
3.9.1 https://stats.libretexts.org/@go/page/8111

3.9: Storing “True or False” Data
Time to move onto a third kind of data. A key concept in that a lot of R relies on is the idea of a logical value. A logical value is an
assertion about whether something is true or false. This is implemented in R in a pretty straightforward way. There are two logical
values, namely TRUE and FALSE . Despite the simplicity, a logical values are very useful things. Let’s see how they work.

3.9.1 Assessing mathematical truths
In George Orwell’s classic book 1984, one of the slogans used by the totalitarian Party was “two plus two equals five”, the idea
being that the political domination of human freedom becomes complete when it is possible to subvert even the most basic of
truths. It’s a terrifying thought, especially when the protagonist Winston Smith finally breaks down under torture and agrees to the
proposition. “Man is infinitely malleable”, the book says. I’m pretty sure that this isn’t true of humans but it’s definitely not true
of R. R is not infinitely malleable. It has rather firm opinions on the topic of what is and isn’t true, at least as regards basic
mathematics. If I ask it to calculate 2 + 2 , it always gives the same answer, and it’s not bloody 5:

2 + 2

[1] 4

Of course, so far R is just doing the calculations. I haven’t asked it to explicitly assert that 2+2=4 is a true statement. If I want R to
make an explicit judgement, I can use a command like this:

2 + 2 == 4

[1] TRUE

What I’ve done here is use the equality operator, == , to force R to make a “true or false” judgement. Okay, let’s see what R
thinks of the Party slogan:

2+2 == 5

[1] FALSE

Booyah! Freedom and ponies for all! Or something like that. Anyway, it’s worth having a look at what happens if I try to force R to
believe that two plus two is five by making an assignment statement like 2 + 2 = 5 or 2 + 2 <5 . When I do this, here’s
what happens:

2 + 2 = 5

Error in 2 + 2 = 5: target of assignment expands to non-language object

R doesn’t like this very much. It recognises that 2 + 2 is not a variable (that’s what the “non-language object” part is saying),
and it won’t let you try to “reassign” it. While R is pretty flexible, and actually does let you do some quite remarkable things to
redefine parts of R itself, there are just some basic, primitive truths that it refuses to give up. It won’t change the laws of addition,
and it won’t change the definition of the number 2 .

That’s probably for the best.

3.9.2 Logical operations
So now we’ve seen logical operations at work, but so far we’ve only seen the simplest possible example. You probably won’t be
surprised to discover that we can combine logical operations with other operations and functions in a more complicated way, like

36

37

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8111?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)/03%3A_Getting_Started_with_R/3.09%3A_Storing_True_or_False_Data
https://bookdown.org/ekothe/navarro26/introR.html#fn36

3.9.2 https://stats.libretexts.org/@go/page/8111

this:

3*3 + 4*4 == 5*5

[1] TRUE

or this

sqrt(25) == 5

[1] TRUE

Not only that, but as Table 3.2 illustrates, there are several other logical operators that you can use, corresponding to some basic
mathematical concepts.

Table 3.2: Some logical operators. Technically I should be calling these “binary relational operators”, but quite frankly I don’t want
to. It’s my book so no-one can make me.

operation operator example input answer

less than < 2 < 3 TRUE

less than or equal to <= 2 <= 2 TRUE

greater than > 2 > 3 FALSE

greater than or equal to >= 2 >= 2 TRUE

equal to == 2 == 3 FALSE

not equal to != 2 != 3 TRUE

Hopefully these are all pretty self-explanatory: for example, the less than operator < checks to see if the number on the left is
less than the number on the right. If it’s less, then R returns an answer of TRUE :

99 < 100

[1] TRUE

but if the two numbers are equal, or if the one on the right is larger, then R returns an answer of FALSE , as the following two
examples illustrate:

100 < 100

[1] FALSE

100 < 99

[1] FALSE

In contrast, the less than or equal to operator <= will do exactly what it says. It returns a value of TRUE if the number of the
left hand side is less than or equal to the number on the right hand side. So if we repeat the previous two examples using <= ,

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8111?pdf

3.9.3 https://stats.libretexts.org/@go/page/8111

here’s what we get:

100 <= 100

[1] TRUE

100 <= 99

[1] FALSE

And at this point I hope it’s pretty obvious what the greater than operator > and the greater than or equal to operator >= do!
Next on the list of logical operators is the not equal to operator != which – as with all the others – does what it says it does. It
returns a value of TRUE when things on either side are not identical to each other. Therefore, since 2+2 isn’t equal to 5, we get:

2 + 2 != 5

[1] TRUE

We’re not quite done yet. There are three more logical operations that are worth knowing about, listed in Table 3.3.

Table 3.3: Some more logical operators.

operation operator example input answer

not ! !(1==1) FALSE

or | (1==1) | (2==3) TRUE

and & (1==1) & (2==3) FALSE

These are the not operator ! , the and operator & , and the or operator | . Like the other logical operators, their behaviour is
more or less exactly what you’d expect given their names. For instance, if I ask you to assess the claim that “either 2+2=4 or
2+2=5” you’d say that it’s true. Since it’s an “either-or” statement, all we need is for one of the two parts to be true. That’s what the
| operator does:

(2+2 == 4) | (2+2 == 5)

[1] TRUE

On the other hand, if I ask you to assess the claim that “both 2+2=4 and 2+2=5” you’d say that it’s false. Since this is an and
statement we need both parts to be true. And that’s what the & operator does:

(2+2 == 4) & (2+2 == 5)

[1] FALSE

Finally, there’s the not operator, which is simple but annoying to describe in English. If I ask you to assess my claim that “it is not
true that 2+2=5” then you would say that my claim is true; because my claim is that “2+2=5 is false”. And I’m right. If we write
this as an R command we get this:

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8111?pdf

3.9.4 https://stats.libretexts.org/@go/page/8111

! (2+2 == 5)

[1] TRUE

In other words, since 2+2 == 5 is a FALSE statement, it must be the case that !(2+2 == 5) is a TRUE one.
Essentially, what we’ve really done is claim that “not false” is the same thing as “true”. Obviously, this isn’t really quite right in
real life. But R lives in a much more black or white world: for R everything is either true or false. No shades of gray are allowed.
We can actually see this much more explicitly, like this:

! FALSE

[1] TRUE

Of course, in our 2+2=5 example, we didn’t really need to use “not” ! and “equals to” == as two separate operators. We could
have just used the “not equals to” operator != like this:

2+2 != 5

[1] TRUE

But there are many situations where you really do need to use the ! operator. We’ll see some later on.

3.9.3 Storing and using logical data
Up to this point, I’ve introduced numeric data (in Sections 3.4 and @ref(#vectors)) and character data (in Section 3.8). So you
might not be surprised to discover that these TRUE and FALSE values that R has been producing are actually a third kind of
data, called logical data. That is, when I asked R if 2 + 2 == 5 and it said [1] FALSE in reply, it was actually producing
information that we can store in variables. For instance, I could create a variable called is.the.Party.correct , which
would store R’s opinion:

is.the.Party.correct <2 + 2 == 5
is.the.Party.correct

[1] FALSE

Alternatively, you can assign the value directly, by typing TRUE or FALSE in your command. Like this:

is.the.Party.correct <FALSE
is.the.Party.correct

[1] FALSE

Better yet, because it’s kind of tedious to type TRUE or FALSE over and over again, R provides you with a shortcut: you can
use T and F instead (but it’s case sensitive: t and f won’t work). So this works:

is.the.Party.correct <F
is.the.Party.correct

[1] FALSE

38

39

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8111?pdf

3.9.5 https://stats.libretexts.org/@go/page/8111

but this doesn’t:

is.the.Party.correct <f

Error in eval(expr, envir, enclos): object 'f' not found

3.9.4 Vectors of logicals
The next thing to mention is that you can store vectors of logical values in exactly the same way that you can store vectors of
numbers (Section 3.7) and vectors of text data (Section 3.8). Again, we can define them directly via the c() function, like this:

x <c(TRUE, TRUE, FALSE)
x

[1] TRUE TRUE FALSE

or you can produce a vector of logicals by applying a logical operator to a vector. This might not make a lot of sense to you, so let’s
unpack it slowly. First, let’s suppose we have a vector of numbers (i.e., a “non-logical vector”). For instance, we could use the
sales.by.month vector that we were using in Section@ref(#vectors). Suppose I wanted R to tell me, for each month of the

year, whether I actually sold a book in that month. I can do that by typing this:

sales.by.month > 0

[1] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[12] FALSE

and again, I can store this in a vector if I want, as the example below illustrates:

any.sales.this.month <sales.by.month > 0
any.sales.this.month

[1] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[12] FALSE

In other words, any.sales.this.month is a logical vector whose elements are TRUE only if the corresponding element
of sales.by.month is greater than zero. For instance, since I sold zero books in January, the first element is FALSE .

3.9.5 Applying logical operation to text
In a moment (Section 3.10) I’ll show you why these logical operations and logical vectors are so handy, but before I do so I want to
very briefly point out that you can apply them to text as well as to logical data. It’s just that we need to be a bit more careful in
understanding how R interprets the different operations. In this section I’ll talk about how the equal to operator == applies to
text, since this is the most important one. Obviously, the not equal to operator != gives the exact opposite answers to == so
I’m implicitly talking about that one too, but I won’t give specific commands showing the use of != . As for the other operators,
I’ll defer a more detailed discussion of this topic to Section 7.8.5.

Okay, let’s see how it works. In one sense, it’s very simple. For instance, I can ask R if the word "cat" is the same as the word
"dog" , like this:

"cat" == "dog"

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8111?pdf

3.9.6 https://stats.libretexts.org/@go/page/8111

[1] FALSE

That’s pretty obvious, and it’s good to know that even R can figure that out. Similarly, R does recognise that a "cat" is a
"cat" :

"cat" == "cat"

[1] TRUE

Again, that’s exactly what we’d expect. However, what you need to keep in mind is that R is not at all tolerant when it comes to
grammar and spacing. If two strings differ in any way whatsoever, R will say that they’re not equal to each other, as the following
examples indicate:

" cat" == "cat"

[1] FALSE

"cat" == "CAT"

[1] FALSE

"cat" == "c a t"

[1] FALSE

This page titled 3.9: Storing “True or False” Data is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Danielle
Navarro via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/8111?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)/03%3A_Getting_Started_with_R/3.09%3A_Storing_True_or_False_Data
https://creativecommons.org/licenses/by-sa/4.0
https://djnavarro.net/
https://bookdown.org/ekothe/navarro26/

