
3.7.1 https://stats.libretexts.org/@go/page/8109

3.7: Storing Many Numbers As a Vector
At this point we’ve covered functions in enough detail to get us safely through the next couple of chapters (with one small
exception: see Section 4.11, so let’s return to our discussion of variables. When I introduced variables in Section3.4 I showed you
how we can use variables to store a single number. In this section, we’ll extend this idea and look at how to store multiple numbers
within the one variable. In R, the name for a variable that can store multiple values is a vector. So let’s create one.

3.7.1 Creating a vector
Let’s stick to my silly “get rich quick by textbook writing” example. Suppose the textbook company (if I actually had one, that is)
sends me sales data on a monthly basis. Since my class start in late February, we might expect most of the sales to occur towards
the start of the year. Let’s suppose that I have 100 sales in February, 200 sales in March and 50 sales in April, and no other sales for
the rest of the year. What I would like to do is have a variable – let’s call it sales.by.month – that stores all this sales data.
The first number stored should be 0 since I had no sales in January, the second should be 100 , and so on. The simplest way to
do this in R is to use the combine function, c() . To do so, all we have to do is type all the numbers you want to store in a
comma separated list, like this:

sales.by.month <c(0, 100, 200, 50, 0, 0, 0, 0, 0, 0, 0, 0)
sales.by.month

[1] 0 100 200 50 0 0 0 0 0 0 0 0

To use the correct terminology here, we have a single variable here called sales.by.month : this variable is a vector that
consists of 12 elements.

3.7.2 handy digression

Now that we’ve learned how to put information into a vector, the next thing to understand is how to pull that information back out
again. However, before I do so it’s worth taking a slight detour. If you’ve been following along, typing all the commands into R
yourself, it’s possible that the output that you saw when we printed out the sales.by.month vector was slightly different to
what I showed above. This would have happened if the window (or the RStudio panel) that contains the R console is really, really
narrow. If that were the case, you might have seen output that looks something like this:

sales.by.month

[1] 0 100 200 50 0 0 0 0 0 0 0 0

Because there wasn’t much room on the screen, R has printed out the results over two lines. But that’s not the important thing to
notice. The important point is that the first line has a [1] in front of it, whereas the second line starts with [9] . It’s pretty
clear what’s happening here. For the first row, R has printed out the 1st element through to the 8th element, so it starts that row with
a [1] . For the second row, R has printed out the 9th element of the vector through to the 12th one, and so it begins that row with
a [9] so that you can tell where it’s up to at a glance. It might seem a bit odd to you that R does this, but in some ways it’s a
kindness, especially when dealing with larger data sets!

3.7.3 Getting information out of vectors

To get back to the main story, let’s consider the problem of how to get information out of a vector. At this point, you might have a
sneaking suspicion that the answer has something to do with the [1] and [9] things that R has been printing out. And of
course you are correct. Suppose I want to pull out the February sales data only. February is the second month of the year, so let’s
try this:

sales.by.month[2]

35

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8109?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)/03%3A_Getting_Started_with_R/3.07%3A_Storing_Many_Numbers_As_a_Vector

3.7.2 https://stats.libretexts.org/@go/page/8109

[1] 100

Yep, that’s the February sales all right. But there’s a subtle detail to be aware of here: notice that R outputs [1] 100 , not
[2] 100 . This is because R is being extremely literal. When we typed in sales.by.month[2] , we asked R to find

exactly one thing, and that one thing happens to be the second element of our sales.by.month vector. So, when it outputs
[1] 100 what R is saying is that the first number that we just asked for is 100 . This behaviour makes more sense when you

realise that we can use this trick to create new variables. For example, I could create a february.sales variable like this:

february.sales <sales.by.month[2]
february.sales

[1] 100

Obviously, the new variable february.sales should only have one element and so when I print it out this new variable, the
R output begins with a [1] because 100 is the value of the first (and only) element of february.sales . The fact that
this also happens to be the value of the second element of sales.by.month is irrelevant. We’ll pick this topic up again
shortly (Section3.10.

3.7.4 Altering the elements of a vector

Sometimes you’ll want to change the values stored in a vector. Imagine my surprise when the publisher rings me up to tell me that
the sales data for May are wrong. There were actually an additional 25 books sold in May, but there was an error or something so
they hadn’t told me about it. How can I fix my sales.by.month variable? One possibility would be to assign the whole
vector again from the beginning, using c() . But that’s a lot of typing. Also, it’s a little wasteful: why should R have to redefine
the sales figures for all 12 months, when only the 5th one is wrong? Fortunately, we can tell R to change only the 5th element,
using this trick:

sales.by.month[5] <25
sales.by.month

[1] 0 100 200 50 25 0 0 0 0 0 0 0

Another way to edit variables is to use the edit() or fix() functions. I won’t discuss them in detail right now, but you can
check them out on your own.

3.7.5 Useful things to know about vectors

Before moving on, I want to mention a couple of other things about vectors. Firstly, you often find yourself wanting to know how
many elements there are in a vector (usually because you’ve forgotten). You can use the length() function to do this. It’s
quite straightforward:

length(x = sales.by.month)

[1] 12

Secondly, you often want to alter all of the elements of a vector at once. For instance, suppose I wanted to figure out how much
money I made in each month. Since I’m earning an exciting $7 per book (no seriously, that’s actually pretty close to what authors
get on the very expensive textbooks that you’re expected to purchase), what I want to do is multiply each element in the
sales.by.month vector by 7 . R makes this pretty easy, as the following example shows:

sales.by.month * 7

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8109?pdf

3.7.3 https://stats.libretexts.org/@go/page/8109

[1] 0 700 1400 350 175 0 0 0 0 0 0 0

In other words, when you multiply a vector by a single number, all elements in the vector get multiplied. The same is true for
addition, subtraction, division and taking powers. So that’s neat. On the other hand, suppose I wanted to know how much money I
was making per day, rather than per month. Since not every month has the same number of days, I need to do something slightly
different. Firstly, I’ll create two new vectors:

days.per.month <c(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
profit <sales.by.month * 7

Obviously, the profit variable is the same one we created earlier, and the days.per.month variable is pretty
straightforward. What I want to do is divide every element of profit by the corresponding element of days.per.month .
Again, R makes this pretty easy:

profit / days.per.month

[1] 0.000000 25.000000 45.161290 11.666667 5.645161 0.000000 0.000000
[8] 0.000000 0.000000 0.000000 0.000000 0.000000

I still don’t like all those zeros, but that’s not what matters here. Notice that the second element of the output is 25, because R has
divided the second element of profit (i.e. 700) by the second element of days.per.month (i.e. 28). Similarly, the third
element of the output is equal to 1400 divided by 31, and so on. We’ll talk more about calculations involving vectors later on (and
in particular a thing called the “recycling rule”; Section 7.12.2, but that’s enough detail for now.

This page titled 3.7: Storing Many Numbers As a Vector is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8109?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)/03%3A_Getting_Started_with_R/3.07%3A_Storing_Many_Numbers_As_a_Vector
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/

