcohol, a “caffeine” condition, in which they are under the inflence of caffeine, and an “alcohol” condition, in which…
well, you can probably guess. Ideally, I suppose, there would be a fourth condition in which both drugs are administered, but for
the sake of simplicity let’s ignore that. The drugs data frame gives you a sense of what kind of data you might observe in an
experiment like this:

drugs

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36222?pdf

17.7.3 https://stats.libretexts.org/@go/page/36222

id gender WMC_alcohol WMC_caffeine WMC_no.drug RT_alcohol RT_caffeine
1 1 female 3.7 3.7 3.9 488 236
2 2 female 6.4 7.3 7.9 607 376
3 3 female 4.6 7.4 7.3 643 226
4 4 male 6.4 7.8 8.2 684 206
5 5 female 4.9 5.2 7.0 593 262
6 6 male 5.4 6.6 7.2 492 230
7 7 male 7.9 7.9 8.9 690 259
8 8 male 4.1 5.9 4.5 486 230
9 9 female 5.2 6.2 7.2 686 273
10 10 female 6.2 7.4 7.8 645 240
RT_no.drug
1 371
2 349
3 412
4 252
5 439
6 464
7 327
8 305
9 327
10 498

This is a data set in “wide form”, in which each participant corresponds to a single row. We have two variables that are
characteristics of the subject (i.e., their id number and their gender) and six variables that refer to one of the two measured
variables (WMC or RT) in one of the three testing conditions (alcohol, caffeine or no drug). Because all of the testing conditions
(i.e., the three drug types) are applied to all participants, drug type is an example of a within-subject factor.

17.7.2 Reshaping data using wideToLong()

The “wide form” of this data set is useful for some situations: it is often very useful to have each row correspond to a single
subject. However, it is not the only way in which you might want to organise this data. For instance, you might want to have a
separate row for each “testing occasion”. That is, “participant 1 under the influence of alcohol” would be one row, and “participant
1 under the influence of caffeine” would be another row. This way of organising the data is generally referred to as the long form
of the data. It’s not too difficult to switch between wide and long form, and I’ll explain how it works in a moment; for now, let’s
just have a look at what the long form of this data set looks like:

drugs.2 <- wideToLong(data = drugs, within = "drug")
head(drugs.2)

id gender drug WMC RT
1 1 female alcohol 3.7 488
2 2 female alcohol 6.4 607
3 3 female alcohol 4.6 643
4 4 male alcohol 6.4 684
5 5 female alcohol 4.9 593
6 6 male alcohol 5.4 492

The drugs.2 data frame that we just created has 30 rows: each of the 10 participants appears in three separate rows, one
corresponding to each of the three testing conditions. And instead of having a variable like WMC_caffeine that indicates that
we were measuring “WMC” in the “caffeine” condition, this information is now recorded in two separate variables, one called
drug and another called WMC . Obviously, the long and wide forms of the data contain the same information, but they

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36222?pdf

17.7.4 https://stats.libretexts.org/@go/page/36222

represent quite different ways of organising that information. Sometimes you find yourself needing to analyse data in wide form,
and sometimes you find that you need long form. So it’s really useful to know how to switch between the two.

In the example I gave above, I used a function called wideToLong() to do the transformation. The wideToLong()
function is part of the lsr package. The key to understanding this function is that it relies on the variable names to do all the
work. Notice that the variable names in the drugs data frame follow a very clear scheme. Whenever you have a variable with a
name like WMC_caffeine you know that the variable being measured is “WMC”, and that the specific condition in which it is
being measured is the “caffeine” condition. Similarly, you know that RT_no.drug refers to the “RT” variable measured in the
“no drug” condition. The measured variable comes first (e.g., WMC), followed by a separator character (in this case the separator
is an underscore, _), and then the name of the condition in which it is being measured (e.g., caffeine). There are two
different prefixes (i.e, the strings before the separator, WMC , RT) which means that there are two separate variables being
measured. There are three different suffixes (i.e., the strings after the separtator, caffeine , alcohol , no.drug)
meaning that there are three different levels of the within-subject factor. Finally, notice that the separator string (i.e., _) does not
appear anywhere in two of the variables (id , gender), indicating that these are between-subject variables, namely variables
that do not vary within participant (e.g., a person’s gender is the same regardless of whether they’re under the influence of
alcohol, caffeine etc).

Because of the fact that the variable naming scheme here is so informative, it’s quite possible to reshape the data frame without any
additional input from the user. For example, in this particular case, you could just type the following:

wideToLong(drugs)

id gender within WMC RT
1 1 female alcohol 3.7 488
2 2 female alcohol 6.4 607
3 3 female alcohol 4.6 643
4 4 male alcohol 6.4 684
5 5 female alcohol 4.9 593
6 6 male alcohol 5.4 492
7 7 male alcohol 7.9 690
8 8 male alcohol 4.1 486
9 9 female alcohol 5.2 686
10 10 female alcohol 6.2 645
11 1 female caffeine 3.7 236
12 2 female caffeine 7.3 376
13 3 female caffeine 7.4 226
14 4 male caffeine 7.8 206
15 5 female caffeine 5.2 262
16 6 male caffeine 6.6 230
17 7 male caffeine 7.9 259
18 8 male caffeine 5.9 230
19 9 female caffeine 6.2 273
20 10 female caffeine 7.4 240
21 1 female no.drug 3.9 371
22 2 female no.drug 7.9 349
23 3 female no.drug 7.3 412
24 4 male no.drug 8.2 252
25 5 female no.drug 7.0 439
26 6 male no.drug 7.2 464
27 7 male no.drug 8.9 327
28 8 male no.drug 4.5 305
29 9 female no.drug 7.2 327
30 10 female no.drug 7.8 498

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36222?pdf

17.7.5 https://stats.libretexts.org/@go/page/36222

This is pretty good, actually. The only think it has gotten wrong here is that it doesn’t know what name to assign to the within-
subject factor, so instaed of calling it something sensible like drug , it has use the unimaginative name within . If you want
to ensure that the wideToLong() function applies a sensible name, you have to specify the within argument, which is just
a character string that specifies the name of the within-subject factor. So when I used this command earlier,

drugs.2 <- wideToLong(data = drugs, within = "drug")

all I was doing was telling R to use drug as the name of the within subject factor.

Now, as I was hinting earlier, the wideToLong() function is very inflexible. It requires that the variable names all follow this
naming scheme that I outlined earlier. If you don’t follow this naming scheme it won’t work. The only flexibility that I’ve
included here is that you can change the separator character by specifying the sep argument. For instance, if you were using
variable names of the form WMC/caffeine , for instance, you could specify that sep="/" , using a command like this

drugs.2 <- wideToLong(data = drugs, within = "drug", sep = "/")

and it would still work.

17.7.3 Reshaping data using longToWide()

To convert data from long form to wide form, the lsr package also includes a function called longToWide() . Recall from
earlier that the long form of the data (i.e., the drugs.2 data frame) contains variables named id , gender , drug ,
WMC and RT . In order to convert from long form to wide form, all you need to do is indicate which of these variables are

measured separately for each condition (i.e., WMC and RT), and which variable is the within-subject factor that specifies the
condition (i.e., drug). You do this via a two-sided formula, in which the measured variables are on the left hand side, and the
within-subject factor is on the ritght hand side. In this case, the formula would be WMC + RT ~ drug . So the command that
we would use might look like this:

longToWide(data=drugs.2, formula= WMC+RT ~ drug)

id gender WMC_alcohol RT_alcohol WMC_caffeine RT_caffeine WMC_no.drug
1 1 female 3.7 488 3.7 236 3.9
2 2 female 6.4 607 7.3 376 7.9
3 3 female 4.6 643 7.4 226 7.3
4 4 male 6.4 684 7.8 206 8.2
5 5 female 4.9 593 5.2 262 7.0
6 6 male 5.4 492 6.6 230 7.2
7 7 male 7.9 690 7.9 259 8.9
8 8 male 4.1 486 5.9 230 4.5
9 9 female 5.2 686 6.2 273 7.2
10 10 female 6.2 645 7.4 240 7.8
RT_no.drug
1 371
2 349
3 412
4 252
5 439
6 464
7 327
8 305
9 327
10 498

120

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36222?pdf
https://bookdown.org/ekothe/navarro26/datahandling.html#fn120

17.7.6 https://stats.libretexts.org/@go/page/36222

or, if we chose to omit argument names, we could simplify it to this:

longToWide(drugs.2, WMC+RT ~ drug)

id gender WMC_alcohol RT_alcohol WMC_caffeine RT_caffeine WMC_no.drug
1 1 female 3.7 488 3.7 236 3.9
2 2 female 6.4 607 7.3 376 7.9
3 3 female 4.6 643 7.4 226 7.3
4 4 male 6.4 684 7.8 206 8.2
5 5 female 4.9 593 5.2 262 7.0
6 6 male 5.4 492 6.6 230 7.2
7 7 male 7.9 690 7.9 259 8.9
8 8 male 4.1 486 5.9 230 4.5
9 9 female 5.2 686 6.2 273 7.2
10 10 female 6.2 645 7.4 240 7.8
RT_no.drug
1 371
2 349
3 412
4 252
5 439
6 464
7 327
8 305
9 327
10 498

Note that, just like the wideToLong() function, the longToWide() function allows you to override the default separator
character. For instance, if the command I used had been

longToWide(drugs.2, WMC+RT ~ drug, sep="/")

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36222?pdf

17.7.7 https://stats.libretexts.org/@go/page/36222

id gender WMC/alcohol RT/alcohol WMC/caffeine RT/caffeine WMC/no.drug
1 1 female 3.7 488 3.7 236 3.9
2 2 female 6.4 607 7.3 376 7.9
3 3 female 4.6 643 7.4 226 7.3
4 4 male 6.4 684 7.8 206 8.2
5 5 female 4.9 593 5.2 262 7.0
6 6 male 5.4 492 6.6 230 7.2
7 7 male 7.9 690 7.9 259 8.9
8 8 male 4.1 486 5.9 230 4.5
9 9 female 5.2 686 6.2 273 7.2
10 10 female 6.2 645 7.4 240 7.8
RT/no.drug
1 371
2 349
3 412
4 252
5 439
6 464
7 327
8 305
9 327
10 498

the output would contain variables with names like RT/alcohol instead of RT_alcohol .

17.7.4 Reshaping with multiple within-subject factors
As I mentioned above, the wideToLong() and longToWide() functions are quite limited in terms of what they can do.
However, they do handle a broader range of situations than the one outlined above. Consider the following, fairly simple
psychological experiment. I’m interested in the effects of practice on some simple decision making problem. It doesn’t really
matter what the problem is, other than to note that I’m interested in two distinct outcome variables. Firstly, I care about people’s
accuracy, measured by the proportion of decisions that people make correctly, denoted PC. Secondly, I care about people’s speed,
measured by the mean response time taken to make those decisions, denoted MRT. That’s standard in psychological experiments:
the speed-accuracy trade-off is pretty ubiquitous, so we generally need to care about both variables.

To look at the effects of practice over the long term, I test each participant on two days, day1 and day2 , where for the sake
of argument I’ll assume that day1 and day2 are about a week apart. To look at the effects of practice over the short term, the
testing during each day is broken into two “blocks”, block1 and block2 , which are about 20 minutes apart. This isn’t the
world’s most complicated experiment, but it’s still a fair bit more complicated than the last one. This time around we have two
within-subject factors (i.e., day and block) and we have two measured variables for each condition (i.e., PC and MRT).
The choice data frame shows what the wide form of this kind of data might look like:

choice

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36222?pdf

17.7.8 https://stats.libretexts.org/@go/page/36222

id gender MRT/block1/day1 MRT/block1/day2 MRT/block2/day1
1 1 male 415 400 455
2 2 male 500 490 532
3 3 female 478 468 499
4 4 female 550 502 602
MRT/block2/day2 PC/block1/day1 PC/block1/day2 PC/block2/day1
1 450 79 88 82
2 518 83 92 86
3 474 91 98 90
4 588 75 89 78
PC/block2/day2
1 93
2 97
3 100
4 95

Notice that this time around we have variable names of the form MRT/block1/day2 . As before, the first part of the name
refers to the measured variable (response time), but there are now two suffixes, one indicating that the testing took place in block 1,
and the other indicating that it took place on day 2. And just to complicate matters, it uses / as the separator character rather than
_ . Even so, reshaping this data set is pretty easy. The command to do it is,

choice.2 <- wideToLong(choice, within=c("block","day"), sep="/")

which is pretty much the exact same command we used last time. The only difference here is that, because there are two within-
subject factors, the within argument is a vector that contains two names. When we look at the long form data frame that this
creates, we get this:

choice.2

id gender MRT PC block day
1 1 male 415 79 block1 day1
2 2 male 500 83 block1 day1
3 3 female 478 91 block1 day1
4 4 female 550 75 block1 day1
5 1 male 400 88 block1 day2
6 2 male 490 92 block1 day2
7 3 female 468 98 block1 day2
8 4 female 502 89 block1 day2
9 1 male 455 82 block2 day1
10 2 male 532 86 block2 day1
11 3 female 499 90 block2 day1
12 4 female 602 78 block2 day1
13 1 male 450 93 block2 day2
14 2 male 518 97 block2 day2
15 3 female 474 100 block2 day2
16 4 female 588 95 block2 day2

In this long form data frame we have two between-subject variables (id and gender), two variables that define our within-
subject manipulations (block and day), and two more contain the measurements we took (MRT and PC).

To convert this back to wide form is equally straightforward. We use the longToWide() function, but this time around we
need to alter the formula in order to tell it that we have two within-subject factors. The command is now

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36222?pdf

17.7.9 https://stats.libretexts.org/@go/page/36222

longToWide(choice.2, MRT+PC ~ block+day, sep="/")

id gender MRT/block1/day1 PC/block1/day1 MRT/block1/day2 PC/block1/day2
1 1 male 415 79 400 88
2 2 male 500 83 490 92
3 3 female 478 91 468 98
4 4 female 550 75 502 89
MRT/block2/day1 PC/block2/day1 MRT/block2/day2 PC/block2/day2
1 455 82 450 93
2 532 86 518 97
3 499 90 474 100
4 602 78 588 95

and this produces a wide form data set containing the same variables as the original choice data frame.

17.7.5 What other options are there?
The advantage to the approach described in the previous section is that it solves a quite specific problem (but a commonly
encountered one) with a minimum of fuss. The disadvantage is that the tools are quite limited in scope. They allow you to switch
your data back and forth between two different formats that are very common in everyday data analysis. However, there a number
of other tools that you can use if need be. Just within the core packages distributed with R there is the reshape() function, as
well as the stack() and unstack() functions, all of which can be useful under certain circumstances. And there are of
course thousands of packages on CRAN that you can use to help you with different tasks. One popular package for this purpose is
the reshape package, written by Hadley Wickham (??? for details see Wickham2007). There are two key functions in this
package, called melt() and cast() that are pretty useful for solving a lot of reshaping problems. In a future version of this
book I intend to discuss melt() and cast() in a fair amount of detail.

This page titled 17.7: Reshaping a Data Frame is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

7.7: Reshaping a Data Frame by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36222?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/17%3A_Preparing_Datasets_and_Other_Pragmatic_Matters/17.07%3A_Reshaping_a_Data_Frame
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/
https://stats.libretexts.org/@go/page/8211
https://djnavarro.net/
https://creativecommons.org/licenses/by-sa/4.0/
https://bookdown.org/ekothe/navarro26/

