LibreTextsw

15.9: Model Checking

The main focus of this section is regression diagnostics, a term that refers to the art of checking that the assumptions of your
regression model have been met, figuring out how to fix the model if the assumptions are violated, and generally to check that
nothing “funny” is going on. I refer to this as the “art” of model checking with good reason: it’s not easy, and while there are a lot
of fairly standardised tools that you can use to diagnose and maybe even cure the problems that ail your model (if there are any,
that is!), you really do need to exercise a certain amount of judgment when doing this. It’s easy to get lost in all the details of
checking this thing or that thing, and it’s quite exhausting to try to remember what all the different things are. This has the very
nasty side effect that a lot of people get frustrated when trying to learn all the tools, so instead they decide not to do any model
checking. This is a bit of a worry!

In this section, I describe several different things you can do to check that your regression model is doing what it’s supposed to. It
doesn’t cover the full space of things you could do, but it’s still much more detailed than what I see a lot of people doing in
practice; and I don’t usually cover all of this in my intro stats class myself. However, I do think it’s important that you get a sense
of what tools are at your disposal, so I’ll try to introduce a bunch of them here. Finally, I should note that this section draws quite
heavily from the Fox and Weisberg (2011) text, the book associated with the car package. The car package is notable for
providing some excellent tools for regression diagnostics, and the book itself talks about them in an admirably clear fashion. I don’t
want to sound too gushy about it, but I do think that Fox and Weisberg (2011) is well worth reading.

15.9.1 Three kinds of residuals

The majority of regression diagnostics revolve around looking at the residuals, and by now you’ve probably formed a sufficiently
pessimistic theory of statistics to be able to guess that — precisely because of the fact that we care a lot about the residuals — there
are several different kinds of residual that we might consider. In particular, the following three kinds of residual are referred to in
this section: “ordinary residuals”, “standardised residuals”, and “Studentised residuals”. There is a fourth kind that you’ll see
referred to in some of the Figures, and that’s the “Pearson residual”: however, for the models that we’re talking about in this

chapter, the Pearson residual is identical to the ordinary residual.

The first and simplest kind of residuals that we care about are ordinary residuals. These are the actual, raw residuals that I’ve been

talking about throughout this chapter. The ordinary residual is just the difference between the fitted value 1}1 and the observed
value Y;. I’ve been using the notation €i to refer to the i-th ordinary residual, and by gum I’m going to stick to it. With this in mind,
we have the very simple equation

Gi:}’}—ﬁ

This is of course what we saw earlier, and unless I specifically refer to some other kind of residual, this is the one I’m talking
about. So there’s nothing new here: I just wanted to repeat myself. In any case, you can get R to output a vector of ordinary
residuals, you can use a command like this:

residuals(object = regression.2)

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)/15%3A_Linear_Regression/15.09%3A_Model_Checking

LibreTextsw

1 2 3 4 5 6
-2.1403095 4.7081942 1.9553640 -2.0602806 0.7194888 -0.4066133
7 8 9 10 11 12
0.2269987 -1.7003077 0.2025039 3.8524589 3.9986291 -4.9120150
13 14 15 16 17 18
1.2060134 0.4946578 -2.6579276 -0.3966805 3.3538613 1.7261225
19 20 21 22 23 24
-0.4922551 -5.6405941 -0.4660764 2.7238389 9.3653697 0.2841513
25 26 27 28 29 30
-0.5037668 -1.4941146 8.1328623 1.9787316 -1.5126726 3.5171148
31 32 33 34 3 36
-8.9256951 -2.8282946 6.1030349 -7.5460717 4.,5572128 -10.6510836
37 38 39 40 41 42
-5.6931846 6.3096506 -2.1082466 -0.5044253 0.1875576 4.,8094841
43 44 45 46 47 48
-5.4135163 -6.2292842 -4.5725232 -5.3354601 3.9950111 2.1718745
49 50 51 52 53 54
-3.4766440 0.4834367 6.2839790 2.0109396 -1.5846631 -2.2166613
55 56 57 58 59 60
2.2033140 1.9328736 -1.8301204 -1.5401430 2.5298509 -3.3705782
61 62 63 64 65 66
-2.9380806 0.6590736 -0.5917559 -8.6131971 5.9781035 SMY3329149
67 68 69 70 71 72
-1.2341956 3.0047669 -1.0802468 6.5174672 -3.0155469 2.1176720
73 74 75 76 77 78
0.6058757 -2.7237421 -2.2291472 -1.4053822 4.7461491 11.7495569
79 80 81 82 83 84
4.7634141 2.6620908 -11.0345292 -0.7588667 1.4558227 -0.4745727
85 86 87 88 89 90
8.9091201 -1.1409777 0.7555223 -0.4107130 0.8797237 -1.4095586
91 92 93 94 95 96
3.1571385 -3.4205757 -5.7228699 -2.2033958 -3.8647891 0.4982711
97 98 99 100

-5.5249495 4.,1134221 -8.2038533 5.6800859

One drawback to using ordinary residuals is that they’re always on a different scale, depending on what the outcome variable is and
how good the regression model is. That is, Unless you’ve decided to run a regression model without an intercept term, the ordinary
residuals will have mean 0; but the variance is different for every regression. In a lot of contexts, especially where you’re only
interested in the pattern of the residuals and not their actual values, it’s convenient to estimate the standardised residuals, which
are normalised in such a way as to have standard deviation 1. The way we calculate these is to divide the ordinary residual by an
estimate of the (population) standard deviation of these residuals. For technical reasons, mumble mumble, the formula for this is:

€
6’. = —
"Gy 1-h
where ¢ in this context is the estimated population standard deviation of the ordinary residuals, and h; is the “hat value” of the ith
observation. I haven’t explained hat values to you yet (but have no fear,?%’ it’s coming shortly), so this won’t make a lot of sense.

For now, it’s enough to interpret the standardised residuals as if we’d converted the ordinary residuals to z-scores. In fact, that is
more or less the truth, it’s just that we’re being a bit fancier. To get the standardised residuals, the command you want is this:

I rstandard(model = regression.2)

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsw

1 2 3 4 5 6
-0.49675845 1.10430571 0.46361264 -0.47725357 0.16756281 -0.09488969
7 8 9 10 11 12
0.05286626 -0.39260381 0.04739691 0.89033990 0.95851248 -1.13898701
13 14 15 16 17 18
0.28047841 0.11519184 -0.61657092 -0.09191865 0.77692937 0.40403495
19 20 21 22 23 24
-0,.11552373 -1.31540412 -0.10819238 0.62951824 2.17129803 0.06586227
25 26 27 28 29 30
-0.11980449 -0.34704024 1.91121833 0.45686516 -0.34986350 0.81233165
31 32 33 34 3 36
-2.08659993 -0.66317843 1.42930082 -1.77763064 1.07452436 -2.47385780
37 38 39 40 41 42
-1.32715114 1.49419658 -0.49115639 -0.11674947 0.04401233 1.11881912
43 44 45 46 47 48
-1.27081641 -1.46422595 -1.06943700 -1.24659673 0.94152881 0.51069809
49 50 51 52 53 54
-0.81373349 0.11412178 1.47938594 0.46437962 -0.37157009 -0.51609949
55 56 57 58 59 60
0.51800753 0.44813204 -0.42662358 -0.35575611 0.58403297 -0.78022677
61 62 63 64 65 66
-0.67833325 0.15484699 -0.13760574 -2.05662232 1.40238029 1.37505125
67 68 69 70 71 72
-0.28964989 0.69497632 -0.24945316 1.50709623 -0.69864682 0.49071427
73 74 75 76 77 78
0.14267297 -0.63246560 -0.51972828 -0.32509811 1.10842574 2.72171671
79 80 81 82 83 84
1.09975101 0.62057080 -2.55172097 -0.17584803 0.34340064 -0.11158952
85 86 87 88 89 90
2.10863391 -0.26386516 0.17624445 -0.09504416 0.20450884 -0.32730740
91 92 93 94 95 96
0.73475640 -0.79400855 -1.32768248 -0.51940736 -0.91512580 0.11661226
97 98 99 100

-1.28069115 0.96332849 -1.90290258 1.31368144

Note that this function uses a different name for the input argument, but it’s still just a linear regression object that the function
wants to take as its input here.

The third kind of residuals are Studentised residuals (also called “jackknifed residuals”) and they’re even fancier than standardised
residuals. Again, the idea is to take the ordinary residual and divide it by some quantity in order to estimate some standardised
notion of the residual, but the formula for doing the calculations this time is subtly different:

€

Notice that our estimate of the standard deviation here is written ¢_;. What this corresponds to is the estimate of the residual
standard deviation that you would have obtained, if you just deleted the ith observation from the data set. This sounds like the sort
of thing that would be a nightmare to calculate, since it seems to be saying that you have to run N new regression models (even a
modern computer might grumble a bit at that, especially if you’ve got a large data set). Fortunately, some terribly clever person has
shown that this standard deviation estimate is actually given by the following equation:

. . |[N-K—-1—¢€?
T TN TN TR —2

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsw

Isn’t that a pip? Anyway, the command that you would use if you wanted to pull out the Studentised residuals for our regression

model is
I rstudent(model = regression.2)

1 2 g 4 5 6
-0.49482102 1.10557030 0.46172854 -0.47534555 0.16672097 -0.09440368
#it 7 8 9 10 11 12
0.05259381 -0.39088553 0.04715251 0.88938019 0.95810710 -1.14075472
4 13 14 15 16 17 18
0.27914212 0.11460437 -0.61459001 -0.09144760 0.77533036 0.40228555
19 20 21 22 23 24
-0.11493461 -1.32043609 -0.10763974 0.62754813 2.21456485 0.06552336
25 26 27 28 29 30
-0.11919416 -0.34546127 1.93818473 0.45499388 -0.34827522 0.81089646
#it 31 32 33 34 35 36
-2.12403286 -0.66125192 1.43712830 -1.79797263 1.07539064 -2.54258876
#it 37 38 39 40 41 42
-1.33244515 1.50388257 -0.48922682 -0.11615428 0.04378531 1.12028904
43 44 45 46 47 48
-1.27490649 -1.47302872 -1.07023828 -1.25020935 0.94097261 0.50874322
#it 49 50 51 52 53 54
-0.81230544 0.11353962 1.48863006 0.46249410 -0.36991317 -0.51413868
#it 55 56 57 58 59 60
0.51604474 0.44627831 -0.42481754 -0.35414868 0.58203894 -0.77864171
#it 61 62 63 64 65 66
-0.67643392 0.15406579 -0.13690795 -2.09211556 1.40949469 1.38147541
67 68 69 70 71 72
-0.28827768 0.69311245 -0.24824363 1.51717578 -0.69679156 0.48878534
78 74 7S 76 77 78
0.14195054 -0.63049841 -0.51776374 -0.32359434 1.10974786 2.81736616
#it 79 80 81 82 83 84
1.10095270 0.61859288 -2.62827967 -0.17496714 ©0.34183379 -0.11101996
#it 85 86 87 88 89 90
2.14753375 -0.26259576 0.17536170 -0.09455738 0.20349582 -0.32579584
91 92 93 94 95 96
0.73300184 -0.79248469 -1.33298848 -0.51744314 -0.91435205 0.11601774
#it 97 98 99 100

-1.28498273 0.96296745 -1.92942389 1.31867548

Before moving on, I should point out that you don’t often need to manually extract these residuals yourself, even though they are at
the heart of almost all regression diagnostics. That is, the residuals() , rstandard() and rstudent() functions
are all useful to know about, but most of the time the various functions that run the diagnostics will take care of these calculations
for you. Even so, it’s always nice to know how to actually get hold of these things yourself in case you ever need to do something
non-standard.

15.9.2 Three kinds of anomalous data

One danger that you can run into with linear regression models is that your analysis might be disproportionately sensitive to a
smallish number of “unusual” or “anomalous” observations. I discussed this idea previously in Section 6.5.2 in the context of
discussing the outliers that get automatically identified by the boxplot() function, but this time we need to be much more
precise. In the context of linear regression, there are three conceptually distinct ways in which an observation might be called
“anomalous”. All three are interesting, but they have rather different implications for your analysis.

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsm

The first kind of unusual observation is an outlier. The definition of an outlier (in this context) is an observation that is very
different from what the regression model predicts. An example is shown in Figure 15.7. In practice, we operationalise this concept
by saying that an outlier is an observation that has a very large Studentised residual, €;*. Outliers are interesting: a big outlier
might correspond to junk data — e.g., the variables might have been entered incorrectly, or some other defect may be detectable.
Note that you shouldn’t throw an observation away just because it’s an outlier. But the fact that it’s an outlier is often a cue to look
more closely at that case, and try to find out why it’s so different.

Qutlier

Qutcome

Predictor

Figure 15.7: An illustration of outliers. The dotted lines plot the regression line that would have been estimated without the

anomalous observation included, and the corresponding residual (i.e., the Studentised residual). The solid line shows the regression

line with the anomalous observation included. The outlier has an unusual value on the outcome (y axis location) but not the

predictor (x axis location), and lies a long way from the regression line.
The second way in which an observation can be unusual is if it has high leverage: this happens when the observation is very
different from all the other observations. This doesn’t necessarily have to correspond to a large residual: if the observation happens
to be unusual on all variables in precisely the same way, it can actually lie very close to the regression line. An example of this is
shown in Figure 15.8. The leverage of an observation is operationalised in terms of its hat value, usually written hi. The formula for
the hat value is rather complicated®?! but its interpretation is not: h; is a measure of the extent to which the i-th observation is “in
control” of where the regression line ends up going. You can extract the hat values using the following command:

I hatvalues(model = regression.2)

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextS'"

##
##
#t
##
##
##
##
##
##
##
#t
##
##
##
##
##
##
##
#t
##
##
##
##
##
##
##
#t
##
##
##
##
##
##
##

1

.02067452

7

.02735579

13

.02462902

19

.04213891

25

. 06722392

31

.03468260

37

.02919013

43

.04267879

49

.03701290

55

.04556787

61

.01029534

67

.04217616

73

.04863314

79

.01028001

85

.05825858

91

.02598661

97

.01817919

2

. 04105320

8

.01051224

14

.02718388

20

.02994643

26

. 02214927

32

. 04048248

38

.05928178

44

. 04517340

50

.05331282

56

. 01856997

62

.04428870

68

.01384321

74

.02158623

80

.02920514

86

.01359644

92

.02093288

98

.03811718

3

. 06155445

9

.03698976

15

.01964210

21

.02099435

27

. 04472007

33

.03814670

39

. 02799695

45

. 03558080

51

. 04814477

57

. 02919045

63

.02438944

69

.01069005

75

.02951418

81

.01348051

87

.03054414

93

.01982480

99

. 01945603

4

.01685226

10

.01229155

16

.01748592

22

.01233280

28

. 01039447

34

.04934440

40

.01519967

46

.03360160

52

.01072699

58

.01126069

64

.07469673

70

.01340216

76

.01411915

82

.01752758

88

.01487724

94

.05063492

100

.01373394

5

. 02734865

11

.08189763

17

.01691392

23

.01853370

29

.01381812

35

.05107803

41

.04195751

47

.05019778

53

. 04047386

59

.01012683

65

. 04135090

71

.01716361

77

.03276064

83

.05184527

89

.02381348

95

.05907629

. 03129943

.01882551

.03712530

.01804801

.01105817

.02208177

.02514137

.04587468

.02681315

.01546412

.01775697

.01751844

. 01684599

. 04583604

.02159418

.03682026

6

12

18

24

30

36

42

48

54

60

66

72

78

84

90

96

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsw

High leverage

Qutcome

[I I T

Predictor

Figure 15.8: An illustration of high leverage points. The anomalous observation in this case is unusual both in terms of the
predictor (x axis) and the outcome (y axis), but this unusualness is highly consistent with the pattern of correlations that exists
among the other observations; as a consequence, the observation falls very close to the regression line and does not distort it.
In general, if an observation lies far away from the other ones in terms of the predictor variables, it will have a large hat value (as a
rough guide, high leverage is when the hat value is more than 2-3 times the average; and note that the sum of the hat values is
constrained to be equal to K+1). High leverage points are also worth looking at in more detail, but they’re much less likely to be a
cause for concern unless they are also outliers. % guide from Venables and Ripley.
This brings us to our third measure of unusualness, the influence of an observation. A high influence observation is an outlier that
has high leverage. That is, it is an observation that is very different to all the other ones in some respect, and also lies a long way
from the regression line. This is illustrated in Figure 15.9. Notice the contrast to the previous two figures: outliers don’t move the
regression line much, and neither do high leverage points. But something that is an outlier and has high leverage... that has a big

effect on the regression line.

.
l
'
'
'
'
'
'
'
'
'
T
'
'
l

Qutcome
|

o

High influence

o
e

I f

Predictor

Figure 15.9: An illustration of high influence points. In this case, the anomalous observation is highly unusual on the predictor
variable (x axis), and falls a long way from the regression line. As a consequence, the regression line is highly distorted, even
though (in this case) the anomalous observation is entirely typical in terms of the outcome variable (y axis).

That’s why we call these points high influence; and it’s why they’re the biggest worry. We operationalise influence in terms of a

measure known as Cook’s distance,

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextS'"

2
¥ h.
Di — 2 X "
K+1 1-—h
Notice that this is a multiplication of something that measures the outlier-ness of the observation (the bit on the left), and something
that measures the leverage of the observation (the bit on the right). In other words, in order to have a large Cook’s distance, an
observation must be a fairly substantial outlier and have high leverage. In a stunning turn of events, you can obtain these values

using the following command:

I cooks.distance(model = regression.2)
#H# 1 2 g 4 5
1.736512e-03 1.740243e-02 4.699370e-03 1.301417e-03 2.631557¢e-04
#it 6 7 8 9 10
9.697585e-05 2.620181e-05 5.458491e-04 2.876269e-05 3.288277e-03
11 12 13 14 15
2.731835e-02 8.296919e-03 6.621479e-04 1.235956e-04 2.538915e-03
#it 16 17 18 19 20
5.012283e-05 3.461742e-03 2.098055e-03 1.957050e-04 1.780519e-02
#it 21 22 23 24 25
8.367377e-05 1.649478e-03 2.967594e-02 2.657610e-05 3.448032e-04
#it 26 27 28 29 30
9.093379e-04 5.699951e-02 7.307943e-04 5.716998e-04 2.459564e-03
31 32 33 34 85
5.214331e-02 6.185200e-03 2.700686e-02 5.467345e-02 2.071643e-02
#it 36 37 38 39 40
4.606378e-02 1.765312e-02 4.689817e-02 2.316122e-03 7.012530e-05
#H# 41 42 43 44 45
2.827824e-05 1.076083e-02 2.399931e-02 3.381062e-02 1.406498e-02
46 47 48 49 50
1.801086e-02 1.561699e-02 4.179986e-03 8.483514e-03 2.444787e-04
51 52 58 54 55
3.689946e-02 7.794472e-04 1.941235e-03 2.446230e-03 4.270361e-03
#it 56 57 58 59 60
1.266609e-03 1.824212e-03 4.804705e-04 1.163181e-03 3.187235e-03
#it 61 62 63 64 65
1.595512e-03 3.703826e-04 1.577892e-04 1.138165e-01 2.827715e-02
#it 66 67 68 69 70
1.139374e-02 1.231422e-03 2.260006e-03 2.241322e-04 1.028479e-02
71 72 73 74 75
2.841329e-03 1.431223e-03 3.468538e-04 2.941757e-03 2.738249e-03
#it 76 77 78 79 80
5.045357e-04 1.387108e-02 4.230966e-02 4.187440e-03 3.861831e-03
#it 81 82 83 84 85
2.965826e-02 1.838888e-04 2.149369e-03 1.993929e-04 9.168733e-02
#it 86 87 88 89 90
3.198994e-04 3.262192e-04 4.547383e-05 3.400893e-04 7.881487e-04
91 92 93 94 95
4.801204e-03 4.493095e-03 1.188427e-02 4.796360e-03 1.752666e-02
#it 96 97 98 99 100
1.732793e-04 1.012302e-02 1.225818e-02 2.394964e-02 8.010508e-03

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsw

As a rough guide, Cook’s distance greater than 1 is often considered large (that’s what I typically use as a quick and dirty rule),
though a quick scan of the internet and a few papers suggests that 4/N has also been suggested as a possible rule of thumb.

As hinted above, you don’t usually need to make use of these functions, since you can have R automatically draw the critical
plots.222 For the regression.2 model, these are the plots showing Cook’s distance (Figure 15.10) and the more detailed
breakdown showing the scatter plot of the Studentised residual against leverage (Figure 15.11). To draw these, we can use the

plot() function. When the main argument x to this function is a linear model object, it will draw one of six different plots,
each of which is quite useful for doing regression diagnostics. You specify which one you want using the which argument (a
number between 1 and 6). If you don’t do this then R will draw all six. The two plots of interest to us in this context are generated
using the following commands:

Cook's distance

64

85

Cook's distance
0.00 0.02 0.04 0.06 0.08 0.10 0.12
|

27
_ |‘|.. .I|.|I|.‘. |‘|. .|.||..||.‘||.|.....||‘|‘.|“|
I I I I

l l
0 20 40 60 80 100

Obs. number
Im(dan.grump ~ dan.sleep + baby.sleep)

Figure 15.10: Cook’s distance for every observation. This is one of the standard regression plots produced by the plot()
function when the input is a linear regression object. It is obtained by setting which=4

Residuals vs Leverage

Standardized residuals
0
|
o
%O
0
o § °©
O,
)
o]
@
o]
o]
o O O
[e]e]
ole
O
o]
o]

gb ® 9 OO? 009 8 o
(o] o] o)
N 8 o© o
[e] ® °
o]
N °© o] 640
o o]
o | Cook's distance
1 1 1 1 1
0.00 0.02 0.04 0.06 0.08
Leverage

Im(dan.grump ~ dan.sleep + baby.sleep)

Figure 15.11: Residuals versus leverage. This is one of the standard regression plots produced by the plot() function when the
input is a linear regression object. It is obtained by setting which=5 .

An obvious question to ask next is, if you do have large values of Cook’s distance, what should you do? As always, there’s no hard
and fast rules. Probably the first thing to do is to try running the regression with that point excluded and see what happens to the
model performance and to the regression coefficients. If they really are substantially different, it’s time to start digging into your
data set and your notes that you no doubt were scribbling as your ran your study; try to figure out why the point is so different. If

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsw

you start to become convinced that this one data point is badly distorting your results, you might consider excluding it, but that’s
less than ideal unless you have a solid explanation for why this particular case is qualitatively different from the others and
therefore deserves to be handled separately.??> To give an example, let’s delete the observation from day 64, the observation with
the largest Cook’s distance for the regression.2 model. We can do this using the subset argument:

Im(formula = dan.grump ~ dan.sleep + baby.sleep, # same formula
data = parenthood, # same data frame.. .
subset = -64 # ...but observation 64 is deleted

)

4

Call:

1lm(formula = dan.grump ~ dan.sleep + baby.sleep, data = parenthood,

#it subset = -64)

##

Coefficients:

(Intercept) dan.sleep baby.sleep

#it 126.3553 -8.8283 -0.1319

As you can see, those regression coefficients have barely changed in comparison to the values we got earlier. In other words, we
really don’t have any problem as far as anomalous data are concerned.

15.9.3 Checking the normality of the residuals

Like many of the statistical tools we’ve discussed in this book, regression models rely on a normality assumption. In this case, we
assume that the residuals are normally distributed. The tools for testing this aren’t fundamentally different to those that we
discussed earlier in Section 13.9. Firstly, I firmly believe that it never hurts to draw an old fashioned histogram. The command I use
might be something like this:

hist(x = residuals(regression.2), # data are the residuals

xlab = "Value of residual", # x-axis label
main = "", # no title
breaks = 20 # lots of breaks

The resulting plot is shown in Figure 15.12, and as you can see the plot looks pretty damn close to normal, almost unnaturally so.

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsm

Frequency
6
|
|
I
|

: | ﬂ%

-10 -5 0 5 10
Value of residual

Figure 15.12: A histogram of the (ordinary) residuals in the regression.2 model. These residuals look very close to being
normally distributed, much moreso than is typically seen with real data. This shouldn’t surprise you... they aren’t real data, and
they aren’t real residuals!

I could also run a Shapiro-Wilk test to check, using the shapiro.test() function;the W value of .99, at this sample size, is
non-significant (p=.84), again suggesting that the normality assumption isn’t in any danger here. As a third measure, we might also
want to draw a QQ-plot using the qgnorm() function. The QQ plot is an excellent one to draw, and so you might not be
surprised to discover that it’s one of the regression plots that we can produce using the plot() function:

I plot(X = regression.2, which = 2) # Figure @ref{fig:regressionplot2}

Normal Q-Q
o
780
o ©O
o N o
2 .
=]
o
0 - -
(5]
—
Ee)
8
5 °© 7
P
[0}
©
c
B
n
N o
og1 036
T T T T T
-2 -1 0 1 2

Theoretical Quantiles
Im(dan.grump ~ dan.sleep + baby.sleep)

Figure 15.13: Plot of the theoretical quantiles according to the model, against the quantiles of the standardised residuals. This is one
of the standard regression plots produced by the plot() function when the input is a linear regression object. It is obtained by

setting which=2 .

The output is shown in Figure 15.13, showing the standardised residuals plotted as a function of their theoretical quantiles
according to the regression model. The fact that the output appends the model specification to the picture is nice.

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsm

15.9.4 Checking the linearity of the relationship

o _|

) 0

o
oo o ©

o _| o

) o o
I o o
g o] o, o©o o]
o o _| e °® o
> ~ o o
- oop ® Loo0
3] °© o o © o
< o °° <8 o o
0 o _| o
2 © o4 o ooogma 0 0
o) o 4 0, % .

o 0O H Og 00 o
fee) o o
3 - o o
o
o
o
o _| o
~ T T T T
50 60 70 80

Fitted Values

Figure 15.14: Plot of the fitted values against the observed values of the outcome variable. A straight line is what we’re hoping to
see here. This looks pretty good, suggesting that there’s nothing grossly wrong, but there could be hidden subtle issues.

The third thing we might want to test is the linearity of the relationships between the predictors and the outcomes. There’s a few
different things that you might want to do in order to check this. Firstly, it never hurts to just plot the relationship between the fitted
values Y; and the observed values Y; for the outcome variable, as illustrated in Figure 15.14. To draw this we could use the

fitted.values() function to extract the Y; values in much the same way that we used the residuals() function to
extract the €; values. So the commands to draw this figure might look like this:

yhat.2 <- fitted.values(object = regression.2)
plot(x = yhat.2,

y = parenthood$dan.grump,

xlab = "Fitted Values",

ylab = "Observed Values"

One of the reasons I like to draw these plots is that they give you a kind of “big picture view”. If this plot looks approximately
linear, then we’re probably not doing too badly (though that’s not to say that there aren’t problems). However, if you can see big
departures from linearity here, then it strongly suggests that you need to make some changes.

In any case, in order to get a more detailed picture it’s often more informative to look at the relationship between the fitted values
and the residuals themselves. Again, we could draw this plot using low level commands, but there’s an easier way. Just plot()
the regression model, and select which = 1 :

I plot(x = regression.2, which = 1)

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsm

Residuals vs Fitted

078
o _|
o]
o o] o © o © o
0 © o o
o o o0 o 0
2 o 00 °© ©
© o oo &* o 0 o
S o o
i) o - © O 00 @
] o° =es) 5 ® © o
& 0o O09®®% o© Ie; o
o o o o o o
o o
[To R o
l 0 o o
%g o o]
o
o
o o °
o]
' 810 360
I [I [
50 60 70 80

Fitted values
Im(dan.grump ~ dan.sleep + baby.sleep)

Figure 15.15: Plot of the fitted values against the residuals for regression.2 , with a line showing the relationship between
the two. If this is horizontal and straight, then we can feel reasonably confident that the “average residual” for all “fitted values” is
more or less the same. This is one of the standard regression plots produced by the plot() function when the input is a linear

regression object. It is obtained by setting which=1 .

The output is shown in Figure 15.15. As you can see, not only does it draw the scatterplot showing the fitted value against the
residuals, it also plots a line through the data that shows the relationship between the two. Ideally, this should be a straight,
perfectly horizontal line. There’s some hint of curvature here, but it’s not clear whether or not we be concerned.

A somewhat more advanced version of the same plot is produced by the residualPlots() functioninthe car package.
This function not only draws plots comparing the fitted values to the residuals, it does so for each individual predictor. The
command is and the resulting plots are shown in Figure 15.16.

I residualPlots(model = regression.2)

I ## Loading required package: carData

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsw

o o
0 2 o 2 o
g 70 T8 g e
<} o a o
T 0 q 0 @ %o o % ° T 0 o 8 0 %% 0 4
@ o 0% O a @ oo ot g0
2 & 0@ o Iy o o a@g [e] g
c © Tvo 25 o= =2 c © TRl el
oot o o O
2 o o & g® g 0°°°O 2 o °8 ooc’g °% 8 2
© 1 °© % o oo © i o %o oo &©
& o | o @ a © & o _|o o e
N @ [¢] N ¢ o
I I I I I I I I I I
5 6 7 8 9 4 6 8 10 12
dan.sleep baby.sleep
]
o
» 2 1
s % oo ;
[e) e}
T o4 2 o o o¢ & o
7 ° © o, Fo o
19} o o o %G
S o 4o 7= o
T
S o oo ® 8o
@ o2 9 c"o o o
© n oo g o © o
& o | ° a o a
N [+] o
T T T T
50 60 70 80

Fitted values
Figure 15.16: Plot of the fitted values against the residuals for regression.?2 , along with similar plots for the two predictors

individually. This plot is produced by the residualPlots() function in the car package. Note that it refers to the
residuals as “Pearson residuals”, but in this context these are the same as ordinary residuals.

#Ht Test stat Pr(>|Test stat])

dan.sleep 2.1604 0.03323 *

baby.sleep -0.5445 0.58733

Tukey test 2.1615 0.03066 *

#H# ---

Signif. codes: © '***' @.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that this function also reports the results of a bunch of curvature tests. For a predictor variable X in some regression model,
this test is equivalent to adding a new predictor to the model corresponding to X2, and running the t-test on the b coefficient
associated with this new predictor. If it comes up significant, it implies that there is some nonlinear relationship between the
variable and the residuals.

The third line here is the Tukey test, which is basically the same test, except that instead of squaring one of the predictors and
adding it to the model, you square the fitted-value. In any case, the fact that the curvature tests have come up significant is hinting
that the curvature that we can see in Figures 15.15 and 15.16 is genuine;??* although it still bears remembering that the pattern in
Figure 15.14 is pretty damn straight: in other words the deviations from linearity are pretty small, and probably not worth worrying
about.

In a lot of cases, the solution to this problem (and many others) is to transform one or more of the variables. We discussed the
basics of variable transformation in Sections 7.2 and (mathfunc), but I do want to make special note of one additional possibility
that I didn’t mention earlier: the Box-Cox transform. The Box-Cox function is a fairly simple one, but it’s very widely used
A
fle) =F5=

for all values of A except A=0. When A=0 we just take the natural logarithm (i.e., In(x)). You can calculate it using the

boxCox () functioninthe car package. Better yet, if what you’re trying to do is convert a data to normal, or as normal as
possible, there’s the powerTransform() function in the car package that can estimate the best value of A. Variable
transformation is another topic that deserves a fairly detailed treatment, but (again) due to deadline constraints, it will have to wait
until a future version of this book.

15.9.5 Checking the homogeneity of variance

The regression models that we’ve talked about all make a homogeneity of variance assumption: the variance of the residuals is
assumed to be constant. The “default” plot that R provides to help with doing this (which = 3 whenusing plot())shows

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsw

a plot of the square root of the size of the residual ,/|¢;|, as a function of the fitted value l}l We can produce the plot using the
following command,

I plot(x = regression.2, which = 3)

and the resulting plot is shown in Figure 15.17. Note that this plot actually uses the standardised residuals (i.e., converted to z
scores) rather than the raw ones, but it’s immaterial from our point of view. What we’re looking to see here is a straight, horizontal
line running through the middle of the plot.

Scale-Location

078
810
0 | 360
- o o o o
o o
_ o
0
© o] Op o
o o o
_.3 ° o © o @® °
7 o 0@ o o o o
< - o] o® O 9o
8 o] o 00 o] °
N o %° 9
S
S Oo @® o %0 o o o ©° o o
ke o 0080 5]
c 10 o ° o
o] — o
- o o
(2] o o
~ o o 8 8 o o o 3 o o
o] o o0
o |
o
I I I I
50 60 70 80

Fitted values
Im(dan.grump ~ dan.sleep + baby.sleep)

Figure 15.17: Plot of the fitted values (model predictions) against the square root of the abs standardised residuals. This plot is used
to diagnose violations of homogeneity of variance. If the variance is really constant, then the line through the middle should be
horizontal and flat. This is one of the standard regression plots produced by the plot() function when the input is a linear

regression object. It is obtained by setting which=3 .

A slightly more formal approach is to run hypothesis tests. The car package provides a function called ncvTest() (non-
constant variance test) that can be used for this purpose (Cook and Weisberg 1983). I won’t explain the details of how it works,
other than to say that the idea is that what you do is run a regression to see if there is a relationship between the squared residuals €;
and the fitted values }A’i, or possibly to run a regression using all of the original predictors instead of just 171-.225 Using the default
settings, the ncvTest() looks for a relationship between 1}1 and the variance of the residuals, making it a straightforward
analogue of Figure 15.17. So if we run it for our model,

I ncvTest(regression.2)

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 0.09317511, Df = 1, p = 0.76018

We see that our original impression was right: there’s no violations of homogeneity of variance in this data.

It’s a bit beyond the scope of this chapter to talk too much about how to deal with violations of homogeneity of variance, but I’ll
give you a quick sense of what you need to consider. The main thing to worry about, if homogeneity of variance is violated, is that
the standard error estimates associated with the regression coefficients are no longer entirely reliable, and so your t tests for the
coefficients aren’t quite right either. A simple fix to the problem is to make use of a “heteroscedasticity corrected covariance
matrix” when estimating the standard errors. These are often called sandwich estimators, for reasons that only make sense if you
understand the maths at a low level??® have implemented as the default in the hccm() function is a tweak on this, proposed by
Long and Ervin (2000). This version uses ¥ = diag (612 / (1 — hf)), where hi is the ith hat value. Gosh, regression is fun, isn’t it?]
You don’t need to understand what this means (not for an introductory class), but it might help to note that there’s a hccm()

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsw

function in the car () package that does it. Better yet, you don’t even need to use it. You can use the coeftest() function
inthe lmtest package, but youneedthe car package loaded:

library(1lmtest)
library(car)
coeftest(regression.2, vcov= hccm)

#it

t test of coefficients:

H#

Estimate Std. Error t value Pr(>|t])

(Intercept) 125.965566 3.247285 38.7910 <2e-16 ***

dan.sleep -8.950250 0.615820 -14.5339 <2e-16 ***

baby.sleep 0.010524 0.291565 0.0361 0.9713

#HH# ---

Signif. codes: © '***' @.001 '**' 0.01 '*' ©0.605 '."' 0.2 ' ' 1

Not surprisingly, these t tests are pretty much identical to the ones that we saw when we used the summary(regression.2)
command earlier; because the homogeneity of variance assumption wasn’t violated. But if it had been, we might have seen some
more substantial differences.

15.9.6 Checking for collinearity

The last kind of regression diagnostic that I'm going to discuss in this chapter is the use of variance inflation factors (VIFs), which
are useful for determining whether or not the predictors in your regression model are too highly correlated with each other. There is
a variance inflation factor associated with each predictor X in the model, and the formula for the k-th VIF is:

VIF, = ——
1— R%,k)

where R2(,k) refers to R-squared value you would get if you ran a regression using X as the outcome variable, and all the other X
variables as the predictors. The idea here is that R2(,k) is a very good measure of the extent to which X, is correlated with all the
other variables in the model. Better yet, the square root of the VIF is pretty interpretable: it tells you how much wider the
confidence interval for the corresponding coefficient by is, relative to what you would have expected if the predictors are all nice
and uncorrelated with one another. If you’ve only got two predictors, the VIF values are always going to be the same, as we can see

if weusethe vif () function(car package)...

I vif(mod = regression.2)

dan.sleep baby.sleep
1.651038 1.651038

And since the square root of 1.65 is 1.28, we see that the correlation between our two predictors isn’t causing much of a problem.

To give a sense of how we could end up with a model that has bigger collinearity problems, suppose I were to run a much less
interesting regression model, in which I tried to predict the day on which the data were collected, as a function of all the other
variables in the data set. To see why this would be a bit of a problem, let’s have a look at the correlation matrix for all four
variables:

I cor(parenthood)

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf

LibreTextsw

dan.sleep baby.sleep dan.grump day
dan.sleep 1.00000000 0.62794934 -0.90338404 -0.09840768
baby.sleep 0.62794934 1.00000000 -0.56596373 -0.01043394
dan.grump -0.90338404 -0.56596373 1.00000000 0.07647926
day -0.09840768 -0.01043394 0.07647926 1.00000000

We have some fairly large correlations between some of our predictor variables! When we run the regression model and look at the
VIF values, we see that the collinearity is causing a lot of uncertainty about the coefficients. First, run the regression...

I regression.3 <- 1lm(day ~ baby.sleep + dan.sleep + dan.grump, parenthood)

and second, look at the VIFs...

I vif(regression.3)

baby.sleep dan.sleep dan.grump
1.651064 6.102337 5.437903

Yep, that’s some mighty fine collinearity you’ve got there.

This page titled 15.9: Model Checking is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle Navarro
via source content that was edited to the style and standards of the LibreTexts platform.

https://stats.libretexts.org/@go/page/8290

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8290?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)/15%3A_Linear_Regression/15.09%3A_Model_Checking
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/

