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7.3: Using the Central Limit Theorem
The Law of Large Numbers, along with the Central Limit Theorem, provides another critical piece of information to allow us to
engage in inferential statistics. In short, the Law of Large Numbers proves that the expected value of the sampling distribution of
the sample mean is the population mean:

The proof is through the concept of large numbers. 
Suppose you were to take a sample and calculate a sample mean. Then you take another sample, combine it with the previous
sample, and calculate the sample mean of the combined sample. Then you repeat this process over and over, creating bigger and
bigger samples and calculating a sample mean each time along the way. The sample means from larger and larger samples will get
closer and closer to the population mean, . Figure 7.3 shows the running average as more sample means are added and then
averaged. The proof of the Law of Large Numbers mathematically was perfected during a period of 20 years and was presented by
Jacob Bernoulli in 1713.

LLN : as  the running average of 

Figure 

Stated mathematically

or alternatively presented as

where  is the running average as additional sample means are added to the previous sample means.

In summary:

There are three critical mathematical conclusions that flow from the Central Limit Theorem and the application of the Law of
Large Numbers.

1. By the Central Limit Theorem, for large enough sample sizes, the sampling distribution of sample means tends to be normally
distributed regardless of the underlying distribution of the population data.

2. As the sample size, n , gets larger and larger, the sampling distribution standard deviation gets smaller. Remember that the

standard deviation for the sampling distribution of  is . The sample mean, , is more likely to be closer to  as 

increases.
3. By the Law of Large Numbers, the expected value of the sampling distribution of the sample mean is the population mean.

Law of Large Numbers
The law of large numbers says that if you take samples of larger and larger size from any population, then the mean of the
sampling distribution,  tends to get closer and closer to the true population mean, . From the Central Limit Theorem, we know
that as  gets larger and larger, the sample means follow a normal distribution. The larger  gets, the smaller the standard deviation
of the sampling distribution gets. (Remember that the standard deviation for the sampling distribution of  is .) This means
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that the sample mean  must be closer to the population mean  as  increases. We can say that  is the value that the sample
means approach as  gets larger. The Central Limit Theorem illustrates the law of large numbers.

Examples of the Central Limit Theorem
This concept is so important and plays such a critical role in what follows it deserves to be developed further. Indeed, there are two
critical issues that flow from the Central Limit Theorem and the application of the Law of Large numbers to it. These are

1. The probability density function of the sampling distribution of means is normally distributed regardless of the underlying
distribution of the population observations and

2. standard deviation of the sampling distribution decreases as the size of the samples that were used to calculate the means for the
sampling distribution increases.

Taking these in order. It would seem counterintuitive that the population may have any distribution and the distribution of means
coming from it would be normally distributed. With the use of computers, experiments can be simulated that show the process by
which the sampling distribution changes as the sample size is increased. These simulations show visually the results of the
mathematical proof of the Central Limit Theorem.

Here are three examples of very different population distributions and the evolution of the sampling distribution to a normal
distribution as the sample size increases. The top panel in these cases represents the histogram for the original data. The three
panels show the histograms for 1,000 randomly drawn samples for different sample sizes:  and . As the
sample size increases, and the number of samples taken remains constant, the distribution of the 1,000 sample means becomes
closer to the smooth line that represents the normal distribution.

Figure  is for a normal distribution of individual observations and we would expect the sampling distribution to converge on
the normal quickly. The results show this and show that even at a very small sample size the distribution is close to the normal
distribution.
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Figure : Copy and Paste Caption here. (Copyright; author via source)

Figure : is a uniform distribution which, a bit amazingly, quickly approached the normal distribution even with only a sample
of 10.
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Figure : Copy and Paste Caption here. (Copyright; author via source)

Figure  is a skewed distribution. This last one could be an exponential, geometric, or binomial with a small probability of
success creating the skew in the distribution. For skewed distributions our intuition would say that this will take larger sample sizes
to move to a normal distribution and indeed that is what we observe from the simulation. Nevertheless, at a sample size of 50, not
considered a very large sample, the distribution of sample means has very decidedly gained the shape of the normal distribution.
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Figure 

The Central Limit Theorem provides more than the proof that the sampling distribution of means is normally distributed. It also
provides us with the mean and standard deviation of this distribution. Further, as discussed above, the expected value of the mean, 

, is equal to the mean of the population of the original data which is what we are interested in estimating from the sample we
took. We have already inserted this conclusion of the Central Limit Theorem into the formula we use for standardizing from the
sampling distribution to the standard normal distribution. And finally, the Central Limit Theorem has also provided the standard
deviation of the sampling distribution, , and this is critical to have to calculate probabilities of values of the new random

variable, .
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Figure  shows a sampling distribution. The mean has been marked on the horizontal axis of the  's and the standard deviation
has been written to the right above the distribution. Notice that the standard deviation of the sampling distribution is the original
standard deviation of the population, divided by the sample size. We have already seen that as the sample size increases the
sampling distribution becomes closer and closer to the normal distribution. As this happens, the standard deviation of the sampling
distribution changes in another way; the standard deviation decreases as n increases. At very large n , the standard deviation of the
sampling distribution becomes very small and at infinity it collapses on top of the population mean. This is what it means that the
expected value of  is the population mean, .

Figure 

At non-extreme values of , this relationship between the standard deviation of the sampling distribution and the sample size plays
a very important part in our ability to estimate the parameters we are interested in.

Figure  shows three sampling distributions. The only change that was made is the sample size that was used to get the sample
means for each distribution. As the sample size increases, n goes from 10 to 30 to 50, the standard deviations of the respective
sampling distributions decrease because the sample size is in the denominator of the standard deviations of the sampling
distributions.

Figure : Copy and Paste Caption here. (Copyright; author via source)

The implications for this are very important. Figure  shows the effect of the sample size on the confidence we will have in our
estimates. These are two sampling distributions from the same population. One sampling distribution was created with samples of
size 10 and the other with samples of size 50 . All other things constant, the sampling distribution with sample size 50 has a smaller
standard deviation that causes the graph to be higher and narrower. The important effect of this is that for the same probability of
one standard deviation from the mean, this distribution covers much less of a range of possible values than the other distribution.
One standard deviation is marked on the  axis for each distribution. This is shown by the two arrows that are plus or minus one
standard deviation for each distribution. If the probability that the true mean is one standard deviation away from the mean, then for
the sampling distribution with the smaller sample size, the possible range of values is much greater. A simple question is, would
you rather have a sample mean from the narrow, tight distribution, or the flat, wide distribution as the estimate of the population
mean? Your answer tells us why people intuitively will always choose data from a large sample rather than a small sample. The
sample mean they are getting is coming from a more compact distribution. This concept will be the foundation for what will be
called level of confidence in the next unit.
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