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12.3: How ANOVA Works

In order to answer the question posed by our clinical trial data, we’re going to run a one-way ANOVA. As usual, I'm going to start
by showing you how to do it the hard way, building the statistical tool from the ground up and showing you how you could do it in
R if you didn’t have access to any of the cool built-in ANOVA functions. And, as always, I hope you’ll read it carefully, try to do it
the long way once or twice to make sure you really understand how ANOVA works, and then — once you’ve grasped the concept —
never ever do it this way again.

The experimental design that I described in the previous section strongly suggests that we’re interested in comparing the average
mood change for the three different drugs. In that sense, we’re talking about an analysis similar to the t-test (Chapter 13, but
involving more than two groups. If we let pp denote the population mean for the mood change induced by the placebo, and let pa
and py denote the corresponding means for our two drugs, Anxifree and Joyzepam, then the (somewhat pessimistic) null hypothesis
that we want to test is that all three population means are identical: that is, neither of the two drugs is any more effective than a
placebo. Mathematically, we write this null hypothesis like this:

Hy: it is true that pp=p=};

As a consequence, our alternative hypothesis is that at least one of the three different treatments is different from the others. It’s a
little trickier to write this mathematically, because (as we’ll discuss) there are quite a few different ways in which the null
hypothesis can be false. So for now we’ll just write the alternative hypothesis like this:

H;: it is *not* true that pp=p =}

This null hypothesis is a lot trickier to test than any of the ones we’ve seen previously. How shall we do it? A sensible guess would
be to “do an ANOVA?, since that’s the title of the chapter, but it’s not particularly clear why an “analysis of variances” will help us
learn anything useful about the means. In fact, this is one of the biggest conceptual difficulties that people have when first
encountering ANOVA. To see how this works, I find it most helpful to start by talking about variances. In fact, what I’'m going to
do is start by playing some mathematical games with the formula that describes the variance. That is, we’ll start out by playing
around with variances, and it will turn out that this gives us a useful tool for investigating means.

12.3.1 formulas for the variance of Y

Firstly, let’s start by introducing some notation. We’ll use G to refer to the total number of groups. For our data set, there are three
drugs, so there are G=3 groups. Next, we’ll use N to refer to the total sample size: there are a total of N=18 people in our data set.
Similarly, let’s use Nk to denote the number of people in the k-th group. In our fake clinical trial, the sample size is Ny=6 for all
three groups.?%! Finally, we’ll use Y to denote the outcome variable: in our case, Y refers to mood change. Specifically, we’ll use
Yy to refer to the mood change experienced by the i-th member of the k-th group. Similarly, we’ll use Y to be the average mood
change, taken across all 18 people in the experiment, and Y} to refer to the average mood change experienced by the 6 people in
group k.

Excellent. Now that we’ve got our notation sorted out, we can start writing down formulas. To start with, let’s recall the formula for
the variance that we used in Section 5.2, way back in those kinder days when we were just doing descriptive statistics. The sample
variance of Y is defined as follows:

Var(Y) = % Zle Zf\ﬁl (Yir — l;) ’

This formula looks pretty much identical to the formula for the variance in Section 5.2. The only difference is that this time around
I’ve got two summations here: I’m summing over groups (i.e., values for k) and over the people within the groups (i.e., values for
i). This is purely a cosmetic detail: if I’d instead used the notation Y/, to refer to the value of the outcome variable for person p in
the sample, then I’d only have a single summation. The only reason that we have a double summation here is that I’ve classified
people into groups, and then assigned numbers to people within groups.

A concrete example might be useful here. Let’s consider this table, in which we have a total of N=5 people sorted into G=2 groups.
Arbitrarily, let’s say that the “cool” people are group 1, and the “uncool” people are group 2, and it turns out that we have three
cool people (N;=3) and two uncool people (N,=2).

grumpiness (Yik or

name person (p) group group num (k) index in group (i) Y,)
p
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grumpiness (Yix or

name person (p) group group num (k) index in group (i) Y,)
Ann 1 cool 1 1 20
Ben 2 cool 1 2 55
Cat 3 cool 1 3 21
Dan 4 uncool 2 1 91
Egg 5 uncool 2 2 22

Notice that I’ve constructed two different labelling schemes here. We have a “person” variable p, so it would be perfectly sensible
to refer to Y, as the grumpiness of the p-th person in the sample. For instance, the table shows that Dan is the four so we’d say p=4.
So, when talking about the grumpiness Y of this “Dan” person, whoever he might be, we could refer to his grumpiness by saying
that Y,=91, for person p=4 that is. However, that’s not the only way we could refer to Dan. As an alternative we could note that
Dan belongs to the “uncool” group (k=2), and is in fact the first person listed in the uncool group (i=1). So it’s equally valid to refer
to Dan’s grumpiness by saying that Yix=91, where k=2 and i=1. In other words, each person p corresponds to a unique ik
combination, and so the formula that I gave above is actually identical to our original formula for the variance, which would be

Var(Y) = % SN (YY)

In both formulas, all we’re doing is summing over all of the observations in the sample. Most of the time we would just use the
simpler Y, notation: the equation using Y, is clearly the simpler of the two. However, when doing an ANOVA it’s important to
keep track of which participants belong in which groups, and we need to use the Yix notation to do this.

12.3.2 From variances to sums of squares

Okay, now that we’ve got a good grasp on how the variance is calculated, let’s define something called the total sum of squares,
which is denoted SS,,. This is very simple: instead of averaging the squared deviations, which is what we do when calculating the
variance, we just add them up. So the formula for the total sum of squares is almost identical to the formula for the variance:

SSit =Y Ty (Y —Y)
When we talk about analysing variances in the context of ANOVA, what we’re really doing is working with the total sums of
squares rather than the actual variance. One very nice thing about the total sum of squares is that we can break it up into two
different kinds of variation. Firstly, we can talk about the within-group sum of squares, in which we look to see how different each
individual person is from their own group mean:

G N, =\ 2
SSy = Zkrl Ei:kl (Y;k - Yk)
where Y}, is a group mean. In our example, Y} would be the average mood change experienced by those people given the k-th
drug. So, instead of comparing individuals to the average of all people in the experiment, we’re only comparing them to those
people in the the same group. As a consequence, you’d expect the value of SS,, to be smaller than the total sum of squares, because
it’s completely ignoring any group differences — that is, the fact that the drugs (if they work) will have different effects on people’s
moods.

Next, we can define a third notion of variation which captures only the differences between groups. We do this by looking at the
differences between the group means Y; and grand mean Y. In order to quantify the extent of this variation, what we do is
calculate the between-group sum of squares:

G N 9
SS = > (Yi-Y)
k=1 i=1
G
=Y " N(Yi-Y)’

It’s not too difficult to show that the total variation among people in the experiment SSyy is actually the sum of the differences
between the groups SSy and the variation inside the groups SS,,. That is:
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Yay.

SSw+SSp=SSot

Between-group variation
(i.e., differences among group means)

AN

group 1 group 2 group 3

Figure 14.2: Graphical illustration of “between groups” variation
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Figure 14.3: Graphical illustration of “within groups” variation

Okay, so what have we found out? We’ve discovered that the total variability associated with the outcome variable (SS;o) can be
mathematically carved up into the sum of “the variation due to the differences in the sample means for the different groups” (SSp)
plus “all the rest of the variation” (SSy). How does that help me find out whether the groups have different population means? Um.
Wait. Hold on a second... now that I think about it, this is exactly what we were looking for. If the null hypothesis is true, then
you’d expect all the sample means to be pretty similar to each other, right? And that would imply that you’d expect SSy, to be really
small, or at least you’d expect it to be a lot smaller than the “the variation associated with everything else”, SS,,. Hm. I detect a
hypothesis test coming on...

12.3.3 From sums of squares to the F-test

As we saw in the last section, the qualitative idea behind ANOVA is to compare the two sums of squares values SSy, and SS,, to
each other: if the between-group variation is SSy, is large relative to the within-group variation SS,, then we have reason to suspect
that the population means for the different groups aren’t identical to each other. In order to convert this into a workable hypothesis
test, there’s a little bit of “fiddling around” needed. What I’ll do is first show you what we do to calculate our test statistic — which
is called an F ratio — and then try to give you a feel for why we do it this way.

In order to convert our SS values into an F-ratio, the first thing we need to calculate is the degrees of freedom associated with the
SSb and SS,, values. As usual, the degrees of freedom corresponds to the number of unique “data points” that contribute to a
particular calculation, minus the number of “constraints” that they need to satisfy. For the within-groups variability, what we’re
calculating is the variation of the individual observations (N data points) around the group means (G constraints). In contrast, for
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the between groups variability, we’re interested in the variation of the group means (G data points) around the grand mean (1
constraint). Therefore, the degrees of freedom here are:

dfb:G_].
df,=N-G

Okay, that seems simple enough. What we do next is convert our summed squares value into a “mean squares” value, which we do
by dividing by the degrees of freedom:

M S5
SS,
MS, = 2=

Finally, we calculate the F-ratio by dividing the between-groups MS by the within-groups MS:
MSy

MS,

At a very general level, the intuition behind the F statistic is straightforward: bigger values of F means that the between-groups
variation is large, relative to the within-groups variation. As a consequence, the larger the value of F, the more evidence we have
against the null hypothesis. But how large does F have to be in order to actually reject Hy? In order to understand this, you need a
slightly deeper understanding of what ANOVA is and what the mean squares values actually are.

The next section discusses that in a bit of detail, but for readers that aren’t interested in the details of what the test is actually
measuring, I’ll cut to the chase. In order to complete our hypothesis test, we need to know the sampling distribution for F if the null
hypothesis is true. Not surprisingly, the sampling distribution for the F statistic under the null hypothesis is an F distribution. If you
recall back to our discussion of the F distribution in Chapter @ref(probability, the F distribution has two parameters, corresponding
to the two degrees of freedom involved: the first one df1 is the between groups degrees of freedom dfb, and the second one df2 is
the within groups degrees of freedom df,,.

A summary of all the key quantities involved in a one-way ANOVA, including the formulas showing how they are calculated, is
shown in Table 14.1.

Table 14.1: All of the key quantities involved in an ANOVA, organised into a “standard” ANOVA table. The formulas for all
quantities (except the p-value, which has a very ugly formula and would be nightmarishly hard to calculate without a computer) are

shown.
df sum of squares mean squares F statistic p value
i —. 2SS, MS, .
between groups df,=G-1 =5 20 F = complicated
group b SSp =Yy Nk (Y MSY T MS. [comp ]
within groups df,=N-G S8, = Egz L Zﬁel 5, :igd%iz - -

12.3.4 model for the data and the meaning of F (advanced)

At a fundamental level, ANOVA is a competition between two different statistical models, Hy and H;. When I described the null
and alternative hypotheses at the start of the section, I was a little imprecise about what these models actually are. I’'ll remedy that
now, though you probably won’t like me for doing so. If you recall, our null hypothesis was that all of the group means are
identical to one another. If so, then a natural way to think about the outcome variable Y is to describe individual scores in terms of
a single population mean i, plus the deviation from that population mean. This deviation is usually denoted € and is traditionally
called the error or residual associated with that observation. Be careful though: just like we saw with the word “significant”, the
word “error” has a technical meaning in statistics that isn’t quite the same as its everyday English definition. In everyday language,
“error” implies a mistake of some kind; in statistics, it doesn’t (or at least, not necessarily). With that in mind, the word “residual”
is a better term than the word “error”. In statistics, both words mean “leftover variability”: that is, “stuff” that the model can’t
explain. In any case, here’s what the null hypothesis looks like when we write it as a statistical model:

Yik=p+€ix
where we make the assumption (discussed later) that the residual values € are normally distributed, with mean 0 and a standard
deviation o that is the same for all groups. To use the notation that we introduced in Chapter 9 we would write this assumption like
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this:
€.~Normal(0,02)

What about the alternative hypothesis, H;? The only difference between the null hypothesis and the alternative hypothesis is that
we allow each group to have a different population mean. So, if we let pk denote the population mean for the k-th group in our
experiment, then the statistical model corresponding to Hj is:

Y hct€

where, once again, we assume that the error terms are normally distributed with mean 0 and standard deviation o. That is, the
alternative hypothesis also assumes that

€ ~Normal(0,0°)

Okay, now that we’ve described the statistical models underpinning Hy and H; in more detail, it’s now pretty straightforward to say
what the mean square values are measuring, and what this means for the interpretation of F. I won’t bore you with the proof of this,
but it turns out that the within-groups mean square, MS,,, can be viewed as an estimator (in the technical sense: Chapter 10 of the
error variance o2. The between-groups mean square MSy, is also an estimator; but what it estimates is the error variance plus a
quantity that depends on the true differences among the group means. If we call this quantity Q, then we can see that the F-statistic
is basically202

Q+4°

~2
(o

F =

where the true value Q=0 if the null hypothesis is true, and Q>0 if the alternative hypothesis is true (e.g. ch. 10 Hays 1994).
Therefore, at a bare minimum the F value must be larger than 1 to have any chance of rejecting the null hypothesis. Note that this
doesn’t mean that it’s impossible to get an F-value less than 1. What it means is that, if the null hypothesis is true the sampling
distribution of the F ratio has a mean of 1,23 and so we need to see F-values larger than 1 in order to safely reject the null.

To be a bit more precise about the sampling distribution, notice that if the null hypothesis is true, both MSy, and MS,, are estimators
of the variance of the residuals €j. If those residuals are normally distributed, then you might suspect that the estimate of the
variance of €y is chi-square distributed. .. because (as discussed in Section 9.6 that’s what a chi-square distribution is: it’s what you
get when you square a bunch of normally-distributed things and add them up. And since the F distribution is (again, by definition)
what you get when you take the ratio between two things that are X? distributed... we have our sampling distribution. Obviously,
I’'m glossing over a whole lot of stuff when I say this, but in broad terms, this really is where our sampling distribution comes from.

12.3.5 worked example

The previous discussion was fairly abstract, and a little on the technical side, so I think that at this point it might be useful to see a
worked example. For that, let’s go back to the clinical trial data that I introduced at the start of the chapter. The descriptive statistics
that we calculated at the beginning tell us our group means: an average mood gain of 0.45 for the placebo, 0.72 for Anxifree, and
1.48 for Joyzepam. With that in mind, let’s party like it’s 18992%* and start doing some pencil and paper calculations. I’ll only do
this for the first 5 observations, because it’s not bloody 1899 and I’'m very lazy. Let’s start by calculating SS,,, the within-group
sums of squares. First, let’s draw up a nice table to help us with our calculations...

group (k) outcome (Y;,)
placebo 0.5
placebo 0.3
placebo 0.1
anxifree 0.6
anxifree 0.4

At this stage, the only thing I’ve included in the table is the raw data itself: that is, the grouping variable (i.e., drug ) and
outcome variable (i.e. mood.gain ) for each person. Note that the outcome variable here corresponds to the Y;, value in our
equation previously. The next step in the calculation is to write down, for each person in the study, the corresponding group mean;

https://stats.libretexts.org/@go/page/36167



https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36167?pdf

LibreTextsw

that is, Y},. This is slightly repetitive, but not particularly difficult since we already calculated those group means when doing our
descriptive statistics:

group (k) outcome (Yik) group mean ( Y’k
placebo 0.5 0.45
placebo 0.3 0.45
placebo 0.1 0.45
anxifree 0.6 0.72
anxifree 0.4 0.72

Now that we’ve written those down, we need to calculate — again for every person — the deviation from the corresponding group
mean. That is, we want to subtract Yix— Yj. After we’ve done that, we need to square everything. When we do that, here’s what we

get:
group (k) outcome (Y) group mean ( ¥;) dev. from group mean squared de_viazltion
Yk~ Ya) (Y= Yi)?)
placebo 0.5 0.45 0.05 0.0025
placebo 0.3 0.45 -0.15 0.0225
placebo 0.1 0.45 -0.35 0.1225
anxifree 0.6 0.72 -0.12 0.0136
anxifree 0.4 0.72 -0.32 0.1003

The last step is equally straightforward. In order to calculate the within-group sum of squares, we just add up the squared
deviations across all observations:

SS,, =0.0025+0.0225 +0.1225+0.0136 +0.1003
=0.2614

Of course, if we actually wanted to get the right answer, we’d need to do this for all 18 observations in the data set, not just the first
five. We could continue with the pencil and paper calculations if we wanted to, but it’s pretty tedious. Alternatively, it’s not too
hard to get R to do it. Here’s how:

outcome <- clin.trial$mood.gain

group <- clin.trial$drug

gp.means <- tapply(outcome, group,mean)
gp.means <- gp.means[group]
dev.from.gp.means <- outcome - gp.means
squared.devs <- dev.from.gp.means 72

It might not be obvious from inspection what these commands are doing: as a general rule, the human brain seems to just shut
down when faced with a big block of programming. However, I strongly suggest that — if you’re like me and tend to find that the
mere sight of this code makes you want to look away and see if there’s any beer left in the fridge or a game of footy on the telly —
you take a moment and look closely at these commands one at a time. Every single one of these commands is something you’ve
seen before somewhere else in the book. There’s nothing novel about them (though I’ll have to admit that the tapply()
function takes a while to get a handle on), so if you’re not quite sure how these commands work, this might be a good time to try
playing around with them yourself, to try to get a sense of what’s happening. On the other hand, if this does seem to make sense,
then you won’t be all that surprised at what happens when I wrap these variables in a data frame, and print it out...
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Y <- data.frame( group, outcome, gp.means,
dev.from.gp.means, squared.devs )

print(Y, digits = 2)

#i group outcome gp.means dev.from.gp.means squared.devs
## 1 placebo 0.5 0.45 0.050 0.0025
#H# 2 placebo 0.3 0.45 -0.150 0.0225
## 3 placebo 0.1 0.45 -0.350 0.1225
## 4 anxifree 0.6 0.72 -0.117 0.0136
## 5 anxifree 0.4 0.72 -0.317 0.1003
## 6 anxifree 0.2 0.72 -0.517 0.2669
## 7 joyzepam 1.4 1.48 -0.083 0.0069
## 8 joyzepam 1.7 1.48 0.217 0.0469
## 9 joyzepam 1.3 1.48 -0.183 0.0336
## 10 placebo 0.6 0.45 0.150 0.0225
## 11 placebo 0.9 0.45 0.450 0.2025
## 12 placebo 0.3 0.45 -0.150 0.0225
## 13 anxifree 1.1 0.72 0.383 0.1469
## 14 anxifree 0.8 0.72 0.083 0.0069
## 15 anxifree il 2 0.72 0.483 0.2336
## 16 joyzepam 1.8 1.48 0.317 0.1003
## 17 joyzepam 1.3 1.48 -0.183 0.0336
## 18 joyzepam 1.4 1.48 -0.083 0.0069

If you compare this output to the contents of the table I’ve been constructing by hand, you can see that R has done exactly the same
calculations that I was doing, and much faster too. So, if we want to finish the calculations of the within-group sum of squares in R,
we just ask for the sum() ofthe squared.devs variable:

SSw <- sum( squared.devs )
print( SSw )

I ## [1] 1.391667

Obviously, this isn’t the same as what I calculated, because R used all 18 observations. But if I'd typed
sum( squared.devs[1:5] ) instead, it would have given the same answer that I got earlier.

Okay. Now that we’ve calculated the within groups variation, SSy, it’s time to turn our attention to the between-group sum of
squares, SSy. The calculations for this case are very similar. The main difference is that, instead of calculating the differences
between an observation Yjx and a group mean Y} for all of the observations, we calculate the differences between the group means
Y}, and the grand mean Y (in this case 0.88) for all of the groups...

_ - = = d deviati
group (k) group mean ( Y%) grand mean (Y) deviation (Y —Y) P O («

Y, —Y)?)
placebo 0.45 0.88 -0.43 0.18
anxifree 0.72 0.88 -0.16 0.03
joyzepam 1.48 0.88 0.60 0.36

However, for the between group calculations we need to multiply each of these squared deviations by Ny, the number of
observations in the group. We do this because every observation in the group (all Ni of them) is associated with a between group
difference. So if there are six people in the placebo group, and the placebo group mean differs from the grand mean by 0.19, then
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the total between group variation associated with these six people is 6x0.16=1.14. So we have to extend our little table of

calculations...
o - - . weighted squared dev (N (
group (k) squared deviations (( Yz — Y )?) sample size (N) S,
Yi—Y))
placebo 0.18 6 1.11
anxifree 0.03 6 0.16
joyzepam 0.36 6 2.18

And so now our between group sum of squares is obtained by summing these “weighted squared deviations” over all three groups
in the study:

SSp =1.11+0.1642.18
=3.45

As you can see, the between group calculations are a lot shorter, so you probably wouldn’t usually want to bother using R as your
calculator. However, if you did decide to do so, here’s one way you could do it:

gp.means <- tapply(outcome, group,mean)
grand.mean <- mean(outcome)
dev.from.grand.mean <- gp.means - grand.mean
squared.devs <- dev.from.grand.mean A2
gp.sizes <- tapply(outcome, group, length)
wt.squared.devs <- gp.sizes * squared.devs

Again, I won’t actually try to explain this code line by line, but — just like last time — there’s nothing in there that we haven’t seen in
several places elsewhere in the book, so I’ll leave it as an exercise for you to make sure you understand it. Once again, we can
dump all our variables into a data frame so that we can print it out as a nice table:

Y <- data.frame( gp.means, grand.mean, dev.from.grand.mean,
squared.devs, gp.sizes, wt.squared.devs )
print(Y, digits = 2)

## gp.means grand.mean dev.from.grand.mean squared.devs gp.sizes
## placebo 0.45 0.88 -0.43 0.188 6
## anxifree 0.72 0.88 -0.17 0.028 6
## joyzepam 1.48 0.88 0.60 0.360 6
#it wt.squared.devs
## placebo 1.13
## anxifree 0.17
## joyzepam 2.16

Clearly, these are basically the same numbers that we got before. There are a few tiny differences, but that’s only because the hand-
calculated versions have some small errors caused by the fact that I rounded all my numbers to 2 decimal places at each step in the
calculations, whereas R only does it at the end (obviously, R s version is more accurate). Anyway, here’s the R command showing
the final step:

SSb <- sum( wt.squared.devs )
print( SSb )

I ## [1] 3.453333
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which is (ignoring the slight differences due to rounding error) the same answer that I got when doing things by hand.

Now that we’ve calculated our sums of squares values, SSy, and SS,,, the rest of the ANOVA is pretty painless. The next step is to
calculate the degrees of freedom. Since we have G=3 groups and N=18 observations in total, our degrees of freedom can be
calculated by simple subtraction:

dfy=G-1=2
df, =N-G=15

Next, since we’ve now calculated the values for the sums of squares and the degrees of freedom, for both the within-groups
variability and the between-groups variability, we can obtain the mean square values by dividing one by the other:

SS, 3.45
MS, — 2200 — 220y
=g, ~ 2 L7
SSw 1.39

We’re almost done. The mean square values can be used to calculate the F-value, which is the test statistic that we’re interested in.
We do this by dividing the between-groups MS value by the and within-groups MS value.

_ MS, _ 173 _
F = Vs, = 000 =18.6

Woohooo! This is terribly exciting, yes? Now that we have our test statistic, the last step is to find out whether the test itself gives
us a significant result. As discussed in Chapter @ref(hypothesistesting, what we really ought to do is choose an a level (i.e.,
acceptable Type I error rate) ahead of time, construct our rejection region, etc etc. But in practice it’s just easier to directly calculate
the p-value. Back in the “old days”, what we’d do is open up a statistics textbook or something and flick to the back section which
would actually have a huge lookup table... that’s how we’d “compute” our p-value, because it’s too much effort to do it any other
way. However, since we have access to R, I’'ll use the pf () function to do it instead. Now, remember that I explained earlier that
the F-test is always one sided? And that we only reject the null hypothesis for very large F-values? That means we’re only
interested in the upper tail of the F-distribution. The command that you’d use here would be this...

pf( 18.6, dfl1 = 2, df2 = 15, lower.tail = FALSE)

## [1] 8.672727e-05

Therefore, our p-value comes to 0.0000867, or 8.67% 107° in scientific notation. So, unless we’re being extremely conservative
about our Type I error rate, we’re pretty much guaranteed to reject the null hypothesis.

At this point, we’re basically done. Having completed our calculations, it’s traditional to organise all these numbers into an
ANOVA table like the one in Table@reftab:anovatable. For our clinical trial data, the ANOVA table would look like this:

df sum of squares mean squares F-statistic p-value
between groups 2 3.45 1.73 18.6 8.67x107°
within groups 15 1.39 0.09 - -

These days, you’ll probably never have much reason to want to construct one of these tables yourself, but you will find that almost
all statistical software (R included) tends to organise the output of an ANOVA into a table like this, so it’s a good idea to get used to
reading them. However, although the software will output a full ANOVA table, there’s almost never a good reason to include the
whole table in your write up. A pretty standard way of reporting this result would be to write something like this:

One-way ANOVA showed a significant effect of drug on mood gain (F(2,15)=18.6,p<.001).
Sigh. So much work for one short sentence.

This page titled 12.3: How ANOVA Works is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

o 14.3: How ANOVA Works by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.
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