LibreTextsw

19.8: Bayesian Regression

Okay, so now we’ve seen Bayesian equivalents to orthodox chi-square tests and t-tests. What’s next? If I were to follow the same
progression that T used when developing the orthodox tests you’d expect to see ANOVA next, but I think it’s a little clearer if we
start with regression.

19.8.1 quick refresher

In Chapter 15 T used the parenthood data to illustrate the basic ideas behind regression. To remind you of what that data set
looks like, here’s the first six observations:

load("./rbook-master/data/parenthood.Rdata")
head(parenthood)

#it dan.sleep baby.sleep dan.grump day

1 /59 10.18 56 1
2 7.91 11.66 60 2
3 5.14 7.92 82 S
4 7.71 9.61 55 4
5 6.68 OIS 67 5
6 5.99 5.04 72 6

Back in Chapter 15 I proposed a theory in which my grumpiness (dan.grump) on any given day is related to the amount of
sleep T got the night before (dan.sleep), and possibly to the amount of sleep our baby got (baby.sleep), though
probably not to the day on which we took the measurement. We tested this using a regression model. In order to estimate the
regression model we used the 1m() function, like so:

model <- Im(
formula = dan.grump ~ dan.sleep + day + baby.sleep,
data = parenthood

)

The hypothesis tests for each of the terms in the regression model were extracted using the summary() function as shown
below:

I summary(model)

https://stats.libretexts.org/@go/page/36244

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36244?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/19%3A_Bayesian_Statistics/19.08%3A_Bayesian_Regression

LibreTextS'”

#it

Call:

1lm(formula = dan.grump ~ dan.sleep + day + baby.sleep, data = parenthood)
4

Residuals:

Min 1Q Median 3Q Max

-10.906 -2.284 -0.295 2.652 11.880

##

Coefficients:

#Ht Estimate Std. Error t value Pr(>|t])

(Intercept) 126.278707 3.242492 38.945 <2e-16 ***

dan.sleep -8.969319 0.560007 -16.016 <2e-16 ***

day -0.004403 0.015262 -0.288 0.774

baby.sleep 0.015747 0.272955 0.058 0.954

#Ht ---

Signif. codes: © '***' @.001 '**' 0.01 '*' ©0.05 '.' 0.2 ' ' 1
#it

Residual standard error: 4.375 on 96 degrees of freedom
Multiple R-squared: 0.8163, Adjusted R-squared: 0.8105
F-statistic: 142.2 on 3 and 96 DF, p-value: < 2.2e-16

When interpreting the results, each row in this table corresponds to one of the possible predictors. The (Intercept) term
isn’t usually interesting, though it is highly significant. The important thing for our purposes is the fact that dan.sleep is
significant at p<.001 and neither of the other variables are.

19.8.2 Bayesian version

Okay, so how do we do the same thing using the BayesFactor package? The easiest way is to use the regressionBF()
function instead of 1m() . As before, we use formula to indicate what the full regression model looks like, and the data
argument to specify the data frame. So the command is:

regressionBF(
formula = dan.grump ~ dan.sleep + day + baby.sleep,
data = parenthood

)

Bayes factor analysis

HH# -----mmmmme--

[1] dan.sleep i 1.622545e+34 *0.01%
[2] day 1 0.2724027 +0%
[3] baby.sleep : 10018411 +0%
[4] dan.sleep + day : 1.016576e+33 0%
[5] dan.sleep + baby.sleep : 9.77022e+32 0%
[6] day + baby.sleep : 2340755 +0%
[7] dan.sleep + day + baby.sleep : 7.835625e+31 +0%
#it

Against denominator:

#i Intercept only

#HH# ---

Bayes factor type: BFlinearModel, JZS

@ 0 @ 19.8.2 https://stats.libretexts.org/@go/page/36244

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36244?pdf

LibreTextsw

So that’s pretty straightforward: it’s exactly what we’ve been doing throughout the book. The output, however, is a little different
from what you get from 1m() . The format of this is pretty familiar. At the bottom we have some techical rubbish, and at the top
we have some information about the Bayes factors. What’s new is the fact that we seem to have lots of Bayes factors here. What’s
all this about?

The trick to understanding this output is to recognise that if we’re interested in working out which of the 3 predictor variables are
related to dan.grump , there are actually 8 possible regression models that could be considered. One possibility is the intercept
only model, in which none of the three variables have an effect. At the other end of the spectrum is the full model in which all three
variables matter. So what regressionBF () does is treat the intercept only model as the null hypothesis, and print out the
Bayes factors for all other models when compared against that null. For example, if we look at line 4 in the table, we see that the
evidence is about 1033 to 1 in favour of the claim that a model that includes both dan.sleep and day is better than the
intercept only model. Or if we look at line 1, we can see that the odds are about 1.6x1034 that a model containing the
dan.sleep variable (but no others) is better than the intercept only model.

19.8.3 Finding the best model

In practice, this isn’t super helpful. In most situations the intercept only model is one that you don’t really care about at all. What I
find helpful is to start out by working out which model is the best one, and then seeing how well all the alternatives compare to it.
Here’s how you do that. In this case, it’s easy enough to see that the best model is actually the one that contains dan.sleep
only (line 1), because it has the largest Bayes factor. However, if you’ve got a lot of possible models in the output, it’s handy to
know that you can use the head() function to pick out the best few models. First, we have to go back and save the Bayes factor
information to a variable:

models <- regressionBF(
formula = dan.grump ~ dan.sleep + day + baby.sleep,
data = parenthood

)

Let’s say I want to see the best three models. To do this, I use the head() function specifying n=3 , and here’s what I get as
the result:

I head(models, n = 3)

Bayes factor analysis

fEp ccoccoccccooas

[1] dan.sleep : 1.622545e+34 *0.01%
[2] dan.sleep + day : 1.016576e+33 +0%

[3] dan.sleep + baby.sleep : 9.77022e+32 +0%

#it

Against denominator:

#it Intercept only

#HH# ---

Bayes factor type: BFlinearModel, JZS

This is telling us that the model in line 1 (i.e., dan.grump ~ dan.sleep) is the best one. That’s almost what I’m looking
for, but it’s still comparing all the models against the intercept only model. That seems silly. What I°d like to know is how big the
difference is between the best model and the other good models. For that, there’s this trick:

I head(models/max(models), n = 3)

https://stats.libretexts.org/@go/page/36244

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36244?pdf

LibreTextsw

Bayes factor analysis

HH#t ----mmmmmme -

[1] dan.sleep 1 +0%

[2] dan.sleep + day : 0.0626532 £0.01%
[3] dan.sleep + baby.sleep : 0.0602154 +0.01%
##

Against denominator:

dan.grump ~ dan.sleep

Bayes factor type: BFlinearModel, JZS

Notice the bit at the bottom showing that the “denominator” has changed. What that means is that the Bayes factors are now
comparing each of those 3 models listed against the dan.grump ~ dan.sleep model. Obviously, the Bayes factor in the
first line is exactly 1, since that’s just comparing the best model to itself. More to the point, the other two Bayes factors are both
less than 1, indicating that they’re all worse than that model. The Bayes factors of 0.06 to 1 imply that the odds for the best model
over the second best model are about 16:1. You can work this out by simple arithmetic (i.e., 0.06/1~16), but the other way to do it
is to directly compare the models. To see what I mean, here’s the original output:

I models
Bayes factor analysis
HH —mmmememeaeas
[1] dan.sleep i 1.622545e+34 *0.01%
[2] day 1 0.2724027 +0%
[3] baby.sleep : 10018411 +0%
[4] dan.sleep + day : 1.016576e+33 0%
[5] dan.sleep + baby.sleep : 9.77022e+32 0%
[6] day + baby.sleep : 2340755 +0%
[7] dan.sleep + day + baby.sleep : 7.835625e+31 +0%
#it

Against denominator:

#i Intercept only

#HH# ---

Bayes factor type: BFlinearModel, JZS

The best model corresponds to row 1 in this table, and the second best model corresponds to row 4. All you have to do to compare
these two models is this:

I models[1] / models[4]

Bayes factor analysis

HH# ---------m-- -

[1] dan.sleep : 15.96088 +0.01%

#it

Against denominator:

dan.grump ~ dan.sleep + day

#H# ---

Bayes factor type: BFlinearModel, JZS

https://stats.libretexts.org/@go/page/36244

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36244?pdf

LibreTextsw

And there you have it. You’ve found the regression model with the highest Bayes factor (i.e., dan.grump ~ dan.sleep),
and you know that the evidence for that model over the next best alternative (i.e., dan.grump ~ dan.sleep + day)is
about 16:1.

19.8.4 Extracting Bayes factors for all included terms

Okay, let’s say you’ve settled on a specific regression model. What Bayes factors should you report? In this example, I’'m going to
pretend that you decided that dan.grump ~ dan.sleep + baby.sleep is the model you think is best. Sometimes it’s
sensible to do this, even when it’s not the one with the highest Bayes factor. Usually this happens because you have a substantive
theoretical reason to prefer one model over the other. However, in this case I’'m doing it because I want to use a model with more
than one predictor as my example!

Having figured out which model you prefer, it can be really useful to call the regressionBF() function and specifying
whichModels="top" . You use your “preferred” model as the formula argument, and then the output will show you the
Bayes factors that result when you try to drop predictors from this model:

regressionBF(

formula = dan.grump ~ dan.sleep + baby.sleep,
data = parenthood,

whichModels = "top"

Bayes factor top-down analysis

HH# ---------m-- -

When effect is omitted from dan.sleep + baby.sleep , BF is...
[1] Omit baby.sleep : 16.60705 +0.01%

[2] Omit dan.sleep : 1.025403e-26 +0.01%

A

Against denominator:

#i dan.grump ~ dan.sleep + baby.sleep
#HH# ---

Bayes factor type: BFlinearModel, JZS

Okay, so now you can see the results a bit more clearly. The Bayes factor when you try to drop the dan.sleep predictor is
about 10—-26, which is very strong evidence that you shouldn’t drop it. On the other hand, the Bayes factor actually goes up to 17 if
youdrop baby.sleep ,soyou’d usually say that’s pretty strong evidence for dropping that one.

This page titled 19.8: Bayesian Regression is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

« 17.8: Bayesian Regression by Danielle Navarro is licensed CC BY-SA 4.0. Original source: https://bookdown.org/ekothe/navarro26/.

https://stats.libretexts.org/@go/page/36244

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/36244?pdf
https://stats.libretexts.org/Courses/Cerritos_College/Introduction_to_Statistics_with_R/19%3A_Bayesian_Statistics/19.08%3A_Bayesian_Regression
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/
https://stats.libretexts.org/@go/page/8313
https://djnavarro.net/
https://creativecommons.org/licenses/by-sa/4.0/
https://bookdown.org/ekothe/navarro26/

