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9.6: Other Useful Distributions

The normal distribution is the distribution that statistics makes most use of (for reasons to be discussed shortly), and the binomial
distribution is a very useful one for lots of purposes. But the world of statistics is filled with probability distributions, some of
which we’ll run into in passing. In particular, the three that will appear in this book are the t distribution, the ¥ distribution and the
F distribution. I won’t give formulas for any of these, or talk about them in too much detail, but I will show you some pictures.
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Figure 9.13: A t distribution with 3 degrees of freedom (solid line). It looks similar to a normal distribution, but it’s not quite the
same. For comparison purposes, I’ve plotted a standard normal distribution as the dashed line. Note that the “tails” of the t
distribution are “heavier” (i.e., extend further outwards) than the tails of the normal distribution? That’s the important difference

between the two.
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Figure 9.14: A chi? distribution with 3 degrees of freedom. Notice that the observed values must always be greater than zero, and
that the distribution is pretty skewed. These are the key features of a chi-square distribution.
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Figure 9.15: An F distribution with 3 and 5 degrees of freedom. Qualitatively speaking, it looks pretty similar to a chi-square
distribution, but they’re not quite the same in general.

o The tdistribution is a continuous distribution that looks very similar to a normal distribution, but has heavier tails: see Figure
9.13. This distribution tends to arise in situations where you think that the data actually follow a normal distribution, but you
don’t know the mean or standard deviation. As you might expect, the relevant R functions are dt() , pt() , gt() and

rt() ,and we’ll run into this distribution again in Chapter 13.

o The x? distribution is another distribution that turns up in lots of different places. The situation in which we’ll see it is when
doing categorical data analysis (Chapter 12), but it’s one of those things that actually pops up all over the place. When you dig
into the maths (and who doesn’t love doing that?), it turns out that the main reason why the x2 distribution turns up all over the
place is that, if you have a bunch of variables that are normally distributed, square their values and then add them up (a
procedure referred to as taking a “sum of squares™), this sum has a x? distribution. You’d be amazed how often this fact turns
out to be useful. Anyway, here’s what a x2 distribution looks like: Figure 9.14. Once again, the R commands for this one are
pretty predictable: dchisq() , pchisq() , gchisq() , rchisqg() .

o The F distribution looks a bit like a x? distribution, and it arises whenever you need to compare two x? distributions to one
another. Admittedly, this doesn’t exactly sound like something that any sane person would want to do, but it turns out to be very
important in real world data analysis. Remember when I said that y? turns out to be the key distribution when we’re taking a
“sum of squares”? Well, what that means is if you want to compare two different “sums of squares”, you’re probably talking
about something that has an F distribution. Of course, as yet I still haven’t given you an example of anything that involves a
sum of squares, but I will... in Chapter 14. And that’s where we’ll run into the F distribution. Oh, and here’s a picture: Figure
9.15. And of course we can get R to do things with F distributions just by using the commands df () , pf() , gf() and

rf() .

Because these distributions are all tightly related to the normal distribution and to each other, and because they are will turn out to
be the important distributions when doing inferential statistics later in this book, I think it’s useful to do a little demonstration using
R, just to “convince ourselves” that these distributions really are related to each other in the way that they’re supposed to be. First,
we’ll use the rnorm( ) function to generate 1000 normally-distributed observations:

normal.a <- rnorm( n=1000, mean=0, sd=1 )
print (head(normal.a))

I ## [1] -0.4728528 -0.4483396 -0.5134192 2.1540478 -0.5104661 0.3013308

Sothe normal.a wvariable contains 1000 numbers that are normally distributed, and have mean 0 and standard deviation 1, and
the actual print out of these numbers goes on for rather a long time. Note that, because the default parameters of the rnorm()
function are mean=0 and sd=1 , I could have shortened the command to rnorm( n=1000 ) .In any case, what we can
doisusethe hist() function to draw a histogram of the data, like so:
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I hist( normal.a )

Histogram of normal.a
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If you do this, you should see something similar to Figure ??. Your plot won’t look quite as pretty as the one in the figure, of
course, because I’ve played around with all the formatting (see Chapter 6), and I’ve also plotted the true distribution of the data as a
solid black line (i.e., a normal distribution with mean 0 and standard deviation 1) so that you can compare the data that we just

generated to the true distribution.

Simulated Normal Data
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Simulated Chi-Square Data
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In the previous example all T did was generate lots of normally distributed observations using rnorm( ) and then compared
those to the true probability distribution in the figure (using dnorm( ) to generate the black line in the figure, but I didn’t show
the commmands for that). Now let’s try something trickier. We’ll try to generate some observations that follow a chi-square
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distribution with 3 degrees of freedom, but instead of using rchisq( ) , we’ll start with variables that are normally distributed,
and see if we can exploit the known relationships between normal and chi-square distributions to do the work. As I mentioned
earlier, a chi-square distribution with k degrees of freedom is what you get when you take k normally-distributed variables (with
mean 0 and standard deviation 1), square them, and add them up. Since we want a chi-square distribution with 3 degrees of
freedom, we’ll need to supplement our normal.a data with two more sets of normally-distributed observations, imaginatively
named normal.b and normal.c :

normal.b <- rnorm( n=1000 ) # another set of normally distributed data
normal.c <- rnorm( n=1000 ) # and another!

Now that we’ve done that, the theory says we should square these and add them together, like this

I chi.sq.3 <- (normal.a)”2 + (normal.b)”A2 + (normal.c)/2

and the resulting chi.sq.3 variable should contain 1000 observations that follow a chi-square distribution with 3 degrees of
freedom. You can use the hist () function to have alook at these observations yourself, using a command like this,

I hist( chi.sq.3 )

Histogram of chi.sq.3
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and you should obtain a result that looks pretty similar to the chi-square plot in Figure ??. Once again, the plot that I’ve drawn is a
little fancier: in addition to the histogram of chi.sq.3 , I’ve also plotted a chi-square distribution with 3 degrees of freedom.
It’s pretty clear that — even though Tused rnorm( ) to do all the work rather than rchisq() - the observations stored in the

chi.sq.3 variable really do follow a chi-square distribution. Admittedly, this probably doesn’t seem all that interesting right
now, but later on when we start encountering the chi-square distribution in Chapter 12, it will be useful to understand the fact that
these distributions are related to one another.

We can extend this demonstration to the t distribution and the F distribution. Earlier, I implied that the t distribution is related to the
normal distribution when the standard deviation is unknown. That’s certainly true, and that’s the what we’ll see later on in Chapter
13, but there’s a somewhat more precise relationship between the normal, chi-square and t distributions. Suppose we “scale” our
chi-square data by dividing it by the degrees of freedom, like so

I scaled.chi.sq.3 <- chi.sq.3 / 3
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We then take a set of normally distributed variables and divide them by (the square root of) our scaled chi-square variable which
had df=3, and the result is a t distribution with 3 degrees of freedom:

normal.d <- rnorm( n=1000 ) # yet another set of normally distributed data
t.3 <- normal.d / sqrt( scaled.chi.sq.3 ) # divide by square root of scaled chi-squ:

If we plot the histogram of .3 , we end up with something that looks very similar to the t distribution in Figure ??. Similarly,
we can obtain an F distribution by taking the ratio between two scaled chi-square distributions. Suppose, for instance, we wanted to
generate data from an F distribution with 3 and 20 degrees of freedom. We could do this using df () , but we could also do the
same thing by generating two chi-square variables, one with 3 degrees of freedom, and the other with 20 degrees of freedom. As
the example with chi.sq.3 illustrates, we can actually do this using rnorm( ) if we really want to, but this time I’ll take a
short cut:

chi.sq.20 <- rchisq( 1000, 20) # generate chi square data with df = 20...
scaled.chi.sq.20 <- chi.sq.20 / 20 # scale the chi square variable. ..

F.3.20 <- scaled.chi.sq.3 / scaled.chi.sq.20 # take the ratio of the two chi squar¢
hist( F.3.20 ) # ... and draw a picture
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The resulting F.3.20 variable does in fact store variables that follow an F distribution with 3 and 20 degrees of freedom. This
is illustrated in Figure ??, which plots the histgram of the observations stored in F.3.20 against the true F distribution with
df1=3 and df2=20. Again, they match.

Okay, time to wrap this section up. We’ve seen three new distributions: 2, t and F. They’re all continuous distributions, and they’re
all closely related to the normal distribution. I’ve talked a little bit about the precise nature of this relationship, and shown you
some R commands that illustrate this relationship. The key thing for our purposes, however, is not that you have a deep
understanding of all these different distributions, nor that you remember the precise relationships between them. The main thing is
that you grasp the basic idea that these distributions are all deeply related to one another, and to the normal distribution. Later on in
this book, we’re going to run into data that are normally distributed, or at least assumed to be normally distributed. What I want
you to understand right now is that, if you make the assumption that your data are normally distributed, you shouldn’t be surprised
to see 2, t and F distributions popping up all over the place when you start trying to do your data analysis.

This page titled 9.6: Other Useful Distributions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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