
16.6.1 https://stats.libretexts.org/@go/page/4047

16.6: ANOVA As a Linear Model
One of the most important things to understand about ANOVA and regression is that they’re basically the same thing. On the
surface of it, you wouldn’t think that this is true: after all, the way that I’ve described them so far suggests that ANOVA is
primarily concerned with testing for group differences, and regression is primarily concerned with understanding the correlations
between variables. And as far as it goes, that’s perfectly true. But when you look under the hood, so to speak, the underlying
mechanics of ANOVA and regression are awfully similar. In fact, if you think about it, you’ve already seen evidence of this.
ANOVA and regression both rely heavily on sums of squares (SS), both make use of F tests, and so on. Looking back, it’s hard to
escape the feeling that Chapters 14 and 15 were a bit repetitive.

The reason for this is that ANOVA and regression are both kinds of linear models. In the case of regression, this is kind of obvious.
The regression equation that we use to define the relationship between predictors and outcomes is the equation for a straight line, so
it’s quite obviously a linear model. And if that wasn’t a big enough clue, the simple fact that the command to run a regression is
lm() is kind of a hint too. When we use an R formula like outcome ~ predictor1 + predictor2 what we’re

really working with is the somewhat uglier linear model:

Y =b X +b X +b +ϵ

where Y is the outcome value for the p-th observation (e.g., p-th person), X is the value of the first predictor for the p-th
observation, X is the value of the second predictor for the p-th observation, the b , b and b terms are our regression coefficients,
and ϵ is the p-th residual. If we ignore the residuals ϵ and just focus on the regression line itself, we get the following formula:

 = b X +b X +b

where is the value of Y that the regression line predicts for person p, as opposed to the actually-observed value Y . The thing
that isn’t immediately obvious is that we can write ANOVA as a linear model as well. However, it’s actually pretty straightforward
to do this. Let’s start with a really simple example: rewriting a 2×2 factorial ANOVA as a linear model.

16.6.1 Some data

To make things concrete, let’s suppose that our outcome variable is the grade that a student receives in my class, a ratio-scale
variable corresponding to a mark from 0% to 100%. There are two predictor variables of interest: whether or not the student turned
up to lectures (the attend variable), and whether or not the student actually read the textbook (the reading variable).
We’ll say that attend = 1 if the student attended class, and attend = 0 if they did not. Similarly, we’ll say that
reading = 1 if the student read the textbook, and reading = 0 if they did not.

Okay, so far that’s simple enough. The next thing we need to do is to wrap some maths around this (sorry!). For the purposes of this
example, let Y denote the grade of the p-th student in the class. This is not quite the same notation that we used earlier in this
chapter: previously, we’ve used the notation Y to refer to the i-th person in the r-th group for predictor 1 (the row factor) and the
c-th group for predictor 2 (the column factor). This extended notation was really handy for describing how the SS values are
calculated, but it’s a pain in the current context, so I’ll switch notation here. Now, the Yp notation is visually simpler than Y , but
it has the shortcoming that it doesn’t actually keep track of the group memberships! That is, if I told you that Y =35, you’d
immediately know that we’re talking about a student (the 3rd such student, in fact) who didn’t attend the lectures (i.e.,
attend = 0) and didn’t read the textbook (i.e. reading = 0), and who ended up failing the class (grade = 35).

But if I tell you that Y =35 all you know is that the p-th student didn’t get a good grade. We’ve lost some key information here. Of
course, it doesn’t take a lot of thought to figure out how to fix this: what we’ll do instead is introduce two new variables X and
X that keep track of this information. In the case of our hypothetical student, we know that X =0 (i.e., attend = 0) and
X =0 (i.e., reading = 0). So the data might look like this:

p 1 1p 2 2p 0 p

p 1p

2p 1 2 0

p p

 Yp̂ 1 1p 2 2p 0

 Yp̂ p

p

rci

rci

0,0,3

p

1p

2p 1p

2p

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)/16%3A_Factorial_ANOVA/16.06%3A_ANOVA_As_a_Linear_Model

16.6.2 https://stats.libretexts.org/@go/page/4047

person p grade Y attendance X reading X

5 35 0 0

6 50 0 0

4 60 1 0

7 65 1 0

8 70 0 1

3 75 0 1

2 87 1 1

1 90 1 1

This isn’t anything particularly special, of course: it’s exactly the format in which we expect to see our data! In other words, if your
data have been stored as a data frame in R then you’re probably expecting to see something that looks like the rtfm.1 data
frame:

load("./rbook-master/data/rtfm.rdata")
rtfm.1

grade attend reading
1 90 1 1
2 87 1 1
3 75 0 1
4 60 1 0
5 35 0 0
6 50 0 0
7 65 1 0
8 70 0 1

Well, sort of. I suspect that a few readers are probably frowning a little at this point. Earlier on in the book I emphasised the
importance of converting nominal scale variables such as attend and reading to factors, rather than encoding them as
numeric variables. The rtfm.1 data frame doesn’t do this, but the rtfm.2 data frame does, and so you might instead be
expecting to see data like this:

rtfm.2

knitr::kable(tibble::tribble(
 ~V1, ~V2, ~V3, ~V4,
 "1", "90", "1", "1",
 "2", "87", "1", "1",
 "3", "75", "0", "1",
 "4", "60", "1", "0",
 "5", "35", "0", "0",
 "6", "50", "0", "0",
 "7", "65", "1", "0",
 "8", "70", "0", "1"),
col.names= c("person p", "grade Y_p", "attendance X_{1p}", "reading X_{2p}"),

p 1p 2p

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.3 https://stats.libretexts.org/@go/page/4047

grade attend reading
1 90 yes yes
2 87 yes yes
3 75 no yes
4 60 yes no
5 35 no no
6 50 no no
7 65 yes no
8 70 no yes

However, for the purposes of this section it’s important that we be able to switch back and forth between these two different ways
of thinking about the data. After all, our goal in this section is to look at some of the mathematics that underpins ANOVA, and if
we want to do that we need to be able to see the numerical representation of the data (in rtfm.1) as well as the more
meaningful factor representation (in rtfm.2). In any case, we can use the xtabs() function to confirm that this data set
corresponds to a balanced design

 xtabs(~ attend + reading, rtfm.2)

reading
attend no yes
no 2 2
yes 2 2

For each possible combination of the attend and reading variables, we have exactly two students. If we’re interested in
calculating the mean grade for each of these cells, we can use the aggregate() function:

aggregate(grade ~ attend + reading, rtfm.2, mean)

attend reading grade
1 no no 42.5
2 yes no 62.5
3 no yes 72.5
4 yes yes 88.5

Looking at this table, one gets the strong impression that reading the text and attending the class both matter a lot.

16.6.2 ANOVA with binary factors as a regression model
Okay, let’s get back to talking about the mathematics. We now have our data expressed in terms of three numeric variables: the
continuous variable Y, and the two binary variables X and X . What I want to you to recognise is that our 2$$2 factorial ANOVA
is exactly equivalent to the regression model

Y =b X +b X +b +ϵ

This is, of course, the exact same equation that I used earlier to describe a two-predictor regression model! The only difference is
that X and X are now binary variables (i.e., values can only be 0 or 1), whereas in a regression analysis we expect that X and X
will be continuous. There’s a couple of ways I could try to convince you of this. One possibility would be to do a lengthy
mathematical exercise, proving that the two are identical. However, I’m going to go out on a limb and guess that most of the
readership of this book will find that to be annoying rather than helpful. Instead, I’ll explain the basic ideas, and then rely on R to
show that that ANOVA analyses and regression analyses aren’t just similar, they’re identical for all intents and purposes. Let’s
start by running this as an ANOVA. To do this, we’ll use the rtfm.2 data frame, since that’s the one in which I did the proper
thing of coding attend and reading as factors, and I’ll use the aov() function to do the analysis. Here’s what we
get…

1 2

p 1 1p 2 2p 0 p

1 2 1 2

239

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.4 https://stats.libretexts.org/@go/page/4047

anova.model <- aov(grade ~ attend + reading, data = rtfm.2)
 summary(anova.model)

Df Sum Sq Mean Sq F value Pr(>F)
attend 1 648 648 21.60 0.00559 **
reading 1 1568 1568 52.27 0.00079 ***
Residuals 5 150 30

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So, by reading the key numbers off the ANOVA table and the table of means that we presented earlier, we can see that the students
obtained a higher grade if they attended class (F =26.1,p=.0056) and if they read the textbook (F =52.3,p=.0008). Let’s make a
note of those p-values and those F statistics.

library(effects)
 Effect(c("attend","reading"), anova.model)

attend*reading effect
reading
attend no yes
no 43.5 71.5
yes 61.5 89.5

Now let’s think about the same analysis from a linear regression perspective. In the rtfm.1 data set, we have encoded
attend and reading as if they were numeric predictors. In this case, this is perfectly acceptable. There really is a sense in

which a student who turns up to class (i.e. attend = 1) has in fact done “more attendance” than a student who does not (i.e.
attend = 0). So it’s not at all unreasonable to include it as a predictor in a regression model. It’s a little unusual, because the

predictor only takes on two possible values, but it doesn’t violate any of the assumptions of linear regression. And it’s easy to
interpret. If the regression coefficient for attend is greater than 0, it means that students that attend lectures get higher grades;
if it’s less than zero, then students attending lectures get lower grades. The same is true for our reading variable.

Wait a second… why is this true? It’s something that is intuitively obvious to everyone who has taken a few stats classes and is
comfortable with the maths, but it isn’t clear to everyone else at first pass. To see why this is true, it helps to look closely at a few
specific students. Let’s start by considering the 6th and 7th students in our data set (i.e. p=6 and p=7). Neither one has read the
textbook, so in both cases we can set reading = 0 . Or, to say the same thing in our mathematical notation, we observe
X =0 and X =0. However, student number 7 did turn up to lectures (i.e., attend = 1 , X =1) whereas student number 6
did not (i.e., attend = 0 , X =0). Now let’s look at what happens when we insert these numbers into the general formula for
our regression line. For student number 6, the regression predicts that

So we’re expecting that this student will obtain a grade corresponding to the value of the intercept term b0. What about student 7?
This time, when we insert the numbers into the formula for the regression line, we obtain the following:

Because this student attended class, the predicted grade is equal to the intercept term b plus the coefficient associated with the
attend variable, b . So, if b is greater than zero, we’re expecting that the students who turn up to lectures will get higher

grades than those students who don’t. If this coefficient is negative, we’re expecting the opposite: students who turn up at class end

1,5 1,5

2,6 2,7 1,7

1,6

Y6 = + +b1X1,6 b2X2,6 b0

= (×0) +(×0) +b1 b2 b0

= b0

Y6 = + +b1X1,7 b2X2,7 b0

= (×1) +(×0) +b1 b2 b0

= +b1 b0

0

1 1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.5 https://stats.libretexts.org/@go/page/4047

up performing much worse. In fact, we can push this a little bit further. What about student number 1, who turned up to class
(X =1) and read the textbook (X =1)? If we plug these numbers into the regression, we get

So if we assume that attending class helps you get a good grade (i.e., b1>0) and if we assume that reading the textbook also helps
you get a good grade (i.e., b >0), then our expectation is that student 1 will get a grade that that is higher than student 6 and student
7.

And at this point, you won’t be at all suprised to learn that the regression model predicts that student 3, who read the book but
didn’t attend lectures, will obtain a grade of b +b . I won’t bore you with yet another regression formula. Instead, what I’ll do is
show you the following table of expected grades:

knitr::kable(tibble::tribble(
 ~V1, ~V2, ~V3,

 "attended - no","b_0","$b_0 + b_2$",
 "attended - yes", "$b_0 + b_1$", "$b_0 + b_1 + b_2$"),
 col.names = c("","read textbook? no", "read textbook? yes"))

read textbook? no read textbook? yes

attended - no b b +b

attended - yes b +b b +b +b

As you can see, the intercept term b acts like a kind of “baseline” grade that you would expect from those students who don’t take
the time to attend class or read the textbook. Similarly, b represents the boost that you’re expected to get if you come to class, and
b represents the boost that comes from reading the textbook. In fact, if this were an ANOVA you might very well want to
characterise b as the main effect of attendance, and b as the main effect of reading! In fact, for a simple 2×2 ANOVA that’s
exactly how it plays out.

Okay, now that we’re really starting to see why ANOVA and regression are basically the same thing, let’s actually run our
regression using the rtfm.1 data and the lm() function to convince ourselves that this is really true. Running the regression
in the usual way gives us the following output:

 regression.model <- lm(grade ~ attend + reading, data = rtfm.1)
 summary(regression.model)

1,1 2,1

Y6 = + +b1X1,1 b2X2,1 b0

= (×1) +(×1) +b1 b2 b0

= + +b1 b2 b0

2

2 0

0 0 2

0 1 0 1 2

0

1

2

1 2

240

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.6 https://stats.libretexts.org/@go/page/4047

Call:
lm(formula = grade ~ attend + reading, data = rtfm.1)

Residuals:
1 2 3 4 5 6 7 8
0.5 -2.5 3.5 -1.5 -8.5 6.5 3.5 -1.5

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.500 3.354 12.969 4.86e-05 ***
attend 18.000 3.873 4.648 0.00559 **
reading 28.000 3.873 7.230 0.00079 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.477 on 5 degrees of freedom
Multiple R-squared: 0.9366, Adjusted R-squared: 0.9112
F-statistic: 36.93 on 2 and 5 DF, p-value: 0.001012

There’s a few interesting things to note here. Firstly, notice that the intercept term is 43.5, which is close to the “group” mean of
42.5 observed for those two students who didn’t read the text or attend class. Moreover, it’s identical to the predicted group mean
that we pulled out of our ANOVA using the Effects() function! Secondly, notice that we have the regression coefficient of
b =18.0 for the attendance variable, suggesting that those students that attended class scored 18% higher than those who didn’t. So
our expectation would be that those students who turned up to class but didn’t read the textbook would obtain a grade of b +b ,
which is equal to 43.5+18.0=61.5. Again, this is similar to the observed group mean of 62.5, and identical to the expected group
mean that we pulled from our ANOVA. You can verify for yourself that the same thing happens when we look at the students that
read the textbook.

Actually, we can push a little further in establishing the equivalence of our ANOVA and our regression. Look at the p-values
associated with the attend variable and the reading variable in the regression output. They’re identical to the ones we
encountered earlier when running the ANOVA. This might seem a little surprising, since the test used when running our regression
model calculates a t-statistic and the ANOVA calculates an F-statistic. However, if you can remember all the way back to Chapter
9, I mentioned that there’s a relationship between the t-distribution and the F-distribution: if you have some quantity that is
distributed according to a t-distribution with k degrees of freedom and you square it, then this new squared quantity follows an F-
distribution whose degrees of freedom are 1 and k. We can check this with respect to the t statistics in our regression model. For the
attend variable we get a t value of 4.648. If we square this number we end up with 21.604, which is identical to the

corresponding F statistic in our ANOVA.

Finally, one last thing you should know. Because R understands the fact that ANOVA and regression are both examples of linear
models, it lets you extract the classic ANOVA table from your regression model using the anova() function. All you have to
do is this:

 anova(regression.model)

1

0 1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.7 https://stats.libretexts.org/@go/page/4047

Analysis of Variance Table

Response: grade
Df Sum Sq Mean Sq F value Pr(>F)
attend 1 648 648 21.600 0.0055943 **
reading 1 1568 1568 52.267 0.0007899 ***
Residuals 5 150 30

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

16.6.3 Changing the baseline category

At this point, you’re probably convinced that the ANOVA and the regression are actually identical to each other. So there’s one last
thing I should show you. What happens if I use the data from rtfm.2 to run the regression? In rtfm.2 , we coded the
attend and reading variables as factors rather than as numeric variables. Does this matter? It turns out that it doesn’t. The

only differences are superficial:

regression.model.2 <- lm(grade ~ attend + reading, data = rtfm.2)
 summary(regression.model.2)

Call:
lm(formula = grade ~ attend + reading, data = rtfm.2)

Residuals:
1 2 3 4 5 6 7 8
0.5 -2.5 3.5 -1.5 -8.5 6.5 3.5 -1.5

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.500 3.354 12.969 4.86e-05 ***
attendyes 18.000 3.873 4.648 0.00559 **
readingyes 28.000 3.873 7.230 0.00079 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.477 on 5 degrees of freedom
Multiple R-squared: 0.9366, Adjusted R-squared: 0.9112
F-statistic: 36.93 on 2 and 5 DF, p-value: 0.001012

The only thing that is different is that R labels the two variables differently: the output now refers to attendyes and
readingyes . You can probably guess what this means. When R refers to readingyes it’s trying to indicate that it is

assuming that “yes = 1” and “no = 0”. This is important. Suppose we wanted to say that “yes = 0” and “no = 1”. We could still run
this as a regression model, but now all of our coefficients will go in the opposite direction, because the effect of readingno
would be referring to the consequences of not reading the textbook. To show you how this works, we can use the relevel()
function in R to change which level of the reading variable is set to “0”. Here’s how it works. First, let’s get R to print out the
reading factor as it currently stands:

rtfm.2$reading

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.8 https://stats.libretexts.org/@go/page/4047

[1] yes yes yes no no no no yes
Levels: no yes

Notice that order in which R prints out the levels is “no” and then “yes”. Now let’s apply the relevel() function:

 relevel(x = rtfm.2$reading, ref = "yes")

[1] yes yes yes no no no no yes
Levels: yes no

R now lists “yes” before “no”. This means that R will now treat “yes” as the “reference” level (sometimes called the baseline level)
when you include it in an ANOVA. So let’s now create a new data frame with our factors recoded…

Finally, let’s re-run our regression, this time using the re-coded data:

regression.model.3 <- lm(grade ~ attend + reading, data = rtfm.3)
 summary(regression.model.3)

Call:
lm(formula = grade ~ attend + reading, data = rtfm.3)

Residuals:
1 2 3 4 5 6 7 8
0.5 -2.5 3.5 -1.5 -8.5 6.5 3.5 -1.5

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 89.500 3.354 26.684 1.38e-06 ***
attendno -18.000 3.873 -4.648 0.00559 **
readingno -28.000 3.873 -7.230 0.00079 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.477 on 5 degrees of freedom
Multiple R-squared: 0.9366, Adjusted R-squared: 0.9112
F-statistic: 36.93 on 2 and 5 DF, p-value: 0.001012

As you can see, there are now a few changes. Most obviously, the attendno and readingno effects are both negative,
though they’re the same magnitude as before: if you don’t read the textbook, for instance, you should expect your grade to drop by
28% relative to someone who did. The t-statistics have reversed sign too. The p-values remain the same, of course. The intercept
has changed too. In our original regression, the baseline corresponded to a student who didn’t attend class and didn’t read the
textbook, so we got a value of 43.5 as the expected baseline grade. However, now that we’ve recoded our variables, the baseline
corresponds to a student who has read the textbook and did attend class, and for that student we would expect a grade of 89.5.

rtfm.3 <- rtfm.2 # copy the old data frame
 rtfm.3$reading <- relevel(rtfm.2$reading, ref="yes") # re-level the reading facto
 rtfm.3$attend <- relevel(rtfm.2$attend, ref="yes") # re-level the attend factor

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.9 https://stats.libretexts.org/@go/page/4047

16.6.4 encode non binary factors as contrasts
At this point, I’ve shown you how we can view a 2×2 ANOVA into a linear model. And it’s pretty easy to see how this generalises
to a 2×2×2 ANOVA or a 2×2×2×2 ANOVA… it’s the same thing, really: you just add a new binary variable for each of your
factors. Where it begins to get trickier is when we consider factors that have more than two levels. Consider, for instance, the 3×2
ANOVA that we ran earlier in this chapter using the clin.trial data. How can we convert the three-level drug factor into
a numerical form that is appropriate for a regression?

The answer to this question is pretty simple, actually. All we have to do is realise that a three-level factor can be redescribed as two
binary variables. Suppose, for instance, I were to create a new binary variable called druganxifree . Whenever the drug
variable is equal to "anxifree" we set druganxifree = 1 . Otherwise, we set druganxifree = 0 . This variable
sets up a contrast, in this case between anxifree and the other two drugs. By itself, of course, the druganxifree contrast isn’t
enough to fully capture all of the information in our drug variable. We need a second contrast, one that allows us to distinguish
between joyzepam and the placebo. To do this, we can create a second binary contrast, called drugjoyzepam , which equals 1
if the drug is joyzepam, and 0 if it is not. Taken together, these two contrasts allows us to perfectly discriminate between all three
possible drugs. The table below illustrates this:

knitr::kable(tibble::tribble(
 ~V1, ~V2, ~V3,
 "`placebo`", "0", "0",
 "`anxifree`", "1", "0",
 "`joyzepam`", "0", "1"
), col.names = c("`drug`", "`druganxifree`", "`drugjoyzepam`"))

drug druganxifree drugjoyzepam

placebo 0 0

anxifree 1 0

joyzepam 0 1

If the drug administered to a patient is a placebo, then both of the two contrast variables will equal 0. If the drug is Anxifree, then
the druganxifree variable will equal 1, and drugjoyzepam will be 0. The reverse is true for Joyzepam:
drugjoyzepam is 1, and druganxifree is 0.

Creating contrast variables manually is not too difficult to do using basic R commands. For example, here’s how we would create
the druganxifree variable:

druganxifree <- as.numeric(clin.trial$drug == "anxifree")
 druganxifree

[1] 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

The clin.trial$drug == "anxifree" part of the command returns a logical vector that has a value of TRUE if the
drug is Anxifree, and a value of FALSE if the drug is Joyzepam or the placebo. The as.numeric() function just converts
TRUE to 1 and FALSE to 0. Obviously, this command creates the druganxifree variable inside the workspace. If you

wanted to add it to the clin.trial data frame, you’d use a commmand like this instead:

clin.trial$druganxifree <- as.numeric(clin.trial$drug == "anxifree")

You could then repeat this for the other contrasts that you wanted to use. However, it’s kind of tedious to do this over and over
again for every single contrast that you want to create. To make it a little easier, the lsr package contains a simple function
called expandFactors() that will convert every factor in a data frame into a set of contrast variables. We can use it to241

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.10 https://stats.libretexts.org/@go/page/4047

create a new data frame, clin.trial.2 that contains the same data as clin.trial , but with the two factors represented
in terms of the contrast variables:

 clin.trial.2 <- expandFactors(clin.trial)

(Intercept) druganxifree drugjoyzepam therapyCBT mood.gain druganxifree
1 1 0 0 0 0.5 0
2 1 0 0 0 0.3 0
3 1 0 0 0 0.1 0
4 1 1 0 0 0.6 1
5 1 1 0 0 0.4 1
6 1 1 0 0 0.2 1
7 1 0 1 0 1.4 0
8 1 0 1 0 1.7 0
9 1 0 1 0 1.3 0
10 1 0 0 1 0.6 0
11 1 0 0 1 0.9 0
12 1 0 0 1 0.3 0
13 1 1 0 1 1.1 1
14 1 1 0 1 0.8 1
15 1 1 0 1 1.2 1
16 1 0 1 1 1.8 0
17 1 0 1 1 1.3 0
18 1 0 1 1 1.4 0
attr(,"assign")
[1] 0 1 1 2 3 4
attr(,"contrasts")
attr(,"contrasts")$drug
[1] "contr.treatment"

attr(,"contrasts")$therapy
[1] "contr.treatment"

 clin.trial.2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.11 https://stats.libretexts.org/@go/page/4047

druganxifree drugjoyzepam therapyCBT mood.gain druganxifree
1 0 0 0 0.5 0
2 0 0 0 0.3 0
3 0 0 0 0.1 0
4 1 0 0 0.6 1
5 1 0 0 0.4 1
6 1 0 0 0.2 1
7 0 1 0 1.4 0
8 0 1 0 1.7 0
9 0 1 0 1.3 0
10 0 0 1 0.6 0
11 0 0 1 0.9 0
12 0 0 1 0.3 0
13 1 0 1 1.1 1
14 1 0 1 0.8 1
15 1 0 1 1.2 1
16 0 1 1 1.8 0
17 0 1 1 1.3 0
18 0 1 1 1.4 0

It’s not as pretty as the original clin.trial data, but it’s definitely saying the same thing. We have now recoded our three-
level factor in terms of two binary variables, and we’ve already seen that ANOVA and regression behave the same way for binary
variables. However, there are some additional complexities that arise in this case, which we’ll discuss in the next section.

16.6.5 equivalence between ANOVA and regression for non-binary factors
Now we have two different versions of the same data set: our original data frame clin.trial in which the drug variable
is expressed as a single three-level factor, and the expanded data set clin.trial.2 in which it is expanded into two binary
contrasts. Once again, the thing that we want to demonstrate is that our original 3×2 factorial ANOVA is equivalent to a regression
model applied to the contrast variables. Let’s start by re-running the ANOVA:

 drug.anova <- aov(mood.gain ~ drug + therapy, clin.trial)
 summary(drug.anova)

Df Sum Sq Mean Sq F value Pr(>F)
drug 2 3.453 1.7267 26.149 1.87e-05 ***
therapy 1 0.467 0.4672 7.076 0.0187 *
Residuals 14 0.924 0.0660

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Obviously, there’s no surprises here. That’s the exact same ANOVA that we ran earlier, except for the fact that I’ve arbitrarily
decided to rename the output variable as drug.anova for some stupid reason. Next, let’s run a regression, using
druganxifree , drugjoyzepam and therapyCBT as the predictors. Here’s what we get:

drug.regression <- lm(mood.gain ~ druganxifree + drugjoyzepam + therapyCBT, clin.tri
 summary(drug.regression)

242

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.12 https://stats.libretexts.org/@go/page/4047

Call:
lm(formula = mood.gain ~ druganxifree + drugjoyzepam + therapyCBT,
data = clin.trial.2)

Residuals:
Min 1Q Median 3Q Max
-0.3556 -0.1806 0.0000 0.1972 0.3778

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2889 0.1211 2.385 0.0318 *
druganxifree 0.2667 0.1484 1.797 0.0939 .
drugjoyzepam 1.0333 0.1484 6.965 6.6e-06 ***
therapyCBT 0.3222 0.1211 2.660 0.0187 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.257 on 14 degrees of freedom
Multiple R-squared: 0.8092, Adjusted R-squared: 0.7683
F-statistic: 19.79 on 3 and 14 DF, p-value: 2.64e-05

Hm. This isn’t the same output that we got last time. Not surprisingly, the regression output prints out the results for each of the
three predictors separately, just like it did every other time we used lm() . On the one hand, we can see that the p-value for the
therapyCBT variable is exactly the same as the one for the therapy factor in our original ANOVA, so we can be

reassured that the regression model is doing the same thing as the ANOVA did. On the other hand, this regression model is testing
the druganxifree contrast and the drugjoyzepam contrast separately, as if they were two completely unrelated
variables. It’s not surprising of course, because the poor lm() function has no way of knowing that drugjoyzepam and
druganxifree are actually the two different contrasts that we used to encode our three-level drug factor. As far as it

knows, drugjoyzepam and druganxifree are no more related to one another than drugjoyzepam and
therapyCBT . However, you and I know better. At this stage we’re not at all interested in determining whether these two

contrasts are individually significant. We just want to know if there’s an “overall” effect of drug. That is, what we want R to do is to
run some kind of “omnibus” test, one in which the two “drug-related” contrasts are lumped together for the purpose of the test.
Sound familiar? This is exactly the situation that we discussed in Section 16.5, and it is precisely this situation that the F-test is
built to handle. All we need to do is specify our null model, which in this case would include the therapyCBT predictor, and
omit both of the drug-related variables, and then run it through the anova() function:

nodrug.regression <- lm(mood.gain ~ therapyCBT, clin.trial.2)
 anova(nodrug.regression, drug.regression)

Analysis of Variance Table

Model 1: mood.gain ~ therapyCBT
Model 2: mood.gain ~ druganxifree + drugjoyzepam + therapyCBT
Res.Df RSS Df Sum of Sq F Pr(>F)
1 16 4.3778
2 14 0.9244 2 3.4533 26.149 1.872e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.13 https://stats.libretexts.org/@go/page/4047

Ah, that’s better. Our F-statistic is 26.1, the degrees of freedom are 2 and 14, and the p-value is 0.000019. The numbers are
identical to the ones we obtained for the main effect of drug in our original ANOVA. Once again, we see that ANOVA and
regression are essentially the same: they are both linear models, and the underlying statistical machinery for ANOVA is identical to
the machinery used in regression. The importance of this fact should not be understated. Throughout the rest of this chapter we’re
going to rely heavily on this idea.

16.6.6 Degrees of freedom as parameter counting!
At long last, I can finally give a definition of degrees of freedom that I am happy with. Degrees of freedom are defined in terms of
the number of parameters that have to be estimated in a model. For a regression model or an ANOVA, the number of parameters
corresponds to the number of regression coefficients (i.e. b-values), including the intercept. Keeping in mind that any F-test is
always a comparison between two models, the first df is the difference in the number of parameters. For example, model
comparison above, the null model (mood.gain ~ therapyCBT) has two parameters: there’s one regression coefficient for
the therapyCBT variable, and a second one for the intercept. The alternative model (
mood.gain ~ druganxifree + drugjoyzepam + therapyCBT) has four parameters: one regression coefficient

for each of the three contrasts, and one more for the intercept. So the degrees of freedom associated with the difference between
these two models is df =4−2=2.

What about the case when there doesn’t seem to be a null model? For instance, you might be thinking of the F-test that appears at
the very bottom of the regression output. I originally described that as a test of the regression model as a whole. However, that is
still a comparison between two models. The null model is the trivial model that only includes an intercept, which is written as
outcome ~ 1 in R, and the alternative model is the full regression model. The null model in this case contains 1 regression

coefficient, for the intercept term. The alternative model contains K+1 regression coefficients, one for each of the K predictor
variables and one more for the intercept. So the df value that you see in this F test is equal to df =K+1−1=K.

What about the second df value that appears in the F-test? This always refers to the degrees of freedom associated with the
residuals. It is possible to think of this in terms of parameters too, but in a slightly counterintuitive way. Think of it like this:
suppose that the total number of observations across the study as a whole is N. If you wanted to perfectly describe each of these N
values, you need to do so using, well… N numbers. When you build a regression model, what you’re really doing is specifying
some of the numbers need to perfectly describe the data. If your model has K predictors and an intercept, then you’ve specified
K+1 numbers. So, without bothering to figure out exactly how this would be done, how many more numbers do you think are going
to be needed to transform a K+1 parameter regression model into a perfect redescription of the raw data? If you found yourself
thinking that (K+1)+(N−K−1)=N, and so the answer would have to be N−K−1, well done! That’s exactly right: in principle you can
imagine an absurdly complicated regression model that includes a parameter for every single data point, and it would of course
provide a perfect description of the data. This model would contain N parameters in total, but we’re interested in the difference
between the number of parameters required to describe this full model (i.e. N) and the number of parameters used by the simpler
regression model that you’re actually interested in (i.e., K+1), and so the second degrees of freedom in the F test is df2=N−K−1,
where K is the number of predictors (in a regression model) or the number of contrasts (in an ANOVA). In the example I gave
above, there are N=18 observations in the data set, and K+1=4 regression coefficients associated with the ANOVA model, so the
degrees of freedom for the residuals is df =18−4=14.

16.6.7 postscript

There’s one last thing I want to mention in this section. In the previous example, I used the aov() function to run an ANOVA
using the clin.trial data which codes drug variable as a single factor. I also used the lm() function to run a
regression using the clin.trial data in which we have two separate contrasts describing the drug. However, it’s also possible
to use the lm() function on the the original data. That is, you could use a command like this:

drug.lm <- lm(mood.gain ~ drug + therapy, clin.trial)

The fact that drug is a three-level factor does not matter. As long as the drug variable has been declared to be a factor, R
will automatically translate it into two binary contrast variables, and will perform the appropriate analysis. After all, as I’ve been
saying throughout this section, ANOVA and regression are both linear models, and lm() is the function that handles linear
models. In fact, the aov() function doesn’t actually do very much of the work when you run an ANOVA using it: internally, R
just passes all the hard work straight to lm() . However, I want to emphasise again that it is critical that your factor variables are

1

1

2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.14 https://stats.libretexts.org/@go/page/4047

declared as such. If drug were declared to be a numeric variable, then R would be happy to treat it as one. After all, it might be
that drug refers to the number of drugs that one has taken in the past, or something that is genuinely numeric. R won’t second
guess you here. It assumes your factors are factors and your numbers are numbers. Don’t make the mistake of encoding your
factors as numbers, or R will run the wrong analysis. This is not a flaw in R: it is your responsibility as the analyst to make sure
you’re specifying the right model for your data. Software really can’t be trusted with this sort of thing.

Okay, warnings aside, it’s actually kind of neat to run your ANOVA using the lm() function in the way I did above. Because
you’ve called the lm() function, the summary() that R pulls out is formatted like a regression. To save space I won’t show
you the output here, but you can easily verify this by typing

 summary(drug.lm)

Call:
lm(formula = mood.gain ~ drug + therapy, data = clin.trial)

Residuals:
Min 1Q Median 3Q Max
-0.3556 -0.1806 0.0000 0.1972 0.3778

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2889 0.1211 2.385 0.0318 *
druganxifree 0.2667 0.1484 1.797 0.0939 .
drugjoyzepam 1.0333 0.1484 6.965 6.6e-06 ***
therapyCBT 0.3222 0.1211 2.660 0.0187 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.257 on 14 degrees of freedom
Multiple R-squared: 0.8092, Adjusted R-squared: 0.7683
F-statistic: 19.79 on 3 and 14 DF, p-value: 2.64e-05

However, because the drug and therapy variables were both factors, the anova() function actually knows which
contrasts to group together for the purposes of running the F-tests, so you can extract the classic ANOVA table. Again, I won’t
reproduce the output here since it’s identical to the ANOVA table I showed at the start of the section, but it’s worth trying the
following command

 anova(drug.lm)

Analysis of Variance Table

Response: mood.gain
Df Sum Sq Mean Sq F value Pr(>F)
drug 2 3.4533 1.72667 26.1490 1.872e-05 ***
therapy 1 0.4672 0.46722 7.0757 0.01866 *
Residuals 14 0.9244 0.06603

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

just to see for yourself. However, this behaviour of the anova() function only occurs when the predictor variables are factors.
If we try a command like anova(drug.regression) , the output will continue to treate druganxifree and

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf

16.6.15 https://stats.libretexts.org/@go/page/4047

drugjoyzepam as if they were two distinct binary factors. This is because in the drug.regression model we included
all the contrasts as “raw” variables, so R had no idea which ones belonged together. However, when we ran the drug.lm
model, we gave R the original factor variables, so it does know which contrasts go together. The behaviour of the anova()
function reflects that.

This page titled 16.6: ANOVA As a Linear Model is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/4047?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)/16%3A_Factorial_ANOVA/16.06%3A_ANOVA_As_a_Linear_Model
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/

