LibreTextsm

17.5: Extracting a Subset of a Data Frame

In this section we turn to the question of how to subset a data frame rather than a vector. To that end, the first thing I should point
out is that, if all you want to do is subset one of the variables inside the data frame, then as usual the $ operator is your friend.
For instance, suppose I’m working with the 1tng data frame, and what I want to do is create the speech.by.char list. I
can use the exact same tricks that I used last time, since what I really wantto dois split() the itng$utterance vector,
using the itng$speaker vector as the grouping variable. However, most of the time what you actually want to do is select
several different variables within the data frame (i.e., keep only some of the columns), or maybe a subset of cases (i.e., keep only
some of the rows). In order to understand how this works, we need to talk more specifically about data frames and how to subset
them.

Using the subset() function

There are several different ways to subset a data frame in R, some easier than others. I’ll start by discussing the subset()
function, which is probably the conceptually simplest way do it. For our purposes there are three different arguments that you’ll be
most interested in:

e X . The data frame that you want to subset.

e subset . A vector of logical values indicating which cases (rows) of the data frame you want to keep. By default, all cases
will be retained.

e select . This argument indicates which variables (columns) in the data frame you want to keep. This can either be a list of
variable names, or a logical vector indicating which ones to keep, or even just a numeric vector containing the relevant column
numbers. By default, all variables will be retained.

Let’s start with an example in which I use all three of these arguments. Suppose that I want to subset the 1tng data frame,
keeping only the utterances made by Makka-Pakka. What that means is that I need to use the select argument to pick out the
utterance wvariable, and I also need to use the subset variable, to pick out the cases when Makka-Pakka is speaking (i.e.,

speaker == "makka-pakka"). Therefore, the command I need to use is this:

df <- subset(x = itng, # data frame is itng
subset = speaker == "makka-pakka", # keep only Makka-Pakkas speech
select = utterance) # keep only the utterance variable

print(df)

Ht utterance

7 pip

8 pip

9 onk

10 onk

The variable df here is still a data frame, but it only contains one variable (called utterance) and four cases. Notice that
the row numbers are actually the same ones from the original data frame. It’s worth taking a moment to briefly explain this. The
reason that this happens is that these “row numbers’ are actually row names. When you create a new data frame from scratch R will
assign each row a fairly boring row name, which is identical to the row number. However, when you subset the data frame, each
row keeps its original row name. This can be quite useful, since — as in the current example — it provides you a visual reminder of
what each row in the new data frame corresponds to in the original data frame. However, if it annoys you, you can change the row
names using the rownames() function.'"”

In any case, let’s return to the subset() function, and look at what happens when we don’t use all three of the arguments.
Firstly, suppose that I didn’t bother to specify the select argument. Let’s see what happens:

subset(x = itng,
subset = speaker == "makka-pakka")

https://stats.libretexts.org/@go/page/36220

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36220?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/17%3A_Preparing_Datasets_and_Other_Pragmatic_Matters/17.05%3A_Extracting_a_Subset_of_a_Data_Frame
https://bookdown.org/ekothe/navarro26/datahandling.html#fn113

LibreTextsw

#it speaker utterance
7 makka-pakka pip
8 makka-pakka pip
9 makka-pakka onk
10 makka-pakka onk

Not surprisingly, R has kept the same cases from the original data set (i.e., rows 7 through 10), but this time it has kept all of the
variables from the data frame. Equally unsurprisingly, if I don’t specify the subset argument, what we find is that R keeps all
of the cases:

subset(x = itng,
select = utterance)
#it utterance
1 pip
2 pip
3 onk
##t 4 onk
5 ee
6 00
7 pip
8 pip
9 onk
10 onk

Again, it’s important to note that this output is still a data frame: it’s just a data frame with only a single variable.

Using square brackets: I. Rows and columns

Throughout the book so far, whenever I’ve been subsetting a vector I’ve tended use the square brackets [] to do so. But in the
previous section when I started talking about subsetting a data frame I used the subset () function. As a consequence, you
might be wondering whether it is possible to use the square brackets to subset a data frame. The answer, of course, is yes. Not only
can you use square brackets for this purpose, as you become more familiar with R you’ll find that this is actually much more
convenient than using subset () . Unfortunately, the use of square brackets for this purpose is somewhat complicated, and can
be very confusing to novices. So be warned: this section is more complicated than it feels like it “should” be. With that warning in
place, I’1l try to walk you through it slowly. For this section, I’ll use a slightly different data set, namely the garden data frame
that is stored in the "nightgarden2.Rdata" file.

load("./rbook-master/data/nightgarden2.Rdata")
garden

#Ht speaker utterance line

case.l upsy-daisy pip 1

case.2 upsy-daisy pip 2

case.3 tombliboo ee 5

case.4 makka-pakka pip 7

case.5 makka-pakka onk 9

As you can see, the garden data frame contains 3 variables and 5 cases, and this time around I’ve used the rownames()
function to attach slightly verbose labels to each of the cases. Moreover, let’s assume that what we want to do is to pick out rows 4
and 5 (the two cases when Makka-Pakka is speaking), and columns 1 and 2 (variables speaker and utterance).

https://stats.libretexts.org/@go/page/36220

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36220?pdf

LibreTextsw

How shall we do this? As usual, there’s more than one way. The first way is based on the observation that, since a data frame is
basically a table, every element in the data frame has a row number and a column number. So, if we want to pick out a single
element, we have to specify the row number and a column number within the square brackets. By convention, the row number
comes first. So, for the data frame above, which has 5 rows and 3 columns, the numerical indexing scheme looks like this:

knitr::kable(data.frame(stringsAsFactors=FALSE, row = c¢("21",6"2",6 "3", "4", "5"), coll
"[5,1]"), col2 = c("[1,2]", "[2,2]", "[3,2]", "[4,2]", "[5,2]"), col3 = c("[1,3]", "|

row coll col2 col3
1 [1,1] [1,2] [1,3]
2 [2,1] [2,2] [2,3]
3 [3,1] [3,2] [3,3]
4 [4,1] [4,2] [4,3]
5 [5,1] [5,2] [5,3]

If T want the 3rd case of the 2nd variable, what I would type is garden[3,2] , and R would print out some output showing
that, this element corresponds to the utterance "ee' . However, let’s hold off from actually doing that for a moment, because
there’s something slightly counterintuitive about the specifics of what R does under those circumstances (see Section 7.5.4).
Instead, let’s aim to solve our original problem, which is to pull out two rows (4 and 5) and two columns (1 and 2). This is fairly
simple to do, since R allows us to specify multiple rows and multiple columns. So let’s try that:

I garden[4:5, 1:2]

#it speaker utterance
case.4 makka-pakka pip
case.5 makka-pakka onk

Clearly, that’s exactly what we asked for: the output here is a data frame containing two variables and two cases. Note that I could
have gotten the same answer if I’d used the c() function to produce my vectors rather than the : operator. That is, the
following command is equivalent to the last one:

I garden[¢(4,5), c(1,2)]

#Ht speaker utterance
case.4 makka-pakka pip
case.5 makka-pakka onk

It’s just not as pretty. However, if the columns and rows that you want to keep don’t happen to be next to each other in the original
data frame, then you might find that you have to resort to using commands like garden[c(2,4,5), c(1,3) | toextract
them.

A second way to do the same thing is to use the names of the rows and columns. That is, instead of using the row numbers and
column numbers, you use the character strings that are used as the labels for the rows and columns. To apply this idea to our
garden data frame, we would use a command like this:

I garden[c("case.4", "case.5"), c("speaker", "utterance")]

https://stats.libretexts.org/@go/page/36220

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36220?pdf

LibreTextsw

i speaker utterance
case.4 makka-pakka pip
case.5 makka-pakka onk

Once again, this produces exactly the same output, so I haven’t bothered to show it. Note that, although this version is more
annoying to type than the previous version, it’s a bit easier to read, because it’s often more meaningful to refer to the elements by
their names rather than their numbers. Also note that you don’t have to use the same convention for the rows and columns. For
instance, I often find that the variable names are meaningful and so I sometimes refer to them by name, whereas the row names are
pretty arbitrary so it’s easier to refer to them by number. In fact, that’s more or less exactly what’s happening with the garden
data frame, so it probably makes more sense to use this as the command:

I garden[4:5, c("speaker", "utterance")]

i speaker utterance
case.4 makka-pakka pip
case.5 makka-pakka onk

Again, the output is identical.

Finally, both the rows and columns can be indexed using logicals vectors as well. For example, although I claimed earlier that my
goal was to extract cases 4 and 5, it’s pretty obvious that what I really wanted to do was select the cases where Makka-Pakka is
speaking. So what I could have done is create a logical vector that indicates which cases correspond to Makka-Pakka speaking:

is.MP.speaking <- garden$speaker == "makka-pakka"
is.MP.speaking

I ## [1] FALSE FALSE FALSE TRUE TRUE

As you can see, the 4th and 5th elements of this vector are TRUE while the others are FALSE . Now that I’ve constructed this
“indicator” variable, what I can do is use this vector to select the rows that I want to keep:

I garden[is.MP.speaking, c("speaker", "utterance")]

i speaker utterance
case.4 makka-pakka pip
case.5 makka-pakka onk

And of course the output is, yet again, the same.

Using square brackets: Il. Some elaborations

There are two fairly useful elaborations on this “rows and columns” approach that I should point out. Firstly, what if you want to
keep all of the rows, or all of the columns? To do this, all we have to do is leave the corresponding entry blank, but it is crucial to
remember to keep the comma*! For instance, suppose I want to keep all the rows in the garden data, but I only want to retain
the first two columns. The easiest way do this is to use a command like this:

I garden[, 1:2]

https://stats.libretexts.org/@go/page/36220

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36220?pdf

LibreTextsw

speaker utterance
case.l upsy-daisy pip
case.2 upsy-daisy pip
case.3 tombliboo ee
case.4 makka-pakka pip
case.5 makka-pakka onk

Alternatively, if T want to keep all the columns but only want the last two rows, I use the same trick, but this time I leave the second
index blank. So my command becomes:

I garden[4:5,]

speaker utterance line
case.4 makka-pakka pip 7
case.5 makka-pakka onk 9

The second elaboration I should note is that it’s still okay to use negative indexes as a way of telling R to delete certain rows or
columns. For instance, if I want to delete the 3rd column, then I use this command:

I garden[, -3]

speaker utterance
case.l upsy-daisy pip
case.2 upsy-daisy pip
case.3 tombliboo ee
case.4 makka-pakka pip
case.5 makka-pakka onk

whereas if I want to delete the 3rd row, then I’d use this one:

I garden[-3,]
#i speaker utterance line
case.l upsy-daisy pip 1
case.2 upsy-daisy pip 2
case.4 makka-pakka pip 7
case.5 makka-pakka onk 9

So that’s nice.

Using square brackets: Ill. Understanding “dropping”

At this point some of you might be wondering why I’ve been so terribly careful to choose my examples in such a way as to ensure
that the output always has are multiple rows and multiple columns. The reason for this is that I’'ve been trying to hide the somewhat
curious “dropping” behaviour that R produces when the output only has a single column. I'll start by showing you what happens,
and then I’ll try to explain it. Firstly, let’s have a look at what happens when the output contains only a single row:

I garden[5,]

https://stats.libretexts.org/@go/page/36220

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36220?pdf

LibreTextsw

speaker utterance line
case.5 makka-pakka onk 9

This is exactly what you’d expect to see: a data frame containing three variables, and only one case per variable. Okay, no
problems so far. What happens when you ask for a single column? Suppose, for instance, I try this as a command:

I garden[, 3]

Based on everything that I’ve shown you so far, you would be well within your rights to expect to see R produce a data frame
containing a single variable (i.e., 1ine) and five cases. After all, that is what the subset () command does in this situation,
and it’s pretty consistent with everything else that I’ve shown you so far about how square brackets work. In other words, you
should expect to see this:

line
case.1l 1
case.?2 2
case.3 5
case.4 7
case.b 9

However, that is emphatically not what happens. What you actually get is this:

I garden[, 3]

I ## [1] 1 257 9

That output is not a data frame at all! That’s just an ordinary numeric vector containing 5 elements. What’s going on here is that R
has “noticed” that the output that we’ve asked for doesn’t really “need” to be wrapped up in a data frame at all, because it only
corresponds to a single variable. So what it does is “drop” the output from a data frame containing a single variable, “down” to a
simpler output that corresponds to that variable. This behaviour is actually very convenient for day to day usage once you’ve
become familiar with it — and I suppose that’s the real reason why R does this — but there’s no escaping the fact that it is deeply
confusing to novices. It’s especially confusing because the behaviour appears only for a very specific case: (a) it only works for
columns and not for rows, because the columns correspond to variables and the rows do not, and (b) it only applies to the “rows
and columns” version of the square brackets, and not to the subset () function,!'4 or to the “just columns” use of the square
brackets (next section). As I say, it’s very confusing when you’re just starting out. For what it’s worth, you can suppress this
behaviour if you want, by setting drop = FALSE when you construct your bracketed expression. That is, you could do
something like this:

I garden[, 3, drop = FALSE]

#i#t line
case.l 1
case.2 2
case.3 5
case.4 7
case.b 9

I suppose that helps a little bit, in that it gives you some control over the dropping behaviour, but I’m not sure it helps to make
things any easier to understand. Anyway, that’s the “dropping” special case. Fun, isn’t it?

https://stats.libretexts.org/@go/page/36220

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36220?pdf

LibreTextsm

Using square brackets: IV. Columns only

As if the weird “dropping” behaviour wasn’t annoying enough, R actually provides a completely different way of using square
brackets to index a data frame. Specifically, if you only give a single index, R will assume you want the corresponding columns,
not the rows. Do not be fooled by the fact that this second method also uses square brackets: it behaves differently to the “rows and
columns” method that I’ve discussed in the last few sections. Again, what I’ll do is show you what happens first, and then I’ll try to
explain why it happens afterwards. To that end, let’s start with the following command:

I garden[1:2]

#it speaker utterance
case.l upsy-daisy pip
case.2 upsy-daisy pip
case.3 tombliboo ee
case.4 makka-pakka pip
case.5 makka-pakka onk

As you can see, the output gives me the first two columns, much as if I'd typed garden|[,1:2] . It doesn’t give me the first
two rows, which is what I’d have gotten if I’d used a command like garden[1:2,] . Not only that, if I ask for a single
column, R does not drop the output:

I garden[3]

#i#t line
case.l 1
case.2 2
case.3 5
case.4 7
case.b 9

As 1 said earlier, the only case where dropping occurs by default is when you use the “row and columns” version of the square
brackets, and the output happens to correspond to a single column. However, if you really want to force R to drop the output, you
can do so using the “double brackets” notation:

I garden[[3]]

I ## [1] 1 257 9

Note that R will only allow you to ask for one column at a time using the double brackets. If you try to ask for multiple columns in
this way, you get completely different behaviour,''> which may or may not produce an error, but definitely won’t give you the
output you’re expecting. The only reason I’m mentioning it at all is that you might run into double brackets when doing further
reading, and a lot of books don’t explicitly point out the difference between | and [[. However, I promise that I won’t be
using [[anywhere else in this book.

Okay, for those few readers that have persevered with this section long enough to get here without having set fire to the book, I
should explain why R has these two different systems for subsetting a data frame (i.e., “row and column” versus “just columns”),
and why they behave so differently to each other. I’'m not 100% sure about this since I’m still reading through some of the old
references that describe the early development of R, but I think the answer relates to the fact that data frames are actually a very
strange hybrid of two different kinds of thing. At a low level, a data frame is a list (Section 4.9). I can demonstrate this to you by
overriding the normal print() function''® and forcing R to print out the garden data frame using the default print method
rather than the special one that is defined only for data frames. Here’s what we get:

https://stats.libretexts.org/@go/page/36220

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36220?pdf

LibreTextsw

I print.default(garden)

$speaker
[1] upsy-daisy upsy-daisy tombliboo makka-pakka makka-pakka
Levels: makka-pakka tombliboo upsy-daisy

$utterance
[1] pip pip ee pip onk
Levels: ee onk oo pip

$line
[11 1 257 9

attr(,"class")
[1] "data.frame"

Apart from the weird part of the output right at the bottom, this is identical to the print out that you get when you print out a list
(see Section 4.9). In other words, a data frame is a list. View from this “list based” perspective, it’s clear what garden[1] is:
it’s the first variable stored in the list, namely speaker . In other words, when you use the “just columns” way of indexing a
data frame, using only a single index, R assumes that you’re thinking about the data frame as if it were a list of variables. In fact,
when you use the $ operator you’re taking advantage of the fact that the data frame is secretly a list.

However, a data frame is more than just a list. It’s a very special kind of list where all the variables are of the same length, and the
first element in each variable happens to correspond to the first “case” in the data set. That’s why no-one ever wants to see a data
frame printed out in the default “list-like” way that I’ve shown in the extract above. In terms of the deeper meaning behind what a
data frame is used for, a data frame really does have this rectangular shape to it:

I print(garden)

#it speaker utterance line
case.l upsy-daisy pip 1
case.2 upsy-daisy pip 2
case.3 tombliboo ee 5
case.4 makka-pakka pip 7
case.5 makka-pakka onk 9

Because of the fact that a data frame is basically a table of data, R provides a second “row and column” method for interacting with
the data frame (see Section 7.11.1 for a related example). This method makes much more sense in terms of the high-level table of
data interpretation of what a data frame is, and so for the most part it’s this method that people tend to prefer. In fact, throughout
the rest of the book I will be sticking to the “row and column” approach (though I will use $ a lot), and never again referring to
the “just columns” approach. However, it does get used a lot in practice, so I think it’s important that this book explain what’s
going on.

And now let us never speak of this again.
This page titled 17.5: Extracting a Subset of a Data Frame is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

o 7.5: Extracting a Subset of a Data Frame by Danielle Navarro is licensed CC BY-SA 4.0. Original source:
https://bookdown.org/ekothe/navarro26/.

https://stats.libretexts.org/@go/page/36220

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36220?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/17%3A_Preparing_Datasets_and_Other_Pragmatic_Matters/17.05%3A_Extracting_a_Subset_of_a_Data_Frame
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/
https://stats.libretexts.org/@go/page/3983
https://djnavarro.net/
https://creativecommons.org/licenses/by-sa/4.0/
https://bookdown.org/ekothe/navarro26/

