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3.9: Quantitative Analysis with SPSS- Multivariate Regression

In the chapter on Bivariate Regression, we explored how to produce a regression with one independent variable and one dependent
variable, both of which are continuous. In this chapter, we will expand our understanding of regression. The regressions we
produce here will still be linear regressions with one continuous dependent variable, but now we will be able to include more than
one independent variable. In addition, we will learn how to include discrete independent variables in our analysis.

In fact, producing and interpreting multivariate linear regressions is not very different from producing and interpreting bivariate
linear regressions. The main differences are:

1. We add one or more additional variables to the Block 1 of 1 box (where the independent variables go) when setting up the
regression analysis,

2. We check off one additional option under Statistics when setting up the regression analysis, Collinearity diagnostics, which will
be explained below,

3. We interpret the strength and significance of the entire regression and then look at the strength, significance, and direction of
each included independent variable one at a time, so there are more things to interpret, and

4. We can add or remove variables and compare the R? to see how those changes impacted the overall predictive power of the
regression.

Each of these differences between bivariate and multivariate regression will be discussed below, beginning with the issue of
collinearity and the tools used to diagnose it.

Collinearity

Collinearity refers to the situation in which two independent variables in a regression analysis are closely correlated with one
another (when more than two independent variables are closely correlated, we call it multicollinearity). This is a problem because
when the correlation between independent variables is high, the impact of each individual variable on the dependent variable can
no longer be separately calculated. Collinearity can occur in a variety of circumstances: when two variables are measuring the same
thing but using different scales; when they are measuring the same concept but doing so slightly differently; or when one of the
variables has a very strong effect on the other.

Let’s consider examples of each of these circumstances in turn. If a researcher included both year of birth and age, or weight in
pounds and weight in kilograms, both of the variables in each pair are measuring the exact same thing. Only the scales are
different. If a researcher included both hourly pay and weekly pay, or the length of commute in both distance and time, the
correlation would not be quite as close. A person might get paid $10 an hour but work a hundred hours per week, or get paid $100
an hour but work ten hours per week, and thus still have the same weekly pay. Someone might walk two miles to work and spend
the same time commuting as someone else driving 35 miles on the highway. But overall, the relationships between hourly pay and
weekly pay and the relationship between commute distance and commute time are likely to be quite strong. Finally, consider a
researcher who includes variables measuring the grade students earned on Exam 1 and their total grade in a course with three
exams, or one who includes variables measuring families’ spending on housing each month and their overall spending each month.
In these cases, the variables are not measuring the same underlying phenomena, but the first variable likely has a strong effect on
the second variable, resulting in a strong correlation.

In many cases, the potential for collinearity will be obvious when considering the variables included in the analysis, as in the
examples above. But it is not always obvious. Therefore, researchers need to test for collinearity when performing multivariate
regressions. There are several ways to do this. First of all, before beginning to run a regression, researchers can check for
collinearity by running a correlation matrix and a scatterplot matrix to look at the correlations between each pair of variables. The
instructions for these techniques can be found in the chapter on Quantitative Analysis with SPSS: Correlation. A general rule of
thumb is that if a Pearson correlation is above 0.8, this suggests a likely problem with collinearity, though some suggest
scrutinizing those pairs of variables with a correlation above 0.7.

https://stats.libretexts.org/@go/page/37552



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/37552?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Social_Data_Analysis%3A_Qualitative_and_Quantitative_Approaches_(Arthur_and_Clark)/03%3A_Quantitative_Data_Analysis_with_SPSS/3.09%3A_Quantitative_Analysis_with_SPSS-_Multivariate_Regression

LibreTextsw

W Linear Regression: Statistics X

i Regression Coefficie... Model fit
1 Estimates IR squared change
[[] Confidence intevals [ ] Descriptives
Level(%): |95 [ Part and partial correlations
| [Covariance matrix [Vl

Residuals

gnostic

[] Durbin-Watson

| [] Casewise diagnostics

Figure 1. Using Collinearity Diagnostics in Regression

In addition, when running the regression, researchers can check off the option for Collinearity diagnostics (Alt+l) under the
statistics dialog (Alt+S), as shown in Figure 1. The resulting regression’s Coefficients table will include two additional pieces of
information, the VIF and the Tolerance, as well as an additional table called Collinearity diagnostics. The VIF, or Variance Inflation
Factor, calculates the degree of collinearity present. Values of around or close to one suggest no collinearity; values around four or
five suggest that a deeper look at the variables is needed, and values at ten or above definitely suggest collinearity great enough to
be problematic for the regression analysis. The Tolerance measure calculates the extent to which other independent variables can
predict the values of the variable under consideration; for tolerance, the smaller the number, the more likely that collinearity is a
problem. Typically, researchers performing relatively straightforward regressions such as those detailed in this chapter do not need
to rely on the Collinearity diagnostics table, as they will be able to determine which variables may be correlated with one another
by simply considering the variables and looking at the Tolerance and VTF statistics.
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Producing multivariate linear regressions in SPSS works just the same as producing bivariate linear regressions, except that we add
one or more additional variables to the Block 1 of 1 box and check off the Collinearity diagnostics, as shown in Figure 2. Let’s
continue our analysis of the variable CARHR, adding the independent variable REALINC (inflation-adjusted family income) to the
independent variable AGE. Figure 2 shows how the linear regression dialog would look when set up to run this regression, with
CARHR in the Dependent box and AGE and REALINC in the Independent(s) box under Block 1 of 1. Be sure that Estimates,
Model fit, and Collinearity diagnostics are checked off, as shown in Figure 1. Then click OK to run the regression.

Tables 1, 2, and 3 below show the results (excluding those parts of the output unnecessary for interpretation.
Table 1. Model Summary
Model R R Square Adjusted R Square Std. Error of the Estimate

a. Predictors: (Constant), R’s family income in 1986 dollars, Age of respondent
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Model R R Square Adjusted R Square Std. Error of the Estimate

1 1242 .015 .014 8.619

a. Predictors: (Constant), R’s family income in 1986 dollars, Age of respondent

Table 2. ANOVA?

Model Sum of Squares  df Mean Square F Sig.
Regression 1798.581 2 899.290 12.106 <.001P
1 Residual 114913.923 1547 74.282
Total 116712.504 1549

a. Dependent Variable: How many hours in a typical week does r spend in a car or other motor vehicle, not counting public transit

b. Predictors: (Constant), R’s family income in 1986 dollars, Age of respondent

Table 3. Coefficients?

. _ Standardized Collinearity
Unstandardized Coefficients . .
Model Coefficients Sig. Statistics
B Std. Error Beta Tolerance VIF
(Constant) 9.808 .752 13.049 <.001
Age of
-.055 .013 -.106 -4.212 <.001 1.000 1.000
1 respondent
R’s family
income in -1.356E-5 .000 -.064 -2.538 .011 1.000 1.000
1986 dollars

a. Dependent Variable: How many hours in a typical week does r spend in a car or other motor vehicle, not counting public transit

So, how do we interpret the results of our multivariate linear regression? First, look at the Collinearity Statistics in the Coefficients
table (here, Table 3). As noted above, to know we are not facing a situation involving collinearity, we are looking for a VIF that’s
lower than 5 and a Tolerance that is close to 1. Both of these conditions are met here, so collinearity is unlikely to be a problem. If
it were, we would want to figure out which variables were overly correlated and remove at least one of them. Next, we look at the
overall significance of the regression in the ANOVA table (here, Table 3). The significance shown is <0.001, so the regression is
significant. If it were not, we would stop there.

To find out the overall strength of the regression, we look at the R in the Model Summary (here, Table 1). It is 0.124, which means
it is moderately strong. The R? is 0.015, which—converting the decimal into a percentage by multiplying it by 100—tells us that
the two independent variables combined explain 1.5% of the variance in the dependent variable, how much time the respondent
spends in the car. And here’s something fancy you can do with that R?: compare it to the R? for our prior analysis in the chapter on
Bivariate Regression, which had just the one independent variable of AGE. That R? was 0.10, so though our new regression still
explains very little of the variance in hours spent in the car, adding income does enable us to explain a bit more of the variance.
Note that you can only compare R? values among a series of models with the same dependent variable. If you change dependent
variables, you can no longer make that comparison.

Now, let’s turn back to the Coefficients table. When we interpreted the bivariate regression results, we saw that the significance and
Beta values in this table were the same as the significance value in the ANOVA table and the R values, respectively. In the
multivariate regression, this is no longer true—because now we have multiple independent variables, each with their own
significance and Beta values. These results allow us to look at each independent variable, while holding constant (controlling for)
the effects of the other independent variable(s). Age, here, is significant at the p<0.001 level, and its Beta value is -0.106, showing
a moderate negative association. Family income is significant at the p<0.05 level, and its Beta value is -0.064, showing a weak
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negative association. We can compare the Beta values to determine that age has a larger effect (0.106 is a bigger number than
0.064; we ignore sign when comparing strength) than does income.

Next, we look at the B values to see the actual numerical effect of each variable. For every year of additional age, respondents
spend on average 0.055 fewer hours in the car, or about 1.65 minutes less. And for every dollar of additional family income,
respondents spend -1.356E-5 fewer hours in the car. But wait, what does -1.356E-5 mean? It’s a way of writing numbers that have
a lot of decimal places so that they take up less space. Written the long way, this number is -0.00001356—so what the E-5 is telling
us is to move the decimal point five spaces over. That’s a pretty tiny number, but that’s because an increase of $1 in your annual
family income really doesn’t have much impact on, well, really anything. If instead we considered the impact of an increase of
$10,000 in your annual family income, we would multiply our B value by $10,000, getting -0.1356. In other words, an increase of
$10,000 in annual family income (in constant 1986 dollars) is associated with an average decrease of 0.1356 hours in the car, or a
little more than 8 minutes.

y=19.808 —0.055AGE™" —1.356 E—5REALINCOME" (3.9.1)

Phew, that was a lot to go through! But it told us a lot about what is going on with our dependent variable, CARHR. That’s the
power of regression: it tells us not just about the strength, significance, and direction of the relationship between a given pair of
variables, but also about the way adding or removing additional variables changes things as well as about the actual impact each
independent variable has on the dependent variable.

Dummy Variables

So far, we have reviewed a number of the advantages of regression analysis, including the ability to look at the significance,
strength, and direction of the relationships between a series of independent variables and a dependent variable; examining the effect
of each independent variable while controlling for the others; and seeing the actual numerical effect of each independent variable.
Another advantage is that it is possible to include independent variables that are discrete in our analysis. However, they can only be
included in a very specific way: if we transform them into a special kind of variable called a dummy variable in which a single
value of interest is coded as 1 and all other values are coded as 0. It is even possible to create multiple dummy variables for
different categories of the same discreet variable, so long as you have an excluded category or set of categories that are sizable. It is
important to leave a sizeable group of respondents or datapoints in the excluded category because of collinearity.

Consider, for instance, the variable WRKSLF, which asks if respondents are self-employed or work for someone else. This is a
binary variable, with only two answer choices. We could make a dummy variable for self-employment, with being self-employed
coded as 1 and everything else (which, here, is just working for someone else) as 0. Or we could make a dummy variable for
working for someone else, with working for someone else coded as 1 and everything else as 0. But we cannot include both
variables in our analysis because they are, fundamentally, measuring the same thing.

Figuring out how many dummy variables to make and which ones they should be can be difficult. The first question is theoretical:
what are you actually interested in? Only include categories you think would be meaningfully related to the outcome (dependent
variable) you are considering. Second, look at the descriptive statistics for your variable to be sure you have an excluded category
or categories. If all of the categories of the variable are sufficiently large, it may be enough to exclude one category. However, if a
category represents very few data points—say, just 5 or 10 percent of respondents—it may not be big enough to avoid collinearity.
Therefore, some analysts suggest using one of the largest categories, assuming this makes sense theoretically, as the excluded
category.

Let’s consider a few examples:

Table 4. Examples of Dummy Variables
GSS Variable Answer Choices & Frequencies Suggested Dummy Variable(s)

White: 78.2% Option 1. 2 variables: Back 1, all others 0 & Other 1, all others 0

RACE Black: 11.6% Option 2. Nonwhite 1, all others 0

Other: 10.2% Option 3. White 1, all others 0

DEGREE Less than high school: 6.1% Option 1. Bachelor’s or higher 1; all others 0
High school: 38.8%
Associate/junior college: 9.2%

Option 2. High school or higher 1; all others 0
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Bachelor’s: 25.7% Option 3. 4 variables: Less than high school 1, all others 0; Associate/junior
Graduate: 18.8% college 1, all others 0; Bachelor’s 1, all others 0; Graduate 1, all others 0

Option 4. Use EDUC instead, as it is continuous

0:29.2% Option 1. 0 children 1, all others 0
1: 16.2%
2:28.9% Option 2. 2 variables: 0 children 1, all others 0; 1 child 1, all others 0
3:14.5%

CHILDS 4: 7% Option 3. 3 variables: 0 children 1, all others 0; 1 child 1, all others 0; 2 children
5 294 1, all others 0
6: 1.3%
7. 0.4% Option 4. Ignore the fact that this variable is not truly continuous and treat is as
8 or more: 0.5% continuous anyway
Lower class: 8.7% The best option is to create thee variables: Lower class 1, all others 0; Working

CLASS Working class: 27.4% class 1, all others 0; Upper class 1, all others 0 (however, you could instead
Middle class: 49.8% include Working class and have a variable for Middle class if that made more
Upper class: 4.2% sense theoretically)

s Male: 44.1% Option 1. Male 1, all others 0

EX

Female: 55.9% Option 2: Female 1, all others 0

So, how do we go about making our dummy variable or variables? We use the Recode technique, as illustrated in the chapter on
Quantitative Analysis with SPSS: Data Management. Just remember to Recode into different and to make as many dummy
variables as needed: maybe one, maybe more. Here, we will make one for SEX. Because we are continuing our analysis of
CARHRS, let’s assume we hypothesize that, on average, women spend more time in the car than men because women are more
likely to be responsible for driving children to school and activities. On the basis of this hypothesis, we would treat female as the
included category (coded 1) and male as the excluded category (coded 0) since what we are interested in is the effect of being
female.

As a reminder, to recode, we first make sure we know the value labels for our existing original variable, which we can find out by
checking Values in Variable View. Here, male is 1 and female is 2. Then we go to Transform — Recode into Different Variables
(Alt+T, Alt+R). We add the original variable to the box, and then give our new variable a name, here generally something like the
name of the category we are interested in (here, Female) and descriptive label, and click Change. Next, we click “Old and New
Values.” We set system or user missing as system missing, our category of interest as 1, and everything else as 0. We click
continue, then go to the bottom of variable view and edit our value labels to reflect our new categories. Finally, we run a frequency
table of our new variable to be sure everything worked right. Figure 3 shows all of the steps described here.
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Figure 3. The Process of Recoding Sex to Create the Dummy Variable Female
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Figure 4. The Multivariate Linear Regression Window with our Dummy Variable Added

After creating the dummy variable, we are ready to include our dummy variable in a regression. We set up the regression just the
same way as we did above, except that we add FEMALE to the independent variables REALINC and AGE (the dependent variable
will stay CARHR). Be sure to check Collinearity diagnostics under Statistics. Figure 4 shows how the linear regression dialog
should look with this regression set up. Once the regression is set up, click ok to run it.

Now, let’s consider the output, again focusing only on those portions of the output necessary to our interpretation, as shown in
Tables 5, 6, and 7.
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Model R R Square Adjusted R Square Std. Error of the Estimate

Table 5. Model Summary

1 1432 .020 .018 8.602

a. Predictors: (Constant), Dummy Variable for Being Female, Age of respondent, R’s family income in 1986 dollars

Table 6. ANOVA?

Model Sum of Squares  df Mean Square F Sig.
Regression 2372.292 3 790.764 10.686 <.001P
1 Residual 114259.126 1544 74.002
Total 116631.418 1547

a. Dependent Variable: How many hours in a typical week does r spend in a car or other motor vehicle, not counting public transit

b. Predictors: (Constant), Dummy Variable for Being Female, Age of respondent, R’s family income in 1986 dollars

Table 7. Coefficients?

. . Standardized Collinearity
Unstandardized Coefficients . -
Model Coefficients Sig. Statistics
B Std. Error Beta Tolerance VIF
(Constant) 10.601 .801 13.236 <.001
Age of
-.056 .013 -.108 -4.301 <.001 1.000 1.000
respondent
R’s family
1 income in -1.548E-5 .000 -.073 -2.882 .004 .986 1.014
1986 dollars
Dummy
Variable for
. -1.196 442 -.069 -2.706 .007 .986 1.015
Being
Female

a. Dependent Variable: How many hours in a typical week does r spend in a car or other motor vehicle, not counting public transit

First, we look at our collinearity diagnostics in the Coefficients table (here, Table 7). We can see that all three of our variables have
both VIF and Tolerance close to 1 (see above for a more detailed explanation of how to interpret these statistics), so it is unlikely
that there is a collinearity problem.

Second, we look at the significance for the overall regression in the ANOVA table (here, Table 6). We find the significance is
<0.001, so our regression is significant and we can continue our analysis.

Third, we look at the Model Fit table (here, table 5). We see that the R is 0.143, so the regression’s strength is moderate, and the R2
is 0.02, meaning that all of our variables together explain 2% of the variance (0.02 * 100 converts the decimal to a percent) in our
dependent variable. We can compare this 2% R? to the 1.5% R2 we obtained from the earlier regression without Female and
determine that adding the dummy variable for being female helped our regression explain a little bit more of the variance in time
respondents spend in the car.

Fourth, we look at the significance and Beta values in the Coefficients table. First, we find that Age is significant at the p<0.001
level and that it has a moderate negative relationship with time spent in the car. Second, we find that income is significant at the
p<0.01 level and has a weak negative relationship with time spent in the car. Finally, we find that being female is significant at the
p<0.01 level and has a weak negative relationship with time spent in the car. But wait, what does this mean? Well, female here is
coded as 1 and male as 0. So what this means is that when you move from 0 to 1—in other words from male to female—the time
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spent in the car goes down (but weakly). This is the opposite of what we hypothesized! Of the three variables, age has the strongest
effect (the largest Beta value).

Next, we look at the B values to see what the actual numerical effect is. For every one additional year of age, time spent in the car
goes down by 0.056 hours (3.36 minutes) a week. For every one additional dollar of income, time spent in the car goes down by
-1.548E-5 hours per week; translated (as we did above), this means that for every $10,000 additional dollars of income, time spent
in the car goes down by 0.15 hours (about 9 minutes) per week. And women, it seems, spend on average 1.196 hours (about one
hour and twelve minutes) fewer per week in the car than do men.

Finally, we produce our regression equation. Taking the numbers from the B column, our regression equation is
y = 10.601 — 0.056 AGE™" ~ 1.584E — SREALINCOME™ ~ 1.196FEMALE""

Regression Modeling

There is one more thing you should know about basic multivariate linear regression. Many analysts who perform this type of
technique systematically add or remove variables or groups of variables in a series of regression models (SPSS calls them
“Blocks™) to look at how they influence the overall regression. This is basically the same as what we have done above by adding a
variable and comparing the R? (the difference between the two R? values is called the R? change). However, SPSS provides a tool
for running multiple blocks at once and looking at the results. When looking at the Linear regression dialog, you may have noticed
that it says “Block 1 of 1” just above the box where the independent variables go. Well, if you click “next” (Alt+N), you will be
moved to a blank box called “Block 2 of 2”. You can then add additional independent variables here as an additional block.

Just below the Block box is a tool called “Method” (Alt+M). While a description of the options here is beyond the scope of this
text, this tool provides different ways for variables in each block to be entered or removed from the regression to develop the
regression model that is most optimal for predicting the dependent variable, retaining only those variables that truly add to the
predictive power of the ultimate regression equation. Here, we will stick with the “Enter” Method, which does not draw on this
type of modeling but instead simply allows us to compare two (or more) regressions upon adding an additional block (or blocks) of
variables.

So, to illustrate this approach to regression analysis, we will retain the same set of variables for Block 1 that we used above: age,
income, and the dummy variable for being female. And then we will add a Block 2 with EDUC (the highest year of schooling
completed) and PRESTIG10 (the respondent’s occupational prestige score)''. Remember to be sure to check the collinearity
diagnostics box under statistics. Figure 5 shows how the regression dialog should be set up to run this analysis.
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Figure 5. Setting Up a Linear Regression With Blocks

The output for this type of analysis (relevant sections of the output appear as Tables 8, 9, and 10) does look more complex at first,
as each table now has two tables stacked on top of one another. Note the output will first, before the relevant tables, include
“Variables Entered/Removed” table that simply lists which variables are included in each block. This is more important for the
more complex methods other than Enter in which SPSS calculates the final model; here, we already know which variables we have
included in each block.

Table 7. Model Summary
Model R R Square Adjusted R Square Std. Error of the Estimate
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Model R R Square Adjusted R Square Std. Error of the Estimate
1 .1552 .024 .022 8.201
2 .200P .040 .037 8.139

a. Predictors: (Constant), Dummy Variable for Being Female, Age of respondent, R’s family income in 1986 dollars

b. Predictors: (Constant), Dummy Variable for Being Female, Age of respondent, R’s family income in 1986 dollars, R’s occupational
prestige score (2010), Highest year of school R completed

Table 8. ANOVA?

Model Sum of Squares  df Mean Square F Sig.

Regression 2486.883 3 828.961 12.326 <.001P
1 Residual 101353.178 1507 67.255

Total 103840.061 1510

Regression 4144.185 5 828.837 12.512 <.001°¢
2 Residual 99695.876 1505 66.243

Total 103840.061 1510

a. Dependent Variable: How many hours in a typical week does r spend in a car or other motor vehicle, not counting public transit
b. Predictors: (Constant), Dummy Variable for Being Female, Age of respondent, R’s family income in 1986 dollars

c. Predictors: (Constant), Dummy Variable for Being Female, Age of respondent, R’s family income in 1986 dollars, R’s occupational
prestige score (2010), Highest year of school R completed

Table 9. Coefficients?

Standa Collin
Unstandardized Coefficients rdlzeé earlt'y .
Coeffi ) Statisti
Model doig Sig. @
B Std. Error Beta Tolera /1
nce
(Constant) 10.642 783 13.586 <.001
Age of respondent -.055 .013 -111 -4.344 <.001 1.000 1.000
1 R’s family income in | o 000 077 -3.003 003 986  1.014
1986 dollars - ) ’ - o ' ’ '
Dummy Variable for
. -1.473 426 -.089 -3.456 <.001 .986 1.015
Being Female
2 (Constant) 16.240 1.411 11.514 <.001
Age of respondent -.053 .013 -.107 -4.216 <.001 995 1.005
R’s family incomein o0 ¢ 000 021  -762 446 827  1.209
1986 dollars o ) ) - - ’ ' ’
Dummy Variable for
-1.576 424 -.095 -3.722 <.001 .983 1.017

Being Female

a. Dependent Variable: How many hours in a typical week does r spend in a car or other motor vehicle, not counting public transit
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Standa Collin
. it
Unstandardized Coefficients rd1zeq eart .y .
Coeffi ) Statisti
Model dang o Sig. =
B Std. Error Beta Tolera VIF
nce
Highest year of
-.279 .092 -.092 -3.032 .002 .691 1.448
school R completed
R’s occupational
-.040 .018 -.067 -2.225 .026 712 1.405

prestige score (2010)

a. Dependent Variable: How many hours in a typical week does r spend in a car or other motor vehicle, not counting public transit

You will notice, upon inspecting the results, that what appears under Model 1 (the rows with the 1 at the left-hand side) is the same
as what appeared in our earlier regression in this chapter, the one where we added the dummy variable for being female. That is
because, in fact, Model 1 is the same regression as that prior regression. Therefore, here we only need to interpret Model 2 and
compare it to Model 1; if we had not previously run the regression that is shown in Model 1, we would also need to interpret the
regression in Model 1, not just the regression in Model 2. But since we do not need to do that here, let’s jump right in to
interpreting Model 2.

We begin with collinearity diagnostics in the Coefficients table (here, Table 9). We can see that the Tolerance and VIF have moved
further away from 1 than in our prior regressions. However, the VIF is still well below 2 for all variables, while the Tolerance
remains above 0.5. Inspecting the variables, we can assume the change in Tolerance and VIF may be due to the fact that education
and occupational prestige are strongly correlated. And in fact, if we run a bivariate correlation of these two variables, we do find
that the Pearson’s R is 0.504—indeed a strong correlation! But not quite so strong as to suggest that they are too highly correlated
for regression analysis.

Thus, we can move on to the ANOVA table (here, Table 8). The ANOVA table shows that the regression is significant at the
p<0.001 level. So we can move on to the Model Summary table (here, Table 7). This table shows that the R is 0.200, still a
moderate correlation, but a stronger one than before. And indeed, the R? is 0.040, telling us that all of our independent variables
together explain about 4% of the variance in hours spent in the car per week. If we compare this R? to the one for Model 1, we can
see that, while the R? remains relatively small, the predictive power has definitely increased with the addition of educational
attainment and occupational prestige to our analysis.

Next, we turn our attention back to the Coefficients table to determine the strength and significance of each of our five variables.
Income is no longer significant now that education and occupational prestige have been included in our analysis, suggesting that
income in the prior regressions was really acting as a kind of proxy for education and/or occupational prestige (it is correlated with
both, though not as strongly as they are correlated with one another). The other variables are all significant, age and being female at
the p<0.001 level; education at the p<0.01 level; and occupational prestige is significant at the p<0.05 level. Age of respondent has
a moderate negative (inverse) effect. Being female has a weak negative association, as do education and occupational prestige. In
this analysis, age has the strongest effect, though the Betas for all the significant variables are pretty close in size to one another.

The B column provides the actual numerical effect of each independent variable, as well as the numbers for our regression
equation. For every one year of additional age, time spent in the car each week goes down by about 3.2 minutes. Since income is
not significant, we might want to ignore it; in any case, the effect is quite tiny, with even a $10,000 increase in income being
associated with only a 2.4 minute decrease in time spent in the car. Being female is associated with a decrease of, on average, just
over an hour and a half (94.56 minutes). A one year increase in educational attainment is associated with a decrease of just under
17 minutes a week in the car, while a one-point increase in occupational prestige score”! is associated with a decline of 24 minutes
spent in the car per week. Our regression equation is
y = 16.240 — 0.053AGE"™" — 4.286FE — 6REALINCOME — 1L56TFEMALE™" — 0279EDUC™ — 0.040PRESTG10",

So, what have we learned from our regression analysis in this chapter? Adding more variables can result in a regression that better
explains or predicts our dependent variable. And controlling for an additional independent variable can sometimes make an
independent variable that looked like it had a relationship with our dependent variable become insignificant. Finally, remember that
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regression results are generalized average predictions, not some kind of universal truth. Our results suggest that folks who want to
spend less time in the car might benefit from being older, being female, getting more education, and working in a high-prestige
occupation. However, there are plenty of older females with graduate degrees working in high-prestige jobs who spend lots of time
in the car—and there are plenty of young men with little education who hold low-prestige jobs and spend no time in the car at all.

Notes on Advanced Regression

Multivariate linear regression with dummy variables is the most advanced form of quantitative analysis covered in this text.
However, there are a vast array of more advanced regression techniques for data analysts to use. All of these techniques are similar
in some ways. All involve an overall significance, an overall strength using Pearson’s r or a pseudo-R or R analog which is
interpreted in somewhat similar ways, and a regression equation made up of various coefficients (standardized and unstandardized)
that can be interpreted as to their significance, strength, and direction. However, they differ as to their details. While exploring all
of those details is beyond the scope of this book, a brief introduction to logistic regression will help illuminate some of these details
in at least one type of more advanced regression.

1.2

10f | — 1
1+ exp(—x)

0.8

0.6

0.4

0.2f

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Figure 6. A Plot of a Logistic Function

Logistic regression is a technique used when dependent variables are binary. Instead of estimating a best-fit line, it estimates a best-
fit logistic curve, an example of which is shown in Figure 6. This curve is showing the odds that an outcome will be one versus the
other of the two binary attributes of the variable in question. Thus, the coefficients that the regression analysis produces are
themselves odds, which can be a bit trickier to interpret. Because of the different math for a logistic rather than a linear equation,
logistic regression uses pseudo-R measures rather than Pearson’s r. But logistic regression can tell us, just like linear regression can,
about the significance, strength, and direction of the relationships we are interested in. And it lets us do this for binary dependent
variables.

Besides using different regression models, more advanced regression can also include interaction terms. Interaction terms are
variables constructed by combining the effects of two (or more) variables so as to make it possible to see the combined effect of
these variables together rather than looking at their effects one by one. For example, imagine you were doing an analysis of
compensation paid to Hollywood stars and were interested in factors like age, gender, and number of prior star billings. Each of
these variables undoubtedly has an impact on compensation. But many media commentators suggest that the effect of age is
different for men than for women, with starring roles for women concentrated among the younger set. Thus, an interaction term
that combined the effects of gender and age would make it more possible to uncover this type of situation.

There are many excellent texts, online resources, and courses on advanced regression. If you are thinking about continuing your
education as a data analyst or pursuing a career in which data analysis skills are valuable, learning more about the various
regression analysis techniques out there is a good way to start. But even if you do not learn more, the skills you have already
developed will permit you to produce basic analyses—as well as to understand the more complex analyses presented in the research
and professional literature in your academic field and your profession. For even more complex regressions still rely on the basic
building blocks of significance, direction, and strength/effect size.
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1. Choose three continuous variables. Produce a scatterplot matrix and describe what you see. Are there any reasons to
suspect that your variable might not be appropriate for linear regression analysis? Are any of them overly correlated with
one another?

2. Produce a multivariate linear regression using two of your continuous variables as independent variables and one as a
dependent variable. Be sure to produce collinearity diagnostics. Answer the following questions:

Are there any collinearity problems with your regression? How do you know?

What is the significance of the entire regression?

What is the strength of the entire regression?

How much of the variance in your dependent variable is explained by the two independent variables combined?
For each independent variable:

0O O O O o

= What is the significance of that variable’s relationship with the dependent variable?

= What is the strength of that variable’s relationship with the dependent variable?

= What is the direction of that variable’s relationship with the dependent variable?

= What is the actual numerical effect that an increase of one in that variable would have on the dependent variable?

o Which independent variable has the strongest relationship with the dependent variable?

3. Produce the regression equation for the regression you ran in response to Question 2.

4. Choose a discrete variable of interest that may be related to the same dependent variable you used for Question 2. Create
one or more dummy variables from this variable (if it has only two categories, you can create only on dummy variable; if it
has more than two categories, you may be able to create more than one dummy variable, but be sure you have left out at
least one largeish category which will be the excluded category with no corresponding dummy variable). Using the Recode
into Different function, create your dummy variable or variables. Run descriptive statistics on your new dummy variable or
variables and explain what they show.

5. Run a regression with the two continuous variables from Question 2, the two dummy variables from Question 4, and one
additional dummy or continuous variable as your independent variables and the same dependent variable as in Question 2.

6. Be sure to produce collinearity diagnostics. Answer the following questions:

Are there any collinearity problems with your regression? How do you know?

What is the significance of the entire regression?

What is the strength of the entire regression?

How much of the variance in your dependent variable is explained by the two independent variables combined?
For each independent variable'*':

O O O O o

= What is the significance of that variable’s relationship with the dependent variable?

= What is the strength of that variable’s relationship with the dependent variable?

= What is the direction of that variable’s relationship with the dependent variable?

= What is the actual numerical effect that an increase of one in that variable would have on the dependent variable?

o Which independent variable has the strongest relationship with the dependent variable?
7. Produce the regression equation for the regression that you ran in response to Question 6.
8. Compare the R? for the regression you ran in response to Question 2 and the regression you ran in response to Question 6.

Which one explains more of the variance in your dependent variable? How much more? Is the difference large enough to
conclude that adding more additional variables helped explain more?

Media Attributions

o collinearity diagnostics menu © IBM SPSS is licensed under a All Rights Reserved license
o multivariate reg 1 © IBM SPSS is licensed under a All Rights Reserved license

o recode sex dummy © IBM SPSS is licensed under a All Rights Reserved license

e multivariate reg 2 © IBM SPSS is licensed under a All Rights Reserved license

e multivariate reg 3 © IBM SPSS is licensed under a All Rights Reserved license

o mplwp_logistic function © Geek3 is licensed under a CC BY (Attribution) license

1. Occupational prestige is a score assigned to each occupation. The score has been determined by administering a prior survey in
which respondents were asked to rank the prestige of various occupations; these rankings were consolidated into scores. Census

@ 0 g @ 3.9.12 https://stats.libretexts.org/@go/page/37552



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/37552?pdf
https://www.ibm.com/spss
https://choosealicense.com/no-license
https://www.ibm.com/spss
https://choosealicense.com/no-license
https://www.ibm.com/spss
https://choosealicense.com/no-license
https://www.ibm.com/spss
https://choosealicense.com/no-license
https://www.ibm.com/spss
https://choosealicense.com/no-license
https://commons.wikimedia.org/wiki/User:Geek3

LibreTextsw

occupational codes were used to assign scores of related occupations to those that had not been asked about in the original
survey. <

2. In the 2021 General Social Survey dataset, occupational prestige score ranges from 16 to 80 with a median of 47. «

3. Be sure to pay attention to the difference between dummy variables and continuous variables in interpreting your results. <

This page titled 3.9: Quantitative Analysis with SPSS- Multivariate Regression is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Mikaila Mariel Lemonik Arthur via source content that was edited to the style and standards of the LibreTexts
platform.
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