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1.5: Significance of Statistical Inference Methods
This chapter is a continuation of the previous chapter on inferential statistics.

Significance of Statistical Inference Methods
Confidence Intervals
Hypothesis Testing
Type I and Type II Errors
Scientific Racism

The importance of statistical inference is grounded in several assumptions. First, it addresses a particular type of uncertainty,
namely that caused by having data from random samples rather than having complete knowledge of entire populations, processes,
or distributions. Second, we cannot build statistical inference without first building an appreciation of sample versus population,
of description versus inference, and of characteristics of samples giving estimates of characteristics of populations. Third, any
conceptual approach to statistical inference must flow from some essential understanding of the nature and behavior of sampling
variation. Finally, statistical inference is viewed as both an outcome and a reasoned process of creating or testing probabilistic
generalizations from data. The prior four chapters introduced you in varying degrees to these points.

In this chapter, you will see how sampling distributions are used to test hypotheses and construct confidence intervals. Topics
discussed in this chapter are:

Implicit Assumptions in Making Statistical Inferences
Significance of Statistical Inference Methods

Confidence Intervals
Tests of Significance

5.1. Implicit Assumptions in Making Statistical Inferences

One of the statistician’s most important roles is the upfront contribution of planning a study, which includes identifying the implicit
assumptions when making statistical inferences. It is important that these assumptions are met, and if they are not, the statistical
inferences can result in seriously flawed conclusions in the study. According to Hahn & Meeker (1993) , the first assumption is
that the target population has been explicitly and precisely defined. The second assumption is that a specific listing (or another
enumeration) of the population from which the samples have been selected has been made. Third, the data are assumed to be a
random sample of the population. The assumption of random sampling is critical. When the assumption of random sampling (or
randomization) is not met, inferences to the population become difficult. In this case, statisticians should describe the sample and
population in sufficient detail to justify that the sample was at least representative of the intended population.

5.2. The Significance of Statistical Inference Methods
You have now acquired a clear understanding of the difference between a sample (the observed) and the population (the
unobserved). The extent to which credence should be placed in a given sample statistic as a description of the population parameter
is the problem of inferring from the part to the whole. This is sometimes called the problem of inductive inference, or the problem
of generalization.

 Learning Objectives
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Using the field of Econometrics  as an example, Keuzenkamp & Magnus (1995)  describes the four types of statistical testing:

1. Theory Testing: This method consists of formulating hypotheses from which predictions of novel facts are deduced (the
consequences).

2. Validity Testing: Performed in order to find out whether the statistical assumptions underlying some models are credible. In
order to pursue a theory test, one first must be sure of the validity of the statistical assumptions that are made.

3. Simplification Testing: Simplicity matters. Simple models are typically preferred to complex ones. Rather than testing from
general to simple, statisticians perform iterative simplification searches. In the study of statistics, we focus on mathematical
distributions for the sake of simplicity and relevance to the real world. Understanding these distributions enables us to visualize
the data more easily and build models more quickly.

4. Decision-Making: Based on statistical acceptance rules, this method can be important for process quality control and can be
extended to appraising theories.

The type of statistical test one uses depends on the type of study design, number of groups of comparison, and type of data (i.e.,
continuous, dichotomous, and categorical) (Parab & Bhalerao 2010).

Subsequent sections will discuss statistical inference methods that use the language of probability to estimate the value of a
population parameter. The two most common methods are confidence intervals and tests of significance.

5.2(a). Confidence Intervals (CI)

A confidence interval, in statistics, refers to the probability that a population parameter falls between two set values. The sample is
used to estimate the interval of probable values of the parameters of the population. It is a matter of convention to use the standard
95% confidence interval having the probability that there are 95 chances out of 100 of being right. There are five chances out of
100 of being wrong. Even when using the 95%  confidence interval, we must remember that the sample mean could be one of
those five sample means that fall outside the established interval. A statistician never knows for sure.

According to Zhang, Hanik & Chaney (2008) , the CI has four noteworthy characteristics:

1. For a given sample size, at a given level of confidence, and using probability sampling, there can be infinitely many CIs for a
particular population parameter. The point estimates and endpoints of these CIs vary due to sampling errors that occur each time
a different sample is drawn.

2. The CI reported in a certain research study is just one of these infinitely many CIs.
3. The percentage of these CIs that contain the population parameter is the same as the level of confidence.
4. Whether a certain CI reported by a research study contains the population parameter is unknown. In other words, the level of

confidence is applied to the infinitely many CIs, rather than a single CI reported by a single study.

The U.S. Census Bureau routinely uses confidence levels of 90% in their surveys. “The number of people in poverty in the
United States is 35,534,124 to 37,315,094″ means (35,534,124 to 37,315,094) is the confidence interval. Assuming the Census
Bureau repeats the survey 1,000 times, the confidence level of 90% means that the stated number is between (35,534,124 to
37,315,094) at least 900 times. Maybe 36,000,000 people are in poverty–maybe less or greater. Any number in the interval is
as expected.
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Any confidence interval has two parts: an interval calculated from the data and a confidence level C. The confidence interval often
has the form:

estimate \pm margin of error

The confidence level is the success rate of the method that produces the interval, that is, the probability that the method will give a
correct answer. The statistician chooses the confidence level, and the margin of error follows from this choice. When the data and
the sample size remain the same, higher confidence results in a larger margin of error. There is a tradeoff between the confidence
level and the margin of error. To obtain a smaller margin of error, the statistician must be able to accept a lower confidence. As the
sample size increases, the margin of error gets smaller.

A level C confidence interval for the mean µ of a Normal population with known standard deviation σ, based on a simple random
sample of size n, is given by:

The critical value z* is chosen so that the standard Normal curve has an area C between – z* and z*. Below are the entries for the
most common confidence levels:

Table 1: Confidence Levels and Corresponding z-Scores

Confidence Level C 90% 95% 99%

Critical value z* 1.645 1.960 2.576

We know from the Central Limit Theorem (chapter 4) that when n ≥ 30, the sampling distribution of sample means approximates a
normal distribution. The level of confidence C is the area under the standard normal curve between the critical values, -z  and z .
Critical values are values that separate sample statistics that are probable from sample statistics that are improbable, or unusual.
For instance, if C =95%, then 2.5% of the area lies to the left of -z  = -1.960 and 2.5% lies to the right of z = 1.960, as shown in the
Table below:

If C = 95%, then:

Figure 1: 95% Confidence Level with Critical Values Separating Left and Right Tails
An example of the meaning of the 95% confidence interval is as follows:
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Suppose a medical researcher is interested in the prenatal care received by pregnant women in the inner city of Philadelphia. She
breaks down the various sections of North Philly and computes the average number of gynecological check ups per pregnancy for
all possible samples of size 20 and constructs the 95% confidence intervals using these sample means. Then 95% of these intervals
would contain µ [population parameter]and 5% would not. Note that we cannot say that the probability is .95 that the interval from
2.6 to 3.4 gynecological checkups, for example, contains µ. Either the interval contains µ or it does not.

The 95% confidence interval of 2.6 to 3.4 was calculated based on the average number of gynecological check ups per pregnancy
being 3, with a standard deviation of 1.

The newness of electric vehicles, their high upfront cost, the need for charging access, and other issues mean that equity has
been overlooked (Hardman, Fleming, Khare & Ramadan 2021) . Electric vehicle buyers are mostly male, high-income,
highly educated homeowners who have multiple vehicles in their household and have access to charging at home. There is a
need for a more equitable electric vehicle market so that the benefits of electrification are experienced by all and so that low-
income households are not imposed with higher transportation costs. Low-income households, including those in
underrepresented communities and in disadvantaged communities, could benefit from transportation electrification. These
households are impacted by transportation emissions as they are more likely to reside in or near areas of high traffic and spend
a higher proportion of their household income on transportation costs. Households in these communities are less likely to have
charging at home or be able to afford to install home charging, have smaller budgets for vehicle purchases, and have fewer
vehicles in their household. They are also less likely to have a regular place of work, which means they may not have
workplace charging access (an alternative to home charging). These factors make plug-in electric vehicle (PEV) ownership
more challenging,

A Step-by-Step Illustration: 95% Confidence Interval Using z

Suppose that the automobile company, Honda, wishes to address the mobility needs of underserved communities. As a separate
research project, the company will work on the barriers and enablers of electrification. Until then, Honda determines the
expected miles per gallon for a new 2025 HRV model that is designed to be far more affordable and efficient for low-income
buyers. The company statistician knows from years of experience that not all cars are equivalents. She believes that a standard
deviation of 4 miles per gallon (σ = 4) is expected due to parts and technician variations. To estimate the mean miles per gallon
for the new model, she test runs a random sample of 100 cars off the assembly line and obtains a sample mean of 26 miles per
gallon.

The following are steps to obtaining a 95% confidence interval for the mean miles per gallon for all cars of the HRV model.

Step 1: Obtain the mean for a random sample (which has already been provided).

Step 2: Calculate the standard error of the mean, knowing that σ = 4.
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Step 3: Calculate the margin of error by multiplying the standard error of the mean by 1.96, the value of z for a 95%
confidence interval.

Margin of error =1.96\sigma _{\bar{X}}

Step 4: Add and subtract the margin of error from the sample mean to find the range of mean scores within which the
population mean is expected to fall with 95% confidence.

95% Confidence Interval =\bar{X}\pm 1.96\sigma _{\bar{X}}

Thus, the statistician can be 95% confident that the true mean miles per gallon for the new 2025 HRV model (µ) is between
25.22 and 26.78.

Important! After constructing a confidence interval, the results must be interpreted correctly. Consider the 95% confidence
interval constructed in the above example. Because µ is a fixed value predetermined by the population, it is in the interval or not. It
is not correct to say, “There is a 95% probability that the actual mean will be in the interval (25.22, 26.78).” This statement is
wrong because it suggests that the value µ can vary, which is not true. The correct way to interpret this confidence interval is to say,
“With 95% confidence, the mean is in the interval (25.22, 26.78).” This means that when a large number of samples are collected
and a confidence interval is created for each sample, approximately 95% of these intervals will contain µ.

Now Try It Yourself

5.2(b). Tests of Significance

The second type of statistical inference is tests of significance. The tests of significance aid the statistician in making inferences
from the observed sample to the unobserved population.

The test of significance provides a relevant and useful way of assessing the relative likelihood that a real difference exists and is
worthy of interpretive attention, as opposed to the hypothesis that the set of data could be an arrangement lacking any type of
pattern. The basic idea of statistical tests is like that of confidence intervals: what would happen if we repeated the sample many
times?

A statistical test starts with a careful statement of the claims a statistician wants to compare. Because the reasoning of tests looks
for evidence against a claim, we start with the claim we seek evidence against, such as “no effect or “no difference.”

5.2(b)(1). The Null Hypothesis: No Difference Between Means

A statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently supports a
particular hypothesis.  In terms of selecting a statistical test, the most important question is, “What is the main hypothesis for the
study?” In some cases, there is no hypothesis; the statistician just wants to “see what is there.”

= 1.96(.4) (1.5.14)

= .78 (1.5.15)

= 26 ±.78 (1.5.16)

= 25.22 (1.5.17)
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On the other hand, if a scientific question is to be examined by comparing two or more groups, one can perform a statistical test.
For this, initially, a null hypothesis needs to be formulated, which states that there is no difference between the two groups. It is
expected that at the end of the study, the null hypothesis is either rejected or not rejected (Parab & Bhalerao 2010).

The claim tested by a statistical test is called the null hypothesis. The test is designed to assess the strength of the evidence against
the null hypothesis. The claim about the population that we are trying to find evidence for is the alternative hypothesis. The
alternative hypothesis is one-sided if it states that the parameter is larger than or smaller than the null hypothesis value. It is two-
sided if it states that the parameter is different (larger or smaller) from the null value (Moore, Notz & Fligner 2013).

The null hypothesis is abbreviated as H  and the alternative hypothesis as H . H  is a statistical hypothesis that contains a
statement of equality, such as ≤, =, or ≥. H is the complement of the null hypothesis. It is a statement that must be true if H is
false. It contains a statement of strict inequality, such as >, ≠, or <. H  is read as “H naught.” H  is read as “H sub-a.”

You always begin a hypothesis test by assuming that the equality condition in the null hypothesis is true. When you perform a
hypothesis test, you make one of two decisions:

1. Reject the null hypothesis or
2. Fail to reject the null hypothesis.

Know that because a decision is based on a sample rather than the entire population, there is the possibility of making the wrong
decision. The only way to be absolutely certain of whether Ho is true or false is to test the entire population, which, in reality, may
not be feasible. So, the statistician must accept the fact that the decision might be incorrect. As shown in Figure 2 below, there are
two types of errors that can be made:

Figure 2: Type I and Type II Errors in Hypothesis Testing

A Type I Error occurs if the null hypothesis is rejected when it is true.

A Type II Error occurs if the null hypothesis is not rejected when it is false.

In a hypothesis test, the level of significance is the maximum allowable probability of making a Type I error. It is denoted by α, the
lowercase Greek letter alpha. The probability of a Type II error is denoted by β, the lowercase Greek letter beta. By setting the level
of significance at a small value, the probability of rejecting a true null hypothesis will be small. The commonly used levels of
significance are: α = 0.01; α = 0.05; and α = 0.10. When α is decreasing (the maximum probability of making a Type I Error), it is
likely that β is increasing. The value 1 – β is called the power of the test. It represents the probability of rejecting the null
hypothesis when it is false.
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Hypotheses always refer to the population, not to a particular outcome. They are stated in terms of population parameters. Thus, for
no difference between means, the null hypothesis can be symbolized as

µ  = µ

where µ = mean of the first population

µ = mean of the second population

Now Try It Yourself

A test is based on a test statistic that measures how far the sample outcome is from the value stated by H The P-value of a test is
the probability that the test statistic will take a value at least as extreme as that actually observed. Small P-values indicate strong
evidence to reject the null hypothesis provided by the data. However, a very low P-value does not constitute proof that the null
hypothesis is false, only that it is probably false. Large P-values fail to give evidence against H The most important task is to
understand what a P-value says.

If the P-value is as small or smaller than a specified value α (alpha), the data are statistically significant at significance level α.

Decision Rule Based on P-Value

To use a P-value to decide in a hypothesis test, compare the P-value with α.

If P ≤ α, then reject H .

If P > α, then fail to reject H .

“Assume there is data collected from two samples and that the means of the two samples are different. In this case, there are
two possibilities: the samples really have different means (averages), or the other possibility is that the difference that is
observed is a coincidence of random sampling. However, there is no way to confirm any of these possibilities.

All the statistician can do is calculate the probabilities (known as the “P” value in statistics) of observing a difference between
sample means in an experiment of the studied sample size. The value of P ranges from zero to one. If the P value is small, then
the difference is quite unlikely to be caused by random sampling, or in other words, the difference between the two samples is
real. One has to decide this value in advance, i.e., at which smallest accepted value of P, the difference will be considered as a
real difference.

The P value represents a decreasing index of the reliability of a result. The higher the P value, the less we can believe that the
observed relation between variables in the sample is a reliable indicator of the relation between the respective variables in the
population. Specifically, the P value represents the probability of error that is involved in accepting our observed result as
valid, i.e., as “representative of the population.” For example, a P value of 0.05 (i.e., 1/20) indicates that there is a 5%
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probability that the relation between the variables found in our sample is a “fluke.” In other words, assuming that in the
population, there was no relation between those variables whatsoever, and we were repeating experiments such as ours one
after another, we could expect that approximately in every 20 replications of the experiment, there would be one in which the
relation between the variables in question would be equal to or stronger than in ours. In many areas of research, the P value of
0.05 is customarily treated as a “cut-off” error level.”

The P-value of a test depends on the nature of the test. As shown in Figure 3 below, there are three types of hypothesis tests—left-
tailed, right-tailed, and two-tailed (where evidence that would support the alternative hypothesis could lie in either tail of the
sampling distribution).

Figure 3: Three Types of Hypothesis Tests

In a left-tailed test, the alternative hypothesis H  contains the less-than inequality symbol (<):

H µ ≥ k

H µ < k

In a right-tailed test, the alternative hypothesis H  contains the greater-than-inequality symbol (>):

H µ ≤ k

H µ > k

In a two-tailed test, the alternative hypothesis H  contains the not-equal-to symbol (≠):

H µ = k

H µ ≠ k
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Steps in Hypothesis Testing

1. State mathematically and verbally the null and alternative hypotheses.

Ho: ? Ha: ?

2. Specify the level of significance.

α = ?

3. Obtain a random sample from the population.
4. Calculate the sample statistic (such as x̅, p̂, s2) corresponding to the parameter in the null hypothesis (such as µ, p, or σ2). This

sample statistic is called the test statistic.
5. With the assumption that the null hypothesis is true, the test statistic is then converted to a standardized test statistic, such as

z, t (student’s t-test) or χ2 (chi-square). The standardized test statistic is used in making the decision about the null hypothesis.

Student’s t Test : A t-test may be used to evaluate whether a single group differs from a known value (a one-sample t-test),
whether two groups differ from each other (an independent two-sample t-test), or whether there is a significant difference in paired
measurements (a paired, or dependent samples t-test). t-tests rely on an assumed “null hypothesis.” You have to decide whether this
is a one-tail (Is it greater or less than?) or a two-tail test (Is there a difference?) and choose the level of significance (Greek letter
alpha, α). An alpha of .05 results in 95% confidence intervals and determines the cutoff for when P-values are considered
statistically significant.

The assumptions of a t-test are:

One variable of interest.
Numeric data.
Two groups or less.
Random sample.
Normally distributed.

[12]
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Chi-Square Test (χ2): a statistical test commonly used to determine if there is a significant association between two variables.

For example , many Black and Latinx organizations receive relatively small program grants. To reverse this trend and to
engender sustainability, foundations could create grantee cohorts in traditionally underserved communities and neighborhoods.
This neighborhood cohort approach has been used successfully by foundations for decades for a variety of reasons, such as
achieving efficiency and promoting collaboration. Unbound Philanthropy’s Good Neighbor Committee, a staff initiative dedicated
to grantmaking in the New York City metro, sought to reduce gang violence in central Long Island by supporting several
organizations that were working on the problem from different angles. These included a youth development organization and a
parent advocacy organization. The Chi-Square Test for Independence tests two hypotheses:

Null Hypothesis: There is not a significant association between variables, the variables are independent of each other. Any
association between variables is likely due to chance and sampling error. For example, there is no significant association between
Organization A (a youth development organization) and Organization B (a parent advocacy organization). Each organization’s
ability to reduce gang violence has nothing to do with the other.

Alternative Hypothesis: There is a significant association (positive or negative) between variables, the variables are independent of
each other. Any association between variables is not likely due to chance and sampling error. For example, there is a significant
association between Organization A (a youth development organization) and Organization B (a parent advocacy organization).
Each organization’s ability to reduce gang violence, to some degree, impacts the other.

1. Find the P-value.
2. Use this decision rule: If P-value is less than or equal to the level of significance, then reject the null hypothesis. If P-value is

greater than the level of significance, then fail to reject the null hypothesis.
3. Write a statement to interpret the decision in the context of the original claim.

Now Try It Yourself

Yao, Gutter & Hannah (2005)  studied the effects of race and ethnicity on financial risk tolerance. Risk attitudes may affect
investment behavior, so having an appropriate willingness to take financial risk is important in achieving investment goals. In
turn, investment choices can affect retirement well-being, and, more specifically, the retirement adequacy of different racial
and ethnic groups. This study focused on the expressed risk tolerance of Hispanics and Blacks compared to Whites because of
the implications of investment behavior for future wealth differences and improving financial education programs.

Descriptive Statistics Results : White respondents are significantly more likely to be willing to take some risk (59%) than are
Blacks (43%), who are significantly more likely to be willing to take some risk than Hispanics (36%). However, the pattern is
reversed for willingness to take substantial risk, with only 4% of Whites but 5% of Blacks and 6% of Hispanics willing to take
substantial risk.

Hypotheses Testing Results: The hypotheses are confirmed for substantial risk. Table 2 below summarizes the hypothesis tests.
Based on the z-tests, Whites are significantly more likely than Blacks, and Blacks are significantly more likely than Hispanics
to be willing to take some financial risks. For substantial risk, the results are the opposite of the hypotheses, as Whites are
significantly less likely than Blacks and Hispanics to be willing to take substantial financial risks; and the difference between

[13]

The Financial Risk Tolerance of Blacks, Hispanics, and Whites: 
Applying the Equity Lens
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Hispanics and Blacks is not significant. For high risk, the hypothesis that Whites are more likely to be willing to take risks than
the other two groups are confirmed, but Hispanics are as willing to take high risks as Blacks.

 

Financial Risk tolerance levels Z-test results Logit results

Substantial Not accepted: Hispanics = Blacks >
Whites

Not accepted: Hispanics = Blacks >
Whites

High Partially Accepted: Whites > Hispanics
= Blacks

Not accepted: Hispanics = Blacks =
Whites

Some Accepted: Whites > Blacks >
Hispanics Accepted: Whites > Blacks > Hispanics

> : Significantly greater at the .05 level or better

= : Not significantly different at the .05 level

Below are a sample of hypotheses found in the research literature on race and ethnicity and their intersection with other variables,
such as age, socioeconomic status, and sexual preference:

Contact Hypothesis: Interracial contact is associated with more positive racial attitudes, especially among Whites and some
effects are appreciable.
Cumulative Disadvantage Hypothesis: Predicts that initial advantages and disadvantages compound and produce diverging
health trajectories as individuals age. Rationale: Given the structural disadvantages that people of color face across multiple
domains of the life course, the cumulative disadvantage hypothesis predicts that racial-ethnic health disparities increase with
age. (Brown, O’Rand & Adkins (2012) .
Ethnicity Hypothesis: Ethnic minorities engage more in social activities than Whites of comparable socioeconomic status.
Rationale: The relatively smaller, more cohesive ethnic group is able to exert pressure on the individual member to conform to
the norms of the respective ethnic affiliation. (Antunes and Gaitz 1975) .
LGBT-POC (People of Color) Hypothesis: These individuals may experience unique stressors associated with their dual
minority status, including simultaneously being subjected to multiple forms of microaggressions (brief, daily assaults which can
be social or environmental, verbal or nonverbal, intentional or unintentional). Within LGBT communities, LGBT-POC may
experience racism in dating relationships and social networks. Rationale: Racial/ethnic minority individuals have reported
exclusion from LGBT community events and spaces. For example, certain gay bars have been noted for refusing entry of
African Americans and providing poorer service to Black patrons. (Balsam et al. 2011) .
Persistent Inequality Hypothesis: Predicts that racial-ethnic inequalities in health remain stable with age. Rationale: Socio-
economic conditions and race-ethnicity are considered “fundamental causes” of disease and illness because of their persistent
association with health over time regardless of changing intermediate mechanisms. (Brown, O’Rand & Atkins (2012).
Statistical Discrimination or Profiling Hypothesis: In this situation, an individual or firm uses overall beliefs about a group to
make decisions about an individual from that group. The perceived group characteristics are assumed to apply to the individual.
Thus, statistical discrimination may result in an individual member of the disadvantaged group being treated in a way that does
not focus on his or her own capabilities. (National Academies Press 2004) .
Weathering Hypothesis: Chronic exposure to social and economic disadvantage leads to accelerated decline in physical health
outcomes and could partially explain racial disparities in a wide array of health conditions. (Forde, Crookes, Suglia & Demmer
2019) .

Chapter 5: Summary
Rather than summarize the content of this chapter, I decided to do something different. I would like to share with you something
that I came across while researching articles for this book. I was introduced to the term scientific racism by Jay (2022) , which
was deeply concerning. Its genesis is described in the following:

“Scientific racism,” or more accurately pseudo-scientific racism (because racism is not scientific), was a way in which European
colonial governments — and the statisticians they hired to do government surveys and data collection — justified their racist
policies by using statistical measurements, often in an extremely biased and incorrect way. For example — if you’ve ever heard of
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the infamous “skull measurements” used by European pseudo-scientists in the colonial era to try to demonstrate a (fake)
correlation between skull size and intelligence — you should know they did that in order to put scientific backing behind claims
such as “Africans, Native Americans, and Asians are less intelligent than Europeans due to smaller size.” Of course, these claims
are completely unscientific and baseless — but using scientific terminology and measurements as a backing was a way to soothe
their guilty conscience.

…But how does this tie in with racism? Well — when colonial European “scientists” began measuring the heights, weights, and
appearances of “races” in the world, they leaned on European statisticians like Galton to make conclusions based on the data. He
and his contemporaries believed that the measurements of people in each of their “races” would follow a bell curve — the normal
distribution.

If these “racial measurements” followed a normal distribution — well, since every normal curve has a specific mean and standard
deviation — it “follows” that each “race” of people has an “average look.” If this logic already sounds creepy to you — that’s
because it IS — and it’s frankly mind-blowing how some of these statisticians convinced themselves their research was wholly
“scientific.”

Author’s Comment: The above reminds us that the journey of “equity-mindedness” is really about doing anti-racism, anti-
oppression, and anti-colonialism work. Thus, statistics must be socially just in its methods as well as its intentions.

Writing this OER book has reinforced the importance of upholding dharma (ethical and moral righteousness) when planning and
implementing a study. Not only do we have to be careful about “bias creep,” but be careful about the unintended deleterious effects
of conclusions reached.

Thank you all for staying committed to this journey! I take this opportunity to acknowledge the group Sweet Honey in the Rock,
which celebrates its 50th Anniversary this year of singing social justice songs. Their debut began in 1973 at a workshop at Howard
University, a historically Black college in Washington, DC. It was their creative songs that motivated me each day to write this
OER book.

(Photo with Permission of Artist)
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