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10.1: Samples, Populations and Sampling

In the prelude to Part I discussed the riddle of induction, and highlighted the fact that all learning requires you to make
assumptions. Accepting that this is true, our first task to come up with some fairly general assumptions about data that make sense.
This is where sampling theory comes in. If probability theory is the foundations upon which all statistical theory builds, sampling
theory is the frame around which you can build the rest of the house. Sampling theory plays a huge role in specifying the
assumptions upon which your statistical inferences rely. And in order to talk about “making inferences” the way statisticians think
about it, we need to be a bit more explicit about what it is that we’re drawing inferences from (the sample) and what it is that we’re
drawing inferences about (the population).

In almost every situation of interest, what we have available to us as researchers is a sample of data. We might have run experiment
with some number of participants; a polling company might have phoned some number of people to ask questions about voting
intentions; etc. Regardless: the data set available to us is finite, and incomplete. We can’t possibly get every person in the world to
do our experiment; a polling company doesn’t have the time or the money to ring up every voter in the country etc. In our earlier
discussion of descriptive statistics (Chapter 5, this sample was the only thing we were interested in. Our only goal was to find ways
of describing, summarising and graphing that sample. This is about to change.

10.1.1 Defining a population

A sample is a concrete thing. You can open up a data file, and there’s the data from your sample. A population, on the other hand,
is a more abstract idea. It refers to the set of all possible people, or all possible observations, that you want to draw conclusions
about, and is generally much bigger than the sample. In an ideal world, the researcher would begin the study with a clear idea of
what the population of interest is, since the process of designing a study and testing hypotheses about the data that it produces does
depend on the population about which you want to make statements. However, that doesn’t always happen in practice: usually the
researcher has a fairly vague idea of what the population is and designs the study as best he/she can on that basis.

Sometimes it’s easy to state the population of interest. For instance, in the “polling company” example that opened the chapter, the
population consisted of all voters enrolled at the a time of the study — millions of people. The sample was a set of 1000 people who
all belong to that population. In most situations the situation is much less simple. In a typical a psychological experiment,
determining the population of interest is a bit more complicated. Suppose I run an experiment using 100 undergraduate students as
my participants. My goal, as a cognitive scientist, is to try to learn something about how the mind works. So, which of the
following would count as “the population”:

o All of the undergraduate psychology students at the University of Adelaide?

e Undergraduate psychology students in general, anywhere in the world?

e Australians currently living?

o Australians of similar ages to my sample?

¢ Anyone currently alive?

e Any human being, past, present or future?

o Any biological organism with a sufficient degree of intelligence operating in a terrestrial environment?
o Any intelligent being?

Each of these defines a real group of mind-possessing entities, all of which might be of interest to me as a cognitive scientist, and
it’s not at all clear which one ought to be the true population of interest. As another example, consider the Wellesley-Croker game
that we discussed in the prelude. The sample here is a specific sequence of 12 wins and 0 losses for Wellesley. What is the
population?

e All outcomes until Wellesley and Croker arrived at their destination?

o All outcomes if Wellesley and Croker had played the game for the rest of their lives?

o All outcomes if Wellseley and Croker lived forever and played the game until the world ran out of hills?

o All outcomes if we created an infinite set of parallel universes and the Wellesely/Croker pair made guesses about the same 12
hills in each universe?

Again, it’s not obvious what the population is.
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Figure 10.1: Simple random sampling without replacement from a finite population

Irrespective of how I define the population, the critical point is that the sample is a subset of the population, and our goal is to use
our knowledge of the sample to draw inferences about the properties of the population. The relationship between the two depends
on the procedure by which the sample was selected. This procedure is referred to as a sampling method, and it is important to
understand why it matters.

To keep things simple, let’s imagine that we have a bag containing 10 chips. Each chip has a unique letter printed on it, so we can
distinguish between the 10 chips. The chips come in two colours, black and white. This set of chips is the population of interest,
and it is depicted graphically on the left of Figure 10.1. As you can see from looking at the picture, there are 4 black chips and 6
white chips, but of course in real life we wouldn’t know that unless we looked in the bag. Now imagine you run the following
“experiment”: you shake up the bag, close your eyes, and pull out 4 chips without putting any of them back into the bag. First out
comes the a chip (black), then the c chip (white), then j (white) and then finally b (black). If you wanted, you could then put all the
chips back in the bag and repeat the experiment, as depicted on the right hand side of Figure 10.1. Each time you get different
results, but the procedure is identical in each case. The fact that the same procedure can lead to different results each time, we refer
to it as a random process.'*” However, because we shook the bag before pulling any chips out, it seems reasonable to think that
every chip has the same chance of being selected. A procedure in which every member of the population has the same chance of
being selected is called a simple random sample. The fact that we did not put the chips back in the bag after pulling them out
means that you can’t observe the same thing twice, and in such cases the observations are said to have been sampled without
replacement.

To help make sure you understand the importance of the sampling procedure, consider an alternative way in which the experiment
could have been run. Suppose that my 5-year old son had opened the bag, and decided to pull out four black chips without putting
any of them back in the bag. This biased sampling scheme is depicted in Figure 10.2. Now consider the evidentiary value of seeing
4 black chips and 0 white chips. Clearly, it depends on the sampling scheme, does it not? If you know that the sampling scheme is
biased to select only black chips, then a sample that consists of only black chips doesn’t tell you very much about the population!
For this reason, statisticians really like it when a data set can be considered a simple random sample, because it makes the data
analysis much easier.
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Figure 10.2: Biased sampling without replacement from a finite population
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Figure 10.3: Simple random sampling with replacement from a finite population

A third procedure is worth mentioning. This time around we close our eyes, shake the bag, and pull out a chip. This time, however,
we record the observation and then put the chip back in the bag. Again we close our eyes, shake the bag, and pull out a chip. We
then repeat this procedure until we have 4 chips. Data sets generated in this way are still simple random samples, but because we
put the chips back in the bag immediately after drawing them it is referred to as a sample with replacement. The difference
between this situation and the first one is that it is possible to observe the same population member multiple times, as illustrated in
Figure 10.3.

In my experience, most psychology experiments tend to be sampling without replacement, because the same person is not allowed
to participate in the experiment twice. However, most statistical theory is based on the assumption that the data arise from a simple
random sample with replacement. In real life, this very rarely matters. If the population of interest is large (e.g., has more than 10
entities!) the difference between sampling with- and without- replacement is too small to be concerned with. The difference
between simple random samples and biased samples, on the other hand, is not such an easy thing to dismiss.

10.1.2 Most samples are not simple random samples

As you can see from looking at the list of possible populations that I showed above, it is almost impossible to obtain a simple
random sample from most populations of interest. When I run experiments, I’d consider it a minor miracle if my participants turned
out to be a random sampling of the undergraduate psychology students at Adelaide university, even though this is by far the
narrowest population that I might want to generalise to. A thorough discussion of other types of sampling schemes is beyond the
scope of this book, but to give you a sense of what’s out there I’1l list a few of the more important ones:

o Stratified sampling. Suppose your population is (or can be) divided into several different subpopulations, or strata. Perhaps
you’re running a study at several different sites, for example. Instead of trying to sample randomly from the population as a
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whole, you instead try to collect a separate random sample from each of the strata. Stratified sampling is sometimes easier to do
than simple random sampling, especially when the population is already divided into the distinct strata. It can also be more
efficient that simple random sampling, especially when some of the subpopulations are rare. For instance, when studying
schizophrenia it would be much better to divide the population into two'*® strata (schizophrenic and not-schizophrenic), and
then sample an equal number of people from each group. If you selected people randomly, you would get so few schizophrenic
people in the sample that your study would be useless. This specific kind of of stratified sampling is referred to as oversampling
because it makes a deliberate attempt to over-represent rare groups.

e Snowball sampling is a technique that is especially useful when sampling from a “hidden” or hard to access population, and is
especially common in social sciences. For instance, suppose the researchers want to conduct an opinion poll among transgender
people. The research team might only have contact details for a few trans folks, so the survey starts by asking them to
participate (stage 1). At the end of the survey, the participants are asked to provide contact details for other people who might
want to participate. In stage 2, those new contacts are surveyed. The process continues until the researchers have sufficient data.
The big advantage to snowball sampling is that it gets you data in situations that might otherwise be impossible to get any. On
the statistical side, the main disadvantage is that the sample is highly non-random, and non-random in ways that are difficult to
address. On the real life side, the disadvantage is that the procedure can be unethical if not handled well, because hidden
populations are often hidden for a reason. I chose transgender people as an example here to highlight this: if you weren’t careful
you might end up outing people who don’t want to be outed (very, very bad form), and even if you don’t make that mistake it
can still be intrusive to use people’s social networks to study them. It’s certainly very hard to get people’s informed consent
before contacting them, yet in many cases the simple act of contacting them and saying “hey we want to study you” can be
hurtful. Social networks are complex things, and just because you can use them to get data doesn’t always mean you should.

o Convenience sampling is more or less what it sounds like. The samples are chosen in a way that is convenient to the researcher,
and not selected at random from the population of interest. Snowball sampling is one type of convenience sampling, but there
are many others. A common example in psychology are studies that rely on undergraduate psychology students. These samples
are generally non-random in two respects: firstly, reliance on undergraduate psychology students automatically means that your
data are restricted to a single subpopulation. Secondly, the students usually get to pick which studies they participate in, so the
sample is a self selected subset of psychology students not a randomly selected subset. In real life, most studies are convenience
samples of one form or another. This is sometimes a severe limitation, but not always.

10.1.3 much does it matter if you don’t have a simple random sample?

Okay, so real world data collection tends not to involve nice simple random samples. Does that matter? A little thought should
make it clear to you that it can matter if your data are not a simple random sample: just think about the difference between Figures
10.1 and 10.2. However, it’s not quite as bad as it sounds. Some types of biased samples are entirely unproblematic. For instance,
when using a stratified sampling technique you actually know what the bias is because you created it deliberately, often to increase
the effectiveness of your study, and there are statistical techniques that you can use to adjust for the biases you’ve introduced (not
covered in this book!). So in those situations it’s not a problem.

More generally though, it’s important to remember that random sampling is a means to an end, not the end in itself. Let’s assume
you’ve relied on a convenience sample, and as such you can assume it’s biased. A bias in your sampling method is only a problem
if it causes you to draw the wrong conclusions. When viewed from that perspective, I’d argue that we don’t need the sample to be
randomly generated in every respect: we only need it to be random with respect to the psychologically-relevant phenomenon of
interest. Suppose I’'m doing a study looking at working memory capacity. In study 1, I actually have the ability to sample randomly
from all human beings currently alive, with one exception: I can only sample people born on a Monday. In study 2, I am able to
sample randomly from the Australian population. I want to generalise my results to the population of all living humans. Which
study is better? The answer, obviously, is study 1. Why? Because we have no reason to think that being “born on a Monday” has
any interesting relationship to working memory capacity. In contrast, I can think of several reasons why “being Australian” might
matter. Australia is a wealthy, industrialised country with a very well-developed education system. People growing up in that
system will have had life experiences much more similar to the experiences of the people who designed the tests for working
memory capacity. This shared experience might easily translate into similar beliefs about how to “take a test”, a shared assumption
about how psychological experimentation works, and so on. These things might actually matter. For instance, “test taking” style
might have taught the Australian participants how to direct their attention exclusively on fairly abstract test materials relative to
people that haven’t grown up in a similar environment; leading to a misleading picture of what working memory capacity is.
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There are two points hidden in this discussion. Firstly, when designing your own studies, it’s important to think about what
population you care about, and try hard to sample in a way that is appropriate to that population. In practice, you’re usually forced
to put up with a “sample of convenience” (e.g., psychology lecturers sample psychology students because that’s the least expensive
way to collect data, and our coffers aren’t exactly overflowing with gold), but if so you should at least spend some time thinking
about what the dangers of this practice might be.

Secondly, if you’re going to criticise someone else’s study because they’ve used a sample of convenience rather than laboriously
sampling randomly from the entire human population, at least have the courtesy to offer a specific theory as to how this might have
distorted the results. Remember, everyone in science is aware of this issue, and does what they can to alleviate it. Merely pointing
out that “the study only included people from group BLAH?” is entirely unhelpful, and borders on being insulting to the researchers,
who are of course aware of the issue. They just don’t happen to be in possession of the infinite supply of time and money required
to construct the perfect sample. In short, if you want to offer a responsible critique of the sampling process, then be helpful.
Rehashing the blindingly obvious truisms that I’ve been rambling on about in this section isn’t helpful.

10.1.4 Population parameters and sample statistics

Okay. Setting aside the thorny methodological issues associated with obtaining a random sample and my rather unfortunate
tendency to rant about lazy methodological criticism, let’s consider a slightly different issue. Up to this point we have been talking
about populations the way a scientist might. To a psychologist, a population might be a group of people. To an ecologist, a
population might be a group of bears. In most cases the populations that scientists care about are concrete things that actually exist
in the real world. Statisticians, however, are a funny lot. On the one hand, they are interested in real world data and real science in
the same way that scientists are. On the other hand, they also operate in the realm of pure abstraction in the way that
mathematicians do. As a consequence, statistical theory tends to be a bit abstract in how a population is defined. In much the same
way that psychological researchers operationalise our abstract theoretical ideas in terms of concrete measurements (Section 2.1,
statisticians operationalise the concept of a “population” in terms of mathematical objects that they know how to work with.
You’ve already come across these objects in Chapter 9: they’re called probability distributions.

The idea is quite simple. Let’s say we’re talking about IQ scores. To a psychologist, the population of interest is a group of actual
humans who have IQ scores. A statistician “simplifies” this by operationally defining the population as the probability distribution
depicted in Figure ??. IQ tests are designed so that the average IQ is 100, the standard deviation of IQ scores is 15, and the
distribution of IQ scores is normal. These values are referred to as the population parameters because they are characteristics of
the entire population. That is, we say that the population mean p is 100, and the population standard deviation o is 15.

Probability Density
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Figure 10.4: The population distribution of IQ scores (panel a) and two samples drawn randomly from it. In panel b we have a
sample of 100 observations, and panel ¢ we have a sample of 10,000 observations.
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Figure 10.4: The population distribution of IQ scores (panel a) and two samples drawn randomly from it. In panel b we have a
sample of 100 observations, and panel c we have a sample of 10,000 observations.
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Figure 10.4: The population distribution of IQ scores (panel a) and two samples drawn randomly from it. In panel b we have a
sample of 100 observations, and panel ¢ we have a sample of 10,000 observations.

I ## [1] "n= 10000 mean= 100.096924966188 sd= 14.9554812898374"

Now suppose I run an experiment. I select 100 people at random and administer an IQ test, giving me a simple random sample
from the population. My sample would consist of a collection of numbers like this:

I 106 101 98 80 74 ... 107 72 100

Each of these IQ scores is sampled from a normal distribution with mean 100 and standard deviation 15. So if I plot a histogram of
the sample, I get something like the one shown in Figure 10.4b. As you can see, the histogram is roughly the right shape, but it’s a
very crude approximation to the true population distribution shown in Figure 10.4a. When I calculate the mean of my sample, I get
a number that is fairly close to the population mean 100 but not identical. In this case, it turns out that the people in my sample
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have a mean IQ of 98.5, and the standard deviation of their IQ scores is 15.9. These sample statistics are properties of my data set,
and although they are fairly similar to the true population values, they are not the same. In general, sample statistics are the things
you can calculate from your data set, and the population parameters are the things you want to learn about. Later on in this chapter
I’ll talk about how you can estimate population parameters using your sample statistics (Section 10.4 and how to work out how
confident you are in your estimates (Section 10.5 but before we get to that there’s a few more ideas in sampling theory that you
need to know about.

This page titled 10.1: Samples, Populations and Sampling is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Danielle Navarro via source content that was edited to the style and standards of the LibreTexts platform.
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