
6.1.1 https://stats.libretexts.org/@go/page/3972

6.1: An Overview of R Graphics
Reduced to its simplest form, you can think of an R graphic as being much like a painting. You start out with an empty canvas.
Every time you use a graphics function, it paints some new things onto your canvas. Later on, you can paint more things over the
top if you want; but just like painting, you can’t “undo” your strokes. If you make a mistake, you have to throw away your painting
and start over. Fortunately, this is way more easy to do when using R than it is when painting a picture in real life: you delete the
plot and then type a new set of commands. This way of thinking about drawing graphs is referred to as the painter’s model. So
far, this probably doesn’t sound particularly complicated, and for the vast majority of graphs you’ll want to draw it’s exactly as
simple as it sounds. Much like painting in real life, the headaches usually start when we dig into details. To see why, I’ll expand
this “painting metaphor” a bit further just to show you the basics of what’s going on under the hood, but before I do I want to stress
that you really don’t need to understand all these complexities in order to draw graphs. I’d been using R for years before I even
realised that most of these issues existed! However, I don’t want you to go through the same pain I went through every time I
inadvertently discovered one of these things, so here’s a quick overview.

Firstly, if you want to paint a picture, you need to paint it on something. In real life, you can paint on lots of different things.
Painting onto canvas isn’t the same as painting onto paper, and neither one is the same as painting on a wall. In R, the thing that
you paint your graphic onto is called a device. For most applications that we’ll look at in this book, this “device” will be a window
on your computer. If you’re using Windows as your operating system, then the name for this device is windows ; on a Mac it’s
called quartz because that’s the name of the software that the Mac OS uses to draw pretty pictures; and on Linux/Unix, you’re
probably using X11 . On the other hand, if you’re using Rstudio (regardless of which operating system you’re on), there’s a
separate device called RStudioGD that forces R to paint inside the “plots” panel in Rstudio. However, from the computers
perspective there’s nothing terribly special about drawing pictures on screen: and so R is quite happy to paint pictures directly into
a file. R can paint several different types of image files: jpeg , png , pdf , postscript , tiff and bmp files are
all among the options that you have available to you. For the most part, these different devices all behave the same way, so you
don’t really need to know much about the differences between them when learning how to draw pictures. But, just like real life
painting, sometimes the specifics do matter. Unless stated otherwise, you can assume that I’m drawing a picture on screen, using
the appropriate device (i.e., windows , quartz , X11 or RStudioGD). One the rare occasions where these behave
differently from one another, I’ll try to point it out in the text.

Secondly, when you paint a picture you need to paint it with something. Maybe you want to do an oil painting, but maybe you want
to use watercolour. And, generally speaking, you pretty much have to pick one or the other. The analog to this in R is a “graphics
system”. A graphics system defines a collection of very low-level graphics commands about what to draw and where to draw it.
Something that surprises most new R users is the discovery that R actually has two completely independent graphics systems,
known as traditional graphics (in the graphics package) and grid graphics (in the grid package). Not surprisingly, the
traditional graphics system is the older of the two: in fact, it’s actually older than R since it has it’s origins in S, the system from
which R is descended. Grid graphics are newer, and in some respects more powerful, so many of the more recent, fancier graphical
tools in R make use of grid graphics. However, grid graphics are somewhat more complicated beasts, so most people start out by
learning the traditional graphics system. Nevertheless, as long as you don’t want to use any low-level commands yourself, then you
don’t really need to care about whether you’re using traditional graphics or grid graphics. However, the moment you do want to
tweak your figure by using some low-level commands you do need to care. Because these two different systems are pretty much
incompatible with each other, there’s a pretty big divide in R graphics universe. Unless stated otherwise, you can assume that
everything I’m saying pertains to traditional graphics.

Thirdly, a painting is usually done in a particular style. Maybe it’s a still life, maybe it’s an impressionist piece, or maybe you’re
trying to annoy me by pretending that cubism is a legitimate artistic style. Regardless, each artistic style imposes some overarching
aesthetic and perhaps even constraints on what can (or should) be painted using that style. In the same vein, R has quite a number
of different packages, each of which provide a collection of high-level graphics commands. A single high-level command is
capable of drawing an entire graph, complete with a range of customisation options. Most but not all of the high-level commands
that I’ll talk about in this book come from the graphics package itself, and so belong to the world of traditional graphics.
These commands all tend to share a common visual style, although there are a few graphics that I’ll use that come from other
packages that differ in style somewhat. On the other side of the great divide, the grid universe relies heavily on two different
packages – lattice and ggplots2 – each of which provides a quite different visual style. As you’ve probably guessed,
there’s a whole separate bunch of functions that you’d need to learn if you want to use lattice graphics or make use of the
ggplots2 . However, for the purposes of this book I’ll restrict myself to talking about the basic graphics tools.

88

89

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/3972?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)/06%3A_Drawing_Graphs/6.01%3A_An_Overview_of_R_Graphics

6.1.2 https://stats.libretexts.org/@go/page/3972

At this point, I think we’ve covered more than enough background material. The point that I’m trying to make by providing this
discussion isn’t to scare you with all these horrible details, but rather to try to convey to you the fact that R doesn’t really provide a
single coherent graphics system. Instead, R itself provides a platform, and different people have built different graphical tools using
that platform. As a consequence of this fact, there’s two different universes of graphics, and a great multitude of packages that live
in them. At this stage you don’t need to understand these complexities, but it’s useful to know that they’re there. But for now, I
think we can be happy with a simpler view of things: we’ll draw pictures on screen using the traditional graphics system, and as
much as possible we’ll stick to high level commands only.

So let’s start painting.

This page titled 6.1: An Overview of R Graphics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/3972?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)/06%3A_Drawing_Graphs/6.01%3A_An_Overview_of_R_Graphics
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/

