LibreTextsw

4.2: Installing and Loading Packages

In this section I discuss R packages, since almost all of the functions you might want to use in R come in packages. A package is
basically just a big collection of functions, data sets and other R objects that are all grouped together under a common name. Some
packages are already installed when you put R on your computer, but the vast majority of them of R packages are out there on the
internet, waiting for you to download, install and use them.

When I first started writing this book, Rstudio didn’t really exist as a viable option for using R, and as a consequence I wrote a very
lengthy section that explained how to do package management using raw R commands. It’s not actually terribly hard to work with
packages that way, but it’s clunky and unpleasant. Fortunately, we don’t have to do things that way anymore. In this section, I’1l
describe how to work with packages using the Rstudio tools, because they’re so much simpler. Along the way, you’ll see that
whenever you get Rstudio to do something (e.g., install a package), you’ll actually see the R commands that get created. I'll explain
them as we go, because I think that helps you understand what’s going on.

However, before we get started, there’s a critical distinction that you need to understand, which is the difference between having a
package installed on your computer, and having a package loaded in R. As of this writing, there are just over 5000 R packages
freely available “out there” on the internet.*2 When you install R on your computer, you don’t get all of them: only about 30 or so
come bundled with the basic R installation. So right now there are about 30 packages “installed” on your computer, and another
5000 or so that are not installed. So that’s what installed means: it means “it’s on your computer somewhere”. The critical thing to
remember is that just because something is on your computer doesn’t mean R can use it. In order for R to be able to use one of your
30 or so installed packages, that package must also be “loaded”. Generally, when you open up R, only a few of these packages
(about 7 or 8) are actually loaded. Basically what it boils down to is this:

A package must be installed before it can be loaded.
A package must be loaded before it can be used.
This two step process might seem a little odd at first, but the designers of R had very good reasons to do it this way,*> and you get

the hang of it pretty quickly.

4.2.1 package panel in Rstudio
Files Plots Packages Help Viewer -]
©1 Install Packages @ Check for Updates -

Data to accompany Applied Linear

C ald Regression 3rd edition 2.0.5
Computation of Bayes factors for

« BayesFactor common designs 0.9.5

[] bitops Bitwise Operations 1.0-6

- Bootstrap Functions (originally by _

O boot Angelo Canty for S) e

1 brew Templating Framework for Report 1.0-6

. Generation :

~ car Companion to Applied Regression 2.0-19

P: PP 9

[class Functions for Classification 7.3-9

A cliss ;leuster Analysis Extended Rousseeuw et 1.14.4

& coda Sllétlazt analysis and diagnostics for 0.16-1

[] codetools Code Analysis Tools for R 0.2-8

. Conditional Inference Procedures in a
[] coin . 1.0-23
Permutation Test Framework

[] colorspace Color Space Manipulation 1.2-2
Figure 4.1: The packages panel.

Right, lets get started. The first thing you need to do is look in the lower right hand panel in Rstudio. You’ll see a tab labelled
“Packages”. Click on the tab, and you’ll see a list of packages that looks something like Figure 4.1. Every row in the panel

@ 0 @ 4.2.1 https://stats.libretexts.org/@go/page/3959

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/3959?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)/04%3A_Additional_R_Concepts/4.02%3A_Installing_and_Loading_Packages

LibreTextsm

corresponds to a different package, and every column is a useful piece of information about that package.** Going from left to
right, here’s what each column is telling you:

e The check box on the far left column indicates whether or not the package is loaded.

e The one word of text immediately to the right of the check box is the name of the package.

o The short passage of text next to the name is a brief description of the package.

o The number next to the description tells you what version of the package you have installed.

o The little x-mark next to the version number is a button that you can push to uninstall the package from your computer (you
almost never need this).

4.2.2 Loading a package

That seems straightforward enough, so let’s try loading and unloading packades. For this example, I’ll use the foreign
package. The foreign package is a collection of tools that are very handy when R needs to interact with files that are produced
by other software packages (e.g., SPSS). It comes bundled with R, so it’s one of the ones that you have installed already, but it
won’t be one of the ones loaded. Inside the Toreign package is a function called read.spss() .It’s a handy little function
that you can use to import an SPSS data file into R, so let’s pretend we want to use it. Currently, the foreign package isn’t
loaded, so if I ask R to tell me if it knows about a function called read.spss() ittells me that there’s no such thing...

I exists("read.spss")

I ## [1] FALSE

Now let’s load the package. In Rstudio, the process is dead simple: go to the package tab, find the entry for the foreign
package, and check the box on the left hand side. The moment that you do this, you’ll see a command like this appear in the R
console:

I library("foreign", lib.loc="/Library/Frameworks/R.framework/Versions/3.0/Resources/1:

The 1ib.loc bit will look slightly different on Macs versus on Windows, because that part of the command is just Rstudio
telling R where to look to find the installed packages. What I’ve shown you above is the Mac version. On a Windows machine,
you’ll probably see something that looks like this:

I library("foreign", lib.loc="C:/Program Files/R/R-3.0.2/1library")

But actually it doesn’t matter much. The 1ib.loc bitis almost always unnecessary. Unless you’ve taken to installing packages
in idiosyncratic places (which is something that you can do if you really want) R already knows where to look. So in the vast
majority of cases, the command to load the Toreign package is just this:

I library("foreign")

Throughout this book, you’ll often see me typing in library() commands. You don’t actually have to type them in yourself:

you can use the Rstudio package panel to do all your package loading for you. The only reason I include the library()

commands sometimes is as a reminder to you to make sure that you have the relevant package loaded. Oh, and I suppose we should

check to see if our attempt to load the package actually worked. Let’s see if R now knows about the existence of the
read.spss() function...

I exists("read.spss")

I ## [1] TRUE

Yep. All good.

@ 0 @ 4.2.2 https://stats.libretexts.org/@go/page/3959

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/3959?pdf

LibreTextsm

4.2.3 Unloading a package

Sometimes, especially after a long session of working with R, you find yourself wanting to get rid of some of those packages that
you’ve loaded. The Rstudio package panel makes this exactly as easy as loading the package in the first place. Find the entry
corresponding to the package you want to unload, and uncheck the box. When you do that for the foreign package, you’ll see
this command appear on screen:

I detach("package:foreign", unload=TRUE)

And the package is unloaded. We can verify this by seeing if the read.spss() functionstill exists() :

I exists("read.spss")

I ## [1] FALSE

Nope. Definitely gone.

4.2.4 extra comments

Sections 4.2.2 and 4.2.3 cover the main things you need to know about loading and unloading packages. However, there’s a couple
of other details that I want to draw your attention to. A concrete example is the best way to illustrate. One of the other packages
that you already have installed on your computer is the Matrix package, so let’s load that one and see what happens:

library(Matrix)

Loading required package: lattice

This is slightly more complex than the output that we got last time, but it’s not too complicated. The Matrix package makes
use of some of the tools in the lattice package, and R has kept track of this dependency. So when you try to load the

Matrix package, R recognises that you’re also going to need to have the lattice package loaded too. As a consequence,
both packages get loaded, and R prints out a helpful little note on screen to tell you that it’s done so.

R is pretty aggressive about enforcing these dependencies. Suppose, for example, I try to unload the lattice package while
the Matrix package is still loaded. This is easy enough to try: all T have to do is uncheck the box next to “lattice” in the
packages panel. But if I try this, here’s what happens:

detach("package:lattice", unload=TRUE)

Error: package "lattice' is required by "Matrix' so will not be detached

R refuses to do it. This can be quite useful, since it stops you from accidentally removing something that you still need. So, if I
want to remove both Matrix and lattice ,Ineed to do itin the correct order

Something else you should be aware of. Sometimes you’ll attempt to load a package, and R will print out a message on screen
telling you that something or other has been “masked”. This will be confusing to you if I don’t explain it now, and it actually ties
very closely to the whole reason why R forces you to load packages separately from installing them. Here’s an example. Two of the
package that I’ll refer to a lot in this book are called car and psych . The car package is short for “Companion to
Applied Regression” (which is a really great book, I’ll add), and it has a lot of tools that I’'m quite fond of. The car package was
written by a guy called John Fox, who has written a lot of great statistical tools for social science applications. The psych

package was written by William Revelle, and it has a lot of functions that are very useful for psychologists in particular, especially
in regards to psychometric techniques. For the most part, car and psych are quite unrelated to each other. They do different
things, so not surprisingly almost all of the function names are different. But... there’s one exception to that. The car package
and the psych package both contain a function called 1ogit () .45 This creates a naming conflict. If I load both packages
into R, an ambiguity is created. If the user types in 1ogit(100) , should R use the logit() function in the car

@ 0 @ 4.2.3 https://stats.libretexts.org/@go/page/3959

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/3959?pdf

LibreTextsw

package, or the one in the psych package? The answer is: R uses whichever package you loaded most recently, and it tells you
this very explicitly. Here’s what happens when I load the car package, and then afterwards load the psych package:

library(car)

Loading required package: carData

library(psych)

| ##

Attaching package: 'psych'

The following object is masked from 'package:car':
##
#i logit

The output here is telling you that the logit object (i.e., function) in the car package is no longer accessible to you. It’s
been hidden (or “masked”) from you by the one in the psych package.*

4.2.5 Downloading new packages

One of the main selling points for R is that there are thousands of packages that have been written for it, and these are all available
online. So whereabouts online are these packages to be found, and how do we download and install them? There is a big repository
of packages called the “Comprehensive R Archive Network” (CRAN), and the easiest way of getting and installing a new package
is from one of the many CRAN mirror sites. Conveniently for us, R provides a function called install.packages() that
you can use to do this. Even more conveniently, the Rstudio team runs its own CRAN mirror and Rstudio has a clean interface that
lets you install packages without having to learn how to use the install.packages() command®

Using the Rstudio tools is, again, dead simple. In the top left hand corner of the packages panel (Figure 4.1) you’ll see a button
called “Install Packages”. If you click on that, it will bring up a window like the one shown in Figure 4.2.

Install Packages

Install from: ? Configuring Repositories
| Repository (CRAN) 3|

Packages (separate multiple with space or comma):
I |

Install to Library:

| /Library/Frameworks/R.framework/Versions/3.0/Resources; * |

W Install dependencies

| Install | Cancel

Figure 4.2: The package installation dialog box in Rstudio

There are a few different buttons and boxes you can play with. Ignore most of them. Just go to the line that says “Packages” and
start typing the name of the package that you want. As you type, you’ll see a dropdown menu appear (Figure 4.3), listing names of
packages that start with the letters that you’ve typed so far.

@ 0 @ 4.2.4 https://stats.libretexts.org/@go/page/3959

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/3959?pdf

LibreTextsm

Install Packages

Install from: ? Configuring Repositories
| Repository (CRAN) =

Packages (separate multiple with space or comma):
|psyc

psych

psychometric orks/R.framework/Versions/3.0/Resources; %
psychomix
psychotools |encies

psychotree

| Install I Cancel
|

Figure 4.3: When you start typing, you’ll see a dropdown menu suggest a list of possible packages that you might want to install

You can select from this list, or just keep typing. Either way, once you’ve got the package name that you want, click on the install
button at the bottom of the window. When you do, you’ll see the following command appear in the R console:

I install.packages('"psych")

This is the R command that does all the work. R then goes off to the internet, has a conversation with CRAN, downloads some
stuff, and installs it on your computer. You probably don’t care about all the details of R’s little adventure on the web, but the
install.packages() function is rather chatty, so it reports a bunch of gibberish that you really aren’t all that interested in:

trying URL 'http://cran.rstudio.com/bin/macosx/contrib/3.0/psych_1.4.1.tgz'
Content type 'application/x-gzip' length 2737873 bytes (2.6 Mb)
opened URL

downloaded 2.6 Mb

The downloaded binary packages are in
/var/folders/cl/thhsyrz53g73q0wlkb5z31_80000gn/T//RtmpmQOVT3/downloaded_packages

Despite the long and tedious response, all thar really means is “I’ve installed the psych package”. I find it best to humour the
talkative little automaton. I don’t actually read any of this garbage, I just politely say “thanks” and go back to whatever I was
doing.

4.2.6 Updating R and R packages

Every now and then the authors of packages release updated versions. The updated versions often add new functionality, fix bugs,
and so on. It’s generally a good idea to update your packages periodically. There’s an update.packages() function that you
can use to do this, but it’s probably easier to stick with the Rstudio tool. In the packages panel, click on the “Update Packages”
button. This will bring up a window that looks like the one shown in Figure 4.4. In this window, each row refers to a package that
needs to be updated. You can to tell R which updates you want to install by checking the boxes on the left. If you’re feeling lazy
and just want to update everything, click the “Select All” button, and then click the “Install Updates” button. R then prints out a lot
of garbage on the screen, individually downloading and installing all the new packages. This might take a while to complete
depending on how good your internet connection is. Go make a cup of coffee. Come back, and all will be well.

@ 0 @ 4.2.5 https://stats.libretexts.org/@go/page/3959

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/3959?pdf

LibreTextsw

Update Packages

[lattice 0.20-23 0.20-24 El
[lavaan 0.5-14 0.5-15 B
[Ime4 1.0-4 1.0-5 |
[] Imtest 0.9-32 0.9-33 Bl
[| mapproj 1.2-1 1.2-2 =
[maps 2.3-3 2.3-6 =
[maptools 0.8-26 0.8-27 =
[markdown 0.6.3 0.6.4 B
(] Matrix 1.0-14 1.1-2 E
() mgev 1.7-26 1.7-28 |
= i 191 190

Select All Select None Cancel

Figure 4.4: The Rstudio dialog box for updating packages

About every six months or so, a new version of R is released. You can’t update R from within Rstudio (not to my knowledge, at
least): to get the new version you can go to the CRAN website and download the most recent version of R, and install it in the same
way you did when you originally installed R on your computer. This used to be a slightly frustrating event, because whenever you
downloaded the new version of R, you would lose all the packages that you’d downloaded and installed, and would have to repeat
the process of re-installing them. This was pretty annoying, and there were some neat tricks you could use to get around this.
However, newer versions of R don’t have this problem so I no longer bother explaining the workarounds for that issue.

4.2.7 What packages does this book use?
There are several packages that I make use of in this book. The most prominent ones are:

o lot of interesting high-powered tools: it’s just a small collection of handy little things that I think can be useful to novice users.
As you get more comfortable with R this package should start to feel pretty useless to you.

e psych . This package, written by William Revelle, includes a lot of tools that are of particular use to psychologists. In
particular, there’s several functions that are particularly convenient for producing analyses or summaries that are very common
in psych, but less common in other disciplines.

e car .Thisis the Companion to Applied Regression package, which accompanies the excellent book of the same name by
(Fox and Weisberg 2011). It provides a lot of very powerful tools, only some of which we’ll touch in this book.

Besides these three, there are a number of packages that I use in a more limited fashion: gplots , sciplot , foreign,
effects , R.matlab , gdata , Imtest , and probably one or two others that I’ve missed. There are also a number of
packages that I refer to but don’t actually use in this book, such as reshape , compute.es , HistData and
multcomp among others. Finally, there are a number of packages that provide more advanced tools that I hope to talk about in
future versions of the book, suchas sem , ez , nlme and lme4 .In any case, whenever I’m using a function that isn’t in
the core packages, I’ll make sure to note this in the text.

This page titled 4.2: Installing and Loading Packages is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.

@ 0 @ 4.2.6 https://stats.libretexts.org/@go/page/3959

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/3959?pdf
https://bookdown.org/ekothe/navarro26/mechanics.html#ref-Fox2011
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)/04%3A_Additional_R_Concepts/4.02%3A_Installing_and_Loading_Packages
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/

