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Student Usage of the Book

Studying Mathematics and Statistics

To understand mathematical and statistical content proficiently, consistent dedication of two of our most precious and demanded
resources, time and attention, are necessities. Both time and attention are in high demand and seem to be scarce commodities. We
must be intentional in setting and keeping a schedule; that is our time commitment. Given today's society and technology, we must
be even more intentional in our attention. Our thoughts, phones, computers, and family/friends consistently interrupt and with great
frequency. We can mitigate the influence of the last three preemptively by selecting an appropriate location, setting boundaries,
closing applications, and turning off notifications. Some of us might actually miss the constant stream of interruptions when they
are gone (for our brief study sessions); we are not used to being in silence, thinking deeply, or attending for lengthy durations.
Many of us will struggle; that is okay. We are not alone in this.

We cannot separate ourselves from our thoughts, and the concerns of the day often creep up when trying to study. We recommend a
couple practices. There are many possibilities; find some that work for you. When you first sit down to study, take a minute or two
to settle your mind, acknowledge the fact that your concerns are real but not pressing; they can wait until after your study session.
During the study session, when you realize your mind is wandering or distracted, acknowledge that fact and then immediately
reorient back to the material. We cannot hope to eliminate all mental distractions, but we can try to minimize the time that we are
distracted.

Mathematical and statistical content takes attention and practice to understand. When we read, take notes, work examples, and
attempt problems, we are working towards understanding and internalizing the ideas. We are not memorizing procedures or merely
crossing tasks off a to-do list. Intention matters tremendously; remember why we are studying. Perhaps, we do not know why. If
that is the case, begin pondering and researching. We address this in part early in the first chapter. For this semester, let us set the
time and space for us to attend to course material so that we can understand the ideas, beauty, and applications proficiently.

Book: Reading, Notes, and Exercises

Both mathematics and statistics courses build throughout the semester. There is a logical progression; there is a story that builds
continuously. Textbooks often chunk the story into disparate bites to the point that the story is lost. We have tried earnestly to relay
the story as well as we can. If you do not understand something, do not move on as if it does not matter: identify that which does
not make sense and ponder, reread, ask questions, etc. We strongly encourage you to take notes. Each lesson has learning objectives
to help gauge what is important and bolds key terms to help you recognize their importance and for ease if you need to return for
reference (ideally, your notes will work better for a quick reference). To be successful, we need both the big story and the details; it
is important to attend to both. To help achieve this goal, we have created many text exercises.

When you see a box like this, it means that we have introduced some concept or idea that we think you are ready to think about
and explore. Read the prompt and engage with it. We often ask for justification. Construct an answer in your notebook if you
can. Compare your answer to our answer. Make modifications to your understanding. Go back and see if you can identify
something that you missed that was important to the solution.

Answer

Do not read the prompt and immediately click to see the answer. Trying these exercises on your own is key to
understanding and internalizing the material. If you cannot come up with a solution, that is not a problem (some of them are
harder than others). Use the answer to help you. Try to identify the ideas in the answer and then go back to where they were
presented in the text. Ask yourself: what could I have done to help draw these connections?

Learning statistics takes a lot of work and discipline. Know that you are not alone in this endeavor. We are very much interested in
supporting you throughout the process of understanding and internalizing the material. Instructors, peers, and tutors are great
resources to support you. Jump in with both feet, schedule your study sessions, take steps to ensure you can attend to the material
sufficiently, and enjoy the journey. Good luck!

 Text Exercise 1
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CHAPTER OVERVIEW

1: Introduction to Statistics
1.1: What is Statistics?
1.2: Importance of Statistics
1.3: Two Realms of Statistics- Descriptive and Inferential
1.4: Sampling Methods
1.5: Variables
1.6: Levels of Measurement

1: Introduction to Statistics is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort
Hays State University.
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1.1: What is Statistics?

Identify situations in which statistics can be misleading
Define statistics

Introduction to Statistics

Statistics includes numerical facts and figures. For instance:

The largest earthquake measured  on the Richter scale.
In ,  of all adult homicide victims were male.
in , about a quarter of women of reproductive age in South Africa were HIV positive.
By the year , there will be  million people aged  and over in the United States, a % increase since .

The study of statistics involves math and various calculations, but as a body of knowledge, statistics is built upon much more.
Statistics includes theoretical frameworks that guide the formulation of questions and the data collection, analysis, and
interpretation needed to answer those questions. Consider the following three scenarios where interpretations are given based on
presented statistical measures. You will find that the numbers may be correct, but the interpretation may be wrong. Try to identify a
major flaw with each interpretation on your own, and then check your response.

A new advertisement for Ben and Jerry's ice cream was introduced in late May of last year. The following three months saw a 
 increase in ice cream sales; thus, the advertisement was effective.

Answer

A major flaw is that ice cream sales generally increase in the months of June, July, and August, regardless of
advertisements. This effect is called a history effect and leads people to interpret outcomes as the result of one variable
when another variable (in this case, the time of the year) is actually responsible.

The more churches there are in a city, the more crime there is. Thus, churches lead to crime.

Answer

A major flaw is that both increased churches and increased crime rates can be explained by larger populations. In bigger
cities, there are both more churches and more crime. This problem refers to the third-variable problem; namely, people
erroneously believe that there is a causal relationship between the two primary variables rather than recognize that a third
variable can cause both.

At Harvard, the percentage of seniors that graduated with a GPA of  increased nearly  from  to . Thus, grade
inflation is a real epidemic.

Answer

A major flaw is that we don't have the information that we need. What are the actual rates of occurrence? Suppose only 
of students earned a  GPA in  and  of graduating seniors earned such a GPA in ,  is  higher than 

 But this latter number is hardly evidence suggesting an epidemic in grade inflation. In addition, the statistic provided
does not rule out the possibility that the number of  GPAs had seen dramatic fluctuations in those years due to a variety
of different causes. Again, there is simply not enough information to fully understand the impact of the statistic. If you're
interested, read more about the statistics of graduating seniors here.
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As a whole, these examples show that "statistics" are not only facts and figures. In the broadest sense, statistics refers to a large
range of techniques and procedures for analyzing, interpreting, displaying, and making decisions based on data.

1.1: What is Statistics? is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort Hays
State University.

1.1: What are Statistics? by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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1.2: Importance of Statistics

Motivate the importance of statistical literacy in our daily lives
Review the scientific method
Define variable
Define independent variable
Define dependent variable
Outline the basic process of statistics-based research

General Overview of Why/How We Study Statistics
Most of us are probably aware of the human desire to live a good life. In trying to achieve this goal, we must make choices based
upon the world around us. To help us make these decisions, we can examine things that are consistent and predictable and use them
to anticipate future events. This, paired with the knowledge that not everything in life can be classified as consistent or predictable,
can help us develop tools that facilitate our growth.

What are some examples of the challenges we find in life that draw us to develop some understanding of these tools and how the
world works? Perhaps a candidate for mayor claims that the rising crime rate in the city is a direct consequence of the policies his
political opponent supports; how can we determine if this is correct? How do we decide who we vote for in the upcoming election?
Perhaps a salesperson is trying to sell us blackout curtains, claiming that it will lower the heating bill of the house. Will we actually
save money by purchasing the curtains? Will a new diet fix our health issues? Can we improve the fuel economy of our vehicles by
using a different kind of fuel? Is the probability of severe weather high enough to justify canceling some event? There are many
situations that require us to observe and analyze in order to make the best choice.

Having experienced the unpredictability and inconsistency found in both the natural world and our human societies, a legitimate
question arises: how do we know that our understanding of the world actually represents reality? The world is complicated.
Numerous factors, both seen and unseen, play into every event. People may make claims out of ignorance, or they might have
ulterior, even malicious, intentions. Knowing this, how should we act? We could very easily become overwhelmed with doubts, but
luckily, throughout most of our lives, we have been developing ways to address them.

The answer is quite simple and familiar. We observe people and events repeatedly throughout our lives, noting different
circumstances and outcomes. We analyze our observations to form an initial conclusion. From our initial perceptions, we refine and
build trust in our models by repeatedly testing and continually updating them. Eventually, our perceptions of certain individuals and
events garner enough trust and consistency that we naturally rely on them. However, we are always open to additional information
that may cast new light upon our previous perceptions. In most of us, this process happens naturally. Hopefully, we recognize this
process as the foundation of the scientific method.

We can understand the scientific method as the result of recognizing and honing the natural process of inquiry outlined above. As
we grow in our ability to analyze the world, common errors and methodological inefficiencies are identified and expunged. The
scientific method begins with a set of observations that elicit some interest which then fosters the development of a research
question on a particular topic. At this stage, an initial generalization or hypothesis is constructed to provide insight into an answer
to the research question; the hypothesis speaks to the relationship between specific aspects of the field of interest. These specific
aspects are variables (properties or characteristics of some event, object, or person that can take on different values or amounts).
The hypothesis must be falsifiable; that is, it could be shown to be incorrect.

Once the hypothesis has been constructed, the hypothesis is tested through experimentation. When we merely observe, we cannot
account for the individual influence of each variable at play. The experimental design process is one of the most important steps in
the scientific method. Here, the researcher identifies all of the other variables, called confounding variables, that may affect the
hypothesized relationship. The researcher may devise a plan to negate or control the influence of those confounding variables while
systematically changing some of the variables of interest. The variables that are changed systematically by a researcher during an
experiment are called independent variables. The dependent variables are the variables measured as the independent variables
are manipulated. The experimental design becomes significantly more complicated as the number of independent and dependent
variables increases since knowledge of how each independent variable interacts with each dependent variable would need to be
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examined. For this reason, it is preferable to keep the number of independent and dependent variables to a minimum within a
particular experiment. More variables can be examined in subsequent experiments.

High schools often prepare students for graduation by exploring career options and the various paths into those fields. A
common component of such presentations is job satisfaction. In which fields are people most satisfied with their jobs? In which
fields are people happiest? A young student might look at a list of careers with high satisfaction, which includes clergy,
chiropractors, firefighters, nurses, and dentists (to name a few), and think that picking a career from such a list will result in
living a good life. We can understand the collection of job satisfaction data as a form of experimentation. Identify independent,
dependent, and confounding variable(s) and assess the connection between profession and happiness.

Answer

In job satisfaction studies, the primary variables of interest are profession and satisfaction. The researchers study particular
careers, which are the "values" of the variable (profession), and then measure the dependent variable (satisfaction) as the
particular careers change. This makes profession the independent variable and satisfaction the dependent variable. Many
factors, such as personal values, interests, and strengths, play a major role in job satisfaction. The degrees of repetition and
mindlessness in a job also play a role. These variables, and many other variables left unstated, are confounding variables.
Satisfaction in career and life corresponds most directly with a person's individual values, interests, and strengths. We are
unique and our vocation, our call in life, will match who we are.

The experimental design process also focuses on data collection and analysis. The researcher must determine how the independent
variables will be altered consistently, how the dependent variables will be measured reliably, what analyses are appropriate for the
collected data, and how these analyses test the hypothesis. Recall the definition of statistics provided earlier. Fluency with statistics
facilitates this process and helps ensure that our conclusions will be meaningful, not necessarily desired, but meaningful.

Once the experimental design is finished, the experiment will be conducted, the collected data will be summarized and analyzed,
and a conclusion will be made regarding the hypothesis. If the initial hypothesis was found to be false, a new hypothesis could be
formed incorporating the newest findings. Alternatively, the data could align with the hypothesis, which only increases our
confidence in its veracity. The scientific method encourages the sharing of experimental design and conclusions. Significant and
immediate confidence can be attained in rejecting hypotheses, while confidence in the truth of hypotheses comes from repeatedly
conducting experiments that support the hypotheses.

Whether we explicitly engage in the scientific method or just try to make good decisions, we routinely engage in the process of
observation, generalization, testing, and updating. This process requires the collection and analysis of data with the goal of drawing
further conclusions and is statistical in nature. Therefore, it behooves us to take our study of statistics seriously and to utilize it in
our daily lives. It will benefit us twofold: in developing our own understanding of the world and in intelligently considering the
many claims of others.

Consequently, we should understand the basic process involved in statistic-based research, whether we involve ourselves
informally (in a basic inquiry of our day-to-day lives) or formally (in some important inquiry that may have an impact well beyond
ourselves). The process of statistic-based research can be broadly discussed in four steps:

1. Establish a research question that is to be explored.
2. Determine appropriate subjects and needed variables to guide in producing data to address the research question. Collect

such data using appropriate methods.
3. Summarize the collected data using appropriate statistical processes. Use inferential methods when needed.
4. Carefully use the summarized data to make sound, reasoned conclusion(s). The conclusion(s) should be further analyzed

for practical significance, not merely statistical significance.

Although we will focus mainly on steps  and  of this process in this course, the first two steps are equally important. Establishing
a quality research question, as well as determining what data is needed and how to collect that data, can be more challenging to do
than the last two steps. As both producers and consumers of statistic-based research, we must be familiar with this process to
understand its power and the limitations of such research.
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Statistics are often presented in an effort to add credibility to an argument or advice, as can be seen in the numerous advertisements
viewed daily. Many of the numbers thrown around do not represent careful statistical analysis. They can be misleading and push us
into decisions that we might regret. To be an intelligent consumer of statistics, our first reflex must be to question the statistics that
we encounter. We must think about the claims, the numbers, their sources, and most importantly, the procedures used to generate
them.

1.2: Importance of Statistics is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort
Hays State University.

1.2: Importance of Statistics by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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1.3: Two Realms of Statistics- Descriptive and Inferential

Define data
Define descriptive statistics
Distinguish between a sample and a population
Define biased sample
Introduce sample statistics and population parameters
Define inferential statistics

Descriptive Statistics and Inferential Statistics
As we have discussed, our lives and the scientific method involve significant amounts of observation and experimentation. During
both of these processes, we are gathering information. Data refers to information that has been collected from observation,
experimentation, surveying, historical records, etc. We study the collected data to understand what is happening around us. Looking
for patterns in raw data can be difficult, especially if we have many observations and measurements. In this course, we will review
and develop various ways to summarize and visualize raw data. Numbers that are used to summarize and describe data are called
descriptive statistics. In order to understand a data set sufficiently, we must use several descriptive statistics.This need will be
explored in depth in Chapter 

Data and descriptive statistics are closely related to each other and are sometimes confused. For each of the following claims,
identify the data and any descriptive statistics. Note that sometimes the data is implied as opposed to directly given.

1. The average score on Exam  was  for this statistics course last semester.

Answer

The data is only referenced implicitly. Since we are looking at the average score on Exam  from last semester, the data
would consist of all scores on Exam  from this course last semester.  provides a summary of the data and is a
descriptive statistic.

2. We spent  on groceries and household goods last year.

Answer

Again the data is only referenced implicitly. Our data consists of the expenditures from the previous year related to
groceries and household goods. These costs could be found on receipts, bank records, credit card statements, or some
combination. The value  summarizes the data by summing all the values together and is thus a descriptive statistic.

3. We have four children, aged    and  The oldest is  years old, and the average age is  years.

Answer

The data explicitly consists of the ages of the four children:  The oldest being  summarizes the data by
providing us with the maximum value. Both the maximum and average values are descriptive statistics. Notice that
descriptive statistics can be values in the original data but do not necessarily have to be.

We collect data each and every day to help us understand the world and act accordingly, but most of the time, our interest lies
beyond understanding just the collected data. We hope to generalize, to use descriptive statistics from our collected data to make a
claim on a larger scale. This generalization process of extending claims to larger audiences is called inferential statistics. We are
inferring statistics describing a data set we do not have based on a smaller data set that we do have. This process is necessary as it
is impossible to collect exhaustive data for most situations and research questions. Even when collecting exhaustive data is
possible, we still utilize inferential statistics to help mitigate costs while balancing accuracy.
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Consider the difficulty of collecting all the necessary data in the following situation and the need to generalize from the
possible data.

The National Election Commission has hired us to examine how U.S. citizens feel about the fairness of the voting procedures
in the U.S.

Answer

To ask every single U.S. citizen how he or she feels about the fairness of the voting procedures is practically impossible.
U.S. citizens live throughout the entire world. Even if all the contact information could be gathered, we could not guarantee
a response whether we visit, email, or call. The time and financial costs associated would be prohibitive. Perspectives could
change by the time the data collection is completed. Inferential statistics will be necessary. We will need to determine which
U.S. citizens to collect data from and use that data to estimate the views of the entire country.

Populations and Samples
In inferential statistics, we draw inferences (conclusions) about large sets of data using data from a small subset of those same
subjects or events. The entire data set from all subjects/events of interest is the population. Any smaller subset of the population
data set is the sample. Samples are used to gain insight into the population from which it originated.

In the previous example, the population we are interested in consists of hundreds of millions of U.S. citizens. Those who we
actually interviewed would constitute our sample. We would probably sample a few thousand U.S. citizens drawn from the
hundreds of millions that make up the population. When choosing a sample, ensuring that one type of citizen does not have more
representation than another is crucial. For example, something would be wrong with our sample if the sample happened to be made
up entirely of Florida residents. A sample exclusively composed of Floridians should not be used to infer the attitudes of other U.S.
citizens. The same problem would arise if the sample were comprised only of Republicans. When these types of situations occur,
we say that our sample is biased; it over-represents or under-represents a relevant segment of the population of interest.

Inferential statistics consists of mathematical frameworks that convert information about a sample into intelligent estimations
about the population from which the sample was drawn. Our estimations depend on how representative our sample is of the
population. How can we ensure that our sample is a good, unbiased representation? While the task is impossible without perfect
knowledge, we can address the concern by building inferential statistics around random sampling. We trust a large enough, random
sample to represent different segments of society in close to the appropriate proportions and that any bias in the sample is purely by
chance.

Consider the difficulty of collecting all the necessary data in the following situation and the need to generalize from a sample.
How could we construct a random sample and estimate the value of interest?

We are interested in examining the average number of math classes taken by current graduating seniors at U.S. colleges and
universities during their four years in college.

Answer

Our population consists of just the graduating seniors throughout the country. This is still a large set since there are
thousands of colleges and universities, each enrolling many students. In  over  million bachelor's degrees were
granted in the United States. The cost to examine the transcript of every college senior would be prohibitive. We must
construct a sample of college seniors and then make inferences to the entire population based on what we find.

To make a sample, we might first choose some public and private colleges and universities across the United States. Then
we might sample  students from each of these institutions. Suppose that the average number of math classes taken by the
people in our sample was  Then we might speculate that  approximates the number we would find if we had the
resources to examine every senior in the entire population. But, we must be careful about the possibility that our sample is
non-representative of the population. Perhaps we chose an overabundance of math majors or chose too many technical
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institutions that have heavy math requirements. Such bad sampling would make our sample unrepresentative of the
population of all seniors.

Building from this example, we mentioned that over  million bachelor's degrees were awarded in the United States in . Since
this figure describes the population, it is what we would call a parameter. Furthermore, we collected a sample and calculated that
the average number of math classes was  per student. This figure describes the sample, referred to as a statistic. To summarize,
a population is described by parameters, while a sample is described by statistics.

Identify the population and the sample, then reflect on whether the sample will likely yield the desired information.

1. A substitute teacher wants to know how students in the class did on their last test. The teacher asks the  students sitting in
the front row to state their latest test score. He concludes from their report that the class did extremely well.

Answer

The population consists of all students in the class. The sample comprises the  students sitting in the front row. The
sample is not likely to be representative of the population. Those sitting in the front row tend to be more interested in the
class and perform higher on tests. The sample may perform at a higher level than the population.

2. A coach is interested in how many cartwheels the average college freshman at his university can do. Eight volunteers from
the freshman class stepped forward. After observing their performance, the coach concluded that college freshmen can do
an average of  cartwheels in a row without stopping.

Answer

The population is the class of all freshmen at the coach's university. The sample is composed of the  volunteers. The
sample is poorly chosen because volunteers are more likely to be able to do cartwheels than the average freshman: people
who cannot do cartwheels probably did not volunteer!

Determine when descriptive and inferential statistics are being utilized. Assess the quality of the inference.

A quick Google Maps search showed that there were  Chick-fil-A restaurants open in Kansas in May of  This means
there were about  per state for a total of  Chick-fil-A restaurants in the United States.

Answer

It appears that we are interested in the total number of Chick-fil-A restaurants in the United States. To guess the number
that characterizes the population (the United States), a sample (Kansas) was taken, and the number of Chick-fil-A
restaurants in the sample was determined. Summarizing the sample data with the number  would be classified as a
descriptive statistic. Estimating the total number of Chick-fil-A restaurants in the United States to be  
belongs to the realm of inferential statistics. Descriptive statistics merely describes data, while inferential statistics makes
informed guesses about what goes beyond the collected data. The inference is dubious. Kansas is a state with a relatively
small population. A better sampling option would be to randomly pick more states. Indeed, if we cared about this situation,
inferential statistics would be unnecessary. The desired information is readily available through Chick-fil-A itself; there
were over 3000.

1.3: Two Realms of Statistics- Descriptive and Inferential is shared under a Public Domain license and was authored, remixed, and/or curated by
The Math Department at Fort Hays State University.

1.3: Descriptive Statistics by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
1.4: Inferential Statistics by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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1.4: Sampling Methods

Identify biased samples
Distinguish between methods of sampling
Distinguish between random sampling and random assignment

Why We Sample
Sampling plays a significant role in inferential statistics. Keeping in mind that our goal is to use data from a sample to infer about
the larger population, we must ensure that our sample is representative by selecting it to be sufficiently large and without any
systematic biases. There are many ways to sample; some are better than others.

Simple Random Sampling

Researchers adopt a variety of quality sampling strategies. The most straightforward is simple random sampling. Such sampling
requires every member of the population to have an equal chance of being selected for the sample. In addition, the selection of one
member must be independent of the selection of every other member. That is, choosing one member from the population must not
increase or decrease the probability of picking any other member (relative to the others). In this sense, we can say that simple
random sampling chooses a sample by pure chance.

What is the population? What is the sample? Was the sample picked by simple random sampling? Is the sample biased?

A research scientist is interested in studying the experiences of twins raised together versus those raised apart. She obtains a
list of twins from the National Twin Registry and selects two subsets of individuals for her study. First, she chooses all those in
the registry whose last name begins with  Then she turns to all those whose last name begins with  Because there are so
many names that start with  our researcher decided to incorporate only every other name into her sample. Finally, she mails
out a survey and compares characteristics of twins raised apart versus together.

Answer

The population consists of all twins recorded in the National Twin Registry. It is important that the researcher only make
statistical generalizations to the twins on this list, not to all twins in the nation or world. That is, the National Twin Registry
may not be representative of all twins. Even if inferences are limited to the Registry, a number of problems affect the
sampling procedure we described. For instance, choosing only twins whose last names begin with  does not give every
individual an equal chance of being selected into the sample. Moreover, such a procedure risks over-representing ethnic
groups with many surnames that begin with  There are other reasons why choosing just the  may bias the sample.
Perhaps such people are more patient than average because they often find themselves at the end of the line! The same
problem occurs with choosing twins whose last name begins with  An additional problem for the  is that the “every-
other-one” procedure (called systematic sampling) disallowed adjacent names on the  part of the list from being both
selected. Just this defect alone means the sample was not formed through simple random sampling.

Sample Size Matters
Recall that the definition of a simple random sample is a sample in which every member of the population has an equal chance of
being selected. The sampling procedure defines what it means for a sample to be random, not the results. Random samples,
especially if the sample size is small, are not necessarily representative of the entire population. For example, if a simple random
sample of subjects was taken from a large enough population with an equal number of males and females, it would be about 10
times more likely that the sample consisted of  women if we only sampled  people as opposed to  people (   

 A sample consisting of  women would not be representative, although the sample would be drawn randomly. Large
sample sizes make it more likely that our sample is close to representative of the population. For this reason, inferential statistics
takes into account the sample size when generalizing results from samples to populations. In later chapters, we will see what kinds
of mathematical techniques ensure this sensitivity to sample size.
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Other Sampling Methods
Our goal in constructing a sample is to arrive at a representation that yields accurate inferences regarding the population. The
simplest way to guarantee that we are not systematically biased in our sampling methodology is to use a simple random sample. At
times, we are aware that our population has distinct groups that differ from each other in a significantly relevant way to the topic at
hand. If this were the case, we would want to ensure that each of these distinct groups would be represented in our sample. How
could we guarantee appropriate representation without systematically biasing our sample?

Stratified random sampling can be an effective sampling method to guarantee the representation of different groups in a
population that has natural differences. These distinct groups, known as strata, are each randomly sampled so that their sizes in the
sample are proportional to their sizes in the population.

Suppose we were interested in views of capital punishment at an urban university. We have the time and resources to interview 
 students. The student body is diverse with respect to age;  of students are older people who work during the day and

enroll in night courses (average age is  while  of students are younger students who generally enroll in day classes
(average age of  It is possible that night students have different views about capital punishment than day students. How
could we use stratified sampling to get a random sample?

Answer

Since  of the students are day students, it makes sense to ensure that  of the sample consists of day students. Thus,
our sample of  students would consist of  (   day students chosen at random and  (  
night students also chosen at random. The proportion of day students in the sample and in the population (the entire
university) would be the same. Inferences to the entire population of students at the university would be more secure.

Simple random sampling ensures that any bias is due to random chance, but every possible sample is equally likely to occur. This
means that we could end up with a sample that is difficult to collect, which makes data collection quite costly and time-consuming.
We would save a lot of time and money if we could easily get a representative, random sample. In general, this isn't possible, but if
we have more information about our population, we may be able to devise a better sampling strategy than simple random sampling.
What would be necessary about our population if such a sampling method were to be effective? We would need the population to
be well-mixed. This means that we can divide the population into sections such that each section does not have any significant
differences from other sections regarding the topic at hand.

Cluster random sampling is a method that is used when a population is divided naturally into smaller groups (clusters), and each
group does not have any significant differences from the others. Once these groups are created, we randomly select a set of clusters.
We differentiate two types of cluster sampling based on how the clusters are studied once randomly selected. In single-stage
cluster sampling, every member of each of the randomly selected clusters is studied. In double-stage cluster sampling, a simple
random sample is taken from each randomly selected cluster. Double-stage cluster sampling aids efficiency and cost management,
but single-stage cluster sampling is preferred since it includes more members.

Both cluster and stratified sampling divide the population into groups and select from those groups. The difference between them is
that in a stratified sample, every group is selected, whereas in a cluster sample, only some of the groups are selected.

Suppose we are interested in voters' views regarding a school bond for the local municipal high school. Is the use of cluster
sampling to obtain a random sample appropriate? If so, how could single-stage cluster sampling be implemented?

Answer

The population would be all voters registered to vote in the city. A natural partitioning of the population would be the
municipal voter precincts. Since there is just one municipal high school, there would not be competition between parents of
different schools vying for more money for their particular high school. We might expect tension regarding a school bond
to depend on the age and presence of children. If this highlights a major difference between precincts, to cluster using them
as sections would be inappropriate. While it is true that there are different types of neighborhoods, we would expect
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families at different stages of life to live in each precinct. From this, there are no major differences between precincts
regarding the school bond; we can implement the method.

We could randomly select  precincts from the total precincts in the municipality and then survey all voters in each
precinct. This would be faster and much more efficient than randomly selecting voters from every precinct (stratified
sampling) and randomly selecting voters regardless of any other factors (simple random sampling).

We are interested in determining the average height of students at our local high school. Despite being able to measure every
student, we deem conducting a census not practical. Consider both methodologies (stratified and cluster sampling) for this
population. Express your thoughts.

Answer

Note answers may vary. There are two natural groupings that immediately come to mind when thinking of high school
students: class rank and gender. Are there major differences in heights between men and women? Yes, men tend to be taller
than women on average. This means that cluster sampling by gender would be inappropriate. Similarly, there are major
differences in class rank because students generally continue to grow throughout all of high school. Thus cluster sampling
by class rank would be inappropriate. As such, it seems that we have identified eight natural strata (each class split by
gender), meaning stratified sampling would be appropriate.

Perhaps the high school has a "homeroom" system that groups students across ages and genders into similar groups. Such
homerooms could be fine candidates for clusters, depending on how they were constructed.

While our goal is to get a representative sample, the best we can do is to guarantee that any bias in the sample is due to random
chance. Inferential statistics is built upon this framework. We must be wary of sampling methods that admit systematic bias. We
have already encountered several of them in the course of this book: voluntary response (coach with cartwheels), convenience
(students in the front row), and systematic (choosing every other last name starting in  Note that in systematic it need not be
every other member of the population but every  member.

Construct definitions for the voluntary response and convenience sampling methods. Explain how they are related and how to
distinguish between them. Discuss why the methodologies produce biased samples most of the time.

Answer

Voluntary Response: A form of sampling in which a mass request is sent out or posted asking for participation in the
sample. Any member of the population who receives the request and volunteers for the study will be included in the
sample.

Convenience: A form of sampling in which population members are identified and selected for the sample simply because
some aspect makes collecting data easier.

Both sampling methods are based on ease of access. Convenience sampling has a much broader application than voluntary
response because convenience sampling may have pretty much anything as the population. Voluntary response sampling
requires that the population consists of people. However, there are convenient samples of people that fail to be voluntary
response. Consider a psychology professor conducting a survey of his psychology students as a sample of the student body
instead of soliciting survey participants via school-wide emails. The latter is a voluntary response, while the former is
merely convenience. Also, consider studying the use of turn-signals by standing at a busy intersection and counting
instances over a given period of time. It is convenient to sample drivers at a single location, and participation was not
voluntary. The key to remember is that voluntary response requires self-selection on the participant's part.

Voluntary response sampling generally produces biased samples because people who feel strongly, either positively or
negatively, are more prone to respond to requests.

10
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Convenience sampling generally produces biased samples because the sample is convenient for a reason; some
characteristics are common among them. Thus, the subjects that do not possess that characteristic are most likely
underrepresented.

In both of these methodologies, the sample produced may be representative. We cannot confirm when this is the case, and
we cannot assert that any bias is due to random chance because of the previously mentioned reasons. These methods are
often used, and sometimes for good reason. Doing rigorous sampling can be costly or logistically impossible. However,
skepticism is justified when assessing conclusions drawn about a population based on a convenience sample.

Random Assignment in Medical Trials

In experimental research, populations are often hypothetical. For example, in an experiment comparing the effectiveness of a new
anti-depressant drug with a placebo (fake treatment), there is no actual population of individuals taking the drug. In this case, a
specified population of people with some degree of depression is defined and a random sample is taken from this population. The
sample is then randomly divided into two groups; one group is assigned to the treatment condition (taking the drug) and the other
group is assigned to the control condition (taking the placebo). This random division of the sample into two groups is called
random assignment. Random assignment is critical for the validity of an experiment.

For example, consider the bias that could be introduced if the first  subjects to show up at the experiment were assigned to the
experimental group and the second  subjects were assigned to the control group. It is possible that subjects who show up late
tend to be more depressed than those who show up early, thus making the experimental group less depressed than the control group
even before the treatment was administered.

In experimental research of this kind, failing to assign subjects randomly to groups is generally more serious than having a non-
random sample. Failure to randomize (the former error) invalidates the experimental findings, while a non-random sample (the
latter error) simply restricts the degree to which the results are generalizable.

1.4: Sampling Methods is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort Hays
State University.

1.4: Inferential Statistics by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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1.5: Variables

Define and distinguish between qualitative and quantitative variables
Define and distinguish between discrete and continuous variables

Introduction to Variables
Recall that variables are properties or characteristics of some event, object, or person that can take on different values. Just as there
are different types of characteristics, there are different types of variables. Since some variable types do not admit certain
computations and analyses, we must pay close attention to the variables and data that we analyze.

Qualitative and Quantitative Variables

At the most general level, we can understand variables as measuring a quality (such as hair color, eye color, religion, favorite
movie, gender, and so on) or a quantity (such as height, weight, age, shoe size, temperature, and so on). As such, we have the
classification of qualitative and quantitative variables, respectively. Intuitively, we might classify variables with numbers as
quantitative and variables with characteristics as qualitative. Our intuitive grasp requires further clarification when we consider
variables such as race placement  Just because the values that a variable takes on can be represented or encoded
with numbers does not make the variable quantitative. Doing so would render this variable classification meaningless; think about
why. Having an inherent order associated with the values that a variable takes on also does not make it quantitative. A variable is
quantitative if the arithmetic difference between any two values that it takes on is well-defined and informative. While we could
subtract 1 from 3 to arrive at 2. We did not gain any additional information. The inherent order already told us that  is two spots
lower than  as such, race placement is qualitative. Race finish-time, on the other hand, is a quantitative variable. The arithmetic
difference gives us a meaningful measurement as to how much quicker or slower one racer was compared to another. When
determining if a variable is quantitative or qualitative, consider if the gaps between possible numerical values add significant
meaning.

1. Most secondary and post-secondary schools classify their students as freshmen, sophomores, juniors, and seniors. Classify
class rank as a qualitative or quantitative variable. Explain your reasoning.

Answer

While commonly labeled with    and  including the associated order in class rank, that is not sufficient to warrant
a quantitative variable designation. There is no informative arithmetic difference between the different values of the
variable; this makes class rank a qualitative variable.

2. Credit card companies typically assign a  digit number to an individual to help increase transaction security. Classify
customer credit card number as a qualitative or quantitative variable. Explain your reasoning.

Answer

We must ask if the arithmetic difference between credit card numbers is meaningful and informative. Given the numerical
encoding, we can compute the subtraction easily enough. Is that difference informative? The credit card number does not
reflect the balance, the credit limit, the age of the account, or when the latest number was assigned. When there are two
cardholders for a single account, each card holder has a different credit card number. It appears that there is no information
gained in knowing the arithmetic difference. The numbers just serve as identifiers to an account; therefore, customer credit
card number is qualitative.

3. We mark the passage of time with the month, day, and year. Classify the date as a qualitative or quantitative variable.
Explain your reasoning.

Answer
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At first glance, values like September ,  and October ,  look like they cannot be subtracted. We can count
how many days lie between these two values (  days), and hence the gap between values carries significant meaning. A
well-defined arithmetic difference may be difficult write down (it can be done), but intuitively we understand that
differences mean how much time has passed between the dates. This is informative. Thus, date is a quantitative variable.

Discrete and Continuous Variables
Quantitative variables can be further classified by the possible values they take on. As quantitative variables, we know that these
values in their essence are numbers, but more can be told. Consider the number of people who are in attendance at a FHSU football
game. The number fluctuates from game to game, but we know that the possible values are           (Lewis
Field's seating capacity). Now consider how long it takes for a football game to finish, denoted with the variable  There must be
four quarters, each with at least  minutes of game time and an intermission that is supposed to be at least  minutes. If we then
consider the play clock, injuries, official reviews, timeouts, overtime, delays, and plays running past time, we would say that the
time it takes for a football game to finish could be any number of minutes with  minutes as a minimum. For example, it could
finish after  minutes,  minutes,  minutes, or even  minutes. We could
express the possible values as an interval (  or alternatively ). If we look at game attendance on the other hand, we
could not express the possible values as an interval (one cannot have  people in attendance); for every pair of distinct possible
values, there is a number between them that is not a possible value. Herein lies the distinction between discrete and continuous
variables.

A quantitative variable is continuous if it can take on any numerical value in some interval of real numbers. A quantitative variable
is discrete if it is not continuous. A common way to describe a discrete variable is to say that there are gaps between all the
possible values that the variable takes on.

1. Consider the amount of U.S. currency stored in bank accounts. Classify this variable as a qualitative or quantitative
variable. If quantitative, further classify the variable as discrete or continuous. Explain your reasoning.

Answer

The amount of money stored in bank accounts is quantitative because the differences between account balances indicate
how much more or less one account has compared to another. The smallest unit of U.S. currency is the penny  This
implies that there must be a gap between all possible values (one cannot have  and that the set of possible values
does not contain an interval. Thus U.S. currency in a bank account is a discrete quantitative variable.

2. Consider the floors on an eighteen-story apartment building labeled in order      Classify this
variable as a qualitative or quantitative variable. If quantitative, further classify the variable as discrete or continuous.
Explain your reasoning.

Answer

The arithmetic difference between two floors returns the same information as the inherent ordering. This variable is thus
qualitative. As such, the variable does not get classified as discrete or continuous.

3. Consider the number of floors in apartment buildings. Classify this variable as a qualitative or quantitative variable. If
quantitative, further classify the variable as discrete or continuous. Explain your reasoning.

Answer

The values that this variable can take on are      The arithmetic difference between the number of floors
indicates the difference in the number of floors between the different apartment buildings. It is therefore, a quantitative
variable. The number of floors are counted using whole numbers; therefore, there are gaps between the possible values that
the variable takes on. This makes the variable discrete.

4. Consider the heights of adult females. Classify this variable as a qualitative or quantitative variable. If quantitative, further
classify the variable as discrete or continuous. Explain your reasoning.
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Answer

The arithmetic difference between the heights of two adult females reveals the height disparity between them. Height of
adult females is a quantitative variable. The heights could take on any value in an interval (given any two distinct height
values there are other possible height values between them) and is therefore continuous.

The classification of discrete and continuous variables focuses on the possible values that a variable takes on. As you may have
considered in the previous exercise, there can be a disparity between the values a variable may take on and our ability to measure
them. If we based our classification on our ability to measure, every variable would be discrete. If we measured heights accurately
enough, any number in some interval could potentially be observed. In principal, someone's height could be 
inches, despite the fact that we would rarely take the effort to measure that accurately. Contrast this with measuring the number of
people in a population; no matter how accurately we measure, we know that it is not possible to obtain a value of  or 
Thus, the distinction between discrete and continuous variables lies in the possible values that could theoretically be, not the values
that may be measured in practice. We are finite, limited beings, and that is good to keep at the forefront of our minds. Remember
that we are seeking to understand the reality of the world around us and act accordingly.

1.5: Variables is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort Hays State
University.

1.6: Variables by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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1.6: Levels of Measurement

Define and distinguish among nominal, ordinal, interval, and ratio levels of measurement
Give examples of errors that can be made by failing to understand the proper use of measurement levels

Types of Measurement
When we have a particular topic of interest and want to further our understanding, we need to collect appropriate data through
some sort of measurement or observation. Exactly how the measurement is carried out depends on the variable of interest. To
measure the time taken to respond to a stimulus, we might use a stop watch. Stop watches are of no use, of course, when it comes
to measuring someone's attitude towards a political candidate. A rating scale is more appropriate in this case (with labels like "very
favorable," "somewhat favorable," etc.). For a variable such as "favorite color," we can simply note the color-word (like "red") that
the subject offers. Although measurements can differ in many ways, they can be classified using a few fundamental categories.
These categories are called levels of measurement because each one is contained in the previous one. Just like we have categories
of animal, mammal, canine, and dog, each referring to a differing level of specificity, so too do we have categories of nominal,
ordinal, interval, and ratio. We'll start with the broadest category, nominal, and work our way down to the most specific category,
ratio.

Nominal Scale

When we simply name or categorize responses, we are measuring on a nominal scale. Gender, handedness, favorite color, and
religion are examples of variables measured on a nominal scale. The essential point about nominal scales is that they categorize
without implying any ordering among the responses. For example, when classifying people according to their favorite color, there
is no measurement sense in which green is placed "ahead of" blue. Responses are merely categorized. Nominally scaled data
embody the lowest level of measurement.

Ordinal Scale
A researcher wishing to measure consumers' satisfaction with their microwave ovens might ask them to specify their feelings as
either "very dissatisfied," "somewhat dissatisfied," "somewhat satisfied," or "very satisfied." The items in this scale are ordered,
ranging from least to most satisfied. This is what distinguishes ordinal from nominal scales. Unlike nominal scales, ordinal scales
allow comparisons because there is a meaningful order to the measurement values. For example, our satisfaction ordering makes it
meaningful to assert that one person is more satisfied than another with their microwave ovens.

On the other hand, ordinal scales fail to capture important information that will be present in the subsequent levels we examine. In
particular, the difference between two levels of an ordinal scale cannot be assumed to be the same as the difference between two
other levels. In our satisfaction scale, for example, the difference between the responses "very dissatisfied" and "somewhat
dissatisfied" is probably not equivalent to the difference between "somewhat dissatisfied" and "somewhat satisfied." Nothing in our
measurement procedure allows us to determine whether the two differences reflect the same difference in psychological
satisfaction. Indeed, even if we had two pairs of observations each with "very dissatisfied" and "somewhat dissatisfied" ratings, we
could not determine whether the differences in these ratings are truly the same.

What if the researcher had measured satisfaction by asking consumers to indicate their level of satisfaction by choosing a number
from one to four? Would the difference between the responses of one and two necessarily reflect the same difference in satisfaction
as the difference between the responses two and three? The answer is No. Changing the response format to numbers does not
change the meaning of the scale. We still are in no position to assert that the qualitative difference between  and  (for example) is
the same as  and 

Classify the following variables based on their nominal or ordinal level of measurement. Explain.

1. Eye color

Answer

 Learning Objectives

1 2

3 4.

 Text Exercise 1.6.1

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41732?pdf
https://stats.libretexts.org/Courses/Fort_Hays_State_University/Elements_of_Statistics/01%3A_Introduction_to_Statistics/1.06%3A_Levels_of_Measurement


1.6.2 https://stats.libretexts.org/@go/page/41732

Since there is no inherent, meaningful order to eye color (as normally denoted green, blue, hazel, and brown), eye color is
nominal.

2. BMI weight type (underweight, healthy, overweight, obese, severely obese)

Answer

There is an inherent, meaningful order to BMI weight types, each subsequent value (as listed) indicates an increasing BMI.
Hence BMI weight type is ordinal.

3. Shirt size (S, M, L, XL)

Answer

There is an inherent, meaningful order to shirt sizes, each subsequent value indicates a larger or smaller shirt (depending on
the ordering). Hence shirt size is ordinal.

4. Phone number

Answer

Phone numbers are granted based on availability and hence have no meaningful order. Thus, phone number is nominal.

Interval Scale
Notice that qualitative data is nominal or ordinal. If we have quantitative data; that is, data with meaningful differences in values,
then we have some important distinctions to make. Interval scales are numerical scales in which intervals have the same
interpretation throughout. As an example, consider the Fahrenheit scale of temperature. The difference between  degrees and 
degrees represents the same temperature difference as the difference between  degrees and  degrees. This is because each -
degree interval has the same physical meaning (in terms of the kinetic energy of molecules).

To differentiate interval scale from our next level of measurement, we note that on interval scales a measurement of  does not
represent the absence of some quantity. On interval data,  is artificially or arbitrarily defined and is not intrinsically meaningful to
the quantity being measured. The Fahrenheit scale illustrates the issue. Zero degrees Fahrenheit does not represent the complete
absence of temperature (the absence of any molecular kinetic energy). In reality, the label  is applied to its temperature for quite
accidental reasons connected to the history of temperature measurement. This is important because if  doesn't mean "nothing,"
then it is not meaningful to divide nor multiply. For example, there is no sense in which the ratio of  to  degrees Fahrenheit is
the same as the ratio of  to  degrees Fahrenheit; no interesting physical property is preserved across the two ratios. For this
reason, it does not make sense to say that  degrees Fahrenheit is "twice as hot" as  degrees Fahrenheit.

One way that we mark the passage of time is by using the designation of year. Citizens of the United States remember the year 
 as the year the Declaration of Independence was signed. Jews remember the year  as the year the temple was destroyed.

The first recorded Olympic games occurred in BC. The differences between these years are meaningful; the Declaration of
Independence occurred  years after the Romans razed the temple and  years after the first recorded Olympic games. So
the year designation of time, must be at least of interval level. While there is a year , it does not represent the absence of passage
of time; therefore, the year is measured on the interval level.

Ratio Scale
As the highest level of measurement, ratio scales allow the most varied statistical analyses. The ratio scale of measurement is an
interval scale with the additional property that its zero position indicates the absence of the quantity being measured. Like a
nominal scale, the ratio scale provides a name or category for each object (the numbers serve as labels). Like an ordinal scale, the
objects are ordered (in terms of the ordering of the numbers). Like an interval scale, the same difference between values on the
scale has the same meaning; however, with the ratio scale, the same ratio between values on the scale also carries the same
meaning. This is the ratio scale's defining characteristic.

The Fahrenheit scale for temperature has an arbitrary zero point and is, therefore, not a ratio scale. However,  on the Kelvin scale
is absolute zero (total absence of kinetic energy), making this a ratio scale. For example, if one temperature is twice as high as
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another as measured on the Kelvin scale, then that temperature has twice the kinetic energy of the other temperature. Therefore, it
does make sense to say  K is twice as hot as  K.

Another example of a ratio scale is the amount of money you have in your pocket right now (  cents,  cents, etc.). Money is
measured on a ratio scale because, in addition to having the properties of an interval scale, it has a true zero point: if you have zero
money, this implies the absence of money. Since money has a true zero point, we can say that someone with  cents has twice as
much money as someone with  cents.

Ratio scales are very common. Most quantities of scientific interest tend to be ratio: distance, speed, weight, mass, pressure,
volume, area, energy, population; these are all variables measured on ratio scales.

Define a variable on the ratio scale that can take on both negative and positive numbers.

Answer

Note answers may vary. Since ratio scales have "zeros" that carry meaning relative to what we are actually measuring, we
might think that ratio scales cannot change signs. This conclusion might be intuitive, but unfortunately the conclusion is
false. Vector measurements, measurements that include a direction, can have both positive and negative values while
remaining on the ratio scale. Consider displacement, velocity, and acceleration to name a few. Electrical charge is an
example of a non-vector, ratio scale which can be negative or positive. Money in an account is another example, as negative
values represent debt, but  still means no money in the account.

Consequences of Levels of Measurement
Why are we so interested in the type of scale that measures a variable? The crux of the matter is the relationship between the
variable's level of measurement and the statistics that can be meaningfully computed with that variable. For example, consider a
hypothetical study in which  children are asked to choose their favorite color from blue, red, yellow, green, and purple. The
researcher codes the results as follows:

Table : Guide for Encoding Colors as Numbers

Color Code

Blue

Red

Yellow

Green

Purple

 
This means that if a child said her favorite color was "Red," then the choice was coded as  if the child said her favorite color was
"Purple," then the response was coded as  and so forth. Consider the following hypothetical data:

Table : Favorite Colors and Code from Sample of  Children

Subject Color Code

Blue

Blue

Green

Green

Purple

80 40

25 55

50

25
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Each code is a number, so nothing prevents us from computing the average code assigned to the children. The average happens to
be  but you can see that it would be senseless to conclude that the average favorite color is yellow (the color with a code of 
Such nonsense arises because favorite color is a nominal scale, and taking the average of its numerical labels is like counting the
number of letters in the name of a snake to see how long the beast is.

In a similar fashion, does it make sense to compute the average of numbers measured on an ordinal scale? Different fields of study
might answer this question differently; after all, reviews online often give an average rating from  to  stars and surveys rating 
(strongly disagree) to  (strongly agree) are often summarized with an average rating. Suppose an individual ran  races and
placed    and  We could say the average placement was  but what does that mean? Suppose another individual
placed    and  in the same races to also have an average placement of  Is it meaningful to say these two runners
are, on average, equally fast? We cannot conclude that. Perhaps the second runner lost the first two races by a large margin, but the
second two races were neck and neck. The problem is that we only know who was faster, we don't know by how much. We,
therefore, recommend avoiding such a practice and considering results based on averaged ordinal data with a careful eye.

To conclude such a discussion, once we attain the levels of interval and ratio, computing the average of our data is well-defined and
meaningful. As we move forward, always be aware of what descriptive statistics are possible given the consequences of the level of
measurement at hand.

1.6: Levels of Measurement is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort
Hays State University.

1.8: Levels of Measurement by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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2.1: Descriptive Statistics and Distributions

Define and distinguish between statistics and parameters
Define and calculate proportions
Introduce and distinguish between frequency and relative frequency distributions
Introduce and use summation notation
Introduce grouped distributions
Introduce bar charts and histograms
Identify the skew of a distribution

 Section  Excel File (contains all of the data sets for this section)

Population Parameters and Sample Statistics
We gain a better understanding of the world around us by collecting and analyzing data. Recall that, most of the time, it is not possible or practical to collect
all the data around a certain topic. For this reason, we often rely on inferential statistics to make informed guesses about the population using data from a
random sample. It is important for our analyses to differentiate facts about the population from facts about a sample. Facts about sample data are called
statistics while facts about populations are called parameters. It is common, but not universal, to use Greek letters (such as  when referring to
population parameters and Latin letters (such as  when referring to sample statistics. Our first example highlights one of the exceptions to this practice.

Both sample statistics and population parameters fall under the umbrella of descriptive statistics; they are numbers that are used to summarize and describe
data. A commonly used descriptive statistic is the proportion. A proportion is the percentage of observations that have a certain characteristic. Many
important issues rely on estimating proportions. What proportion of customers are satisfied with our services? What proportion of people who take some
medicine experience negative side effects? What proportion of voters support this political candidate? The symbol for population proportion is  and the
symbol for sample proportion is  (read: p-hat). For example, suppose a survey was given out a month before a local election. Out of the  people
surveyed,  supported a particular candidate. However, on the actual election day, that candidate only got  of the votes. We would say   
and  

A husband (Adam) and wife (Betsy) have three children (Cathy, Damon, and Erin). Adam, Betsy, and Cathy wear glasses. We are interested in studying
this particular family.

1. Compute the population proportion  of family members that wear glasses.

Answer

To find the percentage of family members that wear glasses, we need to know the total number of family members (the population size ) and the
number of family members that wear glasses (the number of observations with the characteristic   and  Thus

Thus  of the family wears glasses.

2. Construct the different samples and show that there is no sample such that .

Answer

To show that there is no sample such that   we must consider all possible samples from the population. The sample size  could be any
number  If  then we could have someone with glasses or someone without glasses. Thus

If you are unfamiliar with this notation, we are saying that  could be  or  If  then we could have   or  people with glasses. Thus

If  then we could have   or  people with glasses (since there are only two people without glasses). Thus

 Learning Objectives

2.1

μ, σ)

, s)x̄

p,

p

^

100

54 48% p

^

=

54

100

= 0.54

p = 0.48.

 Text Exercise 2.1.1

p

N

x). N = 5 x = 3.

p = = = 0.6

x

N

3

5

60%

p = p

^

p

^

= p, n

{1, 2, 3, 4}. n= 1,

= ={p

^

x

n

= 0

0

1

= 1

1

1

p

^

0 1. n= 2, 0, 1, 2

=p

^

⎧

⎩

⎨

⎪

⎪

⎪

⎪

⎪

⎪

= 0

0

2

= 0.5

1

2

= 1

2

2

n= 3, 1, 2, 3

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41764?pdf
https://stats.libretexts.org/Courses/Fort_Hays_State_University/Elements_of_Statistics/02%3A_Descriptive_Statistics/2.01%3A_Descriptive_Statistics_and_Distributions
https://stats.libretexts.org/@api/deki/files/37554/Section_2.1.xlsx?revision=1


2.1.2 https://stats.libretexts.org/@go/page/41764

If  then we could still only have  or  people with glasses. Thus

We notice that none of the possible  values match the calculated  value.

3. Suppose they had another child, Frank, show that it is now possible to have a sample such that  

Answer

With the addition of Frank,   and  or  since we do not know whether Frank wears glasses or not. Thus

Since we are showing that it is possible, finding particular samples will be sufficient. If  we could have someone with glasses and someone
without glasses, and   If  we could have  people with glasses and  person without glasses, and   Thus, in this situation it is
possible to have a sample such that  

Notice all of the proportions calculated throughout the example fell between  and  Proportions are the percentage of observations that have a certain
characteristic; it is impossible to have negative numbers of observations just as it is impossible to have more observations with a certain characteristic than
the total. Knowing what values are possible helps us identify when we make mistakes. We must always ask if our results are reasonable.

Distributions
Getting a firm grasp on a set of data generally requires several descriptive statistics and a method of visualization. Two very different data sets may have the
same values for certain descriptive statistics while differing for others. A good place to start is to see how the data is distributed. We will build our
understanding through examples.

A recently purchased bag of Plain M&M's contained six different colors of candy. A quick count showed that there were  M&M's:  brown,  red, 
yellow,  green,  blue, and  orange. Consider Table  below.

Table : Frequencies and Relative Frequencies of Sampled M&M's

Color Frequency Relative Frequency

Brown

Red

Yellow

Green

Blue

Orange

This table describes both the frequency distribution and the relative frequency distribution of M&M's by color. The colors form what we call classes.
Since, every M&M must belong to a class, we say the classes are exhaustive. Since any particular M&M cannot be classified in more than one class, the
classes are mutually exclusive. These two properties are important to guarantee that we count each observation only once. Distributions are often shown
graphically with bar graphs as in Figure 
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Figure : Frequency and Relative Frequency Distributions of  M&M's.

Notice how the two distributions show essentially the same information about where the data falls. Most of the M&M's were either brown or red. Yellow and
green appeared equally often. Blue occurred the fewest number of times. What is the difference between the two distributions? If we looked closely at the
table, we saw how the relative frequency column was computed; the frequency of the particular color was divided by the total number of M&M's. Hopefully,
this reminds us of the computation for proportions. The relative frequency is simply the percentage of observations that have the characteristic defining the
class.

Using Table  determine the sum of all the relative frequencies in the relative frequency distribution of M&M's. Explain why your result must be
true for all relative frequency distributions.

Answer

 This is true for all relative frequency distributions. Since classes must be exhaustive and mutually exclusive,
each observation must be in one and only one class. This means that the sum of all frequencies must add up to the total number of observations. Now
relative frequencies are just frequencies divided by the total number of observations. In adding up all the relative frequencies, we could factor out the
total number of observations in the denominator  and arrive at the sum of all frequencies divided by the total
number of observations which is 

The explanation in the previous exercise is a bit tedious: writing down all  numbers repeatedly is inconvenient, and imagine repeating this exercise if
there were  colors! Mathematicians have developed a notation to help express such arguments and computations easily. We call it summation
notation. The capital Greek letter sigma  is what we use to denote a summation. We then name all the terms that we are adding together. In our
M&M's example, there were six classes and we were interested in the frequency of each class. We might refer to our frequencies by row (from the top)
as  for . The following expression is the sum of all the relative frequencies of M&M's:

For instance,   and   The following expression is the sum of all the relative frequencies of M&M's:

Note that the  at the bottom tells us where to begin (the first class in this case) and the  up top tells us to add each subsequent term through that
index value (the sixth class in this case).

With this notation, we can clean up our argument from the previous exercise. Suppose that we have a sample of size  with  classes. If we let  be the

frequency in the  class, then . The sum of all of the relative frequencies would be

We encourage the reader to be familiar with summation notation, as it will be used throughout the text. If not understood, many equations given later
may be confusing. It would be good to practice using the notation now while the examples are relatively simple.

Using the frequencies from our bag of M&M's, compute the following summations:

1. 

Answer

2. 

Answer
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3. 

Answer

4. 

Answer

5. 

Answer

One class of  students had a  point assignment. The student scores (raw data) were tabulated in the following set. Use the set to construct a
frequency distribution in a table.

Answer
Looking at the set of scores, our classes can consist of . All that is left is to count the number of observations in each class and
put them in a table.

Table : Grouped Frequency Distribution

Student Score Frequency

The distribution shown in Figure  concerns just the one bag of M&M's. We might expand our study to the distribution of colors for all regular Plain
M&M's. Only the manufacturer of M&M's could provide this sort of information, but they do not tell us exactly how many M&M's of each color were ever
produced. Instead, they only report the relative frequencies. See Figure 
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Figure : Distribution of all M&M's.

Notice that the relative frequency distributions in Figures  and  are not identical. Figure  portrays the distribution in a sample of  M&M's.
Figure  shows the distribution of all M&M's. Chance factors involving the machines used by the manufacturer introduce random variation into the
different bags produced. Some bags will have a distribution of colors that is close to Figure  others will be much different. This reinforces an important
concept; sample data most often do not produce the exact same distribution/measures as what is happening in population data. We must remember this
important concept to interpret our findings properly and to draw appropriate conclusions.

Distributions of Continuous Variables

Using the color of M&M's for classes seems natural, but that was not the only set of classes that could have been used. We could sort the colors as warm
(red, yellow, and orange) or cool (brown, green, and blue). We could use any variable regarding M&Ms as a basis for our classes, such as weight. If we did
not have a precise enough scale to differentiate weights between individual candies, weight might not been helpful. On the other hand, if our scale was too
exact, we might not have had many measurements that were precisely the same. In either case, our frequency distribution would have been uninformative.
Having precise measurements is a good thing; we do not want to "fix" this issue by settling for lower-quality data, but instead, we can address the problem
by how we define classes. Rather than having a singular value determine our classes, we define them using a range of values. The classes must still be
exhaustive and mutually exclusive. When we group values to build classes, we describe the frequency and relative frequency distributions as grouped
distributions (this term applies as long as various values are grouped together to form classes regardless of whether we have discrete or continuous data).

The data shown in Table  are the times (in milliseconds) it took to move the mouse over a tiny target in a series of  trials. The times are sorted from
shortest to longest. The variable "time to respond" is a continuous variable. With time measured so precisely, no two response times were the same; creating
a grouped frequency distribution is in order.

Table : Response Times

Table  shows one of many possible choices we could have made for a grouped frequency distribution of these  times. It is important to note that there
is flexibility in the number of classes and where they start. Constructing multiple tables and graphs with various class numbers, sizes, and starting places
helps us understand the data. We can select the most enlightening version.

Table : Grouped frequency distribution

Class Class Frequency

Notice that the classes cover all numbers from  to  and each has the same length. To ensure that classes are mutually exclusive, we need to clarify
where     and  belong. While getting such a value is unlikely, paying attention to the details is essential. We set the lower bounds to be
exclusive and the upper bounds to be inclusive. For example, an observation of precisely  milliseconds would not be assigned to  but rather
be assigned to  Nothing is objective about this choice; we could have decided to do the reverse. What's important is that it is consistent across all
classes and that the classes remain mutually exclusive.
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We use interval notation as a way to describe a continuous set of numbers and how we include (or not include) the endpoints.

The use of  implies that we are including all possible numbers between  and  but we would not include either number  or  We can choose
numbers very close to  and  but never equal to  and 

The use of  implies that we are including all possible numbers between  and  including the endpoints  and 

We can also use both in a single interval;  says we are taking all of the numbers from  up to  including the number  but not 

As with our previous distributions, grouped frequency distributions can be portrayed graphically. Figure  shows a graphical representation of the
grouped frequency distribution in Table  Notice there are no longer gaps between all of the bars. We do this to emphasize that this is a grouped
distribution of a continuous quantitative variable. The graph of a frequency or relative frequency distribution of a continuous quantitative variable is called a
histogram (note that some statisticians extend this name to the graphs of distributions of quantitative variables in general, others just to grouped
distributions).

Figure : A histogram of the grouped frequency distribution shown in Table . The labels on the horizontal axis are the middle values of the range
they represent.

Shapes of Distributions

The order that colors were presented in our frequency distribution for the M&M's did not matter, because color is a nominal variable. When we examine
variables on the ordinal, interval, or ratio scales, we construct the distributions following the natural order. If we have a quantitative variable (on interval or
ratio scale), the meaningful arithmetic differences in values allow us to describe the distribution by its general shape through a graph. We must be careful
when describing the distribution (graph) of grouped data because the shape depends on how the classes were defined. We will develop a greater ability to
describe distributions; for now, we will focus on three descriptions of bar graphs and histograms: symmetric, positively skewed, and negatively skewed.

Figure : Histograms of two hypothetical distributions with varying degrees of symmetry

The graphs of the distributions shown in Figure , are symmetric; if we folded each graph in half, the two sides would match. The histogram on the left
is perfectly symmetric; perfect symmetry is not likely to occur using experimental data. The histogram on the right is not perfectly symmetric (see how the
four central bars would not match across the middle), but this is closer to what we would expect from observational data coming from a symmetric variable.

 Note: Interval Notation
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Figure : Two histograms (scores on a psychology test and  MLB salaries (in thousands of dollars)) with varying degrees of positive skew.

Figure  shows two histograms that are not symmetric. Notice the ends of the graphs (called tails) in the positive direction extend further than the tails in
the negative direction. A graph of a quantitative variable (bar graph or histogram) with the longer tail extending in the positive direction is said to be
positively skewed or skewed to the right. A graph of a distribution can be negatively skewed or skewed to the left. These graphs have the tails in the
negative direction extending further than the tails in the positive direction.

2.1: Descriptive Statistics and Distributions is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort Hays State
University.

1.10: Distributions by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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2.2: Using and Understanding Graphs

Assess graphs for information and quality

Introduction to Graphs
Florence Nightingale  although primarily known as a nurse, analyzed data in the service of her patients. She was
the first woman to be a fellow of the Royal Statistical Society. She was one of the first nurses to use graphical representations to
illustrate the causes of mortality. She created the graph below to share the true cause of British soldier mortality during the Crimean
War clearly.

Figure : Polar-area diagram for British soldier mortality from April  through March 

From the graph, we know that causes of mortality are broken into three classifications: wounds in battle, disease, and other causes.
We can conclude relatively quickly that being wounded in battle was not the leading cause of death; disease caused most of the
deaths. When Nightingale arrived, the conditions of the military hospitals were awful, and more people died from disease than their
wounds. Once her sanitation practices were implemented, the mortality rate dropped from  to  The question we must
address is: how do we trust that the graph relays the truth?

We were not provided any information about the construction of the graph; please be careful of graphs without enough explanation.
We guessed that the number of mortalities was related to the slice size for any given month. This graph has two components to size:
the radius and the area. By which measure are we making a comparison? Most of us naturally make mental comparisons based on
the area of each slice. If the graph were constructed using the radius to indicate the number of mortalities, we could still tell which
months had more deaths, but we would misjudge the magnitude of these differences. Nightingale constructed the graph so that the
areas represented the amount of mortalities; this information is necessary for quality interpretation and understanding.

Graphs and charts are excellent ways to share information quickly with a larger audience. In this section, we will look at several
different types of graphs. However, our goal is to identify certain types of graphs to become informed consumers of information
and critical thinkers actively engaged in the world around us.

The pie graph below shows the percentage of visits to social media sites in  There are various issues with this particular
pie graph; identify some of the problems.
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Answer

Pie graphs effectively display the relative frequencies of a small number of categories. However, pie graphs with a large
number of categories are not recommended. This example uses too many categories.

Pie graphs are most commonly used to compare parts to the whole. This example has two components working against this
comparison. The pie slices are not touching and the visual comparison of areas is skewed because of the three-dimensional
formatting. When adding the third dimension to a graph, it must add information and not hide important information.

Furthermore, the numbers here do not add to  This means that the number given does not represent the relative size of
the slice of the pie. For example, Facebook appears to take up nearly half of the pie, but the number given is  This
makes it seem as if the websites listed here account for all the websites that see a relatively non-negligible amount of visits.
There should be another slice, perhaps labeled "other," which takes up  of the pie.

Pie graphs are most helpful in communicating relative sizes or proportions of a few categories. They are not useful if there are
numerous categories or if one wants to communicate absolute, not relative, measures. Note that relative measures are more likely to
be misleading when the sample size is small.

A time series graph consists of the measurement of the same variable of the same subject taken over regular time intervals for a
given period. Time series data frequently occurs in contexts where variables change: stock market prices, national economic
figures, population tracking, etc. During the COVID-  pandemic, time series graphs were frequently used to communicate
transmission and mortality rates. Such graphs can serve as natural and valuable visual aids, but they can be misleading if not
constructed appropriately.

In August  Dr. Norman, the Secretary of the Kansas Department of Health and Environment, used the following graph to
show the number of COVID-  cases in counties with mask mandates vs counties without mask mandates. Study the graph
and see what conclusions can be made. Are there any issues?

Answer

100.

39.14.

16.1%

19

 Text Exercise 2.2.2

2020,

19

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41765?pdf
https://www.coronavirus.kdheks.gov/CivicAlerts.aspx?AID=29&ARC=62


2.2.3 https://stats.libretexts.org/@go/page/41765

First, notice that the scales on each side of the graph represent the same information, but the numbers differ. The line
representing  cases for masked counties (scale on the left) corresponds to  cases for unmasked counties (scale on the
right). This  point difference is consistent throughout the scale. Without careful attention, a consumer might conclude
that the -day rolling averages for masked counties dropped below those of the unmasked counties. This, however, is not
the case. Consider the following graph, where the same data is plotted using the same axes.

We now see clearly that the masked county -day rolling averages stay above those of the unmasked counties. There can be
a variety of factors at play in this difference. While the -day rolling averages should be scaled to account for differences in
population, other related factors could also be at play. Smaller and rural counties were less prone to mask mandates. Larger
and more densely populated counties were more likely to have mask mandates. These differences alone could explain the
differences in the -day rolling averages.

The changes in the -day rolling averages could be a better measure for the success of the mandates, but notice how the
inclusion of  on the vertical scale helps us better gauge the change over time. The variation in the -day rolling averages
seems less dramatic in the second graph than in the original. The no-mask counties seem to hover around  or  while the
mask counties seem to hover between  and  The first data point makes the change seem quite stark, but a change in a 

-day rolling average indicates that the first measurement was significantly higher than the subsequent days. Would one
day of wearing masks have such an immediate effect? Possibly. Such a question warrants further analysis, preferably with
each day's raw data.

We have encountered several bar graphs in the previous section as we studied relative frequency and frequency distributions.
While pie graphs help make comparisons from a part to the whole, bar charts help make comparisons between parts and across
different distributions.

The  data from the U.S. Census Survey of Income and Program Participants was released in USA Today in 
and the bar graph below is used. At first glance, the information on the increased number of people on welfare over two years
is staggering. What else do you notice about this graph?
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Answer

Although having  million people on welfare is not good, we must recognize in this particular graph that the vertical axis
begins at  million, making the increase look more extreme than it is. Be sure to check the vertical axis to see where it
begins. We naturally make mental length comparisons and ratios when looking at bar charts, but recall that ratios are only
meaningful if we have a meaningful zero value. When bar charts do not start at a meaningful zero value, like in the graph
above, the mental ratio comparisons have no meaning.

We remark here that bar charts displaying ratio data should begin at  Unless the reason for beginning at some nonzero value is
highlighted and explained, such a chart is more likely to be misleading than informative. We should notice if we are ever shown a
bar chart that does not start at , as it typically means the differences between the heights are being exaggerated. Even starting at 
with non-ratio data is misleading, as multiplicative relationships are inherently meaningless. For this reason, we recommend
avoiding bar charts for non-ratio data.

Consider the graph below that shows the number of people playing card games on the Yahoo website on a Sunday and
Wednesday in the Spring of  Here, we have two distributions of game frequencies based on the day. Bar graphs are
helpful when comparing distributions taking on the same classes. What can we conclude from such a graph?
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Answer

The number of people playing Pinochle was the same on these two days. In contrast, about twice as many people were
playing hearts on Wednesday as on Sunday. Blackjack was the only game with more players on Sunday than on
Wednesday. Facts like these emerge clearly from a well-designed bar graph. The bars are oriented horizontally rather than
vertically. The horizontal format is recommended when you have many categories because there is more room for the
category labels.

We can also conclude that there were more players overall on Wednesday than on Sunday. This is because Blackjack was
the only game with more players on Sunday than Wednesday, and the margin wasn't large enough to offset the rest. Making
conclusions about all the categories collectively is not always easy because bar charts are most conducive to comparing
parts to parts.

Graphs are pictorial representations of numbers. The following graph, originally from Erickson Times, shows the number of
medals per country in the Summer Olympics. Take a minute to observe the graph and see why the pictures in this particular
graph may be misleading.
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Answer

We naturally expect the representation of the numbers to be proportional to the actual numbers. When looking at Germany's
medal count, we see two medals on the graph equal to about  medals; we reason that each medal pictured would equal
about  medals. France only has  medals with three units on the graph, and Russia has  medals with five units on
the graph. The numerical order is correct, but there is no consistent, intuitive correspondence between the units on the
graph and the actual number of medals. When using pictures, a graph may look fancy, innovative, or visually appealing but
can render the graph misleading and ineffective. The purpose of graphical representations is to disseminate information
clearly and quickly. Be cautious.

2.2: Using and Understanding Graphs is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.

2.1: Graphing Qualitative Variables by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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2.3: Histograms

Distinguish between bar graphs and histograms
Explore the creation of a grouped frequency distribution and its graphical representation
Explore how the number of classes affects graphical representations.

 Section  Excel File (contains all of the data sets for this section)

Histograms vs. Bar Graphs
Recall that a histogram is a graph of the distribution of a continuous quantitative variable. Continuity is indicated by eliminating
the space between the bars. When the bars have gaps, we have a bar graph representing either a qualitative or discrete quantitative
variable. Please note that there are statisticians who distinguish between bar graphs (with gaps) and histograms (without gaps)
simply based on the type of variables with bar graphs for qualitative variables and histograms for quantitative variables.

Constructing Histograms

Consider how long it takes to respond to a deer or child suddenly running onto the road while driving a car. We continue to travel at
the same speed from the time we see the deer to the time we act (to begin braking, to swerve, etc.); the distance traveled during this
time is called the reaction distance. We consider the reaction distance of  students in drivers' education when driving at  miles
per hour. Such a large data set is difficult to understand when presented as a long list of values in a spreadsheet (not provided here).
Since the reaction distance is a continuous quantitative variable, we can understand the data better using grouped frequency
distributions and histograms.

If we were given that the distances ranged from  feet to  feet, how might we consider grouping the data? There is no single
correct answer. We might choose to go by tens starting at  or perhaps starting at  we might decide to go by twenties or some
other nice number. We recommend constructing several different groupings to see which best represents the data. We show a single
example below.

Table : Grouped frequency table for reaction distances

Interval's Lower Limit Interval's Upper Limit Class Class Frequency

The reaction distances must be broken into mutually exclusive and exhaustive classes, often called class intervals. For our
example, the first interval is  the second is  etc. Note  is counted in the second class. The length of a
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class interval is called the class width and is found by computing the difference between two consecutive lower bounds. The class
width is  

The number of reaction distances falling into each interval was counted to obtain the class frequencies. There are  reaction
distances in the first interval,  in the second, etc. We note that class intervals of width  provide enough detail about the
distribution to be revealing without making the graph too "choppy." If this were not the case, we could try a different width.

Figure : Histogram of grouped frequency distribution for reaction distances

In the histogram above, the bar heights represent the frequencies for each of our classes; we could also construct histograms based
on relative frequencies. Histograms based on relative frequencies show the proportion of observations in each interval rather than
the number of observations. We can change a histogram based on frequencies to one based on relative frequencies by dividing each
class frequency by the total number of observations and plotting the quotients on the vertical axis.

Our histogram shows that most reaction distances are in the middle of the distribution, with fewer scores in the extremes. We can
also see that the distribution is not quite symmetric: the reaction distances extend to the right farther than they do to the left. The
histogram is said to be positively skewed.

To explore these ideas further, we will first utilize Desmos. The following exercise reveals some consequences in changing the
number of classes used to construct a histogram.

Open the Desmos Activity link.

1. Determine what this data represents, find the lower boundary of the first bar of the histogram, determine the class width,
and finally describe the shape of this histogram.

Answer

In the far right corner, we can see that the histogram is illustrating times for male swimmers in the -meter freestyle.
Unfortunately, we do not know when or where these times were collected. By clicking on the points on the -axis, we can
see that the lower bound of our histogram is at  Notice this does not mean that someone actually swam the -
meter freestyle at that exact time, but rather, there was one swimmer who swam the -meters between  and 
seconds. The class width can be determined by subtracting consecutive values, as shown in the picture. Each class is 
seconds long. The main portion of this graph is symmetrical from a practical perspective. Given how far and unconnected
the last observation is from the rest of the data, it is difficult to say the tail on the right is longer. It seems more likely that
far right observation is uncommon.

49.5−39.5 = 10.
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2. Scroll down to the slider for classes. What happens to the histogram as  gets smaller or larger?

Answer

Notice that having too many classes is essentially looking at each individual piece of data and having too few classes is
rather uninformative. Typically, for data sets with fewer than  observations,  to  bins will provide a good
representation of the data. With this particular data, however, it seems that  classes give us a good view of the data.

We now turn to Excel to familiarize ourselves further with the construction of histograms and with the functionality of Excel.

The data set provided for exercise  in the  Section  Excel file contains the final grade percentages of  students.

1. Use the  and  functions in Excel explained in the provided Excel guides to determine the largest and smallest
values in the data set.

Answer

Using the provided Excel file without altering the columns, the commands  and 
will return the desired values. We thus find that the lowest final grade was  percent and the highest final grade was 

 percent.

2. Knowing that all of our data falls between  and  helps ensure that our classes are exhaustive. A natural place to
begin constructing a histogram for grade data would be using the typical grading scale for assigning letter grades. As such,
the class widths will be  with an A being assigned for grades in the interval , B for grades in , etc. To
keep our class widths the same size, continue segmenting the failing grades by  as well, rather than just having a class
constituting all failing grades. At this point, we caution against the use of Excel's built-in histogram function because, as of 

, it includes the upper bound of a class in the class. This unfortunate design, however, can be overcome in various
ways. See the Excel guide to see how and then construct the histogram. Describe the histogram as symmetric, positively
skewed, or negatively skewed. Explain.

Answer

Be sure to label the histogram and various axes with pertinent information. We have included class counts on this histogram
for the purposes of checking solutions.
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The distribution appears to have a longer tail to the left which would lead to use describing the histogram as negatively
skewed.

3. The previous text exercise indicated that a general rule of thumb for constructing data sets with less than  observations
was to use between  and  classes. The last histogram consisted of  classes and we have over  observations but just
by  Construct two histograms, one with  classes and the second with  classes. Use  as the lower bound of the first
class,  as the upper bound for the last class, and the same guidelines as the previous histogram in terms of including or
excluding the boundaries of the classes. Compare the three histograms.

Answer

 

Each histogram appears to be negatively skewed. The least pronounced skew is with the histogram constructed from only
five classes. When we have  or  classes, each class increases in frequency until we arrive at the class with the most
observations and then each class decreases in frequency as we move beyond. In the histogram with  classes, the
frequency counts are more volatile going up and down with greater frequency as we progress through the classes.

2.3: Histograms is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort Hays State
University.

2.4: Histograms by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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2.4: Box Plots, Quartiles, and Percentiles

Introduce box plots
Define quartiles
Define percentiles
Calculate percentiles
Calculate values for a five-number summary

 Section  Excel File (contains all of the data sets for this section)

Using Box Plots to Visualize Data
Frequency distributions and their graphs (bar graphs and histograms) provide insight into data by grouping observations into
classes and then determining each class's frequency or relative frequency. The classes depend on the values our data takes on, and
there is some freedom regarding the number of classes we might choose to separate our data into.

Another method of graphing ordinal, interval, or ratio level data, called a box plot (or a box-and-whisker plot), groups data into
four classes based on order, each containing approximately  of the observations. Consider the following figure containing three
box plots relating students' final grades in statistics across different universities.

Figure : Box plots of final statistics grades for three universities

We know that there are four classes for each box plot. Note the five vertical lines; these values correspond to the boundaries of the
classes. The left-most line corresponds to the data set's smallest value, the minimum. The first class extends from the minimum to
the left side of the "box" and includes  of the observations; we call the upper bound for this first class, the first quartile 
(one-quarter of the observations are less than or equal to it). The second class again needs to have  of the observations with a
lower bound of  and an upper bound . We call the upper bound of the second class the second quartile , which is most
commonly referred to as the median, meaning 50% of the data fall below this value. The third class again needs to have  of
the observations with a lower bound of  and an upper bound of the third quartile ;  of the observations are less than or
equal to . The final class consists of the remaining  of observations with lower bound  and upper bound of the largest
value, the maximum, of the data set. The first and fourth classes form the whiskers of the box plot, while the second and third form
the box. These five numbers (minimum, , , , and maximum) form what we call the five-number summary of the data.

Consider Figure  above and classify each box plot as positively skewed, negatively skewed, or symmetric. Explain.

Answer

We preface our answer by noting that box plots, like histograms and bar graphs from grouped frequency distributions, are
formed by grouping observations. Since the graph does not provide information about each data value, we are primarily
making a claim about a characteristic of the graphical representation.
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Recall that a graph is positively skewed if the right tail extends further than the left tail and negatively skewed if the left tail
extends further than the right tail. A graph is symmetric if we can fold it in half so that the left and right sides roughly
match. The tails and the whiskers fall in similar parts of the graphs discussed. If one whisker is longer, we can say that the
box plot is skewed in the direction of the longer whisker. We classify the box plot of University C as negatively skewed and
the box plot of University B as positively skewed. The whiskers seem to be of equal length for University A, but that is not
enough to assert symmetry. We also want the two halves of the box to be the same. This is the case for the box plot of
University A. We classify the box plot of University A as symmetric.

Given a data set, we can quickly identify the minimum and maximum values. Determining the quartiles, however, presents more of
a challenge. With an ordered data set, we understand where a quarter, half, and three-quarters of the data would fall. Consider the
following data sets with their five-number summaries.

Figure : Three data sets with intuitive placement of the box plot boundaries

We need help determining our five-number summary for these data sets.

The first two data sets each contain  observations, while the third contains  observations. We can easily group the first two data
sets in groups of  to get  of the observations in each class. With  observations, however, we cannot get exactly  in each
class. However, note that there are equal numbers of observations above and below  for each data set.

If we try to attach values to quartiles, we face another challenge. Let us begin with . In the first data set, we see that  naturally
falls between  and  but what value should we assign? Our box plots would look significantly different if we used  as opposed
to . There is no easy solution to this challenge, and statisticians have developed a variety of approaches. We will provide a simple
approach later in this section; please remember that it is not the only approach. However, most of the various approaches produce
measures that are reasonably close to each other.

We face another challenge when we try to understand  in the second data set. We would naturally assign a value of  to 
because the only number between  and  is . We wanted  of the observations to be less than or equal to  but we have 
values that are less than or equal to  in our data set, that is  of our observations.

We highlight these challenges to frame our understanding appropriately. We use box plots, quartiles, and percentiles (which we will
get to shortly) to get a general, intuitive feel about our data using methods that may differ from field to field, statistician to
statistician, and program to program. When consuming statistics or conducting analysis, know which method is in use.

Quartiles are descriptive statistics that express at what values there will be about   or  of the observations at or
below that value. There is nothing extraordinarily unique about   or  We could choose  or  When we
expand our ideas to include different percentages of observations, we call them percentiles.  is the  percentile.  is the 

 percentile.  is the  percentile.

Percentiles have utility beyond building summary visualizations; they help us understand how individual observations compare to
the entire data set. They measure relative position within an ordered data set. For example, a test score by itself is usually difficult
to interpret. For instance, if one of us had a score on a measure of shyness of  out of a possible  we would have little idea how
shy that person was compared to others. It would be helpful to know the percentage of people with equal or lower shyness scores.
If  of the scores were at or below this person's score, then the score would be at the  percentile.
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1. If Helen's score was at the  percentile, what percentage of scores are at or below Helen's?

Answer

The percentile means that  of the scores are at or below Helen's score.

2. If the scores ranged from  to  on an exam and Helen earned a score of  does this necessarily mean that her score is
at the percentile?

Answer

No, the percentile gives a relative position of the scores. The number of scores at or below her score determines the
percentile measure. If everyone did well and only  of the scores fell at or below Helen's, she would be at the 
percentile even though she got  out of a  points.

Calculating Percentiles
We already indicated that there are several different ways to calculate quartiles. This is because quartiles are percentiles, and there
are several ways to calculate percentiles, which may lead to different values in different situations. The method that we present is
one of the simplest calculations.

The  percentile is a value such that  of the observations fall at or below that value. We need the data to be counted and
ordered from smallest to largest. Let  be the number of observations in our data set. Next, we calculate the number of observations
that make up  of the observations. We call this number the rank  of the percentile.

Now there are two possibilities for the  value; either it will be a natural number       or not.

If  is a natural number, we find the midpoint between the  and  values.
If  is not a natural number, round  up to the following natural number and take the value in that position.

The real number system has the following designations.

Natural Numbers:     
Whole Numbers:      
Integers:          
Rational Numbers: Any number that can be written as a fraction 
Irrational Numbers: Any number that cannot be written as a fraction. Examples include   

Consider the  quiz scores shown in the table below and compute the five-number summary and  percentile. After
completing the calculation by hand, use the Section  Excel file to calculate each percentile using the functions 

 and  Compare the values.

Table :  quiz scores with corresponding rank
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Answer

We first note that the data is already ordered from smallest to largest with  observations. A secondary row has been
created to index the observations. Note that the row heading is Rank; consider how this ties back to rank  in our
calculation.

Let us begin with the five-number summary.

The minimum value is 

 the  percentile.     Note  is a natural number. We then look at the  and 
observation values, which are both  and find the midpoint between them. Thus   Using Excel, we get  they are all
the same.

 the  percentile.     Note  is a natural number. We then look at the  and 
observation values, which are  and  respectively and find the midpoint between them. Thus    

 Excel computes  and  they are all the same.

 the  percentile.     Note  is a natural number. We then look at the  and 
observation values, which are  and  respectively and find the midpoint between them. Thus    

 Excel gives  and  they are all different.

The maximum value is 

Let us look at the  percentile.      Notice  is not a natural number. We
must look at the  observation value showing the  percentile is  Excel calculates  and  they are different and
the same respectively.

We have seen that different methods of calculation can produce slightly different values. With large data sets, we generally
resort to technology to produce our measures and might not have control over the precise methodology employed therein.
As such, we remember that percentiles provide rough measures for the distribution of our data sets and nuance our
understanding that roughly this percent of observations fall below roughly this value. When large data sets or limited
time make hand computation prohibitive, we recommend using functions such as  and 

Consider the preceding example. If we looked at the  percentile   which would also be the  value, which is 
So, the  percentile is the same as the  percentile. This happens since there are only  data points; we cannot subdivide 
indefinitely. The two percentiles would typically differ with large data sets.

Box Plots: Constructing and Interpreting

As part of the "Stroop Interference Case Study," students in introductory statistics were presented with a page containing 
colored rectangles. Their task was to name the colors as quickly as possible. Their times (in seconds) were recorded. Compare
the scores for the  men and  women who participated in the experiment by making separate box plots for each gender.

Table : Women's times (left) and men's times (right)
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To construct box plots, we need the five-number summaries.

Table : Five number summaries for the data presented in Table 

Females Males Box Plot Component

Minimum End of Left Whisker

( )

 

( )
Left Side of Box

=median
 

( )

 

( )
Line in Box

 

( )
( ) Right Side of Box

Maximum End of Right Whisker

Figure : Box plots for male and female times for naming the colors of various rectangles

The men tended to take longer than the women. About  of male times were longer than the maximum female time. At
least  of the male times were longer than the median female time.

Suppose data came from a task that aims to move a computer mouse to a target on the screen as fast as possible. On  of the
trials, the target was a small rectangle; on the other  the target was a large rectangle. The time to reach the target was
recorded on each trial. The box plots of the two distributions are shown below. What can we conclude by looking at the two
box plots?

2.4.3 2.4.1

14 16

Q

1

17

R = ⋅ 30 = 7.5

25

100

19

R = ⋅ 15 = 3.75

25

100

Q

2

18.5

R = ⋅ 30 = 15

50

100

22

R = ⋅ 15 = 7.5

50

100

Q

3

20

R = ⋅ 30 = 22.5

75

100

24

R = ⋅ 15 = 11.25

75

100

24 28

2.4.3

25%

75%

 Text Exercise 2.4.5

20

20,

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41777?pdf


2.4.6 https://stats.libretexts.org/@go/page/41777

Figure : Box plots for the response times by small and large target

Answer

We can see that although there is some overlap in times, it generally took longer to move the mouse to the small target than
to the large one. The minimum time for the small target is longer than the median time of the large target. At least  of
times for the small target are longer than all of the large target times.

Construct two data sets, treated as observations from a discrete quantitative variable, consisting of  values each so that the
box plots are identical, but the bar graph of one data set is perfectly symmetric while the other is not.

Answer

If the box plots are going to be identical, the five-number summaries must be the same. When arranged from least to
greatest,  is the average of the  and  values,  is the average of the  and  values, and  is the average of
the  and  values. We can construct a perfectly symmetric data set by pairing observations by proximity to the center.
Since the  and  values are in the middle, they would be paired together, the  with the , and the  and , and
so forth. We want the values in these positions to be equally distant from the median value.

We can start by picking the first data set that is not perfectly symmetric. We will produce such a data set if we use a pattern
of one observation value followed by a different value repeated twice. We picked even numbers starting at  to ensure that
our quartiles were nice values. Not all procedures would produce a data set suitable for this example because we need our
second data set to be symmetric. We must check this because we want the minimum and maximum to be equally far from
the median and the first and third quartiles.

We have fixed our five number summary: , , , , and . Our procedure produced
values allowing us to produce a symmetric data set with the same five-number summary. The average of two of the same
numbers is that number, so, for ease, we can start our symmetric data set with the following numbers.

All we need to do is fill in the remaining spots, ensuring symmetry and preserving order.

Figure : Two identical box plots
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Figure : Non-identical bar graphs of the two data sets that produced identical box plots.

2.4: Box Plots, Quartiles, and Percentiles is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.

1.7: Percentiles by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
2.6: Box Plots by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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2.5: Measures of Central Tendency

Discuss common measures of central tendency: mean, median, and mode
Introduce the trimmed mean

 Section  Excel File (contains all of the data sets for this section)

Introduction to Measures of Central Tendency
We understand data by looking at distributions (graphs and tables) and box-and-whisker plots. With relative frequency
distributions, we determined classes and then computed the percentage of observations in each class. With box-and-whisker plots,
we determined four classes each with  of the observations. These were constructed using descriptive statistics and allowed us
to see where and how the data values fell; we could see the distribution of the data. In this section, we discuss descriptive statistics
that indicate the center of the data. There are many different ways to define the center of a data set; each measure has strengths and
weaknesses. We discuss the three most common measures of central tendency: mode, median, and mean.

Mode

When examining a frequency distribution, either a table or a graph, our attention often gravitates to the highest frequency: the value
that occurs the most. Sometimes, this highest frequency occurs in multiple classes. We call the class(es) with the highest frequency
the mode(s). If there is only one class with the highest frequency, we call the distribution unimodal; otherwise, we call it
multimodal. The mode is a measure of central tendency by describing the classes that occur most frequently; the distribution is
often centered around these most common values. The mode can be computed for any variable regardless of its level of
measurement. It is the only measure we will discuss that is defined for nominal data.

Recall the frequency distribution of colors of candies in a bag of M&M's from our previous discussion.

Table : Frequencies and Relative Frequencies of Sampled M&M's

Color Frequency Relative Frequency

Brown

Red

Yellow

Green

Blue

Orange

1. Show that this data set is unimodal and give the mode.

Answer

The mode is the value (characteristic) that appears most frequently. Red is the only mode since red appears  times, and all
other colors appear fewer than that. Note that yellow and green are not modes even though  appears twice.

2. Show the set of colors could be multimodal after consuming one candy.

Answer

We would have to reduce the number of red candies to make the set multimodal. If we eat one red candy, we would have 
brown and  red candies. Since every other color appears fewer than  times, we have two modes: red and brown. The
set would be multimodal, specifically bimodal (since there are two modes).
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3. What is the minimum number of candies one would have to eat for orange to be the only mode?

Answer

Since there are only  orange candies, we would have to reduce the number of every other color to less than  If we ate 
brown,  red,  yellow, and  green candies, we would have  of each of those colors,  blues, and  orange making
orange the mode. We need to eat, at minimum,   candies. YUM!

It is easy to see the possible issues with the mode as a measure of central tendency. Consider the following data set:      
       The mode is  but is that a reasonable value for the center of this data? The use of the mode is

often minimal with quantitative data.

Median
When constructing a box-and-whisker plot, we computed five measures: minimum, first quartile, second quartile, third quartile,
and maximum. Each of these measures relative position and relies on ordering the data. A natural measure of central tendency
would be a value that splits the data evenly below and above, such as the second quartile, the  percentile. We generally refer to
it as the median, one of the most common measures of central tendency. Since the median requires an ordering from smallest to
greatest, it cannot be computed for nominal variables, but it can be calculated for ordinal, interval, and ratio variables.

Arithmetic Mean

The third measure, called the arithmetic mean, is arguably the most common measure of central tendency. Bar graphs may remind
us of geometric figures placed along a scale, making us wonder: what is the center of mass? This would be the point at which the
figure would balance if it were propped up only at that point. How might we find such a point? Taking each observation as equally
important, we assign each observation an equal weight  distributed evenly across a uniform-sized block and stack the blocks on
our scale with the blocks centered on their value. Consider Figure 

Figure : A simple distribution balanced upon its center of mass

There is only one location  that our distribution balances. When it is balanced, there is no motion. The torque from the blocks to
the right of  eliciting a clockwise motion, is equal to the torque from the blocks to the left of  eliciting a counterclockwise
motion. The total torque is equal to the sum of the torques from the individual blocks, and the torque from each block is equal to
the distance the block is from  multiplied by the weight of the block, yielding the following equation:

Note that every term has the same weight,  which cancels algebraically. Move all of the  terms together and constants together
to produce the equivalent equation

We could have chosen to factor out a negative sign from the left side to yield:

Meaning that our equation is equivalent to
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We may generalize to other data. Let  represent our  value from our collection of  data values. To find our center of mass 
we need the torques to balance, which is equivalent to the following:

Meaning

This is the familiar formula for the arithmetic mean, what many call "average." The arithmetic mean of a data set is the center of
mass for its frequency distribution and is a measure of central tendency.

The arithmetic mean plays a significant role in statistics and throughout this course. There are several different types of means, but
given the prevalence of the arithmetic mean, we will refer to the arithmetic mean simply as the mean. We have standard notation to
differentiate the mean as a statistic, denoted  from the mean as a parameter, denoted  This latter symbol is the lowercase Greek
letter mu. Recall that parameters are generally denoted with Greek letters and refer to properties of a population, not a sample.
Notice the similarity in the formulas for computations below:

Note: the summations used in these formulas do not include any indexing information. When this is the case, sum over all
observations.

Since the arithmetic mean requires that the differences between values have meaning, it cannot be computed for nominal or ordinal
variables but can be computed for interval and ratio-level data.

Consider the following distributions. Determine which of the common measures of central tendency are indicated by the blue
and pink bars below the scaling axis. Explain your reasoning.

 

Figure : A symmetric distribution (left) and a positively skewed distribution (right)

Answer

There are three standard measures of central tendency: mode, median, and mean. The distribution on the left is unimodal
and symmetric. The distribution on the right is also unimodal but is positively skewed. The mean, median, and mode are all
equal in the left distribution. This follows from the fact that it is unimodal and symmetric. (Can you explain why?) The
mode of the right distribution is less than both colored bars on the scale axis; thus, the bars do not represent the mode.

Determining which bar represents the mean is a little more complicated. Recall that the number of observations above the
median and below the median should be equal. The median splits the number of observations in half, but it is difficult to tell
which bar has the same number of observations on both sides. When analyzing relationships, it is best to alter only one
variable at a time. If we increase the maximum value (move it to the right), the median won't change. However, the mean
would become larger to keep the figure balanced. A positive skew moves the mean to the right, and the mean is larger than
the median. The blue bar is the mean, and the pink bar is the median.
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In the previous exercise, we decided that the mean would be a larger value than the median in a positively skewed data set. A
similar argument yields that the mean takes on smaller values than the median in negatively skewed data. This is because the mean
incorporates every value into its computation, while the median only cares about the relative position of the values. We recommend
computing the median as the better measure of center when the data is skewed or has values of a more extreme magnitude than the
rest.

Determine which measures of central tendency are appropriate. Which would be the most appropriate? Explain.

1. Evaluations rated on a scale of  through 

Answer

Rating scales are measured on the ordinal scale. While statisticians debate the legitimacy of averaging ordinal data, we
recommend avoiding the practice. Median and mode are eligible candidates. The median is used more frequently than the
mode; it is our measure of choice.

2. Salaries

Answer

Salaries are measured on the ratio scale making mode, median, and mean eligible candidates. However, salary data is often
positively skewed, making the median a better choice.

3. Heights

Answer

Heights are measured on the ratio scale. Again, the mode, median, and mean are eligible candidates. Heights are not
generally highly skewed, making the mean a better choice.

4. Shirt sizes

Answer

Shirt sizes are measured on the ordinal scale. Between mode and median, we would choose the median

5. Favorite candies

Answer

Favorite candies are measured on the nominal scale. The only option is mode.

Create a data set consisting of  observations such that the mean is , the median is , and the mode is .

Answer

Use the Section  Excel file to check your solution by typing your  values in the second column. The cells with the
running calculations will turn green when that aspect of the data set is correct. There are infinitely many possible data sets.
Do not fret if your solution is different than your classmates' solutions.

Sometimes, working backward can be difficult. First, consider what each measure says about the data. If the mean is 
with  observations, the sum of all the values needs to be . If the median is , the average of the  and  values in
rank order, must be . If the mode is ,  must appear the most number of times (at least twice, if every other number
only appears once). Start with the most restrictive measures and work through them all. We recommend starting with the
median, then the mode, and ending with the mean.
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Trimmed Mean
When data is skewed or has values more extreme than the rest, we recommended using the median as a measure of central
tendency. There is a less common measure, a hybrid between the mean and median, that can also be used. It is called the trimmed
mean; its definition differs across the literature, but its underlying idea is consistent. When we have data of this type, the
observations that significantly affect the mean value are the extreme values of the data. To mitigate their influence, we trim a
certain percentage of the observations from both the top and the bottom and compute the mean on the remaining data.

When running across the trimmed mean in literature or research, check what definition is being used, as there are subtle differences
that are good to be aware of. We now provide our working definition of the -trimmed mean. Trim  of the data from the top
and  of the data from the bottom for a total of  and then compute the mean of the remaining data. If  is not a whole
number, remove the smallest number of observations such that at least  of the observations are removed.

Compute the mode, median, mean, and -trimmed mean for the following sample data.

{ }

Answer

Ordering and counting the data for the median and -trimmed mean is necessary.

{ } with 

Mode:  occurs most frequently with three occurrences.  comes in at second with two occurrences. The mode is 

Median: We must first compute our rank   Since it is a natural number, we look at the  and  values, 
 and  respectively. Our median is the midpoint,  

Mean:     

-trimmed mean: We must first compute how many observations we must remove.  of  is  This is not a whole
number; we, therefore, remove two observations from the bottom and two from the top. We find the average of the
following set:

{ }

-trimmed mean    

Notice we get an incorrect value for the trimmed mean unless we first sort the data.

2.5: Measures of Central Tendency is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department
at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
1.10: Distributions by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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2.6: Measures of Dispersion

Explore several measures of dispersion in data
Develop measures of dispersion:

Range
Interquartile Range
Mean Absolute Deviation
Variance
Standard Deviation

Compute various measures of dispersion

 Section  Excel File (contains all of the data sets for this section)

What is Dispersion?

Consider the two histograms in Figure  representing scores on two quizzes. The mean score for each quiz is . Despite the equality of
means, we can see that the distributions are quite different. The scores on  are more densely packed than the scores on . The

differences of scores were much greater on  than on .

Figure : Histograms for  (left) and  (right)

The terms variability, spread, and dispersion are synonyms. They refer to how varied data are in a data set or how spread out the distribution
of the data is. In this section we will discuss measures of the dispersion of a distribution. We seek a single number to describe how spread out
or dispersed the data is. There are many ways to measure "dispersion," and no single measure gives complete insight into the data's
dispersion. We will examine five frequently used measures of dispersion: the range, interquartile range, mean absolute deviation, variance,
and standard deviation.

Range
The range is the most straightforward measure of dispersion to calculate. As a warning, the term "range" is used in multiple ways, so do not
confuse the statistical use of this word with other uses, such as in algebra. Recall that our summary measures tend to be given as a single
value so, in statistics, the range is simply the highest data value minus the lowest data value, that is:

Since we are subtracting data values, we must work with interval or ratio-level data for the range to have meaning; we do not have a range
measure in nominal or ordinal level data.

Determine the range of the following group of numbers.

Answer

The highest number is  and the lowest number is  so   The range is  These values are within  units from each other.
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Now consider the two quizzes in Figure  What is the range of each quiz?

Answer

On  the lowest score is  and the highest score is  Therefore, the range is 

The range on  is larger: the lowest score is  and the highest score is  Therefore, the range is 

Since  has a smaller range, we can say that  is more spread out than 

The range is a quick way to get a rough idea of the spread of the data. However, it is a very coarse measure since it depends on only two data
points. The sets  and  have the same range but would not be called equally dispersed. We must investigate
other measures.

Interquartile Range

A similar measure to the range is the interquartile range  The  is the range of the middle  of the scores in a distribution.
We can understand this visually as the length of the box in the box plot.

In Section , we looked at data from men and women on the Stroop Test. In the women's data, the  percentile is , the 
percentile is , and the  percentile is . For the men, the  percentile is , the  percentile is , and the  percentile
is . Calculate the  for men and women.

Answer

Women:   

Men:   

Measures of dispersion relay how spread out the data is. The range of a data set gives the distance between the minimum and maximum
values. Similarly, the  of a data set gives a distance, but this time the distance is the smallest length of an interval such that the central 

 of observations could fall into the interval. Larger values of range and  indicate that the data set is more spread out. One can have
data with a large range and small (\text{IQR},\) indicating large dispersion in the entire data set, and yet the central  of the data is not
varied in comparison.

As we mentioned earlier, these measures do not provide a complete understanding of the data set since they depend on only a few values. As
we progress, we will discuss measures that incorporate all data values into the calculation, but even these measures of variability will not
provide a complete understanding: better, yes; complete, no.

For each measure of dispersion discussed so far, range and  construct two data sets (each with  values) that have the same
measure of dispersion value but starkly different degrees of spread when looking at the data.

Answer

It is good to remember that there are many different solutions to these questions.

Let us begin with range. If our two data sets are to have the same range, the difference between maximum and minimum values must
be the same. We can pick that value freely; let us say  We could have both minimum and maximum values be the same, or we
could have them be different. Let us keep them the same.

Here again, we had the freedom to pick at least one of our values. Once  was chosen as a maximum,  was forced to be our
minimum.

We now need to think about how we could have different degrees of spread. We could have values spread fairly evenly from  to 
in one data set and have them closely packed around one value in the other.
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Now let us look at  If our two data sets are to have the same  the difference  needs to be the same. As with range,
we could have  and  be the same or different. Since we have one example where we had the same values, we will make them
different. Let us again choose  for our value. Since   is the third value in our ordered data set, and  is the eighth value
in our ordered data set.

What sort of differences could we have in our data sets to elicit different degrees of spread? We already considered a reasonably
uniform spread and one centered on a single value. We could have a greater spread outside than inside our box as opposed to having
two clusters centered at  and .

Deviation
Measures of dispersion give us an idea about how spread apart our data are. Our previous measures incorporated only some of the data values.
One way to include all of the data is to compare how far away each piece of data, call it , is from some specific value . We call the
difference  the deviation from  A data value's distance from  which would be  is called the absolute deviation from 
There are many possible options for  The most common choice of  is the mean. Once we have all the deviations, we must decide what to
do with them since a measure of dispersion is a single value. Two options are summing up and averaging the deviations.

Consider the distribution of the five numbers 

Table : An example of various deviations

Values Deviations from the mean
Deviations from the
median

Absolute deviations from
the mean

Absolute deviations from
the median

Sum

Average 
Deviation

Perhaps the final value of  in the "Deviations from the mean" column surprised some of us. After some thought, it should make sense that
some values are above the mean and others are below the mean.

Examining the table can help us gain a deeper understanding. The last two columns look at the absolute values of the deviations rather than
the deviations themselves. Deviation is similar to displacement, and the absolute value of deviation is similar to distance. When we sum our
deviations, values below our central value contribute negatively, while values above our central value contribute positively and cancel each
other out.

Displacement is the difference between the initial position and the final position.

Distance is the path length from our initial position to our final destination.

We are summing up all of the deviations from the mean. If we put this in summation notation, we arrive at
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Hopefully, we recognize this from our discussion on central tendency. The mean as the balance point is the value that makes this sum equal 
this will be the case regardless of the data set. Thus, the average deviation from the mean is always 

We want to avoid the cancellation with summing deviations; there is more than  spread in the data set. The absolute value of the deviations
finds the distance each observation is from the central value. The sum of the absolute deviations can be considered the total distance our
observations are from our central value. Since the total distance is affected by the number of observations, we prefer to use the mean
absolute deviation from   We can understand the  as the average distance the various data values are from the central
value. Again, larger  values indicate that the data is spread to a greater degree.

We will not prove this, but if  is chosen to be the median, the  is minimized. Try to convince yourself that this is true using Excel.

Consider the spread of the two data sets and compute the 

Answer

Our first intuition is to look at the ranges,  and  and subsequently say that the second data set is more widely dispersed. Both data
sets have a mean of  The  for the first data set is thus   and  for the
second data set is   So both data sets have the same  Note that every observation in the first data
set is  units away from the mean, but in the second data set, two are closer than the average distance, and two are farther than the
average distance. The  fails to distinguish between these two sets.

Variance
Recall that the difference between deviation and absolute deviation can be understood as the difference between displacement and distance.
An advantage of using distance is that values do not cancel when summing. Using absolute values computes distances in a single dimension.
There are many notions of distance in higher dimensions; hopefully, we are familiar with our standard two-dimensional distance formula 

 Without going into the details, we can understand our next measures of dispersion from the perspective of a

higher dimensional distance between our central value  and our data set 

Note that we sum over all the deviations from  and that each deviation from  is being squared. The details here are beyond the scope of this
course, but hopefully, we have built at least an initial intuition as to why we might now consider the squared deviation from  We do so
using the same data from the previous section.

Table : An example of various squared deviations

Values Squared deviations from the mean Squared deviations from the median

Sum

Mean

Interpreting the sums and means of these squared deviations is more complicated. We were dealing with displacements and distances
previously; now, we have squared distances. If we had units attached to our data, such as  the units on these measures would be units
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such as  but the intuition that we have been building remains consistent. Larger values of these measures indicate greater degrees of
spread. We shall encounter an associated measure with a more intuitive interpretation soon.

When considering the  the median minimized the sum of the absolute deviations. We note that with the squared deviations, the median
does not minimize the sum because the sum for the squared deviations from the mean is smaller! Indeed, the sum of the squared deviations
from the mean is the smallest possible (if you have a background in calculus, see if you can show that the mean minimizes the sum of squared
deviations). For this reason, among many others, we define the variance of a population data set as the average of the squared deviations from
the mean.

We denote the variance with  where  is the lower case Greek letter sigma. Recall that using Greek letters for a descriptive statistic
indicates a population parameter. This is indeed the case here; this formula is for population variance.

Consider the quiz data from the beginning of this section in the table below. We are only interested in the performance of these particular
students and, therefore, treat the data as population data. Compute the variance for both  and 

Table : Scores from  and 

Answer

To find the population variance, we follow these steps:

1. List each data value.
2. Calculate the mean.
3. Calculate the deviation from the mean for each score.
4. Square the deviations from the mean.
5. Average the squared deviations from the mean.

Table : Calculation of variance for  scores

 Scores Deviations from the Mean Squared Deviations
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Table : Calculation of variance for  scores

 Scores Deviations from the Mean Squared Deviations

 

The variance for  is  and the variance for  is  From the histograms, we knew that  was more spread out,
which we see in  having a larger variance.

Recall the two data sets from Text Exercise  (treat them as population data), which were indistinguishable using 
 Compute the variance for each data set and explain how the variance can distinguish them while the 
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Answer

Recall that both sets have a mean of  So, the squared deviations from the mean are just the values squared. The variance of the first
data set is    and the variance of the second data set is    The two data sets are different using
variance because the squaring action puts greater weight on values farther from the mean. While  and  are just one unit away
from each other, the  contributes  to the sum in the variance while the  contributes only  And similarly, even though we did
not see this in our example, if deviations are small, less than  their weight is even less by squaring.

We are more interested in the larger population when we have sample data. We use sample statistics to estimate population parameters.
Statisticians have found that when calculating the average of squared deviations from the mean using sample data, the computation tends to
underestimate the variance of the larger population significantly. Thinking intuitively, this makes sense as there is usually greater variability in
a large group than in some subset of that group. Imagine the population was  take a sample from this population, say, 

 Notice the sample is less dispersed than the population. The sample will, more often than not, have less variance than the population. If
we want to estimate the population variance based on a sample, using a number larger than the value obtained from the above formula is
better. Because of this, statisticians have adjusted the averaging process when dealing with sample data to result in a better inferential
measure; the solution is to divide by  rather than  The sample variance is defined as follows.

Notice the use of  a Latin letter, in  the Latin letter again reminds us that we are dealing with sample data. In practice, variance is usually
computed in a sample, so this formula is often used.

Let's take a concrete example. Consider a random sample of  quiz scores from  We constructed a random sample from the table
on the previous problem:  Calculate the sample variance for this sample data. Compare the sample variance to
the population variance.

Answer

   

The population variance  is  while the sample variance  is about  The values are off by about  which is much
closer than it would have been if we had divided by  rather than  in our computation. Without adjusting the average for sample
variance, we would compute  which is  away from the population variance.

Standard Deviation

Variance is a powerful measure and is the basis for much of statistics. We struggle to interpret this value because of the squared units.
Consequently, we introduce another measure closely related to the variance: the standard deviation. The standard deviation is simply the
square root of the variance. The population standard deviation is the square root of the population variance, and the sample standard deviation
is the square root of the sample variance. This makes the units on the measure the same as those of the original data; for example, if the
original data was in  then the standard deviation will also be measured in  We can understand the standard deviation loosely as a
measure of the distance a typical value is from the mean. Our natural choices of symbols are the bases for our two variances:  for population
and  for sample.

Compute the standard deviations for both  and 

Answer
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Since we have already computed the variances for  and  in text exercise  We only need to take the square root of
each.

  

  

What is the smallest value that standard deviation can take on? Construct a data set of  observations with such a standard deviation.

Answer

As the square root of variance, we must analyze the square root function and variance as a measure. Square roots return nonnegative
values. The smallest nonnegative value is  The square root is equal to ,   only when the input  is  Can the variance of a
data set be  An average is  only when the sum of the values is  We are adding up squared deviations, which are all nonnegative.
The only way a sum of nonnegative values is  is if they are all  The deviation from the mean is  only when the observation is
equal to the mean. There is no variability in the data values. An example of such a data set would be 

It is worth noting that all of the measures discussed here (range,   variance, standard deviation) are always non-negative.
Moreover, they will all be  on constant data sets, like  conversely, the range,  variance, and standard deviation will not be

 if there are at least two different data values.

2.6: Measures of Dispersion is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort Hays State
University.

3.12: Measures of Variability by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
3.2: What is Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.

Quiz 1 Quiz 2 2.6.5.

σ

1

= 1.5

−−−

√ ≈ 1.225

σ

2

= 3.9

−−−

√ ≈ 1.975

 Text Exercise 2.6.10

5

0. 0 d

−−

√

= 0, d 0.

0? 0 0.

0 0. 0

{1,1,1,1,1}.

IQR, MAD,

0 {1,1,1,1,1}; MAD,

0

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41771?pdf
https://stats.libretexts.org/Courses/Fort_Hays_State_University/Elements_of_Statistics/02%3A_Descriptive_Statistics/2.06%3A_Measures_of_Dispersion
https://stats.libretexts.org/Courses/Fort_Hays_State_University/Elements_of_Statistics/02%3A_Descriptive_Statistics/2.06%3A_Measures_of_Dispersion?no-cache
https://stats.libretexts.org/@go/page/2306
http://www.ruf.rice.edu/~lane/
https://en.wikipedia.org/wiki/Public_domain
https://onlinestatbook.com/
https://stats.libretexts.org/@go/page/2090
http://www.ruf.rice.edu/~lane/
https://en.wikipedia.org/wiki/Public_domain
https://onlinestatbook.com/


2.7.1 https://stats.libretexts.org/@go/page/43307

2.7: Distributions- Using Centrality and Variability Together

State and apply Chebyshev's Inequality
Define unusual observations
Define normal distributions
State properties of normal distributions
Discuss distributions and curves
Define the standard normal distribution
State and apply the Empirical Rule
Define -score
Define outliers

 Section  Excel File (contains all of the data sets for this section)

Connecting Measures of Central Tendency & Measures of Dispersion
In the previous two sections, we developed two significant classes of descriptive statistics: measures of central tendency and
measures of dispersion. In this section, we begin to consider the power of these measures together. We have shown that the mean of
a data set is the balancing point of its frequency distribution and that it minimizes the sum of the square deviations. In the last
section, we defined the variance of a data set to be the mean of these square deviations (with appropriate modifications for sample
data). We set the standard deviation to be the square root of the variance. The coupling of these measures of centrality and
dispersion tells us a lot about the distribution of our data.

Think about what "standard deviation" means; it represents a measure of "typical distance" from the mean. If the mean of some
data set was  and the standard deviation was  then we would expect a good chunk of our data points to be between  and 

 that is, much of the data does not deviate from the mean by more than the standard deviation. We would expect most of the
data to fall between  and  that is, most of the data would be within two standard deviations of the mean. Think about it: if all
of our data points were less than  or more than  then all of them deviate from  by at least  How could a "typical"
deviation from the mean be  if most of the points are off by at least  Taking this further, we should find it incredibly rare that
a data point is more than  standard deviations away from the mean.

Consider the data set 

1. Give the population mean and population standard deviation.

Answer

Using the formulae from previous sections, the mean is   and the standard deviation is  

2. How many data points are within  standard deviation of the mean?

Answer

For a data point to be within  standard deviation of  means that its distance to  is no more than  Thus, any data
point between  and  would be within  standard deviation of the mean. We can see
that  data points fall in this range, meaning  of the data points are within  standard deviation of the mean.

3. What proportion of data points are within  standard deviations of the mean?

Answer

 standard deviations would be    Thus, any number whose distance to the mean is less than 
 is within  standard deviations of the mean. If we go  below the mean, that would be   If we

go  above the mean, that would be   Notice that all but  of our data points fall in this range. Since we
have  data points, that yields  of our data is within  standard deviations of the mean.
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4. What proportion of data points are within  standard deviations of the mean?

Answer

   Notice that none of the data points differ from the mean by more than  This means all of our
data is within  standard deviations of the mean. The proportion is 

We note that the behavior in the preceding example does not characterize all data sets. Generally, we can have data sets where some
points are   or any number of standard deviations above or below the mean. These examples have a lot of data points;
however, the basic intuition still stands: only a tiny proportion of points are far away from the mean. Let us be more precise with
this statement.

Chebyshev's Inequality

Around the middle of the nineteenth century, mathematicians (Pafutny Chebyshev, in particular) discovered an explicit connection
between a data set's mean and standard deviation and its distribution. The explicit development of such a result is beyond the scope
of an elementary statistics course, so we shall present the result and begin to digest the implications.

Given any data set with (population) mean,  and (population) standard deviation,  and any real number  the
proportion of observations that lie in the interval  is at least 

Using Chebyshev's Inequality, we can guarantee a minimum percentage of observations falling in an interval symmetric about the
mean. By starting at the mean and going a specified number of standard deviations above the mean and then below the mean, we
are guaranteed to catch at least a certain percentage of the observations in the data set. This result's great power and beauty come
from this inequality being valid for all data sets. That is important to remember. Consider the following basic applications of the
result:

If  we have that at least    of the observations fall between  and  Another way to say this is
that, for any data set, at least  of the data falls within two standard deviations of the mean.

If  we have that at least   of the observations fall between  and 

The implication of this is that for any data set, less than  of the observations fall more than  away from the mean  and less
than  of the observations fall more than  away from the mean  Most observations fall within  or  standard deviations
from the mean. When we have an observational value that falls away from the bulk of the observations, we consider it unusual. We
say that an observation is unusual by the  standard deviation rule if it is more than  standard deviations away from the mean;
likewise, an observation is unusual by the  standard deviation rule if it is more than  standard deviations away from the mean.

Suppose a sales department of some corporation is supposed to acquire a minimum of  in revenue each week.
Glancing at a long-term report over the last  years, we see that, on average, the department made  each week with
a population standard deviation of  What can be said about how often the department did not meet the quota?

Answer

Notice that the quota is  below the average revenue generated. We need to know how many standard deviations
equal  to apply Chebyshev's Inequality. Since the standard deviation is  we can divide to obtain this.

Each week the department did not meet the quota was at least  standard deviations below the mean. Chebyshev's
Inequality guarantees, on any data set, that the proportion of data points within  standard deviations of the mean is at
least   We can be confident that at least  of the time, the department met the quota. It is possible
that they met the quota far more than  (they could have met it  of the time). We would need more information to
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obtain a more precise estimate. Regardless, we can be sure that the department did not miss quota more than  of all
weeks in the last  years.

Using Chebyshev's Inequality, determine the number of standard deviations from the mean  to guarantee at least  of the
observations to be in the interval 

Answer

We first note that   Our problem reduces to solving the following equation:

Meaning that

Which yields the solution:

Remember,  can be any real number greater than  Hence 

Can we use the results of the previous exercise to compute the first and third quartiles for any data set? Explain.

Answer

There are at least two reasons why we cannot do this. While  of the observations do fall between the first and third
quartiles, it is also true that  fall below the first quartile and  fall above the third quartile. Chebyshev's Inequality
does not guarantee that the percentage of observations in each tail is 

Chebyshev's Inequality asserts a minimum percentage of observations in the interval. It does not claim that there are exactly
 of the observations; it argues that there are at least 

It is worth noting that Chebyshev's Inequality does tell us that the first quartile cannot be more than  standard deviations
below the mean, as this would imply that more than  of the data is larger than the first quartile. Similarly, the third
quartile cannot be more than  standard deviations above the mean.

Normal Distributions and Curve Fitting

While Chebyshev's Inequality is powerful because it applies to all distributions, more precise connections can be made when we
restrict our interest to particular classes of distributions. We shall encounter several classes throughout our course of study, but at
this point, we shall limit ourselves to normal distributions. Normal distributions are common in data from everyday life; heights,
IQ scores, and the "bell curve" of class grades are familiar examples. Normal distributions are symmetric and unimodal, with the
mean, median, and mode all equal.

To uniquely express the shape of a normal distribution, we must discuss modeling distributions with mathematical functions or
curves. We can use continuous functions to model both discrete and continuous data. Consider the following figure.

20%

25

 Text Exercise 2.7.3

k 50%

[μ−kσ,μ+kσ].

50%= .

1

2

= 1−

1

2

1

k

2

=

1

2

1

k

2

k=± 2

–

√

k 1. k= .2

–

√

 Text Exercise 2.7.4

50%

25% 25%

25%.

50% 50%.

2

75%

2

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/43307?pdf


2.7.4 https://stats.libretexts.org/@go/page/43307

Figure : Continuous function fit to a histogram

The curve highlights the shape of the histogram reasonably well and could continue to fit better if the histogram had more classes.
Increasing the number of classes is not always possible with discrete variables and finite data sets. Still, it could happen with
continuous variables provided enough data is available with sufficient measurement precision. Recall that frequency and relative
frequency distributions have similar graphical representations; the only differences are in the vertical scales. As such, we could
develop functions using either distribution. We consider relative frequency distributions; these curves will play an important role
throughout this course.

At each point along the horizontal axis, we have two values to compare vertically: the height of the bar versus the function value.
The height of the bar represents the percentage of observations that fall in that class. We want to be able to retain this information
with our model (function). As we can see, the value of the function changes within classes, making retaining this information
difficult. Our solution is to construct curves that closely resemble common classes of histograms so that the area underneath the
curve over a given interval corresponds to the relative frequency of the class(es) in that interval.

Consider this process visually using a data set from Statistics Online Computation Resource containing  height values
accurate to  decimal places. We construct relative frequency distributions with class widths of   and  and portray them
in two ways graphically. The histograms on the left represent the relative frequency of a class using the height of its bar. In contrast,
the graphical representations on the right represent the relative frequency of a class using the area of its bar. Note that the vertical
scales remain the same across all  graphs.

Figure : Graphical representations of relative frequency by height (left) and area (right)
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Since we have a finite data set, the relative frequencies of each class become extremely small, around  as the class widths
become smaller. We see each class's height get smaller until it is difficult to see (bottom left graph). We see a different story on the
right. Since our relative frequencies are represented by the area of the bars and the class widths are getting smaller, the shape of the
distribution seems to solidify as our class widths decrease. In taking smaller and smaller class widths, our graphical representation
becomes "smoother" in the shape of a continuous function, and the area underneath the function over an interval corresponds to the
relative frequency of the observations in that interval.

A significant component of statistical research is checking how closely any particular model fits our actual data set. Continuous
models allow us to build our statistical framework around these functions using the power of mathematics without needing to
construct something new for every data set we study.

Our chosen models preserve relative frequency through area. The relative frequency of observations over a given interval is the
area under the curve over that same interval. Recall that the sum of all the relative frequencies of a distribution is always equal to 
this means that the area underneath the entirety of these curves will also be  We will name these curves and continue to deepen
our understanding in the coming chapters.

With all of this build-up, we are now ready to define the class of normal distributions; the curve that defines them depends on two
factors: the mean and standard deviation. While the knowledge of the particular function bears little utility in this course, we now
provide it with the general normal distribution graphed below.

Figure : The normal distribution centered at  with standard deviation 

Use the figure to answer the following:

1. The means of these normal distributions are   and  Determine to which distribution each value belongs.

Answer

Given that the mean, median, and mode are all equal. The mean occurs at the peak of the distribution. Thus   
  and  

,

1

25000

1;

1.

f(x) =

1

σ 2π

−−

√

e

−

(x−μ)

2

2σ

2

2.7.3 μ σ

 Text Exercise 2.7.5

−3, 0, 4.

μ

blue

=−3,

μ

black

= 0, μ

red

= 4.

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/43307?pdf


2.7.6 https://stats.libretexts.org/@go/page/43307

2. The standard deviations of these normal distributions are   and  Determine to which distribution each value belongs.

Answer

The standard deviation is a measure of dispersion. The smaller the spread, the smaller the standard deviation. Since the blue
distribution is spread out the most, the blue distribution has the largest standard deviation. We can say    

 and  

Figure : Standard Normal Distribution  and 

The normal distribution shown above is called the standard normal distribution or the -distribution. The standard normal
distribution is the normal distribution with  and  We can quickly tell that the mean of the distribution is  There is
also a way to determine the standard deviation; the reasoning behind it is less apparent, but a first-semester calculus student should
be able to arrive at the conclusion. There are two inflection points on normal curves, and they happen at exactly one standard
deviation below and one standard deviation above the mean. All we need to do is identify an inflection point and determine the
distance to the mean. For those who do not know what inflection points are, look around the points  and  in the figure above to
see what is happening; note that these values are one standard deviation away from the mean. We notice that between  and , the
curve seems to open downward, and along the tails, the curve appears to open upward. At some point, the function switches from
opening upward to downward, and then at another point, the function switches from opening downward to upward; these points are
called inflection points. In a normal distribution, the inflection points always occur at one standard deviation above and below the
mean.

The Empirical Rule

We began our discussion about normal distributions by saying claims stronger than Chebyshev's Inequality can be made when we
restrict our distributions to particular classes. We now formulate such a result for normal distributions, which we call the Empirical
Rule.

Given a normal distribution with mean  and standard deviation  the percentage of observations within   and  standard
deviations of the mean is known
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Figure : The Empirical Rule

Figure : Empirical Rule with two normal distributions with different means and standard deviations on the same set of
axes

Note: the approximation signs in the statement of the Empirical Rule are used because the areas underneath the curves over the
appropriate intervals can be approximated to many decimal places. However, we do not expect that sort of precision at this
stage. In future chapters, we will use technology for greater accuracy.

Notice the difference between the claims of Chebyshev's Inequality and the Empirical Rule. Chebyshev's Inequality provides a
lower bound for the percentage of observations within  standard deviations of the mean for any data; meanwhile, the Empirical
Rule asserts what those percentages are for   and  standard deviations, but only for data that is normally distributed.

Let us revisit a previous example. Suppose a sales department of some corporation is supposed to acquire a minimum of 
 in revenue each week. Glancing at a long-term report over the last  years, we see that, on average, the department

made  each week with a population standard deviation of  Suppose that we also know that the data is
normally distributed. What can be said about how often the department did not meet the quota?

Answer

Last time, we noticed that the quota was  standard deviations below the mean and that Chebyshev's Inequality
guaranteed at least  of the data points were above  Now we have more information: we are given that the
data is normally distributed; therefore, we can be more precise. The Empirical Rule tells us that  of the data is no more
than  standard deviations away from the mean. Two standard deviations is  so we are saying  of the data falls
between   and   Therefore, at least  of our data is above
quota. We can use the symmetry of the normal distribution to say even more.
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The Empirical Rule tells us only  of the data is more than  standard deviations away from the mean. Because the curve
is symmetric, half lies above the mean and half below the mean. Anything above the mean was above the quota; the 
of the data points more than  standard deviations above the mean can be added to the values above the quota. We conclude
that at least  of the data was above the quota. The department missed the quota no more than  of the time. Later,
we will develop tools that will allow us to be even more precise.

We can also return to our ideas regarding unusual observations. When we are beyond  or  standard deviations away from the
mean for normal distributions, the percentage of observations that lie there are  or  respectively. Here the title of unusual,
rings a little stronger.

Use symmetry and the Empirical Rule to find the percentage of observations in each of the following intervals for a normal
distribution with mean  and standard deviation 
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7. 

Answer

8. 

Answer

IQ scores are generally thought to be normally distributed with a mean of  and standard deviation of  Determine the
percentage of the population with IQ scores in the given ranges.

1. Between  and 

Answer

Since  is  less than   corresponds to  standard deviation below the mean. Likewise,  is  standard deviation
above the mean. A direct application of the Empirical Rule tells us that  of the population is within this range.

2. Between  and 

Answer

Since  is  greater than  and    lies  standard deviations from the mean. We are looking at the interval
from  standard deviation below the mean to  standard deviations above the mean. The previous exercise shows that this
range contains   of the population.

3. Greater than 

Answer

Since  is  greater than  and    lies  standard deviations from the mean. The percentage of the
population that lies beyond that is 

4. Between  and 

Answer

Since  is  less than   is  standard deviations below the mean. Likewise,  is  standard deviations below the
mean. The percentage of the population that lies between  and  is 

5. Explain why we cannot determine the percentage of the population between  and  using the Empirical Rule and
symmetry.

Answer

It might be tempting to say that the percentage of the population between  and  is  because we have often split
the percentages evenly across our known intervals. We cannot do this because we do not have symmetry over the interval 

 The area under the curve from  to  is larger than the area under the curve from  to  In future
chapters, we will use technology to compute the area and thus deduce the percentage of the population within such
intervals.
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-scores
Notice that in both the Empirical Rule and Chebyshev's Inequality, we are interested in how many standard deviations an
observation is from the mean. In the previous exercise, we repeatedly determined how far away an observation was from the mean.
Then, we divided that difference by the standard deviation to determine the number of standard deviations the observation was
from the mean. This computation is commonly called a "standardization of the data" and is known as an observation's -score.

Our -scores do more than facilitate Empirical Rule calculations; as "standardized" measures, they enable us to compare
observational values across different populations.

As a married couple prepared to send their daughter to college in  they wanted to compare relative high school academic
prowess. The daughter only took the SAT. The mom and dad took the ACT, but there was an age gap of several years. The dad
took the ACT in  while the mom took the ACT in  After doing a little research, they found out that the average score
on the ACT in  was  with a standard deviation of  and in  the average score was  with a standard deviation
of  The average score on the SAT in  was  with a standard deviation of  Determine who achieved the highest
relative academic prowess on standardized tests if the dad earned a  the mom earned a  and the daughter earned a 
on their respective exams.

Answer

In comparing their values, we can see the dad barely outscored the mom. However, we cannot directly compare the
daughter's score as the scale for the SAT is entirely different from the scale for the ACT. One way to compare the observed
values in these three separate populations is to compute and then compare each observation's -score.

Based on the -scores, the dad performed the best, followed closely by his daughter. We might also consider whether these
values are significantly different from each other. That is, the dad's z-score was (\ 0.027 \) larger than the daughter's z-
score...is such a difference meaningful? We will answer these questions in future work once more measurements are
developed.

Unusual Observations and Outliers
As we have progressed through this section, we have referenced the idea of unusual observations twice and mentioned that there is
no standard definition agreed upon by all professionals. Chebyshev's Inequality allows us to estimate the minimum percentage of
observations within a certain number of standard deviations of the mean. The Empirical Rule only makes assertions about the
percentage of observations in normal distributions. From these two results, we know we have a very small percentage of
observations, many standard deviations away from the mean; we classify such observations as unusual. Sometimes, we have a few
isolated observations positioned far from the rest of our data, called outliers. Outliers can point to rare/unique occurrences or
possibly measurement errors. When an outlier is present, we want to check the validity of the measurement. If protocols were
violated or an error occurred in the measurement, we will likely remove the observation from our data analysis.

If an observation is considered unusual by the  standard deviation rule, what can we say about its -score?

Answer
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Since the observation is considered unusual by the  standard deviation rule, we know it lies at least  standard deviations
away from the mean. The -score is the number of standard deviations an observation is from the mean. We know the
magnitude of the -score is at least  It could be negative or positive.

One way to classify outliers is using box plots. The box contains  of the observations. How far must an observation be outside
this box to be classified as an outlier? Recall the interquartile range  a measure of dispersion, a range measure of the middle 

 of our ordered data. The box represents our central data region, and the  is the length of the box. It is common practice to
say any observation beyond the box by more than  is an outlier.

Using the  scores from the  point assignment in section  determine if there are any unusual observations or outliers.
Use both of the rules for determining unusual observations.

Answer

The rules about unusual observations depend on the mean and the standard deviation. We are studying this data as
population data. A quick computation gives us the following values    and   Since these are
intermediary steps to our conclusion, we do not want to use the rounded values in future computations. Reference them
exactly when using technology.

The first unusual observation rule is if the observation is beyond  standard deviations from the mean. The bounds for this
are     and    
By this standard, the single data value  is considered unusual.

The second unusual observation rule is if the observation is beyond  standard deviations from the mean. The bounds for
this standard are   and   By this standard, there are no unusual observations.

The outlier rule depends on  and    and   The    and   The bounds for
this standard are     and    

 Since no observations fall outside of this interval, there are no outliers.

2.7: Distributions- Using Centrality and Variability Together is shared under a Public Domain license and was authored, remixed, and/or curated
by The Math Department at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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2.8: Measures of Median and Mean on Grouped Data

Determine the median and mean in grouped discrete data
Determine the median and mean in grouped relative frequency data
Determine the median and mean in grouped continuous data
Extend to weighted mean

 Section  Excel File (contains all of the data sets for this section)

Introduction to Grouped Data
In our investigation of descriptive statistics, we worked on a collection of individual data values and then formed appropriate
summary measures of that "raw" data. However, we may sometimes be given the data in a summarized frequency distribution
format instead of as a "raw" data collection. Can we find our various descriptive statistic measures if we only have the frequency
table, which represents the data in grouped form? Although the answer is only "sometimes," the underlying concept of how we can
do so is essential for later ideas in the course. We begin with mean and median measures found from frequency tables on grouped
quantitative data, but where the grouping was not formed by interval values but only by the same single values.

Mean and Median of Non-Interval but Grouped Data in a Frequency Table

Look at the frequency distribution in Table  shown below from Section  about thirty student scores (discrete 10-point
scale) for an assignment; we will assume these are only a sample of a larger population of scores. Notice that our table shows no
loss of crucial information on the data as each distinct data value is explicitly shown in the table, and no intervals are used to
represent the grouped student scores.

Table : Grouped Frequency Distribution

Student Score Frequency

With such a table, we could formally recreate the entire data set  by recognizing the meaning of the
frequency values for each of the various score values in the table. If we had more data values, recreating the data set would be
tedious, and we could lose information on the data. Even if using technology to produce our descriptive measures, we must "type
in" all individual data values. This process is likely to lead to many data entry errors. Recreating the "raw" data set is unnecessary;
we can determine the median and the arithmetic mean by working with data in this frequency distribution format.

First, we examine the median measure by using quantitative reasoning. We note by the sum of the frequency column that there are 
 pieces of data and, by our earlier discussion in Section  the median is the average of the two data values in position  and 
 in the ordered list of all data values. Using our frequency column, we accumulate across our frequency counts to see that the 

 data position is within the group of " " scores and the  data position is within the group of " " scores (total accumulation
of number of data scores from " " to " " includes   scores). So the median value of the data is  
In general, we can find the median by focusing on our frequency counts to help us determine the center position location, using the
location value to determine the median within the grouped variable values.
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Next, we examine the mean. Recall that the mean is found in our original discussion by summing our quantitative data values, then

dividing by the number of values in the data set:   Notice in our grouped data, we can find the portion of the entire sum

generated by each group by multiplying the group data value by the frequency. For example, the grouped data value  will
contribute a total of   to the total sum since there are three  values in the data set; similarly, the grouped data value  will
contribute a total of   toward to total sum since there are seven  values in the data set. This leads us to the following
adjustment of our table to compute the mean of the grouped data (also note the change to general headings on each column).

Table : Computation of arithmetic mean for data from Table 

Totals:

 Arithmetic Mean: 

In conclusion, by summing our  frequency column values, we know the sample size  We have accomplished the exact
computation by adding our thirty individual data values together by summing our  column of values. The arithmetic mean of

the data is found by our last computation   We divided the total sum of all data values by the number of data values. In

grouped data of this form, we can find the mean by the above process, and described symbolically by the given formula:

Sample Mean from a Frequency Distribution

If the data in our table had been population data, we would still perform the same calculation using the same reasoning. And have:

Population Mean from a Frequency Distribution

Consider the Quiz  data from section  below in the frequency table format. Determine the mean from the grouped format
and compare it with the results obtained in section  from the "raw" data. We assume the data is population data in this
example.

Table : Grouped Frequency Distribution of Quiz  Data

Quiz Scores Frequency
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Quiz Scores Frequency

Answer

To find the mean from this frequency table, we follow these steps with thoughts of what we are doing with the data:

1. Sum the frequency column  to determine the size of the data set.
2. Compute the column of values  to weight each quiz score with their occurrence frequency.
3. Sum the column of  values to produce the total sum as if summing the individual data values.
4. Produce the mean by dividing the sum of the  column by the sum of the frequency column 

Table : Computation of arithmetic mean

 

We notice this is the exact arithmetic mean value computed when working with the twenty individual quiz scores.

Mean and Median of Grouped Data in a Relative Frequency Table

What would happen if we had a relative frequency distribution of this data instead of a frequency distribution table? Recall that
relative frequency in this situation measures the proportion of the data set that has a specific data value. We will be using  to
represent the relative frequency or proportion measure as tied to specific data value 

Table : Relative frequency table of student scores from Table 

Student Score Relative Frequency 
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With a relative frequency table, we could not formally recreate the entire data set unless we first knew the number of data values in
the data set (i.e., the sample or population size). However, we do not need such information to determine the distribution's median
or mean. We proceed as above, working with relative frequency measures instead of counted frequency measures.

We first examine the median measure. All data is accounted for by the sum of the frequency column that  we should always
sum our relative frequency measures to see if we have a total of  As discussed previously, the median is at the 

 percentile position in the ordered list of our data set. Using our relative frequency column, we can accumulate our relative
percentages to see that the  data position is right on the border between the group of " " scores and the group of " " scores;
total relative frequency accumulation of number of data scores from " " to " " includes  

  The median value of the data is   just as above. We can find the median by focusing on our relative
frequency measures to help us determine the location of  of the data set from the smallest value and the  location value to
determine the median within the grouped variable values.

Next, we examine the mean measure. In forming the relative frequency measures, we divided each frequency count by the sample
size to form the relative frequency measures. This earlier division and some algebraic reasoning show how we can adjust our
standard arithmetic mean formula to fit this situation.

 stands for the relative frequency of data value  it is the proportion of the data set with that specific data value,  In a
sense, each distinct data value is being "weighted" by the relative frequency of occurrence. For example, the fact that the data value

 occurs with  relative frequency should make this data value "weigh-in" more heavily to the average than does the data
value  that only occurs with  relative frequency. Our relative frequency gives us this "weighting" of the data in a relative
sense instead of the above, in which the actual frequency measures give us a weighted "count" sense. This leads us to the following
adjustment of our table to compute the mean of the grouped data (note the change to general headings on each column).

Table : Computation of arithmetic from relative frequency found in Table 

Totals:

We notice that the results from this relative frequency distribution are the same as those from the previous section of the plain
frequency distribution.

In conclusion, by multiplying each unique data value  by its relative frequency measure  we have used a relative
weighting of each value to produce the arithmetic mean; so, computationally, we need only sum these products  to
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produce our arithmetic mean. In grouped data of this relative frequency form, we can find the mean by the above process, as
described symbolically by the given formula:

Sample Mean from a Relative Frequency Distribution

Once again, if the data in our table had been population data, then we would still perform the same calculation work using the same
reasoning:

Population Mean from a Relative Frequency Distribution

Consider the Quiz  data from section  this time given in the relative frequency table format below. Determine the mean
from the grouped format and compare it with the earlier results.

Table : Grouped Relative Frequency Distribution of 
Quiz  Data

Quiz Scores
Relative 

Frequency

Answer
To find the mean from this relative frequency table, we follow these steps as established in the discussion above:

1. Sum the relative frequency column  to check that  of the data is accounted for in the table.
2. Compute the column of values  to weight each of the various quiz scores with their relative frequency of

occurrence.
3. Sum the column of  values to produce mean of the data values.

Table : Computation of arithmetic mean using relative frequencies from Table 

Totals:

Again, this is the exact arithmetic mean value computed previously when working with the raw data set or the grouped
frequency table set.

We extend these ideas one more step with the concept of "weighted" averages.
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Weighted Mean Measures
Sometimes, data values are assigned different weights; for example, course averages are often determined through a "weighting" of
the various assessment values. This weighting is usually given as a percentage but can be shown in any chosen relative form (such
as a " " weight for those values that carry twice the weight of any values assigned a " " weight). As such, we can see how the
weights play the same role as the frequency or relative frequency values in the above discussion.

As an example, suppose a school, as is commonly done, uses a four-point scale (A =  points, B =  points, C=  points, D = 
point, and U=  points) to determine grade point average (GPA) weighted by the number of credit hours for the class. A randomly
chosen student's recent letter grades awarded and number of credits in eight courses were as follows: A with  credits, U with 
credits, C with  credits, A with  credits, B with  credits, B with  credits, C with  credits, and D with  credits. We organize
this information in table  to determine this student's GPA.

Table : Grouped Frequency Distribution

Letter Grade Point Value
Credit Hours 

(Weight)

A

B

C

D

U

Again, we use the above ideas to compute the GPA, a weighted mean.

Table : Computation of GPA as a weighted mean

Letter Grade
Point Value Credit Hours 

A

B

C

D

U

 Totals:

  Weighted Mean:

This student had a GPA of  for those courses. In data that carries varied weights, we can determine the mean as described
symbolically.

Sample Mean from Weighted Data

As we have seen, we do not always need "raw" data, especially with huge data sets, to formulate many of our descriptive statistics
for the data. Grouped data conserves space required to represent data and can often be used to produce many summary statistic
measures with minor adjustments to our computational thinking. However, we must know if we have any "loss" in the data
representation due to the grouping. All the above data sets were discrete, and each grouping was done on single values, not over
interval values. When we group data over interval values, we lose some information in the data. The following optional subsection
examines this issue of continuous data.
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An astute reader will notice that the four-point grading scale, common in many academic institutions, takes values on an
ordinal scale; the arithmetic differences in values do not provide any information other than the underlying ordering of letter
grades. If one student earns a  while a second student earns  both students would be awarded the same letter grade
of an A, despite having achieved different levels of performance in the course.

When we look at a semester's average GPA, as we did above, how are we to interpret two students in the same courses having
the same average? Just like with the racing example at the end of section  we cannot say that they performed (earned
points), on average, the same. One student could have outperformed the other student on all assessments in each class, yet still
be awarded the same letter grades in each class thus earning an equivalent GPA. All we can say is that the students earned, on
average, the same letter grades.

Consider two physics majors, Aaron and Elise, who took Engineering Physics I (five credit hours), Calculus I (five credit
hours), and Elements of Statistics (three credit hours) last semester. Aaron earned   and  respectively, and
Elise earned   and  respectively.

1. Convert each student's semester grades to the four-point grading scale and then compute the weighted average using
the number of credit hours as the weight. This is the standard way four-point scale averages are computed.

Answer

Aaron would receive a  for his physics course, and then  for each of his math courses. Since physics and calculus
were five credit hour courses, those two grades will be weighted by , and statistics will be weighted by  We thus
have the following computation.

Elise earned an A in each course thus earning  in each of her courses. Since physics and calculus were five credit hour
courses, those two grades will be weighted by , and statistics will be weighted by  We thus have the following
computation.

We thus have that Aaron earned a  and Elise earned a  last semester.

2. Compute each student's weighted average percentage using the number of credit hours as the weight and then convert
the averages to the four-point scale. This is a nonstandard way to compute four-point scale averages.

Answer

We compute the weighted averages similarly.

In converting the two weighted averages to the four-point scale, both Aaron and Elise would receive a  for the
semester. Despite having the same average percentages, the standard way of computation distinguishes between a 
student, Elise, and Aaron, a student who did not get straight A's. There is only one way to get a  There are many
ways to get a lower GPA. The four-point scale emphasizes the distinction between straight A students and everyone
else.

 Note: Level of measurement and careful consideration of results

99% 90.1%,

1.6,

 Text Exercise 2.8.3

85%, 96%, 98%,

90%, 91%, 98%,

3 4

5 3.

= = = ≈ 3.6154GPA

Aaron

3 ⋅ 5+4 ⋅ 5+4 ⋅ 3

5+5+3

15+20+12

13

47

13

4

5 3.

= = = = 4GPA

Elise

4 ⋅ 5+4 ⋅ 5+4 ⋅ 3

5+5+3

20+20+12

13

52

13

3.6154 4.0

= = = ≈ 92.2308%GPA

Aaron

85 ⋅ 5+96 ⋅ 5+98 ⋅ 3

5+5+3

425+480+294

13

1199

13

= = = ≈ 92.2308%GPA

Elise

90 ⋅ 5+91 ⋅ 5+98 ⋅ 3

5+5+3

450+455+294

13

1199

13

4.0

4.0

4.0.

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41686?pdf
https://stats.libretexts.org/Courses/Fort_Hays_State_University/Elements_of_Statistics/01%3A_Introduction_to_Statistics/1.06%3A_Levels_of_Measurement#Consequences_of_Levels_of_Measurement


2.8.8 https://stats.libretexts.org/@go/page/41686

2.8: Measures of Median and Mean on Grouped Data is shared under a Public Domain license and was authored, remixed, and/or curated by The
Math Department at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
1.10: Distributions by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41686?pdf
https://stats.libretexts.org/Courses/Fort_Hays_State_University/Elements_of_Statistics/02%3A_Descriptive_Statistics/2.08%3A_Measures_of_Median_and_Mean_on_Grouped_Data
https://stats.libretexts.org/Courses/Fort_Hays_State_University/Elements_of_Statistics/02%3A_Descriptive_Statistics/2.08%3A_Measures_of_Median_and_Mean_on_Grouped_Data?no-cache
https://stats.libretexts.org/@go/page/2091
http://www.ruf.rice.edu/~lane/
https://en.wikipedia.org/wiki/Public_domain
https://onlinestatbook.com/
https://stats.libretexts.org/@go/page/260
http://www.ruf.rice.edu/~lane/
https://en.wikipedia.org/wiki/Public_domain
https://onlinestatbook.com/


2.8.1.1 https://stats.libretexts.org/@go/page/45863

2.8.1: Measures of Median and Mean - Grouped Data Loss of Information - Optional
Material

Consider the loss of information with grouped data
Discuss class approximations
Develop methods to approximate the median and mean from grouped data

 Section  Excel File (contains all of the data sets for this section)

Central Measures on Grouped Data with Loss Of Information
What if we have data grouped over intervals instead of discrete single value groups as previously? In this case, we have lost some
information about the specific data values and are only able to roughly estimate the mean and median measures of the distribution.
Below is a frequency/relative frequency table, Table , based on data given by Florence Nightingale in her text Notes on
Nursing (downloaded here). The text listed the ages of a large sample of non-domestic servant nurses within Great Britain in 
in a grouped data interval format. We will assume that Ms. Nightingale collected the data in a way such that if, for example,
someone was in their  year of age (such as  years old), the data was reported as a  and not rounded up to ...a
common convention in reporting of ages for individuals. We have added the interval notation representation of the continuous
variable of age per that convention to the table.

Table : Grouped frequency distribution

Age Intervals 
(years)

Interval Notation 
(years)

Frequency Relative Frequency

Totals:  

Notice we do not know how many  year old nurses there were in the data set, nor do we know how many  year old nurses
there were. We only know that there were  nurses reporting ages of  This means that we cannot know what the
actual data values were in the original data set; we have lost specific information about the original data set.

We can, however, approximate descriptive statistics based on this grouped data. We will proceed as in the discrete case above,
except we will use the midpoint value of each interval as our best approximation single measure for all values within the interval.
For example, we will assume that all  people in their twenties are exactly  years old, the midpoint of that interval. This is a
drastic assumption in some sense, but with the loss of information on specific age measures in each interval, this is a reasonable
way to approximate our measures. We will also use  as our value for the last class interval of  even though the
midpoint value may be larger if more was known about the actual data. It is reasonable to believe that in  most nurses above
the age of  were likely closer to the  value than the  value; but this is an assumption we are making and must be disclosed.

These assumptions, across all the intervals, will only give us estimates of the actual true mean and median measures of center. So,
for the median, we begin to accumulate our relative frequencies until we know where the  percentile measure lies. Since 
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greater than  we know the  percentile location is within the interval  Thus our estimate for the median would be 
 years old.

To estimate the arithmetic mean, we can use the midpoint of each interval as the data value associated with each of the relative
frequency measures and complete our computation work as in the discrete case.

Table : Computation of mean using data from Table 

Age Intervals 
(years)

Midpoint  
(years)

 Totals:

So, we would estimate the mean age of all these sampled non-domestic servant nurses in Great Britain to be about  years old.
In examining the relative frequency measures as tied to the age intervals, this value makes reasonable sense as the "balance point"
of the distribution of the ages. So, in grouped data within intervals, we can estimate the mean by the same overall process,
described symbolically by the given formula with the use of each interval's midpoint represented by 

Mean from an Interval-Grouped Distribution

In summary, we have seen how we can still determine estimates for the median and mean measurement when given interval
grouped data.

A bakery has been keeping records on the shelf-life of its best selling cinnamon rolls package. The bakery has sent the
following frequency table asking for the median and mean measures of the data. Find reasonable estimates of the mean and the
median values of the data.

Table : Grouped frequency distribution for shelf-life data

Shelf-life 
(days)

Frequency
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50 −59.

55
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20 − 29 25 0.0566 = 5.66% 25 ⋅ 0.0566 = 1.4150

30 − 39 35 0.0973 = 9.73% 35 ⋅ 0.0973 = 3.4055

40 − 49 45 0.1952 = 19.52% 45 ⋅ 0.1952 = 8.7840

50 − 59 55 0.2921 = 29.21% 16.0655

60 − 69 65 0.2500 = 25.00% 16.2500

70 − 79 75 0.0909 = 9.09% 6.8175

80+ 85 0.0180 = 1.80% 1.5300
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Shelf-life 
(days)

Frequency

Answer

We proceed by extending our table to include a column of midpoint values and to compute relative frequency measures. Do
note we could also use straight frequency as a weighting measure, but choose to use the relative frequency approach
instead.

Table : Preparatory computations using data from Table 

Shelf-life 
(days)

Midpoint  
(days)

Frequency
Relative Frequency 

(P \left( m_j \right) \)

Totals:

To estimate the median, we again focus on our relative frequency measures to get a "location". We notice that  
  which is less than  and     which is greater than  The 

 percentile location is within the interval  Thus our estimate for the median shelf-life of the packages of
cinnamon rolls by this bakery would be  days.

Next, we weight each midpoint value by its corresponding relative frequency measure, before summing to produce our
mean measure.

Table : Computation of mean shelf-life

Shelf-life 
(days)

Midpoint  
(days)

Totals:

So, our estimate for the mean shelf-life of the packages of cinnamon rolls by this bakery would be about  days.

In summary, we have seen how we can determine estimates for the median and mean measurement when given interval-grouped
data, but also heed the warning that these are just rough estimates and that we must not considered our results as the actual
measures for the data that was originally collected.

2.8.1: Measures of Median and Mean - Grouped Data Loss of Information - Optional Material is shared under a Public Domain license and was
authored, remixed, and/or curated by The Math Department at Fort Hays State University.
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104
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2.9: Measures of Variance and Standard Deviation on Grouped Data

Determine range, variance, and standard deviation of grouped discrete data
Determine range, variance, and standard deviation of grouped relative frequency data

 Section  Excel File (contains all of the data sets for this section)

Introduction to Measures of Spread on Grouped Data
As mentioned in the previous section, there are times when we may be given data in a summarized frequency distribution format instead of a collection of
"raw" data. We now examine finding descriptive statistic measures of dispersion in grouped data: range, variance, and standard deviation. If the data is
grouped over intervals, we can only estimate such measures since the grouping action has caused us to lose some data information. However, if the data is
grouped into single-value classes, we can usually produce the same spread measures as if we had the raw data.

Range, Variance, and Standard Deviation of Grouped (non-interval) Data in a Frequency Table

Look at the frequency table from Text Exercise  regarding quiz scores of twenty students:

Table : Grouped (non-interval) Frequency Distribution of Quiz  Data

Quiz Scores Frequency

With such a table, we can easily find the range with no new ideas needed. The table shows the minimum data value is  and the maximum is . Because 
  the range is a score difference of 

Next, assuming the data is population data, we examine the variance and standard deviation. Recall that variance is the average of all the various squared

deviations of the individual data values from the mean of the data. In the previous section, we found the mean of this distribution to be   

 In a new column, we can construct the deviations from the mean and square those deviations as a first step. It becomes imperative that we not get tied
up with all the messy numbers as we move through our work but keep our focus on what we are measuring:

Table : Computation of squared deviations from the mean

Totals:  

Before we can average these squared deviation measures, we must remember that some squared deviations occur more frequently (as given by the
frequency column) than others. For example, the frequency column shows that many more squared deviations are tied to the data values of  than those of
the squared deviations associated with the data value of  We must "weight" these squared deviations by the frequency of their occurrence to account for
the various twenty data values. In another new column, we form the products of  to accomplish this, and then proceed to "average" those
weighted squared deviations:

Table : Computation of the variance
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Totals:  

  Variance:

As shown in the last two rows above, with our weighted squared deviations determined, we can find a meaningful average by summing our squared
deviations and dividing by the number of data values involved. We have a variance measure of =1.5\) in the bottom right table cell. We can find the
standard deviation by taking the square root of our variance:     We note that our calculation work was for population data. If
the table referenced sample data, we would have divided by  instead on the last computation:

Variance and Standard Deviation from a Frequency Distribution

As mentioned, working in a spreadsheet will often make the computation quicker and easier, especially when working with such columns of information.

The frequency table from Section  shows thirty student scores (discrete 10-point scale) for an assignment.

Table : Student quiz score data

Student Score Frequency

Find the range, variance, and standard deviation of this grouped (non-interval) data. Assume the data is a sample from a larger population.

Answer

The table shows that the minimum data value is  and the maximum data value is . Because   the range is a score difference of 

Next, we determine the variance by averaging the squared deviations from the mean, once weighted by the frequency counts. Since this is sample
data, we also remember to divide by one less in the averaging step. In the previous section, we found the mean of this distribution to be  

   We can construct the deviations from the mean and square those as the first step. Again, it becomes imperative that

we not get distracted by the messy decimals we compute in our work. Keep focusing on what we measure in the computational work (squared
deviations from the mean to be averaged) and calculate it accurately.

Table : Computation of square deviations from the mean
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Totals:  

Next, we weight our various squared deviations by their frequency of occurrence, forming the products of  to accomplish this:

Table : Computation of variance

Totals:   

  

V
a
r
i
a
n
c
e
:

Again, our last row of the table shows the "averaging" of those weighted squared variations when working with sample data. If the data were given
as population data, we would have divided by the sum of the frequencies instead of one less than that sum. This would have resulted in a slightly
different value of   When calculating, we must vigilantly remember the difference between sample and population variance. These
data measures are distinct and continue to emphasize one, among other, reasons for knowing if the data is sample data or population data. As
shown by the bottom right measure in the table, this grouped sample data has a variance measure of   The sample standard deviation
measure is:     We can compare this result with the calculated variance for the ungrouped data set to see that we have
produced the same measure.

Range, Variance, and Standard Deviation of Grouped (non-interval) Data in a Relative Frequency Table
What must we do to measure the variation of the data if, instead of a frequency distribution table, we have a relative frequency distribution of population
data? The approach presented here only produces valid measures in population data since the relative frequency measures do not always disclose the
sample size. Recall the sample size is essential for the computation of the sample variance as we must use  in our averaging step. We start with the
same example of twenty quiz scores.

Table : Grouped Relative Frequency Distribution 
of Quiz  Data

Quiz Scores Relative Frequency 
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Quiz Scores Relative Frequency 

Totals:

Again, we can easily find the range--the table shows the minimum data value is  and the maximum data value is  leading us to a range of  

Next, we use the same ideas as above to determine the variance and standard deviation of the data from this table. We need to find the average squared
deviations of the data values from the mean. In Section  we found the mean of this relative frequency distribution to be    We
will add a column to our table to create the squared deviations from the mean.

Table : Computation of the squared deviations from the mean

Totals:  

Before we can average these squared deviation measures, we must weight these squared deviations by the relative frequency of occurrence to account for
the fact that some data values, such as the  occur with different relative frequency than others, such as the  To do so, we form a new column for the
products of  and then proceed to "average" those weighted squared deviations.

Table : Computation of the variance

Totals:  

  Variance:

As shown in the last two rows, with our weighted squared deviations determined, we can find the average by summing our squared deviations and then
dividing by the total weighting of the relative frequency measures, which will always be the value   We again get the same measure of
variance,  as we did earlier when the data was in frequency table form.

Variance and Standard Deviation from a Relative Frequency Distribution

We should note that the computation work here is simpler when the grouped data is given in relative frequency rather than just frequency format. This is
one reason we often look at data in relative frequency form.
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We take the frequency table shown below from Section  regarding thirty student scores (discrete -point scale) for an assignment but with the
distribution given in relative frequency format instead. This time, we assume the data is population data—our focus is only on these thirty students and
not some larger group.

Table : Relative frequency distribution of student scores

Totals:

Find this grouped population data's range, variance, and standard deviation.

Answer

The given table clearly shows that the minimum data value is  and the maximum is  thus a range measure of 

For variance, we must first find the squares on the deviations from the mean, as shown in the added column below. Recall that, in Section  we
found the mean of the relative frequency distribution as    We will use this value in our computation work.

Table : Computation of squared deviations from the mean

Totals:  

Now we weight, through multiplication, our various squared deviations by their relative frequency of occurrence. This forms the products 
 in our next added column.

Table : Computation of the variance
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Totals:   

  Variance:

Our last row illustrates the production of the variance as the average of the weighted squared deviations. The original table of data has a population
variance of   and population standard deviation of    

We have computed the three desired measures of variation in the data and grouped them within a relative frequency table.

We can compute population variance and standard deviation even when given data in a relative frequency table. However, we cannot do so for sample data
given only in a relative frequency table.

Section Summary
This section has demonstrated that we can often compute range, variance, and standard deviation even after the data has been grouped into a frequency
table or a relative frequency table. We also remind ourselves that the formulas developed in this section came from the meaning of each measure. We do
not memorize the formulas; we recall what each measure means and how and why we performed the computations. This section demonstrated how we can
adjust our process to produce the same measures, but it also showed that, due to the "column" computation work, the use of a spreadsheet makes the
process much easier.

The following optional section explores how we might estimate the range, variance, and standard deviation if our data has been grouped into interval
classes. The ideas are similar, but we can only roughly estimate such measures because we have lost individual data representation (a loss of information
about the data).

2.9: Measures of Variance and Standard Deviation on Grouped Data is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
1.10: Distributions by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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2.9.1: Measures of Variance and Standard Deviation - Loss of Information - Optional
Material

Consider the loss of information with grouped data
Discuss class approximations
Develop methods to approximate the range, variance, and standard deviation from grouped data

 Section  Excel File (contains all of the data sets for this section)

Dispersion Measures on Interval-Grouped Data with Loss Of Information
What if we have data grouped over intervals instead of discrete single value groups as previously in Section  As with our measures of
central tendency, we have lost some information about the specific data values and are only able to roughly estimate our dispersion
measures of range, variance, and standard deviation measures. We examine common approximation methods below; however, it should be
known that the methods shown below are not unique as other similar but different choices can be made in what values are used from the
class intervals.

The following table is again the frequency/relative frequency table based on data given by Florence Nightingale in her text Notes on
Nursing (downloaded here). We will again assume that Ms. Nightingale collected the data in a way such that if, for example, someone was
in their  year of age (such as  years old), the data was reported as a  We will also take this information as a representation of
population data in our following computation work.

Table : Grouped Frequency Distribution

Age Intervals 
(years)

Interval Notation 
(years)

Frequency Relative Frequency

Totals:  

We recall that we do not know, for example, how many  year old nurses there were in the data set, nor do we know how many  year
old there were. We only know that there were  nurses reporting ages of  This clearly implies that we cannot know what the
actual data values were in the original data set; we have lost specific information about the original data set.

We will similarly approximate our measures of dispersions based on this grouped data by use of the midpoint value of each interval as our
best approximation single measure for all values within the interval. So, again we will assume that all  people in their twenties are 

 years old, the midpoint of that interval. This is a drastic assumption in some sense, but with the loss of information on specific age
measures in each interval, this is a reasonable way to approximate our dispersion measures just as with our central tendency measures. We
will also again use  as our value for the last class interval of  even though the midpoint value could be larger if more was
known about the actual data. This is also pointing to why it is not a general best practice when building frequency tables of data to use
"and above" or "and below" within the last and first class interval descriptions; doing so provides even greater loss of key information
about the data set.

We might choose to estimate the range measure using the largest and smallest midpoint values. That is, we estimate the range to be
approximately    years. We note that we consider this a very rough estimate and major decisions should not be based on this
estimate. Likely the range measure is larger, but again due to the loss of information when the data was grouped, we can't know for sure.
We also note that others might estimate the range from such grouped data differently (such as the highest class' upper limit value minus the
lowest class' lower limit value.)
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Now for the variance estimate. First, we also recall from the optional Section  that we computed a mean estimate value of  
 years old. Variance, as the average of squared deviations from the mean, then leads to our producing the squared deviations

column and weighting of those squared deviations by the relative frequency measures (we choose to use the relative frequency versus
frequency approach in our work). Again, we use the midpoint of each interval as the data value to estimate deviation from the mean
measures, and complete our work as in the non-interval grouped data approach of Section 

Table : Computation of variance

Age Intervals 
(years)

Midpoint  
(years)

 Totals:

So, we would estimate the variance of all this given population of non-domestic servant nurses in Great Britain to be about  
 years  and hence the standard deviation to be about    years. So, with interval-grouped data, we

can estimate the variance and standard deviation by the same overall process, described symbolically by the given formulas with the use of
each interval's midpoint represented by 

Variance from an Interval-Grouped Distribution

Standard Deviation from an Interval-Grouped Distribution

A bakery has been keeping records on the shelf-life of its best selling cinnamon rolls package. The bakery has sent the following
frequency table asking for the median and mean measures of the data. Assuming this is sample data, find reasonable estimates of the
range, variance, and standard deviation values of the data.

Table : Grouped frequency distribution for shelf-life data

Shelf-life 
(days)

Frequency
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Shelf-life 
(days)

Frequency

Answer

We again proceed by extending our table to include a column of midpoint values. Since this is sample data, we keep with
frequency versus relative frequency measures in order to not lose sample size information.

Table : Preparatory computations using data from Table 

Shelf-life 
(days)

Midpoint  
(days)

Frequency 

Totals:

First, we estimate the range to be   days using our midpoint values. (As mentioned in the discussion above, one
might instead choose to compute   days for the range; this estimate would be considered a maximum amount the range
might truly be.)

Next, we estimate the variance. In Section  we estimated the mean of this data to be  days. So, to estimate the sample
variance, we must form the weighted squared variations from the mean column, then sum those squared variations, and finally
divide by one less than the sample size to form our "average" of the squared variations for sample variance purposes.

Table : Computation of variance

Shelf-life 
(days)

Midpoint  
(days)

Totals:

So, our estimate for the variance on the shelf-life of the packages of cinnamon rolls by this bakery would be about  
days  And thus our standard deviation estimate would be    days. So the cinnamon roll packages roughly
tend to last about  days.

In summary, we have now seen how we can produce rough estimates for the dispersion measurements when given interval-grouped data.
We note how we are really just extending previous ideas/computations. However, we also remind ourselves that the resulting values
should be used with caution in the interpretation of the dispersion of the data, not as if the values were the actual true measures of the data.
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3.1: Introduction to Probability

Learn key initial terminology about probability
Determine the sample space of a given situation
Recognize and use the three basic methods of determining probability measures
Explain the importance of the Law of Large Numbers
Describe the complement of an event
Use the Complement Probability Rule for determining the probability of an event

Review and Preview
Inferential statistics seeks to make educated guesses about populations using statistics from randomly chosen samples. The
usefulness of a sample statistic depends on the sample from which it was taken. We cannot guarantee that samples are
representative of the population, but we can ensure that any bias present is due to random chance. What is the likelihood that our
randomly chosen sample is representative? In other words, what is the probability that our sample statistic is close to the population
parameter? These are fundamental questions to examine through the science of probability.

We hear probability claims daily. The weather forecast states a  chance of rain. The probability of a faulty product coming off
a manufacturing line is . One has a  probability of purely guessing an answer correctly on a single multiple-choice
question. A cancer research group believes that  of women and  of men will have a diagnosis of some type of cancer
during their lifetimes. (Note: This means that if we randomly select a man, we have a  chance of choosing someone who has
had or will have a cancer diagnosis in his life. This does not mean that any specific man has a  chance of being diagnosed with
cancer in his lifetime.)

Each of the above scenarios involves a situation in which something will happen, and an outcome will occur, but we are uncertain
which outcome it will be. Will it rain, or will it not rain? Is the next product produced of high quality or not? In statistics, we refer
to such situations as random experiments. We have a clear context and an idea of possible outcomes, one of which will happen, and
then use probabilities to measure the likelihood of any particular outcome.

As we move through the course, we will develop an understanding of random sampling to build probabilities. We will develop the
ability to measure how unusual a sample statistic is within a given situation. If the probability of a calculated sample statistic is
"small," then we conclude that the outcome is unusual. The use of probability goes well beyond this application; therefore, we
develop probability within a larger context.

Basic Concept of Probability

We begin by examining the meaning of the term probability. Generally, probability is a numerical value inclusively between  and 
 measuring the likelihood that a specific event will occur within a given situation. The representation of that numerical value

might be in decimal form, fractional form, or percentage form, such as    An outcome of a random experiment is a
potential result of the experiment. The term event is a set of outcomes one might expect from a given random experiment. For
example, if one rolls a pair of standard game dice as shown in Figure , a possible event could be both dice landing with one
facing up.

Figure : Game Dice

 
Before measuring probability accurately, we must clearly describe the given situation (such as rolling a pair of standard game dice)
and the event of interest (such as both dice landing with one facing up). For a given clearly described situation, the collection of all
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possible outcomes is called the sample space or event space. For reasonably simple situations, one can fully describe the sample
space.

What is the sample space if one rolls a pair of standard game dice, as shown in Figure ?

Answer

The graphic below shows the sample space, where one die outcome is red and the other in white. Notice there are thirty-six
possible outcomes. We should also notice that, in general, we must be concerned with the order of the two dice. For
example, we consider rolling a three on the red die, and a one on the white die a different outcome than rolling a one on the
red die and a three on the white die. Why is this? Because these are two outcomes that we can distinguish. Since probability
measures the degree of uncertainty, one must consider all available information. We produce a complete sample space by
carefully reflecting on all possible outcomes.

Figure : Sample space of rolling a pair of standard game dice

When rolling a pair of dice, the event of rolling two ones is an outcome. However, the event in which both dice land with a sum of
five describes several outcomes in the sample space:  and   and   and  and  and 

Once we understand the sample space, we can examine the probability measures of various events within that situation. A
probability measure near  indicates that the specific event is more likely to occur, and a probability measure near  indicates that
the specific event is less likely to occur. We use the symbols  to indicate the probability of a specific event  For example, 

   indicates "the probability of rain is ". If for some event  we find that    then
we say this event is a certain event. Similarly, if for some event  we find that    then we say this event is an
impossible event. For finite sample spaces, impossible events cannot occur, and certain events must occur. For infinite sample
spaces, the situation is more complicated; we will discuss this further in chapter  For now, we are usually interested in events that
are possible but not likely to occur.

In inferential statistics, we are often interested in outcomes that are not likely to happen; that is, they are not very probable;
they are unusual. When improbable outcomes occur, either something rare happens, or we have reason to think our
understanding of the situation needs to be updated, but what is the cutoff between improbable and probable, between unusual
and usual? There is no fixed, agreed-upon value that will work for every situation. For this reason, we will often need to set a
probability measure for considering an event improbable. Different individuals can generally feel the same event usual/likely
or unusual/unlikely, depending on their personal life experiences. For example, if the probability of rain is  one person
may consider rain unlikely, and another may think it reasonably likely. A commonly chosen boundary measure for many
statistical analysis areas is  We will initially require a probability measure of  or less to label an event as unusual. Later,
we will relax on this requirement, even leaving the choice to the consumer of our statistical measures to apply their chosen
probability measure for unusual.
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1. Explain why  cannot be the probability of some event.

Answer

The value  is larger than  Any valid probability value will be between   and  
inclusively. Knowing such will help us recognize improper probabilities.

2. Explain why  cannot be the probability of some event.

Answer

The value  is larger than  Again, any valid probability value will be between   and  
inclusively.

3. Explain why  cannot be the probability of some event.

Answer

The value  is negative. Any valid probability value will be non-negative since the value must be between  
and  

4. Give an example of a situation and an impossible event for that situation.

Answer

Answers to this can vary greatly. An example tied to the situation about rolling pairs of dice would be the event of rolling
two standard game dice with a sum of  up. Since the largest each die can be is  the sum cannot exceed  the event is
an impossible event. That is,  

There is one final fundamental property of probability for the events and sample space within any given situation. The sum of the
probabilities of all possible outcomes within the sample space of a given situation must always total  

Basic Methods for Computing Simple Probabilities
With our basic terminology established, we focus on how to compute a given situation's probability. We initially examine three
basic and commonly used methods. Our first method is called the subjective or intuitive method, where we produce a numerical
estimate of the probability based on personal judgment, past experiences, or even personal opinion. For example, having purchased
a few non-winning lottery tickets in the past, yet hearing of a winner on the news, we might estimate the probability of winning as a
low value of  We do not depend on subjectively determined probability values in quality statistical work. Instead, we form
more robust and accurate methods for determining these values.

This leads us to our second method, commonly called the classical method. In this method, if a given situation has  different
equally likely outcomes in the sample space and if event  can occur in  ways, then

As an example, if a standard die is fair (so each face of the die has equal chance of landing up when the die is rolled), then

Notice that this outcome would not be considered unusual since the probability measure is over 

Consider the situation in which a pair of fair dice are rolled. Find the probability of each event given. Write results in
probability notation and determine if the outcome is considered unusual.

1. .
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Answer

Figure : Sample space of rolling a pair of standard game dice

Since the dice are said to be fair dice, each of the thirty-six outcomes shown in our sample space above is equally likely. We
will use the classical approach to determining the probability, using  to represent our event of 

. We notice only one outcome in the sample space matches the
event description. Therefore,     Since this probability measure is less than  then for our
course, we will consider this outcome as unusual.

2. .

Answer

Figure : Sample space of rolling a pair of standard game dice

Using similar reasoning as above and using  to represent our event of 
, notice that there are two outcomes in the sample space that match the event description. Therefore, 

     Since this probability measure is more than  then for our course, we will not
consider this outcome as unusual.

3. .

Answer

Figure : Sample space of rolling a pair of standard game dice

Let  represent our event of , we notice that there
are five outcomes in the sample space that match the event description...can you find all of these? Therefore,   

  Since this probability measure is more than  then for our course, we will not consider this
outcome as unusual.      

3.1.3

A ROLLING A THREE ON 

THE FIRST DIE AND  A FOUR ON THE SECOND DIE

P (A) =

1

36

≈ 0.0278= 2.78%. 5%,

ROLLING A THREE ON ONE DIE AND A FOUR ON THE OTHER DIE

3.1.4

B ROLLING A THREE ON ONE DIE AND  A FOUR 

ON THE OTHER DIE

P (B) =

2

36

=

1

18

≈ 0.0556= 5.56%. 5%,

ROLLING TWO DICE IN WHICH THE SUM OF THE NUMBER  IS SIX

3.1.5

C ROLLING TWO DICE IN WHICH THE SUM  OF THE NUMBER  IS SIX

P (C) =

5

36

≈ 0.1389= 13.89%. 5%,
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Our third method of computing probabilities is the empirical, experimental, or relative frequency method. In this method, we
repeatedly conduct an experiment, noting the outcomes of the trials, to establish an estimate of probability measures. In repeating a
given experiment  times, and noting event  occurred  times, then

Notice how this method relates to our previous work producing relative frequency distributions when summarizing data sets. In a
sense, we were producing probability measures with our relative frequency values.

The quality of the probability estimate is dependent on the number of repeated trials used. For example, a researcher finds that 
of  randomly selected Kansas teens texted while driving during the last week, empirically indicating that the proportion of
Kansas teens that drove while texting last week is   Equivalently, there is approximately a  probability that a
randomly selected Kansas teen drove while texting last week. This measure based on only  teens does not give us high
confidence in this estimated probability value; if the researcher could collect data from  Kansas teens, we could be more
confident in the estimation.

In general, we require the number of carefully designed repeated trials to be as large as possible to produce an estimate of a
probability value. Two underlying assumptions must be used with the experimental frequency approach. First, if an event occurred
with a certain probability in past trials, this same event will occur about the same percentage of times in future trials. Second, the
relative frequency probability of an event will tend to approach the true probability value as more and more trials are measured
(this is commonly referred to as the Law of Large Numbers).

There are times when simulations (especially computer simulations) produce a large number of trials and a reasonably accurate
measure of the true probability of specific events, especially when the outcomes in a situation are not equally likely. Much weather
forecasting is based on computer simulation of outcomes based on regional weather conditions. Similarly, the spread of infectious
diseases is modeled by computer simulations to predict outcomes while avoiding extensive medical research costs or without
impacting living organisms. For example, suppose we wonder if our game die is fair--that each face has an equal likelihood of
occurring when the die is rolled. We begin a simulation with the assumption that the die is fair, but upon rolling the die five times,
we roll a one three of the five times--indicating an empirical probability of    Of course, only
rolling five times is insufficient for us to have high confidence in the accuracy of the empirical probability measure. We continue
rolling the die three hundred times, in which we roll a one  times. This new empirical probability measure of 

   indicates that our die is not likely to be fair; the experimental probability for the one is not the expected
fair value of   

In  Gregor Mendel began to study different inherited features, such as the color of pea plants. According to one source, in
a second-generation group of pea plants,  peas produced by the plants were yellow, and  were green in color. What
was the empirical probability that a randomly selected second-generation pea would be green? Is this close to the hypothesized
value that Mendel claimed of 

Answer

We compute that    Mendel's experimental probability is extremely
close to his hypothesized probability claim of 

Complement and Complement Probabilities
There are times we will be interested in finding the probability that an event  does not occur. The collection of all outcomes in a
sample space in which a given event  does not occur is called the complement of event  and is denoted by  Other sources
may use different notations to denote the complement; common ones include  or  The idea of complementary events allows
us to divide the sample space into two mutually exclusive groups (no outcome can be found in both of the two groups  and )
and also exhaustive (every outcome of the sample space must be included in one of our two groups). For example, suppose  is the
event of getting two different numbers on each die when two dice are rolled; there are  such outcomes in our sample space that

n A f

P (A) = = .

number of times event A occurred

number of times situation/experiment was repeated

f

n

25

150

25

150

≈ 16.67%. 16.67%

150

1, 500

P (ROLL OF ONE) =

3

5

= 60%.

188 P (ROLL OF 

ONE) =

188

300

≈ 62.67%

P (ROLL OF ONE) =

1

6

≈ 16.67%.

 Text Exercise 3.1.4
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meet this event description.  is the event of getting the same numbers on each dice when two dice are rolled; there are  such
outcomes in our sample space. Between  and , all  outcomes appear exactly once.

Figure : Events  (blue background) and  (grey background)

Since all outcomes of a situation must be either in the event or the complement of the event, we have the following three key
consequences:

1.   
2.  
3. 

Notice that the first consequence leads naturally to the other two with basic algebra. Suppose we wish to determine the probability
of event  from above 

. We can go back to our sample space to count all such outcomes or use the complement concept to produce our results
quickly. We have

This example illustrates that it is sometimes easier to determine the probability of a complement event instead of the given event.
Once we know the probability of the complement event, we can easily determine the probability of the event.

Use the concepts of complement events to answer the questions below:

1. Suppose there are sixty tiles in a bag of which  are green,  are yellow,  are pink,  are red,  are purple, and  are
black. The tiles are well-mixed. We will randomly draw one tile from the bag without looking into the bag. We want to
determine the probability that we draw a tile that is not a primary color; that is, we are to find 

Answer

As a reminder, there are three primary colors: red, yellow, and blue. Although the complement is not necessary to answer
this question, the use of the complement makes the problem easier to compute. Since "a primary colored tile" is the
complement event of "not a primary colored tile" in this situation, we notice that  

   

2. A number is chosen randomly from the set of integers between  and  inclusively. What is the probability of randomly
selecting a number that is not a perfect square?

Answer

A

¯

6

A A

¯

36

3.1.2 A A

¯

P (A)+P ( )A

¯

= 1 = 100%

1−P (A) = P ( )A

¯

1−P ( )= P (A)A

¯

A (P (GETTING TWO DIFFERENT NUMBERS  OF PIPS ON EACH DIE WHEN TWO DICE ARE 

ROLLED))

P (A) = 1−P ( )A

¯

= 1−

6

36

= = ≈ 0.8333 or 83.33%

30

36

5

6

 Text Exercise 3.1.5
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COLORED TILE).

P (NOT A PRIMARY  COLORED TILE)

= 1−P (A  PRIMARY  COLORED TILE) = 1−

6+9
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=
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We notice that there are only a few integers inclusively between  and  that are perfect squares and many that are not.
Specifically the perfect square integers in this set are          Thus 

    

3. Suppose we want to know the probability of randomly selecting a group of  people in which at least two people will have
the same birth day in a year (such as September  or May  -- we will ignore leap years for simplicity). Suppose we
also know the probability of randomly selecting a group of  people, in which no two people have the same birth day in
the year, which is about  (We will discuss how this value of  can be found later in the chapter). From this
information, can we determine the probability of randomly selecting a group of  people in which at least two will have
the same birth day in a year?

Answer

We see that the complement of "at least two people will have the same birth day in a year" is the description "less than two
people (that is none) will have the same birth day in a year." We can use our complement rule to note that 

   
 

There are times when clearly describing the complement of an event can be simple. For example, in the roll of a single standard
game die, it is common to quickly describe the complement of  to be 

. There are also times when clearly describing the complement of an event can be challenging. We must ensure the
complement description covers all possible outcomes for a situation. For a different example, in random selection of a number from
the real number line, it is common to quickly describe the complement of  as 

 However, there is the number,  that is neither positive nor negative which means we
have an incorrect complement description. The true complement to  is 

 Now all possible outcomes have been accounted for in the descriptions.

We must think carefully about our sample space and correctly identify all outcomes which are not in our event. As another
example, we might have the situation of randomly selecting an FHSU student with a focus on the outcome of 

. The complement is the outcome of 
 or, equivalently, . Notice how

the use of mathematical notation can help us here. We might represent the outcome of 
 more briefly in notation as  Then, in the context of counting number of shots, the complement is 

 which leads to a proper complement description of 

This leads to special cases that commonly cause problems in complement descriptions; specifically, events involving "at least," "at
most," "all' or "none." The complement of "all are" is not "none are," but is instead "at least one is not." For example, the
complement of  would be 

. The complement of 
 would be . Note that

the complement of "none are" is "at least one is." We must think carefully when dealing with complements of event claims
involving such keywords.

Give written descriptions of the complements of each event described below

1. The event: 

Answer

The complement event description would be . We note that 
 is an outcome that fits in the complement description, but is itself not the actual full complement since

other outcomes exist in the complement besides rain.

2. The event: 

1 99

{1, 4, 9, 16, 25, 36, 49, 64, 81}. P (NOT A PERFECT 

SQUARE) = 1−P (PERFECT  SQUARE) = 1−

9

99

≈ 0.909= 90.9%.

35

1

st

28

th

35

18.56%. 18.56%

35

P (AT LEAST 

TWO WILL HAVE  THE SAME BIRTHDAY) = 1−P (NO  TWO WILL HAVE  THE SAME BIRTHDAY) = 1−0.1856

= 0.8144= 81.44.%

AN EVEN NUMBER ON A ROLL AN ODD NUMBER ON A 

ROLL

SELECTION OF A NEGATIVE  NUMBER

SELECTION OF A POSITIVE  NUMBER. 0,

SELECTION OF A NEGATIVE  NUMBER SELECTION OF 

A NON-NEGATIVE  NUMBER.

STUDENT  HAS 

HAD AT LEAST  THREE COVID VACCINE  SHOTS STUDENT  HAS  HAD TWO OR FEWER 

COVID VACCINE  SHOTS STUDENT  HAS  HAD FEWER THAN  THREE COVID VACCINE  SHOTS

STUDENT  HAS  HAD AT LEAST  THREE 

COVID VACCINE  SHOTS x ≥ 3.

x < 3, STUDENT  HAS  HAD FEWER THAN  THREE COVID VACCINE 

SHOTS.

STUDENT  HAS  HAD ALL AVAILABLE  COVID VACCINE  SHOTS STUDENT  HAS  MISSED AT 

LEAST  ONE COVID VACCINE  SHOT STUDENT  HAS  HAD NONE OF THE AVAILABLE  COVID 

VACCINE  SHOTS STUDENT  HAS  HAD AT LEAST  ONE OF THE AVAILABLE  COVID VACCINE  SHOTS

 Text Exercise 3.1.6

IT SNOWS ON CHRISTMAS  DAY

IT DOES NOT SNOW ON CHRISTMAS  DAY IT RAINS  ON 

CHRISTMAS  DAY

NATASHA  IS LESS THAN 10 MINUTES  LATE
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Answer

Notice the given event description of less than  minutes can be represented mathematically as  informing us that
the complement must be related to  Therefore, the complement event description would be 

 or equivalently,  The phrasing we might
give can vary, but the meaning of the phrasing must be tied to the inequality 

3. The event:  (Click here for a full description and visualization of a
standard deck of playing cards)

Answer

The given event description of "all cards" is complemented by "at least one is not." So the complement event description
would be  We must think clearly about this complement and also note
why the description  is not the complement description. We could have one,
two, three, or four cards that are not face cards as possible events in the complement.

4. The event: 

Answer

The given event description of "none failed" is complemented by "at least one did fail." So the complement event
description would be 

Summary

To review this section, we list several important facts to remember when working with probabilities:

1. An outcome of a random experiment is any potential result of the experiment. An event is a set of outcomes one might
expect from a given random experiment. The sample space is the collection of all possible outcomes in a given situation.

2. The probability of an event  is denoted by  with the condition that  If  we will
currently consider the event as unusual.

3. The sum of the probabilities for all the possible outcomes in the sample space will always total to  
4. Multiple methods may be used for computing probability values. We have discussed the methods of

"subjective/intuition," "classical for equally likely simple events," and "empirical/experimental/relative frequency." Some
methods only produce estimations of the actual probability value.

5. The complement of an event  is denoted by  and must contain all outcomes of the sample space that are not part of the
given event. As such, we have the probability benefit of  that can be used to find the probability of
an event if we know the probability of the complement.

3.1: Introduction to Probability is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at
Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
2.1: Graphing Qualitative Variables by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.

10 x < 10,

x ≥ 10. NATASHA  IS AT 

LEAST 10 MINUTES  LATE, NATASHA  IS LATE BY AT LEAST 10 MINUTES.

x ≥ 10.

ALL CARDS  IN A POKER HAND ARE FACE CARDS

AT LEAST ONE CARD IS NOT A FACE CARD.

NONE OF THE CARDS ARE FACE CARDS

NONE OF THE STUDENTS  FAILED THE LAST EXAM

AT LEAST ONE STUDENT  FAILED THE LAST EXAM.
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3.2: Counting Strategies

Use tree diagrams to organize outcomes in a series of activities
Develop and use the Multiplication Rule for counting the number of possible outcomes, including the factorial method
Develop and use the permutation method for counting the number of possible outcomes in ordered arrangements
Develop and use the combination method for counting the number of possible outcomes in unordered arrangements

Outcomes from a Series of Activities
We have discussed the classical method of computing probabilities for an event  by the formula

provided outcomes in the sample space are equally likely. The formula requires determining the total number of outcomes in the
sample space and in  Up to this point, our examples and exercises have dealt with reasonably small sample spaces; however, the
number of outcomes of interest may be quite large. This section develops counting techniques that help us in determine the number
of possible outcomes. We begin by finding a logical way to organize the development of a sample space for multi-trial situations,
such as tossing multiple dice. Ultimately, we will develop several counting methods.

Tree Diagrams and the Multiplication Rule for Counting
A tree diagram helps us list the various outcomes in a series of activities. To build a tree diagram, we list all outcomes of the first
activity. Next to each of those listed outcomes, we branch to list all outcomes of the second activity. We branch off each of the
second listed outcomes for the third activity, and so on. Eventually, all activities in the situation will be completed. Let us use a
familiar example to build our first tree diagram. Suppose we wish to develop the sample space for rolling two dice. First, we list all
the outcomes that may occur with the first die roll (the first activity of the described situation).

Figure : Tree diagram of first die roll

Next, from each of those six listed outcomes, we list all the outcomes that may occur with the second die roll (the second activity of
the described situation).

 Learning Objectives
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Figure : Tree diagram of rolling two dice

Notice that, at the right of the diagram, we listed all thirty-six branches of the tree. This gives us an organized listing of the entire
sample space. This branching idea hints at a counting strategy to determine the number of objects in the sample space. There are six
branches for the first die roll and six branches from each for the second die roll; this leads to a total of   outcomes in the
sample space. This strategy is called the Multiplication Rule for Counting: if there are  possible outcomes for a first activity 

 and there are  possible outcomes for a second activity  there are a total of  possible outcomes for the experiment in
which activity  is followed by activity  This rule extends for any finite number of steps in a situation.

Create tree diagrams to determine the entire sample space of the following situations. Be sure to list the final sample space and
then note the number of outcomes in the sample space.

1. A food truck allows customers to create a meal by selecting one item from each category: burger, side, and drink. There are
three burgers to choose from  two sides  and three drinks  Create the sample space
of different meals that can be ordered from this food truck.

Answer

We create the tree diagram as shown below. Notice that our first level of branches are the three burger choices, the second
level of branches are the two side choices, and the third level of branches are the three drink choices:

3.2.2

6 ⋅ 6 = 36
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Figure : Tree diagram of food truck meals

Notice that our diagram gives us our sample space.

The sample space consists of  total outcomes. The Multiplication Rule of Counting predicts the total number of outcomes
to be  

2. There are six tiles well-mixed in a bag. The tiles are identical except in color; three are red, two are white, and one is blue.
We are to randomly draw two tiles from the bag, one at a time, without replacement. Produce the sample space of two tiles
that can be drawn from the bag.

Answer

Again, we can create the diagram, but we must think clearly about each step of tile selection since the choices available for
the second tile selection depend on what happened in the first tile selection. Since the tiles are identical, we cannot
distinguish between those tiles of the same color. We might draw any of the three colors in the first tile selection, but in the
second tile selection, we cannot select blue if we have selected blue on the first draw. We can organize our listing to
produce the following tree diagram.

3.2.3
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Figure : Tree diagram of tile combinations

The final sample space is

which includes  total outcomes. Notice how our Multiplication Rule of Counting must be carefully used because we
cannot select the blue tile again. There were two colors (specifically red and white) that, if selected first, still allowed three
colors to be chosen in the second selection. There was one color (specifically blue) that, if selected first, only allowed two
colors to be chosen in the second selection. We can adjust the rule's application so that    predicts the total
number of outcomes in the sample space.

3. A salesman must visit four important clients: Mr. White, Miss Scarlet, Professor Plum, and Mrs. Peacock. Determine the
number of choices the salesman has to visit these clients.

Answer

We create the tree diagram as shown below, which gets a bit large. (One thing we might consider is to give codes to the four
clients, such as numbering them  to  and using the numbers instead of their longer names.) The tree is reasonably easy to
produce if we maintain our organization while creating each branch level, one at a time.

3.2.4
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Figure : Tree diagram of client visits

In this situation, we will not list the sample space of  distinct outcomes since it can be seen in the last column of the tree
diagram. Notice how our Multiplication Rule of Counting predicts the number of outcomes at . We have 
options for the first visit,  options for the second,  options for the third, and then only  options for the final visit.

In our examples of tree diagrams, we can begin counting the number of outcomes by using our multiplication rule, but we must
consider what happens at each branching action of the tree. Once we become comfortable with the concept of the multiplication
rule, we can more quickly compute the number of possible outcomes.

First Basic Counting Techniques

We have shown that the Multiplication Rule for Counting is a valuable tool for determining the number of possible outcomes in
many situations. We now use this tool to develop general counting techniques without producing tree diagrams. As we develop
various techniques, remember that all the methods are developed from the Multiplication Rule for Counting.

Suppose June buys a new cell phone and must choose a six-digit code to keep it secure when she is not using it. How safe is her
phone from someone who randomly chooses six digits to unlock it? Knowing that June will select one, we need to determine the
number of possible six-digit codes. The standard convention in choosing a code allows for digits to repeat. Later, we will see what
happens if the code cannot use digits more than once. We can think through the branching of a tree diagram using a simple
counting diagram to determine the number of outcomes possible,

where the row of blanks represent the numbers to be chosen in the given position in the code. We only need to place the number of
possibilities in each blank for each code position. Recall that there are ten digits,  to  and with use of the multiplication rule, we
have

3.2.5
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Code digit position

0 9,
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There are  unique codes that June could choose from. The probability of someone randomly guessing June's code is 
 This event is highly unlikely; June should feel relatively safe about someone

randomly guessing her code. We would not want to construct the sample space in this situation due to the number of outcomes
possible, yet we can still reflect on the sample space and know how many codes are in the sample space.

In Text Exercise  regarding a salesman visiting four distinct clients, we can use a similar approach:

where the row of blanks represent the order to visit the four clients. We know that we have four clients to choose from in the first
position; once that choice is made, there are three clients left to choose from for the second position; similarly, there are just two
clients left to choose for the third position; and finally, only one client will be left for the fourth position:

There are  unique orderings the salesman could choose for visiting the four clients. This last example is a multiplication pattern
that frequently occurs in counting outcomes. The shortened notation for this computation is called the factorial notation  The 
symbol is read "factorial",  is read "four factorial", and  means, computationally,  In general  represents the
product  We assign  by special definition. Notice how quickly factorials increase in value; for
example   and   Try the text exercises below for more practice with counting the number of
possible outcomes.

Determine the total number of outcomes possible for each of the given descriptions.

1. We have five standard fair coins of different values: a penny, a nickel, a dime, a quarter, and a half-dollar. When tossed,
each lands on heads (H) or tails (T). One way they might land, in order of increasing value, is HHTHT.
a. How many ways can the coins land when tossed and placed in order of value, say from smallest value to largest?
b. How many ways can we order the five different coins?

Answer

Both parts of this question ask for a count, and we use the multiplication rule for each, though the results are different.

a. We establish our simple counting diagram, remembering that the coins are placed in order of increasing value:

then we notice that each trial has two possible outcomes, either H or T. Our counting diagram becomes

This tells us there are  possible head and tail arrangements.
b. Next, we examine the number of ways the five distinct coins can be placed in an order, such as from smallest value to

largest, largest to smallest, or even some other arrangement. It is important to note that each of the coins is
distinguishable from the other, so there is no confusion on which coin is in which location. We establish our simple
counting diagram as an aide:

# of Possibilities

Position

10

– ––

1

st

10

– ––

2

nd

10

– ––

3

rd

10

– ––

4

th

10

– ––

5

th

10

– ––

6

th

⇒ 10 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10 = = 1, 000, 00010

6

1, 000, 000

P (GUESSING  CODE)=

1

1,000,000

= 0.000001.

3.2.1.3

# of Possibilities

Choices for

 ___ 

1

st

 ___ 

2

nd

 ___ 

3

rd

 ___ 

4

th

Client visit position

# of Possibilities

Position

4

––

1

st

3

––

2

nd

2

––

3

rd

1

––

4

th

⇒ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24

24

4!. !

4! 4! 4 ⋅ 3 ⋅ 2 ⋅ 1. n!

n(n−1)(n−2) ⋅ … ⋅ 2 ⋅ 1. 0! = 1

8! = 40, 320 20! = 2.4329 × .10

18

 Text Exercise 3.2.2

# of Possibilities

Position of Coins

 ___ 

1

st

 ___ 

2

nd

 ___ 

3

rd

 ___ 

4

th

 ___ 

5

th

each coin's landing side

by denomination

# of Possibilities

Position

2

––

1

st

2

––

2

nd

2

––

3

rd

2

––

4

th

2

––

5

th

⇒ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = = 322

5

32

# of Possibilities

Position in Arrangement

 ___ 

1

st

 ___ 

2

nd

 ___ 

3

rd

 ___ 

4

th

 ___ 

5

th

by coin denomination
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and see there are five choices for a coin to be placed in the  position. Once that coin is chosen, we have only four
choices for the coin in the second position, and so on. Our counting diagram becomes

This tells us there are  possible arrangements of the coins by denomination. In the upcoming optional section, we
will revisit this situation, in which some of the coins are not distinguishable from each other, requiring adjustments in
our counting method.

2. There are two distinctly colored standard decks of playing cards (red and blue). How many different outcomes are possible
if we draw four cards in sequence, with two cards drawn first from the red deck and then two more from the blue deck?

Answer

We again establish our simple counting diagram:

then we determine the possible outcomes for each card position. Our counting diagram becomes

That is over  million different possible outcomes! We are definitely glad we did not have to produce the entire sample
space for this simple little situation.

3. Leisha is a research biologist for a sod (grass) company. She must research the effects of four fertilizer types on three
temperature zones with three watering amounts. How many different sod plots must she create to test all possible
configurations of these three factors?

Answer

We jump to the final computing action to tell Leisha how many plots she will need to perform her research:

Leisha will need to have  different plots for her desired sod research.

4. Carl is a psychologist studying telepathy between patients who claim such abilities. He will test their claims using a deck of
six cards, each with a different picture. The cards will be shuffled randomly before each pair of patients uses the cards in
his experiment. How many different card arrangements (shuffled decks) are possible?

Answer

Again, we jump to the final computing action to answer Carl's dilemma:

So Carl will have   different card arrangements possible in the deck of six cards. We mention that this is a factorial
count situation. Once we recognize a factorial count, we will reach the final answer of  with no diagram work. We note
for Carl that if the probability of one patient in the study randomly guessing all six cards correctly as examined only by
their telepathy partner is  --not impossible but highly improbable.

1

st

# of Possibilities

Position

5

––

1

st

4

––

2

nd

3

––

3

rd

2

––

4

th

1

––

5

th

⇒ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 5! = 120

120

# of Possibilities

Choices for

 ___ 

1

st

red 

 ___ 

2

nd

cards

 ___ 

3

rd

blue

 ___ 

4

th

cards

each card's position

# of Possibilities

Position

52

– ––

1

st

red 

51

– ––

2

nd

cards

52

– ––

3

rd

blue

51

– ––

4

th

cards

⇒ 52 ⋅ 51 ⋅ 52 ⋅ 51 = 7, 033, 104

7

# of Possibilities

Factor Choice

4

––

fertilizer

3

––

temp. zones

3

––

water amts.

⇒ 4 ⋅ 3 ⋅ 3 = 36

36

# of Possibilities

Card deck position

6

––

1

st

5

––

2

nd

4

––

3

rd

3

––

4

th

2

––

5

th

1

––

6

th

⇒ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 6! = 720

6! = 720

6!

1

720

≈ 0.1389%
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Counting with Permutations
Suppose, in the last problem from Text Exercise  Carl selected only three of the six cards for his patients to test their
telepathic abilities. We can still use the same method described above.

Carl will have  different smaller deck arrangements if only selecting any three of the six original cards for the smaller deck.

More formally, we call situations that are counted this way permutations. A permutation count is the number of ways to arrange,
in order,  distinct objects, taking  at a time. We denote this symbolically as  where  and  are whole numbers with 
The two general forms for computing this count are given by:

When building the counting action, we tend to use  When working with permutations theoretically, we tend to represent
permutation counts using  We should become familiar with both forms of computing permutations. Using Carl's smaller deck
we can see the computation as

Our fraction form of computation with factorials is canceling out the unused  objects in the count from the  We also
want to quickly recognize situations requiring permutation counts (especially when large numbers are involved) so we can use
technology to perform the calculations.

Determine the number of outcomes possible in the described situations:

1. Matching questions are sometimes used in statistics exams. If ten distinct statistical symbols are to be matched uniquely
with ten distinct statistical terms, how many symbols-to-terms matches (correct or incorrect) are possible?

Answer

We could use a counting diagram, but we produce the counts by recognizing the strategies discussed without using a
diagram in these answers. Thinking about our statistical term choices for each of the ten symbols, we see there are 

   different symbol-to-term matches students can make. A student strictly randomly
guessing all ten correctly has a probability of only   We recognize that this count is not only a
simple factorial count but that any factorial count can be considered a permutation count. Specifically   

2. In the same matching question used above, if there are only seven distinct statistical symbols to be matched with the given
ten distinct statistical terms, how many symbols-to-terms matches might be made by students?

Answer

In this case, we only match seven symbols (places) with ten terms (objects). There are   
different symbol-to-term matches that students can make. After a little thought, we should recognize that this is a
permutation counting situation since the order is important.

3. A saleswoman must visit only four of her nine clients tomorrow. How many different ordered client visit lists can the
saleswoman make?

3.2.2,

# of Possibilities

Card deck position

6

––

1

st

5

––

2

nd

4

––

3

rd

⇒ 6 ⋅ 5 ⋅ 4 = 120

120

n r

n

P

r

n r n ≥ r.

n

P

r

= n(n−1)(n−2) ⋯ (n−r+1)

=

n!

(n−r)!

(1)

(2)

(1).

(2).

= n(n−1)(n−2) ⋯ (n−r+1) = 6 ⋯ (6 −3 +1) = 6 ⋅ 5 ⋅ 4 = 120

6

P

3

and also

= = = = 120

6

P

3

n!

(n−r)!

6!

(6 −3)!

6 ⋅ 5 ⋅ 4 ⋅ ⋅ ⋅3 2 1

⋅ ⋅3 2 1

(n−r)! n!.

 Text Exercise 3.2.3

10 ⋅ 9 ⋅ 8 ⋯ 2 ⋅ 1 = 10! = 3, 628, 800

1

3,628,800

≈ 0.0000002756.

10! =

10

P

10

= .

10!

(10−10)!

10 ⋅ 9 ⋯ 4 =

10

P

7

= 604, 800
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Answer

At this point, we recognize quickly that this is also a permutation count since order matters. The saleswoman has  
 ordered client visit lists that she might make. We doubt she will make all these, but knowing how many are

possible speaks to the variety of ordered lists she has available. We can also use technology to compute such permutation
values after we note the values of  and  For example, in an Excel spreadsheet cell, we can enter  and
the value  will be shown.

4. During a two-hour time frame, a nurse must take vital signs measurements from ten of his forty assigned patients. How
many different lists can the nurse make for an ordered round involving ten of the forty patients?

Answer

We quickly recognize that this is also a permutation count. The nurse has  ordered patient lists that he might make for
his two-hour round. We will use technology for the computation: in an Excel spreadsheet cell, we can enter 

 producing the approximate value E+  this is a standard technology representation of the
number  He can make well over a quadrillion ordered patient lists in this situation. We might be amazed at
the possibilities and appreciate how many randomly chosen ordered lists can be made.

5. We return to our "Birthday" problem of Text Exercise  which asks, "What is the probability that in a random group of
thirty-five people, two or more of the group will share a birth day in the year (such as September  or May )?" To
answer this question, we assume  days in a year (ignore leap year cases), that each day of the year is equally likely for
births, and the birth day of the various individuals in the group is not dependent on another individual in the group.

Answer

We first note that in a group of thirty-five people placed in some order, the first person will have one of  different birth
days, the second will have one of  birth days, ... ,the thirty-fifth will have one of  birth days. There are  

 possible lists of thirty-five birth days that various groups of thirty-five people can form.

Now, we must find how many of those lists have two or more with the same birth day in the year. To do so, we must look at
many separate cases: how many of our lists have exactly two in a birth day list the same or how many have precisely three
the same or ... or how many have all thirty-five with the same birth day or how many have two different pairs the same
or...etc. But being reflective on the work in finding so many separate counts and being wise to consider other methods, we
again notice that there is only one case in the complement description: having lists in which none of the thirty-five have the
same birth date. The use of the complement method makes this problem approachable. Therefore, we must count only the
number of lists of birth days that can be made in which none of the thirty-five are the same birth day.

Since this is an ordered list, we recognize this is a permutation count in which we are forming lists of  distinct birth days
coming from  options...that is, we need    So, 

   

 
Now, the  

   Notice that in a randomly selected group of thirty-five people, there is a reasonably
high probability that at least two will share the same birth day.

It is important to note that order is essential in permutations. Choosing object  and then object  in that order, is counted as a
different outcome from choosing object  first and then object  When the order of choice is irrelevant (such as the saleswoman
choosing to visit four of her nine clients but not concerned with the order of those of her visits), an adjusted approach must be
taken: a counting approach termed as a combination.

Counting with Combinations
In each of our previous counting approaches, the order of selection was important to the counting. However, there are times when
order is not important to the outcomes of an experiment, especially when we consider samples taken from a population. We begin
with a simple, small example that we will later generalize.

9

P

4

= 3, 024

n r. = PERMUT(9, 4)

3024

40

P

10

=PERMUT(40, 10) 3.07599 15;

3.07599× .10

15

3.1.5,

1

st

28

th

365

365

365 365 365

35

≈ 4.7891×10

89

35

365

365

P

35

=

365!

(365−35)!

≈ 8.8893× .10

88

P (NONE  HAVE  THE SAME 

BIRThDAY) ≈

8.8893×10

88

4.7891×10

89

≈ 0.1856.

P (AT LEAST TWO WITH SAME BIRTHDAY)= 1−P (NONE  HAVE  THE SAME BIRTHDAY)

≈ 1−0.1856 = 0.8142= 81.42%.

a b,

b a.
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Suppose we have four distinct individuals, Adam  Betsy  Cathy  and Damon  and we wish to form all possible
sample groups of size three from this population of four. Using our tree approach, we can create the   ways to arrange these
four into ordered groups of three--yes, a permutation count. This list is given by:

The order displayed here is intentionally a bit different from our standard tree approach. Thinking back on our need to count how
many sample groups of size three are available, we should note that the various colored collections of the ordered groups produce
the same (unordered) sample groups. The first column of six shown in red is different arrangements of the same sample group
containing Adam, Betsy, and Cathy; the second column of six in blue contains only one sample group of Betsy, Cathy, and Damon;
the third column has the one sample group of Adam, Cathy, and Damon; and the fourth column of Adam, Betsy, and Damon. Given
any collection of three individuals, we know there are   ways to arrange those three. There are only   
unique sample groups (unordered groups) of size three from this collection of four individuals.

Is there a predictable pattern to develop a counting formula for the number of distinct unordered groups of size  taken from a
collection of  distinct objects? First, we performed a permutation count of  to get the total number of ordered groups of size 
taken from the  objects. Then, we had to divide by the number of ways any specific group of size  could be arranged--a factorial
value of --to account for the same collection arranged differently. We computed  to determine the number of distinct
combinations of  distinct objects taken  at a time. We call this type of counting a combination and denote in symbols as  or

as ; in this text, we will use the  form for consistency. We typically read this as, "  choose " since it is counting how

many ways we can choose  objects from a group of  objects. We can express the formula for combination count in two ways.

We can reason algebraically how the second formula is produced from the first by remembering that   Many

computing technologies also have built-in functions to relieve us from mechanical computation once we have recognized a
counting situation as a combination. In the Excel spreadsheet, this function is 

We must remember that a combination counts the number of ways to form groups of size  from a collection of size  where order
within the groups does not matter. Let us do one more example before a collection of text exercises. Suppose a committee of four
students must be formed from a class of thirty-five distinct students. How many committees could be formed? Rearranging the
order of four students does not create a different committee. Therefore, we must count using combinations. There are   

  different possible committees of size four that could be formed from the thirty-five students. Using the
Excel command  produces this same value of 

Determine the number of outcomes possible in the described situations (warning: not all are combination counts).

1. A construction manager must select eight samples from a group of twenty concrete trucks to test the quality of the concrete
mixture. How many different groups of eight can be selected?

Answer

Notice that initially, there are twenty trucks to choose between for the first sample, nineteen for the second, and so on until
all eight needed trucks are chosen. However, we also recognize that once a group of eight trucks is selected in a specific
order, rearranging those eight trucks in a different order will not create a different sample group. This is a combination
counting situation, so we compute  choose 

(A), (B), (C), (D)

4

P

3

= 24

ABC

ACB

BCA

BAC

CAB

CBA

DBC

DCB

BCD

BDC

CDB

CBD

ACD

ADC

CDA

CAD

DAC

DCA

ABD

ADB

BDA

BAD

DAB

DBA

3 ⋅ 2 ⋅ 1 = 6

4

P

3

3!

=

24

6

= 4

r

n

n

P

r

r

n r

r!

n

P

r

r!

n r

n

C

r

( )

n

r

n

C

r

n r

r n

( ) = = =

n

r

n

C

r

n

P

r

r!

n!

(n−r)!r!

n

P

r

= .

n!

(n−r)!

=COMBIN(n, r).

r n

35

C

4

=

35

P

4

4!

=

35⋅34⋅33⋅32

4⋅3⋅2⋅1

= 52, 360

=COMBIN(35, 4) 52, 360.

 Text Exercise 3.2.4
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There are almost  sample groups of concrete trucks possible for the construction manager to choose. We could also
have computed our value in a spreadsheet using  in a cell, producing this same end value of 

2. A dial-faced combination lock produced by a new manufacturer uses three distinct numbers in the lock code between  and 
 How many different lock codes are available?

Answer

In this case, we are choosing three numbers from a list of forty  to  We also recognize that once a group of three
numbers is chosen, rearranging those three numbers will create a different lock code. This is a permutation counting
situation, so we compute  permute :

There are  lock codes for the described lock. We should notice that the term "combination lock" does not use the
term "combination" in the same fashion as our counting method; that is, the number of unlock codes for a combination lock
is not determined by a combination counting strategy. Others' general use of the term "combination" may not align with our
use of the term in counting strategies. We also note the computation in a spreadsheet using  in a cell
produces this same computed value of  For the remainder of our examples, we will use the spreadsheet for
computation work after determining the type of counting method needed.

3. A qualified applicant pool for a large hospital's eight nurse trainee positions consists of ten women and six men.
a. How many different groups of these sixteen applicants can be formed for the eight positions?
b. How many different groups can be selected from the pool of applicants that consist entirely of women?
c. If all applicants are considered equally qualified, and the group of eight positions is randomly selected, what is the

probability that the chosen group will consist entirely of women? (This measure could be of interest in a
"discrimination" claim if the chosen pool consisted only of women.)

Answer

In this situation, we have sixteen applicants; eight are needed to form our trainee group.

a. We recognize that we are choosing eight from our group of sixteen, and the order of arrangement of any group of eight
will not make a different trainee group. This is a combination counting situation, so we compute  choose 

There are well over  trainee groups that can be formed from the pool of applicants.
b. For the selected group to be all women, we recognize that we are choosing eight from our group of ten women. We

again notice that the order of arrangement of any group of eight women will not make a different trainee group; the
selection order does not matter. This is a combination counting situation; we compute  choose 

There are  trainee groups that can be formed only from the pool of women applicants.
c. Assuming random selection in which any group of eight is equally likely to be chosen, the probability that the selected

group will consist entirely of women is    which we would consider an unusual
event.

4. To win a specific Powerball lottery grand prize, a player must match all  white balls (order does not matter) and the red
Powerball on his purchased ticket. There are  white balls labeled  to  and  red balls labeled  to 
a. How many different tickets could be purchased for entry into this type of Powerball lottery game?
b. Knowing there is only one winning ticket per game, what is the probability that a randomly generated ticket will be the

winning ticket for the grand prize?

= = = 125, 970.

20

C

8

20!

(20−8)! ⋅ 8!

20 ⋅ 19 ⋅ 18 ⋅ 17 ⋅ 16 ⋅ 15 ⋅ 14 ⋅ 13

8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1

126, 000

=COMBIN(20, 8) 125, 979.

0

39.

(0 39).

40 3

= = 40 ⋅ 39 ⋅ 38 = 59, 280.

40

P

3

40!

(40−3)!

59, 280

= PERMUT(40, 3)

59, 280.

16 8.

= COMBIN(16, 8) = 12, 870

16

C

8

10, 000

10 8.

= COMBIN(10, 8) = 45

10

C

8

45

P (ALL WOMEN) =

45

12,870

≈ 0.3497%,

5

69 1 69 26 1 26.
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Answer

Notice that initially, we can see two steps in this activity of completing an entry to the Powerball game. We choose five
numbers from a list of sixty-nine and then select one number from a list of twenty-six. We use our multiplication rule
between the counts of the two steps.

a. For the first step, we choose any five of the sixty-nine white-ball numbers, recognizing that once a specific group of five
numbers is selected, rearranging those five chosen numbers will not make a different Powerball ticket. This is a
combination counting situation, so we compute   For the second step, we choose any of the twenty-
six red-ball numbers, with a count of  possible choices. (We could do a combination count of  

 as well, but this still produces that same value of  and involves unnecessary computation work.
Thinking as we make our counts is more valuable than computation work.) There are a total of  \9= 292,201,338
\) possible tickets that could be made for any single Powerball lottery game.

b. Assuming a random selection of numbers for the winning ticket, the probability that a randomly generated ticket will be
the winning ticket is    As we are probably all aware, winning a
Powerball Lottery game by purchasing a single ticket is a highly unusual event. With these large numbers, we can also
reason that we cannot create and purchase all possible tickets to guarantee winning.

Section Summary
This section on counting has been extensive. As a final review, let us list our various counting strategies.

1. Tree diagram (useful for creating and listing all possible outcomes for a situation in which multiple steps are used
to produce the branches of the trees).

2. Multiplication Rule for Counting
3. Factorial Rule for Counting
4. Permutation Rule for Counting
5. Combination Rule for Counting

Knowing which counting method applies requires us to think clearly about the selection of the objects in steps and to determine if
the order of selection matters to the count.

3.2: Counting Strategies is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort
Hays State University.

5.5: Permutations and Combinations by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.

69

C

5

= 11, 238, 513.

26

26

C

1

=COMBIN(26, 1) 26

⋅26

69

C

5

P (WINNING  TICKET) =

1

292,201,338

≈ 3.4223× .10

−9
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3.2.1: Counting with Indistinguishable Objects - Optional Material

Develop and use counting methods with at least some indistinguishable objects in a situation

Counting Situation with Indistinguishable Objects
In the previous counting examples, we were dealing with counting the number of outcomes that can occur when working with
distinct objects: the objects were all different from each other in the selection. We now address a situation where some of the
objects are the same (indistinguishable).

Consider the possible ways we can arrange five coins, two of which are indistinguishable gold (  coins and three are
indistinguishable silver (  coins (we compare this with our Example  in which all five coins were distinguishable). Our
previous work demonstrated that five distinguishable coins can be arranged in   ways. However, in the case of
indistinguishable coins, an order of GSSGS would be counted multiple times using our factorial counting approach. Using our
same reasoning and computation adjustment in developing a combination count, we adjust the size of the total ordered count of 
by scaling down by the number of ways the two gold coins could be placed (there are  such ways) and the number of ways the
three silver coins could be placed (there are  such ways). There are    ways we can arrange two indistinguishable
gold coins with three indistinguishable silver coins. We might list all ten possibilities to verify our computational reasoning.

In this case of just two groups of indistinguishable objects, we might notice that this computation is technically the same as our
combination method   If we have two types of indistinguishable objects in our collection of five, with two being of

one type, the remaining three must be of the other kind. In this situation, counting the number of ways we can select objects from
among five with the order not mattering (i.e., a combination) is the same as counting the number of ways we can place two
indistinguishable gold coins among five positions. The situations sound different, but the counting is the same.

Now, we can generalize beyond having two indistinguishable objects with the new counting method called the Permutation Rule
with Some Objects Indistinguishable. In general, if there are  objects to order where all -objects are among precisely one of
the -indistinguishable groups of  alike,  alike, ,  alike, then the number of recognizable different sequences (or
permutations) of all  objects can be determined by

Suppose we have ten coins, five of which are gold, two are silver, and three are copper. How many ways can these ten coins be
arranged, given that each of the coins within the three metal groups is indistinguishable from the other? Using our recently
developed counting strategy, we have    different distinguishable arrangements of these coins.
Remember, in this calculation, we are taking all possible ordered arrangements as if we could tell the difference in the tens coins
and scaling down using division by the number of arrangements each specific group can take.

Determine the number of outcomes for each of these situations.

1. Ben was born on  He wishes to use these  digits of his birth date to form a security code for a door lock. How
many different door locks can he make from his birth date digits?

Answer

We notice that Ben has only four distinguishable digits in his -digit birth date, namely zeros, ones, twos, and fours. We
also notice there are  zeros,  one,  twos, and  four in that date. To make an -digit code by different arrangements of
these digits from his birth date, we count by computing    different codes. We notice that there are
not very many different possibilities. If someone knew Ben was using the digits of his birth date, a computer program could
quickly produce and possibly apply  codes to breach his security.

2. Mikala tosses a fair coin  times. What is the probability that her  tosses will yield exactly  heads and  tails?
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Answer

First, we notice we are asked a probability question with a fair coin. We use the classical method to determine this
probability since each outcome is equally likely; we must determine the total number of outcomes possible and the number
of those outcomes that match our desired event description. When a coin is tossed  times, we know by our simple
multiplication rule that there are    different outcomes in the ordered sample space. However, the
tosses that involve  heads and  tails can happen in multiple ways, such as HHTTTHTTT or TTTHHHTTT. We must
count the number of ways we can sequence  heads among the  positions (notice this is the same as asking for the number
of ways we can sequence  tails among the  positions since the coin can only land either on heads or tails. There is no
third indistinguishable outcome group). The three heads in any position cannot be distinguished and the six tails cannot be
distinguished, so there are    ways to have  tosses that results in  heads and  tails. Mikala has the
probability of   of such an outcome. Again, we note that in this situation of "two-indistinguishable groups
among all  trials", we could have computed our combination count  or  and received the same count of 

3. Lanee has twelve cows to use in a study to compare three different diets,   and  Each of the diets is to be used on
four of the cows. How many ways can the diets be assigned to the twelve cows?

Answer

We might first notice that a possible assignment of the diets to an ordering of the twelve cows could be:

A different assignment could be:

By these two examples, we see that a count of the number of ways in which we can assign the letters to twelve positions
(representing the cows) will answer the question. There are    ways Lanee might assign the
diets.

As a side note, some will call this the method of Distinguishable Permutations because we are counting the number of
arrangements that can be distinguished from each other. If you have some indistinguishable objects, as we discussed above, some
of the orders are not distinguishable due to some of the objects being indistinguishable. We only want to count distinguishable
orderings, hence the terminology Distinguishable Permutations.

3.2.1: Counting with Indistinguishable Objects - Optional Material is shared under a Public Domain license and was authored, remixed, and/or
curated by The Math Department at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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3.3: Counting and Compound Events

Recognize distinct cases when counting
Define compound events
Understanding events using "or", "and", and "given"
Develop and use the Addition Rule for counting the number of possible outcomes
Develop and use a Multiplication Rule for counting the number of possible outcomes with compound events viewed sequentially
Count the number of possible outcomes for various compound events

Counting: Distinct Cases
Recall Text Exercise b, where we were drawing two tiles in sequence without replacement from a bag consisting of  red,  white, and  blue tiles. We produced our
sample space by constructing a tree diagram (reproduced below).

Figure : Tree diagram of tile combinations

This tree diagram looks different from most of the tree diagrams from the previous section; two branches end with three options, but the bottom branch only has two options.
The situation and the count differed based on which branch we initially started. We had to consider two cases: case  of blue initially drawn and case  of red/white initially
drawn. Either case  or case  must happen because an initial tile must be drawn, but note that both cases are exclusive. If case  happens, blue is the only option for the
initial draw, and then there are two options for the second tile, making our count for case  is   If case  happens, there are two options for the initial draw and three
options for the second draw, making our count for case    We have    possible outcomes in the sample space between the two cases.

Here is a more challenging example. Suppose a committee of ten must be formed from a group of twenty hourly employees and five managers. How many different
committees can be formed if at least three managers must be on the committee? We must think carefully about how the committee is formed to count correctly. The phrase
"at least three managers" tells us our selected group can have three managers or, four managers or, five managers on the committee. The committee size remains at 
regardless of the number of managers. We can construct a table to determine the different committee compositions at the manager and hourly employee levels.

Each column of the table represents a particular committee. We recognize these committee compositions as distinct cases, one of which must happen. To count the total
number of committees, we count the number of committees in each case and add them together.

Each case is similar in the fact that both managers and hourly employees must be selected. Our multiplication rule applies nicely since we have each group of hourly
workers for each group of managers. We proceed case by case.

If the number of managers is  we must choose  of the  managers, order of selection does not matter, yielding  different possibilities for filling the manager positions.
The remaining  committee members will be chosen from the  hourly employees, yielding  different possibilities (again, we use combinations since order does not
matter). Our multiplication rule informs us that there are    committees possible in which three of the members are managers.

Similarly for the other two cases, there are    possibilities with four managers and    possibilities with
five managers.
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There are  possible committees that fit this description. From this work, we can also form some probability claims. If a committee is randomly formed given these
restrictions, the probability that the committee will have five managers as members will be   and the probability that the committee will have three

managers as members will be  

1. A food truck makes tacos with at least one but up to five fillings from eight ingredients: beef, fish, pork, beans, cheese, lettuce, tomatoes, and guacamole. How many
ways can a taco be ordered from the food truck vendor?

Answer

We notice that we are given restrictions on the taco fillings. We must choose at least one filling for a taco while having at most five fillings. There are several distinct
cases to consider, with only one taking place.

One filling chosen
Two fillings chosen
Three fillings chosen
Four fillings chosen
Five fillings chosen

These are the only possible choices satisfying the requirements. We can determine the counts for each of these five cases and add those counts to find the total
number of possibilities. Using our earlier reasoning that each of these five cases is a combination count (order of filling choices does not matter.)

A customer has  possible tacos that could be ordered. No wonder it takes some customers so long to decide what to eat.

2. A ten-person committee to investigate possible corruption in U.S. military contracts is to be formed among the  members of the House of Representatives Armed
Services Committee and the  members of the Senate Committee on Armed Services. The committee must have at least five House members and at least two
senators. How many committees are possible?

Answer

We notice that we are given restrictions on the committee structure. We must have at least five house members while still having at least two senators on the
committee of ten. We have several distinct cases to consider, with only one taking place.

Five House members and five Senators
Six House members and four Senators
Seven House members and three Senators
Eight House members and two Senators

These are the only four possible committee structures satisfying the requirements. We can determine the counts for each of these four cases and sum those counts to
find the total number of possible committees. We use similar reasoning to compute:

There are about  committees that could be formed: an astounding number of possibilities. We are glad we only had to determine the number of
possible committees and were not required to list the options by constructing a tree diagram.

Multiple counting strategies come into play as we explore possible outcomes. Counting can be pretty complicated. We are on the verge of a formal addition rule that will
come in handy; we will formulate it within the context of compound events.

Connecting Events Using "or", "and", and "given"

When describing multiple events, we typically use one of the following:  or  or  and  Using multiple events to describe or form another event is called a compound
event.

Consider rolling a single fair die. The sample space is the set:      

The compound event  involves three outcomes:   and  We understand the event  to occur if when we roll the die, either a   or  lands face up; there are
three ways for our compound event to occur. Since the die is fair, we can compute the probability using the classical method:    The complement of 
consists of the outcomes   and  which we note is the compound event  so,  

The compound event  involves just two outcomes:  and    

Consider the compound event   We refer to a single compound event  using two events connected with the word "or." We understand
event  to occur if, when we roll the die, either  occurs or  occurs. Meaning, if    or  land face up,  occurs.  

  

Side note: there are different ways to consider "or". Since we include the possibility that both  and  occur, our use of the word "or" is called inclusive. If we excluded the
possibility that both events occur simultaneously, the word "or" would be called exclusive. Whenever we use the word "or" in this text, we are using it inclusively.
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In our last example, notice that the outcome  was described by both  and  When two events have outcomes in common, the events are not
mutually exclusive.

Consider the compound event   We are again referring to a single compound event  using two events; this time, the two events are
connected with the word "and". We understand event  to occur if, when we roll the die, both  and  occur; meaning  will occur only when 
lands face up. So,   

For a final example, consider the event  which is often denoted  For a third time, we refer to a single event,
say event  using two events connected with the word "given." When we use "given," we treat our situation as if we had additional knowledge about what is happening;
that is, we assume that the die roll is guaranteed, having a probability of  to be a perfect square and are considering the likelihood, given this assumption, that it is even.
We treat our situation conditionally by restricting our sample space to the event that follows the word "given." When examining the conditional event 

, we do not consider the original sample space of       Instead, we only consider the perfect squares from that conditional sample space: 
and  We have a "new" conditional sample space of size  We then ask, how many of these  possibilities satisfy the event ? There is only one possibility of an even,

 Now in computing the probability, we must remember that we only considered the outcomes in the event  so the total number of outcomes is not 
but   

Consider rolling two fair dice in sequence and the events below. For each event, identify the possible outcomes described and compute the probability.

Figure : Sample space of rolling two standard dice

1. Event: 

Answer

The sum of the values will be  for the following pairs:  and   and   and   and   and  and  and  We have  
  Notice all these outcomes fall on the diagonal from bottom left to top right.

2. Event: 

Answer

We can understand the compound event  as   consists of the  outcomes of the second row,
and  consists of the  outcomes of second column. Note that these compound events are not mutually exclusive because the outcome where both
dice are  is in both compound events. If we count the outcomes between both compound events, we arrive at  outcomes in the compound event 

 Thus  

3. Event: 

Answer

We need both  and  to occur for our event to occur. We thus look for the overlap between the outcomes in each
compound event. Only two of the outcomes from  have a  in them. Thus there are only two outcomes in the compound event 

 Thus   

4. Event: 

Answer

We first recall that  denotes "given." Thus our event of interest is  We know that there are only 
outcomes in the event  and that only  of those outcomes (  and  and  and ) add up to  Thus 

 

5. Event: 

Answer

Our event of interest is  From our previous exercise, we know that there are only  outcomes in the
event  and that only  of those outcomes,  and  and  and  include  Thus 
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Some statisticians and educators introduce the term simple event to help students better handle complex event descriptions. The general idea is that we can better
understand or more easily compute probabilities when complex event descriptions are understood using combinations of other most basic events called simple events.
The difficulty in such a presentation lies in the subjective and experiential aspects of understanding descriptions as basic and straightforward. To avoid the technical
difficulty of a sufficient definition and application, we avoid the term throughout the book but, hopefully, still manage to instill the underlying concept.

Compound Events and Counting
Again, we build our intuition by counting when rolling a single fair die. When we were considering the compound event  computing the
probability boiled down to two counting questions: how large is the sample space and how many outcomes comprise the compound event? The first counting question has
an answer of  Having already worked the problem, we know the answer to the second question is  but how does this relate to the two separate events that form our
compound event? In counting the outcomes in  we arrive at  and the number of outcomes in  is  It would appear that the number of outcomes
in  is   Our previous work shows that the answer is  We must have counted some outcome(s) twice, which can happen whenever
the events are not mutually exclusive. Recall that the outcome  is both even and a perfect square but should only be counted once. The outcomes that are counted twice are
in both  and  The total count is the number of outcomes in  plus the number of outcomes in  minus the number of
outcomes in ; namely,  

Formally, this is known as the Addition Rule for Counting. Given events  and 

Explain how we used the Addition Rule for Counting at the beginning of this section when counting tiles and committees.

Answer

We were attempting to determine the many outcomes in a sample space. Each case can be identified as a compound event, and we joined these compound events
using the word "or." We added each of the counts together to get the total sum. This looks similar to the addition rule, except we never had to subtract anything since
the cases were mutually exclusive; no two cases shared an outcome. This would be like subtracting  outcomes. The addition rule was at play the whole time.

Greater care must be taken when counting outcomes involving compound events formed using "and." We cannot mindlessly look to some formula that will always work; we
must assess the situation and check that certain conditions are met. To develop our intuition regarding counting  we turn our attention to a more robust but familiar
example, rolling two fair dice in sequence, and analyze: 

Context matters tremendously; read carefully and understand the current situation. We have dealt with the events  and  in the context of a roll of a
single fair die. The sample space consists of  pairs of dice values; we are counting the number of outcomes with an even value for the first die and a perfect square for the
second die. The multiplication rule worked well for determining the size of sample space because we could understand our outcomes as pairs of outcomes in sequence.
Suppose we can understand  as two events in sequence, the same ideas apply. We apply the multiplication rule with the
first activity, rolling the first die with an even face up  ways), and the second activity, rolling the second die with a perfect square face up  ways). We arrive at the
conclusion there are   outcomes in . For this example, we can easily construct the outcomes to confirm our count: 

 and   and   and   and   and  and  and 

Within the context of rolling two die in sequence, determine the number of outcomes in 

Answer

To save space, let  and  We can understand the event as follows: 
. We can count the number of outcomes using both addition and multiplication rules. Applying the same logic as in the previous example and

recognizing that  satisfies both events, yields:

Note that it might be tempting to describe  as the compound event 
. In the context of rolling two dice, we may interpret the event differently. For example, rolling a double  (satisfying both events), one die is even, and the

other is a perfect square (one die satisfying one and the other die satisfying the other), or as long as both conditions are met between the two dice, the event occurs (a
 with any other die value). Clarity in communication is key; put thought into the event description to protect it from ambiguity to the best of your ability.

To conclude this section and formalize one last component of counting compound events, we consider a familiar context in probability: drawing cards from a standard deck
of playing cards. We draw two cards in sequence from a single deck of standard playing cards without replacing the cards drawn and examine the compound event 

Our counting procedure closely models the counting in the previous section. The phrasing of the compound event helps us readily understand our compound event as
consisting of pairs of outcomes in sequence and uses the multiplication rule. There is, however, one stark contrast. In rolling two fair die and considering 

 the value of the first die did not affect the possible values of the second die. Whatever card we draw first cannot be drawn again in our
current context. There is a dependency between the events. This does not hinder our ability to count using the multiplication rule; we have run into this idea before in Text
Exercise b. There are  spades and  black cards in a standard deck of playing cards. There are  ways for  to happen. Since we are counting the
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A B,

# of outcomes in (A or B) = # of outcomes in A+# of outcomes in B−# of outcomes in (A and B)

 Text Exercise 3.3.3

0

A and B,

EVEN  FIRST  and PERFECT SQUARE  SECOND.

EVEN PERFECT SQUARE

36

EVEN  FIRST  and PERFECT SQUARE  SECOND

(3 (2

3 ⋅ 2 = 6 EVEN  FIRST  and PERFECT SQUARE  SECOND

2 1, 4 1, 6 1, 2 4, 4 4, 6 4.

 Text Exercise 3.3.4

ONE DIE IS EVEN  WHILE  THE OTHER IS A PERFECT SQUARE.

EVEN =E PERFECT SQUARE = PS. (E FIRST and PS SECOND) or (PS FIRST and 

E SECOND)

4

# in E and PS

= # in 

(E FIRST  and PS SECOND )+# in (PS FIRST  and E SECOND )−# in ((E FIRST  and PS SECOND ) and (PS FIRST  and E SECOND ))

= 3 ⋅ 2 +2 ⋅ 3 −1

= 6 +6 −1 = 11

ONE DIE IS EVEN  WHILE THE OTHER IS A PERFECT SQUARE EVEN  and PERFECT 

SQUARE 4

4

SPADE 

FIRST  and BLACK CARD SECOND.

EVEN  FIRST  and 

PERFECT SQUARE  SECOND,

3.2.2. 13 26 13 SPADE  FIRST
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number of ways  can happen, we count the number of ways our second card can be black given our first card was a spade.
Since spades are black, only  black cards are left. We have the total number of outcomes  

We provide a Multiplication Rule for Counting Compound Events with "and." Given events  and 

Within the context of drawing two cards in sequence from a single deck of standard playing cards without replacing the cards drawn, determine the number of outcomes
in the event 

Answer

We are in a similar situation to the previous example; however, the order of the events has switched. We can easily understand the events as in sequence and apply
the multiplication rule.

The count in the second term depends on whether or not a spade was drawn the first time. We, therefore, need to reformulate our approach. The event 
consists of all the spades and clubs; so we can think of the event  as the compound event  or . Let us refer to these events as  and 
respectively. So we can understand our event as follows:

We can thus apply both addition and multiplication rules to compute our total number of outcomes.

Thus the total number of outcomes is  

A family of  is attending a convention on family life. The theme of this year's convention is nature and quality time. The opening banquet will have  door prizes
related to the current theme. The door prizes, in order, are a camper, a smokeless fire pit and patio furniture, a trampoline, and a set of bicycles. Any person in
attendance can win at most one prize. The family of  recently invested in their backyard patio with new furniture and have a trampoline but are very interested in the
other two prizes. If there will be  people in attendance, how many ways can the door prizes be awarded so that this family gets the first and the fourth prizes?

Answer

While winning quality prizes even if you do not need them can be exciting, the question excludes the case where the family wins all four prizes. The event of interest
is  There are  ways of winning the first prize (one of the five family
members must be chosen the winner),  ways of not winning the second prize given a successful win of the first prize, and  ways of not winning the third prize
given the desired outcomes of the first and second prizes, and just  ways to win the last prize given the outcomes of the first three prizes. There are  

 possibilities. This could happen in many ways, but what is the probability that it does happen? There are   ways
the prizes could be awarded. The probability of this becoming a reality is very small.   It would be highly unlikely for the family to win the
first and fourth prizes.

3.3: Counting and Compound Events is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort Hays State University.

5.2: Basic Concepts of Probability by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.

SPADE  FIRST  and BLACK CARD SECOND

25 13 ⋅ 25 = 325.

A B,

# of outcomes in A and B= (# outcomes in A) ⋅ (# outcomes in B|A)

 Text Exercise 3.3.5

BLACK CARD FIRST  and SPADE   SECOND.

# of outcomes in BLACK CARD FIRST and SPADE SECOND = (# outcomes in BLACK CARD FIRST)⋅(# outcomes in SPADE SECOND|BLACK CARD FIRST)

BLACK CARD

BLACK CARD SPADE CLUB S C,

(S or C FIRST) and S SECOND

(S FIRST and S SECOND) or (C FIRST and S SECOND)

# of outcomes in S FIRST and S SECOND = 13 ⋅ 12 = 156

# of outcomes in C FIRST and S SECOND = 13 ⋅ 13 = 169

# of outcomes in (S FIRST and S SECOND) and (C FIRST and S SECOND) = 0

156 +169 −0 = 325.

 Text Exercise 3.3.6

5 4

5

400

WINNING  FIRST and LOSING SECOND and LOSING THIRD and WINNING  FOURTH. 5

395 394

4 5 ⋅ 395 ⋅ 394 ⋅ 4

= 3, 112, 600 400 ⋅ 399 ⋅ 398 ⋅ 397= 25, 217, 757, 600

3,112,600

25,217,575,600

≈ 0.01234%.
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3.4: Probability and Compound Events

Compute probability in compound events involving "and"
Compute probability in compound events involving "or"
Compute probability in compound events involving "and" and "or"
Use complements for computing the probability of compound events
Determine probability from two-way tables
Extend the use of probability rules to other compound events

Review and Preview Probability and Compound Events
In Chapter  we have discussed basic probability and counting concepts to prepare us for our future work with inferential statistics. To use the classical approach for
determining the probability of an event  we need to know the size of the sampe space,  and we need to know that each of those outcomes in the sample space is
equally likely to occur. Then, if event  can occur in  ways in that sample space,   We also discussed the empirical/experimental approach where we
collect data (preferably a large data set to satisfy our Law of Large Numbers more completely) related to our situation of interest. Then, in that data set of size  if  of
the data satisfy the description of event  we state   However, we must remember that the empirically based probability value only estimates the actual
probability when the data is from a sample set. For example, in Section  we had a relative frequency table on M&M colors built on data from a package of 
M&M's, as shown below.

Table : Frequencies and Relative Frequencies of Sampled M&M's

Color Relative Frequency

Brown

Red

Yellow

Green

Blue

Orange

From this empirical evidence, we have probability estimates for all M&M colors. If we picked a single M&M from the population of all M&M's ever made, we would
estimate, empirically,   and  

We have also discussed several counting rules to help us determine the size of an entire sample space and the number of outcomes matching an event description. We
established various multiplication rules for counting and an addition rule for counting. Each of these rules has conditions for their use. For example, to use the general
permutation rule, we had  distinct objects in which we were interested in how many ways we could select  of those objects where the order of selection mattered.
Knowing the conditions allowed us to quickly determine if a given event could be counted by a specific counting method. We now extend the multiplication and
addition rules of counting to similar multiplication and addition rules for probabilities of compound events.

Probability with Compound Events Involving "and"
As discussed, some event descriptions can be compound: descriptions involving multiple events. We have discussed two phrases used to combine events: "and" as well
as "or." For example, in rolling two dice, the event of  is a compound "and"
description. As another example, the event of  is a compound "or" description. The
event of  is a compound description involving
both "and" as well as "or" descriptions. Although compound event descriptions may get complicated, we aim to simplify determining the probability of such compound
events by developing computation methods similar to our counting methods.

We will deal first with the "and" type of event descriptions. Our previous work with probability established that with fair dice,   and 
  Our work with the sample space of all outcomes of two fair dice showed  

 We notice that the product of our two event probabilities,   is the same value as the compound "and" event probability. A multiplication operation
happens within probability, just as in counting. Also shown in Section  we must carefully check if the events separated by "and" depend on each other. Remember
the example of the deck of cards  When the events are dependent, the count changes for the second event causing the
probability to change.   We must notice if the probability of the second event changes when the first event
has occurred, as in the card example. With this added condition, we still see multiplication between the two event probabilities. We have a useful general Probability
Multiplication Rule. Given events  and 

Recall from Section  that  is read as "event  given event  has occurred." Such a probability involving the "given" condition,  is called a Conditional
Probability.

There are events in which   or equivalently in which  ; the occurrence of one event does not affect the occurrence of the other event.
For example, the results of the first die roll do not impact the second die roll. In events where   we say that the two events  and  are independent
of each other. But, in our example of selecting a spade card first and then a black card second, the occurrence of the first event did impact the occurrence of the second
event. In events where  we say that the two events  and  are dependent of each other. The conditional probability analysis is not needed if the

 Learning Objectives

3,

A, n,

A x P (A) = .

x

n

n, x

A, P (A) = .

x

n

2.1, 55

3.4.1

≈ 0.309

17

55

≈ 0.327

18

55

≈ 0.127

7

55

≈ 0.127

7

55

≈ 0.036

2

55

≈ 0.073

4

55

P (RED M&M) ≈ 0.327 P (BLUE M&M) ≈ 0.073.

n r

ROLLING A TWO ON THE FIRST DIE and ROLLING A FIVE ON THE SECOND DIE

PERSON IS OVER SIXTY  YEARS  OLD or IS UNDER TWELVE YEARS  OLD

THREE MANAGERS  and SEVEN  HOURLY  EMPLOYEES  or FOUR MANAGERS  and SIX  HOURLY  EMPLOYEES

P (TWO ON FIRST DIE) =

1

6

P (FIVE ON SECOND DIE) = .

1

6

P (TWO ON FIRST DIE and FIVE ON SECOND DIE)

= .

1

36

⋅

1

6

1

6

= ,

1

36

3.3,

SPADE FIRST  and BLACK CARD SECOND.

P (SPADE FIRST  and BLACK CARD SECOND) = ⋅ .

13

52

25

51

A B,

P (A and B) = P (A) ⋅P (B|A)

= P (B) ⋅P (A|B)

3.3 B|A B A P (B|A)

P (B|A) = P (B) P (A|B) = P (A)

P (B|A) = P (B) , A B

P (B|A) ≠ P (B) , A B
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independence of the events is already known, we need only multiply the two simple event probabilities together, a Probability Multiplication Rule for Known
Independent Events:

We reiterate, use of this rule requires us to know the independence of the events involved before computing our compound probability value. We see in later content that
the independence of events can be required to apply specific statistical analyses. Generally, it is best to assume events are dependent and be pleasantly surprised when
we can show the events are independent.

Answer the following compound probability questions. Recognize that the given event description is a compound event that can be broken down into multiple
events.

1. We throw a fair die and randomly select a card from a standard deck. What is the probability of getting a  on the die and an ace on the card draw?

Answer

This is a compound "and" event description. We also notice that the two simple events are independent of each other

2. We shuffle a standard deck of playing cards so the cards are randomly placed through the deck.
a. We draw two cards. What is the probability of getting two face cards if the first card is replaced randomly in the deck before drawing the second?
b. We draw two cards. What is the probability of getting two face cards if the first card is not replaced in the deck before drawing the second?

Answer
a. We do not want to build the sample space in this situation: there are   different outcomes. We notice that if the first card is replaced randomly

in the deck before drawing the second, the two events are independent. We also notice that the deck has  face cards. By our multiplication rule:

We notice this is not an unusual event.
b. If the first card is not replaced in the deck before drawing the second, the second event's probability depends on the first event occurring because the number

of face cards still in the deck will be down to  The number of cards in the entire deck will be  By our multiplication rule:

Although the probability measure does not differ from the first situation drastically, it is different. The event is a little less likely to occur if the first card is
not replaced; this is something we might have expected.

3. Suppose we have our bag of  M&M candies with the color distribution as given previously:
Table : Frequencies and Relative Frequencies of Sampled M&M's

Color Relative Frequency

Brown

Red

Yellow

Green

Blue

P (A and B) = P (A) ⋅P (B)

= P (B) ⋅P (A) .

 Text Exercise 3.4.1

6

P (A and B) = P (SIX ON DIE and ACE ON CARD DRAW | SIX ON DIE)

= P (SIX ON DIE and ACE ON CARD DRAW)

= P (SIX ON DIE) ⋅P (ACE ON CARD DRAW)

= ⋅

1

6

4

52

= ≈ 1.2821%

1

78

52 ⋅ 52 = 2, 704

12

P (A and B) = P (FACE CARD ON FIRST DRAW and FACE CARD ON SECOND DRAW)

= P (FACE ON FIRST FIRST) ⋅P (FACE ON SECOND | FACE CARD ON FIRST)

= P (FACE ON FIRST FIRST) ⋅P (FACE ON SECOND)

⋅

12

52

12

52

= =

144

2, 704

9

169

≈ 5.3254%

11. 51

P (A and B) = P (FACE CARD ON FIRST DRAW and FACE CARD ON SECOND DRAW)

= P (FACE ON FIRST FIRST) ⋅P (FACE ON SECOND | FACE ON FIRST)

= ⋅

12

52

11

51

= =

132

2, 652

11

221

≈ 4.9774%

55

3.4.2

17

55

18

55

7

55

7

55

2

55
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Color Relative Frequency

Orange

We randomly grab four candies, one at a time, without replacement. What is the probability that we have a red candy first, a green candy second, a brown candy
third, and a brown candy fourth?

Answer

These events are not independent. For example, the probability of getting a green candy second will vary depending on whether we had a red candy first. By our
multiplication rule:

4. Senior citizens make up about  of the U.S. adult population, according to the Pew Research Center website.
a. What is the probability of randomly selecting two U.S. adults who are both senior citizens?
b. What is the probability of randomly selecting two U.S. adults, the first not a senior citizen and the second is a senior citizen?
c. What is the probability of randomly selecting three U.S. adults such that the first two are not senior citizens and the third is a senior citizen

Answer
a. As the U.S. population of senior citizens is very large, we will assume independence in the events, realizing our probability measures are approximations. By

our multiplication rule:

We do emphasize that assumption of independence is not always reasonable, but is used at times when dealing with large population/sample sizes as
probability measures do not get impacted significantly in value. We can see this in an example of comparison on, say, a dependence measure of 

  versus assumed independence measure of   Although the probability values
are technically different, the practical interpretation for real-life application would not usually have practical meaning in the difference. We do note that we
reflect carefully before assuming independence as it can lead to drastic consequences.

b. Again, as the U.S. population is very large, we will assume independence in the events. By our complement rule, we note that about  of the U.S. adult
population is less than  years old. By our multiplication rule:

c. Again, as the U.S. population is very large, we will assume independence in the events. By our complement rule, we note that about  of the U.S. adult
population is less than  years old. By our multiplication rule:

Probability with Compound Events Involving "or"

Now that we have handled probability measures on events separated by "and," we turn to probability and events separated by "or." For example, we might ask, "In
rolling a single fair die, what is the probability of rolling a two or a three?" In the case of our M&M's, we might ask, "What is the probability of the next M&M we
randomly remove from a bag being a blue or an orange M&M?" As discussed in Section  the "or" compound description is tied to addition. As a reminder, our
developed Addition Rule for Counting was given as

Our developed rule reminds us to check for the outcomes that matched the descriptions of both events and to subtract the set of the twice-counted outcomes.

Similar to how the Multiplication Rule for Counting extends to the Multiplication Rule for Probability, the Addition Rule for Counting will also extend to an Addition
Rule for Probability.

In answering the question, "In rolling a single fair die, what is the probability of rolling a two or a three?", we can apply this addition rule to produce

4

55

P (RED   and GREEN   and BROWN   and BROWN  )1

st

2

nd

3

rd

4

th

= P (RED) ⋅P (GREEN | RED  ) ⋅P (BROWN | RED and  GREEN previously)1

st

    ⋅P (BROWN | RED and  GREEN and BROWN previously)

= ⋅ ⋅ ⋅

18

55

7

54

17

53

16

52

= =

34, 272

8, 185, 320

476

113, 685

≈ 0.4187%

18%

P (A and B) = P (SENIOR CITIZEN and SENIOR CITIZEN)

= P (SENIOR CITIZEN) ⋅P (SENIOR CITIZEN)

= 18% ⋅ 18%

≈ 3.24%

⋅

2456783

34595200

2456782

34595199

≈ 0.504314831996% ⋅

2456783

34595200

2456783

34595200

≈ 0.50431502269%.

82%

65

P (NOT A SENIOR CITIZEN and SENIOR CITIZEN) = P (NOT A SENIOR CITIZEN) ⋅P (SENIOR CITIZEN)

= 82% ⋅ 18%

≈ 14.76%

82%

65

P (NOT A SENIOR CITIZEN and NOT A SENIOR CITIZEN and SENIOR CITIZEN) = 82% ⋅ 82% ⋅ 18%

≈ 12.10%

3.3,

# of outcomes in (A or B) = # of outcomes in A+# of outcomes in B−# of outcomes in (A and B)

P (A or B) = P (A) +P (B) −P (A and B)

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41780?pdf


3.4.4 https://stats.libretexts.org/@go/page/41780

Since the sample space of rolling a single fair die is small in size, one could likely answer this question much faster by knowing that only two of the six outcomes in the
sample space meet the description of being "  But as we see in the text exercises, this addition rule can be very useful when the sample
spaces are large.

Answer the following compound probability questions. Recognize that the given event description is a compound event that can be broken down into multiple
events.

1. A standard deck of playing cards is well-shuffled for randomness. Determine the following probabilities about a single card draw.
a. Find the probability that a randomly drawn card is a king or a queen.
b. Find the probability that a randomly drawn card is black or an ace.
c. Find the probability that a randomly drawn card is a spade or a face card.

Answer

a. This is a compound "or" event description, as the event of interest is a king or queen card.

We notice that, because   these two events are mutually exclusive. There is a little over  probability that a random card
draw will produce a king or a queen. Although not highly probable, we would not consider this outcome unusual.

b. This is a compound "or" event description, as the event of interest is a black card or an ace.

We notice that, because  , these two events are not mutually exclusive. There is almost a  chance that a random card draw
will produce a black or an ace card; such an outcome is reasonably probable.

c. This is a compound "or" event description, as the event of interest is a card that is a spade or a face card. We note " " is also an "or" event since "
" means " ". Sometimes, event descriptions can be rephrased to make a compound event more evident as an "and" or

an "or" type event

We again notice, because  , these two events are not mutually exclusive. There is a little over  probability that a
random card draw will produce a spade or a face card.

2. An online clothing store has a liberal return policy since customers cannot try on the items before purchasing. From survey data gathered in the return process
from their customers,  of all purchased items are returned due to the item being too small/tight, while  are returned due to the item being too big/loose. If
a customer-purchased item is randomly selected from all purchases, what is the probability that the item will be returned due to being too big/loose or too
small/tight?

Answer

This is a compound "or" event description as the purchased item must be returned due to being too big/loose or too small/tight. We notice that these two events
are mutually exclusive; we assume that a clothing item cannot simultaneously be too big and too small

P (ROLLING A TWO or ROLLING A THREE)

= P (ROLLING A TWO) +P (ROLLING A THREE) −P (ROLLING A TWO and ROLLING A THREE)

= + −

1

6

1

6

0

6

= = ≈ 33.3333%

2

6

1

3

EITHER  A TWO or A THREE.

 Text Exercise 3.4.2

P (CARD IS A KING or CARD IS A QUEEN)

= P (KING) +P (QUEEN) −P (KING and QUEEN)

= + −

4

52

4

52

0

52

= = ≈ 15.3846%

8

52

2

13

P (KING and QUEEN) = 0%, 15%

P (CARD IS BLACK or CARD IS AN ACE)

= P (BLACK) +P (ACE) −P (BLACK and ACE)

= + −

26

52

4

52

2

52

= = ≈ 53.8462%

28

52

7

13

P (BLACK  and ACE) ≠ 0% 54%

FACE CARD

FACE CARD KING or QUEEN or JACK

P (CARD IS SPADE or FACE CARD)

= P (SPADE) +(P (KING) +P (QUEEN) +P (JACK)) −P (SPADE and FACE CARD)

= +( + + )−

13

52

4

52

4

52

4

52

3

52

=

22

52

= ≈ 42.3077%

11

26

P (SPADE  and FACE CARD) ≠ 0% 42%

21% 4%

P (TOO BIG/LOOSE or TOO SMALL/TIGHT)

= P (TOO BIG/LOOSE) +P (TOO SMALL/TIGHT) −P (TOO BIG/LOOSE and TOO SMALL/TIGHT)

= 21% +4% −0% = 25%
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Twenty-five percent of all customer-purchased items are returned due to being either too big/loose or too small/tight. Such a significant return rate for these two
issues will likely require the store to find ways to help customers find a better fit for their orders.

3. We return to our bag of  M&M candies.
Table : Frequencies and Relative Frequencies of Sampled M&M's

Color Relative Frequency

Brown

Red

Yellow

Green

Blue

Orange

a. What is the probability of randomly drawing one candy of a primary color, red, yellow, or blue?
b. What is the probability of randomly drawing one candy that is not of one of those primary colors?

Answer

a. By our addition rule and noticing the events are mutually exclusive, we compute

b. We could apply our addition rule again relative to the colors of brown, green, and orange. But we notice this is also a complement to the previous event.

We notice that the probability of randomly selecting a primary color M&M is practically the same as getting a non-primary color. Stated equivalently, the
proportion of M&M's is approximately  for each color grouping.

Extended Concepts on Compound Events

As mentioned, we sometimes have event descriptions that include multiple compounding actions. Thankfully, we do not need any extra computation rules for these.
However, we do have to read very carefully to properly understand the compound event descriptions and ask for clarification if needed.

We must clarify a small detail about our "AND" rule. In our previous examples using compound "AND" event descriptions, we worked with descriptions involving
"sequential trials" of two or more trials: tossing two dice, drawing four M&M candies, and randomly selecting two people. What if we are describing an event with the
word "and" but in a single trial: Selecting a single M&M that is both red and brown, drawing a single card that is red and a face card? We use a compound "and," but
does our multiplication rule apply in a single trial event? We can often reflect on our sample space and naturally handle the "and" within a single trial. Our general
multiplication rule still works, but the two events separated by "and" will often be dependent in a single trial situation. We must carefully consider the conditional
probability on the second described event as we apply the multiplication rule.

Let us first examine the probability of selecting a single M&M that is both red and brown from our bag of  M&M's. Based on the given information (and our
experience eating M&M's), we can reason that there are no M&M's that meet that description, so the probability is   By reflecting on the sample space, we
determine the probability value; no special probability rule is necessary, but let us see that the multiplication rule still works.

We can see that in handling the conditional probability of selecting a single M&M that is  given that we are restricted to the  M&M's produces the
probability value  none of the red M&M's are brown. Our multiplication rule for "AND" still works for even single trial cases. It is acceptable and encouraged to
reflect on the sample space and not use our multiplication rule to determine such probability values. We should use sound reasoning, not blind use of formulas, to
determine measures.

To see another example, find the probability of drawing a single card that is both red and a face card. By thinking about the sample space of a deck of cards, one might
quickly reason that there are six cards in the deck of fifty-two that are red face cards. The probability is    Let us check that our multiplication rule
produces this value as well.

55

3.4.3

17

55

18

55

7

55

7

55

2

55

4

55

P (PRIMARY COLOR M&M) = P (RED M&M or YELLOW M&M or BLUE M&M)

= P (RED) +P (YELLOW) +P (YELLOW)

= + +

18

55

7

55

2

55

= ≈ 49.0909%.

27

55

P (NOT PRIMARY COLOR M&M) = 1 −P (PRIMARY COLOR M&M)

≈ 1 −0.490909

= .509091 = 50.9091%

50%

55

0

55

= 0%.

P (RED  and BROWN) = P (RED) ⋅P (BROWN | RED )

= ⋅

18

55

0

18

= ⋅

18

55

0

18

= = 0%

0

55

BROWN RED

;

0

18

6

52

=

3

26

≈ 11.5385%.
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We can see that in handling the conditional probability of selecting a single   given that we are restricted to the  cards produces the probability value 
 since six of the red cards are face cards. Using conditional probability with the multiplication rule can be handy in more challenging event descriptions.

Let's try a few single trial "and" compound event exercises.

Answer the following single-trial compound probability questions. Recognize that the given event description is a compound event that can be broken down into
multiple events.

1. We draw a single card from a well-shuffled standard deck of playing cards. What is the probability of getting a black ace?

Answer

This is a compound "and" event description as the card must be both black and an ace.

We could have answered this by reflecting on the sample space of the  outcomes, realizing there are  black aces, but our multiplication rule does work.

2. Based on  information from the U.S. Center for Disease Control website, about  of senior citizens (65 years and older) in the U.S. get the flu
vaccine, whereas about  of those adults under  years old get vaccinated. Senior citizens make up about  of the U.S. adult population, according to the
Pew Research Center website.
a. What is the probability of randomly selecting one U.S. adult who is a senior citizen and has had the flu shot?
b. What is the probability of randomly selecting one U.S. adult who is not a senior citizen and has not had the flu shot?

Answer

a. We can use our multiplication rule.

In  about  of the U.S. adult population consisted of senior citizens who had taken the flu shot.
b. We can use our multiplication rule.

In  about  of the U.S. adult population consisted of non-senior citizens who had not taken the flu shot. Notice that this tells health
officials about the demographics of those who did not have the flu shot.

Now, we focus on investigating our event descriptions with multiple compound events. No new probability calculation rules are necessary; we must apply our current
understanding to slightly new contexts. For example, suppose we wish to find the probability of first throwing a fair die with a result of an even number and then
drawing a card from a standard deck of playing cards that is either a red or a face card. This compound event description involves both "and" and "or." Reading
carefully, we break down the description: a first event involving throwing a fair die, then a second event involving drawing a card. We notice these two events are
independent. In the card draw event, we note that drawing a red card and a face card are not mutually exclusive. We have

P (RED  and FACE CARD) = P (RED) ⋅P (FACE CARD | RED )

= ⋅

26

52

6

26

= ⋅

26

52

6

26

= ≈ 11.5385%

6

52

FACE  CARD RED

6

52

 Text Exercise 3.4.3

P (BLACK CARD and ACE CARD) = P (BLACK CARD) ⋅P (ACE CARD | BLACK CARD)

= ⋅

26

52

2

26

= =

2

52

1

26

≈ 3.8462%

52 2

2023 −2024 70%

40 65 18%

P (SENIOR CITIZEN and FLU SHOT) = P (SENIOR CITIZEN) ⋅P (FLU SHOT | SENIOR CITIZEN)

= 18% ⋅ 70%

= 0.18 ⋅ 0.70

= 0.126

= 12.6%

2023 −2024, 12.6%

P (NOT A SENIOR CITIZEN and NO FLU SHOT) = P (NOT A SENIOR CITIZEN) ⋅P (NO FLU SHOT | NOT A SENIOR CITIZEN)

= 82% ⋅ 60%

= 49.2%

2023 −2024, 49.2%
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Determine the probabilities of each of the following.

1. We draw five cards from a well-shuffled standard deck of playing cards. What is the probability of getting a flush (all cards share the same suit)?

Answer

This is a compound "and" event description, as the five cards must all be of one suit. We note that the suit does not matter, so the first card drawn can be of any
suit; the remaining cards must match the first. The events are not independent.

It should not be surprising that flush of five cards from a well-shuffled deck is a very unlikely event.

2. If we toss a fair die and then flip a fair coin, what is the probability that we get either a  on the die or a head on the coin (or both)?

Answer

We approach this in two different ways. The first may initially sound easier or more natural, but the second brings us different, valuable insights. Accurate
rephrasing of a given situation can make the probability calculation different yet produce the same results.

a. The basic events are a toss of a fair die followed by a flip of a fair coin. Our event description is of the "or" type. Since we can toss a  and get a head on the
coin in one execution of the situation, we note that our events are not mutually exclusive. By our addition rule, we obtain the following.

b. By examining complement descriptions first, the complement of "either a  on the die or a head on the coin (or both)" is "not getting a  on the die and also
not a head on the coin". Now, we can use our complement and multiplication rule.

We do notice we get the same answer although computed through a very different approach.

3. If we roll a fair die three times, what is the probability that one or more throws will come up with a 

Answer

On the surface, this sounds easy, but that changes once we think about the possible ways to have one or more of the three approaches produce a  We could
have the first toss produce a  while the other two do not, or we can have the second produce a  and the other two not, or we can have the first two tosses both
produce a  and the third not, or many other possibilities. We must determine many probabilities to use our rule with "or." However, there is an easier way.
Notice the complement of "at least one of the throws will be a " is given by "none of the three throws produce a "

We obtain the following by our complement and multiplication rule, utilizing the independence of the die throws.

P (DIE TOSS OF EVEN and  [CARD DRAW OF RED or FACE])

= P (DIE TOSS OF EVEN) ⋅P (CARD DRAW RED or FACE)

= P (DIE TOSS OF EVEN)

⋅ (P (CARD DRAW RED) +P (CARD DRAW FACE) −P (CARD DRAW RED and FACE))

= ⋅( + − )

3

6

26

52

12

52

6

52

= ⋅( )

1

2

32

52

= ⋅ = ≈ 30.7692%.

1

2

8

13

4

13
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P (FLUSH)
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st
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52
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9
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6

6
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= + −( ⋅ )
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6
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2

1
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4. Based on  information from the U.S. Center for Disease Control website, about  of senior citizens (65 years and older) in the U.S. get the flu
vaccine, whereas about  of those adults under  years old get vaccinated. Senior citizens make up about  of the U.S. adult population, according to the
Pew Research Center website. What is the probability of randomly selecting two U.S. adults who are both senior citizens and recipients of the flu vaccine?

Answer

Due to the large population size, we assume the selection of individuals is independent. We believe that if the first selected adult is a senior citizen, the second
selected adult still has a  chance of being a senior citizen; likewise, we assume that the probability that the second person chosen is vaccinated is the same
as the first person. We now use our multiplication rule.

So in regard to this  data, it would be unusual for us to randomly select two U.S adults both of whom were flu vaccinated senior citizens.

Two-Way Tables and Probability
Sometimes, data frequencies for a collected single variable are disaggregated, separated into mutually exclusive subgroups. For example, quiz data frequencies for a
class may be separated by the frequency of those who passed the quiz versus those who did not. Alternatively, perhaps the data is separated into those students who are
in extra-curricular school activities and those who are not. If done well, this allows a comparison between subgroups.

Let us go one step further in this discussion: disaggregating data in two ways. These results are displayed in a Two-Way Table or a Contingency Table. We take the
quiz data of a class of  students first given in Section  and separate by passing,  or above, and non-passing scores, below  then by student involvement in extra-
curricular school activities resulting in the following two-way table.

Disaggregation Passed Quiz Failed Quiz

Not Involved in Extra-Curricular 
School Activities

Involved in Extra-Curricular 
School Activities

When reading the table, we must pay attention to the row and column headings. The value  in the table implies that  of the  students were involved in extra-
curricular activities and failed the quiz. We often include row and column totals for each disaggregation when working with two-way tables.

Disaggregation Passed Quiz Failed Quiz Row Totals

Not Involved in Extra-Curricular 
School Activities

Involved in Extra-Curricular 
School Activities

Column Totals

We can see a total of  student data points. Of those, there were  that passed the quiz, while there were  not involved in extra-curricular activities.

We can now answer several probability/proportion questions concerning these results. What is the probability that a randomly selected student from the class was
involved in extra-curricular school activities? By our classical probability approach,    

What is the probability that a randomly selected student from the class failed the quiz and was not involved in extra-curricular activities? Since randomly selecting a
student from the twenty,    This is because the table shows only  student in both the 

 column as well as the  row. We could also apply our multiplication rule, noting the events are not independent.

In this situation, the first approach is much easier due to the table information.

P (AT LEAST ONE - 1 AMONG THREE TOSSES)

= 1 −P (NOT 1 ON FIRST DIE and NOT 1 ON SECOND DIE and NOT 1 ON THIRD DIE)

= 1 −[P (NOT 1 ON FIRST DIE) ⋅P (NOT 1 ON SECOND DIE) ⋅P (NOT 1 ON THIRD DIE)]

= 1 −( ⋅ ⋅ )

5

6

5

6

5

6

= 1 − = ≈ 42.1296%

125

216

91

216

2023 −2024 70%

40 65 18%

18%

P ([FIRST IS A SENIOR CITIZEN and FIRST HAS FLU SHOT]  and  [ slightSECOND IS A SENIOR CITIZEN and SECOND HAS FLU SHOT])

= [P (FIRST IS A SENIOR CITIZEN) ⋅P (FIRST HAS FLU SHOT | FIRST IS A SENIOR CITIZEN)]

⋅ [P (SECOND IS A SENIOR CITIZEN) ⋅P (SECOND HAS FLU SHOT | SECOND IS A SENIOR CITIZEN)]

= (18% ⋅ 70%) ⋅ (18% ⋅ 70%)

≈ 1.5876%

2023 −2024

20 2.4 6 6,

7 1

9 3

3 3 20

7 1 8
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16 4 20

20 16 8

P (IN EXTRA  CURRICULAR) =

12

20

=

3

5

= 60%.

P (FAILED  QUIZ and NOT  IN EXTRA  CURRICULAR) =

1

20

= 5%. 1 FAILED 

 QUIZ NOT  IN  EXTRA   CURRICULAR

P (FAILED QUIZ and NOT IN EXTRA CURRICULAR)

= P (FAILED QUIZ) ⋅P (NOT IN EXTRA CURRICULAR | FAILED QUIZ)

= ⋅ = = 5%
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Answer the following probability questions about a given two-way table.

1. A polygraph device is being studied for its accuracy in lie detection. A group of  randomly drawn participants were divided into two groups: those instructed
not to lie and those who were supposed to lie. The technician running the device did not know each participant's group. Each participant was tested with the
device, and a positive or negative detection of a lie was returned. The results are given in the following contingency table.

Disaggregation
Positive Lie 

Detection Reading
Negative Lie

Detection Reading

Participant Did Not Lie

Participant Did Lie

As an example,  of the  participants did not lie, and the detector did not sense a lie occurring.

a. What is the probability that a randomly selected participant had a positive lie detection reading?
b. What proportion of the participants had a false positive reading (the device detected a lie, but the participant did not lie)?
c. What is the probability of randomly selecting two participants in sequence so that both had a positive lie detection reading?
d. What is the probability of randomly selecting a participant who lied but had a negative detection reading or who did not lie but had a positive detection

reading? In other words, for what proportion of the trials was the device inaccurate?
e. What is the probability of randomly selecting two participants in sequence so that the first lied with a positive detection reading and the second did not lie

with a negative detection reading?

Answer

We first add column and row totals to our table.

Disaggregation
Positive Lie 

Detection Reading
Negative Lie

Detection Reading
Row Totals

Participant Did Not Lie

Participant Did Lie

Column Totals

Now, we answer the probability/proportion questions using appropriate probability rules.

a. From the two-way table, we notice there were  participants that had positive lie detection readings. So,   
 

b. From the table, we can notice there were  participants had a false positive reading. So, we can quickly produce results of 
  

We instead might have noticed this was an "and" compound event: . Therefore, it would also
have been appropriate (though more cumbersome) to measure the proportion using our general multiplication rule.

We mention two items in reflection of this exercise. First, we notice how the table is used for a conditional probability such as 
  The given condition of  requires us to use only the information in the table row of

"Participants Did Not Lie."

This exercise demonstrates that multiple approaches might be taken to a probability/proportion question, but there is only one correct answer.
What is important is to have sound reasoning in our approach. After that, experience is the best teacher in finding the easiest approaches without
making mistakes in our reasoning.

c. We notice the event description can be re-worded as 
, so we use the general multiplication rule.

We notice how these sequential events are not independent since we cannot pick the same participant twice.

 Text Exercise 3.4.5
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=
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DID NOT LIE and POSITIVE  LIE DETECTION
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9
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HAD  POSITIVE  LIE DETECTION

P (FIRST PARTICIPANT HAD POSITIVE LIE DETECTION and SECOND PARTICIPANT HAD POSITIVE LIE DETECTION)
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= ⋅
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d. We notice the event description appears to primarily be an "or" compound event. That is, our event of interest requires selection of one
participant that  so we use the general addition
rule noting these two events are mutually exclusive.

We observe that a test with a  inaccuracy rate is not very dependable. Also, we excluded the subtraction in the general addition rule for
possible double counting of  since we
recognized the events were mutually exclusive.

e. The event description is an "and" compound type as we want sequential selection of two participants with 
. We use the general

multiplication rule.

It would not be unusual, since the probability value is above 

3.4: Probability and Compound Events is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort Hays State University.

5.2: Basic Concepts of Probability by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
1.10: Distributions by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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4.1: Random Variables

Define and construct random variables
Establish that the sum of probabilities across all values of a random variable is 
Define and distinguish discrete random variables from continuous random variables
Introduce the discrete uniform distribution

 Section  Excel File (contains all of the data sets for this section)

Review and Preview
In inferential statistics, we seek to understand a population by studying a sample randomly selected from it. In particular, we are
trying to estimate the value of a population parameter based on our study of a random sample, including many sample statistics.
Hopefully, at this point, we recognize that random sampling is a random experiment; when random sampling is conducted, the
outcome is a particular sample, and sample statistics are values computed from the outcome. The distinction between the outcome
of random sampling (the sample) and the values that describe the outcome (statistics) is essential to remember. We are interested in
the likelihood that our sample is representative of the population. To determine this likelihood, we consider all possible values that
sample statistics may take on and the probabilities of such values occurring. As such, we can understand sample statistics as
random variables.

It is crucial to grasp that, when we view a sample statistic as a random variable, we are not just seeing a number. We are exploring a
method that can generate a value from any random sample, and diving into the realm of all the possible values that could be
produced. This shift in perspective is not just a technicality, but a fundamental concept that necessitates understanding.

Random Variables
A random variable is a quantitative variable that assigns a number to each outcome in the sample space of a given random
experiment. We generally denote random variables using capital letters, like  and the particular values that they take on (the
values that are assigned to the outcomes of a random experiment) with the same letter but lowercase and with indices:    

  (if there are  possible values). As we indicated above, we are most interested in connecting the values or a random
variable with the probability that they occur. The values of the random variable, together with their probabilities, form the
probability distribution of the random variable. In general, our interest lies in the probability distributions of random variables,
and as you will see, we have studied some of them already.

Consider a familiar example of a random experiment: rolling two fair dice. There are many different ways in which we could
construct a random variable. One intuitive way is to consider the pairs of values and then assign each of the  outcomes in the
sample space a number. For our first example, let  be the "sum of the two values that land face up." This process allows us to
assign a number to each outcome in our sample space, illustrated below.

Figure : Sum of the two values that land face up when rolling two fair dice

As we can see in the figure above, the random variable  has  possible values:            Our next task
is to determine the probabilities for each value that  can be. For our example, we have already computed some of the
probabilities; see Text Exercises  and  By selecting a value of our random variable, say  we define a specific
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event in the sample space of our random experiment (namely, rolling a  and ) and rely on the content of the previous chapter. So 
      We

encourage the reader to confirm each of the probabilities in the table below.

Table : Probability distribution of the random variable 

When rolling a pair of fair dice, each die lands with a value face up. Construct the probability distribution for the random
variable  defined to be "the maximum value of the two dice rolled."

Answer

Visualizing the sample space may help identify possible values and determine probabilities for some random variables. We
will want to use deeper reasoning when our sample spaces are much larger. We use both visualization and reasoning in this
example. To construct a probability distribution, we must first determine the possible values of our random variable  and
then determine their probabilities.

Figure : Maximum value of two fair dice rolled
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From the figure above, we can tell that our random variable  has  possible values:  With  occurring most
frequently. Since we are rolling fair dice, each outcome is equally likely, so we produce our probability distribution by
counting the number of occurrences of each value. We make the probability in the table below.

Table : Probability distribution of the random variable 

Let us reason our way to the probability distribution without listing all the outcomes. Knowing that the values on our dice
range from  to  we can restrict our considerations for the possible values of  to these; that is,  has  possible values: 

To determine  we note that  is the largest value on our dice. So if a  is rolled, it is the maximum. So 
   

To determine  we note that the only number larger than  is  So  
    Notice that   because there are  ways

to roll a  and  of them do not contain a 

A similar process could continue through all of the possible values, but we might notice an easier way to count; for any
particular value  of  we have the outcome of rolling double s, and the remaining outcomes come in pairs. The
number of pairs equals the number of values less than  We develop a formula for our probabilities:  

 Check that our reasoning produces the same probability distribution as above.

Recall that the sum of the probabilities of all outcomes from a sample space is  This is true because when conducting a
random experiment, something must happen; a single outcome from the sample space must occur, and no two outcomes in the
sample space are the same. If we have  outcomes,  

   

A similar line of reasoning follows for random variables. Since a random variable assigns a number to every outcome, and an
outcome must occur when a random experiment is conducted, we are sure that some value will occur and no outcome will
return two values. If we have  values for a random variable         

    The sum of probabilities across all possible values of a random variable
must always equal  This means the sum of all the values in the  column of a probability distribution must add up
to 

Let us confirm the sum of the probability column of a probability distribution is  for the random variables that we have
discussed thus far,  and 
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Consider the random variable  loosely based on this article from  which returns the number of days adults exercise in a
week and its incomplete probability distribution below.

Table : Incomplete probability distribution for the random variable 

 

1. Complete the probability distribution by determining .

Answer

The sum of all the probabilities in a probability distribution must equal  We can compute  by figuring out what
value makes the sum   So    Ten percent
of adults exercise for just  days a week.

2. What is the probability that a randomly selected adult exercises at least  days a week?

Answer

We are trying to determine the probability that a randomly selected adult exercises   or  days a week. which we can
denote as    Since each event is assigned a single value, they are mutually
exclusive; thus, we can simply add the probabilities of each event.    

   We understand this to mean that  of adults work out
at least  days a week.

3. Determine and explain the meaning of 

Answer

We are trying to determine the probability that a randomly selected adult exercises more than  times a week but no more
than  times a week or equivalently that a randomly selected adult exercises  or  days a week.  

   So  of adults exercise  or  days a week.

Now consider the random experiment of rolling two fair dice from a slightly different perspective and arrive at another type of
random variable. We could define a random variable  to be "the time (in seconds) it takes both dice to come to a complete stop
after one die leaves our hands." We understand our random variable by examining the possible values that our random variable
takes on. Determining the precise values is difficult. What is the shortest time? Does it always take at least  second? What is the
longest time? Can it ever exceed  seconds? We cannot give definitive answers. However, after a moment or two of thought, we
recognize that the possible values will take on any numerical value in an interval of positive real numbers. Hopefully, this last
description reminds us of a type of variable. In Chapter  we defined two types of quantitative variables: discrete and continuous.
Here, we make similar designations: discrete random variable and continuous random variable, based on the possible
outcomes. Examples   and  from above are discrete random variables while  is a continuous random variable. Our
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understanding of probability needs further development to handle continuous random variables. This will take place in the latter
portion of this chapter; for now, we restrict ourselves to the study of discrete random variables.

Classify each random variable as either discrete or continuous. Explain.

1.  = the prescription count of a randomly chosen patient.

Answer

We understand a patient's prescription count to be the number of medicines prescribed. While a patient may be prescribed a
half or double dosage, this is not half of a prescription. There are gaps between each possible value that  takes on, making

 a discrete random variable.

2.  = the appraisal value of a randomly chosen coin collection.

Answer

An appraisal value must be given in some currency, perhaps U.S. dollars. Currencies have a smallest denomination.
Therefore, there must be gaps between the possible values in the appraisal value, making  a discrete random variable.

3.  = the total distance traveled on the campaign trail of a randomly chosen politician.

Answer

A politician's total distance on the campaign trail (in any standard unit) may be any nonnegative number within a
reasonable magnitude.  is a continuous random variable.

Discrete Uniform Distribution

As the name indicates, the probability distribution of a random variable explains how probabilities are distributed. We say a random
variable has a discrete uniform distribution if the random variable is discrete and each outcome has equal probability. If we
consider rolling a single fair die and define a random variable  to be the number that lands face up, the random variable  has a
discrete uniform distribution. There are only six possible values making  discrete, and since the die is fair, each value is equally
probable.   for any  in      

1. Consider the discrete random variable  with  values, that has a discrete uniform distribution, and determine the
probability of each value of 

Answer

Since  has a discrete uniform distribution and takes on  values we have that    

 and  Combining these yields that   

 meaning   and thus   for any  in     

2. Consider the discrete random variable  which takes on  values and has a discrete uniform distribution, determine the
probability of each value that  takes on.

Answer

Since  has a discrete uniform distribution and takes on  values we have that   

 and  Combining these yields that   

 meaning  and thus   for any  in     
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3. Consider the random variables   and  which have been recurring this section. For each of them, determine, with
justification, if they are a uniform random variable or not.

Answer

First consider  The probability that  is  is not the same as the probability that  is  Therefore,  is not a uniformly
distributed random variable. We should be able to convince ourselves, using similar reasoning, that  and  are also both
not uniformly distributed.

4.1: Random Variables is shared under a Public Domain license and was authored, remixed, and/or curated by LibreTexts.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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4.2: Analyzing Discrete Random Variables

Draw connections between a relative frequency distribution of a data set and a probability distribution of a random variable
Define, compute, and interpret the expected value of a discrete random variable
Define and compute the variance and standard deviation of a discrete random variable
Interpret the standard deviation of a discrete random variable

 Section  Excel File (contains all of the data sets for this section)

Random Variables and Data
As we seek to understand the world around us, there are times when we are unsure what could happen in a particular situation; we do
not necessarily know all the possible outcomes or the likelihood of every outcome happening. That is okay. We learn by observation,
data collection, and experimentation. When studying a quantitative variable, we collect data by measuring a value for each observation.
Once our data is collected, we can analyze the data using relative frequency distributions to show the proportion of the observations in
a particular class and provide an empirical estimate of the probability of that class occurring. We realize that our relative frequency
distributions are connected with the probability distributions of our random variables (classes corresponding to values the variable
takes on and relative frequencies corresponding to probabilities). There is, however, a significant difference to keep in mind. Relative
frequency distributions describe data that has been collected. Random variables describe the possibilities and probabilities of what can
happen. Relative frequency distributions are descriptive, while random variables are predictive.

To analyze and understand data, we developed methods of visualization, measures of centrality, and measures of dispersion. For these
methods with random variables, we use the connection to relative frequency distributions. Recall how we treated these three concepts
when given a relative frequency distribution for a discrete quantitative variable.

Visualization: We visualized the relative frequency distribution using bar graphs.

Measures of Centrality: We discovered that the mean of a data set could be calculated by "weighing" our class values  by their
relative frequencies 

Measures of Dispersion: We discovered that the variance of a population data set could be calculated by "weighing" the squared
deviations from the mean  by their relative frequencies 

From the variance, we can also compute the standard deviation of the data set: 

We will visualize our discrete random variables with bar graphs and develop measures of centrality and dispersion similar to the mean
and variance of a population data set.

Analyzing Discrete Random Variables

The primary challenge in connecting our analyses of relative frequency distributions and random variables is interpretation. As
mentioned above, relative frequency distributions are constructed from collected data and describe what happened; random variables
are constructed from all the possible values resulting from a random experiment and the associated probabilities of these values
occurring. Even in this distinction, the best predictor of future behavior is past behavior; we often use relative frequencies as estimates
of probabilities (the empirical method of probability). So, how can we understand the measures of centrality and dispersion for a
random variable? They would be estimates for the actual measures of centrality and dispersion if we were to repeatedly run the random
experiment, collect data, and analyze it. Because of the Law of Large Numbers, we would expect the estimates and computed measures
to converge if we conducted the random experiment repeatedly. With this in mind, we will study discrete random variables.

Learning Objectives
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Graphical Visualization: Bar Graphs
The method of constructing bar graphs remains the same for discrete random variables. The values of the random variable are listed on
the horizontal axis, and bars are formed with the height indicating the probability of that particular value occurring. The gaps between
the bars indicate the discrete nature of the random variable. Here, we produce bar graphs for the random variables , , and  from
our last section (the sum of two fair dice rolled, the max of two fair dice rolled, and the number of days adults exercise in a week,
respectively).

Figure : Bar graph representations of the probability distributions of the random variables , , and  (left to right)

Measure of Centrality: Expected Value
Recall that the mean of a data set is the balancing point of that data set, which we could visualize from our graphs. Given this same
manner of representation, the mean of a random variable  also referred to as the expected value of   is also the balance
point of the bar graph. From the symmetry of  in the figure above, we conclude that  Determining the center of mass for 

 and  is a little more complicated, but by looking at the distributions, we can see that  and  A more precise
calculation is in order. By understanding the relative frequency as an estimate of that particular event's probability, we define the
expected value of a discrete random variable 

In computing the expected value of a discrete random variable, we consider each possible value of the random variable and weigh it
according to the associated probability; the higher the probability, the heavier the weight. Since the sum of probabilities of all possible
values adds to  the denominator consisting of the "total" weight simplifies. Let us confirm that the expected value for the sum of two
fair dice is indeed 

Table : Computation of the expected value of the sum of two fair dice
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After adding all of the entries ( ) in the third column, we arrived at a total of  confirming our visual estimation. 
 means that as we roll a pair of fair dice repeatedly, we expect the mean of all of the sums to be close to  Consider rolling

two fair dice using a simulator and calculating the mean of the dice sums. We (the authors) ran the simulation with  trials, producing
a data set of  dice sums, and found the mean to be   this is fairly close to our expected value of  Run the simulation
yourself and compute the mean. How close to  is your computed mean?

1. Recall the discrete random variable  which describes the maximum value of two fair dice when rolled. Compute and interpret
the expected value  using its probability distribution reproduced below.

Table : Probability distribution for the random variable 
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The expected value of the random variable  is approximately  meaning after repeatedly rolling two fair dice and
examining the maximum values from each pair, the mean maximum value would be about  We can verify this
experimentally; see for yourself. Roll two dice, record the highest number, repeat  times, and then take the mean of those 
numbers. We (the authors) obtained a mean of  when doing this. Notice that this seems less accurate than our empirical
estimate obtained for  Some random variables require more trials than others to accurately estimate the expected value. Note
that our expected value cannot occur for any single trial of our random experiment.

2. Recall the discrete random variable  which describes the number of days adults exercise per week. Compute and interpret the
expected value  using its probability distribution reproduced below.

Table : Probability distribution of the random variable 

 

 

 

 

 

 

 

 

Answer

Table : Table of computation

The expected value of the random variable  is  days, meaning that after repeatedly asking random adults how many days
they work out per week, we would predict the mean number of days to be about 

Measures of Dispersion: Variance and Standard Deviation

A question arises from our discussion of expected value: how much variation should there be as the random experiment is repeated?
Will most values be close to the expected value, or will a wide variety of values occur? We can answer these questions intuitively using
bar graphs, but the intuition is rarely straightforward. Use Figure  to determine which random variable has the most spread before
continuing with your reading.

Y 4.4722,

4.4722.

20 20

4.7
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D

E(D)

4.2.4 D

D= d

j

P(D= )d

j

⋅ (P(D= )d

j

d

j

0 0.28

1 0.11

2 0.10

3 0.14

4 0.10

5 0.15

6 0.08

7 0.04

4.2.5

D= d

j

P(D= )d

j

⋅ (P(D= )d

j

d

j

0 0.28 0 ⋅ 0.28 = 0

1 0.11 1 ⋅ 0.11 = 0.11

2 0.10 2 ⋅ 0.10 = 0.20

3 0.14 3 ⋅ 0.14 = 0.42

4 0.10 4 ⋅ 0.10 = 0.4

5 0.15 5 ⋅ 0.15 = 0.75

6 0.08 6 ⋅ 0.08 = 0.48

7 0.04 7 ⋅ 0.04 = 0.28

μ = E(D) = 0+0.11+…+0.28 = 2.64

D 2.64

2.64.
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Using the notion of relative frequency as an estimate for a value's probability and utilizing our expected value as our measure of center,
we define the variance of a discrete random variable 

In computing the variance of a discrete random variable, we "weigh" the values that we are averaging, namely the squared deviations
from the mean, by their probabilities. Since the sum of the probabilities of all the possible values is  the denominator reduces. As
before, we define the standard deviation of a discrete random variable  as the square root of the random variable's variance. Let
us determine the dispersion of the discrete random variables,   and  by computing their variances and standard deviations.

Table : Table of computation

As with the mean, we understand the standard deviation as an estimate for the computed standard deviation as we repeatedly conduct
the random experiment. As repetitions increase, the computed standard deviation approaches the expected standard deviation value. We
understand the mean of a data set as its center and can loosely understand the standard deviation as the typical distance our
observations are from the mean. If we translated this in terms of random variables, we could say that a typical value is within a
standard deviation from the expected value. Within the context of summing the rolls of two fair dice, we would expect a typical value
to be within  units from  those sums being     or  If we were playing a board game based on the sum of the rolls of
two fair dice, we could expect these  numbers to occur somewhat "regularly" and plan our strategy accordingly.
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1. Determine the probability that the sum of the rolling of two fair dice would be within one standard deviation of the expected
value: 

Answer

Since the mean is  and the standard deviation is about , we are looking for the probability that our random variable is
between the values between   and   Our question reduces to finding 

    

2. Determine the probability that the sum of the rolling of two fair dice would be within two standard deviations of the expected
value: 

Answer

We are now looking for the probability that our random variable takes on the values between   and 

  So our question reduces to finding    

    Notice that all possible values of our random variable lie within  standard deviations

of the expected value.

1. Recall the discrete random variable  that describes the maximum value of two fair dice when rolled. In text exercise 
we computed that  

a. Compute the variance and standard deviation of  using its probability distribution reproduced below.
b. Compute 
c. Compute 

Table : Probability distribution of the random variable 

 

 

 

 

 

 

Answer

Table : Table of computation

 Text Exercise 4.2.2

P (|X−μ| < σ) .

7 2.4152

7−2.4152 = 4.5848 7+2.4152 = 9.4152.
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=
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≈ 94.4444%. 3

 Text Exercise 4.2.3
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a. Note: when conducting such involved and messy calculations, be sure to round only at the very last stage. We provide
intermediate approximations along the way to help facilitate readability, but we do not use the rounded values in the actual
computations for final answers. The variance of  is approximately  and the standard deviation is about .

b. We are tasked with determining the probability that the value produced in running the random experiment will fall within
one standard deviation of the expected value.

c. We now determine the probability that the value produced in running the random experiment will fall within two standard
deviations of the expected value.

2. Recall the discrete random variable  that describes the number of days adults exercise per week. In text exercise , we
computed that  days.
a. Compute the variance and standard deviation of  using its probability distribution reproduced below.
b. Compute .
c. Compute .

Table : Probability distribution of the random variable 
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= + =
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4
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Answer

Table : Table of computation

a. The variance of  is approximately  days  and the standard deviation is about  days.
b. We determine the probability that the value produced in running the random experiment will fall within one standard

deviation of the expected value.

c. We determine the probability that the value produced in running the random experiment will fall within two standard
deviations of the expected value.

As we have seen with the last several text exercises, the probability that a discrete random variable is within a standard deviation or
two of the expected value varies depending on the distribution. This, hopefully, does not come as a surprise (if it did, recall our
discussion in section  about Chebyshev's Inequality and the Empirical Rule). For this reason, we must take our understanding of a
typical value rather loosely at this stage. It will get better. We end this section with text exercises exploring games of chance with cash
prizes.

We may further reduce the formula for the variance of a random variable and produce an equivalent formulation with some
computational benefits. The two formulas produce the same values; they are equivalent. The first formula emphasizes the
underlying logic of what the measure means; we, therefore, recommend its use primarily, but we provide this second formula
regardless.

Optional derivation for the mathematically inclined
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Games of Chance

1. Consider entering a raffle with a single cash prize of  Each player may only purchase one ticket for  and only 
raffle tickets will be sold.
a. Represent our financial net gains or losses with the discrete random variable  and construct its probability distribution.
b. Compute and interpret 

Answer
a. The random experiment is entering the raffle; either we win or we lose. If we lose, we are out the  If we win, our net

gain is  because we spent  on the raffle ticket. Our random variable  takes on two values:  and  Each
ticket is typically equally likely to be drawn. Therefore, (the probability that we lose), is  Its
complement, the probability that we win, is 

Table : Probability distribution for the random variable 

b. Table : Table of computation

We have found that the expected value for this raffle is  When we play, we either lose  or gain  but on
average we should expect to lose  It is important to note that a negative expected value does not necessarily mean we
will lose money. Someone will win the raffle. What it means is that, if we played this raffle many times, we would expect to
lose money in the long run. Imagine if we did the raffle  times; we might expect to win  time and lose  times. In such
a situation, we won  but we also lost   in purchasing tickets. Hence, we see a net loss of , for
an average loss of  each time.

2. Consider entering a raffle with one  cash prize and one  cash prize. Each player may only purchase one ticket for 
 and  raffle tickets will be sold.

a. Represent our financial net gains or losses with the discrete random variable  and construct its probability distribution.
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b. Compute and interpret 

Answer
a. We will set up our random variable similarly. However, this time, there are three possible values since there are three

different outcomes: winning the big prize, winning the small prize, and losing altogether.

Table : Probability distribution for the random variable 

b. Table : Table of computation

We have found that the expected value for this raffle is  Despite more prize money being available, the higher
price of entering the raffle and the larger number of tickets sold made the expected value decrease starkly.

3. A family is hosting an extended family reunion and thought having a raffle with a single cash prize would be fun. The dad does
not want to make or lose any money in running the raffle, but his wife would like the raffle to help cover the cost of hosting the
reunion and wants  per ticket to help cover the costs. If  family members signed up for the raffle at a ticket price of 
determine the cash prize and compute the expected value when

a. the dad gets his desire.
b. the mom gets her desire.

Answer
a. Since the dad does not want the raffle to make or lose any money on the raffle, the cash prize will need to be all the ticket

revenue. Since there are  tickets being sold at  a ticket. The total ticket revenue is  We can construct a random
variable similar to the variables above representing the game from the player's perspective.

Table : Probability distribution for the random variable  along with computation

\(\dfrac{1}{80}\\)

If the dad gets his desire and all the ticket revenue is given as the cash prize, the expected value would 
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b. If the mom gets her desire to help cover the cost of hosting the reunion,  of every ticket will go to the cash prize, and 
will go towards the reunion. With  tickets sold, the cash prize would be   dollars.

Table : Probability distribution for the random variable  along with computation

\(\dfrac{1}{80}\\)

If the mom gets her desire, the expected value would  We notice that the dad did not want to make any money off the
raffle and the expected value was  while the mom wanted to make  per ticket and the expected value was  In
general, if the host wanted to make  off of each ticket, then the expected value from the participant's perspective would
be 

Having worked through these text exercises, we understand the expected value as a measure of who the game of chance favors: the
players or the house/host. Under the mom's desires, the host family making  a ticket is represented in the expected value being 
If we then apply this idea to the earlier raffles, where the expected values were  and  we understand that the hosts were
raising money at  and  a ticket. This is reasonable because raffles are generally run as fundraisers for some organizations.

Over the years, there have been big lottery prizes, as in millions and billions of dollars. Consider a simplified version of the
Powerball game. While in reality, there are  different ways to win a cash prize from purchasing a  ticket, we will only consider
winning the grand prize without any additional options and assume there is only one winner. Recall that the grand prize is won
when a player matches all  white balls (order does not matter) and the red Powerball. There are  white balls labeled  to  and

 red balls labeled  to  The grand prize increases until a winner is found. Determine how large the grand prize must be for the
expected value (from the player's perspective) to be nonnegative.

Answer

We are trying to find the smallest grand prize so that the expected value is nonnegative. Let us refer to the grand prize amount
as  and set up a discrete random variable  modeling this simplified version of the Powerball. Refer to this previous text
exercise for additional aid in determining the probabilities.

Table : Probability distribution for the random variable  along with computation

(\dfrac{p-2}{292,201,338}\)

We want the expected value to be nonnegative, so we are looking to solve 
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Only after the grand prize grows beyond  will the expected value of the Powerball be positive. Note that this
analysis does not consider taxation on the winnings, which is quite hefty.

Given the fact that expected value is negative (unless the pot is enormous), we know that playing the lottery is not a good way
to make money.

1. Consider a biased die, weighted so that rolling a one is  times as likely as the other sides, but each of the other sides are
equally probable. Determine the probability distribution for the discrete random variable  defined to be the value landing up
after rolling this biased die.

Answer
We know that     ,   and that the sum
of all the probabilities needs to be  We have       

       =  Thus 
 and  

Table : Probability distribution for the random variable 

2. Compare the expected value and standard deviation of  with those of rolling a fair die.

Answer

Table : Table of computation for the two random variables

$584, 402, 676

 Text Exercise 4.2.6

5

Z

P (Z = 2) = P (Z = 3) = P (Z = 4) = P (Z = 5) = P (Z = 6) P (Z = 1) = 5P (Z = 2),

1. 1 = P (Z = 1) +P (Z = 2) +P (Z = 3) +P (Z = 4) +P (Z = 5)

+P (Z = 6) = 5P (Z = 2) +P (Z = 2) +P (Z = 2) +P (Z = 2) +P (Z = 2) +P (Z = 2) 10P (Z = 2).

P (Z = 2) =

1

10

P (Z = 1) =

5

10

= .

1

2

4.2.18 Z

Z = z

j

P(Z = )z

j

1

1

2

2

1

10

3

1

10

4

1

10

5

1

10

6

1

10

Z

4.2.19

Z = z

j

P(Z = )z

j

⋅ P(Z = )z

j

z

j

( −μ ⋅ P(Z = )z

j

)

2

z

j

F = f

j

P(F = )f

j

⋅ P(F = )f

j

f

j

( −μ ⋅ P(F =f

j

)

2

f

1

1

2

1

2

⋅ =(1− )

5

2

2

1

2

9

8

1

1

6

1

6

⋅ =(1− )

7

2

2

1

6

2

2

2

1

10

1

5

⋅ =(2− )

5

2

2

1

10

1

40

2

1

6

1

3

⋅ =(2− )

7

2

2

1

6

3

8

3

1

10

3

10

⋅ =(3− )

5

2

2

1

10

1

40

3

1

6

1

2

⋅ =(3− )

7

2

2

1

6

1

2

4

1

10

2

5

⋅ =(4− )

5

2

2

1

10

9

40

4

1

6

2

3

⋅ =(4− )

7

2

2

1

6

1

2

5

1

10

1

2

⋅ =(5− )

5

2

2

1

10

5

8

5

1

6

5

6

⋅ =(5− )

7

2

2

1

6

3

8

6

1

10

3

5

⋅ =(6− )

5

2

2

1

10

49

40

6

1

6

1

⋅ =(6− )

7

2

2

1

6

2

2

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/45397?pdf


4.2.13 https://stats.libretexts.org/@go/page/45397

  

In comparing the two random variables, we notice that the bias brought the expected value closer to the biased value. This is
relatively intuitive because one would expect the biased value to occur more often. The bias also increased the standard
deviation a little. This may be less intuitive because it seems natural that the spread would decrease. After all, we expect ones
to appear quite frequently. With a heavy enough bias, this can happen. The degree to which the expected value is pulled
towards the biased value and the bias's impact on the standard deviation depends on the amount of bias and the probabilities of
the other values.

4.2: Analyzing Discrete Random Variables is shared under a Public Domain license and was authored, remixed, and/or curated by LibreTexts.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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4.3: Binomial Distributions

Define the binomial random variable
Construct binomial distributions
Develop and use the probability distribution function for binomial random variables
Provide and use alternative formulas for expected value and variance of binomial random variables
Assess the necessity of independent trials

Binomial Random Variable
Suppose we had a weighted coin which only came up heads one-sixth of the time. If we flipped this coin  times, what is the probability that exactly  of
those flips would be heads? In order to answer this question, we would need to recognize that each of the coin flips are independent and that the probability of
getting heads is the same each time. The answer turns out to be about  we will demonstrate how to compute this soon.

Now suppose we were rolling a fair die  times. What is the probability that exactly  of those rolls would be six? The astute reader may notice that the
answer is the same:  Why is that? Well, we either roll a six or we don't. Rolling a six is analogous to flipping heads and not rolling a six is analogous to
flipping tails. Since each trial is independent and the probability of obtaining the outcome of interest is  the two scenarios are the same from the perspective
of probability.

In fact, we can be much more general. Suppose in a population consisting of millions of people, exactly one in six of them support some political candidate. If
we randomly and independently selected  people, what is the probability that  of them would be supporters of the candidate? Suppose a factory produces
light bulbs and one-sixth of them are dysfunctional. If an inspector were to randomly and independently select  of them, what is the probability that exactly 
of them would be dysfunctional? Suppose an archer hits the bulls-eye with probability  every time she shoots. If she takes  shots, what is the probability
that she gets exactly  bulls-eyes? The answers to all of these questions are the same:  It is clear that some of the details of the situations are irrelevant; all
that matters is that a trial is repeated  times, each trial is independent, and the probability of the outcome of interest occurring is  each time. These sorts of
situations are the object of our discussion: binomial random variables.

Binomial distributions are the probability distributions for a particular type of discrete random variable: the binomial random variable. With binomial random
variables, we are considering a single random experiment repeated, identically and independently, a fixed number of times. We call each repetition a trial and
indicate the number of trials with  As the adjective "binomial" indicates, we group the outcomes into two categories: successes and failures. The probability
of a success on any given trial is denoted  while the probability of a failure on any given trial is denoted  Note that since we have only two categories
covering the entire sample space,  We define the binomial random variable  as the number of successes throughout all  trials. Every trial may
fail, in which case,  On the other hand, every trial may be a success, in which case,  In most cases, some trials will succeed while others fail. As
such,  takes on any number in the set  In the examples discussed above,    and we were asking what is 

Consider an example to help solidify these ideas. In a previous text exercise, we considered tossing a fair die three times and determined the probability of
getting one or more throws landing with one face up. We can understand this situation as a binomial random variable. Our underlying random experiment is
rolling a fair die. We fix the number of trials to  The trials are identical because we are similarly rolling the same die each time. The trials are independent
because the outcomes of previous rolls do not affect current or future rolls. Since we are interested in rolling ones, we define that as a success. Rolling any
other value (     or ) constitutes a failure. We can easily compute the probabilities of success and failure on any individual trial;  and  We
define our binomial random variable  to be the number of ones rolled in  tosses of a fair die. The possible values for  are    and  Recall that our
interest in random variables lies in their probability distributions. We will now address constructing a binomial random variable's probability distribution.

Probability Distributions of Binomial Random Variables
We first build our intuition by constructing the probability distribution of our binomial random variable  the number of ones rolled in  tosses of a fair die.
When determining the probability for a particular value of a random variable, we generally considered all of the outcomes in the sample space and proceeded
from there. Considering all three trials based on the values landing up would result in  different outcomes. We can simplify our analysis by
considering all three trials based on successes and failures; that is, rolling a one is considered a success and rolling anything other than a one is considered a
failure. In this case, we only have  considerations. We shall use  to indicate a trial with success and  to indicate a trial with a failure, and represent the
possibility of a successful trial followed by failures on the second and third trials as . This procedure is illustrated for several, but not all, possible outcomes
in the figure below.

Figure : Outcomes of three rolls in succession understood in terms of successes and failures

The following figure groups the  possibilities by value of  and helps us build the probability distribution.
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Table : Initial probability distribution for the random variable 

Each trial occurs in sequence and is identical and independent; we can use both our addition and multiplication rules for probabilities to determine our
probabilities. Remember that    and   

Table : Probability distribution for the random variable 

 

Consider the random variable  that counts the number of heads in  flips of a fair coin. Verify that the random variable  is a binomial random variable
and construct its probability distribution.

Answer

The underlying random experiment is the flipping of the fair coin, which is to be repeated a fixed number of times; . We are flipping the same
coin in a similar fashion, meaning our trials are identical. We have independent trials because the outcome of one trial does not affect any of the other
trials. We are counting the number of heads; in a successful trial, heads land face up, and alternatively, landing a tail would be a failure. Since we are
using a fair coin, we have  or  confirming that  is a binomial random variable. Since we have  trials, the set of
possible values for  is  To construct the probability distribution, we consider the possible outcomes of all  trials in terms of successes
and failures.

Table : Initial probability distribution for the random variable 
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Again, each trial occurs in sequence and is identical and independent; we use both our addition and multiplication

rule for probabilities to determine our probabilities.
Table : Probability distribution for the random variable 

 

Hopefully, we have noticed some patterns after building probability distributions for two binomial random variables. Let us formulate the patterns in the
context of a general binomial random variable  with  trials and probability of success on any individual trial  Recall that  the probability of failure, is 

When we consider the possible outcomes of all trials in terms of successes and failures, the probabilities depend on the number of successes and failures, not on
the order in which those successes and failures appear. Each event in  has the same probability. If there are  successes, meaning we have 
failures, the probability of each event in  is  All that is left to do is count the number of such events for any particular value 

To count the number of ways that  successes can be assigned to the  trials, we can use combinations:  We have  many events in  each with
a probability of  Putting this all together, we arrive at a function that returns the probability of our binomial random variable. We call this the
probability distribution function for a binomial random variable 

Check that the formula works by using it on the preceding example.

1. A virtual education company produces short multiple-choice quizzes for each content module. They currently have  questions with  options for each
question. One school that uses this product worries about students passing these quizzes without learning the content. Determine the probability of a
student obtaining an A or a B (obtaining at least an ) on such a quiz by literally randomly guessing on each question.
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We can understand this situation as a binomial random variable. We have a random experiment of a student randomly guessing on a multiple-choice
question. The experiment is repeated  times because there are  questions. Since the student is randomly guessing on each question, the trials are
identical and independent, with a probability of success at  Let  be the binomial random variable that counts the number of correct guesses on
these  question multiple-choice quizzes. This means a student needs  or  correct answers to obtain an A or a B. We need to find  We
can use the probability distribution function to find the answer. Recall that  and  Thus,

Thus,    

2. Given the analysis in the first part of this text exercise, the virtual education company has decided to increase the number of options on each question
while keeping the number of questions fixed at  They are considering using  or  options. Determine the probability that a student randomly
guessing on a quiz will obtain an A or a B under both options.

Answer

Changing the number of options does not change the number of questions necessary, but it does change the probability of success on any given
question. Let  be the binomial random variable counting the number of correct guesses when there are  options on each question and  be for 
options. Thus, we are interested in  and  When there are  options, the probability of success,  is only  Similarly,
when there are  options, the probability of success,  is only 

Thus,     and     Increasing the number of

options significantly reduces the chances of a student obtaining an A or a B on a quiz by randomly selecting answers. We go from nearly  to just
below  to just over 

Expected Value, Variance, and Standard Deviation of Binomial Random Variables
Remember that binomial random variables are just a particular type of discrete random variable. That means everything we know about discrete random
variables applies to binomial random variables. Binomial random variables have some very nice properties that make the calculations of expected value and
variance much easier. Note that the formulas we develop here in this section only apply to binomial random variables and not all discrete random variables.

Using the definitions of expected value, variance, and standard deviation provided in the section on discrete random variables, determine these measures of
centrality and dispersion for the binomial random variables:  being the number of ones rolled in  tosses of a fair die and  being the number of heads in

 flips of a fair coin.

Answer

These are the same random variables that we have been using throughout this section. We can utilize the probability distributions that we have already
created.

Table : Table of computation for the random variable 
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Table : Table of computation for the random variable 

 

Having computed the expected value, variance, and standard deviation for two binomial random variables using the definitions, we now present quicker and
easier methods for computing the expected value and variance. Just as with the alternative formula for the variance of a discrete random variable, these
formulas are derived from our original definitions through mathematical simplification and produce the same values as the original definitions. We will not
provide the work for this mathematical simplification but will provide a little intuition before providing the formulas. For example, if  and 
then we are repeating a trial  times with probability of success being  We should expect, then, that half of the time, we will succeed. This means  

  Similarly, if  and  we should expect to see success  of the time, so    In general,  for
binomial distributions. For a binomial random variable  with  trials, probability of success on any individual trial  and probability of failure on any
individual trial  we can compute the expected value and variance using the following formulas.

Using the above formulas, compute the expected value and variance for the random variables:  being the number of ones rolled in  tosses of a fair die
and  being the number of heads in  flips of a fair coin. Verify that the values match what was computed in the previous text exercise.

Answer

When considering the random variable  we have that   and  We thus compute     and   
  These values match what was computed in the previous exercise.

When considering the random variable  we have that   and  We thus compute     and   
  These values again match what was computed in the previous exercise.

Necessity of Independent Trials

Binomial distributions are related to important distributions in inferential statistics, such as computing the probability of obtaining a sample with a particular
proportion. Recall our discussion regarding obtaining a random sample from a large population and having  of them be women. The probability of this
happening was significantly less with a sample size of  as opposed to   These probabilities were computed using the binomial
distribution. Here, we treated our random experiment as selecting an individual from a large enough population composed of equal numbers of men and
women. We considered selecting a woman a success and treated    In the case of a sample of size of  we noted that  of  is  And in the
case of a sample size of  we need  women to get  However, this fails to satisfy our definition of a binomial random variable because we do not have
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the same probabilities of success and failure for each trial. When one person is chosen, that person is no longer eligible to be chosen for subsequent trials. We
have fewer people to choose from and no longer equal numbers of men and women. Our trials are not independent.

We have run into this issue previously in a text exercise. When populations are huge (when the difference between an event's probability and a conditional
probability related to that event is relatively small) treating the events as if they were independent will result in a value which is approximately, not exactly,
correct. Since it is often much easier to compute assuming independence, this is common practice when the error would be negligible. It is difficult to define
exactly how large a population must be, in general, for the assumption of independence to be reasonable. For example, if there are  people, exactly
half of which are women, and we randomly select  individuals from this group, the probability that they are both women would be  

 If we had assumed independence, that is, that each time we selected a person, there was a  chance it was a woman, we would have
obtained   Notice the error we get from assuming independence is quite small. On the other hand, if the population size were  and  of them
were women, the assumption of independence is much less reasonable. If we randomly select  people from this group of  the probability that they are both
women is    Simply saying there's a  chance each time obtains an estimate of  Notice the error is much larger than before. If we take
our population size to be even smaller, the error gets larger. In summary, if the sample we are selecting is a tiny proportion of the population, then assuming
independence introduces little error; however, if we assume independence when the sample is a significant proportion of the population, then we will have large
errors in our estimates. The following exercise illustrates in more detail how much error there is in different population sizes.

1. Consider sampling  people from a population composed of an equal number of men and women. We denote the outcome of such a sampling as a
sequence of  and . Determine  for each of population size.

a. 
b. 
c. 
d. 

Answer

a.  
b.  
c.  
d.  

2. Determine the  as if each selection were independent with   and  .

Answer

  

3. Compare the value computed in each part of part  with the value computed in part  of this text exercise.

Answer
a. The difference is 
b. The difference is 
c. The difference is 
d. The difference is 

The difference in computations of these values is in the hundredths and thousandths of a percent and decreases as the population increases. We only
dealt with population sizes up to  In general, our populations of interest will be much larger than that so that we would expect even smaller
differences. The comparison between sample size and population size is really at play down deep. Without going into the details, we share a fairly
common recommendation. If the sample size is more than  of the population, we do not assume independence.

4.3: Binomial Distributions is shared under a Public Domain license and was authored, remixed, and/or curated by LibreTexts.

5.7: Binomial Distribution by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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4.3.1: Multinomial Distributions - Optional Material

Define multinomial random variable
Develop the multinomial distribution

Counting Outcomes of Random Experiments
Consider the game of chess; a game can end in one of three ways: win, lose, or draw. For a pair of grandmasters, we may have an
empirical estimation for the probability of each outcome based on the outcomes of previous games. If we knew they were going to be
playing a set number of games  soon, we might be interested in the probability that the one player wins  times, the second player
wins  times, and they draw  times. Can we develop a random variable to handle such a task? The answer is yes; the multinomial
random variable is a generalization of the binomial random variable. In binomial random variables, we counted the number of
successful trials, which, given that we had a fixed number of trials, also set the number of failures. With three options, we must maintain
counts for two of the outcomes. So, our random variable returns a coordinate pair of values.

Suppose that Magnus Carlsen and Fabiano Caruana (the two top grandmasters in June ) are set to play  games against each other
in a friendly tournament. For each game, we estimate that Magnus has a  chance to win while Fabiano has a  chance to win.
This leaves a  chance of a draw. What is the probability that of the  games, Magnus wins  games, Fabiano wins  games, and
they draw on  games? Given the grandmaster status of these players, we assume that the results of previous games do not affect
performances in current and future games.

We set some notation for the problem.  =  because  games are to be played,  =  (number to be won by Magnus),  = 
(number to be won by Fabiano),  =  (number of draws),  =  (probability that Magnus wins a game),  =  (probability
that Fabiano wins a game),  =  (probability of a draw). As mentioned above, the multinomial variable  that counts the number
of wins of each player in  games takes on coordinate pairs of values, ,\) and we are interested in the probability that 
and  

With  games and  possible outcomes for each game, considering every possible sequence of  outcomes is out of the question. We
would have   sequences to consider. Hopefully, we can build on our understanding of the binomial random variable.
Recall that the probability of a particular sequence of outcomes of all the trials depended on the total number of successes and failures.
The order in which they occurred did not matter. This probability was  We then counted the number of ways that a number of
successes and failures could happen,  which led to our probability computation of 

A similar line of reasoning will help us develop a probability distribution function for multinomial variables. Just as with binomial
random variables, the probability of a particular sequence of outcomes depends on the values of   and   We
arrive at the probability computation  The only issue remains to count the number of such sequences that have given  and 

 values. Here, we refer to the optional material in chapter  distinguishable permutations. We have three outcomes that we are
assigning to particular trials, and the order in which a trial is assigned to one of these outcomes does not matter. We can, therefore, count
the number of sequences that have given  and  values with this computation: . We conclude that the probability distribution
function for a multinomial random variable  with  outcomes and  trials.

We can answer our original question in the context of chess: 
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Suppose that Magnus and Fabiano decide that  games are too many and reduce it to just  games. Produce the probability
distribution for the multinomial random variable  that counts each of their wins.

Answer

Since there are three outcomes that we are interested in rather than just two with binomial random variables, we have many more
options to consider,  options in fact.

Table : Probability distribution for the random variable 

Multinomial random variables can extend to counting many more outcomes. We conclude this section by generalizing the multinomial
random variable where we count  outcomes. The probability distribution function for a multinomial random variable  with 
outcomes and  trials is given below.

Note that the binomial distribution is a special case of the multinomial distribution when 

4.3.1: Multinomial Distributions - Optional Material is shared under a Public Domain license and was authored, remixed, and/or curated by LibreTexts.

5.10: Multinomial Distribution by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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4.4: Continuous Probability Distributions

Define the meaning of a continuous random variable probability distribution and its associated probability density function
Use graphs to represent continuous random variables' probability distribution
Connect area under the probability density function to probability measures for a continuous random variable
Find area/probability measures for distributions with basic shapes

Review and Preview
We have introduced the concept of probability distributions for random variables: a distribution that represents all possible
outcomes of a random variable and the associated probabilities for each. For example, we examined the discrete random variable of
the sum of two rolled dice. The outcomes were sums of value  through  and the probability of each is given in the table below.
A table is one way to represent the probability distribution; another is to produce a bar graph to have a pictorial representation of
the distribution. We noted that the sum of the probabilities must total  to have a complete probability distribution.

Table : Probability distribution of the sum of two fair dice in graphical and tabular formats

X: Sum on 
Two Dice Rolled

Probability 
Graphic Representation

Total:  

Another critical concept in the above example was that the random variable was discrete. Each outcome could be listed, and the
probability of each outcome was determined. Other examples include the random variable "number of days adults exercise per
week" or the random variable "amount of change in teenagers' pockets."

Next, we discussed finding the mean ("expected value"), variance, and standard deviation measures from our discrete probability
distribution tables. We saw how the computation concepts of grouped data (Sections  and ) are used to find these measures in
our probability distributions.
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We also discussed in Section  a unique collection of discrete probability distributions called Binomial Distributions,
distributions whose random variable is the number of successes in a given situation. If we have a well-defined success and failure
in the situation, a fixed number of independent trials, and a fixed probability of success in the trials, then the probability
distribution for the binomial situation is reasonably easy to construct.

Once we have the probability distribution table for a discrete random variable, we can use that information, along with our
probability rules, to determine probability measures in relation to any outcomes of interest.

Now, we turn our focus to probability distributions of continuous random variables. Recall the example from Section  about the
random variable of "the time (in seconds) it takes both dice in a two-dice roll to come to a complete stop after one die leaves our
hand." We can no longer get accurate probability measures from a table listing outcomes and associated probabilities as in the
discrete cases above. For example, there are always possible outcomes on a continuous variable between other values. Although we
might build an estimated probability distribution table using intervals on the continuous random variable, doing so causes us to lose
information about the distribution of the variable. We must use a different approach to maintain reasonable accuracy in dealing
with continuous random variables.

Continuous Probability Distributions
Recall that a continuous variable can take on any numerical value in an interval of real numbers; in particular, another value exists
between any two possible values. Examples of such variables included height, weight, ounces of water consumed, time elapsed,
age, amount of electricity consumed, and many more. We must be aware that even though another height measure exists between
any two heights, we measure using some chosen discrete scale, such as to the nearest inch. This rounded height measure does not
make the variable discrete, the variable is still continuous. We use this information in our following theory on probability
distributions on continuous variables.

A continuous random variable probability distribution assigns probability to an interval of values of the continuous random
variable. For example, the probability distribution on the continuous variable height should give us the probability of randomly
selecting a person whose height is between  feet and  feet; it should also assign a probability to any other interval of choice. This
is where we move away from histograms and relative frequency tables that have specifically chosen intervals for the classes.

In Section  we demonstrated the use of a continuous mathematical function that matches the shape of a histogram graphic. Our
example from that section is given below.

Figure : Histogram with fitted curve

In modeling a continuous variable's distribution, we produce a curve that matches the behavior of the various classes in the
histogram. If we move to more and more narrow class intervals, the variable will follow a function's curve. Another example is
given below, in which we demonstrate the curve matching to a distribution that is positively skewed.

 Figure : A second histogram with fitted curve
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To have a probability distribution, our variable's distribution and the curve fitting pf that distribution must be tied to probability
(which is closely related to relative frequency). Relative frequency histograms tend to lose meaning as the width of their classes
decreases, as pictured below on the left column in Figure  For example, recalling that this data set represents the heights of
people, notice that a little over  of people are  inches tall when their height is rounded to the nearest inch. If we instead
measured height to the nearest tenth of an inch, we see approximately  are  inches tall,  are  inches tall, and so on.
As we get more precise with our measurements, the proportion of people in any particular class gets smaller; hence, the relative
frequencies go to  If the heights of the bars are the relative frequencies, then the picture degenerates. A way to overcome this
issue is to represent the relative frequencies as areas instead of as heights. This is shown again below.

Figure : Probabilities of classes as class width decreases (height of bar on left and area of bar on the right)

The curves that fit the area graphics are called probability density functions (PDFs for short.) The function 

from the symmetric bell-shaped curve (commonly called the normal distribution) is the probability density function for the normal
curve with a population mean of  and standard deviation of  The curves are called density functions because the curve values
are not directly probability measures but are measures of the denseness of probability. To find probability values, we measure the
area under the density function values over an interval of values. We build regions under the probability density curve whose area
measures equate to probability measures. This connection and its use will become more evident in the following sections.

All probability density functions for continuous random variables will always have three key features.

1. The domain of the curve (even if the continuous random variable has a smaller domain) can be all real numbers (in
interval notation: 

2. The function values  for the density function will always be non-negative values; that is  for all values of
the continuous random variable 

3. The total area under the curve is equal to  and the area under the curve over an interval  of the
continuous variable will produce the probability measure 

4.4.3.

20% 68

2% 68.1 2% 68.2

0.

4.4.3

f(x) =

1

σ 2π√

e

−

(x−μ)

2

2σ

2

μ σ.

(−∞,∞)).

f(x) f(x) ≥ 0

x.

1 = 100%, a≤ x ≤ b

P (a≤ x ≤ b).

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41697?pdf


4.4.4 https://stats.libretexts.org/@go/page/41697

  

Figure : Examples of probability density functions

The horizontal scale will depend on the random variable being investigated. For example, the random variable represented by the
left density function in Figure  has its most commonly occurring outcomes between  and  the random variable of the
center density function has most outcomes between  and  the random variable of the right density function has outcomes
between  and  These horizontal scales are very important to the meaning of each random variable and that variable's
distribution and should be included. We also note that, at times, vertical axis scaling will not be explicitly given when working with
PDF graphs (compare the left two above with the right one); in general, this should not cause us concern provided we know the
curve is a PDF satisfying our three requirements.

We also briefly note that these probability density functions approximate probability measures for discrete cases due to the many
mathematical benefits of such curves. For example, if dealing with a binomial distribution situation in which the number of trials is
large, say  trials, instead of building a binomial distribution table of variable values from  to --a huge table to work with--
we can approximate that distribution with a single appropriate density function. This allows us to use functions instead of building
a large table to examine the distribution.

Let's examine this connection between area and probability with continuous variable probability distributions.

Probability Measures from Continuous Probability Distributions

We first examine graphs of probability distributions and answer some questions concerning those distributions. For example, we
might be given the graph below as a proposed probability distribution of a continuous random variable 

Figure : Example Probability Density Function

Notice for all values  the graph shows a density function value of  and for all other real number
values of  we have  This graph implies that the continuous variable  only has possible outcomes between  and 

 all other real values are "impossible" outcomes since their probability density is  In such graphs, we focus on those intervals
of variable values where 

We should check that the three requirements of a  are met in this graphic. First, the curve's domain is all real numbers, as
implied by the arrows at the end of the blue curve. Next, for all  we see that  Finally, we notice the rectangular region
between the curve and the -axis over the interval  The width of this rectangle is   units, and the height of
this rectangle is a probability density measure of  units. The area calculation finds the enclosed area between the curve and -

4.4.4

4.4.4 0 50,

−7 10,

2 12.

500 0 500

x.

4.4.5

2 ≤ x ≤ 12; PDF (x) = 0.10,

x, PDF (x) = 0. x 2

12; 0.

PDF (x) ≠ 0.

PDF (x)

x, f(x) ≥ 0.

x 2 ≤ x ≤ 12. 12−2 = 10

0.10 x

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41697?pdf


4.4.5 https://stats.libretexts.org/@go/page/41697

axis on the rectangle:      We have a total probability measure of   in this
curve's area measure.

Even if we don't know the specific real-life context, this curve mathematically represents the probability distribution of some
continuous random variable  This graphic will allow us to find probability measures for different interval values; again, we focus
only on intervals in which the  is non-zero to eliminate unnecessary work involving impossible outcomes for the variable.

For this variable  with the given probability distribution shown above, we may wonder what the probability of randomly
selecting outcomes over the interval  would be; that is, we wish to determine  To illustrate, we can
color the area within this distribution that coincides with the  values of the interval.

Figure : Finding 

We notice that our shaded region is rectangular. The area of this shaded rectangle is the measure of the probability. The width of
this rectangle is   units in the continuous variable, and the height of this rectangle is a probability density measure of 

 units. The shaded area is again found by calculating the area of the rectangle:

In this distribution,    If we randomly select an outcome in this situation, then  of the time, we
would expect to see an outcome between  and  Stated equivalently,  of outcomes in this variable's distribution are
between  and 

Using our distribution of Figure  find the following probability measures.

Figure : Replication of previous probability distribution

1. Determine 

Answer

Area = base ⋅ height = 10 ⋅

1

10

= 1 = 100%. 1.00= 100%

x.

PDF
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x
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0.10
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We shade the region under the density curve over the variable's interval 

Figure : Finding 

Our shaded region is a rectangle with width  and height of . So,

About  of this continuous variable's outcomes are less than  units.

2. Determine 

Answer

We will take two approaches to make a critical point. Using the same approach, we shade under the density curve over the
variable's interval 

Figure : Finding 

Our region is a rectangle with width  and height of . So,

We might show or not show solid or dashed vertical boundary lines on our regions; inclusion or exclusion will not make a
measurement difference in the area.

3. Determine 

Answer

We shade under the density curve over the variable's interval 

x < 8.5.

4.4.7 P (x < 8.5)

8.5 −2 = 6.5 0.10

P (x < 8.5) = area of the region

= 6.5 ⋅ 0.10

= 0.65 = 65%.

65% 8.5

P (x > 8.5).

x > 8.5.

4.4.8 P (x > 8.5)

12 −8.5 = 3.5 0.10

P (x ≥ 8.5) = area of the shaded region

= 3.5 ⋅ 0.1

= 0.35 = 35%

P (2.75 < x < 5.5).

2.75 < x < 5.5.
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Figure : Finding 

Our shaded region is a rectangle with width  and height of .

About  of this continuous variable's outcomes are between  and  units.

The above examples and exercises were relatively straightforward since the regions of interest were always rectangles. Naturally,
not all continuous random variables will have this same distribution shape.

Here, we emphasize a crucial point. In our work, we make no distinction in area measures from regions formed on strict
inequalities, such as  or  on a continuous random variable and other inequalities, such as  or  With continuous
distributions, there is  area under the curve over a single value, that is, technically  for any single outcome 
Therefore, the area measure of regions such as  is the same as for 

Due to this, when dealing with regions under continuous probability distribution functions, strict inequalities can be used
interchangeably with non-strict inequalities. In our graphics of regions, we may or may not show dark or dashed vertical
boundary lines on our regions; inclusion or exclusion will not make a measurement difference in the area.

We also remind ourselves that there is a difference, in general, between the use of strict and non-strict inequalities in discrete
distribution probabilities discussed in earlier sections of this chapter. This demonstrates another reason why it is important to
know if the random variable being analyzed is continuous or discrete.

Now, let us examine a different continuous probability distribution.

Rectangle: 

Triangle: 

Trapezoid: 

Suppose the following continuous variable distribution is given. Answer the following questions concerning this distribution.

4.4.9 P (2.75 < x < 5.5)

5.5 −2.75 = 2.75 0.10

P (2.75 < x ≤ 5.5) = area of the region

= 2.75 ⋅ 0.10

= 0.275 = 27.5%

27.5% 2.75 5.5

 Note: Strict and Non-Strict Inequalities

< >, ≤ ≥.

0 P (x = a) = 0 a.

P (x < a) P (x ≤ a).

 Note: Pertinent Common Area Formulas
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Figure : Another continuous variable distribution

1. Determine if this graph can be a probability density function for a continuous variable.

Answer

We notice for all values  the graph shows a changing density value, increasing from  to  and then decreasing
back to  For all other real number values of  we have  This graph implies that the continuous variable 
only has possible outcomes between  and  all other real values are "impossible" outcomes since their probability density
is 

We also check that the three requirements of a  are truly met in this graphic. Notice that the domain of the curve is
all real numbers, as implied by the arrows at the end of the blue curve. Next, for all  we see that  Finally, we
notice a triangular region between the curve and the -axis over the interval  The base of this triangle is 

 unit in the continuous variable, and the height of this rectangle is a probability density measure of  units. So
the enclosed area between the curve and x-axis is found by the area calculation on triangles:

Thus we have total probability measure of  in this curve's area. This analysis establishes that this curve does
represent a probability density function for some continuous variable.

2. Determine 

Answer

To find  we shade under the density curve over the variable's interval 

Figure : Finding 

We might easily notice that our shaded region is half of the total region. This implies that   
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To check this, we notice that our shaded region is a triangle with base  and height of  So,

About  of this continuous variable's values are at most  units on the continuous scale. We note that many similar
numbers are involved in this problem; often, we must focus more on the meaning of the values we use as we compute
instead of the actual values themselves.

3. Determine 

Answer

To find , we again shade the related region under the density curve over the variable's interval 

Figure : Finding 

4. Determine 

Answer

To find  we shade under the density curve over the variable's interval 

Figure : Finding 

We will find the area of this shaded region using two approaches. It is not about one way of thinking but finding a
reasonable way to determine the shaded region's area.

For our first approach, we recall the total area under all the density functions is  We also notice that the
shaded region is surrounded by two triangles (white regions in the graphic). If we subtract the area of the two white
triangles from the total area of  we will be left with the area of the red region. That is,

0.50 −0.00 = 0.50 2.00.

P (x ≤ 0.50) = area of the shaded region

=

0.50 ⋅ 2.00

2

= 0.50 = 50%.

50% 0.50

P (x ≥ 0.75).

P (x ≥ 0.75) x ≥ 0.75.

4.4.12 P (x ≥ 0.75)

P (0.25 ≤ x ≤ 0.50).

P (0.25 ≤ x ≤ 0.50), 0.25 ≤ x ≤ 0.50.

4.4.13 P (0.25 ≤ x ≤ 0.50)

1.00 = 100%.

1.00,
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So  of this continuous variable's values are between  and  units.

As a different approach, we might notice that the red-shaded region is a trapezoid, and the area of a trapezoid is found by
the average of the parallel sides (commonly called the trapezoid bases) multiplied by the distance between the parallel sides
(commonly called the height of the trapezoid). Using knowledge of trapezoids,

Although we found the area using a different approach, we see that  of this continuous variable's values are between 
 and  units.

As long as we have a probability distribution on a continuous variable with an appropriate probability density function, we can
answer any probability question for that variable by finding the area of the related regions. Since we are naturally curious, our
minds wonder what happens if our regions of interest are not always simple geometric figures. We examine such distributions at
times in the following two text sections.

Summary

This section has connected probability distribution graphs on continuous random variables, probability density functions, and areas
under probability density functions. Specifically, to find the probability of an interval of values for a continuous random variable,
we must find the area under the related probability density function over the interval of interest. The following section will examine
some of statistical analysis' most common continuous probability distributions.

4.4: Continuous Probability Distributions is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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4.5: Common Continuous Probability Distributions

Sketch graphs of continuous random variable distributions based on a given description 
Use basic geometry to determine probability measures in certain continuous random variable distributions
Know key properties of other common continuous random variable distributions 
Relate various regions of a continuous random variable's distribution with each other, specifically, relate any region to left-
tail region(s)

Review and Preview
In Section  we established the connection between area measures of regions under the probability density function of a
continuous random variable and the probability of certain outcome intervals for that variable; namely, we showed that the area of
the region over an interval is the probability value. We examined a few examples of probability distributions. In this section, we
name and explore key properties of some of the most commonly used probability density functions in statistical work. We will end
by examining how certain regions within our distributions can directly relate to other regions within our distributions using some
basic geometric reasoning.

Distributions: Shapes from Basic Geometry
Our last section examined exercises involving two random variables with different distributions. As shown below in Figure 
one is rectangular, and the other is triangular.

 

Figure : Two distributions with shapes from basic geometry

These two distribution shapes can be found in professions such as finance, ecology, business, education, and others. The
rectangular-shaped distribution is a uniform probability distribution with a similar meaning to the uniform distribution on
discrete random variables (such as a fair dice roll). Rather than each possible outcome having the same probability, every possible
outcome has the same probability density. As a result, every interval of possible outcomes of the same width has an equal
probability of occurring. For example, in the uniform distribution in Figure  an outcome between  and  is equally as likely
as an outcome between  and . In the picture above, every interval of equal length contained in  is equally likely. Naturally,
there is not just one uniform distribution, but all uniform distributions on continuous variables form a family with some common
properties. One such property is that all uniform distributions are symmetric. Using the idea of a "balance point for the center of
mass," the mean of the uniform distribution above is at  the midpoint of the interval  The median is also at  since 

 of the rectangle's area is below that value and  is above. In general, the mean and median of any uniform distribution
will always be this midpoint value.

The triangular-shaped distribution on the right is commonly called a triangular probability distribution. Although the shape of
the given triangular distribution in Figure  above is symmetric, this cannot be said of all triangular distributions. Again, we
have a family of triangular distributions when probability density function curves form a triangular shape. With this symmetric
triangular probability distribution in Figure  we can see the "balance point for the center of mass" to be at  on the
horizontal scale and the median to also be at  In some triangular distributions, determining the mean and the median is not as
easy without more advanced skills in mathematics. Although we will not always determine these key statistical measures for every
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distribution, it is important to realize that these, and many of our summary statistics discussed in Chapter  exist in probability
distributions.

There are many distributions with shapes from basic geometry, such as semi-circles or trapezoids. But as discussed in the last
section, the total area under the curve must always total  and the density function heights must always be non-negative 

 If we can find the area of regions under the density functions over an interval, we can interpret those areas as
probability values.

As a random variable, data on the daily growth of the height of wheat plants during a particular stage of development is
believed to be uniformly distributed between  and  inches. Answer the following questions about this
variable in the context of wheat growth.

1. Sketch a graph of the probability distribution on the wheat's growth height, including appropriate labeling of both axes.

Answer

Based on the information given, and choosing to work in decimal representation of values, we build the probability
distribution graph by placing a horizontal line segment above our random variable's horizontal axis over the interval 

 and horizontal line segments on the -axis for all other real numbers of the scale. Knowing that the total area
under the distribution curve must equal  and that our non-zero probability interval has a width of  

 the height of the rectangular portion of the uniform distribution must satisfy

With full labeling of the axes, we produce the following graph of the probability distribution:

Figure : Probability distribution for the random variable daily wheat growth

2. What is the distribution's expected value (mean) and median?

Answer

As discussed above, the interval's midpoint  produces both the expected value and the median in uniform
distributions,   inches. When known within a context, units should be included where appropriate to bring
meaning to reported values.

3. Find the probability that a randomly selected wheat plant will grow at least  inch in a given day.

Answer

After shading above the desired interval in our graphic, to find  we see the area of the shaded region.

2,

1 = 100%

(f(x) ≥ 0).

 Text Exercise 4.5.1
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Figure : Finding 

This shaded region within the uniform distribution is a rectangle with a base length of  inches and height with a density
value of   so    We have a  probability of randomly selecting a
wheat plant that will grow more than  inch in a given day.

4. What proportion of wheat plants are expected to grow between  to  inches in a given day? In the uniform
distribution, find 

Answer

After shading above the desired interval in our graphic, to find  we see the area of the shaded region.

Figure : Finding 

This shaded region is a rectangle with base length of   inches and height again with density value of  
 so    This means  of wheat plants are expected to grow between 

 to  inches in a given day.

An oil company has data showing that an old oil field in central Kansas produces between  and  barrels of oil every
day. Their data indicates the production distribution is triangular, with the most common daily production at  barrels.
Answer the following questions about this oil field:

1. Sketch a graph of the probability distribution for the oil field's production, including appropriate labeling of both axes.

Answer

Based on the information given and choosing to work in decimal representation of values, we build the probability
distribution graph by placing a triangular shape above our random variable's horizontal axis over the interval 
with the peak of the triangle occurring at  Also, we have horizontal line segments on the -axis for all other real
numbers on the scale. We recall that triangle area is found by  so with basic algebraic manipulation we
have  Knowing that the total area under the distribution curve must equal  and that our non-zero
probability interval has a width of   the highest point of the triangle-shaped distribution must satisfy

4.5.3 P (x ≥ 1.0)

0.25

4

3

≈ 1.3333, P (x ≥ 1.0) ≈ 0.25 ⋅ 1.3333≈ 0.3333. 33.33%

1

0.6 0.75

P (0.6 ≤ x ≤ 0.75) .

P (0.6 ≤ x ≤ 0.75) ,

4.5.4 P (0.6 ≤ x ≤ 0.75)

0.75−0.6= 0.15

4

3

≈ 1.3333, P (0.6 ≤ x ≤ 0.75) ≈ 0.15 ⋅ 1.3333= 0.2. 20%

0.6 0.75
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With full labeling of the axes, we produce the following graph of the probability distribution.

Figure : Probability distribution for daily oil field production

2. Find the probability that a randomly selected day will result in less than  barrels of production.

Answer

After shading above the desired interval in our graphic, to find  we see the area of the shaded region.

Figure : Finding 

The area of the shaded region is a simple triangle. This triangle has a base length of  barrels and height with a density
value of   so    We have a  probability of randomly selecting
a day in which this oil field will produce less than  barrels.

3. Find the probability that a randomly selected day will result in less than  barrels of production.

Answer

After shading above the desired interval in our graphic, to find  we see the area of the shaded region.

Figure : Finding 
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The shaded region is not a triangle, but we might notice that the region is triangular from  to  The rest of the
region between  and  is a trapezoid. We can find the area of those two regions and add them together to get the
total area.

We might approach this a bit easier by use of our complement rule on probabilities, that  
 and noticing the white region associated with  is a simple right triangle. In that

triangle, we see the base length of   barrels. The height, however, is a bit more challenging to determine.
This can be done in multiple ways (such as using the slope concept of lines with the graph scale). Let us develop the linear
function for the line on the right side of the probability distribution to produce other density values if needed in future
work. This also demonstrates that knowing the density function's mathematical formula can be helpful.

Using the point-slope approach, we note that the slope can be determined from the two points  and 

Using our point slope-form of a line and choosing the point  to work with, we have the linear function

We see the density value is given as

Now that we know the height of our white triangular region in our graphic, we can compute that triangle's area:

We have an  probability of randomly selecting a day in which this oil field will produce less than  barrels.

4. What proportion of days will the oil field be expected to produce between  and  barrels? That is, find 
 in the triangular distribution.

Answer

To find  we quickly shade our triangular distribution appropriately and notice the region is a
trapezoid.

Figure : Finding 

To find the area of the trapezoid, we need both density values associated with productions of  barrels and of 
barrels. Using our work from part  above, we know the density associated with  barrels is  and,
using our developed linear function, the density associated with  barrels is  
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  These density values are the lengths of our parallel sides of the trapezoid and the width of the trapezoid is
the interval width of   Our shaded region has trapezoidal area of:

We can conclude that about  of days the oil field be expected to produce between  and  barrels.

The probability distribution for gauging measurement uncertainties (error size when taking measurements of objects) is
sometimes modeled by a trapezoidal-shaped distribution. Suppose the following graph represents such a distribution.

Figure : Probability distribution for measurement bias

1. Find the probability that a randomly selected value in this distribution is positive.

Answer

To find the probability that a randomly selected value is positive. we shade the area under the probability density curve on
the interval from  to  and notice the region is a trapezoid.

Figure : Finding 

The height of the trapezoid is  and the base lengths are  and  We thus find that the shaded area is  
  We thus have the probability that a randomly selected value is positive is 

2. Find the probability that a randomly selected value in this distribution is at least  that is, find 

Answer

To find the probability that a randomly selected value is at least  we shade the area under the probability density curve on
the interval from  to  and notice the region is a triangle.
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Figure : Finding 

The height of the triangle is  and the base is  We thus find that the shaded area is    We
thus have the probability that a randomly selected value is at least  is 

3. Determine 

Answer

To find  we shade the area under the probability density curve on the interval from  to  and
notice the region is a rectangle.

Figure : Finding 

The height of the rectangle is  and the base is   We thus find that the shaded area is  
 We thus have  is 

We continue to see how knowledge of geometric figures and creative geometric thinking on regions can help analyze the
probability distributions of continuous random variables. Some distributions of continuous random variables have a more exciting
and challenging distribution shape than those above. Let us examine some of those next.

Normal Distributions

One of the most commonly used probability distributions on continuous random variables is the normal distribution mentioned in
Section  A normal probability distribution, also called the Gaussian probability distribution, is a bell-shaped, perfectly
symmetric probability density curve that is centered above a mean value and has the specific property that the two changes of
concavity on the density curve (called inflection points) occur at exactly one-standard deviation from the center mean location with
the horizontal scale. As shown in Figure  below, a normal distribution is located with a horizontal scale solely by the
knowledge of the mean  value and the standard deviation 
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Figure : General Normal Distribution

As is true of all valid probability distributions on continuous variables, the total area under the curve is equal to 
Usually, we do not label the probability density axis (the vertical axis), but we always scale the horizontal axis with our continuous
random variable of interest. The term "normal" is used because this distribution has surprised statisticians and others with how
often it is found in the analysis of random events and as the shape in many continuous variable distributions from data-based
histograms.

Naturally, as different mean and standard deviation values occur in the many normally distributed random variables, there is a
whole family of distributions called "normal probability distributions." In Figure  below, we see four different normal
distributions. We should notice how each normal distribution is controlled by its mean and standard deviation. The mean locates
the center of the bell-shaped curve on a given horizontal axis scale, and the standard deviation controls the spread/width of the
curve on the same scale. We should notice how the height of the bell-shaped curve is larger with smaller standard deviations and
smaller with larger standard deviations. This should make sense to us as we must maintain an area of  within the curve,
so the curve's height must be associated with the spread. If sketching a distribution by hand, we will usually make the bell-shaped
curve shape first, add a horizontal axis below the curve, and then scale that axis to meet the mean and standard deviation values
required locations.
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https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41698?pdf


4.5.9 https://stats.libretexts.org/@go/page/41698

Figure : Four Different Normal Distributions

As mentioned in Section  there is one special normal probability distribution called the standard normal or -distribution;
this refers to a specific normal distribution that has  and  producing the normal distribution curve shown in Figure 

 below.

Figure : The standard normal distribution

All the various random variables  that are normal probability distributions can be converted to the standard normal distribution
through use of the -score or standardization computation of

as discussed in Section  This is illustrated in Figure  in which a normal distribution with  and  has its raw 
-axis also rescaled to the standard normal distribution scale.

4.5.14

2.7, z

μ= 0 σ = 1,

4.5.15

4.5.15

x

z

z=

x−μ

σ

2.7. 4.5.16, μ= 10 σ = 2

x

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41698?pdf


4.5.10 https://stats.libretexts.org/@go/page/41698

Figure : Standardized scaling on a non-standard normal distribution

We can convert from -score to raw scale value in normal distributions by solving our equation for 

Let us now turn our focus on a quick review of the Empirical  Rule, from Section  Our Empirical Rule gave us
some approximate probability/area measures. As a reminder, we repeat the diagram in Figure  below:

Figure : Empirical Rule on Normal Distribution

Text Exercise  had us working with this diagram and finding the percentage of observations (i.e., probability of occurrence) in
the normal distributions. We will not repeat that collection of exercise questions here but leave any review, as necessary, to you. It
is common to use these approximate area values when working with normal distributions, provided we are interested in values
(outcomes) tied to the mean and standard deviations.
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As the Empirical Rule was based on specific intervals tied to integer multiples of standard deviations from the mean, the rule is a
bit limiting for other general interval choices in which we might be interested. For example, suppose the weights of thirty-year-old
men in Chicago are normally distributed with   lbs. and   lbs. By our Empirical Rule, the probability of randomly
selecting a thirty-year-old man in Chicago weighing between  and  lbs. is
approximately  (or stated equivalently, about  of thirty-year-old men in Chicago weigh between  and  lbs.) But
what if we were interested in the interval of weights between  and  lbs, as shown in Figure  below?

Figure : Normal distribution of the weights of thirty-year-old Chicago men

Our Empirical Rule does not apply to such varied intervals. However, if we could determine the area of this shaded region in this
normal probability distribution, we could find the probability measure. This idea extends to any desired interval(s) we want to
analyze. However, as the shaded region is not a basic geometric shape, as in our earlier work in this section, we cannot call on our
knowledge of basic geometric formulas to find the area measures. We need other methods for handling such shaped regions. With
this in mind, we will introduce technology-based methods in Section  for finding areas of any region(s) we want within any
normal probability distribution. For now, we try some exercises to ensure we can sketch a described normal distribution or interpret
key features of a given normal distribution graph.

1. Create graphs of normal distributions that meet the given descriptions. Include labeling of the horizontal axis with
appropriate scaling (in standard deviated units) and axis titles: 
a. A soft drink bottler has data that suggest that the amount of drink actually placed in the cans by a specific bottling
machine is normally distributed with  ounces and  ounces (the machine is slightly over-filling on average
from designed specifications.) 
b. The average consumption of electricity by electric four-door passenger vehicles is believed to be normally distributed
with   kWh per mile with   kWh per mile, where kWh stands for kilowatt hour. 
c. A tire company is about to begin large-scale manufacturing of a new tire made of newly developed materials. The tire's
tread life has been tested, the research team found the tread life in miles produced a normal distribution with  
miles and   miles.

Answer
a. Given the key parameters of  ounces and  ounces, we produce the following sketch, making sure to

align our scale axis to this information by placing the value  directly below the peak of the normal distribution's
PDF curve, and scaling out by values of  directly below the inflection points of our curve in order to incorporate the
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key spread measure of the standard deviation. Then keeping this distance consistent, we scale out farther left and right
with more standard deviated units on the axis.

 Figure : Normal distribution with  ounces and 
 ounces

b. Given the key parameters of kWh per mile with  kWh per mile, we produce the scaled normal
distribution figure using the same approach as part a. directly above.

Figure : Normal distribution with  kWh and  kWh
b. Since  miles and  miles, we produce the following sketch:

Figure : Normal distribution with  miles and  miles
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2. For each of these normal distributions, give the mean  and the standard deviation  of each graph. 

I.  II.  III.

Figure : Normal distributions with various means and standard deviations

Answer

The location of the mean for each is the scale value directly below the highest point of the normal distribution. The
standard deviation for each is the distance in the horizontal scale between the high point and either of the inflection points
of the normal distribution. This produces the following results for each of the graphs.

I. From the graphic of Distribution I, we see that  since the high point of the probability density curve is directly
above that horizontal scale value. Also, since the labeled inflection points occur at a horizontal distance of 

   then 
II. From the normal distribution figure,  since the high point of the probability density curve is directly above that

scale value. Also, since the labeled inflection points occur at a horizontal distance of   
 then 

III. From the given normal distribution,  since the high point of the probability density curve is directly above
that value. Also, since the labeled inflection points occur at a horizontal distance of   

 then 

3. Which of these is the standard normal distribution and which are not. 

I.  II.  III.

Figure : Various probability distributions

Answer

Distribution II is the standard normal distribution as the function is a bell-shaped symmetrical distribution with high point
located above the horizontal axis value of  (implying a ) and inflection points at  unit away in terms of the
horizontal axis scale (implying a standard deviation of 

Distribution I is a symmetrical distribution about  however, the shape is triangular and not bell-shaped. So, Distribution I
is not a normal distribution.

Distribution III is a bell-shaped symmetrical distribution with high point located above the horizontal axis value of 
however the inflection points at  units away on the horizontal axis scale are implying a standard deviation of  So
although a normal distribution, the Distribution III is definitely not the standard normal distribution.

μ σ

4.5.22

μ=−15

|(−15)−(−12)| = |(−15)−(−18)| = 3, σ = 3.

μ= 0.50

|0.50−0.53|= |0.50−0.47|

= 0.03, σ = 0.03.

μ= 252.3

|252.3−275.8|= |252.3−228.8|

= 23.5, σ = 23.5.

4.5.23

0 μ= 0 1

σ = 1.

0,

0;

3 σ = 3.

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41698?pdf


4.5.14 https://stats.libretexts.org/@go/page/41698

4. Explain why each of the graphs below are not representative of a normal distribution. 

I.  II.  III. 

Figure : Various graphs to be considered

Answer

Distribution I is not a symmetrical distribution (though a bit bell-shaped.) Most would consider Distribution I a skewed
right distribution, so not a normal distribution.

Distribution II is a nice symmetrical bell-shape, but is not a probability density function since some of the function values
are below the horizontal axis. PDF values can only be non-negative. So Distribution II is not a normal distribution as all
normal distributions are represented by valid PDFs.

Distribution III is neither symmetrical or bell-shaped, and hence not a normal distribution.

As we continue through the course, we will often find ourselves working with normal probability distributions to answer questions.
But there are a few other distribution curves that we will find ourselves working with as well. We briefly examine two more such
families of distributions next.

Other Distribution Families
Although normal distributions are arguably the most frequently examined and applied distribution in introductory statistics, we
examine other families of probability distributions with important statistical applications. First, we will briefly discuss the
Student's -distributions.

These probability distributions are sometimes called distributions. As shown in Figure  these distributions initially appear
to be much like the family of normal distributions since they are also a symmetric bell-shaped family of distributions and the total
area under the density curves is 

Figure : A Student's -distribution with 
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All -distributions are symmetric with a mean of  but their inflection points do not occur at one standard deviation from the
mean as in normal distributions. The -distributions have thicker tails than the standard normal distribution; meaning, a -
distribution is more likely to see an outcome far from the mean than a normal distribution. While normal distributions are defined
by a given  and  the spread of the -distributions is controlled by a value called a degree-of-freedom,  In future sections,
this value will be related to sample size, and the origin of the name will be clearer. As this degree of freedom value increases in
size, the related -distributions become more and more like the standard normal distribution. Figure  shows sketches of
several -distributions as well as the standard normal distribution for comparison.

Figure : Several distributions and the standard normal distribution

These -distributions will become very important in our future work. For now, we understand that they are another particular
family of probability distributions and that probability in the distribution can be determined by finding area measures of specified
regions.

Optional -distribution discussion for the mathematically inclined

The behavior of -distributions can be explained by the fact that they are defined using a rational function; whereas, normal
curves are defined using an exponential function. For example, the formula for the probability density function of a -
distribution with  degree of freedom is given by

In general, if one has  degrees of freedom, the probability density function is given by

where  is a suitable constant which makes the total area 

A third family of probability distributions common to beginning statistics analysis are the Chi-squared distributions (written in the
Greek letter, -distributions). This Greek letter  is pronounced as  similar to the pronunciation of the first two letters in the
word kite. This family of distributions is not symmetrical but instead positively skewed in shape with non-zero density values and
all domain values larger than  see Figure  below.
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Figure : A -distribution with 

Similar to the -distributions, -distributions are controlled by a degree of freedom value. In Figure  are sketches of several 
-distributions. Notice in the figure that as the degree of freedom value increases in size, the distribution approaches a bell-shaped

curve. Some interesting properties of these distributions are that the high point occurs two units in the scale before the degree of
freedom value and that the expected value is its degree of freedom value.

Figure : Several -distributions

As with the distributions, we will not formally delve into the  density functions mathematical formulas. It will be sufficient
for us to understand the shape of these distributions and, with future work, recognize when they are to be used.
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1. Which of the following cannot possibly be a -distribution? Explain.

I.  II.  III.

Figure : Various probability distributions

Answer

Distribution I cannot be a -distribution since it is a skewed distribution. All -distributions are bell-shaped and symmetric
about the horizontal scale value of 

Distribution II, although it is bell-shaped and symmetrical, cannot be a -distribution since the curve is symmetric about
horizontal scale value of  instead of 

Distribution III might be a -distribution since the curve is bell-shaped and symmetric about the horizontal scale value of 
We do note that there are other probability density curves that might make a very similar shape and be positioned as shown
in a scale axis. To know for sure, more information would be needed, such as several probability density values.

2. The graph below gives three -distributions and the standard normal distribution. Which of the -distributions has the
largest degree-of-freedom value? Explain.

Figure : Various -distributions plotted with the standard normal distribution

Answer

As the degree-of-freedom increases on -distributions, the distributions begin to come very close to the standard normal
distribution. Hence Distribution III must have the largest degree-of-freedom value. We also note that Distribution I must
have the smallest degree-of-freedom value since the shape of the -distribution is wider and shorter than the rest of the
distributions shown.

3. Which of the following are possible -distributions? Estimate the degree of freedom value for any that appear to be
possible -distributions.
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I.  II.  III.

Figure : Various probability distributions

Answer

Distribution I can possibly be a -distribution since the graph is a positively skewed distribution with only density
measures tied to non-negative horizontal scale measures. Because the high-point on the curve occurs at a horizontal scale
value of  the degree-of-freedom value is  

Distribution II cannot be a -distribution since the graph is skewed negatively instead of positively.

Distribution III can possibly be a -distribution since the graph is a positively skewed distribution with only density
measures tied to non-negative horizontal scale measures. Because the high-point on the curve occurs at a horizontal scale
value of , the degree-of-freedom value is  

4. What would be the most likely shape (uniform, normal, skewed right similar to  for each of the random variables
described below?

a. Ages of coins in circulation

b. Birth weight of babies born in Hays during the time interval of 

c. Position of one tire valve (in degrees) on vehicle wheel when the vehicle stops at various times in the day

d. IQ scores of all senior class students in the United States

e. Income of adult Kansas residents

Answer
a. Ages of coins in circulation would likely be a positively skewed distribution since there are many more coins of young

ages, and very few coin of older ages.
b. Birth weight of babies born in Hays during those years is likely to be a normal distribution, there will be a few light

babies and a few heavy babies born, but most babies will be around the same weight as the average.
c. The position of the tire valve on a vehicle wheel (as measured in degrees) is likely to be uniformly distributed. One

position is just as likely as another in some random-length trip with the vehicle.
d. IQ scores are likely to be normally distributed, there will be a few high IQ individuals and a few low IQ individuals, but

most senior class students in Kansas will have close to the average IQ.
e. Incomes are likely to be a positively skewed distribution. Incomes cannot be negative (in a normal meaning of income),

and incomes will increase to some high point, before trailing off to those few making very high incomes.

There are many other families of distributions in statistics; however, our current list will be sufficient for an introductory course.
We now return to the issue of finding area measures of regions in all these various probability distributions on continuous random
variables.

Geometric Connections on Related Regions in Continuous Distributions
Before moving to a new section, we will explore how we can use basic geometric reasoning with the area of regions in all types of
continuous random variable distributions to develop a general approach that works for various families of continuous probability
distributions. In much of our future work with these various distributions, we need to tie any interval-designated region of interest
to a left-region: regions that cover the left tail of our distribution. We must be discussing intervals that have the less than inequality
in them: either  or  where  is an outcome value for the random variable.
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We will use what is given if our region of interest is already a left region. For example, suppose we are working with a specific -
distribution in which we need to find  Creating a sketch of our region as shown in Figure  we notice that our
region completely covers the left tail of the distribution. In the next section, we will see how our computational technology can
produce the area measure of only left-tail regions.

Figure : Left-tailed region in a probability distribution

But what if our region of interest is a right-tail region? For example, suppose we are working with some normal probability
distribution in which we desire to find . Creating a sketch of our region as shown in Figure  we notice that our
region covers the right tail of the distribution and not the left.

Figure : Right-tailed region in a probability distribution

Using our geometric reasoning and complement property on probabilities, we notice that the white region under the curve is the
complement to the shaded region. The complement probability  is a left-tailed region. We can know  by

t

P (t < 1.2). 4.5.32,

4.5.32

P (x ≥ 25) 4.5.33,
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relating to  Using this geometric reasoning, we can relate any right-tailed region to a left-tail region by
applying our complement concept.

Some regions are neither left- or right-tailed regions. For example, suppose we are in a specific -distribution and we need to find
the probability value  Creating a sketch of our region in Figure  we see that our region covers neither a left-
or a right-tailed region. We have what is called a central or between region.

Figure : Between/Central region in a probability distribution

Using basic geometric reasoning, we can relate this region of interest to the left-tailed areas. Notice that the left region associated
with the interval inequality  covers our region of interest but also the undesired left-tailed region related to the inequality 

. Suppose we remove the left region associated to  from the larger left region related to  then all that remains
is the original region of interest between  and  See this illustrated in the related diagram below.

Figure : Visualization of a central region as the difference of two left regions

In terms of probability notation, we have

1.0000−P (x < 25).

χ

2

P (4 ≤ ≤ 8).χ

2

4.5.34,
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≤ 8)χ

2

≤ 4χ

2
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2
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All of the above is summarized in Figure  (we note that although the figure contains only bell-shaped distributions, the shape
of the specific continuous probability distribution does not change the general geometric reasoning).

Figure : Transforming any region into a related left-tail region

For any interval of interest, a right-region area can be found using a complement concept: the total area of  minus the related
complement left-region area. A between-region area can be found by the total left-region area from the right boundary of the
interval minus the total left-region area from the left boundary of the interval. Stated in symbolic representation:

Once we fully grasp how to relate any region of interest in a continuous variable's probability distribution to only left-region
measures, we should be able to reason similarly if only right-region area measures are available. In this chapter's next section, we
will introduce technology that computes only left-region area measures.

Describe how the area of the shaded region in each of the given probability distributions can be expressed in terms of left-tail
region(s). If the shaded region is already of left-tailed type, state so.

1.  in the distribution

Figure : Probability distribution with shaded region

P (4 ≤ ≤ 6) = P ( ≤ 6)−P ( ≤ 4).χ

2

χ

2

χ

2

4.5.36

4.5.36

1

P (x > b) = 1.0000−P (x ≤ b)

P (a< x < b) = P (x < b)−P (x ≤ a).

 Exercise 4.5.6

P (x ≥ 12)
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Answer

Since this is a right-tailed region, we use the complement approach with a left-tailed region:

2.  in the distribution

Figure : Probability distribution with shaded region

Answer

Since this is already a left-tailed region, no change is needed:

3.  in the distribution

Figure : Probability distribution with shaded region

Answer

Since this is a central region, we use subtraction between two left-tailed regions:

4.  in the distribution

P (x ≥ 12) = 1.0000−P (x < 12).

P (x < 0.45)

4.5.38

P (x < 7) = P (x < 7).

P (−3 < x ≤ 6)

4.5.39

P (−3 < x ≤ 6) = P (x < 6)−P (x ≤−3).

P (x > 16)
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Figure : Probability distribution with shaded region

Answer

Since this is a right-tailed region, we use the complement approach:

5.  in the distribution

Figure : Probability distribution with shaded region

Answer

Since this is a central region, we use subtraction between two left-tailed regions:

Summary

This section introduced several different families of continuous random variable probability distributions. We used geometric area
formulas to determine the probability of outcomes for some random variables. We also looked into other notable families of
continuous random variable probability distributions, such as the normal and -distributions. Finally, we examined geometric
region relationships on these distributions and how any interval region can be considered within only left-tail region(s).

In the next section, we focus on using these area relationships with technology-based cumulative distribution functions in normal
distributions. These special area accumulation functions will provide accurate area measures of regions in these distributions.

4.5: Common Continuous Probability Distributions is shared under a Public Domain license and was authored, remixed, and/or curated by The
Math Department at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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4.6: Accumulation Functions And Area Measures in Normal Distributions

Define an accumulation function for continuous probability distributions
Use an accumulation function for the standard normal ( -)distribution to find area measures of regions in the standard
normal distribution
Use the inverse of an accumulation function for the standard normal ( -)distribution to find the location for the specified
region's area measures
Standardize non-standard normal distributions to find area measures and scale locations
Use an accumulation function for general normal distributions to find area measures of regions in those distributions
Use the inverse of an accumulation function for general normal distributions to find scale location for specified region's
area measures
Use spreadsheet functions of NORM.S.DIST, NORM.S.INV, NORM.DIST, and NORM.INV appropriately for finding
needed values in normal distributions

Review and Preview
We have discussed the relationship between the area of regions within a continuous random variable's probability distribution and
the probability of occurrence in relation to that variable. We also examined several families of distributions. Lastly, we noted how
any region of interest in these distributions could always be related to left-regions. We now focus on how to produce these left-
region area measures on normal distributions using technology. Once we reasonably master these concepts in relation to normal
distributions, similar ideas are used in -distributions and -distributions, as well as many other specialized distributions.

Accumulation Functions of Area

We have discussed the importance of the determining the area of regions within probability distributions since the probability of
selecting an outcome in the region formed by an interval is equal to its area. It became more difficult to determine the area if the
regions of interest were not basic geometric shapes. Specifically, if our regions were rectangular, we could easily compute the area
of such regions.

In general, the area of a region in our distributions can be sliced up into thin slices. We can approximate the area of each of these
thin slices by summing the areas of rectangles that are close in height to the thin slices. This is illustrated in Figure  below.

 
Figure : Probability distribution region being approximated by thin rectangles

Although it is messy work for humans to complete this process with only ten or twenty slices, computing technology efficiently
calculates with the use of hundreds or even thousands of thinner and thinner slices on the region. As the number of slices for a
fixed region gets larger, the approximating rectangles get thinner, and the approximation from the sum of areas on the thin
rectangles gets closer to the actual area of the original region. At one time, large tables of area values were produced to list the
approximation sums. Now this process has been programmed for several probability distributions, producing specialized
accumulation functions (also called cumulative distribution functions) that provide highly accurate approximations to the area
of regions in most common probability distributions. Different statistical software might name and program their accumulation
functions differently; we will focus on the accumulation functions within spreadsheets in our following work. We start with an
accumulation function for finding accurate left-tail regions in the standard normal probability distribution.

Learning Objectives
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Area Measures for the Standard Normal Distribution
We begin with an accumulation function for the standard normal distribution. The name and syntax of this function can vary
depending on the technology being used. The name of the accumulation function in Excel is . We note that the
spreadsheet function name corresponds to the distribution we are discussing. This function requires we provide it with a specific -
score value; the function will then return the area of the region to the left of that -value when choosing the  option to
accumulate left area.

Due to the symmetry of the standard normal curve, we know that  as shown in Figure  If we
enter  as a function in a spreadsheet cell, the spreadsheet returns the left-area measure of 
with appropriate cell formatting as shown in the spreadsheet image.

 
Figure : Standard normal distribution with shaded area

As a shortcut, we can enter the digit  instead of typing out the word  when using this accumulation function. If we use 
 the function returns only the height measure of the density function but not an area measure. We will almost always want

to use this function for area accumulation, but we must remember the function only returns left-tail area measures. If we find any
other region, we must adjust our computation work as discussed in Section  In general, the syntax of this accumulation function
is  or the slightly shorter version of 

Suppose we wish to find  another left-tail region as shown by our graph of the standard normal distribution below. We
found an area measure approximated at  in Section  through the use of the Empirical (  Rule.

Figure : Standard normal distribution with shaded area

We can also use our spreadsheet accumulation function to find this area:

For a random variable that possesses the standard normal distribution, we consider it unusual (since ) to have a 
-score that is at most  We note that this value of  from our technology's accumulation function is more accurate than

the estimate from the Empirical Rule. Generally, we will use our technology to generate more accurate measures instead of the less
accurate values computed by the Empirical Rule.

NORM.S.DIST

z

z TRUE

P (z< 0) = 0.5000 = 50% 4.6.2.

= NORM.S.DIST(0, TRUE) 0.5000

4.6.2

1 TRUE

FALSE,

4.5.

= NORM.S.DIST(z-score,TRUE) = NORM.S.DIST(z-score,1).

P (z≤−2),

0.0250 = 2.5% 2.7 68−95−99.5)

4.6.3

P (z≤−2) =NORM.S.DIST(−2, TRUE)

=NORM.S.DIST(−2, 1)

≈ 0.02275 = 2.275%.

2.275% ≤ 5.000%

z −2. 2.275%
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Suppose we want to find  a right-tail region in the standard normal distribution as shown below. We must turn this
into a left-tail region calculation to use our accumulation function.

Figure : Standard normal distribution with shaded area

We should recognize the need to use the complement to relate to left-tail regions, producing:

Since it can be easy to make entry errors when using our spreadsheet functions, we compare our value to the region shaded in the
graph. The shaded region does seem to be a small portion of the entire distribution, and our resulting value of  appears
aligned to our graph. Until we have a strong mastery of the ideas, we will sketch the graph of the region of interest to aid us in
proper accumulation function use and to verify the reasonableness of our computed area. Once mastery of these ideas is achieved,
we encourage mental visualization of the graph of the distribution and showing work with the accumulation function.

Sketch graphs and determine the solutions of the following probability problems.

1. Find 

Answer

After producing our graph representing  (shown below), we notice we are working in a right-tailed region, but
recall that the NORM.S.DIST function is for producing left-tailed area measures only.

Figure : Standard normal distribution with shaded area

We must adjust the computation with the complement to find the right-tailed area in this situation.

P (z> 1.25),

4.6.4

P (z> 1.25) = 1−P (z≤ 1.25)

= 1−NORM.S.DIST(1.25, 1)

≈ 1−0.89435

= 0.0.10565 = 10.565%.

10.565%

 Text Exercise 4.6.1

P (z≥−2).

P (z≥−2)
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Remembering our quick check, we notice that the size of the shaded region in the graph seems to align with this
proportional measure of  Thus,  of the standard normal distribution's area is to the right of . Or
equivalently, there is a  probability of randomly selecting a -score outcome that is at least  in value.

2. Find 

Answer

After producing our graph (shown below), we notice we are working in a "between" region. In this situation, we again must
make a computational adjustment with a difference calculation.

Figure : Standard normal distribution with shaded area

We subtract two left-tail areas to find the desired region's area measure.

There is an  probability of randomly selecting a -score that is between  and  in value.

3. Find 

Answer

After producing our graph (shown below), we notice we are working in a left-tail region. No computational adjustment is
needed to use our accumulation function in this situation.

Figure : Standard normal distribution with shaded area

P (z≥−2) = 1−P (z<−2)

= 1−NORM.S.DIST(−2, 1)

≈ 1−0.0228

= 0.9772 = 97.72%

97.72%. 97.72% −2

97.72% z −2

P (−2 ≤ z≤ 1).

4.6.6

P (−2 ≤ z≤ 1) = P (z≤ 1)−P (z<−2)

=NORM.S.DIST(1, 1)−NORM.S.DIST(−2, 1)

≈ 0.8413−0.0228

= 0.8185 = 81.85%

81.85% z −2 1

P (z≤−1.25).
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To find the area, we compute it with our spreadsheet function.

After a quick check, we can confidently say that  of the standard normal distribution's area is to the left of .
We also note that such an outcome in the random variable is not unusual since the probability measure is more than .

4. Find the proportion of the standard normal curve between  and 

Answer

Based on our graph (shown below) of the given information, we notice we are again working in a "between" region. We
must make the computational adjustment using another difference calculation.

Figure : Standard normal distribution with shaded area

To find the area, we subtract the two left-tail areas.

There is a  probability of randomly selecting a -score outcome that is between  and  in value. Notice that
this is the proportion of outcomes in this interval.

Working with decimal or fractional valued -scores requires no adjustment in our thinking or work. The "messiness" of the
numbers involved or produced should not impact our established reasoning or computational work.

Now, there will also be occasions in which we need to reverse the process above; that is, given the description of a region and its
area measure, what is/are the -score(s) that produce that region? For example, suppose we wish to know the one -score that
separates the lower  region of the standard normal distribution from the upper  region. Stated another way: what is the 
percentile of the standard normal distribution? This is illustrated in Figure  below:

 
Figure : A region of the standard normal distribution with unknown score

P (z≤−1.25) =NORM.S.DIST(−1.25, 1)

≈ 0.1056 = 10.56%

10.56% −1.25

5%

−1.5 0.5.

4.6.8

P (−1.5 < z< 0.5) = P (z< 0.5)−P (z≤−1.5)

=NORM.S.DIST(0.5, 1)−NORM.S.DIST(−1.5, 1)

≈ 0.6915−0.0668

= 0.6247 = 62.47%

62.47% z −1.5 0.5
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z z
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With experiences from above, one might just guess-and-test reasonable -score values with our  function to find
an approximate value,  for which  This approach may take some time. Instead, we are blessed with the
mathematics of inverse functions. We have a spreadsheet function called  Given any left-tail region's area, this
function will compute the associated right boundary -score that forms that region, an inverse process to the accumulation function.
This function has the syntax  Since our left-tail area is 
we compute in our spreadsheet to produce these results.

So a -score of approximately  separates the lower  area in the standard normal distribution from the upper  area.
These -scores are often called critical -scores as they are critical boundary values for specific area measures in the standard
normal distribution. We now attempt similar text exercises.

After sketching the regions described, find -score(s) that produce the area described in the standard normal distribution.

1. Find the -score associated with the  percentile of the standard normal distribution.

Answer

After producing a sketch indicating the concept of  percentile in a standard normal distribution graph (shown below),
we notice we are working with a left-tailed region.

Figure : Standard normal distribution with shaded area

To find the boundary -score value associated with this left-tailed area measure, we can go directly to our inverse
accumulation function with no adjustment.

Thus,  of the standard normal distribution's area is to the left of a -score of  Equivalently, there is a 
probability of randomly selecting a -score outcome that is less than  in value. We also note that such decimal values
for -scores will occur more frequently in our computation results. We must note the type of value we are
computing/measuring and not depend on what the value looks like to control our interpretation. Remember that
probabilities are numbers between  and  whereas, -scores can be any real number, including the numbers between 
and 

2. Find the -score so that  of the standard normal distribution is above that  value.

Answer

After producing a sketch indicating the described region in the exercise (shown below), we notice we are working with a
right-tailed region.

z NORM.S.DIST

a, P (z < a) = 5%.

NORM.S.INV.

z

= NORM.S.INV(left-tail area measure between 0 and 1). 5% = 0.05,

z = NORM.S.INV(0.05)

≈ −1.6449

z −1.6449 5% 95%

z z

 Text Exercise 4.6.2
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Figure : Standard normal distribution with shaded area

We must make complement adjustments in our work using our inverse accumulation function to find the boundary -score
value associated with this right-tailed area measure. We notice that the left-tailed (white) region under our curve must be 

   of the total area based on our complement rule. We find our boundary -score value by:

Thus,  of the standard normal distribution's area is to the right of a -score of  Or equivalently, there is a 
probability of randomly selecting a -outcome that is at least  in value. We should be careful with the syntax here.
Notice that entering  does not produce the correct answer.

3. Find the value of  so that 

Answer

After producing a sketch indicating the  left-tailed region in a standard normal distribution graph (shown below), we go
directly to our inverse accumulation function to compute the related -score labeled with 

Figure : Standard normal distribution with shaded area

Thus,  of the standard normal distribution's area is to the left of a -score of . Equivalently, there is a 
probability of randomly selecting a -score that is most  in value; stated symbolically, 
Note that we would label this as an unusual outcome.

4. Find  for which  that is find the -scores that capture the central  of the standard normal
distribution.

Answer

We must adjust our computation work for left-tailed regions After producing a sketch indicating the central  region in a
standard normal distribution graph (shown below).
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Figure : Standard normal distribution with shaded area

With  in the central region, that leaves   area measure for the two tails. This means that there is an
area of   in each tail since the standard normal distribution is symmetric. To find the left-boundary -score value
(labeled as  in the diagram), we use our inverse accumulation function with the  left-region area measure.

To find the right-boundary -score value (labeled as  in the diagram), we can use the symmetry of the standard normal
curve about the central value  to reason that  For extra practice, we can also compute with our inverse
accumulation function with a   left-region area measure.

Thus,  of the standard normal distribution's area is between -scores of  and 

We have now found ways to use a technology accumulation function and its inverse to produce various area and scale measures of
the standard normal distribution. However, many normal distributions are not the standard normal distribution. We now examine
the same ideas for any normal distribution.

Area Measures in Non-standard Normal Distributions
We discuss two methods for finding probabilities as well as the inverse action when working with normal distributions that are not
standard normal (the mean is not zero and/or the standard deviation is not one). We will be using both methods on this concept in
the remainder of our text, so it is important for us to learn the methods well now before adding more concepts.

Conversion to Standard Normal

As reviewed in Section  we can convert any normally distributed random variable,  into the scale of the standard normal
variable,  using our standardization calculation:  This implies that we can compute any needed areas and z-values for
any normal distribution by using this conversion process first and then applying the concepts from the standard normal distribution.

For example, suppose that the time for various college students to complete a specific task is normally distributed with 
minutes and  minutes, and we want to know what proportion of the students spent less than  minutes to complete the task.
We recall that a normal probability distribution is determined by its mean and standard deviation values, allowing us to quickly
sketch the distribution, including reasonably accurate scaling of our horizontal axis. Based on the provided information, we graph
this non-standard normal distribution in Figure , along with its standardization into the -distribution.
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Figure : Standardization of a normal distribution

Often, to save space and sketching time, we do not write the vertical scale on our normal distributions as seen above (we do note
that the vertical scaling is different between the two distributions since the horizontal scaling is different, but for our current
purposes knowing the difference is not essential). Often, we will place the natural/raw and standardized scaling in the same
distribution sketch, as shown in Figure  below.

 
Figure : Standardized scaling on a non-standard normal distribution

Since we are seeking , we standardize  to  Intuitively, this means that  minutes is 
standard deviations below the mean. As can be seen in either Figure  or , the area of the region to the left of  in the
specified normal distribution is the same as the area to the left of  in the standard normal distribution; that is, =

 Since we can compute  by  in our spreadsheet, producing the value , we
know that    That is, about  of those college students spent less than  minutes to
complete the task.

The key idea here is that we can convert back and forth between any given normal distribution scale and the standard normal
distribution scale to handle probability questions related to the non-standard normal distribution. We illustrate one more example
below with an "inverse" function problem where we "convert back" to find our needed measures.

Suppose, in the same random variable context, we want to know the time interval the central  of those students took to
complete the task. As shown in Figure  below, we need to find the scale values, labeled as  and  that captures the central 

 of the distribution's entire region. Notice that, even though we technically have the same horizontal scale values known to us,
we have very little of the - or -axes scaled in our sketch as compared to our Figures  and  This is because, initially,
we are unsure where these boundary values for the  region are exactly located until computed in our later work. Again, a
reasonable sense of the figure is essential for answering this "inverse" question.
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Figure : Inverse conversion to find scale value

We did such "inverse" or "convert back" work above in the standard normal distribution with related left-area measures producing
the two results of

If we reverse the conversion process, taking these -scores back to the related -scores using inverse formula , we
can produce the related raw scale values of  and :

Finally, thinking about the contextual interpretation of these results, we know that the central  of those college students (that is,
a large majority of them) took between  minutes and  minutes to complete the task. Knowing such information might be
useful in planning the time one should allot so that most can complete the task on time.

Sketch the distributions described and find the desired value(s).

1. If a random variable  has a normal distribution with  and  find  that is, find the proportion of
this distribution that is above 

Answer

First, we sketch a diagram of the described normal probability distribution with the standardized scale on the distribution.

Figure : Normal distribution with shaded area

We note that this region is right-tailed, with a complement left-tailed region. To determine  we must move from
 to the related standardized value of    Hence,

4.6.16

z

1

z

2

=NORM.S.INV(0.10) ≈−1.2816

=NORM.S.INV(0.90) ≈ 1.2816.

z x x = μ+z ⋅ σ

a b

a

b

= μ+ ⋅ σ ≈ 25+(−1.2816) ⋅ (5) = 18.592z

1

= μ+ ⋅ σ ≈ 25+(1.2816) ⋅ (5) = 31.408.z

5

80%

18.6 31.4

 Text Exercise 4.6.3

x μ= 18.2 σ = 3.4, P (x > 22),

22.

4.6.17

P (x > 22),

x = 22 z =

22−18.2

3.4

≈ 1.1176.
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That is, the proportion of this normal distribution with values above  is about 

2. If a random variable  has a normal distribution with  and  find the  percentile value for the
distribution.

Answer

Sketching a new diagram of the given normal distribution and given conditions on that distribution, remembering that the 
 percentile is equivalent in meaning to the boundary value that separates the lower  of the distribution from the

upper 

Figure : Normal distribution with shaded area

We seek our shaded region's boundary value . We must determine the related -score first through the use of our 
 function and then convert that -score back to our raw-scale score. We first compute our critical -score by

then convert to raw value by

Hence, the  percentile value in this given normal distribution is approximately at the value 

3. A soft drink bottler has data that suggest that the amount of drink placed in their -ounce cans by a specific bottling
machine is normally distributed with  ounces and  ounces (the machine is slightly over-filling on average
from designed specifications).
a. What proportion of cans are under-filled from the labeled amount by more than  ounce?
b. What amount of soft drink in the cans accounts for the central  of all cans filled by this specific machine?

Answer
a. Below is our sketch of the situation, noting we are involved with a left-tailed region:

P (x > 22) = P (z> 1.1176)

= 1−P (z≤ 1.1176)

= 1−NORM.S.DIST(1.1176, 1)

≈ 1−0.8681

= 0.1319 = 13.19%.

22 13.19%.

x μ= 18.2 σ = 3.4, 25

th

25

th

25%

75% :

4.6.18

a z

NORM.S.INV z z

z =NORM.S.INV(0.25)

≈−0.6745,

a = μ+z ⋅ σ

≈ 18.2+(−0.6745) ⋅ 3.4

= 15.9067.

25

th

x = 15.91.

12

μ= 12.1 σ = 0.5

1

90%
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Figure : Normal distribution with shaded area

To find the proportion of under-filled cans by this machine from the labeled amount of  ounces by more than  ounce,
we need to find  First we convert to  scale:

then find our area measure in the standard normal distribution:

So about  of the cans are being under-filled by more than one ounce from the desired specifications. That value
shows that under-filling by more than one ounce is unusual for this machine.

b. We sketch a diagram of the given information:

Figure : Normal distribution with shaded area

We seek the boundary values  and  in our raw scaled axis to capture the central  of the normal probability
distribution. However, we again must first get the related - and -scores through the use of our 
function and then convert them back to our raw-scale score. So, after noticing we have  of the area in the white
regions of the two tails in our distribution, we compute our two symmetrical critical -scores by

then convert to raw scale by

4.6.19

12 1

P (x < 11). z−

z =

x−μ

σ

=

12.1−11

0.5

=−2.20,

P (x < 11) = P (z<−2.20)

=NORM.S.DIST(−2.20, 1)

≈ 0.0139 = 1.39%.

1.39%

4.6.20

a b 90%

z

1

z

2

NORM.S.INV

5%

z

±z =±NORM.S.INV(0.05)

≈±1.6449,

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/45363?pdf


4.6.13 https://stats.libretexts.org/@go/page/45363

Hence,  of the cans being filled by this machine have between  and  ounces in them.

By working in the standard normal distribution with left-tail regions, we can determine the areas' related -scale values. These -
scale values can then be "converted back" into the scaled values of the non-standard normal distribution. This back-and-forth
conversion work between the -scale and the -scale can get tedious, but it is a beneficial strategy for working with normal
distributions. We all likely need more practice by doing several homework problems to get reasonable mastery of these ideas. For
some of our later work in inferential statistics, this type of conversion work and the meaning of this conversion action will be
extremely important.

Nonetheless, in the following subsection, we explore our second method and two new spreadsheet functions that hide/automate this
conversion process, allowing us to keep within the natural/raw scale of the given normal probability distribution.

Hidden/Automated Conversion to Standard Normal

We introduce an accumulation function for any normal distribution. The name and syntax of this function can vary depending
on the technology one uses, but the name of the accumulation function in Excel is . We note that the spreadsheet
function name here only misses the " " required for the standard normal distribution function. This function requires we provide
it with a specific -scale value in the distribution as well as the mean  and the standard deviation  of the normal distribution. In
general, the syntax of this accumulation function is  or the slightly shorter version
of  The function will return the area of the region to the left of that -value if we choose
the  option. Similar to the standard normal distribution's function, we can enter the digit  instead of typing out the word 

 when using this accumulation function. Also, similarly, if we use  with the function, it returns only the height of
the density function at that specific -value, not an area.

Let us re-examine the example problems from the last section in which we converted back and forth between the normal
distribution of interest and the standard normal distribution. Recall our given context in which the time for various college students
to complete a specific task is normally distributed with  minutes and  minutes. We again ask, what proportion of the
students spent less than  minutes to complete the task? We graph this in Figure  based on this information. In our second
method, we do not include scaling with the related standardized -scores:

 
Figure : Standardization of a specific normal distribution

Since we are seeking  we need to compute the area of the region to the left of  In this approach, we use our
general normal distribution accumulation function instead of standardizing values. We can compute  through 

 in our spreadsheet producing the value  This is the same value we computed using the
conversion process. We have found that about  of those college students spent less than  minutes to complete the task.

As with the standard normal distribution function, we must remember that this function always produces only a left-tail area
measure. If our regions of interest are central or right-tail regions, adjustments must be made similarly to our previous work.

For one more example, suppose in the context of the college student's time to complete a task, we wish to know the probability of
randomly selecting a student who took over  minutes on the task. We produce a quick sketch again for this question:

a = μ+ ⋅ σz

1

≈ 12.1+(−1.6449) ⋅ 0.5

= 11.2776

 and  b = μ+ ⋅ σz

2

≈ 12.1+(1.6449) ⋅ 0.5

= 12.9224.

90% 11.28 12.92

z z

x z

NORM.DIST

.S

x μ σ

=NORM.DIST(x-score,μ,σ,TRUE)

=NORM.DIST(x-score,μ,σ,1). x

TRUE 1

TRUE FALSE

x

μ= 25 σ = 5

15 4.6.21

z

4.6.21

P (x < 15 min.), 15.

P (x < 15)

=NORM.DIST(15, 25, 5, 1) 0.0228.

2.28% 15

37.5
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Figure : Probability in a non-standard normal distribution without standardizing

Since we are seeking  our figure shows we need to compute a right-tailed region and use of our complement
rule:

The probability of randomly selecting a student from this group who took over  minutes on the task is less than  and
considered an unusual event.

Sketch graphs of and determine the designated measures in the following:

1. Find  and  in a normal distribution with  and 

Answer

First we find  Our sketched graph is shown below...we are working in a right-tailed region. We are using an
approach that does not require standardization.

Figure : Normal distribution with shaded region

To find the right-tailed area measure, we make our complement adjustment.

Remembering our quick check, we notice that the size of the shaded region in the graph seems to align with this
proportional measure of  Thus,  of the normal distribution's area is to the right of  Or equivalently, there is
a  probability of randomly selecting a -outcome from this distribution that is at least  in value.

4.6.22

P (x > 37.5 min.),

P (x > 37.5) = 1−P (x ≤ 37.5)

= 1−NORM.DIST(37.5, 25, 5, 1)

≈ 1−0.9938 = 0.0062 = 0.62%.

37.5 1%

 Text Exercise 4.6.4

P (x ≥ 122) P (75 < x < 110) μ= 100 σ = 15.

P (x ≥ 122).

4.6.23

P (x ≥ 122) = 1−P (x < 122)

= 1−NORM.DIST(122, 100, 15, 1)

≈ 1−0.9288

= 0.0712 = 7.12%

7.12%. 7.12% 122.

7.12% x 122
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Next, we find  Our sketched graph is shown below; noticing that we are in a central region, we must
subtract two left-tailed area measures.

Figure : Normal distribution with shaded region

We subtract two left-tail areas to find the desired region's area measure.

There is a  probability of randomly selecting a -score that is between  and  in value.

2. A soft drink bottler has data that suggest that the amount of drink placed in their -ounce cans by a specific bottling
machine is normally distributed with  ounces and  ounces. What proportion of cans are under-filled from
the labeled amount by more than  ounce?

Answer

After carefully reading the context about filling the cans with soft drinks, we produce the volume of soft drink probability
distribution graph below.

Figure : Normal distribution with shaded region

To determine the proportion of cans that are under-filled from the labeled amount by more than  ounce, we find 
 We compute the area of the left-tail region.

Since the probability of randomly selecting a can filled by this machine with less than  ounces is less than  such an
outcome would be considered unusual. We note that this is the same value we produce using the standardization conversion
method.

P (75 < x < 110).

4.6.24

P (75 < x < 110) = P (x < 110)−P (x ≤ 75)

=NORM.DIST(110, 100, 15, 1)−NORM.DIST(75, 100, 15, 1)

≈ 0.7475−0.0478

= 0.6997 = 69.97%

69.97% x 75 110

12

μ= 12.1 σ = 0.5

1

4.6.25

1

P (x < 11).

P (x < 11) = 1−NORM.DIST(11, 12.1, 0.5, 1)

≈ 0.0139 = 1.39%

11 5%,
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3. The average consumption of electricity by electric four-door passenger vehicles is believed to be normally distributed with 
 kWh per mile and  kWh per mile, where kWh stands for kilowatt hour. Is our vehicle considered

unusual if we own such an electric vehicle that achieves  kWh per mile?

Answer

After carefully reading the electricity car context, we produced the electricity consumption probability distribution graph
below.

Figure : Normal distribution with shaded region

To determine if our vehicle is getting "unusually" high mileage, we need to determine the probability measure of having a
mileage of  kWh per mile or higher; that is, we need to compute  Per the graphic, even without
computation, it appears that the probability is small. However, scales can be deceiving, so we compute the value to have
measurement evidence to base our conclusion. As this is a right-tail region, we use our complement adjustment.

Since the probability of getting  kWh per mile or higher is less than  our electric vehicle would be considered
unusual. We are getting unusually high mileage compared to similar electric vehicles.

4. Based on data taken from a large group of healthy humans in the United States, human body temperatures seem to be
normally distributed with  and standard deviation  If a local hospital uses  as the lowest
temperature indicating a likely fever and illness, what percentage of healthy humans will be classified as ill by this
hospital?

Answer

We produce the following graph of the normal distribution of healthy body temperatures. Noting a person would be
considered feverish by this hospital if they have body temperatures over  shown in the shaded region of the
probability distribution. To compute this region, we must use the complement.

μ= 0.346 σ = 0.022

0.400

4.6.26

0.400 P (x ≥ 0.400.

P (x ≥ 0.400) = 1−P (x < 0.400)

= 1−NORM.DIST(0.400, 0.346, 0.022, 1)

≈ 1−0.9929

= 0.0071 = 0.71%

0.400 1%,

μ= F98.3

∘

σ = F.0.92

∘

F100.5

∘

F,100.5

∘
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Figure : Normal distribution with shaded region

Less than  of healthy individuals will be classified by this hospital as feverish when they are not ill. The hospital will not
likely run into this situation very often.

There will also be occasions in which we need to reverse the area/probability process above. Given the description of a region and
its area measure, can we find the horizontal scale measure(s) that serve as boundary(ies) of the described region? We can use our
standardization process, but there are functions for this inverse process that take care of the calculations for us and leave us within
the raw/natural scale of the situation.

We return to one of our earlier questions: what are the -scores in the normal distribution of student times for completing the
specific task that produces the central  region of that distribution? This time, as we did in an earlier analysis, we want to avoid
converting to standard normal distribution measures on our axis. As shown in Figure , we need to find the scale values
labeled as  and  in this normal distribution that captures the central  of the distribution's region.

 
Figure : Inverse conversion to find scale value(s) in a non-standard normal distribution

We are saved from manually doing all the conversion work by a new inverse function, , that behaves similarly to our
already familiar  function from the standard normal distribution. If given any left-tail region's area measure, this
function will compute the associated right boundary -scale value forming that region, provided the mean  and standard deviation

 are both known. This function has the syntax  Again, we
emphasize that the function provides values only for left-tailed regions.

For the boundary value  in our diagram, we note a left-tail area measure of   We compute in our spreadsheet:

An -score of approximately  separates the lower  area in the given normal distribution from the upper  area. We
also need to determine our right boundary value  in Figure  which has a left-tail area measure of 

As a completed result, the central  of the students had completion times for the task between approximately  and 
minutes.

We can compare these results with our earlier work (which included inverse conversion work from the standard normal
distribution) to see that they are the same. We now attempt similar text exercises involving inverse distribution methods.

4.6.27

P (x ≥ 100.5) = 1 −P (x < 100.5)

= 1 −NORM.DIST(100.5, 98.3, 0.92, 1)

≈ 1 −0.9916

= 0.0084 = 0.84%

1%

x

80%

4.6.28

a b 80%

4.6.28

NORM.INV

NORM.S.INV

x μ

σ = NORM.INV(left-tail area measure between 0 and 1,μ,σ).

a 10% = 0.10.

a = NORM.INV(left area measure,μ, σ)

= NORM.INV(0.10, 25, 5)

≈ 18.5922 min.

x 18.5922 10% 90%

b 4.6.28, 90%.

b = NORM.INV(left area measure,μ, σ)

= NORM.INV(0.90, 25, 5)

≈ 31.4078 min.

80% 18.6 31.4
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After sketching the regions described, find -score(s) that produce the area measures described in the normal distribution.

1. When designing a building, a common requirement is to design for  of the population that will be using that building.
To be safe as well as cost effective, and since men on average are taller than women, a building's doorways are to be
designed so that all but the tallest  of men can walk through the doorway without having to stoop. If the heights of men
are normally distributed with a mean of  cm with standard deviation of  cm, determine the design height needed
for doorways.

Answer

Our sketch of the height distribution for men is shown below, with shading indicating the separation between the lower 
 and upper  in the distribution.

Figure : Normal distribution with shaded region

To find the boundary -height value associated with the left-tailed  area value, we can go directly to our inverse
accumulation function.

Thus,  of men have heights below  cm and  have heights above. The building should be designed with
doorways that have heights of at least  cm to fit the design specifications.

2. The average consumption of electricity by electric four-door passenger vehicles is believed to be normally distributed with 
 kWh per mile with  kWh per mile, where kWh stands for kilowatt hour. What is the central 

expected average consumption for these types of electric vehicles?

Answer

After sketching our normal distribution (shown below), we are seeking the two boundary values of  and  that separate the
central  of our distribution.

Figure : Normal distribution with shaded region

 Text Exercise 4.6.5

x

95%

5%

161.29 8.3

95% 5%

4.6.29

x 0.95

x =NORM.INV(0.95, 161.29, 0.83)

≈ 162.6552

95% 162.66 5%

162.66

μ= 0.346 σ = 0.022 90%

a b

90%

4.6.30
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To find the left boundary value , we use our inverse accumulation function with the  left-region area measure.

To find the right-boundary  we again use the inverse accumulation function with a   total left-region
area measure.

Thus, the central  average consumption of electricity by these electric vehicles is expected to be between  and 
 kWh per mile.

3. A tire company is about to begin large-scale manufacturing of a new tire made of newly developed materials. The tire's
tread life has been tested, the research team found the tread life in miles produced a normal distribution with 
miles and  miles. The company must develop a consumer warranty policy and only wants to replace tires that do
not last sufficiently to tested expectations. The company decides to only set the mileage warranty to cover the lowest  of
their tires. What is the mileage number they will need to place on the warranty policy?

Answer

We sketch the described tire-life distribution (shown below). Next, we go directly to our inverse accumulation function to
compute the related -mileage value for the boundary value establishing the lowest  of the distribution's area.

Figure : Normal distribution with shaded region

Thus,  of the tires can be expected to last less than  miles. The tire company should set their replacement
warranty value near this value, likely at  miles just to round to an easier value for customers.

4. Established in 1946, Mensa, currently a global community of around  people, requires individuals first score in the
upper  (in relation to the general population) on an IQ test before being considered for membership. If the general
population produces normally distributed scores with  points and  points on the IQ test, what must we score
on the exam to be considered for membership in Mensa?

Answer

Our sketch of the distribution for IQ scores is shown below, with shading indicating the upper  region of the scores.

a 5%

a =NORM.INV(0.05, 0.346, 0.022)

≈ 0.3098

b, 90%+5% = 95%

b =NORM.INV(0.95, 0.346, 0.022)

≈ 0.3822

90% 0.310

0.382

μ= 72, 000

σ = 7, 000

5%

x 5%

4.6.31

x =NORM.INV(0.05, 72000, 7000)

≈ 60, 486.02

5% 60, 486

60, 000

150, 000

2%

μ= 100 σ = 15

2%

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/45363?pdf


4.6.20 https://stats.libretexts.org/@go/page/45363

Figure : Normal distribution with shaded region

To find the boundary -height value associated with the right-tailed  area value, we can apply complement action (
) within the use of the inverse accumulation function.

We must score at least  points on the IQ test to be within the top 

We have now found ways, using another technology accumulation function and its inverse, to be able to produce various area or -
scale measures of any -normal distribution. These new methods eliminated in our work the converting back and forth between a
general normal distribution and the standard normal distribution. Yes, the above technology does make our work less intense by
hiding the conversion work (in the programing of the functions the conversion work is actually still happening). This is a blessed
simplification for us humans as we prefer to eliminate calculation work when possible. However, we again warn that applying the
conversion process is necessary in some of our future work, so we should practice both approaches.

Summary

We now have the tools to answer practically any probability related question tied to normal distributions. Our technology's
accumulation functions will produce accurate measures of left-region areas of all types of normal distributions. The inverse
functions will allow us to find scale measures tied to given regions of a normal probability distribution. In the future, we will also
examine similar accumulation functions for other common probability distributions, such as the - and -distributions.

4.6: Accumulation Functions And Area Measures in Normal Distributions is shared under a Public Domain license and was authored, remixed,
and/or curated by The Math Department at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.

4.6.32

x 0.02

1−0.02 = 0.98

x =NORM.INV(0.98, 100, 15)

≈ 130.8062

130.8 2%.

x

x

t χ

2
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5.1: Introduction to Sampling Distributions

Define and construct probability distributions of sample statistics with simple random sampling
Define and construct sampling distributions of sample statistics
Define and give examples of unbiased estimators
Explore the impact sample size has on the sampling distributions of a given population
Represent sampling distributions as continuous random variables

Review and Preview
In the previous chapter, we began our study of random variables by briefly connecting them with inferential and sample statistics. This
chapter studies sample statistics as random variables, paying close attention to probability distributions. Recall for each random
variable, an underlying random experiment will be conducted. A value is assigned, measured, or computed for each possible outcome of
this random experiment. These are the values the random variable is said to take on, and the probability of the values occurring is
determined, forming a probability distribution. If the random variable is discrete, each value has a specific probability. If the random
variable is continuous, a range of values has a probability based on the area under the probability density function. We can compute the
expected value (mean), variance, and standard deviation to help describe the random variable.

Suppose we wanted to know the average height of an American. It is impossible to measure the height of everyone in the country, so we
decided to measure the heights of 10,000 randomly selected Americans and found that the average height of these 10,000 people is 
inches. We cannot conclude that the average height of all Americans is  inches. After all, we may have selected the 10,000 tallest
people in the country, or perhaps 8,000 were well below the average height. Even if our sampling method is unbiased, there is still the
possibility that we obtained a sample mean far away from the population mean by pure chance. Even if the sample mean is close to the
population mean, it likely is not the same. Do we need to measure more heights? Can 10,000 people accurately represent the whole
country? To understand the average height of an American, we need to determine the probability that our sample mean is not accurate.
What is the probability that our sample mean is off by more than  inch? What is the probability that it is off by less than  inches? To
answer these questions, we need to think of sampling as a random variable.

Now that we have looked at the basics of random variables and have an example in mind, we study sample statistics as random
variables in depth. We are interested in learning the characteristics of a population (parameters). Studying the entire population may be
impossible, too expensive, or time-consuming, so we study a sample and compute a statistic to estimate the parameter. Ideally, the
sample is representative of the population; it does not misrepresent the population, and the statistic is close to the parameter. We cannot
guarantee such a sample, but by choosing our sample randomly, we can ensure that any bias in the sample is due to random chance. For
our initial purposes, we work within the context of simple random sampling. We must decide how large of a sample to use; we denote
the sample size as . The random experiment is defined as randomly selecting  objects from the population. The sample space of our
random experiment consists of all the possible samples of size  taken from the population of size  There are  possible samples.
Each sample is assigned a value by computing the sample statistic of interest. These possible values, along with their probabilities, form
the probability distribution of the sample statistic under simple random sampling. The questions of interest are: what values can the
sample statistic take on, and what are the probabilities?

Constructing Probability Distributions of Sample Statistics: Proportions
We cannot know the values and their associated probabilities without studying the entire population. However, we can build solid
intuition by studying small populations, where we can exhaustively study the probability distributions. We will be able to generalize in
the following sections.

Consider the family of five that has been with us throughout the text. Adam and Betsy have three children: Cathy, Damon, and Erin.
This family will serve as our initial population of interest. We will study several different characteristics of this family. The first step is
to decide how many family members we want to sample. Indeed, it is unnecessary to sample in this situation, but this process builds our
intuition and understanding of the topic. Sampling  family members will be perfect for our example.

1. Determine the number of samples and then list all possible samples of size  from the population of Adam , Betsy ,
Cathy , Damon , and Erin 
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Answer

We are selecting  family members from a family of . The order in which we select them does not matter; therefore, there are 
  possible samples.

Notice the pattern of our labelling. Adopting such a method ensures all possible samples are listed easily.

2. Recall that Adam, Betsy, and Cathy all wear glasses. The population proportion  of family members that wear glasses is 
. For each possible sample of size  determine the sample proportion .

Answer

We must compute the sample proportion for each of the  samples from part one of this text exercise.

Table : All possible samples and their sample proportions

Sample Sample

Note that none of the possible sample proportion values equal the population proportion. Recall from our first text exercise with
this family that this is true for all possible sample sizes in this particular context. Still, it is not necessarily true for others (see
the last part of the referenced exercise for a refresher).

3. We are considering all the samples of size  and their sample proportions and have not conducted a random sampling to produce
one of these possibilities. We are developing our understanding of the sample proportion  as a random variable. There are three
possible values that  takes on:   and  Our task now is to fully understand  as a random variable and construct its
probability distribution.

Answer

Since we are conducting a simple random sampling of size  from the family of , each sample is equally probable. We can
determine the probabilities of our random variable  using the classical approach to probability.

Table : Probability distribution of sample proportions

4. Determine the expected value, variance, and standard deviation of our random variable 

Answer
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Table : Computation table

 

Note that  even though none of the possible sample proportions are equal to the population proportion, the
expected value of the probability distribution of sample proportions is the population proportion.

When considering probability distributions of sample statistics (for example, sample proportions in our previous exercise), we use
subscripts to indicate the sample statistic. This visual reminder provides a simple method of improving clarity and reducing the risk of
errors. Reading symbolic expressions with meaning is an important skill to maintain and develop, especially at this point in the course.

Constructing Probability Distributions of Sample Statistics: Means
To continue our exploration, we consider additional data regarding our family of five (presented below): the number of states visited by
each person. When considering the characteristic of needing eyeglasses, a qualitative variable, each member of our population either
possessed the characteristic or did not. Proportions and modes would be natural sample statistics to consider. On the other hand, the
number of states visited is a quantitative variable, so we have many more options to consider for sample statistics. We shall consider
some in the following text exercises.

Table : Number of States Visited

Family Member Number of States Visited

Adam

Betsy

Cathy

Damon

Erin

1. Construct the probability distribution of sample means using a sample size of 

Answer

For each of the  samples, we must compute the sample mean. We do so by filling out a table.

Table : All possible samples and their sample means

Sample Sample Data Sample Sample Data
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Sample Sample Data Sample Sample Data

Table : Probability distribution of sample means

2. Determine the expected value, variance, and standard deviation of our random variable . Compare the expected value of the
probability distribution  with population mean .

Answer

Table : Table of computations
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To compute the population mean  we have    meaning  The average of all the sample
means is the same as the population mean.

Constructing Probability Distributions of Sample Statistics: Range

1. Construct the probability distribution of sample ranges using a sample size of 

Answer

For each of the  samples, we must compute the sample range  We again do so by filling out a table.

Table : All possible samples and their sample ranges

Sample Sample Data
Sample Range 

Sample Sample Data
Sample Range 

\(ACE)

Table : Probability distribution of sample ranges
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2. Determine our random variable's expected value, variance, and standard deviation . Compare the expected value of the
probability distribution  with the population range.

Answer

Table : Table of computations

 

To compute the population range, we have   meaning  The average of the sample
ranges is not the same as the population range. We might have expected this. A sample range could equal the population range if
it includes the largest and smallest values. However, for most samples, the sample range will be smaller than the population
range because the largest and smallest data values will not be included in the sample. Moreover, the sample range can never
exceed the population range. Therefore, the average of the sample ranges is an average of numbers that are never larger than the
population range, making the average smaller. This reasoning implies that for any sufficiently varied population, the average of
the sample ranges will be less than the population range. Contrast this with the concept of a sample mean.

Probability Distributions of Sample Statistics and Sample Size
In each of our previous examples, we used the sample size  We could have sampled a single person  or any number less
than  If  were to be  in our context,  we would be studying the entire population, not sampling from it, and then computing
the parameter rather than estimating it. We now explore what happens to the probability distributions as we change the sample size
while remaining in the same population. Again, we will consider the proportion of family members who wear glasses. The probability
distribution of sample proportions for  and  and the expected value, variance, and standard deviation are reported in the
table below.

Table : Probability Distribution of Sample Proportions for  and 
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Students struggling to understand these probability distributions and their construction are encouraged to verify the results
above by first building each probability distribution and then computing each measure . Click to check your work.

Probability distribution of sample proportions 

Table : Probability Distribution of Sample Proportions  (  Samples)

 (  Samples)

Probability distribution of sample proportions 

Table : Probability Distribution of Sample Proportions  (  Samples)

 (  Samples)

Probability distribution of sample proportions 

Table : Probability Distribution of Sample Proportions  (  Samples)
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 (  Samples)

Probability distribution of sample proportions 

Table : Probability Distribution of Sample Proportions  (  Samples)

 (  Samples)

The expected value of each probability distribution of sample proportions is the same as the population proportion, regardless of the
sample size; however, the variance and standard deviation values change with the sample size. The variance decreases as  increases,
indicating that as  increases, the probability distribution is packed more closely around the population proportion. The spread
decreases while remaining centered on the population proportion. Let us construct the probability distributions of sample means and
ranges to see if similar patterns emerge.

Table : Probability Distribution of Sample Means  and 

 

Again, we encourage students struggling to understand these probability distributions and their construction to verify the
results above by first building each probability distribution and then computing each measure. Click to check your work.

Probability distribution of sample means 

Table : Probability Distribution of Sample Means  (  Samples)
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 (  Samples)

Probability distribution of sample means 

Table : Probability Distribution of Sample Means  (  Samples)

 (  Samples)

,

Probability distribution of sample means 

Table : Probability Distribution of Sample Means  Samples)
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 (  Samples)

Probability distribution of sample means 

Table : Probability Distribution of Sample Means  (  Samples)

 (  Samples)

We notice a similar trend with the probability distributions of sample means. Regardless of our sample size  the expected value is the
population mean. As  increases, the spread of our distributions decreases. We now look at a final example: sample ranges. Range,
indeed all measures of spread, are not very informative (nor well-defined) if there is only one observation. Think about why that is. We
will only consider samples with at least  observations.

Table : Probability Distribution of Sample Ranges  and 

 

Click to verify probability distribution construction as needed.
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Probability distribution of sample ranges 

Table : Probability Distribution of Sample Ranges  (  Samples)

 (  Samples)

Probability distribution of sample ranges 

Table : Probability Distribution of Sample Ranges  (  Samples)

 (  Samples)

Probability distribution of sample ranges 

Table : Probability Distribution of Sample Ranges  (  Samples)
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 (  Samples)

Having seen that the expected value of the probability distribution of sample ranges was not the population range in the case of 
it is not surprising to see a similar situation in the other two sample sizes. The expected value of the probability distribution equaling the
population parameter is not typical among the various statistics we consider. However, as  increases, we see a decrease in the spread of
our probability distributions.

Sampling Distributions of Sample Statistics

Let us review what we know so far. We have constructed probability distributions of sample statistics under simple random sampling by
computing a particular sample statistic for every possible sample of a specific size,  and then determining the probability that these
values occur. For some sample statistics, the probability distribution is centered around the population parameter; that is, for some
statistics, the expected value of the probability distribution is the associated population parameter. Finally, we noticed that the spread of
the probability distribution decreases as the sample size increases for each of the statistics studied so far.

We now introduce the probability distribution that much of inferential statistics is built upon, the sampling distribution of sample
statistics. A sampling distribution is similar in nature to the probability distributions that we have been building in this section, but with
one fundamental difference: rather than sampling using simple random sampling, the sampling method is to select randomly  objects,
one at a time, from the population with replacement. Note that the order of selection will matter. As such, when considering a
population of size  there are  possibilities for each random selection, indicating that there are  samples to consider instead of
the  as with simple random sampling.

One may question why a distribution constructed from sampling with replacement takes priority in inferential statistics when the
probability distributions above seem much more intuitive and easy to construct (having less samples to consider). As it so happens,
when populations are large enough compared to the sample size (we will discuss this more later), the probability distributions of sample
statistics constructed from simple random sampling are approximated well using the sampling distribution of sample statistics.

What intuition we have built from our previous constructions transfer directly to sampling distributions. As the sample size increases,
the spread of the sampling distribution decreases. This should appeal to our basic intuition that larger samples better represent the
population than smaller samples. For certain statistics, the expected value of the sampling distribution is the population parameter. We
call such sample statistics unbiased estimators. Most introductory statistics books examine three unbiased estimators: sample means,
proportions, and variances. The sample range is a biased estimator of the population range for the same reasons discussed above.

1. Within the context of the family of five from above and using a sample size of  construct the sampling distribution of sample
proportions for the proportion of family members who wear glasses. Recall that the sampling method used in producing
sampling distributions is selecting a member at random  times with replacement which means that order matters and the same
member could be in the sample multiple times.

Answer

We begin our solution by counting the number of samples that we need to consider. Since the population size is  and our
sample size is  we have   different possible samples. That is a lot!
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We leave the computation of each sample proportion to the reader and tabulate the results in the following table.

Table : Sampling distribution of sample proportions

2. Compute the expected value, variance, and standard deviation of the sampling distribution of sample proportions found in the
previous portion of this text exercise.

Answer

Table : Table of computations
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Sampling Distributions and Large Populations

The number of possible samples is quite large when we study most populations. As an example, FHSU enrolls about  on-campus
students in a typical semester. We might consider randomly sampling  students. In which case, the number of possible samples is
about  We naturally expect many possible sample statistic values with so many different possible samples. As such, we
expect that sampling distributions take on large numbers of values and can be reasonably represented as continuous random variables,
which can be understood using histograms and probability density functions.

With larger populations, we can no longer expect to construct all possible samples of a given size,  from a population to develop an
understanding of sampling distributions. However, that does not mean we cannot build a reasonably accurate representation. We can
approximate sampling distributions by randomly sampling from all the possible samples and then constructing histograms to visualize
the shape of the distribution. We build relative frequency histograms to estimate the probability distribution of the sampling distribution.
This process is tedious but can be easily implemented with a computer.

The Online StatBook Project provides a program that operates with frequency counts rather than relative frequency counts. Since
both preserve the general shape of a distribution, we can build an intuition about sampling distributions. Open the link and read the
instructions page carefully. Then click on the "Begin" button at the top left part of your screen. Note: within this program,  stands
for sample size, not population size.

1. Use the following settings for this program. Parent Population: Normal. First Sampling Distribution: Mean . Second
Sampling Distribution: None . Click the "Animated" button and watch the animation.
a. What do the boxes in the second distribution represent?
b. What does the singular box in the third distribution mean?
c. Construct a sampling distribution using  random samples (Reps= ), then , and . What is happening as

we randomly sample more and more?

Answer

The five boxes in the second distribution represent the five observations randomly selected to form our single sample of size .
The singular box in the third distribution is the sample mean of the sample in the second distribution. The distributions should
look different since we are running a simulation randomly selecting samples, but they should be reasonably close to the figure
provided below.
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Figure : Sampling distribution simulation

As we take more and more samples of size  from the population, we eventually converge to a consistent shape. Once the
distribution does not change much, we have a decent idea of the sampling distribution.

2. Use the following settings for this program. Parent Population: Normal. First Sampling Distribution: Mean  Fit
Normal Checked. Second Sampling Distribution: Mean  Fit Normal Checked. Run the simulation using 
random samples to estimate the sampling distributions of sample means. Compare the two sampling distributions.

Answer

Once again, our distributions will not be the same as those produced by the simulation for you, but they should be quite similar.
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Figure : Sampling distribution simulation

Both sampling distributions are centered reasonably close to the population mean. When the sample size is , the sampling
distribution is less spread out compared to the sampling distribution of sample size . Both sampling distributions have less
spread than the parent population and fit the normal curve well.

3. Use the following settings for this program. Parent Population: Skewed. First Sampling Distribution: Mean  Fit
Normal Checked. Second Sampling Distribution: Mean  Fit Normal Checked. Run the simulation using 
random samples to estimate the sampling distributions of sample means. Compare the two sampling distributions.

Answer

Figure : Sampling distribution simulation

Both sampling distributions are centered reasonably close to the population mean. The spread again decreases as the sample size
increases. The first sampling distribution appears skewed to the right, just like the parent population, and is not normal. With a
greater sample size, the second sampling distribution fits a normal curve much better.

4. Use the following settings for this program. Parent Population: Custom. First Sampling Distribution: Mean  Fit
Normal Checked. Second Sampling Distribution: Mean  Fit Normal Checked. Using your mouse, construct a parent
population so that when you run the simulation using  random samples to estimate the sampling distributions of sample
means, it does not appear to be normal.

Answer
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Figure : Sampling distribution simulation

It takes an extreme parent population for the sampling distributions not to fit a normal curve with a sample size of 

5. Use the following settings for this program. Parent Population: Skewed. First Sampling Distribution: Var (U)  Fit
Normal Checked. Second Sampling Distribution: Var (U)  Fit Normal Checked. Run the simulation using 
random samples to estimate the sampling distributions of sample variances. Compare the two sampling distributions.

Answer

Figure : Sampling distribution simulation

Notice that the variance of the parent population  is very close to the expected values (mean) of the sampling
distributions. The sampling distributions are roughly centered on the population parameter. Recall that variance was the third
unbiased estimator. Again, the spread of the sampling distributions decreases as the sample size increases. These sampling
distributions, however, do not appear to be normally distributed. It seems closer when the sample size is , but it is still not a
great fit.

6. In the previous parts of this text exercise, the mean of the sampling distributions has been very close to the population
parameter. We do want to provide an intuition about unbiased estimators. Use the following settings for this program. Parent
Population: Skewed. First Sampling Distribution: Range . Second Sampling Distribution: None 

. For each sample size, run the simulation using  random samples to estimate the sampling distributions of
sample ranges. Describe what happens to the expected value of the sampling distribution of sample ranges (the mean of the
second distribution) as the sample size increases. How is this different from all other sampling distributions within this text
exercise?

Answer
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Figure : Sampling distribution simulation

The population range is about . If we look at the expected values of the sampling distributions of sample ranges as the sample
size increases, we see that the expected values increase each time. This is in contrast to what happened with the sampling
distributions of sample means and variances. Regardless of the sample size, the sampling distributions of sample means and
variances had expected values close to the population parameter. The distributions were centered on the population parameter.
Some sample means were less than the population mean; some were more. There was no inherent bias in the estimation using
sample means or sample variances. This is not the case for sample ranges. We are guaranteed that the sample range is less than
or equal to the population range. Why do you think this is true? Because of this, the sampling distribution cannot be centered on
the population range unless we have a trivial population, making the sample range a biased estimator.

Bridging Theory and Application

While simple random sampling and random selection with replacement are two fundamentally different approaches to sampling, when
populations are large enough and the sample size is not too large relative to the population size, we consider the two methods
approximately interchangable in regards to the probability distributions of sample statistics that are produced. That is, when the size
conditions are met (discussed in future sections), we utilize the sampling distribution of sample statistics for a given sample size  to
understand the probability of sample statistic values from simple random samples of that same size  It is important to note that
statistical analyses have been developed for cases where the size conditions are not met, but that these considerations are beyond the
scope of this text. Interested readers are encouraged to continue taking more advanced statistics courses.

5.1: Introduction to Sampling Distributions is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.
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9.1: Introduction to Sampling Distributions by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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5.2: Sampling Distribution of Sample Means

Motivate, state, and apply the Central Limit Theorem (CLT)
State the expected value (mean) and standard deviation of the sampling distribution of sample means
Establish guides regarding sufficiently large sample sizes

The Utility of Sampling Distributions
To construct a sampling distribution, we must consider all possible samples of a particular size,  from a given population. In reality,
this is more complicated than studying the entire population since considering every possible sample requires studying every member
of the population. If we have all the population data, why mess with all the samples? It is a valid question. The truth is that, in
practice, statisticians do not construct sampling distributions by brute force; instead, they deduce key properties of the distribution.
Inferential statistics are used to learn about a population by studying a sample, a subset of the population, not the entire population
itself.

The Sampling Distribution of Sample Means

Using the computer simulation from the last section, we will consider the progression of sampling distributions of sample means
from several populations as the sample size increases. Our previous work shows that the sampling distribution of sample means will
be centered on the population mean and that the spread will decrease as the sample size increases. What can we say about the general
shape of the sampling distributions of sample means regardless of the parent population?

The parent population (the distribution in black) is centered above  sampling distributions of sample means (the distributions in
blue), starting with a sample size of  and ending with a sample size of . A normal curve has been fit to each of the sampling
distributions. Which sampling distributions seem to fit the normal curve better? What trend do you notice across parent
populations?

Parent Population: Normal
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Figure : Sampling distributions of sample means for various sample sizes taken from a normal population

Parent Population: Uniform

Figure : Sampling distributions of sample means for various sample sizes taken from a uniformly distributed population

Parent Population: Skewed
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Figure : Sampling distributions of sample means for various sample sizes taken from a skewed population

Answer

Each sampling distribution from the normal parent population fits the normal curve well. All of the sampling distributions
except the first sampling distribution with a sample size of  from the uniform parent population also fit the normal curve
well. For the skewed parent population, it was not until the sample size reached  or  that the normal curve fit well. We
see a trend that the sampling distributions of sample means eventually appear normal regardless of the parent distribution. For
some parent distributions, larger sample sizes were necessary for the sampling distribution of sample means to appear to fit
the normal curve.

Hopefully, we understand that the sampling distribution of sample means and the normal distribution are connected; furthermore, the
sample size used to construct the sampling distribution also plays a role. If not, that is okay. We continue to learn and develop the
relationship more formally. It is quite a remarkable result.

Up to this point, we have assessed how well a distribution fits a normal curve visually. This level of discussion serves our
purposes in an introductory statistics textbook. However, we want to alert the reader that there are analytical methods of
assessing how well a normal curve fits a distribution. This process is commonly called assessing normality and is essential to
serious statistical study and work.

5.2.3
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Given any infinite population with population mean  and non-zero population variance of , as the sample size,  increases,

the sampling distribution of sample means approaches a normal distribution with mean  and variance 

Recall that standard deviation is the square root of variance. We can also assert the normal distribution that the sampling
distribution of sample means approaches as  increases has a standard deviation of  We will utilize this formula quite

frequently.

Notice that the Central Limit Theorem says, "given any infinite population." We have framed statistical inquiry in terms of
understanding the world and people around us. At any given time, there are only finitely many humans, animals, or even atoms
existing in our world. So, the statement of the Central Limit Theorem seems to exclude all these populations in which we may
have interest, but hope is not lost.

The Central Limit Theorem, as stated above, is a beautiful work of mathematical and statistical theory. There is often a gap
between theory and practice that can be bridged satisfactorily. We are in such a case, and our bridge is the notion of a practically
infinite population relative to the sample size in consideration. A population may be understood as practically infinite if the
sample size of interest is less than  of the population size (recall how we saw this earlier with the assumption of
independence). The Central Limit Theorem holds in practice for practically infinite populations. Indeed, this rule of thumb of 
also serves as our threshold at which we treat simple random sampling and sampling with replacement as interchangeable
regarding the probability distributions of sample statistics.

Let us think about what the Central Limit Theorem is saying. It claims that if you pick any population (regardless of shape) and look
at all samples of size  (for  sufficiently large), their means will be (approximately) normally distributed. We could start with any
population, even the craziest of shapes, and an orderly bell curve emerges from the chaos of random selection. This should come as a
surprise to someone hearing this for the first time. One would expect that nothing can be said about the sampling distribution; if the
population shape is chaotic and we are selecting samples from it at random, then we would expect the sampling distribution to be
chaotic as well. After all, the sampling distributions of the range, median, mode, and many other statistics do not follow such nice
behavior in general. They behave exactly as the default intuition would expect: chaotically and unpredictably. However, there is
something special about the mean. We will see later that the mean is not the only statistic to exhibit nice behavior.

The Central Limit Theorem is the reason the field of inferential statistics exists. The fact that we always get a normal distribution
enables us to answer questions in inferential statistics intelligently and precisely, as we shall see now.

Applying the Central Limit Theorem

The Central Limit Theorem clearly states the ideas we have been exploring over the last two sections.

The sampling distribution of sample means has an expected value (mean), the population mean.

The spread of the sampling distribution of sample means decreases as  increases because  The population standard

deviation,  is fixed; so, as  increases, we have a fixed number divided by larger and larger numbers making the quotient
smaller.
Finally, the sampling distribution of sample means gets closer and closer to the normal curve as  increases.

As we have seen, the rate at which the sampling distribution's shape becomes normal differs based on the parent population. If the
parent population is normal, every sampling distribution appears approximately normal. In the other cases, we needed the sample size
to be larger. How can we know if a given sample size is large enough to say that the sampling distribution of sample means is
approximately normal? We now provide, without proof, the current knowledge and standards of the statistical community in this
regard.

If the parent population is normally distributed, the sampling distribution of sample means will be normally distributed for every
sample size, .
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Statisticians have long agreed that for many of the distributions commonly found in medicine, the social sciences, and the natural
sciences, a sample size larger than  would produce a sampling distribution of sample means that is approximately normal.

Our statistical research may find a population in which a smaller number produces an approximately normal sampling distribution of
sample means. We would not know this when we first began studying the population. On the other hand, we may find a population in
which a much larger sample would be necessary to produce an approximately normal sampling distribution of sample means. Such
distributions are being studied in economics and finance. How can we feel confident in our practice of statistics, especially if we
conduct statistical research as part of our profession?

The parent distributions that require larger sample sizes to obtain approximately normal sampling distributions of sample means are
most likely extremely skewed or have outliers. If there is no such intuition, we recommend using an initial sample size larger than 
and testing the data for the presence of outliers or extreme skew (a histogram will probably suffice). If either outliers or extreme skew
are detected, proceed by increasing the sample size and repeating the data collection process.

The grade distribution for a particular instructor's statistics course (over many years with thousands of students) is negatively
skewed with a mean of  and a standard deviation of . Compute the probability that the average of a random sample for
the indicated sample size is within  percentage points of the population mean. What do you notice about the probabilities as 
increases?

1. 

Answer

Since the random sample is larger than , the sampling distribution of sample means is approximately normal with a mean 
  percent and a standard deviation   percent. We are determining the probability that the average of the

sample is within  percentage points of  percent:  Sketch a picture and compute the probability with
technology.

Figure : Sampling distribution of sample means

2. 

Answer

The problem setup remains the same; we update the sample size to 
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Figure : Sampling distribution of sample means

3. 

Answer

The problem setup remains the same; we update the sample size to 

Figure : Sampling distribution of sample means

4. 

Answer

The problem setup remains the same; we update the sample size to 
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Figure : Sampling distribution of sample means

As the sample size increases, the standard deviation of the sampling distribution decreases. The interval from  to 
encompasses more standard deviations around the mean, and the probability of the sample mean falling in that interval
increases. If  were to increase to the size of the population, we would see a  chance of the sample mean being within 
points of the actual mean. The larger , the more likely the sample mean is close to the population mean.

The heights of adult females are normally distributed with a mean of  inches and a standard deviation of  inches.

1. Determine the probability of randomly selecting four adult females whose average height is less than  feet  inches.

Answer

We randomly selected four adult females from the population and considered their average height. We took a sample of size 
 and considered the average height,  of the sample. We are interested in the following probability:  Note

that we want to use the same units throughout  feet  inches is  inches. We must turn to the sampling
distribution of sample means to answer the probability question. To compute probabilities, we must know what the
probability distribution is. Constructing the probability distribution is out of the question here. We want to utilize the Central
Limit Theorem (CLT). When considering the CLT, we ensure our sample size is large enough to assert that the sampling
distribution of sample means is approximately normal. Usually, this means we want  This, however, is not the case in
this scenario as . To proceed in this scenario, we note that the problem states that the heights of adult females are
normally distributed. If the parent population is normally distributed, so are all the sampling distributions of sample means.
We know that the sampling distribution of sample means is normally distributed with a mean    inches and a
standard deviation     inches. We sketch a picture and compute the probability using technology.

Figure : Sampling distribution of sample means

2. Determine the probability of randomly selecting two adult females with an average height within  inches of the population
mean.

Answer

We are in the context of randomly selecting multiple adult females from the population and considering their average height.
We are only sampling  adult females; so,  We utilize the fact that the parent population is normal and that the
sampling distribution of sample means when  is normal with a mean    inches and a standard deviation  

   inches. An average height is within  inches of the population mean if it is larger than  

inches and smaller than   inches. So, we are interested in  We sketch a picture and compute the
probability using technology.
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Figure : Sampling distribution of sample means

Recall from Text Exercise  that the daily growth in the height of wheat plants during a particular stage of development is
believed to be uniformly distributed between  and  inches and as such has a mean of   inches
and the standard deviation is \(\frac{1.25-0.5}{\sqrt{12}\)  inches. Determine the probability of randomly selecting 

wheat plants (during that particular stage of development) with an average daily growth that is greater than  inches.

Answer

We are randomly selecting  wheat plants from the population and considering their average daily growth. We are taking a
sample of size  and considering the average height,  of the sample. We are interested in the following probability: 

. Since the sample size is greater than , we can apply the CLT to say that the sampling distribution of sample
means is approximately normal with a mean   inches and a standard deviation   inches. Thus,  

inches and     inches. Let us sketch a picture and compute the probability of interest.

Figure : Sampling distribution of sample means

5.2: Sampling Distribution of Sample Means is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.

9.5: Sampling Distribution of the Mean by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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5.3: Sampling Distribution of Sample Proportions

State the relationship between the sampling distribution of sample proportions( ) and a normal distribution.
State the expected value (mean) and standard deviation of the sampling distribution of sample proportions.
State the requirements for modeling the sampling distribution of sample proportions with a normal distribution.
Apply the above to reasonably predict the proportion measures of various samples (all of the same size ) from a population.

Review and Preview
In regard to a random variable of a population, we have discussed the importance of understanding how various samples taken from the population
produce different measures from each other as well as from the population's related measures. In the first section of this chapter, we saw that some
statistical measures (such as samples' means, samples' variances, and samples' proportions for samples of a specific size ) are considered unbiased
since the various samples' statistics tend to crowd around the actual population's parameter. However, there are other statistical measures (such as
samples' ranges, samples' standard deviation, and samples' medians) that do not behave this way, and hence are considered biased estimators.

Digging deeper in the last section, we have seen how the sample means from all possible samples are actually very predictable as a group. Under certain
requirements, the sample means for samples of one specific size,  act as a random variable themselves and that, although we can't predict what will
happen with any one chosen simple random sample, the collection of all simple random samples' means form a normal distribution called a sampling
distribution. Furthermore, this sampling distribution's mean value is the same as the population's mean value and the spread (standard deviation) in the
sampling distribution is smaller than the standard deviation of the population. In notational form, we designated this with  and 

Now we embark on a similar investigation of the sampling distribution's behavior for the proportion measure. Recall from here in Section  that we
have seen an example of building a sampling distribution for a small population (our family of five) in which our "proportion' variable of interest was
the proportion of the family members that wear glasses. In this small example, there were three of the five family members that wear glasses making our
population's proportion measure  however, when we selected samples of size three from the population, the ten different samples produced
various sample proportion measures (  none of which were the same as the population's parameter measure of  However, the sampling
distribution of these various sample proportions--the probability distribution of sample proportions--had a distribution mean that did match the
population's proportion. That is, we saw in this small example that  even though  for any of the actual samples of size three. So, as in the
general sampling distribution of sample means, we wonder if the sampling distribution of sample proportions is just as predictable.

The Sampling Distribution of Sample Proportions

First, we need to recognize that sample proportion measures fall into the realm of a binomial experiment with the number of trials being the sample size,
 and the probability of success,  is the proportion of that population meeting the definition of "success" in the binomial experiment. Each time we

select a member to be part of our sample, we are performing a binomial experiment. As a reminder from Section  recall that the random variable, 
of a binomial experiment was the number of successes that could occur with a sample of size  taken from the population and that the possible values
for the random variable were  In general, it is possible to have a sample in which none  of the sample group met the "success"
definition of the binomial experiment or a sample in which only  of the  was a "success," or that  of the  ... , all the way to all  of the  were a
success. We could build the binomial probability distribution from such information based on combination counts and our probability multiplication
rule. We see this relationship established more formally below concerning a large population in which many, many samples of a size  are possible, or,
in the case of a small finite population, with random sampling with replacement on samples of a size  being possible. Using our prior concepts of
Section  we can build the binomial distribution concerning samples of size  coming from a population in which the population proportion
measure of success is  Hence, the population proportion measure of failure is  Using our binomial distribution approach
of Section  we produce the following distribution table.

Table : Binomial probability distribution

Number of Successes in  trials: Probability 

We also recall that the binomial probability distribution was found to have an expected value or mean of     and variance of 
   and a standard deviation of     As the binomial distribution demonstrates and
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our past work confirms, not all samples of size  taken from a population will have the same number of success  and the related proportion of
successes  will tend to vary from sample to sample. We saw this in our small family member example mentioned in Section 

We now connect the sample proportion measures to this binomial distribution. Notice that our random variable  on the number of successes can be
transformed into sample proportion measures simply by dividing by the sample size. For example, suppose we have a sample of size  with 
successes. In that case, the sample's proportion measure of success is    We can do this for each possible value of our random variable 

 producing the following distribution table.

Table : Binomial probability distribution

Number of Successes in  trials: Proportion of Success Probability 

This -probability distribution is the sampling distribution, and below is a graphic of that binomial distribution and its related sampling distribution
of sample proportions.

    

Figure : Binomial distribution (left) transformed into the sampling distribution of sample proportions (right)

We should recognize that the only change occurring when moving from the binomial distribution to the sampling distribution is a rescaling of the
horizontal axis, which results in a rescaling of the mean,  and the standard deviation,  both caused by our division by the sample size 

Of course, with this sampling distribution table or with its graph, we understand what values occur for the sample proportions concerning all the various
simple random samples of size  For example, we may wish to know how probable it is to find a random sample of size  from this population in
which the sample proportion is below ...that is to find  From our distribution, we can determine that

That is, over  of random samples of size  from this population will produce sample proportion  measures below 

The process from above is how we build the sampling distribution of sample proportions with small sample sizes, as the binomial distributions only
have a few possible outcomes for the random variable "a number of successes." However, these binomial distribution tables get very large and
cumbersome if working with large samples. For example, if dealing with samples of size  we would need to build a table with  rows with
sample proportion measures from  We can quickly see how even larger but often used sample sizes such as  could be
difficult to work with. To find a way around this, we continue our theory building in which the population proportion is  and then work with
various samples of size    and  Using the same approach as above, we can produce the binomial distribution tables (not shown), and then the
graphics for each of those distribution tables, shown below in Figure  Notice how the binomial distributions become more bell-shaped and
symmetrical as the sample size gets larger, specifically in the distributions for the largest two sample sizes of  and 
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Figure : Binomial distributions approaching a normal distribution

This same behavior tends to occur regardless of the actual population proportion value,  provided the sample size,  is sufficiently large. Without
delving too deeply into the underlying mathematical reasoning, the binomial distribution can be considered an approximately normal distribution in
behavior provided  and  Statisticians wishing to be even more conservative to achieve greater accuracy in the use of a normal
distribution to approximate a binomial distribution will often require  and  The above also demonstrates that as  increases, the
normal distribution approximation becomes a better and better fit for the binomial distribution. We also have the mean and standard deviation of this
approximating normal distribution due to our knowledge of the binomial distribution; that is, our normal distribution approximation to the binomial
distribution will also have a mean of   and standard deviation of  

Now let us examine how this is related to the "sample proportion" random variable instead of the "number of success" random variable. As in Figure 
 we can adjust to "proportion" measures instead of "number of success" in the distributions by dividing each of our random variable's -values by

the sample size  As can be seen below in Figure  this change to the proportion variable only causes a change in the scaling of the -axis and
measures related to that axis, but does not change the distribution probability measures nor the basic shape of the distribution.

 

Figure : Binomial Distributions rescaled to Proportion Distributions

Therefore, we note that under sufficient requirements, our sampling distribution for the proportion values will be approximately a bell-shaped

distribution with key measures of    and  We can then use a normal probability distribution to estimate the

binomial probability values over intervals; a normal probability distribution with appropriate probability density function with the same mean and
standard deviation as we found above.  Similar to the Central Limit Theorem (CLT) for predicting the distribution of all possible sample means in a
specific situation, we have a theorem for predicting the distribution of all possible sample proportions within a particular situation.

Given a binomial situation within a population of interest in which the following conditions are known:

the requirements for a binomial distribution are met with
the population proportion of interest (probability of success) is 
the complement proportion (probability of failure) is 
the sample size (number of finite trials) is 

the requirements of  and  are met

then the sampling distribution of all possible sample proportions can be approximated as a normal random variable with   and  

If desiring more reliable measures in using the normal distribution to approximate the distribution of sample proportions, we instead use the more
conservative requirements of  and  If the values of  and  do not surpass at least  then we do not approximate with a
normal distribution but instead use the binomial probability distribution adjusted to sample proportions to model the sampling distribution.

 

Applying the Theorem on Sampling Distribution of Sample Proportions
With a specific population of interest, our theorem allows us to understand which sample proportions are likely to happen and which are unlikely. This
knowledge is important for understanding how we can have confidence in predicting a population's proportion from a single sample as we turn to
inferential statistics in the next chapter. So, to prepare for this, we apply this theorem with the following text exercises.
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It is believed that  of all U.S. female adults are over  inches in height. Determine the probability of selecting a simple random sample of U.S.
female adults in which over 30% of the sample group is over  inches tall for each sample size given below. What do you notice about the
probabilities as  increases?

1. 

Answer

We first note that this can be considered a "binomial" experiment in which we are defining "success" as a U.S. female adult having a height
measure over  inches. The population's proportion is   and the "failure" proportion is   Instead of
building a binomial distribution to answer the question, we can answer this question using our above theorem since   and

   are both values above  (We also note that  is not much above  and right on the border of meeting the
requirements of the theorem; in general, when getting close in value to the requirements, we understand that our measures are not as reliable
and should not be used for highly important or costly decision making.) Based on our developed theory above, the sampling distribution of

sample proportions is approximately normal with a mean   and a standard deviation    Sketching a

graphic of this normal distribution, we see the following.

Figure : Approximate sampling distribution of sample proportions

We can compute the approximate probability for randomly selecting a sample of size  in which the proportion measure from that sample is
larger than  that is, we can find approximately from our normal distribution the value of  by finding the shaded region
displayed below in our related sampling distribution.

Figure : Approximate sampling distribution of sample proportions

Using our spreadsheet's NORM.DIST function concerning the normal distribution above, we produce:

About  of all possible samples of size  from the population of U.S. female adults will have over  of the women in the sample
being over  inches tall. Stated equivalently, the probability of randomly selecting  U.S. female adults in which over  of the women are
over  inches tall is about  Although not highly likely, such a sample result would generally not be considered unusual.

2. 

Answer

The problem setup remains the same; we update for the sample size of  noting that we still meet our requirements with   
 and    both above  In our graphic below, we point out for emphasis the scaling change that occurred in the
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horizontal axis as compared to part  of this text exercise above.

Figure : Approximate sampling distribution of sample proportions

The probability of randomly selecting  U.S. female adults in which over  of the women samples are over  inches tall is about 
 We note that this is a less likely outcome as compared to such in samples of size 

3. 

Answer

The problem setup remains the same; we update the sample size to  and note that we still meet our requirements with   
 and    both well above 

Figure : Approximate sampling distribution of sample proportions

4. 

Answer

We again update to the sample size of  and note that we easily meet our restrictive requirements with    and  
 

Figure : Approximate sampling distribution of sample proportions
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We note in this last case that it is extremely unlikely to randomly select a sample of  U.S. adult women in which over  of the sample
group are over  inches tall.

Finally, looking across all four exercises, we notice that as the sample size increases, the standard deviation of the sampling distribution
decreases. In paying attention to the horizontal axis scale as it changes through these exercises, if the sample size,  were to increase close to
the size of the population, we would see almost a  chance of the various sample proportions being very very close to the population's
proportion of  That is, the larger  is, the various possible random sample proportions will usually be very close to the population's
proportion. In the next chapter, we will develop more specific measures for the vague term "close."

In Kansas,  of adults over  years old have a bachelor's degree or higher.

1. Determine the probability of randomly selecting fifty Kansas adults over  years old in which less than  of the sample group have a
bachelor's degree or higher.

Answer

We are imagining randomly selecting fifty individuals from the population of Kansas adults over  years of age and determining the sample
proportion  of those selected who have a bachelor's degree or higher (hence a binomial situation). We should understand at this point that
different samples will produce different  values, and in using random sampling, we do not know which sample we will get. However, we are
interested in the following probability:  So, we must turn to the sampling distribution of sample proportions to answer the
probability question. Utilizing our developed theory and the given information, we note that     and   
Since    and    are both larger than  we can reasonably approximate the sampling distribution of

the various possible  values as a normal distribution with a mean    and a standard deviation   

Sketching a graphic of this described sampling distribution, we see the following.

Figure : Approximate sampling distribution of sample proportions

Using our spreadsheet to compute the area/probability measure highlighted, we have:

We note that randomly selecting such a sample is not very likely, though also not impossible.

2. Determine the probability of randomly selecting eight hundred Kansas adults over  years old in which the sample's proportion will be within 
 of the actual population's proportion of  That is, what proportion of samples of size eight hundred from this population of interest will

produce a  measure between  and 

Answer

We are again working in the same basic situation context, only with a larger sample size of  Again, turning to our developed theory we first
note that    and    are both larger than  Therefore, we can reasonably approximate the sampling

distribution of the possible  values as a normal distribution with a mean    and a standard deviation   

Sketching a graphic of this described sampling distribution, we see the following.
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Figure : Approximate sampling distribution of sample proportions

We are interested in the proportion of samples in which the  values are within   of the population's measure of  Thus, we need
the area/probability measure in our distribution between  scale measures of   and   Using our technology to compute
our area:

Around three-quarters of the samples of size  from the population of Kansas adults over  years old will produce sample proportion
measures within  percentage points of the actual population proportion of  Understanding such results gives us some confidence in using a
single sample's measure from a sample of size  as a close approximation to what is happening in the population. We realize some
samples will not meet this condition, but most will.

3. Regarding this situation involving Kansas adults over age  determine the probability of randomly selecting twelve Kansas adults over 
years old in which at most  of the sample group have a bachelor's degree or higher. That is, determine .

Answer

We are again working in the same basic context as question  and  above, but we should also notice we are working with a somewhat small
sample size. So checking our theory requirements, we first note that     and    and thus our important
requirement measures are    and    Since both are not larger than  we should NOT use the normal
distribution for approximating the binomial probability distribution; we must go back to our discrete values table approach of the binomial
probability distribution discussed in Section 4.3 of this text, with the needed adjustment to sample proportion as the random variable.

Building this table as per Section 4.3 concepts (for efficiency we use the BINOM.DIST function in a spreadsheet to produce the probability
measures), and then converting to proportion measures on number of success as discussed above in this section, we produce the following
distribution table:

Table : Binomial to sample proportion probability distribution

Number of Successes in  trials: Proportion of Success Probability 
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This table is a representation of the -sampling distribution. We see that the sample proportion measure of  for samples of size  occurs
when the binomial random variable is  Thus, by adding all associated probability measures when , we find

Thus, about  of all the various possible samples of size  from the population of Kansas adults over  years old will produce a sample
proportion value (representing the proportion of those with a bachelor's degree or higher) of at most 

To see why this "check of requirements" was so important, we notice that if we had instead incorrectly used a normal distribution in this
situation, we would have computed

which is a significantly poor approximation value to the actual probability measure of the sampling distribution for proportions computed above
of 

4. Regarding this situation involving Kansas adults over age  determine the interval of sample proportions  which captures the central  of
all possible proportion values from samples of size eight hundred. That is, determine -values  and  such that  

Answer

We are again working in the same basic situation as question  above, so we again go to the normal distribution modeling the sampling

distribution of sample proportions: a normal distribution with a mean    and a standard deviation   

However, this time we have a central area/probability region of  and are looking for the boundary values on the -axis that captures this
amount of area. Sketching a graphic of this described sampling distribution, we see the following:

Figure : Approximate sampling distribution of sample proportions

Reminding ourselves that we can find horizontal axis scale values in normal distributions tied to left area measures using our spreadsheet's
NORM.INV function, we compute:

Thus,   or, stated in words, about  of all the various possible samples of size  from the population of
Kansas adults over  years old will produce a sample proportion value (representing the proportion of those with a bachelor's degree or higher)
between  and 

We notice another implication from our work. Our boundary values of  and  each deviate from the population proportion value 
 by     . This tells us that about  of random samples in this

situation will produce a sample proportion measure  that is different from the population's proportion measure  by no more than  
 So most samples' proportions from samples of size  in this population are relatively close in value to the population's proportion,

and only about  of samples will deviate from the population's proportion by more than 

In summary, as long as certain requirements are met, we can often use normal distributions to analyze sampling distributions of sample proportions and
understand how varied sample proportions can be within a specific binomial situation. As the Text Exercise  demonstrated, this will enable us to
understand how we can infer, with some confidence, a population's proportion from a single random sample.

5.3: Sampling Distribution of Sample Proportions is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort
Hays State University.
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5.4: Sampling Distribution of Sample Variances - Optional Material

State the expected value and variance of the sampling distribution of sample variances from a normally distributed parent
population
Discuss transforming the sampling distribution of sample variances to a -distribution
Calculate probabilities of sample variances from normally distributed parent populations using -distributions

Review and Preview
At this stage, we have a relatively robust understanding of a sampling distribution, but we reiterate it once more within the context
of sample variances. For a particular population, the sampling distribution of sample variances for a given sample size  is
constructed by considering all possible samples of size  and computing the sample variances for each one. The values of the
sample variances are the values that our random variable takes on. We then build the probability distribution with the understanding
that the sampling method is simple random sampling. As such, we understand the sample variances as a random variable, which we
typically treat as a continuous random variable.

The construction of a sampling distribution is always the same. We have used this process for three sections. When considering
sampling distributions of sample means, the Central Limit Theorem asserts that the sampling distribution becomes approximately
normal as the sample size increases. This is true for any parent population. The smallest sample size at which the sampling
distribution is approximately normal depends on the parent population.

We had something similar with the sampling distributions of sample proportions in the last section; if the sample was large enough
to expect at least  observations with the given characteristic and at least  without the given characteristic, the sampling
distribution was approximately normal. This was true for any parent population. Again, the smallest sample size at which the
sampling distribution is approximately normal depends on the population proportion, but there is, theoretically, a sample size where
it is approximately normal.

One may hypothesize that this is true for any sample statistic and population. Unfortunately, this is not the case when considering
the sampling distribution of sample variances.

Sampling Distribution of Sample Variances

We have seen approximations to the sampling distribution of sample variances in the first section of this chapter. We are now using
the same program to thoroughly explore the sampling distribution of sample variances. Using a normal parent population, we
simulate the sampling distribution of sample variances through the same progression of sample sizes used in our previous
development:      and . We have fit a normal curve to each distribution to emphasize that these sampling
distributions are not approximately normal.
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Figure : Sampling Distributions of Sample Variances for various sample sizes

Note that each sampling distribution of sample variances is centered about  the population variance. This happens because
sample variance is an unbiased estimator of the population variance. Note that we have only estimated the sampling distribution of
sample variances with a single example where the parent population is normal. We previously considered various parent
populations. This reduction in scope is no accident; the method we describe works only for normally distributed parent populations.
Some methods work for all parent populations, but those are beyond the scope of this course.

We provide, without proof, the expected value and standard deviation of the sampling distribution of sample variances in the case
of a parent population that is normal with population standard deviation 

Again, we emphasize that the distributions above are not represented well by normal curves. Recall that in chapter  we discussed a
family of distributions that were positively skewed and followed a similar progression in shape as the degrees of freedom
increased. We introduced the -distributions because they are at play in the sampling distributions of sample variances when the
parent population is normally distributed. Consider the progression below (see that the figures above are frequency distributions
with various scales, while the figures below are probability density functions all on the same scale).

Figure : Chi-Square Distributions with Various Degrees of Freedoms

A rigorous development of the relationship between the sampling distribution of sample variances and the -distribution requires
mathematical tools beyond the scope of this text. We provide only a brief exposition. Recall that the -score can transform any
normal distribution with mean  and standard deviation  into the standard normal distribution with mean  and standard deviation

. This means we can study any normal distribution using the standard normal distribution. A similar situation is at play with the
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sampling distribution of sample variances from a normal parent population. We must standardize the distribution and use
technology to find the area. We must use a different transformation and probability distribution.

We will introduce the transformation within the familiar context of adult female heights. Recall that adult female heights are
normally distributed with a mean of  inches and a standard deviation of  inches. We know that the population variance of
adult female heights is   square inches. We consider the sampling distribution of sample variances with a sample size of 

 and assess the probability of randomly selecting a sample of size  and getting a sample variance between  square inches and 
 square inches,  Consider the following figures that illustrate the conversion.

Figure : Transformation of a sampling distribution of sample variances to -distribution

Using the transformation , with   and  , we transform the sampling distribution of sample
variances to the -distribution with  degrees of freedom, which we sometimes denote using   to emphasize or provide
the degrees of freedom. In this context, the degrees of freedom will always be  one less than the sample size. We can
compute  by transforming the interval in terms of  to an interval in terms of the  variable and computing

the area using technology, as we did in chapter  Note that   and  . So the interval, 
 gets transformed to  It is difficult to tell that these two areas are equal simply from the figure

above, but it is indeed the case. We have plotted both distributions using the exact coordinates below. Compare the red and the blue
areas to help convince yourself the claim of equal areas is possible/reasonable (for an interested reader, further exploration can be
done using this Desmos comparison).
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Figure : Sampling distribution of sample variances and -distribution plotted together to illistrate the preservation of area

We must introduce an accumulation function to calculate the area beneath -distributions. The function name and syntax may
vary depending on the technology. We present a left-tailed accumulation function from Excel:  The syntax in Excel
is  Since we are trying to find areas, we want  to be
marked true using  or 

With these tools, we may now compute 

Adult IQ scores are thought to be normally distributed with a mean of  and a standard deviation of . Determine the
probability that a random sample of  adults has a sample standard deviation less than .

Answer

We will not develop a sampling distribution of sample standard deviations since sample standard deviation is not an
unbiased estimator of population standard deviation, even though sample variance is an unbiased estimator of population
variance. If we are to proceed, we must translate our prompt into one that considers variance rather than standard deviation.
If  then  since standard deviation is non-negative. We are interested in computing  when the
population is normally distributed,  and   

Let us transform our probability statement into one about a -distribution.

Figure : Sampling distribution of sample variances

5.4: Sampling Distribution of Sample Variances - Optional Material is shared under a Public Domain license and was authored, remixed, and/or
curated by The Math Department at Fort Hays State University.
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6.1: Introduction to Confidence Intervals

Motivate the need for interval estimates
Introduce and interpret confidence intervals
Introduce margin of error
Deduce information from confidence intervals knowing the general form

Review and Preview
Recall that in conducting inferential statistics, we are interested in understanding parameters, facts about a population, without
having to do the work of studying the entire population. We want to study a sample and use the facts about it, the sample statistics,
to estimate a population parameter. In the last chapter, we developed sampling distributions that connect the possible values of
sample statistics with their probabilities. We found that, in general, we can approximate sampling distributions fairly well using
continuous random variables. As such, we solidified our growing intuition that we should not expect a sample statistic computed
from a simple random sample to be exactly equal to the population parameter. We expect there to be a difference between the two.
The actual difference between a computed sample statistic and the population parameter must be unknown because the population
parameter is unknown. Simply using a sample statistic as an estimate of the population parameter is insufficient. Instead, we
estimate the population parameter by developing an interval estimate, called a confidence interval, based on the sample statistics
and the sampling distribution.

In constructing an interval estimate, we hope to provide a meaningful range of values in which we feel confident that the
population parameter is located. There are two competing desires here: the confidence that the population parameter is in the
interval estimate, which we would like to be fairly high, and the length of the interval which we would like to be fairly small. But,
as one might guess, increasing the confidence results in larger intervals. So, it is a balancing act, but luckily there is another factor
at play that can help us manage both desires that we will study throughout this chapter. Let us begin our development of confidence
intervals.

The Differences and Their Probabilities
Recall the text exercise about the grade distribution of statistics students for a particular instructor over several semesters. We
computed the probability that the difference between the population mean  and the sample mean from a random sample of past
students was less than  For a sample size of  the probability that the sample mean fell within  of the population mean was

We now make an important but seemingly trivial note. If the sample mean is within a certain distance of the population mean, then
the population mean is within that same distance of the sample mean. We can translate the previous probability statement as such:
the probability of randomly selecting a sample of size  so that the population mean is within  of the sample mean is about 

 So, for about  of the samples of size  the population mean lies within  of the sample mean. Which is to say, for
about  of the samples of size , the population mean lies in the interval  where  is the computed sample
mean from the randomly chosen sample. We might randomly select a sample of size  and compute a sample mean of . In
which case, the interval  does not contain  (see the red interval below). On the other hand, we might
randomly select a sample of size  and compute a sample mean of , resulting in an interval of  (see the dark blue
interval below). We note that the population mean  does fall in this interval. Using a sample size of  with a difference of 
results in the population parameter lying in the constructed interval about  of the time. We want to construct an interval that we
are more confident in its ability to catch the parameter.
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Figure : Sampling distribution of sample means 

The text exercise progressed through various sample sizes to see the effect sample size had on the probability of the sample mean
falling within  of the population mean. We noticed that the probability increased as the sample size increased. For a sample size
of  the probability that the sample mean fell within  of the population mean was  Making a similar translation as
before, the probability of randomly selecting a sample of size  so that the population mean is within  of the sample mean is
about  This means that for about  of the possible random samples of size  taken from our population, the interval
constructed from our computed sample mean,  will contain the population mean. If we did not know the population
mean, we could not be sure which intervals successfully caught the population mean, but knowing that  of the possible
random samples of size  produce an interval containing the population mean elicits a certain confidence that most of the time
we are successful in catching the population mean.

Herein lies an understanding of the name confidence interval. The confidence level ( ) of a confidence interval is the
percentage of times (if we conducted random sampling repeatedly) that we would expect the population parameter to fall in our
constructed interval. In general, the confidence level is set first and then the confidence interval is constructed to ensure the level of
confidence. We now begin to fix the discrepancy in ordering.

Suppose, we want to construct a confidence interval at the level of  using a sample of size  Being within  of the
population mean was insufficient to produce such a level of confidence. To increase our confidence, we must increase the distance
the sample means are within. Will  be enough or ? Can we find the precise distance? Consider these questions in conjunction
with the following figure.
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Figure : Sampling distribution of sample means 

We are trying to find the distance  such that  of all samples of size  produce sample means that are within  of the
population mean. The shaded region has an area of , and the lower and upper bounds must be  below and above the
population mean, respectively. Using the fact that the total area under a probability density function is  We know that the total
area of the white regions, the two tails, is . Notice that the two tails each have the same area since our probability
density curve and our shaded region are symmetric about the mean. From this, we can deduce that the left tail, the white region on
the left, has an area of   Now we know that   is the lower bound of our

shaded region, which also happens to be  We have  

Both  and  produce an interval wider than is necessary to attain  confidence.

 of all samples of size  from our population produce sample means that are within  of the population mean. If we
construct an interval  using the computed sample mean from a random sample of size , we would
expect to catch the population mean in the constructed interval,  of the time. We would call  our margin of error.

Confidence Intervals
Since the confidence level is a major driving force in constructing the confidence interval, the confidence level is given in
conjunction with the confidence interval; a  confidence interval is a confidence interval constructed at the  confidence
level. Recall that this indicates that the method of constructing the confidence interval,  of the time, produces an interval
containing the population parameter. The remaining  of the time, the method fails to catch the population parameter; this rate of
expected failure is often referred to as the  value (lowercase Greek letter alpha) of the confidence interval. The confidence level 

 and  values are related to each other. When we construct a confidence interval, we either successfully catch the parameter or
fail to catch the parameter. There are no other options. As such, the success rate plus the fail rate must be . Hence, 
Common confidence levels are   and  but confidence levels can theoretically be any positive value less than  

 We can determine  for these common confidence levels since  and  are complementary. So, we have  values of 
  and  respectively.

If our confidence level is  our task is to answer the question:  of the sample statistics are within what distance of the
population parameter? This distance is called the margin of error  and it depends on the sampling distribution. An
attentive reader will recognize a possible issue here. We knew the population mean was  when we computed  the margin of
error. How are we to compute such a distance if we do not know what the population parameter is? The solution is quite simple. We
focused our study of sampling distributions primarily on two statistics: sample mean and sample proportion. Both of these statistics
are unbiased estimators of their associated population parameters. This is important because we know that each respective sampling
distribution's mean (expected value) is the associated population parameter. When the sampling distribution is approximately
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normal, computing the margin of error reduces to computing the number of standard deviations from the mean that are necessary to
gain the given confidence. We will discuss the specifics of computing the margin of error in later sections. For now, we recognize
that the margin of error depends on the confidence level and the standard deviation of the sampling distribution (commonly
referred to as the standard error). This method of confidence interval construction results in confidence intervals of the form: 

Use this information to answer the following questions. The state senate needs a two-thirds majority vote to override a
governor's veto. A large random sample of senators was taken to estimate the percentage of senators who support overriding
the veto. The  confidence interval for proportions  was constructed using the sample data and the method
discussed above.

1. Explain the meaning of the  confidence level and the resulting confidence interval in the context of the problem.

Answer

The  confidence level indicates that the method of constructing the confidence interval catches the population
proportion  of the time. So, we are  confident that the population proportion  falls somewhere between  and 

2. Based on the confidence interval, would you recommend that a proponent of the override motion initiate a vote?

Answer

Since the lower boundary of the confidence interval is , which is greater than two-thirds, the proponent of the override
can feel confident that the Senate can override the governor's veto, although it appears that the margin of victory will not be
very large. We, therefore, recommend that the proponent initiate the vote.

3. Determine the computed sample proportion  and margin of error 

Answer

Because this line of reasoning applies to any confidence interval constructed using the method discussed above, we answer
this question first in generality and then in particular. Since the confidence interval was constructed using the method
discussed above, we know that the lower bound is equal to the sample statistic minus the margin of error and that the upper
bound is equal to the sample statistic plus the margin of error. So we have the following system of equations.

We can eliminate the margin of error by adding the two equations together.

We can eliminate the sample statistic by taking the difference of the two equations.

We have developed the following formulas.

This confirms that the sample statistic is the midpoint of the confidence interval and that the margin of error is half of the
length of the confidence interval. So  is the midpoint between  and  which is  and  is the distance from
the midpoint to an end or half of the interval length which is 

(sample statistic −margin of error, sample statistic +margin of error).
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Reading mathematical symbols with meaning is an important skill to develop in a quantitatively and symbolically driven
society. As we have seen in the development of confidence intervals, the margin of error,  is the distance such that the
confidence level,  produces sample statistics within that distance of the population parameter. We can understand this
equivalently as the maximum distance a sample statistic could be from the population parameter and still be captured in the
confidence interval. Since we are conducting simple random sampling in the context of this course, we can understand that
statement as the probability of randomly selecting a sample of a given size that produces a sample statistic within  of the
population parameter is . This can be expressed with symbols quite elegantly. The symbols for statistics and parameters
differ based on the context; so, for now, let us remain in the context of means. The statements made above can be expressed as 

Read , the absolute value of the difference between the sample mean and population mean, as the distance between the
sample mean and population mean.

Read  as the distance between the sample mean and population mean is less than the margin of error.

Read  as the probability that the distance between the sample mean and population mean is less than the
margin of error.

Read  as the probability that the distance between the sample mean and population mean is less than
the margin of error is the confidence level.

It is important to remember that the random variable at play is the sample statistic because the underlying random experiment
is conducting a random sample of a given size.

Read the following mathematical expression with meaning: 

Answer

The probability that the distance between the sample proportion and population proportion is greater than the margin of
error is one minus the confidence level, which is the alpha value.

6.1: Introduction to Confidence Intervals is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.

 Note: Reading Symbols with Meaning

ME,

CL,

ME

CL

P (| −μ| <ME) =CL.x̄

| −μ|x

¯

| −μ| <MEx̄

P (| −μ| <ME)x

¯

P (| −μ| <ME) =CLx

¯

 Text Exercise 6.1.2

P (| −p| >ME) = 1−CL= αp

^

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/48923?pdf
https://stats.libretexts.org/Courses/Fort_Hays_State_University/Elements_of_Statistics/06%3A_Confidence_Intervals/6.01%3A_Introduction_to_Confidence_Intervals
https://stats.libretexts.org/Courses/Fort_Hays_State_University/Elements_of_Statistics/06%3A_Confidence_Intervals/6.01%3A_Introduction_to_Confidence_Intervals?no-cache
https://stats.libretexts.org/@go/page/2091
http://www.ruf.rice.edu/~lane/
https://en.wikipedia.org/wiki/Public_domain
https://onlinestatbook.com/


6.2.1 https://stats.libretexts.org/@go/page/41797

6.2: Confidence Intervals for Proportions

Recognize that a proportion of a random sample proportion is an estimation of the related proportion measure of the
population
Develop and apply the margin of error measure for using the proportion of a sample proportion to estimate the proportion
of the population
Develop and apply the confidence interval measures for using the proportion of a sample to estimate the proportion of the
population 
Develop and apply sample size measures to control margin of error

Review and Preview
As stated numerous times before, an important area of inferential statistics is the ability to use a single measure from a sample to
predict the related measure for the entire population (such as using the mean of a sample to predict the mean of the population or
using the proportion from a sample to predict the proportion of the population.) In the previous Section  we discussed the
general concepts of margin of error, confidence intervals, confidence levels, and  value; all of which are important measures
of inferential statistics. We now focus on the specific situation of using a proportion measure from a random sample to predict a
proportion measure from the population.  

To further review, we remind ourselves of Section  and the sampling distribution of sample proportions where we noted that
different samples of a specific chosen size,  produce a collection of various sample proportion measures  In our past
investigations, most if not all of the various sample proportion measures were not the same value as the population's proportion,
that is  It was also important for us to recognize that in the large collection of various  values, that under certain
restrictions, the distribution of  values formed an approximately normal distribution. (The restrictions required that  and 

 both of which tend to be easily met if working with large sample sizes.) Furthermore, this sampling distribution's mean
value will be the same as the population's proportion value and the spread (standard deviation) in the sampling distribution is

smaller than the standard deviation of the population. In notational form, we designated this with   and  

As one final review note, we re-examine the third part of Text Exercise \(5.3.\2.) In that exercise, we found the central interval in
the sampling distribution that contained  of possible sample proportion results. That is, we found within the given context how
far away (the margin of error) from the population proportion's value  of the various samples' proportions would be.

Now we use these previous findings to develop a routine method for building a confidence interval in the proportion measure
situation.

Sampling Distribution of Sample Proportions and Confidence Intervals
Let us begin in a specific context to help frame our work. Suppose that we are interested in predicting the proportion of the U.S.
adult population which has received the latest flu vaccine. Naturally, we would not be able to ask every U.S. adult due to the
population size and likely limited resources/finances to collect such data. However, it would be reasonable for us to randomly
contact  such adults in the United States and determine which of those had and which had not taken the latest vaccine.
Suppose  of those had received the vaccine; then this one collected sample had a proportion measure of    

 Naturally, we do not claim the population's proportion,  is the same value, but our work with sampling distributions
should convince us that we can expect the population's measure to be reasonably close to this sample's measure. This predictable
sampling distribution of sample proportions allows us to consider a random sample's proportion,  to be a valid point estimate of
the population's proportion; after all, the sampling distribution shows that most of the time a random sample's proportion will be
"close" to the population's proportion measure. However, we need to have a measure for "close".

Due to the predictable sampling distribution of sample proportions (shown in Figure  below), we will determine a measure of
"close" by choosing a confidence level (CL) value, such as  Our measure of "close" will be a calculated margin of error
measure designated as ME. Recall that the distribution below shows that most random samples (in fact the percentage given by our
choice of CL) will produce  values that fall within the ME distance of the actual population's proportion  which is at the center
of the sampling distribution. As long as we choose a large CL value, we have a very good chance that our one collected random
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sample's proportion will fall on the horizontal axis scale under the blue region. (Yes, it is possible that our random sample's  will
not be within this group, but the probability of such an outcome is only  --the  value discussed in Section 

 Once more, we can see that if we keep our choice of CL close to  then  will be small: close to 

Figure : Sampling distribution of sample proportions

Now in relation to our given situation of estimating the proportion of all U.S. adults that have received the flu vaccine by using a
sample of size  we note that we do not know  and so, unlike our previous work in Chapter  we cannot determine the
scaling of our horizontal axis in the natural scale of proportion measures. We address this in the next subsection on determination
of the margin of error ME value.

Determining the Margin of Error in the Proportion Situation

We now use our powerful standardization feature on normal distributions from  Section  where any normal distribution can be
converted in scale to the standard normal distribution. Consider the following figures illustrating the transformation process to our
normal distribution of sample proportions.
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Figure : Sampling distribution of sample proportions transformed into the standard normal distribution

Notice that under the standard normal transformation process, the margin of error is scaled by a factor of one over the standard

deviation of the sampling distribution; this occurs since we divided by the standard deviation value of  in our scale

transformation. Also, since we are now considering the standard normal distribution, we know the mean and standard deviation of
the distribution. Therefore, using our computation technology, we can find the boundary values in the -scale that will produce the
desired confidence. These are represented by  in the figure above. We call these points critical -values or simply critical
values in this process; these are completely determined once we have a chosen confidence level. Note that  represents the -
scale value where the area under the standard normal distribution to the right is  and  represents the -scale value where the
area under the standard normal distribution to the left is  In converting back to the proportions' sampling distribution with  

 or in related equivalent form of   we should recognize something important. These critical 
-values are telling us how many standard deviations of the sampling distribution we must differ from the mean of that distribution

to capture the chosen  percentage of sample results. That is, we have a measure of our "closeness" by  

We do have an issue in this computation of the margin of error since it needs the value of  yet the value of  is unknown and what
we are trying to estimate. However, since samples' proportions tend to be close in value to the population proportion, we will use
our sample's proportion measure in the calculation. That is, we will find the margin of error measure of closeness by  

 For practical purposes, the use of  and  instead of  and  is reasonable as long as we meet the large-sample
requirements of  and . It is worth noting that using   is not the same as using   there is smaller
error in the former than the latter. One illustration of this, which is developed further later in the section, is the fact that  is
never larger than  For example, if  and we get  then   and   even large differences
between  and  may still yield small differences between  and  This is worth observing so that it does not seem as if we
are chasing our own tail. Our goal is to estimate  it would be pointless to use a formula to do so if the formula implicitly used 

 If we are concerned with the accuracy of our error measure, we can be more conservative and instead require 
and  as discussed in Section  By using larger sample sizes, we can be more assured of our theory and hence in the
validity of our measures produced by this theory. One should not use the above ideas on proportions measures if working with
small sample sizes. We summarize the above in the following.

Given a desire to estimate a population proportion measure  using a simple random sample's proportion  in which the
following conditions are known or reasonably believed to exist:

the requirements for a binomial distribution are met with a sample size of 
the requirements of  and  are met
a confidence level of  has been chosen and hence 

then the margin of error in using the random sample's proportion measure is measured by
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where  are the two critical values capturing the center  of the standard normal distribution.

If being more conservative in our approach, we may instead use requirements of  and 

With this theory in place, we now apply this to our specific context of the flu vaccine. We recall that we were interested in
estimating the proportion of all U.S. adults who had taken the most recent flu vaccine. We had collected a random sample of 
adults in which  had taken the vaccine, producing    We note that the requirement for a binomial
distribution are met with this context in relation to samples of size  and that    and  

 

Next, we do expect the actual population's proportion to be close to this  value due to our sampling distribution theory, but
we need a measure of how close: a measure of the likely margin of error in the sample's result. To do so, we first must set a
confidence level, say we choose  This means that this process will produce an interval which contains   of the
time. Then, to determine this margin of error, we proceed to the standard normal distribution to find the associated critical -values
tied to a central area of  and left/right tail areas of  illustrated below in Figure 

Figure : Standard normal distribution for a  confidence level

Using our approach of Section  we find these critical -scores using our spreadsheet's  function:

Of course, as seen in earlier work, since the standard normal distribution is symmetric about its mean scale value of  we need not
actually compute both critical values as both will be the same sized value, just one negative and the other positive.

This now lets us determine our margin of error as tied to this chosen confidence level of 

Thus we have  confidence that our one random sample's proportion of  is no more than  away from the
population's actual proportion measure  That is, in assuming our one collected sample's proportion is one of the central  of
possible sample proportion values that can occur from samples of size  then our sample's proportion will be found on the
horizontal scale somewhere below the shaded region, no more than  from the actual true population's proportion, as
illustrated in Figure  below.
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Figure : Illustration of margin of error in a sampling distribution

In the above computation of the margin of error measure, one should note that, although the confidence level was   and
complement alpha level was thus , in determination of the critical -values within the  function, neither of
these two numbers were directly used. Instead, since the spreadsheet's function requires use of only a left-area measure, we instead
had to use  and its complement measure of   within the spreadsheet function. This is a technology
computational requirement that must be recalled when constructing these measures.

As a final summary of our specific example, we are able to state that we have  confidence that the true proportion of the U.S.
adult population that had taken the most recent flu vaccine is approximately  with no more error than  This now
easily leads us to the final concept of this section, the confidence interval for the proportion situation.

Constructing Confidence Intervals for Proportions
Once we have a margin of error measure determined, we easily construct the confidence interval for the population proportion.

Or, instead of using algebraic interval notation, we may instead indicate the confidence interval as follows.

So in our flu vaccine context, we have a confidence interval of  or equivalently 
 

This allows us to state that we are  confident that the actual proportion of the U.S. adult population that had taken the most
recent flu vaccine is between  and  or equivalently 

Let us try a few more text exercises using the same theory but in varied contexts.

Use our theory on margin of error and confidence intervals established above, determine the following.

1. A state's department of education is interested in the proportion of all eighth-grade students in their state that will score at
less-than-proficient in math on a national assessment. A random sample of  eighth-grade students from the state were
given the national assessment and  of those students scored less-than-proficient in math. Develop an appropriate
estimate from this information for the department of education, including the margin of error and related confidence
interval based upon a choice of a  confidence level. Include a final concluding statement with the developed
confidence interval.

Answer
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We proceed by first developing the sample's proportion measure:

Thus, in the sample, about   of the sampled eighth-grade students scored less-than-proficient on the national
assessment and   scored above less-than-proficient. We also note that we meet the basic requirements for our
theory since   and   are both well above  and the situation is based on a random sample and a
binomial experiment.

We now use this sample measure as a "best estimate" for the population's proportion, but also need to determine the

possible likely margin of error in this estimate. We continue by developing   Since working with a

chosen confidence level of  then   leading to determination of the following critical -values.

The statistical margin of error is

Thus, based upon  confidence, we have at most a  margin of error in this sample estimate; leading to a
confidence interval of  or in interval notation,  

As a final summary, we are able to state that we have  confidence that the true proportion all eighth-grade students in
this state that will score at less-than-proficient in math on the state assessment is approximately  with no more error
than  we are  confident that the true population proportion  falls somewhere between  and 

2. A marketing researcher is interested in the proportion of European consumers who are aware of a U.S. branded product. A
random sample of  European consumers were asked if they recognized the U.S. branded product;  stated they knew
of the product. Develop an appropriate estimate of the proportion of all European consumers who are aware of the U.S.
branded product from this information for the researcher, including the margin of error and related confidence interval
based upon a choice of a  confidence level.

Answer

We again first develop the sample's proportion measure:

Thus, in the sample,   of the sampled Europeans were aware of the U.S. branded produce and   were not
aware. We also note that we meet the basic requirements for our theory since   and   are both well
above  and the situation is based on a random sample and a binomial experiment.

We use this sample proportion as a "best estimate" for the population's proportion, but must determine the possible likely
margin of error in this estimate. Since we are working with a chosen confidence level of  then we have 

 leading to determination of the following critical -values of

Thus, the statistical margin of error is
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Based upon  confidence, we have at most a  margin of error in this sample estimate; leading to a confidence
interval of  or in interval notation,  

As a final summary, we are able to state that we have  confidence that the true proportion all Europeans that recognize
the U.S. branded product is approximately  with no more error than  we are  confident that the actual
population proportion  falls somewhere between  and 

3. What will happen to the margin of error if one increases the desired level of confidence?

Answer

Since the confidence level  is tied to us assuming our random sample's proportion is within the central  of the
sampling distribution or its standardization, we need only recognize what happens to our horizontal axis interval in relation
to any adjustment of the level. Using a confidence level of  first and then of  we can visually reason that increasing
the confidence level increases the size of the horizontal axis interval (and hence the size of the related critical -values) as
is illustrated in the diagrams below.

  

Such an increase in the chosen confidence level will then cause the margin of error measure to be larger and hence the
confidence interval to be wider. So, choosing to increase only the desired level of confidence (while also not changing any
other option) will cause a larger margin of error. The ethical researcher will always set the confidence level before
beginning the statistical analysis (not set after some statistical work just to force a smaller margin of error.) Those aware of
this will also notice when research sets an unusually low confidence level, possibly in an attempt to narrow the margin of
error in sample results so as to mislead consumers of the research.

4. What will happen to the margin of error if one decreases the sample size used to produce the sample proportion estimate?

Answer

Since   we have that  is in the denominator. Using our number sense within simple arithmetic, we see that

as  decreases, our denominator in our sampling distribution's standard deviation measure,  also decreases. When
dividing by smaller and smaller numbers, the result of the quotient is larger and larger (for example,    

   and so on. As we decrease the denominator, the value of our fraction increases getting closer and closer
to  Thus, the margin of error becomes larger as the sample size gets smaller. This should match our natural number sense
that smaller samples are more likely to produce statistics which deviate more from the population parameter in comparison
to larger samples.

Sample Size Determination in Confidence Intervals on Proportions
Based upon part  of the last text exercise group, we notice that sample size choice plays some role in controlling the magnitude of
the margin of error. We can apply a bit of algebraic manipulation to develop a formula allowing us to pre-predict the sample size
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needed to control the margin of error within any specific chosen level of confidence. Using our developed margin of error formula,

we note that we can solve this algebraic formula for  as illustrated below.

So we have developed a related formula that will tell us how large of sample we need once we have chosen a confidence level (so
we can determine the critical -value), a margin of error size, and some previous study's sample results (so we have values for 
and  It would be nice to eliminate the requirements of a previous study, and we can do so if we take just a brief time to notice
that the product  is predictable. Recall that  is the complement of  so as illustrated by the table of values below.

Table : Products of proportion values and their complements

Product 

We can inductively reason that the maximum product is   So a required sample size in the proportion situation
can be found without a preliminary study by our developed formula given by:

The above leads to the following key findings.

Given a desire to estimate a population proportion measure  using a simple random sample's proportion  in which the
required conditions are to be met, then the sample size needed to meet a confidence level of  and margin of error of no
more than  can be found by the following computations:
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Now we apply these sample size concepts within a few exercises.

Using our sample size findings above, determine the following.

1. A state's department of education is interested in the proportion of all eighth-grade students in their state that will score at
less-than-proficient in math on a national assessment. A researcher is interested in controlling the margin of error to no
more than  while working under a  confidence level. A previous study from three years ago produced a sample
proportion measure of   What size sample is required for the researcher to meet the desired conditions?

Answer

We proceed by applying our developed sample size formula in which we need the margin of error to be at most 
 and also happen to have a preliminary value of   known. First, we must determine the critical -

scores  tied to the prescribed confidence level of  Therefore   and  

Hence, our sample size calculation is

Now, sample size must be a natural number, so we must round up any fractional-valued results. Common rounding which
would often be rounding down will allow the margin of error to go slightly above the desired  thus our need to always
round up any resulting computed fractional amounts (the same is true for final interpretation of all sample size
computations: we round up any fractional values.)

As a final summary, the researcher must collect a sample of at least size  in order to keep the margin of error at most 
 while also requiring  confidence. If, upon reflection, the researcher decides it is unreasonable (possibly due to

cost) to collect data from such a large number of eighth-grade students in Kansas, then either the allowed margin of error
must be increased or else the confidence level must be decreased in order to decrease the required sample size.

2. A marketing researcher is interested in the proportion of European consumers who are aware of a U.S. branded product.
The researcher is interested in controlling the margin of error to no more than  while working under a  confidence
level. No previous study has been found about this topic. What size sample is required for the researcher to meet the desired
conditions?

Answer

This time we proceed by applying our developed sample size formula in which we need the margin of error to be at most 
  but in which we have no preliminary value of  known. So, again we must first determine the critical -scores 

 tied to the prescribed confidence level of . Therefore   and  

Hence, our sample size calculation is
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We once again round this results to a needed sample size of 

As a final summary, the researcher must conservatively collect a sample of at least size  in order to keep the margin of
error at most  while also requiring  confidence.

It is worth noting that these are the minimum sample sizes needed if the sample is obtained via a simple random process. Other
methods of sampling may require larger sample sizes. It is also worth noting that all the theory discussed in this section, as well as
all the examples, operates under the assumption that the sample is a simple random sample, meaning, all samples of size  are
equally likely. Use of the methodology developed here on samples not obtained in this way could lead to a much higher probability
of inaccuracy. Bear this in mind when reading statistical analyses.

6.2: Confidence Intervals for Proportions is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.

10.12: Proportion by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
9.8: Sampling Distribution of p by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
1.10: Distributions by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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6.3: Confidence Intervals for Means (Sigma Known)

Motivate the use of the -score transformation to determine margin of error
Define and compute critical values
Determine the margin of error
Construct confidence intervals, interpret their meaning, and apply them to contextual questions
Utilize sample size as a means to balance confidence and margin of error

Confidence Intervals: A Quick Review
When we select a random sample and study it, we do not expect that the computed sample statistic is equal to the population
parameter. The distance between the sample statistic and the population parameter is called the error. We want an idea of how far
off our sample statistic might be from the population parameter and provide an interval of possible parameter values using the
information from our sample. Through our knowledge of sampling distributions, we can provide a level of confidence that we have
caught the population parameter in our interval. If the confidence level is  the construction method successfully catches the
population parameter for  of all the samples of that given size. In other words, if we repeatedly sampled the population
randomly with the same sample size, we would expect  of the samples to produce confidence intervals with the population
parameter in them. To maintain our level of confidence, we determine the distance (the margin of error), such that the percentage of
samples have sample statistics that fall within that distance from the population parameter. If we then center our confidence interval
at our computed sample statistic and extend our interval out by our margin of error in both directions, we produce a confidence
interval that catches the population parameter with a success rate that is equal to our confidence level. We now dive into the details.

Confidence Intervals for Means

Let us frame our task within the particular context of this section: constructing confidence intervals for the population mean. We
are constructing a confidence interval using information collected from a random sample of size  from our population. The form
of our confidence interval will be  where  is the computed sample mean from the random sample of size 
and  is the margin of error. We must select a level of confidence for the confidence interval. This is the percentage of samples
of size  that we want to be within the margin of error of the population mean. We need to determine , the margin of error,
using the sampling distribution of sample means, which is normal, or at least approximately normal, under certain conditions.
Those conditions must be met. If you cannot remember the conditions, you can review the section on the sampling distribution of
sample means and commit the conditions to memory. Examine the figure below for a visual representation. Consider which of the
symbols below will have a fixed, known value in an actual research situation.
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Figure : Sampling distribution of sample means

When considering the sampling distribution of sample means,  is a variable with no fixed value for us to know while determining
the margin of error. Once we collect a sample and compute its sample mean, we will have a value of . It is important to remember
that the logic of computing the margin of error requires us to treat  as a variable. We determine  and , so they are known to
us. In general, we do not know anything about the population; that is why we are studying it. So,  and  are generally unknown as
well. As such, it seems like our unknown symbols outnumber our known symbols. That is okay; we will be able to manage.

At this stage, we make one assumption for the sake of pedagogy. Let us assume that we know the value of  the population
standard deviation. This is a rather large assumption because, as we all know, the population mean is an integral part of the
computation of the population standard deviation. How could we know the population standard deviation without knowing the
population mean? Perhaps in some situations, a past known population standard deviation may make a sufficient approximation for
a current population standard deviation, but making such a claim is highly context dependent and beyond the scope of this book.
For now, know we are making a simplifying assumption so that we can better understand the notion and construction of confidence
intervals.

Determining the Margin of Error (  known)

Recall that every normal distribution can be transformed into the standard normal distribution using the -score transformation
which preserves the area bounded beneath the probability density curves. We will use this transformation to determine what our
margin of error needs to be. Consider the following sequence of figures that illustrates the transformation process.
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Figure : Sampling distribution of sample means transformed into the standard normal distribution6.3.2

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41798?pdf


6.3.4 https://stats.libretexts.org/@go/page/41798

We started with the same figure as before, underwent the -score transformation, and now want to determine the margin of error
necessary to get the desired level of confidence. Notice that under the -score transformation, the margin of error is scaled by a
factor of one over the standard deviation of the sampling distribution. Since we are now considering the standard normal
distribution, we know the mean and standard deviation of the distribution. Therefore, using technology, we can find the boundary
points that will produce the desired confidence. These are denoted as  in the figure above. We call these points critical values.
Note that  represents the -value where the area under the standard normal distribution to the right is  and (-z_{\frac{\alpha}
{2}}\) represents the -value where the area under the standard normal distribution to the left is 

Remaining in the context of constructing confidence intervals for population means when  is known, determine the critical
values for the indicated level of confidence by first sketching the problem in a standard normal distribution and then using
technology to compute the critical values.

1. Confidence level: 

Answer

We first sketch a standard normal curve and then form an interval that is centered at the mean  and label the boundary
points. The area under the curve between these two points is our confidence level. Notice that the critical values are equal
in magnitude but opposite in sign so we can find one value and then take the positive and negative values as our critical
values. Since we are using technology, we need to find the area to the left of one of the points. There are several ways of
achieving this goal. We illustrate a different way for each of the first three problems of this text exercise; though, all three
methods work for each of the problems.

Figure : Standard normal distribution with  confidence interval

For our first example, we find the negative critical value first. We can determine the area outside of our critical values
because the total area underneath the curve is , and the area between our critical values is . The area outside of our
critical values is  Note that this is what we have been calling the  value. Since normal distributions are
symmetric about the mean and the critical values are equally far from the mean, the two tails of the distribution (the values
less than the negative critical value and then the values greater than the positive critical value) have the same area. To find
the area to the left of the negative critical value, we split the area of the two tails in half.  Notice the labels for
the critical values; we replaced the  in the subscript with the value of  in the context of the problem. We can use
technology to determine the left critical value.
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We thus have our critical values:  

2. Confidence level: 

Answer

Figure : Standard normal distribution with  confidence interval

We find the positive critical value for our second and third examples. Note that the area to the left of the positive critical
value is the confidence level  and the area in the left tail, which we know from the last exercise is half of the  value 

  The area to the left of the positive critical value is   We can use technology to
determine the right critical value.

Now we have our critical values:  

3. Confidence level: 

Answer
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Figure : Standard normal distribution with  confidence interval

Another way to find the area to the left of the positive critical value is to use the complementary relationship between the
area to the left and the area to the right of a point. The total area is  The area to the right of the positive critical value is
half of the  value   So the area to the left of the positive critical value is   We can use
technology to determine the right critical value.

Now have our critical values:  

4. For a general confidence level 

Answer

We generally care about the positive critical value as it represents the number of standard deviations that must be traversed
in both directions from the mean to gain the desired confidence level. In this solution, we will use each of the three methods
above to find the right critical value for the general confidence level 
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Figure : Standard normal distrubution with general confidence interval

With the critical values in hand, we make the final step by noticing that the positive critical value is equal to the length of the scaled
margin of error.

Given our simplifying assumption (that we know the population standard deviation), we know the factor by which the margin of
error was scaled and what the scaled length is. From this, we determine the margin of error.

Constructing Confidence Intervals for Means (  known)

We now have all the pieces to construct a confidence interval for the population mean when the population standard deviation is
known.

We often write these confidence intervals as 

The  Toyota Camry Hybrid LE gets  miles per gallon when considering both highway and city driving with a standard
deviation of  miles per gallon. In designing the  Toyota Camry, the engineers would like to assert that the fuel
efficiency in the newest model exceeds that of the previous model. The engineers randomly test-drove   models and
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recorded an average of  miles per gallon from the sample. Assuming the standard deviation remained the same, construct a 
 confidence interval to predict the population mean fuel economy. Does this bode well for the engineer's desires? Explain.

This is the only statistic based on actual, substantial data. The remainder of the numbers in this problem were contrived
loosely based on available data.

Answer

First, we check that the conditions for constructing a confidence interval for means are satisfied. We want our sample to be
randomly selected and the sampling distribution to be approximately normal. Since the engineers randomly test drove 
cars, we have both conditions met 

We next connect the values in the problem statement with the variables at play:    and 
Sometimes, we do not use all the numbers in a problem statement.  comes into play at the end, not while constructing the
confidence interval, because the engineers want the population mean of the  Camry to be greater than the previous
model, which was  miles per gallon.

We need to find the positive critical value  Since     and  

The distribution that we find the critical value from is the standard normal distribution because we are considering means
with the population standard deviation known. We encourage sketching pictures.

Figure : Standard normal distribution with  confidence interval

So, we have constructed the confidence interval based on the results of the random sample of  cars. Our conclusion is
that, at a  confidence level, the population mean,  of the  Camry Hybrid LE fuel economy is somewhere
between  miles per gallon and  miles per gallon. We then notice that  miles per gallon is greater than

 miles per gallon. The engineers can feel confident that the fuel economy of the newest model exceeds the fuel economy
of the previous model.

The Margin of Error and Sample Size

At the beginning of this section, we mentioned a balancing act at play in constructing confidence intervals. As we saw, the higher
the confidence level, the larger the positive critical value. The larger the critical value, the larger the margin of error. At the same
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time, we want our confidence interval to give us a pretty good idea of the population mean. The larger the margin of error, the
wider the range of values we conclude our population mean falls. For example, we can be  confident that the population
parameter falls in the interval , but that interval does not yield any useful information; similarly, we could very precisely
estimate that  but we would have  confidence in this estimate. These desires conflict, but there is another variable at play
in determining the margin of error: the sample size,  We do not have control over  the population standard deviation, but we do
have control over the size of the sample we select.

1. Explain what happens to the margin of error as the sample size  increases.

Answer

Since  we have that  is in the denominator. As  increases,  also increases. When dividing by larger

and larger numbers, the resulting number is smaller and smaller. Consider    and so on. As we
increase the denominator by a factor of  each time, the value decreases getting closer and closer to  Thus, the margin of
error goes to  as the sample size gets larger. This should match our intuition that larger samples are more likely to produce
statistics close to the population parameter.

2. If the margin of error for a  confidence interval for means with  known was  with a sample size of  how large of a
sample must be taken to have a margin of error of  while maintaining the same level of confidence?

Answer

Since both confidence intervals are being constructed at the same level of confidence and from the same population, 

and  will be the same. We will have two margins of error and two sample sizes.    and 
The last one is unknown. This yields the following system of equations.

We are only interested in finding . So, we want to eliminate the critical value and standard deviation. We note that if we
multiply the second equation by  on both sides, we can set the two equations equal to each other.

1. Suppose the engineers at Toyota decided that they wanted a confidence interval with a margin of error of  miles per
gallon while maintaining the confidence level of  how large of a sample of  Toyota Camry LE cars would need to
be taken?

Answer
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Recall that the population standard deviation was given to be  miles per gallon and that the positive critical value was 
 The engineers have set the desired margin of error to  Given the

fact that  we can solve for the unknown sample size.

We now must remember the context behind the situation. We are trying to determine the minimum sample size necessary to
result in a  confidence interval with a margin of error of  miles per gallon, and we have deduced that  must be at
least  We, therefore, decide that a sample of size  cars would be necessary.

2. Let us now solve the problem in general. If we set the margin of error, confidence level, and know the population standard
deviation, how large of a sample is necessary to construct a confidence interval at that level of confidence and margin of
error?

Answer

Now, just as before, we need our sample size to be a whole number. When it is not a whole number, we always round up so
that we are within the threshold of our margin of error tolerance. It is better to more precise than less precise.

Formula for the mathematically inclined

This formula introduces the ceiling function  which returns the smallest integer value that is greater than or equal to 

6.3: Confidence Intervals for Means (Sigma Known) is shared under a Public Domain license and was authored, remixed, and/or curated by The
Math Department at Fort Hays State University.

10.7: Confidence Interval for Mean by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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6.4: Confidence Interval for Means (Sigma Unknown)

Form a basic intuition regarding the development and shape of -distributions
Introduce accumulation functions for -distributions
Discuss degrees of freedom
Find critical values
Construct confidence intervals for means using sample data
Estimating necessary sample sizes for desired margin of errors

 Section 6.4 Excel File (contains all of the data sets for this section)

Confidence Intervals for Means
Having developed a construction technique for confidence intervals for mean with  known, we now drop our simplifying assumption
and address the common case when we do not know much about the population; in particular, we do not know the population mean or
the population standard deviation. Having an idea of what the sampling distribution of sample means looks like is paramount to our
method. We must know that the sampling distribution of sample means is approximately normal. We encouraged the reader to review
the section on sampling distributions of sample means in the last chapter; hopefully, the conditions are committed to memory, but we
provide them now for quick reference: either the parent population is normal or the sample size  is greater than . Recall that this
threshold works for many populations but not all.

The sampling distribution of sample means is approximately normal with a mean,  and a standard deviation,   Now,

we do not know the value  in addition to not knowing the value of  We set a level of confidence, which we understand as the
percent of samples of size  that will produce a sample mean within a certain distance of the population mean; we call this distance the
margin of error,  In the previous section, we determined the margin of error by transforming the sampling distribution of sample
means into the standard normal distribution and finding our critical values. At this stage, we now run into difficulties because we do
not know  We can approximate with the following transformation, which we call the -transformation.

Notice, that we simply substituted  with  the sample standard deviation. Think about the ramifications of this; different samples
will naturally produce different values for . Thus, when we evaluate the -transformation, we do not expect to get the same values
that the -score transformation would produce since that transformation used  for every computation. We might expect that the
distribution that the sampling distribution of sample means will not be normally distributed.

We can build the theory just as we did with sampling distributions: by examining populations where we have all the data, computing
the value of the transformation for each sample, constructing a histogram, and identifying the general shape. The theory is formalized,
just as with sampling distributions, with some sophisticated mathematics beyond the scope of this course, but we will, hopefully, build
a basic intuition by trying to understand how the -transformation compares to the -score transformation.

The sampling distribution of sample means is approximately normal, and normal distributions are symmetric, meaning, half of the
samples of a given size produce sample means greater than  and the other half of the samples produce sample means less than  We
can also have samples with the same sample mean but with quite different standard deviations. So, we need to understand how these
sample standard deviations are distributed. We are interested in the probability that our sample standard deviation is less than the
population standard deviation. Note that the probability that the sample standard deviation is less than the population standard
deviation is the same as the sample variance being less than the population variance. The sampling distribution of population variance
is closely associated with the -distribution (an interested reader is encouraged to read or reread the sampling distribution of sample
variances section for further details) which we have seen to be skewed right. Recall that when a distribution is skewed right, the mean
is greater than the median and the probability that the sample variance is less than the population variance is greater than  So, we
are more likely to get sample standard deviations that are smaller than the population standard deviation than to get larger sample
standard deviations.

What does this all say about the -transformation? Since we are just as likely to get sample means larger or smaller than the mean, we
will be symmetric about  Since we are more likely to get sample standard deviations that are smaller than the population standard
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deviation, we will usually be dividing by a smaller number in the -transformation than in the -score transformation. When dividing
by smaller numbers, the quotient is larger. We expect larger magnitudes under the -transformation than under the -score
transformation. This indicates that there is a greater probability density in the tails (the distribution has thicker tails). Hopefully, at this
point, we recognize these descriptions as our descriptions of the Student's -distribution. This -distribution will have  degrees of
freedom, and we will explain why later in the section.

Determining the Margin of Error (  unknown)
Now that we have built an intuitive understanding of the -distribution, we are prepared to determine the necessary margin of error in
the context of not knowing the population standard deviation. We provide a similar progression of figures to illustrate the process
below.
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Figure : Sampling distribution of sample means under the -transformation

Knowing that the sampling distribution of sample means is transformed into a -distribution with  degrees of freedom enables us
to determine the necessary margin of error for our desired confidence level. Just as when  is known, the margin of error is scaled by a
known factor known to us. And once we determine the boundary points of our shaded region, the critical values  we can
compute the margin of error. Notice the additional subscripts in the notation for our critical values of the -distribution due to the
critical values depending on the confidence level and the degrees of freedom. Once again, we must use technology to determine
critical values with an accumulation functions specific to the -distribution.

In Excel, we utilize the  and  functions which work very similarly to the  and  functions
that we have been working with for quite some time. We use the distribution function to find the area to the left of a point. Using 

 we enter the point that we want the area to the left of, and the necessary information to describe the distribution; for normal
distributions, we used the mean and standard deviation, but for -distributions, we use the degrees of freedom. Finally, we then tell the
function to accumulate.

The  function is used to find the point in a -distribution with a certain number of degrees of freedom such that a given area is
to the left of the point. Using  we enter the area and the degrees of freedom.

Remaining in the context of constructing confidence intervals for population means when  is unknown, determine the positive
critical value for the  confidence level given the indicated sample size by roughly sketching the -distribution and then using
technology.

The rough sketches drawn by hand are important to ensure a proper approach to the problems, but we cannot accurately depict
what happens to the distributions as the degrees of freedom change. As you complete each part of this text exercise, examine the
computer-generated graphics to solidify what happens as the degrees of freedom increase.

1. 

Answer

We begin by sketching the -distribution with  degrees of freedom. It is symmetric about  and has thicker tails than the
standard normal distribution. We then form an interval centered at  and label the boundary points. The area under the curve
between these two points is our confidence level. Notice that the critical values are equal in magnitude but opposite in sign.

6.4.1 t

t n−1

σ

± ,t

,n−1

α

2

t

t

T.DIST T.INV NORM.DIST NORM.INV

T.DIST,

t

P (t < a) = T.DIST(a, d. f . , 1)

T.INV t

T.INV,

a = T.INV(area to the left of a, d. f . ) = T.INV(P (t < a), d. f . )

 Text Exercise 6.4.1

σ

95% t

n = 4

t 3 0

0

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/49353?pdf


6.4.4 https://stats.libretexts.org/@go/page/49353

Due to the symmetry of the distribution, the two tails have equal area giving  in each tail. Since our confidence level is 
the  value is  meaning the area in each tail is 

Figure : -Distribution with  degrees of freedom

Since the critical values are equal in magnitude but opposite in sign, we can compute the positive critical value by multiplying
the negative critical value by 

2. 

Answer

Keeping the same level of confidence but with a larger sample, our tasks throughout this text exercise are similar. The -
distribution now has  degrees of freedom, but the areas and the process remain the same.

Figure : -Distribution with  degrees of freedom
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3. 

Answer

Figure : -Distribution with  degrees of freedom

4. 

Answer

Figure : -Distribution with  degrees of freedom
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5. Describe what is happened to the -distributions as the degrees of freedom increased. What happened to the positive critical
values? What will happen if we use larger and larger sample sizes?

Answer

Since each figure is plotted with the same horizontal axis, we can tell that the area under the curve in the tails decreases fairly
noticeably with each subsequent figure. Since the total area is always  there is more area in the central portion of the
distribution. We can see this faintly as the curve rounds out near its peak and thickens ever so slightly by the labels of the areas
in the tails. The critical values are decreasing in magnitude with each increase in the degrees of freedom. This makes sense
because the tails are getting thinner. The rate at which the tails are thinning and the critical values are decreasing in magnitude
is slowing down. Recall that when we first introduced the -distribution, we said that the distribution gets closer and closer to
the standard normal distribution as the degrees of freedom increase. As such, we can expect the critical values of the -
distributions to approach the critical value of the standard normal distribution  as the sample size increases. With 

 degrees of freedom, we finally are less than  Only after  degrees of freedom will answers rounded to two decimal
places match for this level of confidence.

Recall that the shape of the -distribution is determined by a quantity called degrees of freedom  Notice that the degrees of
freedom in the figure above are related to the sample size,  in particular,  We shall now discuss the meaning of the
terminology. In reading "degrees of freedom", we might naturally think about the extent to which someone is capable of
determining and carrying out an action. That is a fine initial intuition; along those lines, we can think of the degrees of freedom as
a measure regarding the extent to which the data can vary independently, given any constraints on the data.

Suppose the sample mean of  observations was  With the current information that we have, we do not know anything about
the actual values; all we know is that the sum of the  observations is  There are infinitely many possible values for our 
observations that result in such a mean. If it was then revealed to us that the first observation value was  we would know the
sum of the last  observation values is  There are again infinitely many possible values for these  observations. If it was
then revealed that the second observation value was , we would know the sum of the last  observation values is  which
can again happen in infinitely many ways. At what point, after revealing many observation values, will we know what the
remaining observation values have to be knowing the sample mean is  Once  of the observation values are revealed, we will
be able to deduce the last observation without it being revealed. We thus say that the first  observations are free to vary
independently, but the  observation value depends entirely on the previous observation values since the sample mean is
known. Hence, there are  ( ) degrees of freedom.

When collecting data via random sampling, each observation value is independent of the others; the information gleaned from
each observation provides information independent of the other observations. However, once we know, say, the sample mean, a
constraint is placed on the data. The observation values are now connected through the expression      
Each bit of information is no longer perfectly independent. Degrees of freedom is a measure for how much independent
information remains given the constraint(s) in place.

So, why does the -distribution have  degrees of freedom in this situation? The sample mean only requires the observation
values; there are no constraints connecting the data within the definition of the sample mean. This is not the case when we
compute sample standard deviation. Here, we consider all the square deviations from the mean as the fundamental pieces of
information, but implicit within this description is an expression that connects all data values: the sample mean. Each square
deviation is not perfectly independent from every other square deviation. Since we needed the sample mean to compute the sample
standard deviation, we have a constraint within the analysis. As we have seen above, this constraint reduces the amount of
independent information by 

As a general rule of thumb, we expect the degrees of freedom to be the sample size minus the number of statistics used within
computations of the statistics involved in the analysis. Different statistical analyses have different degrees of freedom; so, it is
important to understand where the measurement comes from and to pay close attention to the literature explaining any particular
statistical analysis.

With the critical values in hand, we again notice that the positive critical value is equal to the length of the scaled margin of error and
determine our margin of error from there.
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Constructing Confidence Intervals for Means (  unknown)

We now have all the pieces to construct a confidence interval for the population mean.

We often write these confidence intervals as 

We have discussed the heights of adult females on several occasions; they are normally distributed with a mean of  inches with
a standard deviation of  inches. We have yet to discuss the heights of adult males. It seems reasonable to think that if the
heights of adult females are normally distributed, the heights of adult males will also be normally distributed (this is indeed the
case). We want to build a  confidence interval to catch the average height of adult males. To do so, we randomly sampled 
adult males. Their heights in inches from shortest to tallest are reported below. Construct and interpret the confidence interval.

Answer

In order to construct a confidence interval for means, we need the sampling distribution of sample means to be at least
approximately normal and the sample to have been randomly selected. Given that the heights of adult males are normally
distributed, we have that the sampling distribution of sample means is normally distributed despite the fact that we only have a
sample size of  The sample was randomly chosen; we can, therefore, proceed.

We need the sample mean, standard deviation, sample size, and positive critical value to construct the confidence interval. We
report, without explanation, that   inches,   inches, and  To calculate the positive critical value,
we must find  Since     Since we do not know the population standard deviation, our critical value comes
from the -distribution with  degrees of freedom. We sketch the distribution to help us compute the positive critical value.

Figure : -Distribution with  degrees of freedom
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At a confidence level of  the average height of all adult males  is between  inches and  inches.

For many, the confidence interval produced in the previous text exercise is rather disappointing; there is a wide range of values that the
population mean could be. We might desire to determine how large of a sample would be sufficient to expect that the margin of error is
less than some specified value. In our case, we might be interested in determining how large of a sample would be sufficient to expect
that at most one whole number falls in the constructed confidence interval while keeping the confidence level at 

A natural place to begin would be with the margin of error formula and trying to solve for  just as we did in the last section.

Difficulties, however, arise in several places. There are two values in the equation that depend on the value of  the critical value and
the square root of  We also do not know what our sample standard deviation will be without actually collecting the sample.
Unfortunately, these issues cannot be remedied perfectly, but there are paths forward that can arrive at reasonable estimates of a
sufficient sample size. These estimates on  are just that, estimates; they will not be guaranteed to work without fail, but in general,
we can rely on them to continue forward. The reader is encouraged to take more advanced statistics courses for a thorough
explanation. We shall only provide some basic intuition about the considerations. We first solve for the sample size 

We have not solved for  explicitly because the critical value from the -distribution depends on  Our path forward in estimating 
is to replace the values in the numerator with values that we believe are larger than the values that will end up being used when we
actually construct the confidence interval. When we replace one value in the numerator with one that is larger in the expression, the
product will be larger. If we use this larger product as our estimated , we have probably chosen a larger than necessary sample size
for our desired precision. Doing this will give us a conservative estimate of the sample size. We could always be wrong about whether
the values were larger or not and then possibly not reach the desired precision in the confidence interval. Let us go through this value
by value.

How do we pick a large enough value to overestimate the critical value? Recall that as the degrees of freedom increase, the -
distributions get closer and closer to the standard normal distribution and that the -distribution has fatter tails than the standard normal
distribution. These two facts imply that for a given confidence level, the critical values of the -distributions are farther away from 
than the critical values of the standard normal distribution, but as  increases the critical values of the -distributions approach the
critical values of the standard normal distribution. This means that the critical values in -distributions get smaller in magnitude as 
increases. This gives a conservative overestimate of the critical value by using the positive critical value at the same level of
confidence from a -distribution with fewer degrees of freedom than you expect to have from your future sample. If the underlying
distribution is not normal, we can expect to need at least a sample size of  so  would be an overestimate because we know we
need at least  observations in our sample. If the underlying distribution is normal, we could have less in our sample. In this case, we
could use the -distribution with only  degree of freedom. It will be at least as large as every possible critical value. This is the most
conservative estimate we can make.

Just as with constructing confidence intervals, there is a balancing act at play, not between confidence and precision, but between
confidence and work. The more conservative our estimate, the larger the estimated sample which requires more work on the part of the
researcher. There are time and financial constraints involved. Sometimes, researchers are satisfied with less conservative estimates
which is fine since the most conservative estimates are overestimates by a large margin. Indeed, some textbooks recommend using the
critical value from the standard normal distribution, which is guaranteed to be an underestimate of the critical value used when
constructing the confidence interval.

The decision to choose a large enough value to overestimate the sample standard deviation is a more difficult question. In essence, the
sample standard deviation is an estimate for the population standard deviation. We know that the sample standard deviation tends to be
an underestimate of the population standard deviation but that it can be larger. We have computed a sample standard deviation from an
initial study, but we do not know if it is larger than the population standard deviation or smaller. We expect that for larger samples our
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computed standard deviation is closer to the population standard deviation but that is not necessarily the case. As we might see (if you
study all of the bonus material, you will), it is sometimes possible to construct a confidence interval for the population standard
deviation. With such an estimate, we could estimate the upper bound of where we are confident the population standard deviation falls,
but even that could fail us. As such, some researchers construct confidence intervals from the pilot data. Others just use the sample
standard deviation found in the sample data. And, yet others add a certain amount to the computed sample standard deviation. Here is
where our guarantee must fail, but again that does not mean the estimate is not useful for continuing. We will be satisfied using the
sample standard deviation from the pilot study in this text.

Within this text, we adopt the practice of using the pilot study sample standard deviation, comparing both  and  when the
underlying distribution is normal, and otherwise just using  in our estimates. In this last case, if our estimated value is less than 

 we select  instead. Let us now estimate the sample size such that we expect to have only one whole number in confidence
interval.

We have a sample of size  and computed its sample standard deviation. We do not expect this standard deviation to be equal to the
population standard deviation or the future sample to have the same standard deviation as this sample, but we will use  to
approximate what the sample standard deviation of a future sample might be. Since the underlying distribution is normal, we will
compare   and   as overestimates of the critical value.

We also need to determine the margin of error specified in the problem. If there is to be at most one whole number in the interval, the
interval length must be less than  for the distance between consecutive whole numbers is  Thus if the length of our interval is larger
than  it is possible to have two whole numbers in our confidence interval. If the length is less than or equal to  then it is possible
that we do not have any whole numbers in our interval, but that is permitted in the phrasing of the question. Thus the maximal length
of the interval so that we have at most one whole number in the interval is  Since the margin of error is half of the interval length,
our desired margin of error is confirmed to be  inches. We thus consider the following two cases.

In the first case, the estimated sample size is  in the second case, the estimated sample size is  In both cases, the estimated
sample size is larger than  As such, we use the estimate from case  We expect that a random sample of  adult males will
produce a confidence interval that contains at most  whole number.

A pilot study of  randomly selected college students revealed that the average time spent scrolling on social media per day was 
 hours with a standard deviation of  hours. The researchers plan to conduct a larger study to construct a confidence interval

at a confidence level of  with a margin of error of  hours. Estimate the number of college students that should be randomly
sampled in the larger study to produce the desired results.

Answer

The goal is to build a confidence interval at the  confidence level with a margin of error that is no more than  hours.
The sample standard deviation from the pilot study is  hours. We do not know anything specific about the population. We,
therefore, use   to replace our critical value in the estimation.

Using the critical value for a sample size of  produced an estimated sample size of  We cannot use this result for two
reasons, in order to build our confidence interval in this situation, we need a sample size of at least  The critical value at the 

 confidence level with a sample of  will be larger than the critical value used in our estimate; we, therefore, must
proceed with caution. We are not guaranteed that the value would not be sufficient given the possibility that the sample
standard deviation in the large study might be smaller than in the pilot study. Luckily for us, the decision was forced with the
original consideration. If the underlying distribution is not normal and we do not know any more information about its
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distribution, we expect the sampling distribution of sample means to be approximately normal when  which is an
important requisite for constructing confidence intervals.

6.4: Confidence Interval for Means (Sigma Unknown) is shared under a Public Domain license and was authored, remixed, and/or curated by The
Math Department at Fort Hays State University.

10.7: Confidence Interval for Mean by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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6.5: Confidence Intervals for Variances - Optional Material

Develop a second general methodology of constructing confidence intervals
Find critical values in the -distribution
Construct confidence intervals for variances and standard deviations using sample data

Confidence Intervals for Variances
At this point in our development of confidence intervals, we introduce another methodology. The general interpretation of
confidence intervals remains the same: a confidence interval built at an  confidence level catches the population parameter for 

 of all samples of that given size, or alternatively, catches the population parameter for  of the confidence intervals
constructed if random sampling is repeatedly conducted. We, however, will no longer base the construction methodology around
the idea that  of all sample statistics fall within the margin of error of the population parameter. This worked really well when
the sampling distributions were approximately normal and hence symmetric about the population parameter, but the sampling
distributions for variances are not symmetric. Recall that the sampling distributions of sample variances were not normal, but
skewed right, and that we could transform them into -distributions to determine probabilities. We studied the sampling
distribution of sample variances only when the parent population was normal; we shall remain in this realm of normal parent
populations throughout this section.

Previously when we were constructing confidence intervals, we routinely produced a figure split into three regions with known
areas within a specific distribution: the left tail, the right tail, and the central region. Each tail had an area that was equal to  and
the central region had an area equal to  We shall begin our development with such a figure within the context of randomly
drawing a sample of size  from a population normally distributed with the intent to build a confidence interval for the population
variance at the confidence level  We sketch such regions in the following figure of the -distribution with  degrees of
freedom.

Figure : -distribution

The boundary points of the central region are again called critical values; just like the critical values in the -distribution, they
depend on the confidence level and the degrees of freedom. There are, however, some significant differences. Notice that they are
not the same distance away from the mean of the distribution (the black dashed line); the distribution is positively skewed, and we
constructed the regions so that the tails each have an area of  Observe that both critical values are positive. To help us distinguish
between the two critical values, we use the first part of the subscript to indicate the area to the left of the critical value. Note the
smaller critical value has  to the right of it; while, the larger critical value has . We label the critical values as seen in the
figure. The smaller critical value is , and the larger critical value is 

Now that we have an understanding of the figure and its labels, consider the probability statement at the top of the figure.

It says that the probability that the random variable  with  degrees of freedom falls between the two critical values is equal
to the confidence level. In our context, this  variable with  degrees of freedom is related to the sampling distribution of
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sample variances through the following transformation.

We can understand the probability statement about the random variable  in terms of the random variable  the sample variance.

Recall that the underlying random experiment for the random variable  is randomly selecting a sample of size  from a
population that is normally distributed. We can think of this probability statement as follows: the probability of randomly selecting
a sample of size  so that the sample variance scaled by  falls between the critical values is the confidence level. Recall that
we are interested in constructing a confidence interval for . We can use algebraic manipulation to get  isolated in the
expression.

This last step might require further explanation. We want an expression with  not with  Notice that these two expressions are
reciprocals of each other. So, we reciprocate each term in the string of inequalities and figure out what happens with the
inequalities. Consider the very simple string of inequalities  The reciprocals of each of the terms in our inequality are 

 and  Notice that  We are in a similar situation in our probability statements. We have a string of inequalities with
positive values in each term; so, when we reciprocate, we must flip the inequality signs. We generally have lower bounds on the left
and upper bounds on the right; so, we reorder this last line to arrive at a final probability statement.

We understand this last probability statement to say that the probability of randomly selecting a sample of size  from the normally

distributed parent population so that  is less than  and  is greater than  is the confidence level. In other words,

we have constructed an interval so that the population variance falls within that interval the confidence level percent of the time.
Thus, this construction of confidence intervals for variances yields confidence intervals of the following form.

Constructing Confidence Intervals for Variances
We now have a method of constructing confidence intervals for variances that produces confidence intervals of a specific form; this
form is quite different from the forms for means and proportions. The sample statistic is no longer the center of the interval. Critical
values still play an important role in the construction of the interval, and computing these critical values is the last aspect of
construction that we need to hammer out. In the section on sampling distributions of sample variances, we introduced the 

 accumulation function. In order to calculate critical values, we need an inverse accumulation function. We
introduce  which works similarly to the inverse accumulation functions that have been previously introduced. Given
an area and the degrees of freedom of the distribution,  returns the point such that that area is to the left of the point in
that distribution.

= ⋅χ

2

n−1

(n−1)

σ

2

s

2

χ

2

,s

2

P ( < ⋅ < ) = CLχ

2

CL+ ,n−1

α

2

(n−1)

σ

2

s

2

χ

2

,n−1

α

2

s

2

n

n

(n−1)

σ

2

σ

2

σ

2

P ( < ⋅ < ) = CLχ

2

CL+ ,n−1

α

2

(n−1)

σ

2

s

2

χ

2

,n−1

α

2

P < < = CL

⎛

⎝

χ

2

CL+ ,n−1

α

2

(n−1)s

2

1

σ

2

χ

2

,n−1

α

2

(n−1)s

2

⎞

⎠

P > > = CL

⎛

⎝

(n−1)s

2

χ

2

CL+ ,n−1

α

2

σ

2

(n−1)s

2

χ

2

,n−1

α

2

⎞

⎠

σ

2

.

1

σ

2

2 < 3 < 4. ,

1

2

,

1

3

.

1

4

> > .

1

2

1

3

1

4

P < < = CL

⎛

⎝

(n−1)s

2

χ

2

,n−1

α

2

σ

2

(n−1)s

2

χ

2

CL+ ,n−1

α

2

⎞

⎠

n

(n−1)s

2

χ

2

,n−1

α

2

σ

2

(n−1)s

2

χ

2

CL+ ,n−1

α

2

σ

2

,

⎛

⎝

(n−1)s

2

χ

2

,n−1

α

2

(n−1)s

2

χ

2

CL+ ,n−1

α

2

⎞

⎠

CHISQ.DIST

CHISQ.INV

CHISQ.INV

a = CHISQ.INV(area to the left of a, d. f . ) = CHISQ.INV(P ( < a), d. f . )χ

2

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/48927?pdf


6.5.3 https://stats.libretexts.org/@go/page/48927

Within the context of constructing confidence intervals for variances from populations that are normally distributed. Determine
the two critical values for the given confidence level and sample size by roughly sketching the -distribution and using
technology.

1.  and 

Answer

We begin by sketching a -distribution with  degrees of freedom. It is a skewed right distribution starting at  with its
peak at  (in general, at ). We then drawn our three regions and label them with the appropriate areas.

Figure : -distribution

2.  and 

Answer

Figure : -distribution

3.  and 

Answer
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Figure : -distribution

Let us return to the topic of the heights of adult males. In the previous section, we used a random sample of  adult males to
construct a confidence interval for the population mean of adult males. Use the same sample data, provided again below, to
construct a  confidence interval for the population variance.

Answer

In order to construct a confidence interval for variances using the methods developed above, we need the parent population
to be normally distributed and to use a randomly selected sample. The heights of adult males are normally distributed so we
may construct our confidence interval.

To construct the confidence interval, we need the sample standard variance, sample size, and the two critical values. The
sample variance of our particular sample is approximately  square inches. We sampled  adult males. To calculate
the critical values, we must find  Since     Our critical values come from the -distribution with 
degrees of freedom. We sketch the distribution to help us compute the critical values.

Figure : -distribution
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At the  confidence level, the population variance  of adult male heights is between  square inches and 
square inches.

Constructing Confidence Intervals for Standard Deviations
We are often interested in the standard deviation of a population. Most of the theoretical work for sampling distributions and
confidence intervals occurs within the realm of variance because the sample variance is an unbiased estimator of the population
variance; while, the sample standard deviation is not an unbiased estimator of population standard deviation. But, we can use a
confidence interval for variances to speak about standard deviations rather simply because the standard deviation is the square root
of the variance, and  is an increasing function meaning that it preserves order. Let us return to the context of our last text
exercise about adult male height. We are  confident that the population variance is between  and  square inches
and can, therefore, be  confident that the population standard deviation is between  and 

 inches. This range of values is right where we might expect the population standard deviation of adult male
heights given that the population standard deviation of adult female heights is about  inches.

The section concludes with a general formulation. If a parent population is normally distributed, we may, by randomly selecting a
sample of size  from the population and setting a confidence level  construct a confidence interval for standard deviations of
the form

where the critical values come from the -distribution with  degrees of freedom.

6.5: Confidence Intervals for Variances - Optional Material is shared under a Public Domain license and was authored, remixed, and/or curated by
The Math Department at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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7.1: Introduction to Hypothesis Testing

Introduce the idea of hypothesis testing
Define null and alternative hypotheses
Develop the logic of identifying null and alternative hypotheses
Define the -value
Explain the two possible conclusions for a hypothesis test
Introduce the  value
Introduce type I and type II errors
Differentiate between statistically significant and practically significant results
Introduce one-tailed and two-tailed tests

Review and Preview
In the last chapter, we finally achieved a goal of inferential statistics: to use facts about sample data to speak confidently about the
facts of the population from which it was drawn. Our method of confidence intervals provides an interval estimate of the
population parameter at a certain success rate called the confidence level. When we do not know much about the population, we
can utilize random sampling to build confidence intervals to learn about populations from scratch. At other times, we have claims
about a certain population that we hope to test. This quest falls within the realm of inferential statistics and is the subject of this
chapter.

Consider the legendary secret agent James Bond  the central character of a series of books and action movies, who is capable
of great feats of heroism and has a penchant for martinis: shaken not stirred, never stirred. With such a strong preference, one
would expect that James Bond could actually tell the difference between shaken and stirred martinis simply by taste and know
which was which. Such an ability may seem unlikely. It would be natural to desire some evidence to back the claim. Taste-testing
martinis could serve as a method for collecting such evidence. Suppose we settled on conducting  taste tests where each martini
was either stirred or shaken randomly. Upon tasting each martini, James Bond claimed the martini was either shaken or stirred.
After tasting all  martinis, suppose James Bond correctly identified  of the martinis. Is this sufficient evidence to back the
claim that he can distinguish between shaken and stirred martinis simply by taste? If instead he got all  would that prove that the
claim is true?

Neither result proves the claim; we cannot construct proofs of such claims. He may have been merely guessing but had great luck.
Is luck a plausible explanation? If we assume that he is merely guessing, what is the probability that he actually designates  of
the  martinis correctly? What is the probability that he correctly assigns at least  of the  martinis correctly? This latter
question covers the case of what actually happened and anything more extreme happening and will be a frequent concern
throughout this chapter. We can understand the taste testing and probability questions with binomial random variables. We have 
trials with a success defined as correctly classifying the martini as shaken or stirred. If we assume James Bond is guessing, then the
probability of success for a single tasting is  If  is the random variable counting the number of successes in  trials, we
are interested in computing  The reader is encouraged to verify that  With such a small
probability, we would say that someone randomly guessing at least  of the  martinis correctly is quite unusual. We have two
possible situations: James Bond was guessing and something quite rare occurred by chance, or James Bond actually has the ability
to distinguish shaken and stirred martinis by taste. Given the evidence, the claim that James Bond was merely guessing seems
dubious; the claim has not been proven false, but there is considerable doubt about its validity. We, therefore, say that there is
considerable evidence that James Bond can distinguish between martinis shaken and stirred simply by taste.

We call the process described above as hypothesis testing. There is a claim or hypothesis about reality that needs to be tested (that
James Bond can distinguish between shaken and stirred martinis simply by taste). A competing hypothesis is identified (that James
Bond was merely guessing). Under the assumption that the competing hypothesis is true (James Bond is guessing), the probability
that what happened or even something more extreme will happen is computed  If this is a rare event, it casts
doubt on the validity of the assumption that the competing hypothesis is true; thus, credence is lended to the original hypothesis
(that James Bond can indeed distinguish between shaken and stirred martinis simply by taste). At no point in this process, just as in
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constructing confidence intervals, is certainty achieved. Rare things do indeed happen, but that does not mean we cannot have
confidence in assessing evidence. We will now begin formalizing the process of hypothesis testing.

Hypotheses
As we interact with the world around us, we begin to notice pattens in our observations and start to form hypotheses about the
world based on these patterns. Before we act as if these hypotheses are true, we want to secure reasonable and sufficient evidence
in support of them. So, how do we collect evidence in support of a hypothesis that arose from the claims or observations of
ourselves or others? Recall that, in our example with James Bond, we identified a competing hypothesis, a hypothesis that was
opposite of the one he claimed. James Bond claimed to be able to distinguish between shaken and stirred martinis by taste. The
opposite claim was that he could not distinguish by taste and, therefore, was guessing. We call these two competing hypotheses the
alternative hypothesis  and the null hypothesis  The null hypothesis is more practically or reasonably assumed to be true.
While the alternative hypothesis is generally the novel or claimed hypothesis.

Within the context of the James Bond scenario, our initial disposition was that having such a refined taste palette would be
abnormal. It seemed more reasonable to assume, at least initially, that one would simply be left guessing about how the martinis
were mixed. Thus, the null hypothesis was that James Bond could not distinguish simply by taste and, therefore, was guessing. The
alternative hypothesis was that he could distinguish simply by taste.

Consider another example: preparing to enter the shower. An important concern is the temperature of the water. Either the water is
amenable to a pleasant shower or it is not. We have two hypotheses. Which of the two hypotheses do we presume to be true as we
prepare to enter the shower? Not many of us turn the water on and immediately hop in the shower. Instead, we wait for it to warm
up, waiting to see steam rising or periodically running a hand through the water to test the temperature. These actions speak of an
initial assumption that one of the hypotheses is true. We operate with the assumption that the water is unsatisfactory until we have
evidence to the contrary. Our actions reveal that the null hypothesis is that the water is not amenable to showering.

These designations could also be thought of in terms of the potential implications of acting as if one of the hypotheses is true when
indeed it is not. If we assume that the water is ready but that is not the case. What might happen? Since we assume that the water is
good to go, we will hop in the shower right away. Once we are in the shower, we quickly find out that it is either too hot or too cold
and immediately feel something moderately unpleasant to possibly painful. If, on the other hand, we assume that the water is not
yet ready despite the water actually being perfectly suitable to us, the price is that we wait an extra minute before hopping in the
shower. Which of these situations would we prefer if we were wrong with our initial assumption? We would prefer just waiting
around for an extra minute over something that could potentially scald us. The hypothesis with the less drastic cost in acting as if it
were true when it was false is the null hypothesis.

Within each context, determine the competing hypotheses and identify them as either the null hypothesis or the alternative
hypothesis. Explain your reasoning.

1. In a court of law in the United States, a prosecutor (a lawyer) argues that the defendant (a citizen) is guilty of some crime.
The defendant is usually represented by a criminal defense lawyer who argues against the prosecutor (that his client is not
guilty). A judge and possibly a jury follow the arguments in order to draw a final conclusion called a verdict.

Answer

The two competing hypotheses are related to the defendant's innocence regarding the crime charged against him. One
hypothesis is that the defendant is innocent of the charge. The other is that the defendant is guilty of the charge. In the
United States, our legal system is structured with the mantra "innocent until proven guilty," with sufficient evidence
described as evidence beyond a reasonable doubt.

Thinking of the potential implications of acting as if one hypothesis were true when it is not can help us understand why
our legal system was set up as it is. If we act as if the defendant is guilty despite the fact that he is innocent. We could send
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an innocent person to pay a fine, spend time in prison, or even be executed. Our founders experienced tyranny and sought
in many ways to protect the citizens from the government. The potential price from the defendant's perspective is quite
steep. Sending an innocent man to jail for years or to death is severe. On the other hand, if we act as if the defendant is
innocent despite the fact that he is guilty the potential price from the defendant's perspective is the cost of playing the
system. It may be that the defendant feels remorse and a desire to change his ways or it may be that he got away with
breaking the law. He may be more or less prone to be a repeat offender. The local society may deem acting with more
caution around the defendant a prudent decision. From the perspective of our legal system, the cost of an innocent man
being wrongly persecuted is worse than a guilty man walking free.

"It is better that ten guilty persons escape than that one innocent suffer." - William Blackstone

"It is better 100 guilty Persons should escape than that one innocent Person should suffer." -Benjamin Franklin

2. A researcher at Stine, a company that develops corn and soybean seeds, identifies a new breed of sweet corn in its breeding
laboratory that he thinks will produce corn that is more tolerant to the dry conditions of northwestern Kansas than the breed
that most northwestern Kansas corn farmers currently use.

Answer

The two competing hypotheses are related to the drought tolerance of the new variety of corn. One hypothesis is that the
new variety of corn has better drought tolerance than the commonly used variety of corn. The other is that the new variety
of corn does not have better drought tolerance than the commonly used variety of corn. This could be that it is equally
tolerant or that it is less tolerant. The Stine company would benefit tremendously from developing a variety of corn suitable
for drier conditions. If the commonly used seed is of a business competitor, Stine can expand its market. Even if it is the
producer of the current common variety, the new seed will likely be able to be sold at a higher price and bring new attention
to the company. Making the assumption that the new seed is better than the common seed could be disastrous if false. The
company would likely lose many clients and possibly face a lawsuit for false advertising. As such, the reasonable
hypothesis to assume initially until there is evidence to the contrary is that the new variety of seed is not better suited to the
dry conditions of northwestern Kansas.

The  century philosopher and mathematician Blaise Pascal engaged in a similar line of reasoning before any rigorous
development of hypothesis testing in an argument called Pascal's Wager which can be found in his book  Dr. Peter
Kreeft, a renowned philosopher and professor at Boston College, gives an exposition of the argument (which can be found
here) which we will formulate here using the framework of hypotheses that we have been developing.

Pascal lived in a time of great religious skepticism and attempted to formulate a line of reasoning that could reach a skeptic
who lacked faith and did not believe that reason was sufficient to prove that God existed. There are two competing hypotheses
at play: God exists and God does not exist. The skeptic knows that only one of the hypotheses is true but cannot establish
intellectual certainty as to which to adopt. Pascal, just as is done within hypothesis testing, considers the potential ramifications
of living as if the hypotheses were true when, indeed, they were false. Which hypothesis is it best to live by as if it were true?
Pascal argues that one cannot abstain from the wager, for we are all already playing the game of life.

In considering the ramifications, Pascal, a Christian, considers the possibility of eternal happiness because everyone seeks
maximal happiness. But in considering eternal happiness, he assumes that if God exists, there is paradise (heaven), thus
equivocating the existence of God such that there is no paradise (heaven) with there being no God.

Pascal continues. If one lives as if God does not exist when He really does, then that one misses out on the possibility of eternal
happiness. If one lives as if God does exist when He really does not, then that one has lost nothing since there was nothing to
gain or lose at the moment of death. Which of the two of these potential costs is less drastic? He argues that the cost of eternal
happiness is infinitely worse than losing nothing. Then we could say, within the context of competing hypotheses, that the null
hypothesis, the hypothesis initially assumed and acted upon as true, would be that God exists.
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Accepting the risk assessment of the two hypotheses is a critical part of his argument, and there are reasonable grounds to
object and much to consider about the context, assumptions, nuances, and ramifications of the argument. An interested reader
is encouraged to ponder the argument more thoroughly and read through Kreeft's exposition linked above.

Collecting Evidence and Making Decisions

In the example about martinis and James Bond, the null hypothesis was that James Bond simply guesses whether the martinis were
shaken or stirred. We collected evidence to test his claim, the alternative hypothesis (that he could distinguish between shaken and
stirred martinis simply by taste) by conducting an experiment where he taste tested  martinis. We then analyzed that evidence
under the assumption that the null hypothesis was true by computing the probability that a person simply guessing would get at
least  identifications correct when presented with  martinis where the mixing method was chosen randomly. This probability is
called the -value.

The -value is not the probability that James Bond was simply guessing (i.e. it is not the probability that the null hypothesis is
true). Rather, it is the probability that something at least as extreme as what was observed happens assuming that the null
hypothesis is true. We can understand the -value as the probability of an event given a hypothesis. It is often misunderstood as the
probability of a hypothesis given an event.

James Bond correctly identified  of the  martinis. What would be at least as extreme in the context of the taste testing? It
would be that he got    or even  martinis right. So in this context, the -value is  When the -value is quite
small, either something rare happened or there was a flaw in an assumption of our analysis, namely, that the null hypothesis is true.
We cannot be certain which is the case from what we know, but if the -value is sufficiently small, we generally consider it as
significant evidence that the null hypothesis is false. When this is the case, we say that we reject the null hypothesis in favor of
the alternative hypothesis. In the case of James Bond, the -value was , which is rather small, so we rejected the null
hypothesis (that he was simply guessing) in favor of the alternative hypothesis (that he could indeed distinguish simply by taste). If
the -value is not sufficiently small, the event that occurred was not rare enough under the assumption that the null hypothesis is
true to cast doubt on the truth of the null hypothesis. This does not prove that the null hypothesis is true; rather, we simply failed to
show it was likely false, so we conclude that we fail to reject the null hypothesis when this happens. We emphasize that failing to
reject is not the same thing as accepting. Hypothesis testing can only falsify, never verify, the null hypothesis, as throughout the
procedure, the null hypothesis is assumed to be true.

Reports of statistical analyses outline the logical progression for the development of hypotheses, experimental design, results of the
experiment, and the -values in order to provide the readers with the full scope of the logic and evidence. This is done because
there are different approaches to what is deemed a sufficiently small -value and the decisions need to be based on more than just
whether the -value meets some given threshold. However, deciding on a threshold which considers the context and is determined
independently from the evidence is a good start to measuring the weight of the evidence. Once a threshold is set, we describe the
hypothesis test as having that level of significance, which is typically referred to as the  value of the hypothesis test. Commonly
used  values are  and 

From our discussion thus far, we note that the null hypothesis plays a pivotal role in the process of hypothesis testing. The -value
comes from a probability calculation, assuming the null hypothesis is true. The conclusions that we draw from a hypothesis test
come in two forms: reject the null hypothesis or fail to reject the null hypothesis. Indeed, we can loosely understand the process of
hypothesis testing as the quest for finding evidence against the null hypothesis, so that, when significant evidence (evidence that
produces a -value less than the  value, the significance level) is found, we can reject the null hypothesis and favor the alternative
hypothesis.

Type I and Type II Errors

Rare events are not impossible events; they do happen from time to time. As such, it is possible to conduct a hypothesis test,
collecting evidence that meets our standard of significance, which leads us to reject a true null hypothesis. Perhaps, we are partially
at fault for being too easily convinced that the evidence was strong. Perhaps something extraordinarily rare occurred, but we made
an error either way. In rejecting a true null hypothesis, we made a statement about reality that does not match what really is
happening. We call this error a type I error.
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Recall that when deciding which of the competing hypotheses would be the null hypothesis, we were considering the potential
ramifications of acting as if one of the hypotheses were true when it really was not. We could also consider the ramifications in the
other direction. What are the costs of rejecting one of the hypotheses when it was true; in terms of our current discussion, what are
the costs of committing a type I error if we adopt a particular hypothesis as our null hypothesis? Consider the showering example
once more. If we reject that the water is suitable, when it is not, the cost is the more drastic of the two. That was the hypothesis we
set as the null hypothesis. Thus, the hypothesis with a more severe cost in rejecting it when it is true is classified as the null
hypothesis. We do this because we have a certain degree of control over the occurrence of type I errors; we set the thresholds
regarding sufficient evidence.

We cannot completely avoid making a type I error, but we can manage the likelihood. As we have seen, evidence is collected, the 
-value is computed using the evidence, and then if the -value is less than the  value -value , we assert that there is

sufficient evidence to reject the assumption that the null hypothesis is true. The  value is the upper bound regarding which -
values accounted for sufficient evidence, and recall that the -value is the probability that something at least as extreme as what
happened happens given the assumption that the null hypothesis is true. So, we can understand  as the probability of making a
type I error. A smaller  value means a smaller rate of committing type I error.

Making a type I error is not the only way in which we may fail to recognize the reality of the world around us. It may be the case
that the null hypothesis is false and would be rejected, but we fail to do so because the evidence did not meet the level of
significance desired. Recall that, when the evidence gathered is not sufficient, the result of the hypothesis test is that we fail to
reject the null hypothesis. Failing to reject the null hypothesis is not the same as declaring the null hypothesis is true. We are not
making a strict assertion regarding which hypothesis matches reality; we are simply saying that the evidence did not cast sufficient
doubt on the truthfulness of the null hypothesis. Despite the fact that, in failing to reject a false null hypothesis, we are not asserting
anything false about reality, we still call it an error in the fact that we have failed to be better aligned with reality. We call this error
a type II error.

Once again, consider the showering example. We set up the hypotheses as follows.

A type I error would mean falsely believing that the water is suitable. A type II error would mean falsely believing that the water is
not suitable. Notice that if we switched which hypothesis was the null hypothesis, the error types would also switch. The fact that
our framing yields a type I error which is more severe than the type II error indicates the hypotheses were formulated correctly.

Our original discussion on determining which hypothesis to set as the null hypothesis centered on the ramifications of acting as
if one of the hypotheses were true when that was not the case. We set the null hypothesis as the hypothesis with the less drastic
costs; the alternative hypothesis would thus have the more drastic costs. This process is similar to the consideration of making
a type II error. In failing to reject a null hypothesis which is false, we do not assert that the null hypothesis is true, but our
initial disposition towards the hypotheses remains the same. We can connect the two ideas to formalize our hypothesis-setting
process; the alternative hypothesis is set by considering the ramifications of making a type II error if the particular hypothesis
is set as the alternative hypothesis. The hypothesis with the more drastic cost in making a type II error is the alternative
hypothesis. We have two mechanisms for deciding how to set the hypotheses in a hypothesis test (both produce the same
results).

1. When considering which hypothesis to set as the null hypothesis, consider the costs of committing a type I error if the
hypotheses were adopted as the null hypothesis. Set the hypothesis with the greater cost as the null hypothesis.

2. When considering which hypothesis to set as the alternative hypothesis, consider the costs of committing a type II error if
the hypotheses were adopted as the alternative hypothesis. Set the hypothesis with the greater cost as the alternative
hypothesis.

Both methodologies produce hypotheses such that a type I error is worse than a type II error. This is because we can precisely
identify the probability of a type I error, but we cannot control the likelihood of a type II error. One can verify that one has
correctly set up hypotheses by checking that a type I error is worse than a type II error.
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Conducting Hypothesis Testing
In inferential statistics, we are primarily interested in claims about populations and assertions about the values of parameters. We
could test the claims with certainty if we could compute the actual parameter value, but alas, that is not the case in reality due to
literal or practical impossibilities. We use random sampling to collect evidence and then use our knowledge of sampling
distributions to compute the -value.

Consider a seed company with a new sweet corn variety that is thought to produce greater yields in northwestern Kansas than what
is commonly planted now. We can measure such a claim by looking at the average yield of the two varieties; these are facts about
all seeds of the two varieties, i.e., parameters. After seasons of planting and studying the common sweet corn variety, researchers
and farmers have a pretty good idea about its average yield; let us suppose that it is equal to  bushels per acre. Since the
researchers at the seed company think that they have discovered a better-yielding variety of sweet corn, we can assume there is a
line of scientific reasoning or some test plots that have led to such a hypothesis, but we do not know the value of the average yield
for the new variety; let us simply call it  Let us suppose, for pedagogical purposes, that the new sweet corn varieties from the
company consistently have standard deviations of  bushels per acre; so, that we feel confident the new variety has a standard
deviation of  bushels per acre too.

Just as in the case with the drought-resistant new variety of seed, we do not want to assume initially that the new seed is better than
the commonly used seed. So, our null hypothesis is that the average yield of the new variety is, at best, the same as the average
yield of the commonly used variety, and our alternative hypothesis is that the average yield of the new variety is better than the
average yield of the commonly used variety. We can denote this symbolically as follows.

Let us suppose that the company has set a standard  value for these sorts of tests at the  level. With the two hypotheses and 
value set, we now look to gather evidence by randomly sampling the yields of the new variety of sweet corn. Perhaps we randomly
sample  acres across northwestern Kansas where the new variety was grown under comparable conditions to the normal farming
practices. From this random sample, we compute the average yield of the sample to be  bushels per acre. The average yield of
the sample is greater than the commonly grown average yield, but is it sufficient evidence to cast doubt on the truth of the null
hypothesis?

How do we assess our evidence? We compute the -value, the probability that something more extreme happens than what we
observed given that the null hypothesis is true. We are interested in computing  Since we randomly
sampled using a sample size of  we expect the sampling distribution of sample means to be approximately normal with a mean 

 and standard deviation  From the consistency of the company's seeds, we can feel confident that  But, from the

null hypothesis, we do not know precisely what  is supposed to be. All we know from the assumption that the null hypothesis is
true, is that  bushels per acre. A common adage tell us to prepare for the worst and hope for the best. We similarly want to
consider the case where sufficient evidence against the null hypothesis would be hardest to obtain. Indeed, this is when we assume
the new breed produces just as well as the commonly used variety, when  bushels per acre. This happens to be the  value
that produces the largest -value (think about why this is the case). We encourage the reader to verify that the -value is
approximately 

A -value of  would constitute significant evidence at the  level but would not constitute significant evidence at
the  This seed company thus would fail to reject the null hypothesis in this situation. That is not to say that the new
variety is not better than the common seed. There has not been sufficient evidence to doubt that the new yields are, on average,
comparable to the common seed. If the research team is confident in the genetics of their newly developed variety, it may be
prudent to conduct another experiment with a larger sample (recall that the standard deviation of the sampling distribution shrinks
as the sample size increases) because rare things do occur.

Suppose the researchers at the seed company were very confident in the scientific reasoning behind the genetic breakthrough
with this most recently developed sweet corn variety, and they decided to conduct an experiment using  times as much data,
meaning,  acres were to be randomly selected across northwestern Kansas to grow this new variety. After the harvest, the
researchers found that the average yield from these  acres was  bushels per acre.
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1. Using the same hypotheses as the example above, determine the -value from this larger experiment. State and interpret the
conclusion of the hypothesis test at the   level.

Answer

Since the hypotheses from the first experiment have not changed, the -value is the probability that a random sample of 
acres produces an average yield at least as large as the average yield that was observed. So we are looking to compute 

 The sampling distribution is approximately normal because the sample size is so large
with a standard deviation of   We will again assume that  bushels per acre because that is the condition

within the assumption that the null hypothesis is true that will produce the largest -value. -value

Since  we say that at the significance level of  there is sufficient evidence to reject the null hypothesis
that the average yield of the new variety of sweet corn yields, at best, the same as the commonly used corn seed. We
conclude that the new variety of sweet corn produces, on average, a greater yield than the commonly used seed.

2. At the time of the study, sweet corn was being sold at  per bushel on average. If a farmer with  acres designated for
sweet corn was seeking advice about switching to the new breed of corn, what aspects of the study would be important to
consider? What would your advice to the farmer be?

Answer

Since we rejected the null hypothesis at the  level of , there is statistical evidence to say that the average yield of the
new variety of sweet corn is larger than  bushels per acre, the average yield of the commonly used variety. The
hypothesis test itself did not determine by how much the average yield would increase; it only concluded that there was an
increase. If the increase was large and resulted in larger profits despite having to pay more for the seed, the farmer may be
inclined to make the switch. If the increase was not large, the farmer may be less profitable despite producing more because
of the increased cost associated with the new seed. If we used the average yield from the sample to make such a
comparison, we would expect the farmer to have an increased yield of  bushels per acre on average. We could then
estimate the increased revenue to be   dollars. Not knowing the actual prices of seed, we cannot
estimate the profit, but it seems doubtful that the switch will lead to any increased profits worth noting.

More technical answers for the mathematically inclined.

Rather than just using the sample mean as a point estimate for the population mean of the new variety, we can construct
a confidence interval and use the boundary points as upper and lower bounds to create an interval estimation of the
increased revenue. Let us construct a  confidence interval;  So, at the  confidence level, we
expect the population mean to fall between  and  bushels per acre. This leads us to expect to increase the
yield by something between  and  bushels per acre, meaning the expected increase of revenue would be
between  and  which again does not seem that a switch would lead to any increased profits worth noting.

As we have just seen, there may be differences that are statistically significant that do not warrant changes in our lives. When this
is the case, we say that the findings are statistically significant but not practically significant. Remember that we are trying to
understand the world better so that we may better live in the world and interact with the world. The -value does not measure the
size of a difference, often referred to as the size of the effect; it measures the probability that something at least as extreme happens
as what was observed to happen under the assumption that the null hypothesis is true. A small -value does not indicate a large
effect. Many people have fallen prey to misunderstanding the meaning and uses of hypothesis testing, especially regarding -
values. In fact, widespread misinterpretations of the -value prompted the American Statistical Association published an article
addressing the misuses of -values in  to help remedy the issue.

Types of Hypothesis Tests

Let us return to the James Bond example. What would we have concluded if, after tasting the  martinis, James Bond was only
correct on  of them? If he were truly guessing, we would expect that he would be correct about half of the time, but that is not
what happened. Such a low score could indicate that James Bond could taste a difference between shaken and stirred martinis, but
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he has confused the tastes. He consistently labels shaken as stirred and stirred as shaken. This would indicate that he can taste a
difference, but his preference for shaken is mistaken!

If we were simply interested in whether James Bond's taste buds could tell the difference between shaken and stirred martinis, and
not that he could distinguish between them due to his strong preference for shaken martinis, evidence against the null hypothesis
that he was guessing would come in the form of either really low numbers of successes or really high numbers of successes. We are
looking for evidence in two different directions. In this case, looking at the probability of something at least as extreme happening
as what happened takes on a more complicated meaning.

With  out of  taste tests being successful, we easily understand more extreme as at least  martinis being correctly identified.
But what would be as extreme in the other direction in which we are looking for evidence? That would be  out of  taste tests
being successful. And in this direction, at least as extreme would lead us to consider at most  martinis being correctly identified.
So, we are looking at the two tails of the binomial distribution to compute the -value. We call such a test a two-tailed test. Thus
the -value is   This, again, qualifies as sufficient evidence at the  value of 

In our previous examples, we have looked for evidence only in one direction. The -value came from only one of the tails of the
probability distribution; we call such tests one-tailed tests. Two-tailed tests are most common in scientific research because finding
any difference is generally notable, interesting, and could lead to further development. In the case of medicine and business, one-
tailed tests arise with greater frequency because there are cases where there is no need to distinguish between no effect and an
effect in an unpredicted or undesired direction. For example, with the varieties of corn, the seed company is interested in increasing
the yield. If a new breed has the same yield or a worse yield, the new breed does not warrant further consideration.

Consider the example with James Bond without considering his preference for shaken martinis. Does he possess the taste buds
necessary to note the difference between the mixing method? We identified this as a two-tailed test and could write the
hypotheses as follows.

The evidence from the taste tests remains the same; he correctly identified  out of the  martinis which produces a -value
of   At the   level, there is sufficient evidence to reject the null hypothesis that he is
merely guessing. We could state the conclusion as two sided: he can distinguish (perhaps incorrectly) between shaken and
stirred tastes; or, given that he correctly identified most of the drinks, we could state a stronger conclusion: he can correctly
identify if a drink is shaken or stirred. We will argue that the latter conclusion is not the proper inference given how the
alternative hypothesis was formulated.

The statistician Kaiser published a paper in  arguing that we can make the claim that James Bond can correctly distinguish
between shaken and stirred martinis simply by taste. Some textbooks argue this is permissible; others argue that it is not. This
alternative hypothesis looks like    rather than    as originally formulated. The form of the alternative
hypothesis changed to match the direction of the sample statistic. We will not adopt this practice. Since we are operating within
the realm of formal hypothesis testing, we will maintain the form of the original alternative hypothesis and conclude that  

To understand our position, we further explain the process and purpose of hypothesis testing. Hypothesis testing is meant to
test hypotheses formulated from previous observations, previous experimentation, or working theories. Once the hypotheses
have been set, new experimentation is implemented, and the results are used as evidence in the hypothesis testing. The
formulation of the hypotheses happens before the experimentation and is independent of the new data. That is not to say that
the data from the new experiments cannot be studied to formulate further hypotheses or nuance the current hypotheses. This is
to say that these new hypotheses are not to be tested using the same data precisely because the data led to them. That would be
circular reasoning. Strictly speaking, new experiments need to be conducted to test the new hypotheses. This includes
modifying the alternative hypothesis of a two-tailed test into a one-tailed alternative hypothesis.

This consideration is closely related to a problem plaguing much of modern academia, where publishing statistically significant
results often takes precedence over honest intellectual inquiry, resulting in the temptation to conduct unplanned analyses of
experimental data in search of a statistically significant result. Acting on this temptation is called -hacking and is not an
ethical research practice. When tests are done on patterns already seen in the data, the tests become meaningless. The proper
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path forward is to study the experimental data, formulate new hypotheses, and then test those hypotheses via new
experimentation.

Let us consider the case of James Bond once more. Suppose that James Bond could tell the difference by taste but did not have
the tastes correctly aligned with the methods. But, somehow, he still managed to get  of the  martinis labeled correctly. In
this case, it is even less probable that he performed as observed than when we just assumed he was guessing. The -value using
both tails was already small enough to warrant rejection at the particular significance level; so, this is evidence that we would
expect the parameter  to fall on the same side of the value in the null hypothesis  as the sample statistic. We agree that it is
very tempting to conclude  Perhaps in the messiness of practical application, action may to be taken based on that
conclusion, but in the rigors of hypothesis testing, another experiment is warranted to test the claim on untested data that is
randomly sampled.

There is contention in the textbooks; perhaps, there is less across the field of active statisticians. Interested readers are
encouraged to deepen their understanding of both sides of the argument. For an argument to the contrary of our position, see
Kaiser, H. F. (1960) Directional statistical decisions. Psychological Review, 67, 160-167.

7.1: Introduction to Hypothesis Testing is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.

11.1: Introduction to Hypothesis Testing by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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7.2: Claims on Population Means

Test claims on population means both when  is known and when  is unknown
Generalize the three forms of hypothesis tests
Introduce, motivate, and utilize test statistics in computing -values

 Section 7.2 Excel File: (contains all of the data sets for this section)

Means and Hypothesis Testing
Now that we have been introduced to the general logic of hypothesis testing, we will begin to address the particulars found within
hypothesis testing based on the parameters of interest. We begin with testing hypotheses about the population mean. Just like our
considerations of confidence intervals for means, we will have two cases to consider based on whether the population standard
deviation is known or unknown. The latter case is the more frequently occurring case as we discussed in the chapter on confidence
intervals, but we again begin with the case that the population standard deviation is known because of pedagogical considerations.

Recall the general process of hypothesis testing. A claim is made that warrants testing. This hypothesis may be derived from simple
observation, past experimental data, a person, or an institution, and it tends to be the alternative hypothesis. A competing
hypothesis, which tends to be the null hypothesis, is constructed. The statement of the alternative hypothesis determines the type of
test to be conducted (either a one-tailed test or a two-tailed test). At this point, researchers generally settle on the level of the test
(the probability of a type I error given that the null hypothesis is true). The next step in the process is designing the experiment to
ensure that the test can actually be conducted. The calculation of the -value depends on the sampling distribution of the sample
statistics used to estimate the population parameter, assuming the null hypothesis is true. We need to ensure certain conditions are
met. When testing claims on population means, we utilize the sampling distribution of sample means, which is normal when the
underlying population is normal, and approximately normal for the most common distributions (recall our previous discussion on
sampling distributions) when the sample size is larger than  We also need to ensure that our sample is randomly selected. Once
we have designed the experiment, it must be conducted and analyzed. We then compute the -value, the probability that at least as
extreme as what was observed happens. If the -value   value, then we conclude that there is sufficient evidence to reject the
null hypothesis. If the -value   value, then we conclude that there is not sufficient evidence to reject the null and hence fail to
reject the null hypothesis. When sharing the results of the hypothesis test, include the -value so others can also assess at the
desired level of significance. With this succinct review, let us enter into testing claims on population means when  is known.

Claims on Population Means (  known)

A bottling company is responsible for bottling  liter bottles of Dr. Pepper. The company policy regarding quality assurance is
required to randomly sample  bottles each week to assess how well the bottles are being filled. The company assesses the
test at a significance level of  If the company that built the bottling equipment guarantees that the machinery operates
with a standard deviation of  liters and the last sample of  randomly chosen bottles had a sample mean of  liters,
determine the hypotheses, make a conclusion regarding the test, and interpret the meaning within the context of the problem.

Answer

Since we are dealing with the amount of Dr. Pepper filled in the  liter bottles, we are dealing with population means. Each
bottle has a certain amount of Dr. Pepper. Each bottle is supposed to have  liters of soda. So the population mean should
be  liters. One hypothesis would be    The bottling company wants to make sure that it is not overfilling (it
does not want to shrink its profit margin) nor underfilling (it does not want to upset its customers and reface any false
advertising lawsuits). We conclude that the other hypothesis would be   

We now need to determine which hypothesis is to be the null hypothesis. If the company assumes that the machinery is not
filling properly from the outset, it would automatically recalibrate the machinery every time; the collecting of evidence
would be unnecessary. If the company acts as if the machines are not working properly when they really are, the company
would unnecessarily waste production time. On the other hand, if the company acts as if the machines are filling properly
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when they really are not, the company would produce bottles without the proper amount in them. If it was enough that
customers would notice, the employees would likely notice before shipping them out. We, therefore, set the hypotheses as
follows.

Since we had a random sample of  bottles, we have that the sampling distribution of sample means is approximately
normal. Since we assume that the null hypothesis is true for the computation of the -value, we have that the mean of the
sampling distribution of sample means is   liters. We also have that the standard deviation of the sampling
distribution of sample means is    Since our alternative hypothesis is that the mean is not equal to 

 liters, we are looking for evidence in two directions; we have a two-tailed test. Recall that the sample mean was 
liters, which is less than  liters. We need to find the value that would be just as extreme except in the opposite direction.
Since  liters is  liters below the hypothesized value, the other value we are looking for is  liters above the
hypothesized value, namely  liters. To find the -value, we compute the area in the left tail ending at  liters and the
right tail starting at  liters. See the figure below for a visual.

Figure : Sampling distribution of sample means

We compute the -value using technology. Note that since the sampling distribution of sample means is approximately
normal, the area in the two tails is equal due to symmetry. This eases the calculation. For this first exercise, we compute it
both ways.

Since  is not less than  we do not have sufficient evidence to reject the null hypothesis that the machines are
filling the  liter bottles properly. The machines, therefore, pass the weekly test for quality assurance.
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In  researchers at the University of Maryland edited the genes of poplar trees to reduce the amount of lignin naturally
present in the tree. This is desirable because the process of strengthening wood involves heat and compression, and the more
lignin present in the tree, the harder the tree is to compress. The amount of lignin present in a poplar tree is often reported as a
percent of the tree's dry weight. The average poplar tree has  of its dry weight due to the weight of lignin.

Suppose that independent researchers want to verify the claim. They request to randomly sample  of the many thousands of
genetically altered poplar trees growing across the various stations the University of Maryland researchers utilize. For the sake
of open and honest scientific research, their requests are granted. If it is known that the standard deviation of the percent of
weight of lignin in all poplars, including this genetically altered poplar, is  and the sample mean was  conduct the
hypothesis test at the  level of significance.

Answer

The measure of interest for each tree is the percent of dry weight that is due to the presence of lignin. Despite the fact that
this measurement returns a percent, we are not considering proportions as our parameter of interest. We are interested in the
population mean of the percent weight due to lignin measurements in the genetically altered poplar trees. It is known that
the typical poplar tree has  of its dry weight due to the weight of lignin, and the researchers at the University of
Maryland think that they have reduced the amount of lignin naturally present in the genetically altered poplar tree. We
naturally obtain the hypothesis that    From here, we identify the opposing hypothesis that   
Note that this is a one-tailed test. We conduct a one-tailed test because regardless of whether the genetically altered poplar
trees have the same amount of lignin or more lignin than the regular poplar trees, interest in these genetically altered trees
would fade. There is no need to distinguish between no change and a change for the worse.

To select which hypothesis is to be considered the null hypothesis, we note that we are conducting the experiment to test
that the claims of the University of Maryland researchers are true; so, we do not want to assume their conclusion from the
beginning. We will set the null hypothesis to say that the genetically altered poplars have at least as much lignin present as
a percent of their dry weights as regular poplar trees.

We now begin to look at the sampling distribution of sample means given the size of the random sample and the
assumption that the null hypothesis is true. Since the sample size is  we expect the sampling distribution of sample
means to be approximately normal. Since there are many possible population means under the assumption that the null
hypothesis is true, we conduct our study with the value of  that will produce the largest -value. This occurs when  

We have    and   . We need to determine what would be considered at least as

extreme as the evidence from the sample which produced a sample mean of  . In this case, the more extreme
would be smaller and smaller percentages. So we are looking for the area in the tail on the left side of the sampling
distribution that ends at  . Notice how the direction of the tail matches the direction of the inequality in the
alternative hypothesis; we call this a left-tailed test. See the figure below for a visualization.
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Figure : Sampling distribution of sample means

We thus compute the -value using technology.

Since   there is sufficient evidence to reject the null hypothesis in favor of the alternative hypothesis that the
genetically altered popular trees have less lignin naturally present. There is sufficient evidence in support of the claims of
the researchers at the University of Maryland.

At this stage, we have conducted both types of one-tailed tests: right-tailed (recall the last section with corn yields) and left-
tailed (this section with lignin). When we operated under the assumption of the truth of the null hypothesis, we had to decide
which value of  to use in computing the -value. We chose the value that would be the hardest to find sufficient evidence (the
value that would produce the largest -value). This turned out to be when  equaled the common or accepted value from the
problem (the  bushels per acre of the commonly used corn and the  of the regular poplar trees). This will always be the
case and contributes to some textbooks making the pedagogical choice to say that the null hypothesis is always of the form: the
parameter equals the standard value. We do not adopt this simplification for the form of the null hypothesis, but we do
emphasize that when the parameter equals the standard value, the -value produced will be the largest, which is essential for
our analyses.

We also want to emphasize that there are three tests to consider: left-tailed tests, right-tailed tests, and two-tailed tests. These
three tests correspond to the three possible forms of hypotheses. Consider looking at the alternative hypotheses. In this last text
exercise about poplar trees, the alternative hypothesis was    and we computed the -value by calculating the
area in the left tail of the distribution. In the text exercise about Dr. Pepper, the alternative hypothesis was    and we
considered the area in both tails. And finally, in the exercise about corn yields, the alternative hypothesis was    

  and we looked only at the area in the right tail. Notice that the direction of the tail matches the direction of the
inequality sign in the alternative hypothesis. All of this is provided in the figure below within the context of means but applies
to any parameter (  indicates the common or accepted value of the population mean).
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Test Statistics
Recall that we can transform any normal distribution into the standard normal distribution and that this transformation preserves
area. An implication of these facts is that the computation of -values can be done within the context of the standard normal
distribution once we transform the particular sample mean. We call this transformed value of the calculated sample statistic the test
statistic. As discussed, different transformations can change sampling distributions of particular sample statistics to particular
common distributions. For now, understand that the basic idea of the test statistic is that it is a value that represents the value of the
sample statistic computed from the actual sample collected which facilitates computing the -value.

Recall that the -score transformation sends any normal distribution with a mean  and a standard deviation  to the standard
normal distribution given by the formula below.

Repeat the hypothesis tests from Text Exercises  and  using test statistics to compute the -values. Verify that the
same -values are computed which in turn yield the same conclusions as before.

1. The first text exercise considered filling  liter bottles of Dr. Pepper. A sample of   liters was randomly chosen which
produced a sample mean of  liters. The population standard deviation was  liters. The hypothesis test was to be
conducted on the hypotheses below at the  level of significance.

Answer

All conditions to conduct a hypothesis test are met; for details, review Text Exercise  We need to compute our test
statistic. We assume that the null hypothesis is true and, therefore, know that the sampling distribution is approximately
normal with   liters and    liters. Since we are transforming the sampling distribution of sample

means with  known into the standard normal distribution our -transformation takes on the form below.

We can insert the values from our particular context to arrive at the following.

Understand the  value to mean that under the assumption of the truth of the null hypothesis the evidence that we
collected from the sample mean is  standard deviations below the hypothesized population mean.

The alternative hypothesis contains the  sign implying a two-tailed test. We need to consider what is equally extreme in
the opposite direction. Since the standard normal distribution is centered at  all we have to do is take the value equal in
magnitude and opposite in sign,  Two values are equally extreme if they are the same number of standard deviations away
from the population mean. We have the following visualization for computing the -value.
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Figure : Standard normal distribution

We arrive at the same -value as before and since  is not less than  we fail to reject the null hypothesis.

2. The second text exercise considered the percent weight of poplar trees due to lignin. A sample of  genetically altered
poplar trees was randomly chosen, producing a sample mean of  percent. The population standard deviation was 
percent. The hypothesis test was conducted on the hypotheses below at the  significance level.

Answer

All of the conditions to conduct a hypothesis test are met; for details, review Text Exercise  We need to compute our
test statistic. We assume that the null hypothesis is true and, therefore, know that the sampling distribution is approximately
normal with   percent and    percent. We can compute our test statistic.

We can understand the  value to mean that assuming the truth of the null hypothesis the evidence that we collected
from the sample mean is  standard deviations below the hypothesized population mean.

Since the alternative hypothesis contains the  sign, this hypothesis test is a one-tailed test, and more extreme values
would be values to the left, resulting in a left-tailed test. We have the following visualization for computing the -value.
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=NORM.S.DIST(−2, 1)+(1−NORM.S.DIST(2, 1))

≈ 0.02275+(1−0.97725)

≈ 0.0455

= 2 ⋅NORM.S.DIST(−2, 1)

≈ 2 ⋅ 0.02275

≈ 0.0455

p 0.0455 0.01,
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α = 0.005
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Figure : Standard normal distribution

We again produce the same -value which yields that there is sufficient evidence to reject the null hypothesis in favor of
concluding the alternative hypothesis: the genetically altered popular trees have less lignin naturally present.

Claims on Population Means (  unknown)

We are now prepared to move to the more common situation: testing hypotheses about population means when the population
standard deviation is unknown. The added complication comes from the fact that we do not know the standard deviation of the
sampling distribution. We can estimate the population standard deviation using the sample standard deviation from our collected
sample, but using this estimate has ramifications.

Recall constructing confidence intervals for population means when  was unknown, we considered what happens under the -
transformation.

We concluded that the  variable followed a particular distribution, the Student's -distribution with  degrees of freedom.
Notice how similar the formula for the variable  is to the formula for calculating the test statistic when  is known. The only
difference is that one formula has an  while the other has a . Just as the -score transformation provided the formula to calculate
the test statistic when  is known, the -transformation provides the formula we use to compute the test statistic when  is
unknown. We, therefore, know the distribution of test statistics when  is unknown is the -distribution with  degrees of
freedom. We use this fact to compute the -value for testing claims on population means when  is unknown. For a refresher on the
-distribution see Section  The two processes for testing hypotheses about population means are very similar. The main

difference is the distribution in which we calculate the -value. When  is known, we use the standard normal distribution. When 
is unknown, we use the -distribution with  degrees of freedom.

Before we test hypotheses about population means with  unknown, let us review the overall process of hypothesis testing to
reinforce the procedure and highlight the distinctions between various situations.

1. Use natural observation, previous experimental results, or the claims of others to formulate a hypothesis that warrants testing.
Within the context of means, each observation must admit some quantitative fact that can be measured and averaged. This

7.2.4

p-value =NORM.S.DIST , 1 ≈NORM.S.DIST (−2.7152, 1) ≈ 0.0033
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excludes considerations of whether or not observations have a particular quality; that will be studied in the section on claims on
population proportions.

2. Identify a competing hypothesis and consider the ramifications of acting as if one of the hypotheses is true when, in fact, it is
not. Name the hypothesis with the less drastic ramifications as the null hypothesis. The novel or claimed hypothesis is generally
the alternative hypothesis. See note in the previous section regarding other ways to help distinguish between null and alternative
hypotheses.

3. Determine the methodology of collecting evidence against the null hypothesis and determine what constitutes sufficient
evidence by setting the level of significance. Make sure the design meets the requirements of the test intended to be conducted.
For claims on population means, ensure that the sample is randomly selected and that either the underlying population is
normally distributed or that the sample is large enough that the sampling distribution of sample means is approximately normal.
In most cases,  will be sufficient.

4. Conduct the experiment and collect the evidence.
5. Compute the test statistic. Be sure to make the distinction between sample and population standard deviations. The most

common situation is that we only have access to the sample standard deviation  and, therefore, must use the -transformation
to compute our test statistic. We often denote the test statistic based on which transformation is used. If the population standard
deviation is known, the -score transformation is used, and the test statistic is denoted with a  If the population standard
deviation is unknown, the -transformation is used and the test statistic is denoted with a 

6. Use the hypotheses to determine whether a test is a left-tailed, right-tailed, or two-tailed test. Note that the directions match the
sign in the alternative hypothesis.

7. Determine the -value by considering the test statistic, the appropriate distribution, and the type of test and then using
technology to make an appropriate calculation.

8. Compare the -value to the  value. If the -value  value, then we reject the null hypothesis in favor of the alternative
hypothesis. If the -value  value, we fail to reject the null hypothesis.

A guest speaker at a local library presented on the change in human physical characteristics over the last two centuries in the
United States. The presenter claimed that male height has consistently increased over that time and will continue to do so. The
last evidence cited in this regard was in  stating that the average height of adult males was  centimeters. Given the
span of over  years, we decide to test the hypothesis that the average height of adult males in  has increased since 

Suppose we collect a sample of  adult males randomly selected and measure their heights in centimeters. The data is
presented below. We decide to conduct the hypothesis test at an  value of 

Answer

We must confirm that our circumstances enable a hypothesis test to be conducted; we need a random sample and reasonable
confidence that the shape of the sampling distribution of sampling means is approximately normal. The first component, the
random sample, is easily confirmed. The sample size chosen is , which does not meet the typical threshold of more than 

. We must recall that male and female adult height are normally distributed. We, therefore, have that the sampling
distribution of sample means is normally distributed. We can conduct the test. Note that no population standard deviations
are given. We must utilize the recently discussed method that involves the -distribution!

The guest speaker made the claim that the average height of adult males has increased over time. The population mean was 
 centimeters back in  so, we identify one of the hypotheses as  centimeters. The opposite hypothesis

would thus be  centimeters. This is a one-tailed test because both the average being the same or smaller than before
are equally detrimental to the claims of the guest speaker. In both cases, the ramifications of acting as if one hypothesis is
true when it is false seem to be mild. So, we pick the null hypothesis to be the one contrary to the claimed hypothesis. We
settle on the hypotheses as follows.

Given the hypotheses, we have a right-tailed test. We compute our test statistic.

n> 30

s t

z z.

t t.

p

p α p < α

p ≥ α
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To do this, we must compute the sample mean and sample standard deviation using the values collected from our random
sample. We produce the following results:   centimeters, and  centimeters.

At this stage, we notice that our sample mean is less than the hypothesized population mean. Since we have a right-tailed
test, we are looking for evidence against the null hypothesis in the form of sample means larger than the hypothesized
value. We can thus immediately conclude that there is not sufficient evidence to reject the null hypothesis. We will show the
remainder of the computation to solidify the process and strengthen our conclusion.

Figure : Right-tailed test with  using -distribution with  degrees of freedom

As we can see, the shaded area is over half of the area due to the symmetry of the -distribution. We now compute the -
value using technology.

The -value is larger than the  value of . We conclude the test by failing to reject the null hypothesis. There is not
sufficient evidence to support the guest speaker's claim.

It is still possible that the average height of adult males has increased, and something rare occurred in the act of sampling. It
is also possible that the average height is the same as it was. Based on the evidence, we may also be open to the idea that
the average height may be smaller. Reviewing the guest speaker's reasoning behind why the heights have been increasing
may be prudent. Is there a faulty assumption? Is there an explanation as to why it may have been increasing and now
possibly decreasing? Perhaps we can conduct another random experiment to test whether the mean is now less than it was
before. Hypothesis tests that fail to reject the null hypothesis can still inform further research and inquiry.

A study published in  concluded that the average weekly recreational screen time of  year olds (emerging adults)
increased from  to  during the pandemic estimating the average weekly recreational screen time with the confidence
interval  hours. Recreational screen time does not include screen time associated with work or school.
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The pandemic is now behind us, but the effects of the pandemic are still playing out. A researcher is still interested in the
weekly recreational screen time of emerging adults and conducts a study on  randomly selected emerging adults with a
sample mean of  hours and a sample standard deviation of  hours. The researcher adopts the following hypotheses to be
tested at the  level of significance. Conduct the test.

Note that this sample data is completely fabricated.

Answer

Having been given the hypotheses, we note that we are conducting a two-tailed test. The researcher adopted the central
value of confidence interval from the study to compare the current data. We do not know the population standard deviation
and thus operate within the realm of the -transformation and -distribution.

Since we have a two-tailed test, we determine the test-statistic that is equally as extreme as the computed test statistic in the
opposite direction. Again due to symmetry, this is the value of equal magnitude but opposite sign. We have the following
visualization for computing the -value.

Figure : Two-tailed test with  using -distribution with  degrees of freedom

We again used symmetry, noting that the boundaries of the tails are equidistant from  so that we can double the area found
in one of the tails. The left tail can be computed directly using the negative value of the two test statistics.

We compare  with  and find that   We have sufficient evidence to reject the null hypothesis that
the average weekly recreational screen time for emerging adults in  is  hours and conclude that the average weekly
recreational screen time for emerging adults in  is not  hours. The evidence indicates that the average may actually
be higher, but to reach such a conclusion, another study must be conducted.

7.2: Claims on Population Means is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at
Fort Hays State University.
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12.1: Testing a Single Mean by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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7.3: Claims on Dependent Paired Variables

Distinguish between dependent and independent samples
Develop and apply hypothesis testing for dependent paired variables

 Section 7.3 Excel File: (contains all of the data sets for this section)

Review and Preview
Recall the two studies about weekly recreational screen time (one real and one fabricated) from Text Exercise 7.2.5. It might be
tempting to conclude that the average weekly recreational screen time for emerging adults in  is different from the average
weekly recreational screen time for emerging adults in  since we have evidence to say that the average in  is different
from  hours, but we must exercise a little caution. The original study (the real one) reported an estimate for the population
mean using a confidence interval with a margin of error of  hours. This is a large margin of error. The average weekly
recreational screen time for emerging adults in  could be anywhere from  hours to  hours. We do not know precisely
where it falls. So, using  hours as the conclusive average for  is questionable. We will always be using estimates of
parameters unless we conduct a census on the population. One might ask how can we ever proceed with these sorts of
comparisons? Did not the standard population means from other problems come from interval estimates as well? The short answer
is yes, they did, but there is more at play.

We first note that we can control the size of the margin of error by balancing confidence level and sample size. A more precise
estimate can be obtained using a larger sample. If the margin of error were only  hours, we might feel more confident in treating
the population mean as  We can also approach the problem using a different frame of reference. The general idea is that we
are comparing two populations so we should make comparisons using the data from both populations. We compare them by
collecting a random sample from each population and then analyzing the differences in the samples.

One methodology compared recreational screen time in  to . The original study used data from  and  from the
same set of people. The researchers could study the difference in recreational screen time by each member of the sample. They had
one sample from  and another sample from , but they were dependent upon each other because they consisted of the same
set of people. We describe such a situation as one with dependent samples. Tests using dependent samples, often referred to as tests
on dependent paired variables, provide strong results because they reduce the influence of confounding variables; there is less
variation across one subject as a single treatment is applied than the variation present across the members of the population, but this
is not the only way two populations can be compared.

Imagine the difficulty of keeping track of hundreds of participants over the course of months or years. Is it possible to make
comparisons between  and  without conducting such a longitudinal study? The answer is yes. Two samples can be taken
independently of each other. A random sample may be taken from one population and then another random sample may be taken
from the other population. In the context of recreational screen time, a random sample may be taken in  and then another
random sample may be taken in  Here we are not guaranteed that the same people will be in the two samples. It is possible
that there is overlap, but the fact that a person was in the first sample does not affect the probability that they are in the second
sample. We describe such a situation as one with independent samples. We will not address the methodologies involved in such
claims in this text, but the interested reader is encouraged to study it independently. We now begin our development of testing
claims on dependent paired variables.

Claims on Dependent Paired Variables
Researchers in medicine, education, and business are often interested in studying the effect of some treatment, educational practice,
or product. It is quite natural to assess the patient, student, or consumer prior to some treatment and then assess them once the
treatment has been in effect. Consider medical research: doctors can conduct pre-assessments and post-assessments to gauge the
impact of a particular medical intervention on a random sample of patients. The doctors could simply compare the pre-assessment
and post-assessment averages as if the samples were independently gathered, but there is a connection between the samples that is
not being acknowledged, namely, that the same patients have two assessment values. We can measure effect of the medical
intervention on each patient by considering the difference in the pre-assessment and post-assessment. In studying these paired
differences, it is like we are studying a single sample and can utilize techniques already developed in this chapter to test claims.
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A common concern of many people, especially in the medical community, is the consumption of chicken eggs. Previous research
seems to indicate the possibility of a tie to heart disease and diabetes, but studies require independent attempts at reproducing the
same results to verify that they weren't produced by chance. Suppose a medical researcher designs and conducts the following
study to test the impact eating  chicken eggs a day has on LDL cholesterol (low-density lipoprotein cholesterol (the bad
cholesterol)) levels in the body.

Given the varying conclusions of the previous medical research and the number of confounding variables that cloud their results,
this particular researcher decides to test whether or not there is any effect in adopting the consumption of  chicken eggs a day and
will test at a significance level of 

Participants are randomly sampled from the population at large. Each participant is asked to abstain from eating chicken eggs for
the span of  months to normalize the sample to a diet without chicken eggs. Each participant's LDL cholesterol is measured the
morning after completing the  month normalization period and is expected to have been fasting from midnight the night before.
The participants then eat  chicken eggs scrambled using a teaspoon of olive oil each day for breakfast for an entire month.
Participants are expected to maintain their regular diet otherwise. At the end of a month, participants again have their LDL
cholesterol measured in the same fashion as before.

Table : Initial and Final LDL Cholesterol Readings

Participant # Initial LDL (mg/dL) Final LDL (mg/dL)

2

2

0.05.

3

3

2

7.3.1

1 189 189

2 110 101

3 155 158

4 97 94

5 83 73

6 75 73

7 182 189

8 177 180

9 160 151

10 185 184

11 72 72

12 169 171

13 87 86

14 112 118

15 112 118

16 107 104

17 168 174

18 190 194

19 120 126

20 122 125

21 175 167

22 168 178

23 106 104
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Participant # Initial LDL (mg/dL) Final LDL (mg/dL)

To analyze the results of this hypothetical medical study (the results were fabricated for the purposes of the book), we treat the two
samples as dependent samples given that the variables of interest (LDL cholesterol levels before and after) can be matched by
participant. We are interested in the change in cholesterol level after having the medical intervention of eating  scrambled chicken
eggs a day for a month. To compute the change, we will need to compute the difference between the final measurement and the
initial measurement, Final LDL  Initial LDL. A positive difference indicates that the LDL level increased; while, a negative
difference indicates that the LDL level decreased. We will conduct our analyses on the values of these differences. To emphasize
the fact that we are studying the differences of dependent paired variables, we will utilize the following notation for means and
standard deviations:    and 

With this notation in hand, let us formulate our hypotheses regarding the average value of these differences. The researcher wants
to determine whether eating  chicken eggs a day has any effect on LDL levels. This would be an increase or decrease. If there is
no effect, the average of the differences will be  If there is an effect, the average of the differences will not be  We adopt the
former as our null hypothesis because chicken eggs are a relatively cheap source of protein and other nutrients that have been
consumed consistently in larger quantities for a long time.

Having our hypotheses in hand, we compute the differences to analyze and ensure that we met the requirements necessary to
conduct the hypothesis test. We have a random sample with a sample of  participants. Just like in our previous tests, we need
either that the underlying distribution, the distribution of all these differences, is normal or that the sample is large enough for the
Central Limit Theorem to assert that the sampling distribution of sample means is approximately normal. Since  we will
proceed using the latter as our justification.

Table : Initial and Final LDL Cholesterol Readings with Differences

Participant # Initial LDL (mg/dL) Final LDL (mg/dL)
Difference (Final - Initial)

(mg\dL)

24 108 110

25 93 99

26 129 139

27 95 94

28 63 68

29 176 170

30 186 191

31 171 175

32 154 154

33 78 76

34 156 164

35 170 160
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Participant # Initial LDL (mg/dL) Final LDL (mg/dL)
Difference (Final - Initial)

(mg\dL)

We do not know anything about the population parameters, so we will have to conduct our test using the -transformation test
statistic; hypotheses tests on dependent paired variables in this context are often referred to as a paired -tests. We compute the
sample mean and standard deviation using the difference values in the fourth column, compute the test statistic under the

5 83 73 −10

6 75 73 −2

7 182 189 7

8 177 180 3

9 160 151 −9

10 185 184 −1

11 72 72 0

12 169 171 2

13 87 86 −1

14 112 118 6

15 112 118 6

16 107 104 −3

17 168 174 6

18 190 194 4

19 120 126 6

20 122 125 3

21 175 167 −8

22 168 178 10

23 106 104 −2

24 108 110 2

25 93 99 6

26 129 139 10

27 95 94 −1

28 63 68 5

29 176 170 −6

30 186 191 5

31 171 175 4

32 154 154 0

33 78 76 −2

34 156 164 8

35 170 160 −10
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assumption that the null hypothesis is true, and produce a visualization for computing the -value. Notice that since the fourth
column has  data points, we will use  in our computations, despite the fact that we recorded  values in total.  

 mg\dL.   mg\dL.

Figure : -distribution for LDL Cholesterol Readings

Given that the -value is greater than the  value, we fail to reject the null hypothesis. There is not sufficient evidence to say that
eating  chicken eggs per day in the manner specified in the study alters the amount of LDL cholesterol in one's system over the
course of a month.

An athletic training company executive officer recently discovered the knees-over-toes guy, a trainer with a seemingly
effective approach to living well through exercise focused on whole body movement, flexibility, and overall strength. The
trainer claims that his approach helps people dunk basketballs. As this is an area of strategic growth for his company, the
executive officer was enticed and decided to test the strategy on his basketball clients for a year to assess the growth in the
height of the clients vertical jump. A random sample of  male clients was selected to participate in the study. Initial and final
vertical jumps were measured in inches (see table below). Conduct the hypothesis test at a  significance level. Note that
program is real, but this study is fabricated for the purposes of the book.

Table : Initial and Final Jump Height in Inches

Client # Initial Jump Height (in) Final Jump Height (in)

p
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35√
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p-value ≈ 2 ⋅ T.DIST(−0.8694, 34, 1) ≈ 2 ⋅ 0.1954 ≈ 0.3908

p α
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Client # Initial Jump Height (in) Final Jump Height (in)

Answer

We treat the two samples as dependent samples given that the variables of interest (vertical jump height) came from the
same participant pool and we can match the values by participant. We are again interested in the change in the variable of
interest after having some intervention; in this case, the intervention is a particular form of athletic training. To compute the
change, we will need to compute the difference between the final measurement and the initial measurement. Again, a
positive difference indicates that the intervention increased the jump height; while, a negative difference indicates that the
jump height decreased. We will again conduct our analyses on the values of these differences.

The company officer will only be interested in the new program if it increases clients' jump heights. Increasing the jump
height would result in a positive difference on average. The company officer does not want to assume that the program is
effective without evidence; we, therefore, have the following hypotheses for our test.
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8 26 29

9 15 20
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11 14 20

12 16 16

13 24 31

14 16 21

15 24 32

16 24 26

17 24 25

18 14 22

19 18 20

20 23 29

21 15 22
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23 25 32
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30 24 24

31 14 14
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Since the study used a random sample of  clients, the hypothesis test can be conducted. We compute the differences in
the following table.

Table : Initial and Final Jump Height with Differences in Inches

Client # Initial Jump Height (in) Final Jump Height (in)
Difference (Final - Initial)

(in)

H
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H
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: ≤ 0 inμ

d

: > 0 inμ

d

31

7.3.4

1 18 25 7

2 22 24 2

3 24 25 1

4 16 17 1

5 18 24 6

6 22 24 2

7 24 28 4

8 26 29 3

9 15 20 5

10 18 19 1

11 14 20 6

12 16 16 0

13 24 31 7

14 16 21 5

15 24 32 8

16 24 26 2

17 24 25 1

18 14 22 8

19 18 20 2

20 23 29 6

21 15 22 7

22 18 19 1

23 25 32 7

24 18 23 5

25 17 20 3

26 16 19 3

27 22 23 1

28 20 22 2

29 25 29 4
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Client # Initial Jump Height (in) Final Jump Height (in)
Difference (Final - Initial)

(in)

We will again conduct a paired -test.   inches.   inches.

.

Figure : Right-tailed test with 

Given that the -value is less than the  value, we reject the null hypothesis. There is sufficient evidence to say that over
the course of a year using the knees-over-toes guy's training regiment the average height of clients' vertical jumps
increased.

Many people have been concerned with carbon emissions from automobiles. Various governments have enacted policies that
set emission standards and goals for new cars. A government is giving automobile manufacturers  years to reach the
emission standards, but each year the manufacturers have to show that progress has been made by reducing carbon dioxide
emissions across updated models within each class of vehicles in the amount of at least  grams of carbon dioxide per mile
driven.

An automobile manufacturer's analyses indicate that they will not meet the emission progression threshold for their four-door
sedans. They are aware of certain studies that state that the fuels with higher ethanol concentrations produce less emissions. It
happens that the motors in this class of cars work well with pure gasoline and gasoline blended with ethanol. Without the time
to redesign enough models to meet the progression requirements, the company considers selling their four-door sedans as
requiring gasoline blended with a high ethanol concentration. They are hoping the difference from the fuel will be enough to
satisfy the requirements. With all the varieties in models, the company makes over  different four-door sedans. They

30 24 24 0

31 14 14 0

t x

¯

d

≈ 3.5484 s

d

≈ 2.5928

t ≈ ≈ 7.6198

3.5484−0

2.5928

31√

7.3.2 t = 7.6198

p-value ≈ 1−T.DIST(7.6198, 30, 1) ≈ 8.4615 ⋅ 10

−9

p α
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randomly select  models to test the carbon dioxide emissions and then compare the results to the results of the previous year.
The results are presented in the table below. Test the hypothesis at the  significance level.

Table : Four-Door Sedan Emissions

Model of Four-Door Sedan # Emissions from Last Year (g/mi)
Emissions from This Year with Blend

(g/mi)

31

0.05

7.3.5

1 483 471

2 468 456

3 409 401

4 457 452

5 461 447

6 403 396

7 408 396

8 414 398

9 429 422

10 443 428

11 467 460

12 386 369

13 350 343

14 396 381

15 476 461

16 363 347

17 465 453

18 398 392

19 426 417

20 489 472

21 454 444

22 449 442

23 400 387

24 380 365

25 383 378

26 371 357

27 423 406

28 437 423

29 379 374

30 351 338

31 397 385
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Answer

We treat the two samples as dependent samples given that the variables of interest (carbon dioxide emissions per mile
driven) are paired by particular models of four-door sedans. We are again interested in the change in the variable of interest
after having some intervention; in this case, blended fuel. To compute the change, we will need to compute the difference
between the final measurement and the initial measurement. Again, a positive difference indicates that the intervention
increased emission rates; while, a negative difference indicates a decrease in emission rates. We will again conduct our
analyses on the values of these differences.

The company will only be interested if switching fuel specifications decreases carbon dioxide emission by at least  grams
per mile driven on average. The company does not want to assume that this is the case without evidence. We form the
following hypotheses.

Since the study used a random sample of  models of four-door sedans, the hypothesis test can be conducted. We compute
the differences in the following table.

Table : Four-Door Sedan Emissions with Differences

Model of Four-Door Sedan
#

Emissions from Last Year
(g/mi)

Emissions from This year
with Blend (g/mi)

Difference (g/mi)

10

H

0

H

1

: ≥ −10 g/miμ

d

: < −10 g/miμ

d

31

7.3.6

1 483 471 −12

2 468 456 −12

3 409 401 −8

4 457 452 −5

5 461 447 −14

6 403 396 −7

7 408 396 −12

8 414 398 −16

9 429 422 −7

10 443 428 −15

11 467 460 −7

12 386 369 −17

13 350 343 −7

14 396 381 −15

15 476 461 −15

16 363 347 −16

17 465 453 −12

18 398 392 −6

19 426 417 −9

20 489 472 −17

21 454 444 −10

22 449 442 −7
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Model of Four-Door Sedan
#

Emissions from Last Year
(g/mi)

Emissions from This year
with Blend (g/mi)

Difference (g/mi)

We will again conduct a paired -test.   g/mi.   g/mi.

.

Figure : Left-tailed test with 

Given that the -value is less than the  value, we reject the null hypothesis. There is sufficient evidence to say that
switching the fuel classification of the company's four-door sedans to requiring a ethanol-gasoline blended fuel with high
concentrations of ethanol will allow the company to meet the emission progress standards set by the government. The
progress may not reflect the intent of the law but seems to pass the letter of the law.

7.3: Claims on Dependent Paired Variables is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.

23 400 387 −13

24 380 365 −15

25 383 378 −5

26 371 357 −14

27 423 406 −17

28 437 423 −14

29 379 374 −5

30 351 338 −13

31 397 385 −12
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7.4: Claims on Population Proportions

Conduct hypothesis testing on claims regarding population proportions using the sampling distribution of sample
proportions
Conduct hypothesis testing on claims regarding population proportions using test statistics

Review and Preview
Recall that proportions measure the percentage of observations that admit a certain quality. We might be interested in the
percentage of the population (who are registered to vote) that will actually vote in an upcoming election. Each registered voter
either will vote or will not vote; the registered voter either has the quality or does not have the quality. Remember that we denote
the proportion of the population with a quality of interest using  Since there are only two states regarding the quality, everybody
else does not have the quality; we denote this proportion with  The entire population is covered between the observations with the
quality and those without the quality; we thus know that  

We may be even more interested in the proportion of registered voters who will vote for a particular candidate or a particular item
on the ballot. In certain cases, particular proportions of affirmative votes are required for an item to pass. Can we test that there is
enough support for a particular candidate or item to pass before the election occurs or before all of the ballots are counted? These
questions center on claims about population proportions and is the topic of this section.

Testing claims on population proportions intimately involves the sampling distribution of sample proportions. In order to compute 
-values, we need to know the approximate shape of the sampling distribution. We have seen and utilized the fact that the sampling

distribution of sample proportions is approximately normal with   and   when our sample size  is large enough

that we expect more than  observations with the quality and more than  observations without the quality to be in our sample. To
check this condition, we checked that the following two inequalities were satisfied:  and  With such a preview and
having several sections of hypothesis testing under our belts, let us begin testing claims on population proportions.

Testing Claims on Population Proportions
When conducting hypothesis testing, we do not know the value of the population proportion  but this is okay because we
compute the -value under the assumption that the null hypothesis is true. We will thus be operating under the assumption that the
population proportion is equal to some particular value which we denote as  This notation leads to  which is the hypothesized
proportion of the population without the quality. So, in order to conduct hypothesis testing on claims about population proportions,
we need our samples to be randomly chosen and of such a size that  and  When these conditions are met, we can

conduct the probability assessment using a normal distribution with   and  

The success of a manufacturing plant that produces tens of thousands of motion-detecting sensors each week requires a high
degree of quality assurance and quality control. As such, the plant sets the standard that at most  of the sensors produced
at the plant will be defective. To test that the plant is meeting its production standards, random samples of  sensors are
taken each week and tested. The company tests at the  level of significance. Last week, the sample contained  defective
sensors.

1. Conduct the hypothesis test using the sampling distribution of sampling proportions and interpret the conclusions within the
context of the problem.

Answer

We are considering a claim on population proportions because we are considering the percentage of sensors that have the
quality that they are defective. The company set the standards that  This forms one of our hypotheses. The
competing hypothesis would thus be that  The company does not want to have the default position that the
machinery is not working; otherwise, they will frequently be conducting unnecessary maintenance.
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We note that under the assumption that the null hypothesis is true, the largest -value will be computed when the value is
assumed to be  We thus set  to ensure the conditions for the test are met. Noting that 
and  we have  and  With the two inequalities met and the sample being randomly chosen,
we can conduct the hypothesis test.

Under the assumption that the null hypothesis is true and in the situation that produces the largest -value, we have  

 and    The random sample of sensors from last week had  defective sensors. This is

not the sample proportion. Proportions fall inclusively between  and  The proportion of defective sensors in the sample
is the percent of defective sensors in the sample; thus,    Given the hypotheses, we have a right-tailed test
and thus visualize the test in the following figure.

Figure : Sampling distribution of sample proportions

Since the -value is smaller than the  value, we have sufficient evidence to reject the null hypothesis that proportion of
defective sensors is within the limit given the quality control standards set by the company. As such further investigation
should happen regarding the sensors produced last week and the machinery should be checked before continuing
production.

2. Determine a transformation that takes the sampling distribution of sample proportions to a common distribution and thus
determine the formula for the test statistic within the context of hypothesis testing with claims on population proportions.
Verify that your solution is correct by applying it in the context of this text exercise and obtaining the same -value.

Answer

Since the sampling distribution of sample means is approximately normal when we are able to conduct hypothesis testing
on claims about population parameters and we know the mean and the standard deviation, we can use the -score
transformation to map the sampling distribution to the standard normal distribution. We can thus define our test statistic as
follows
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p-value ≈ 1−NORM.DIST(0.04, 0.025, 0.007, 1) ≈ 0.0158
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We now apply this formula to the context of the text exercise to obtain a little validation. Using the values computed in the

previous part, we have        and   

Figure : Standard normal distribution

This produces the same -value as computed from the sampling distribution of sample proportions in the previous part of
the question. Indeed, we have settled on the proper formulation of test statistics in the realm of testing hypotheses on
population proportions.

A large, public corporation with thousands of shareholders is considering purchasing another large corporation, but according
to the bylaws by which the corporation was founded, to do so requires a two-thirds majority of shareholders to be in support of
such a purchase. The chief operating officer is vehemently opposed to the acquisition and has been rallying the shareholders to
vote against the purchase. The chief operating officer gets to set the agenda for the upcoming shareholder meeting and is trying
to decide if the vote regarding the purchase should be held or postponed.

To facilitate this decision, the chief operating officer randomly selects  shareholders and has the human resources department
contact them to assess their positions regarding the possible acquisition. After conducting these  conversations, the human
resources department returns that  of the shareholders are planning to vote in favor of the acquisition. Conduct a hypothesis
test from the perspective of the chief operating officer at the  significance level and decide, from his perspective, whether
or not to schedule the vote during the upcoming meeting.

Answer

For the vote to pass, a two-thirds majority of shareholders need to vote in favor of the acquisition in order for it to pass.
This fact determines our two hypotheses:  and 

The chief operating officer does not want the acquisition to pass and, therefore, wants the second hypothesis to be true. He
has the control over when the vote occurs. He does not want to assume his position is going to win out. We thus set the
hypotheses as follows.
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We note that under the assumption that the null hypothesis is true, the largest -value will be computed when the value is
assumed to be  We thus set  and note that  and  Thus we have  and  With the
two inequalities met and the sample being randomly chosen, we can conduct the hypothesis test.

We must determine the mean and standard deviation of the sampling distribution and the sample proportion in order to

compute the test statistic and then compute the probability for this left-tailed test.      and  

  

Figure : Standard normal distribution

The -value is larger than the  value. There is not sufficient evidence to reject the null hypothesis that there is enough
support for the acquisition to pass. Since the chief operating officer cannot feel confident that the acquisition is going to
fail, he should postpone the vote in order to have more time to convince shareholders of his point of view.

We often assume that the probability of having a female baby is  but there is mounting evidence that indicates this
assumption does not align with reality. The Centers for Disease Control (CDC) of the United States keeps track of birth records
and makes the data accessible to the public. In  there were  births in the United States with  of
those being female. This indicates that only  of babies born in the United States in  were female. In  there
were  births with  being females which again produces a proportion of  of babies being female.
What about on a global scale?
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p-value ≈NORM.S.DIST(−1.3693, 1) ≈ 0.0855
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The United Nations maintains records and an organization called Our World in Data maintains an article addressing the gender
ratio. It is the general trend throughout history, at least for the last century, that more males are born than females globally. A
study cited by Our World in Data indicates that the proportion of females at the time of conception is indeed  which
implies that the difference is caused by events occurring during pregnancies. An interested reader is encouraged to examine the
article linked above.

Suppose we took a random sample of newly born infants from across the world and  of them were female while  of
them were male. Would this constitute significant evidence against the common assumption that  of babies born are
female? Test the claim at a significance level of 

Answer

The wording of the problem "evidence against the common assumption that  of babies born are female" indicates the
null hypothesis. We thus have a two-tailed test with the following hypotheses.

In order to confirm the requirements for the test, we need to compute the sample size    Since 
 we have only one inequality to check. Half of  is much more than  so, we have the requirements met. Our

sample is large enough and was randomly selected.

     and   

Figure : Standard normal distribution

The -value is just below the significance level of the test. We, therefore, have sufficient evidence to reject the null
hypothesis in support of the notion that the proportion of females among newborn babies is not 

7.4: Claims on Population Proportions is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.
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7.5: Claims on Population Variances - Optional Material

Conduct hypothesis testing on claims regarding population variance using the -value method on one-tailed tests
Introduce the critical value method
Conduct hypothesis testing on claims regarding population variance using the critical value method on two-tailed tests

 Section 7.5 Excel File: (contains all of the data sets for this section)

Review and Preview
Having developed hypothesis testing for claims on population means, paired variables, and proportions, we are aware that the
process is supported by our understanding of the sampling distributions of particular sample statistics. This remains the case, when
considering claims on population variance and standard deviation. Recall that the sample standard deviation is not an unbiased
estimator of the population standard deviation but that the sample variance is an unbiased estimator of the population variance.
Therefore, to test any claims on a population's standard deviation, we must first translate them into equivalent claims regarding the
population's variance, test these new claims, and then translate the results back into the realm of standard deviation.

Once we formulate our hypotheses and collect our evidence, we assess the significance of the evidence using the -value for one-
tailed tests. Difficulties arise in determining the -value when conducting a two-tailed test; they stem from determining what is
equally extreme in the opposite direction when the distribution is not symmetric. We will address this difficulty in more detail later
in the section and subsequently develop a different, yet common, approach to hypothesis testing. For the remainder of this
introductory section, we will focus on the process for one-tailed tests because of its similarity to all that we have developed.

Recall that when the parent distribution is normal, we transformed the sampling distribution of sample variances into a -
distribution with  degrees of freedom to compute probabilities. We will need to utilize test statistics when testing claims on
population variance. The test statistic is the value produced by mapping the evidence from a particular sample into the common
distribution under the assumption that the null hypothesis is true. In assuming the null hypothesis is true, we will have some
hypothesized value of the population variance,  leading to the following test statistic.

With the test statistic in hand, we compute the -value and make a conclusion based on the comparison between the  value and
the -value. Let us begin testing claims on population variance and standard deviation.

Claims on Population Variance: One-Tailed Tests
In order to conduct hypothesis testing on claims regarding population variance, we will need to have a random sample taken from a
normally distributed parent population. As with all hypothesis tests, checking that the requirements of the test are met is important!
Let us consider an example situation together.

Many farmers spray their fields to prevent weeds and pests from negatively affecting their harvests. When spraying a field, it is
important to get sufficient and even coverage. We need the average ratio of volume to area high enough to meet our needs and the
standard deviation to be low enough to imply consistent application.

A company that manufactures sprayers conducted a test on a recently developed prototype to see if it met company standards
regarding consistent, even coverage. The company will not produce a sprayer unless the standard deviation is less than a quarter of
a gallon per acre. To test the consistency of the sprayer, the prototype sprayed three fields each containing  collection devices
scattered sporadically throughout the field. When all was said and done, the  measurements averaged out to  gallons per
acre with a standard deviation of  gallons per acre. They formulated the hypothesis test choosing a significance level of 
and the following hypotheses.

This formulation of the hypotheses, however, is not the formulation that the company used in testing because the hypothesis testing
needs to be done in the realm of variance, which yields the following set of hypotheses.
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To conduct the hypothesis test, we need that the sample was randomly selected from a parent distribution that is normally
distributed. Given the random placement of the  collection devices, the sample was randomly chosen. The company felt
confident that the distribution was normally distributed based on past history, but they conducted a test on the sample data to see if
it was reasonable based on the observed data (recall that such tests exist but are outside of the scope of this course). The test
affirmed the reasonableness of the assumption that the parent distribution was normally distributed. So, the hypothesis test could be
conducted. Note that the sample variance is  square gallons per square acre. We compute our test statistic and produce our
visualization.

Figure : -distribution

We note that the -distribution appears to be symmetric as opposed to the asymmetrical appearance we have come to recognize.
This is because the sample size is so large. The amount of skew present in -distributions decreases as the degrees of freedom
increase. From our visualization we compute our -value in order to conclude the hypothesis test.

Given that the level of significance for this test was  there is sufficient evidence to reject the null hypothesis. The company
can begin to produce the first generation of this prototype sprayer.

An amateur game developer is designing a game with AI generated open worlds in hopes of building a game that is essentially
endless. The developer does not, however, want the game to become monotonous and has tried to incorporate a great
variability between worlds. One of the metrics the developer decided to use to test if the AI is producing enough variability is
the distance the first significant encounter occurs from the starting position. The developer does not want the distance to be too
long and does not want it to be too consistent. The developer designed the AI to produce worlds so that the average distance is
about  game paces with a standard deviation of more than  game paces.

To make sure the AI was working properly, the developer randomly chose  game backers to play randomly chosen AI
generated worlds in order to find the distances to the first significant encounter. The sample data was analyzed and was found
to have an average distance of  game paces and standard deviation of  game paces. Test the hypothesis at the 
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significance level under the assumption that the distribution of the number of game paces to the first significant encounter is
normally distributed.

Answer

We can conduct the hypothesis test because the sample was randomly selected and we were told to assume the parent
distribution is normally distributed. The problem is framed within the context of standard deviation; so, we must translate
the problem to variance. If the standard deviation is supposed to be more than  game paces, the variance would need to
be more than   square game paces. Since this game is just being developed and tested to see if it is working
correctly, we do not want to assume that the population variance is greater than  square game paces. This helps us to
set our hypotheses as follows.

We have a right-tailed test. We compute our test statistic using the sample variance and then produce our visualization to
help compute the -value.

Figure : -distribution

The -value is smaller than the level of significance; therefore we reject the null hypothesis. This provides sufficient
evidence for the developer to assert that the AI is working for the variation in the game. It looks like it may not be meeting
specifications regarding the average distance though. That would require a test on means. An interested reader is
encouraged to consider how to conduct such a test.

Claims on Population Variance: Two-Tailed Tests
As hinted in the Review and Preview section, we will take a separate approach to conducting two-tailed tests on population
variances. This second technique can be applied to the hypothesis tests in general, but we leave such application to the reader. Let
us examine why an issue arises with two-tailed tests on population variances. Recall two main ideas: the standard normal
distribution and the -distribution are symmetric about  (the expected value of each distribution) and the -value is the probability
of obtaining something at least as extreme as what was observed under the assumption that the null hypothesis is true. In the two-
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tailed case, we needed to consider the value of a test statistic equally extreme as the test statistic computed from the observed
sample statistic but in the opposite direction. We chose the value that was the same distance away from the mean just with the
opposite sign. Given the symmetry of the previous distributions, three facts about the two values coincide: equidistant from the
mean, equal probability in the tails, and the heights of the density function at those values match. As it turns out, these serve as
three different possibilities for determining the value that would be equally extreme just in the opposite direction. Since the -
distribution is not symmetric, these three facts do not coincide in the -distribution. Arguments can be made for the legitimacy of
each possible definition; we leave such discussion for more advanced studies, and instead introduce a method common to many
textbooks that can be applied just as easily in this context as in the other contexts considered thus far in the book.

Critical Value Method
The -value and critical value methods share much in common: the requirements to conduct the hypothesis test, the designation of
an  value, and the computation of a test statistic under the assumption that the null hypothesis is true to name a few. The primary
difference lies in how to assess the significance of the collected evidence. In the -value method, we compare the probability of
getting something at least as extreme as what was observed to the  value. If the -value is less than the  value, we have
sufficient evidence to reject the null hypothesis. In the critical value method, we determine, based on the  value, what values of
the test statistic constitute significant evidence. We segment the distribution of the test statistics into regions based on whether or
not we will reject or fail to reject the null hypothesis if the computed test statistic falls in them or not. The regions where we would
reject the null hypothesis are called rejection regions. The boundary points of these regions are called critical values, hence the
name of the method. We must address how to identify these regions and set their boundaries.

If we are conducting a right-tailed test, we are looking for evidence against the null hypothesis by looking for test statistics far to
the right of the expected value. If we are conducting a left-tailed test, we are looking for evidence against the null hypothesis by
looking for test statistics far to the left of the expected value. If we are conducting two-tailed tests, we are looking for evidence
against the null hypothesis by looking for a test statistic differing from the expected value in either direction. From these thoughts,
we identify our rejection regions. If we have a right-tailed test, our rejection region lies in the right tail. If we have a left-tailed test,
our rejection region lies in the left tail. And, similarly, if we have a two-tailed test, our region region has two components: both the
left and right tails.

But how far along the tails must the computed test statistic be in order for us to fall in the rejection region? It depends on the 
value. The smaller the  is the farther along the tail we need the computed test statistic to fall. Recall that we can understand the 
value as the probability of making a type I error given that the null hypothesis is actually true. Once we have selected a particular 
value for a test, that value represents the expected rate of making a type I error if the null hypothesis is true and we repeatedly
collect random samples to test the hypothesis. We thus determine the size of our rejection region by setting the probability of a test
statistic falling in the region to be the  value. In one-tailed tests, the entire area naturally falls in one tail, but with two-tailed tests,
the area must be split between the two tails; each having an area of 

We have the following formulation of the critical value method.

1. Use natural observation, previous experimental results, or the claims of others to formulate a hypothesis that warrants testing.
2. Identify a competing hypothesis. Set the null and alternative hypotheses.
3. Set the  value for this particular hypothesis test
4. Determine the methodology of collecting evidence against the null hypothesis and determine what constitutes sufficient

evidence by setting the level of significance. Make sure the design meets the requirements of the tests intended to be conducted.
5. Conduct the experiment and collect the evidence.
6. Compute the test statistic.
7. Use the hypotheses to determine whether a test is a left-tailed, right-tailed, or two-tailed test. Note that the directions match with

sign in the alternative hypothesis.
8. Determine the rejection region of the appropriate distribution of the test statistics based on the hypothesis.
9. Determine if the test statistic falls within the rejection region. If so, reject the null hypothesis. If the test statistic falls on the

boundary or outside of the rejection region, fail to reject the null hypothesis.

When using the same  value, the critical value method will produce the same conclusions to hypothesis tests as the -value
method when conducting one-tailed tests on claims regarding means, proportions, and variances and when conducted two-tailed
tests on claims regarding means and proportions. The -value method is the most prevalent method in part because simply relaying
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the -value allows the readers to assess the strength of the evidence and to apply their personal thresholds without additional work
which is not realistic with the critical value method.

When conducting hypothesis tests regarding claims on population variance, there are three forms that the hypotheses can have
and there are two conclusions that can be drawn from each form. This yields six total possibilities. The following pictures
visualize the implementation of the critical value method for claims on population variance with a random sample of size 
taken from a normally distributed parent population. Note that the critical values are denoted using similar notation as the
critical values used in constructing confidence intervals for population variance, the rejection region is colored a light red, and
the test statistic is denoted  For each picture, deduce the formulation of the hypotheses and determine the conclusion of
the test.

1. 

Figure : -distribution

Answer

Since the critical value is in the shaded rejection region, we have sufficient evidence to reject the null hypothesis.

p
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2. 

Figure : -distribution

Answer

Since the critical value is not in the shaded rejection region, we do not have sufficient evidence to reject the null hypothesis.

3. 

Figure : -distribution
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Since the critical value is in the shaded rejection region, we have sufficient evidence to reject the null hypothesis.

4. 

Figure : -distribution

Answer

Since the critical value is in the shaded rejection region, we have sufficient evidence to reject the null hypothesis.

5. 

Figure : -distribution

Answer
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Since the critical value is not in the shaded rejection region, we do not have sufficient evidence to reject the null hypothesis.

6. 

Figure : -distribution

Answer

Since the critical value is not in the shaded rejection region, we do not have sufficient evidence to reject the null hypothesis.

In Text Exercise , we claimed that the heights of adult females followed a normal distribution with an average height of 
 inches and a standard deviation of  inches. A researcher thinks that the variation of adult female heights changes with

time due to a combination of genetics, nutrition, and lifestyle. The researcher decides to test this claim at a level of significance
of  by randomly sampling  adult females. Their heights are reported below. Conduct the test using the critical value
method.

Answer

The heights of adult females are known to be normally distributed and the sample was randomly selected. We can,
therefore, conduct the hypothesis test. Since the researcher is interested in any difference in the variability, we will have a
two-tailed test. We do not want to assume that the researcher is correct without evidence. We settle on the following
hypotheses.

We now compute the sample variance from the collected data and arrive at  square inches. We compute our
test statistic.
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In order to compute the critical values, we recall that the degrees of freedom are  and that we must split the  equally
between the two tails. This means that only   will be in each tail. We compute the critical values using
technology.

Figure : -distribution

The test statistic is greater than the smaller critical value while being smaller than the larger critical value. The test statistic,
therefore, falls in the fail to reject region of the distribution of test statistics. We conclude that there is not sufficient
evidence to reject the null hypothesis. We cannot affirm the researchers' claims that the variability present in adult female
heights is different than it once was with a standard deviation of  inches.

7.5: Claims on Population Variances - Optional Material is shared under a Public Domain license and was authored, remixed, and/or curated by
The Math Department at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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8.1: Introduction to Bivariate Quantitative Data

Define multivariate data
Introduce, differentiate, and identify associations and correlations
Construct and utilize scatter plots to analyze bivariate data
Distinguish between a linear and a nonlinear relationship
Explore the differences between causation and correlation

 Section 8.1 Excel File: (contains all of the data sets for this section)

Review and Preview
When we observe the world around us, there are a multitude of questions that could be asked about any single object, person, or
event. So, when we study a population, it is possible to have many varied interests in the population or each member of the
population. Take, for example, the assessment of the general health of an individual by a doctor. When we go to a healthcare
provider for an assessment of general health, the doctor considers more than just our height. Multiple factors, like age, sex, height,
weight, cholesterol, and glucose, to name a few, are considered. To get an accurate understanding of our general health, multiple
variables must be considered together. We collect multivariate data when we are interested in a set of variables from each
individual being studied. As this is just an introductory text, we will limit our considerations to bivariate quantitative data, meaning
that we only consider analyses with only two quantitative variables of interest.

Bivariate Data: Types of Association and Models

Consider the ages at which married couples gave their wedding vows. For each married couple, we are interested in both the age of
the bride and the age of groom. As such, we are considering bivariate data. We sampled  different married couples and tabulated
the data below.

Table : Age of bride and groom on wedding day

Married Couple Groom's Age (years) Bride's Age (years)

 Learning Objectives

15

8.1.1

1 20 21

2 26 20

3 32 34

4 30 30

5 21 22

6 29 28

7 26 25

8 34 34

9 29 28

10 55 50

11 30 26

12 43 39

13 30 29

14 24 22

15 20 19
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Even with just  married couples, the data is difficult to digest and summarize. In taking the time to compare the ages of the bride
and groom for each married couple, we come to the inclination that it is fairly common for the ages to be somewhat close together.
This inclination aligns with the intuition built from previous experience. As such, we expect that there is a relationship between the
age of the groom and the age of the bride. When the bride is young, we expect a young groom. When the groom is old, we expect
an old bride. Given this expected pattern in the ages, we describe the association as positive. If we consider the ages of the bride
and groom as quantitative variables, then as one variable increases, we expect the other variable to increase as well. Equivalently, if
one variable decreases, we expect the other variable to decrease. As one variable changes in amount, the other variable changes in
the same direction. As such, positive associations between variables are often referred to as direct relationships or positively
correlated.

We built an intuition for this relationship with our previous experiences and by comparing the data line-by-line. Bivariate data will
not always center around topics so commonplace and with so few observations. We will need to develop methodologies for
facilitating such comparisons both visually and analytically. A common way to visualize bivariate quantitative data is by
constructing a scatter plot. We are interested in establishing the relationship between the age of the bride and the age of the groom
on their wedding day. The first column of the data simply labels the married couples and does not provide any information
regarding the desired relationship. We focus on the second and third columns of our tabulated data. We can treat each married
couple as a coordinate pair (Groom's Age, Bridge's Age) and then plot the  points on a coordinate plane to obtain a visualization
of the relationship between the quantitative variables age of groom and age of bride. We have done so below.

Figure : Scatter plot of groom's age vs bride's age on wedding day

The scatter plot quickly and easily confirms our initial intuitions. There is a relationship between the age of the groom and the age
of the bride on their wedding day. As one variable increases, so does the other. Recall that our initial thoughts were that the ages
were fairly close together and, as a result, we concluded that as one increased so would the other. We need to take a closer look to
see how closely they are related. If the ages of the groom and bride are close together, we would expect that the data points would
fall close to the line where the age of the groom equals the age of the bride. We have plotted such a line on the scatter plot below.
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Figure : Scatter plot with the line  of groom's age vs bride's age on wedding day

The line fits the data fairly well and gives credence to the idea that the relationship between the ages of the bride and groom can be
modeled using a linear function. Recall that a linear function (straight line), is characterized by having a rate of change, a constant
slope. The slope is the ratio of the vertical change to the horizontal change (rise over run). Since this is constant, we expect that the
change in one variable is proportional to the change in the other variable meaning  where  is the slope of the line,
regardless of the particular values of the variables. This seems to be true of the scatter plot at hand, but perhaps there is another
line, with a different slope or -intercept, that represents the data better. Consider the following scatter plot with the additional
linear function represented using the blue dotted line.

Figure : Scatter plot with two lines of groom's age vs bride's age on wedding day

Both of these lines appear to fit the data fairly well. We will eventually ask the question of how to decide which is better. As of
right now, we conclude that when considering married couples, the two quantitative variables age of bride and age of groom appear
to have a direct relationship and the relationship is likely to be modeled using a linear function.
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1. When we were considering the bivariate data related to the ages of the bride and groom on their wedding day, we asserted
that the two quantitative variables displayed a positive correlation. It is possible to have a negative correlation (also referred
to as a negative association or inverse relationship) between two quantitative variables. A negative correlation occurs when,
as one variable increases, the other variable decreases, or equivalently: as one variable decreases, the other increases.
Remaining within the context of marriage, identify bivariate data that would likely display a negative correlation. Explain
your reasoning.

Answer

Given such a broad topic, the answers can vary quite tremendously. To check your solution, ensure that, for each member of
a sample, two quantitative measurements are taken. This makes the quantitative data bivariate. Consider the relationship
between the values of the two measurements. Will large values of one variable correspond to small values in the other?
Does one decrease as the other increases or vice-versa?

A rather simple example relates the number of children in the household with the amount of one-on-one time a husband and
wife get to spend with each other. As the number of children in the household increases, the responsibilities of the husband
and wife as parents occupy a greater proportion of their time. Most couples realize the need to continually spend time
together; so, we would not expect the amount of one-on-one time to diminish to , but nonetheless, real and felt decreases
in one-on-one time is expected as the family grows in size.

2. Remaining in the context of marriage, give an example of bivariate data in which there is little to no correlation. That
would mean if one variable is large, the other may be either small or large, and as one variable is small, the other may be
small or large.

Answer

Consider the average height of the couple along with their annual income. In principle, these two variables have nothing to
do with each other. While we could imagine reasons why these two quantities may correlate, there are many other factors,
such as genetics, which determine height. We could reasonably expect to see short couples with low income, short couples
with high income, tall couples with low income, and tall couples with high income.

Just like before, there are innumerably many possible answers to this question. If you picked two quantities where knowing
what one is does not inform what the other will be, then your example likely works.

So far, we have described the concept of association within bivariate quantitative data as whether or not there is a relationship
between the two variables. If there is an association, we are interested in what generally happens or is expected to happen to the
value of one variable as the other variable is changed. If the directions of the changes match, the association is said to be positively
correlated. If the directions of the changes are opposite, the association is said to be negatively correlate. It is possible to have
relationships between two variables that have positive associations on certain intervals and negative associations on others. In such
a case there is an association because there is a relationship, but there is no correlation because the relationship between the
variables cannot be simply described as increasing or decreasing. Such relationships, however, would not be modeled well by a
single linear function and, therefore, fall out of the scope of this course.

The following questions center around the bivariate data related to diamonds, the gemstones that point to unwavering and
lifelong love, according to popular culture. The quality of a diamond depends on various factors: the cut, color, clarity, and
weight. The general shape or cut of the diamond plays an important role, but when the quality of the cut is referenced, the
focus is on the proportions of the cut diamond as they relate to reflecting light back through the diamond. The color points to
the general hue of the diamond; while, the clarity points to the presence of internal or surface defects on the diamond. The
weight of the diamond is typically measured in carats. The prices of various round diamonds with super ideal cuts, flawless
clarity, and icy white hue were observed along with their weights from several top national retailers (Brilliant Earth and Blue
Nile). The diamonds were then ordered to produce the following table.

Table : Weight (carats) and price  of diamonds

 Text Exercise 8.1.1
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 Text Exercise 8.1.2
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Diamond Weight (carats) Price (US dollars)

1 0.37 1, 160

2 0.52 2, 430

3 0.63 3, 860

4 0.63 3, 430

5 0.68 3, 900

6 0.7 4, 050

7 0.77 5, 020

8 0.83 6, 830

9 0.95 9, 560

10 1.18 12, 830

11 1.24 13, 610

12 1.3 14, 830

13 1.3 14, 890

14 1.37 15, 990

15 1.43 18, 890

16 1.61 24, 000

17 1.67 23, 870

18 2 39, 300

19 2.02 38, 580

20 2.22 54, 360

21 2.23 63, 820

22 2.34 60, 160

23 2.39 49, 130

24 2.52 65, 600

25 2.56 62, 130

26 3.5 144, 120

27 3.56 192, 710

28 3.88 157, 280

29 4.42 236, 360

30 5.02 322, 260

31 5.06 374, 870

32 5.8 359, 600

33 6.04 398, 190

34 7.13 543, 230

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41813?pdf


8.1.6 https://stats.libretexts.org/@go/page/41813

Diamond Weight (carats) Price (US dollars)

1. What sort of association do you expect with this bivariate data? Explain.

Answer

As diamonds increase in size and weight, the rarity of the diamonds increases. And as rarity increases, the price increases.
We expect a positive correlation.

2. Construct a scatter plot of this bivariate data to check your intuition from the previous part of this exercise. Be sure to label
the graph and both axes.

Answer

Using the data tabulated in the provide Excel file and under the guidance of the Excel guide, we construct the following
scatter plot.

Figure : Scatter plot of weight (carats) vs price  of diamonds

As predicted, we see that as the weight of diamond increases, the price of the diamond also increases. We have confirmed
that the correlation is positive.

3. If we were trying to model the association of this bivariate data with a function, would a linear function fit the data well?

Answer

In looking at the scatter plot, it appears that the rate at which the price is increasing as the weight increases is not constant.
The rate of change when the weight is between  and  carats is perhaps fairly steady but is different from the rate of
change when the weight is between  and  carats. Consider the slopes of the two lines drawn below.

35 7.32 530, 320
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Figure : Scatter plot of weight (carats) vs price  of diamonds comparing slope

The slope of the line of the left is positive but significantly less steep than the slope of the line on the right. This leads us to
conclude that a linear function is probably not the best model for the bivariate data.

We will limit our discussion in the text to using linear functions, but there are other types of functions that can be used as
well. We modeled this same data using a power function to produce the following scatter plot and model below. Interested
readers are encouraged seek more advanced statistical texts to address such content.

Figure : Scatter plot of weight (carats) vs price  of diamonds power function

Bivariate Data: Strength of Association
There are many instances when the relationship is not as clear as we have seen so far; the association is not as strong. Indeed there
are cases, where there is no association. Consider the following scatter plot which relays the measurements the age of the bride at

8.1.5 ($)

8.1.6 ($)

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41813?pdf


8.1.8 https://stats.libretexts.org/@go/page/41813

the time of marriage with the number of children the couple has over the course of their marriage from a random sample of married
couples.

Figure : Scatter plot of age of bride vs number of children

Data in Tabulated Form

Table : Table of age of bride vs number of children

Married Couple Bride's Age (years) Number of Children

8.1.7

8.1.3

1 19 2

2 21 8

3 21 5

4 22 0

5 22 3

6 23 6

7 23 4

8 23 2

9 24 7

10 25 1

11 25 3

12 26 3

13 27 4

14 29 5

15 31 3

16 31 1

17 32 2
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Married Couple Bride's Age (years) Number of Children

The scatter plot shows a general decline in the number of children as the age of the bride increases. This has a quite natural
explanation from a basic understanding of human biology. This does not, however, explain the fact that our data looks as it does.
Up until now, the coordinate pairs on our scatter plot looked somewhat like closely packed paths through the coordinate plane.
Now our scatter plot looks similar to a shaded triangle. There are couples with   and  children all throughout the presented age
range. There are many factors that contribute to the number of children born through a marriage. There is a negative association
between the age of the bride and the number of children, but the strength of the association is not as strong as the other examples
we have seen due to a number of other factors. The closer the points are clustered to form a tightly packed path, the stronger the
relationship; the less densely the data is packed along a path, the weaker the relationship. If there is no path, there is no
relationship. We would see a similar sort of loss of strength if in our search for diamond prices and weights we did not first narrow
our search to diamonds of the same cut, color, and clarity.

For each scatter plot, indicate the type and strength of the association between the two variables and if a linear function would
model the relationship well.

1. 

Figure : Scatter plot

Answer

The scatter plot indicates a positive association between the two variables, but the points on the scatter plot are not tightly
packed together vertically. This leads us to say that the association is not as strong as some of the other associations seen in
this section. It does look like a linear function could be used to model the data.

18 33 0

19 35 2

20 41 1

0, 1, 2

 Text Exercise 8.1.3
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2. 

Figure : Scatter plot

Answer

The scatter plot indicates that the variables show a positive association when the horizontal variable is less than about  but
a negative association after that. Given that the relationship does not appear to be a simply positive or negative association,
we would say there is no correlation. The scatter plot does indicate that an association between the variables is present,
possibly to a stronger degree than the previous part of this text exercise. Modeling this data would be best be done with a
function that is increasing and then decreasing. As such, a linear function would not model the data well.

3. 

Figure : Scatter plot

Answer

This scatter plot does not seem to admit to any particular association. The data seems scattered fairly randomly over the
coordinate plane. It is possible to envision a steep line with negative slope through the origin fitting the data okay, but it

8.1.9
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leaves a lot of points farther away from the line, and it seems just as easy to envision a shallow line with positive slope
through  fitting the data okay, but again leaving a lot of points far away from the model. As such, we say that
there is likely no association, or at best, a very weak association between the variables. When there is no association or a
very weak association, no function will serve as a suitable model.

4. 

Figure : Scatter plot

Answer

This scatter plot indicates a negative correlation fairly clearly. The association appears to be fairly strong with a linear
function being well suited to the model the relationship between the variables.

When assessing associations visually, care must be given. We assess the strength of the association based on how tightly packed the
paths are formed by the data. This visual assessment can be greatly distorted by the scale used on the scatter plot. Consider the
following scatter plot constructed from the data sets that produced the scatter plots in the first (blue), second (green), and fourth
(orange) parts of the previous text exercise.

(0, −2.75)
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Figure : Comparing scatter plots on same scale

Our understanding of the data from the first and fourth parts of the previous exercise remain the same and in someways are
strengthened. The blue data from the first part is positively associated and appears to follow a linear model. The orange data from
the fourth part is negatively associated and a linear function still appears to model the data well. Having the two plotted on the
same coordinate plane, we can feel confident that the association of the orange data is stronger than that of the blue data because
the points form a path that is more densely packed than the blue path. Our confidence in the conclusions relating to the second part
of the previous exercise, the green data, may be slightly shaken. At this scale, it seems a little more reasonable to conclude that the
green data might be modeled using a linear function with a negative slope. The appearance of a possible linear relationship
becomes even more pronounced when the scale is altered again in the following scatter plot.

Figure : Comparing scatter plots on same larger scale

Hopefully, we recognize the egregious nature of this last scatter plot. There is no need for such a large scaling of the vertical axis.
In the first scatter plot with the three data sets, the scale needed to incorporate all the data present and, therefore, could not be
scaled in precisely the same way as the scatter plots were scaled in the original text exercise. Sometimes, there are legitimate

8.1.12
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reasons for plotting multiple variables on a single coordinate plane, but when we do so, we must exercise caution. We want to
develop analytical methods of assessing the association between variables that does not depend on the scaling of the values either
graphically presented or based on the units used in the calculation. We do so later in this chapter.

Correlation and Causation
In this section we address the common adage that "correlation does not imply causation." If quantity A somehow causes or creates
quantity B, then one would expect to see an association between the two variables. What the adage is saying, is that the converse is
not true; the existence of a correlation could have many explanations other than cause and effect. In reality, the principle applies to
more than just correlation; it applies to any association. Perhaps the adage is assembled as an appeal to the allure of alliteration.
Setting phrasing aside, the adage warns us that when studying bivariate data, we must carefully discern the conclusions that we
draw from the presence of associations.

While the name may be unfamiliar, the concept of causation should be familiar enough; think of it as referencing the ideas of cause
and effect. Suppose a pianist begins to play Pachelbel's Canon in D Major at the start of the entrance procession at a wedding. With
each press of a key, a hammer strikes a taut string which subsequently reverberates the desired note throughout the space. The
pianist, the cause, makes the music, the effect. There is such a possibility when considering quantitative variables as well.

For various reasons, many engaged couples focus on their physiques as part of the preparation for their upcoming wedding. In
many cases, this preparation centers around losing weight with a focus on caloric intake. In order to lose weight, one must
consistently have a daily caloric deficit. If one wants to gain weight, one must consistently have a daily caloric surplus. Each can be
attained through various combinations of food consumption, hydration, and exercise. When in a state of caloric deficiency, the
effect is weight loss. We say there is a causal relationship between the quantitative variables caloric deficit and weight loss. When
there is a relationship, there is an association. In other words, when there is causation there is association. If we were to collect data
on this topic, we would see that the larger the deficit the more weight is lost. We would say that caloric deficit and weight loss are
positively correlated. In this case, the positive causal relationship implies a positive correlation.

This is not the typical setup when we are studying the world around us. In general, we do not start with a causal relationship. We
start with two variables of interest, collect data, and consider a scatter plot to see if there is an association. Just because there is an
association does not mean that the relationship is causal. For example, suppose the happy newly weds are cataloging their gifts so
that they may send thank you letters. In doing so, they notice that the people who traveled very far to attend the wedding gave gifts
which tended to be more expensive. Their most expensive gifts, in fact, were given by the people who traveled the farthest.
Similarly, people who did not travel very far tended to give cheaper gifts. In short, they have noticed an association between two
quantitative variables: price of the gift and the distance traveled to the wedding. Is it reasonable to assert that there is a cause and
effect relationship? The couple may speculate that when someone puts in a large amount of effort to attend, they are
psychologically predisposed to a larger monetary loss and therefore are inclined to spend more than someone who put in little effort
to travel. This hypothesis asserts that the travel distance is causing the price of the gift. We wish to emphasize that such a
conclusion is premature. While it may be true, there are other explanations of the correlation. Of their loved ones who live far
away, perhaps only those with a lot of money were able to attend; those people would be able to afford more expensive gifts. This
would suggest that wealth is causing both the willingness to travel long distances and buy expensive gifts. Alternatively, perhaps
those who are willing to travel long distances are those who have very close relationships with the couple and thus are willing to
spend more money on gifts. Or, it could be a total coincidence; perhaps other weddings did not observe a correlation between these
quantities. More work is needed to ascertain which of these explanations, if any, are correct. Concluding any cause and effect based
solely on the observation of correlation is erroneous.

In general, if quantity A correlates with quantity B, there are many explanations for that correlation. It could be the case that A
causes B. It could be the case that B causes A. It could be the case that a totally separate quantity, C, is causing both A and B; this
latter case is referred to as common response. Or, as tends to happen with small data sets, the correlation could just be total
coincidence: a pattern emerging from random chance and is falsified upon collecting more data. We call these spurious
correlations. Establishing correlation is comparatively easy, but establishing cause and effect is quite difficult; the latter requires
controlled experimentation accompanied with explanatory power. Throughout this chapter, we will explore how to measure
correlation, but we will not be making any assertions regarding causation.

8.1: Introduction to Bivariate Quantitative Data is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.

4.1: Introduction to Bivariate Data by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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8.2: Linear Correlation

Discuss linear correlation
Motivate and develop Pearson's correlation coefficient 
Calculate, by hand and using technology, and interpret 
Emphasize the need for visualization in conjunction with summary statistics

 Section  Excel File (contains all of the data sets for this section)

Review and Preview
When we study bivariate quantitative data, we attempt to identify if there is a relationship between the two variables. If there is a
relationship, which we call an association, we would like to describe it as well as we can.

One way to do this is to describe what happens as one of the variables changes. If as one variable increases, the other increases, we
say that the variables are positively correlated. If as one variable increases, the other decreases, we say that the variables are
negatively correlated. Some associations are not correlated, meaning, as one variable increases, the other variable may increase or
decrease depending on which values we are considering. When we have a correlated association, we can further describe the
association by determining whether or not the rate of change is constant. In other words, we could determine if a linear function
would be a good model for the data. A linear function models the association well when the scatter plot forms a fairly straight path
through the coordinate plane. A third way to describe the association is to assess its strength or how densely packed the points are
along the path in the scatter plot.

In the previous section, we noted that visual assessments of these considerations can be influenced by the units on the data and the
scale of the scatter plots. In this section, we develop an analytical tool to help us, but for best results, we should use both the
visualizations and analytical tools in conjunction. As indicated in the previous section, we will restrict our discussion to identifying
when an association is well-modeled by a linear function and then measuring the strength of that association. Since linear functions
have a constant slope, linear associations are necessarily correlated. As such, we begin our exposition of linear correlation.

Linear Correlation

We are about to embark on the development of Pearson's correlation coefficient,  for sample data. There is an analogous measure
for population data which we will not address in this course. The goal of the correlation coefficient is to assess the strength of the
correlation between two variables which are thought to have a linear association. Such a measure would be expected to be
independent of both the units describing the data and the ordering of the variables. Returning to our example regarding the ages of
the bride and groom on their wedding day, our computation of  should not depend on whether the data is presented in months,
years, or decades, and it should not care if our variables are paired as (age of bride, age of groom) or (age of groom, age of bride).

Let us begin with the task of trying to ensure that the measure does not depend on the particular units used to describe the data.
Recall that we can use the -score to compare values within and between different sets of data because the -score represents how
many standard deviations above the mean an observation is. We defined the -score within the context of population data, but the
same concepts apply when we are studying sample data. We are using sample statistics in calculation rather than population
parameters. Within this context we have the following.

An astute reader will acknowledge a possible issue here. We are now dealing with bivariate data; we have not discussed the idea of
means and standard deviations within this context. Luckily, this does not pose any significant issue. We can study each of the
individual variables as we have done previously. If we have bivariate data with a first variable  and a second variable , we can
compute the mean and standard deviation of the variable  and then the mean and standard deviation of the variable  in order to
compute the associated -score for each component of each observation. We consider two -score computations, one for each
variable as follows.
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1. To begin our exploration, we will consider the following bivariate data set consisting of  observations with variables 
and  Construct a scatter plot of bivariate data to confirm that a linear function seems appropriate as a model for the data.

Table : Table of values for variables  and 

Answer

Figure : Scatter plot of variables  and 

After constructing a scatter plot using the variables  and  we come to the conclusion that it is reasonable to understand
the data using a linear function to model the data. It appears that the two variables are negatively correlated.

2. Compute the appropriate -score for each component of each observation by first computing    and  and then
computing the -score according to which variable the data belongs. Use the following table as a template.

Table : Table of values for variables  and 

 Text Exercise 8.2.1
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Answer

In order to compute the appropriate means and standard deviations, we treat each column of our data set as its own separate
set of data. We compute  by adding all of the values in the  column and dividing by  and compute  by adding all of
the values in the  column and then dividing by  We proceed similarly for the computations of the standard deviations
by treating the data from each variable separately. Using technology can make this process much quicker. We provide the
appropriate values now:       and   We compute the number of standard deviations each
measured value of each variable is away from the mean its particular variable.

Table : Table of values and calculations for variables  and 

3. Construct a scatter plot of the -score data and compare it with the scatter plot constructed in the first part of this text
exercise.

Answer
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Figure : Scatter plot of -scores of variables  and 

A visual analysis comparing the scatter plot using the variables  and  with the scatter plot using the variables  and 
yields that the shape of the path looks extraordinarily similar. The relative positions of the coordinates seem to match

perfectly (which they do). In considering the -scores of our data, we have successfully removed the impact that different
units would make while preserving the relationship in the data.

Let us continue to analyze the scatter plot of the variables  and  We note that almost all of the coordinate pairs fall into  of
the  quadrants of the coordinate plane. The top left quadrant, quadrant II, houses  of the coordinate pairs; while, the bottom right
quadrant, quadrant IV, houses  of the coordinate pairs. The last coordinate pair falls on the boundary between quadrants III and IV.
We notice that when we have a fairly strong negative correlation the majority of points land in quadrants II and IV.

1. Recall that the bivariate data that relayed the ages of bride and groom on their wedding day displayed a positive linear
correlation when we constructed the scatter plot. Using Excel to transform the data using the -score, just as we did in the
last text exercise, and then construct a scatter plot. Analyze the scatter plot by considering the points in the various
quadrants. Does a similar pattern appear?

Answer
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Figure : Scatter plot of -scores of ages of bride and groom

The scatter plot shows that most of the points fall in quadrant I and quadrant III. There is one point that falls in quadrant IV,
but it is very close to the boundary between quadrants III and IV. We see a similar trend to the scatter plot in the previous
text exercise that the majority of points fall in two quadrants, but the quadrants are different. Rather than the quadrants
labeled with even numbers, we have the quadrants labeled with odd numbers.

2. Now consider the scatter plot of the transformed variables from text exercise 8.1.3.1 presented below. We described the
relationship between these variables as having a weaker positive correlation because there was a straight upward path
through the data, but the points were not densely packed together. What do you notice about the quadrant analysis in this
case?

Figure : Scatter plot of -scores

Answer
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The scatter plot reveals points in each of the four quadrants, but the majority of the points fall in the first and third
quadrants.

We can relate the quadrants back to the original raw data using our understanding of the -score. Recall that a -score is
positive when the observation is larger than the mean and negative when the observation is smaller than the mean. So, the first
quadrant of the scatter plot with -scores consists of all the points where both variables were greater than the means of their
respective variables. The third quadrant consists of all the points where both variables were less than the means of their
respective variables, and the second and fourth quadrants consist of the points where one variable was larger and one was
smaller. We can build quadrants using the means from our two variables as seen below with the data from text exercise 

Figure : Scatter plot of variables  and  with  and  graphed

We begin to see that the strength of the association is related to the number of points in particular quadrants. With negative
associations we see the majority of points in quadrants II and IV; while, we see the majority of points in quadrants I and III when
the association is positive. Note that in quadrants I and III, the -scores have the same sign (either both positive or both negative),
and in quadrants II and IV, the -scores have opposite signs (one negative and one positive). This means that we can readily
identify how an observation contributes to the association by the sign of the product its -scores. If the product is positive, the point
falls in either quadrant I or III. If the product is negative, the point falls in either quadrant II or IV. If the majority of the products
are positive, we would expect a positive association. If the majority of the products are negative, we would expect a negative
association. Of course, there is more at play which we will consider now.

The points on the scatter plot of -scores that are close to the origin could easily be seen in a path with an upward direction or a
downward direction. As such, the number of points that are close to the origin in any given quadrant contribute less to the
determination of the association as the points that are farther away from the origin. If the -scores of an observation have large
magnitudes, that observation contributes to the determination of the association to a larger degree. We note that both the sign and
the magnitude of the product of an observation's -scores inform us about the association between the variables. As such, it seems
that a reasonable measure of linear correlation would involve averaging all of the products of each observation's -scores. Indeed,
this is what , the Pearson correlation coefficient, does. We now provide the definition for sample, bivariate, quantitative data
coming from a sample size of  with variables  and .

 Note: Quadrants with Original Data

z z
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Pearson's Correlation Coefficient
Now that we are equipped with the purpose and definition of Pearson's correlation coefficient, we will explore its meaning and
implications. Perhaps the first observation made was that the multiplicative factor of  reminds us of the adjusted averaging that
takes place with sample standard deviation. This is for good reason; using such a factor guarantees that the value of  is between 

 and  inclusively regardless of the sample size and the magnitudes of the orignal data.

A second observation is that if we switched the variable names in the formula, the result would be exactly the same formula and
compute the same value for  the correlation between  and  is the same as the correlation between  and  It does not matter
which variable gets plotted on the horizontal axis or the vertical axis; the correlation between them will be the same. This was a
desired trait mentioned earlier that is achieved with Pearson's correlation coefficient.

As previously discussed, the sign of each product in the computation of  indicates how that particular observation contributes to
the association. If  is negative, the summation of the products is negative with the majority of points falling into quadrants II and
IV, leading us to conclude that there is a negative correlation. If on the other hand  is positive, the summation of the products is
positive which points to the majority of points falling into quadrants I and III leading us to conclude there is a positive correlation.
We see that the sign of  tells us the type of correlation present between two variables thought to be linearly associated.

We are not only interested in the type of correlation, but also in the strength of the correlation. If  is  or close to , some of the
products were negative while some of the products were positive; thus, when they were added together, many of the positive values
cancelled out many of the negative values resulting in a very small sum. In this case, we expect the points to be distributed fairly
evenly across the four quadrants, meaning, the association is weak. If   there is no association. If  is close to  there may or
may not be some association. Random chance and measurement errors can lead to nonzero  values when there really is no
relationship. If there is some association that produced a correlation coefficient close to  the weakness of the association, in
general, does not warrant further interest. When the  value is  or close to , we say the variables do not exhibit any correlation.

The only time that  is equal to  or  is when the association fits a linear function perfectly: every point falls on the same line. If
the slope of the line is negative, , and if the slope of the line is positive,  We can assess the strength of a linear
association based on how close the value of  is to .

1. Compute, by hand, the the Pearson's correlation coefficient  for the data set examined in text exercise  We replicate
the table of values to facilitate the computation. Interpret the meaning of  in light of its sign and magnitude. Compare the
findings with what we already know to be true.

Table : Table of values for variables  and 

Answer

1

n−1

r

−1 1

r; x y y x.

r

r

r

r

r 0 0

r = 0, r 0,

r

0,

r 0 0

r 1 −1

r=−1 r= 1.

|r| 1

 Text Exercise 8.2.3

r 8.2.1.

r

8.2.4 x y

x y z

x

z

y

4 100

= −

4−22

12

3

2

=

100−19

60

27

20

8 91

= −

8−22

12

7

6

=

91−19

60

6

5

12 64

= −

12−22

12

5

6

=

64−19

60

3

4

18 46

= −

18−22

12

1

3

=

46−19

60

9

20

20 28

= −

20−22

12

1

6

=

18−19

60

3

20

22 10

= 0

22−22

12

= −

10−19

60

3

20

28 10

=

28−22

12

1

2

= −

10−19

60

3

20

32 −17

=

32−22

12

5

6

= −

−17−19

60

3

5

36 −62

=

36−22

12

7

6

= −

−62−19

60

27

20

40 −80

=

40−22

12

3

2

= −

−80−19

60

33

20
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Table : Table of values and computations for variables  and 

Having computed all of the products of the -scores in the far right column, all we need to do is sum them up and divide by

The negative value of  indicates a negative correlation between the variables  and  The magnitude of  which is
close to  indicates that the linear association between  and  is quite strong. The understanding derived from our
considerations of the correlation coefficient  align with the conclusions previously drawn.

2. Consider the following bivariate data set using both a scatter plot and 

Table : Table of values for variables  and 

Answer

8.2.5 x y

x y z

x

z

y

⋅z

x

z

y

4 100

= −

4−22

12

3

2

=

100−19

60

27

20

− ⋅ = −

3

2

27

20

81

40

8 91 = −

8−22

12

7

6

=

91−19

60

6

5

− ⋅ = −

7

6

6

5

7

5

12 64 = −

12−22

12

5

6

=

64−19

60

3

4

− ⋅ = −

5

6

3

4

5

8

18 46 = −

18−22

12

1

3

=

46−19

60

9

20

− ⋅ = −

1

3

9

20

3

20

20 28 = −

20−22

12

1

6

=

18−19

60

3

20

− ⋅ = −

1

6

3

20

1

40

22 10 = 0

22−22

12

= −

10−19

60

3

20

0 ⋅ − = 0

3

20

28 10 =

28−22

12

1

2

= −

10−19

60

3

20

⋅ − = −

1

2

3

20

3

40

32 −17 =

32−22

12

5

6

= −

−17−19

60

3

5

⋅ − = −

5

6

3

5

1

2

36 −62 =

36−22

12

7

6

= −

−62−19

60

27

20

⋅ − = −

7

6

27

20

63

40

40 −80

=

40−22

12

3

2

= −

−80−19

60

33

20

⋅ − = −

3

2

33

20

99

40

z

9.

r= ⋅ = ⋅− =− =−0.98

1
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∑

i=1

10

−x

i

x

¯

s

x
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¯
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1

9

177

20

59

60

3

¯
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Figure : Scatter plot

The scatter plot shows points that form a perfectly straight horizontal line. When computing the correlation coefficient, we
run into problems, because the standard deviation of the variable  is  We cannot divide by  Since every  value is 
the mean is  and the standard deviation is  As such, it appears that the correlation coefficient fails to recognize a
perfectly linear association. In reality this is not the case. When our data aligns in either a perfect horizontal line or vertical
line, there is no association between the variables. There is no relationship between the value of the  variable and the
value of the  variable because one of the variables is fixed regardless of the other variable. Since there is no relationship
between the variables, it does not make sense to measure the degree of a linear relationship.

As we saw with a data set containing just  observations, the computation of the correlation coefficient can be quite tedious.
As such, the computation is often carried out using technology. The function within Excel that computes Pearson's correlation
coefficient  is the  function. The function takes, as inputs, two arrays of numbers that are the same size. The first
array consists of all the values of one of the variables; the second array consists of all the values of the other variable. The
program matches the arrays by position to pair the values of each variable.

3. Using technology, reconstruct the scatter plot of the previously considered data and calculate Pearson's correlation
coefficient 

Table : Age of bride and room on wedding day

Groom's Age (years) Bride's Age (years)

8.2.6

y 0. 0. y 4,

4, 0.

x

y

10

r CORREL

r.

8.2.7

20 21

26 20

32 34

30 30

21 22

29 28

26 25

34 34

29 28
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Groom's Age (years) Bride's Age (years)

Answer

 

Figure : Scatter plot of ages of bride and groom

4. Using technology, compute Pearson's correlation coefficient 

Table : Age of bride vs number of children

Bride's Age (years) Number of Children

55 50

30 26

43 39

30 29

24 22

20 19

r = 0.9689

8.2.7

r.

8.2.8

19 2

21 8

21 5

22 0

22 3

23 6

23 4

23 2

24 7
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Bride's Age (years) Number of Children

Answer

 

Figure : Scatter plot of age of bride and number of children

5. Using technology, compute Pearson's correlation coefficient 

Table : Bivariate data from Text Exercise 

25 1

25 3

26 3

27 4

29 5

31 3

31 1

32 2

33 0

35 2

41 1

r =−0.4247

8.2.8

r.

8.2.9 8.1.3.1

x y

4 5

11 4.5

10 6

14 10
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Answer

 

Figure : Scatter plot

6. Using technology, compute Pearson's correlation coefficient 

Table : Bivariate data from Text Exercise 

x y

6 6

6 −2

2 2

8 1

12 10

7 0.5

14 9

5 3.5

3 1.5

17 9.5

1 5.5

18 10

14 2

20 13

2 −4

6 5

r = 0.7253

8.2.9

r.

8.2.10 8.1.3.4
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Answer

 

xx yy

12 −6

10 −2

12 −6

6 9

20 −19

15 −8

17 −15

3 14

6 8

18 −15

5 10

1 20

12 −4

6 8

2 14

20 −19

6 8

4 10

4 12

13 −5

r =−0.9941
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Figure : Scatter plot

For each of the following scatter plots, determine if the proposed  value is reasonable. If not, explain why.

1. 

Figure : Scatter plot

Answer

The scatter plot displays strong positive correlation that appears very close to a line. As such, a positive value close to 
seems reasonable.

2. 

Figure : Scatter plot

Answer

8.2.10

 Text Exercise 8.2.4

r

8.2.11

r= 0.99

1

8.2.12

r= 0.95
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The scatter plot displays strong negative correlation that appears very close to a line. As such, the proposed  value is
unreasonable. The magnitude might be reasonable, but it is clear that the  value should be negative.

3. 

Figure : Scatter plot

Answer

The scatter plot does not display much correlation. As such, a value of  seems unreasonably high.

4. 

Figure : Scatter plot

Answer

The scatter plot displays a strong negative linear correlation. However, we can easily see that the data does not fit perfectly
on a line. As such, the proposed  value is unreasonable.

5. 

Figure : Scatter plot

Answer

The scatter plot does not display much correlation. As such, an  value close to  seems reasonable. Given the general
downward direction of the data, a negative  value seems reasonable. We thus conclude that such an  value seems
reasonable.

1. The statistician Francis Anscombe constructed  data sets in  that have earned the moniker Anscombe's Quartet. In
this text exercise, we will analyze each of the data sets individually and then consider them together. For each of the data
sets, compute     and  What similarities are there between the data sets? What conclusions can be drawn?

r

r

8.2.13

r= 0.85

0.85

8.2.14

r=−1

r

8.2.15

r=−0.15

r 0

r r

 Text Exercise 8.2.5

4 1973

,x

¯

,s

x

,y

¯

,s

y

r.
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Table : Anscombe's Quartet

Data Set I (x,y) Data Set II (x,y) Data Set III (x,y) Data Set IV (x,y)

Answer

Data Set I:         and  .

Data Set II:         and  .

Data Set III:         and  .

Data Set IV:         and  .

The summary statistics for each of the data sets are remarkably similar. They all match up to two or three decimal places.
From the perspective of these summary statistics, the data sets are almost indistinguishable.

2. Having computed the summary statistics for each data set, construct scatter plots for each of the data sets. What conclusions
can now be drawn? What implications does this exercise have on conducting statistical analyses?

Answer

 

8.2.11

10 8.04 10 9.14 10 7.46 8 6.58

8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71

9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47

14 9.96 14 8.10 14 8.84 8 7.04

6 7.24 6 6.13 6 6.08 8 5.25

4 4.26 4 3.10 4 5.39 19 12.5

12 10.84 12 9.13 12 8.15 8 5.56

7 4.82 7 7.26 7 6.42 8 7.91

5 5.68 5 4.74 5 5.73 8 6.89

x

¯

= 9, s

x

≈ 3.3166,y

¯

≈ 7.5009,s

y

≈ 2.0316, r ≈ 0.8164

x

¯

= 9, s

x

≈ 3.3166,y

¯

≈ 7.5009,s

y

≈ 2.0317, r ≈ 0.8162

x

¯

= 9, s

x

≈ 3.3166,y

¯

≈ 7.5, s

y

≈ 2.0304, r ≈ 0.8163

x

¯

= 9, s

x

≈ 3.3166,y

¯

≈ 7.5009,s

y

≈ 2.0306, r ≈ 0.8165
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Figure : Scatter plots of Anscombe's Quartet

The scatter plots provide crucial information regarding the various data sets. The first scatter plot reveals an apparent linear
relationship with a fairly decent association (the  value confirms this). The second scatter plot reveals a nonlinear
relationship indicating that using the correlation coefficient to describe the relationship should not have been done. Indeed,
for this particular nonlinear relationship, it appears for some values the association is positive, but for others the association
is negative. Thus measuring for any correlation, linear or not, is not to be done. The third scatter plot reveals a quite strong
linear relationship with an apparent outlier which resulted in the correlation coefficient dropping significantly in value. The
fourth scatter plot reveals the presence of an outlier. The remainder of the data seems to indicate that there is no relationship
between the variables.

The visual representations of data are crucial components of statistical analysis. The scatter plots provide us with the
information to determine if it is even reasonable to use the correlation coefficient as a measure. When conducting statistical
analyses, constructing visualizations is generally the first step, as they provide much information and a general feel for the
data. A final takeaway is that we do not want to blindly compute the correlation coefficient and use it as a measure for the
presence of a linear relationship. It is best used as a way to measure the strength of a linear relationship that is thought to
exist based on scatter plots or other lines of reasoning.

8.2: Linear Correlation is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort Hays
State University.

4.5: Computing r by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
4.1: Introduction to Bivariate Data by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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8.3: Introduction to Simple Linear Regression

Define independent and dependent variables
Differentiate between observed and predicted values of the dependent variable
Compare different linear models using the sum of squared errors
Motivate the line of best fit and provide means for its computation
Develop the coefficient of determination
Conduct linear regression analysis by checking the reasonability of using a linear model, computing  and finding the
line of best fit
Nuance the predictive and interpretive power of linear regression

 Section 8.3 Excel File: (contains all of the data sets for this section)

Review and Preview
In studying bivariate quantitative data, we try to determine whether there is an association between two particular variables or not.
If there is an association, a relationship between the variables, we would like to describe the relationship. We are interested in what
happens to one variable as the other variable changes. We have discussed several ways to build this understanding: constructing
scatter plots, classifying associations, and determining correlation. While more advanced textbooks address nonlinear correlation,
we restricted ourselves to linear correlation. Linear correlation assesses the strength of an underlying linear relationship between
the two variables of interest. If there is a linear relationship, it seems appropriate to think that there is a linear function that models
the relationship. Knowledge of such a function would deepen our understanding of the relationship and allow us to extrapolate
regarding values that were not explicitly measured in our collection of the data. In essence, such a function would enable us to
make predictions about cases that were not explicitly studied. One of the fundamental motivations of statistical inquiry is to
understand the world better so that we may better predict what will happen and act accordingly. This section develops the ideas of
constructing a linear function that is the best fit for the data at hand.

When there is a linear relationship between two variables  and  we expect there to be constants  and  such that   
In this formulation, we refer to  (the vertical variable) as the dependent variable and  (the horizontal variable) as the
independent variable. Recall that  is the slope of the line, the amount of change in  if  is increased by 1, and  is the -
intercept, the  value of the line when the  value is  Since there is a relationship between the two variables, one variable changes
as the other changes; that is, the slope of the line is defined and not  we have 

Remember that our study of correlation did not depend on the ordering of the variables. If there is a linear relationship between 
and  there is a linear relationship between  and . In which case, we would expect another set of constants say  and  such
that    We would call  the dependent variable and  the independent variable. When studying associations, we do not
assume causal relationships; do not let the terminology influence your thought in this regard.

When we collect data to understand the relationship, we expect the data to have some natural variation from the equation due to
measurement error, natural variation, and the random noise that occurs in reality. As such, when we use collected data to construct
a linear function, we are approximating the values of  and  Throughout this section, we will use the hat symbol to indicate
approximation values. Thus  is approximated by  and  is approximated by  We will use these values to approximate 
values which we denote  using the following equation.

Several fundamental questions arise. How do we pick the values of  and  How do we know how well we did in picking the
values of  and  Is there an optimal choice of values for  and  Even if we have the best line, it will not be perfect unless all
the points are on the same line. Given that there is some error, how well does the line fit the data? These are questions we will
begin to answer. We call the process of finding and evaluating these lines regression analysis.

 Learning Objectives
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Modeling Using Linear Functions
When studying bivariate quantitative data, we do not expect, even when there is a linear relationship, that all of the data points fall
precisely on the same line. As such, even once we decide upon a linear function to model the data, it is impossible for the function
to match the data perfectly. There will necessarily be some error between some of the observed values and the predicted values
associated with them. To visualize this consider the following data set along with a scatter plot visualizing it.

Table : Paired values of variables  and 

Observation

Figure : Scatter plot of  and 

Notice that we cannot draw a line that goes through every point of the scatter plot. We could fairly easily plot a line through  of
the points or even  of the points, but we cannot go through all  points; we cannot avoid the presence of error in our model!
Suppose that we decided upon the linear function  to model this particular data set and then plotted it below in dark
blue. Notice that the line does not go through any of the observed values plotted on the scatter plot. The observed values remain in
orange, and the predicted values are colored in a light blue.

8.3.1 x y

x y

1 7 5

2 2 4

3 6 6

4 3 3

5 1 2

8.3.1 x y

2

3 5

= 0.5x+2y

^
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Figure : Scatter plot with linear model

The scatter plot labels two particular coordinate pairs on the scatter plot:   and   The former is the
observed pair; while, the latter is the predicted pair. Notice how the -coordinates are the same. The predicted value of  is 
We compute  using the equation of the line     We call the difference between  and  the
error at  which we denote  In general, we define the error at any observed  value  as follows.

1. Using the linear function  predict the value of  when 

Answer

We can predict the value of the variable  be evaluating the linear function at the indicated  value. We have a predicted
value of  

2. Using the linear function  compute the error at each of the  collected  values.

Table : Values for variables  and 

Observation

  

  

  

  

  

Answer

The error is computed by taking the difference between the  value and the  value at a given  value. We must determine
each  value. We do so in the table that follows.

Table : Computation of predicted values and errors

8.3.2

( , )x
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^
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^
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3
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3
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^

3
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i

y

i

y

^

i

 Text Exercise 8.3.1
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ObservationObservation

Notice that when the observed value is above the linear function modeling the data that the error is positive and when the observed
value is below the line the error is negative. With this basis, we begin to develop the process of determining the best fitting line.

The Line of Best Fit
When we gather information about the world around us, we collect a lot of information. In order to understand best, we try to
incorporate as much of the data as we can in our analyses and considerations. We do not collect samples from many people and
then only use the results from a handful. Each observation provides important information; we do not want to exclude information
without due cause. So, how do we decide upon a line to model our data, when no line perfectly predicts our data in practice? We
want to use all of the data in the construction of the line, but how do we achieve such a goal when a line is uniquely determined
given two points or a point and a slope?

The answer resides in considering error. We could assess the quality of a line by looking at the error across all observed values, but
how are we to assess the totality of the error? If we were sum or average the errors, we would get cancelation between positive and
negative errors. Indeed, if we modeled the data from above with the constant function  the sum of the errors and hence the
average would be  but the function would only go through one point and would indicate that there is no relationship between the
variables. This does not match with the reality of the data. It is natural to desire that the measure of the totality of error is  only
when the model perfectly fits the data. We, therefore, must expand our considerations.

Hopefully, we remember a similar discussion surrounding how to measure the dispersion of a data set. We went through several
possibilities until we settled on our definition of variance which involved summing the deviations from the mean squared. We will
utilize a similar sort of methodology without much motivation; we will consider the sum of the squared errors  as our
measure of the totality of the error present in the model. In setting this as our measure, we have that there exists a unique line that
minimizes the  We can thus find a line and assert that it is one and only best line. We refer to this line as the line of best fit or
the least-squares regression line.

1. Compute the  using the function    on the same data set as before, which we reproduce below.

Table : Values for variables  and 

Observation

 

 

 

 

 

Answer

We have computed the error for each of the observed  values in a previous text exercise. All that is left to do is square
each of the errors and then add them together.
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Table : Computation of predicted values, errors, and squared errors

Observation

The sum of the squared errors is thus       

2. We can show that the function    is not the best fitting line by finding another line that has a smaller  One
of the properties of the line of best fit is that it goes through the point  Let us keep the same slope but adjust the -
intercept so that our function goes through the point  and then compute the 

Table : Values for variables  and 

Observation

 

 

 

 

 

Answer

We are going to model our data with the function    so that our function passes through the point  In
order to compute  we must compute  and  which we find to be  and  Knowing the slope and a point
through which our line passes is enough to determine the value of  We plug the - and -coordinates into the function and
solve for 

Thus producing the function    as our linear model for the data set. From this we can produce a table of the
approximated values at each observed  value and then compute each of the squared errors.

Table : Computation of predicted values and squared errors
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The sum of the squared errors is thus        Notice how the individual errors
increased in magnitude for some values but decreased for others when comparing the error values using the previous model
with these error values. Also, note that the sum of the errors is  again emphasizing the inadequacy of using the sum or
average of the errors as a measure of the totality of error. We finally notice that the  is smaller with this new model than
with the old. We thus say that this model is better than the previous model. The question is, have we found the best model
yet?

3. Using technology, we determined that the line of best fit for the data set in question is given by the equation   
 where the values of  and  are rounded to four decimal places. Compute the 

Table : Values for variables  and 

Observation

 

 

 

 

 

Answer

We have computed the error for each of the observed  values in a previous text exercise. All that is left to do is square
each of the errors and then add them together.

Table : Computation of predicted values and squared errors

Observation

The sum of the squared errors is thus   We again note that this is the smallest of the sum of squared errors
that we have yet to see for this data set. Indeed, this is the smallest attainable value for any linear function! No matter what
slope and -intercept picked, the sum of the squared errors will be larger than this value. Readers with a background in
calculus or linear algebra are encouraged to read or work out the details for why this is!

Establishing the uniqueness and computational formulas for the line of best fit requires mathematics beyond the scope of this
course. The mathematics does, however, produce very elegant results regarding the slope and -intercept for the line of best fit, the
line that minimizes the sum of the squared errors. We provide the formulas without proof.

Using the coefficients for the line of best fit provided above, show that every line of best fit, regardless of the data set, goes
through the point  That is, show that when you substitute  in the formula for the line of best fit, the value returned is 
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The line of best fit is given by the formula    We were given the formulas for  and  We have   
 When we substitute  into the variable  we obtain the following.

In addition to the fact that the point  always falls on the line of best fit, we have the sum and the average of all the errors is
always  (when we do not round the numbers). We will not provide a proof of such a fact here, but it is a fact worth noting.

Just as with the computation of the correlation coefficient, we generally rely on technology to compute the slope and -intercept for
the line of best fit. We provide you with the function in Excel that returns the desired information as an array with the slope in the
left cell and the -intercept in the right cell. The function name is  and takes four arguments: the first is the array of 
values (values of the dependent variable); the second is the array of  values (values of the independent variable); the third is set of 

 or ; and the fourth is set to  or simply  Further information is available using the fourth argument but will not be
utilized in this course.

Assessing the Line of Best Fit
We have now established that we can find the line of best fit, but another consideration must be made. Just because something is
the best does not necessarily mean it is good. Of all the lines that could be used to model the data, we can find the best one, but
does this best line actually fit the data well? This is the question we seek to answer and seems closely related to the correlation
coefficient. Since the correlation coefficient measures the strength of an apparent linear relationship, we would expect that the
closer  is to  the better our line of best fit will model the data. This intuition is correct and will be confirmed as we approach
the problem from a different direction.

When we are studying bivariate quantitative data (variables  and ) we are interested in how one variable changes as the other
changes. With this, we may ask how much of the change in one variable can be attributed to the change of the other variable?
Inherently, this question requires the development of some method or model which can measure the amount of change in the
dependent variable which can be attributed to the model. When making such a measurement, the interest lies in the proportion of
the change in one variable that can be attributed to the model, not the raw amount of variation that can be attributed. This allows
the measure to be compared across data sets composed of data with vastly different magnitudes and makes the measure value
independent of the units of the measurement. A high percentage indicates that the model fits well. Most of the change in  can be
explained as due to the change in the  variable. If the percentage is low, the model does not fit well. The majority of the change in 

 is not understood as due to changes in  under the model.

In order to continue, we must decide how to measure the change in the  variable; this is really a question of dispersion. In general,
the more the  variable changes, the greater the spread of the  variable data. Our most commonly used measure of dispersion has
been standard deviation, but as we have seen throughout our bonus discussions, the real statistical power lies not in standard
deviation but in variance. Recall that the variance is closely related to the average of square deviations from the mean, but we are
not interested in a typical value, rather, we want the total change in the  variable. As such, we define our measure of change in 
to be the total variation of  which we can compute with the following for data sets with  observations, note the similarity to the
definition of variance.

We are interested in computing the percentage of the total variation of  that is explained by using the line of best fit to model the
data; we call this percentage the coefficient of determination and denote it using the symbol . To determine the coefficient of
determination, we must be able to compute the explained variation in our model. Either the variation is explained or it is not
explained. As such, we know that the total variation is equal to the sum of the unexplained variation and the explained variation.
The disparity between predicted values and observed values is the source of the unexplained variation. At this point, we recognize
that the  is the unexplained variation. Recall the meaning of the sum of the squared errors and think of the formula that would
compute it in general.

y

^

= xm

^

+ .b

^

m

^

.b

^

y

^

= r x

s

y

s

x

+ −r .y

¯

s

y

s

x

x

¯

x

¯

x,

y

^

= r + −r

s

y

s

x

x

¯

y

¯

s

y

s

x

x

¯

= y

¯

( , )x

¯

y

¯

0

y

y LINEST y

x

TRUE 1 FALSE 0.

|r| 1,

x y

y

x

y x

y

y y

y y

y n

Total Variation =∑

i=1

n

( − )y

i

y

¯

2

y

R

2

SSE

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41818?pdf


8.3.8 https://stats.libretexts.org/@go/page/41818

With these ideas in hand we are ready to derive a computational formula for the coefficient of determination which measures the
percent of variation in a data set that is accounted for by using the line of best fit to model the data.

Note that we dropped the indices on the summations in our formula to ease, but remember that for each of the summations, we are
summing through all observations,  through  The equivalency of the last computational formula is not obvious but can derived
using the definitions of the line of best fit and the correlation coefficient, we encourage the reader to verify the simplification. In
simplifying this last formulation, we develop the connection between the correlation coefficient and the coefficient of
determination (a connection possibly already surmised given the symbolic representations); namely, that in squaring the correlation
coefficient, we obtain the coefficient of determination.

Optional Derivation Connecting Correlation Coefficient and Coefficient of Determination for the Mathematically Inclined

1. Using technology, confirm that the line of best fit matches the formula provided in the earlier text exercise when rounded to
 decimal places. Using the slope and -intercept of the line of best fit provided by technology without rounding, determine

the  the  and  by applying the formulas derived thus far in this section. Provide an interpretative
sentence explaining the meaning of the coefficient of determination in light of the computed value. Do not round answers in
intermediate steps.
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ObservationObservation

Answer

Using the  function in Excel, we confirm the accuracy of the previous text exercise rounded to  decimal places
with a computed slope of  and a -intercept of  We provide a table with values rounded to 

 decimals for checking.

Table : Computation of predicted values, squared errors, and variations

Observation

The sum of the squared errors is thus   the smallest possible value for this particular data set. The 
 the summation of the last column is  We can compute the coefficient of determination   

   Approximately  of the variation present in the  variable is accounted for
using the linear function  This indicates that the linear model fits the data to a certain degree,
but there is a decent amount of random variation, error, or noise present.

2. Using the results of the previous part of this text exercise and technology, confirm that the square of the correlation
coefficient is equal to the coefficient of determination. Compute the correlation coefficient using technology.

Answer

We computed in the previous part that   Using the  function in excel, we compute that  
 and note that   which is the value that we computed for the coefficient of determination.

The coefficient of determination  can be computed directly using the Excel function . The function takes two arrays of
numbers, similar to the  function, the first array consists of the known -values (dependent variable) and the second array
consists of the known -values (independent variable).

Simple Linear Regression: Predictions and Interpretations
We have yet to conduct simple linear regression outside of a purely mathematical context. Having developed the concepts, we now
address the application of these ideas and provide insight to their interpretations. Let us return to a data set that we have started to
analyze, the ages of the bride and groom on their wedding day. Using a scatter plot of the data, we have already determined that a
linear model would be appropriate. Let us determine the line of best fit and assess how well the model fits the data. In our previous
considerations, we had the groom's age on the horizontal axis, the axis traditionally associated with the independent variable. For
continuity of presentation, we will continue in this vein of thought. When evaluating the linear model we will be predicting the age
of the bride based on the input of a groom's age. If we want to predict the age of a groom based on a particular age of a bride, we
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will either have to solve for the age of the groom or conduct the linear regression analysis with the variables switched. Either
option is fairly straightforward and will produce the same predictions.

1. Letting the age of the bride on her wedding day be the dependent variable, determine the line of the best fit and the
coefficient of determination for the data set. Explain the results of the linear regression in the context of the problem.

Table : Ages of bride and groom on wedding day

Married Couple Groom's Age (years) Bride's Age (years)

Answer

Using Excel, we have the line of best fit given by    with a coefficient of determination equal to 
 The computed coefficient of determination indicates that almost  of the variation in the age of a bride on her

wedding day can be accounted by modeling the relationship between the ages of the bride and groom with the function  
  where  is the age of the groom. This is a fairly high percentage which indicates that the model

is a good fit. The positive slope indicates a positive association.

2. The -intercept of a function is the value of the dependent variable when the independent variable is equal to  Within the
context of our problem  corresponds to the groom's age being  The -intercept is about  indicating that the
bride would be just a little older than  Explain why, contextually, these considerations do not make any sense. What does
this say about our model? What does this say about linear regression models in general?

Answer

Infants and toddlers do not get married. Adults get married. It is remiss to try to use the line of best fit to model the
relationship where the relationship does not exist. There is a mathematical domain for our function and there is a contextual
domain for our relation. If we are trying to understand the reality around us, the contextual domain must be at the forefront
of our minds. We do not want to extend our model where the relationship ceases or beyond where our data permits us to
engage. As such, we would not want to use our model for any ages less than  or  years of age for either the bride or the
groom as those are the ages commonly set as the minimum ages for which marriage is legal. This does not say anything
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negative about our model or models in general; we must be cognizant of when it is appropriate to use the models.
Contextual clues are a big help. We will develop more nuance as we progress through this section.

3. Using the model constructed in part  predict the age of the bride when the groom is  years old.

Answer

We have that the line of best fit is given by    We are being asked to predict the age of the bride
when the groom is  years old. This is equivalent to evaluating the function when the  variable is  We predict the
bride's age to be    years old; the bride will be just shy of  years old, when the groom
is  years old.

4. Using the model constructed in part  predict the age of the groom when the bride is  years old.

Answer

We have again that the line of best fit is given by    We are asked to predict the age of the groom
when the bride is  years old. This is not equivalent to evaluating the function when the  variable is  because the 
variable corresponds to the age of the groom, not the bride. We predict the groom's age by solving for  when our linear
equation equals 

We predict that the groom will be about just shy of  when the bride is  years old.

5. Using the model constructed in part  when does the model predict that the bride and groom will be exactly the same age?
Does this seem like an appropriate use of the model?

Answer

For the last time, we have that the line of best fit is given by    We want to find when the model
predicts the two ages to be the same, i.e.  To do so, we replace  with  in the equation and solve.

We predict the bride and groom to be the same age when they are both just shy of  on their wedding day.

In general, once a person is about  years of age, the primary focus is on the number of years. As such, our interest might
be more of when the model predicts that both the bride and the groom would be in the same year of life. This would seem
to be a more appropriate question given the context of the model; although, it is a much harder question to solve for ages of 

 and  would constitute solutions as well as what we just found.

1. When ordering custom clothing or preparing to rent formal wear, many measurements are taken to ensure that the clothes
fit well. Two common measurements are height and the length from the center of the back between the scapulae to the tips
of the fingers when the arm is fully extended to the side. Let us refer to this latter measurement as an individual's radius.
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We asked a random selection of  online elementary statistics students to obtain these measurements for themselves in
centimeters and report their findings to analyze as a group. We provide the data in the attached Excel file. Examine the data
to check that a linear model is appropriate. If not, explain. If so, find the line of best fit and coefficient of determination
using the radius as the independent variable.

Answer

We first create a scatter plot to check if a linear relationship is reasonable. We provide two scatter plots with different
scaling.

Figure : Scatter plots of height and radius using different scales and ranges

The scatter plot on the left includes the origin  while the other scatter plot does not. Both indicate a fairly linear
relationship. So we proceed with a linear regression analysis. The coefficient of determination is  with the linear
model defined by   

In the previous text exercise, we determined the line of best fit and saw that the line fit fairly well. A little more than  of the
variation in the height variable was attributed to the difference values of the radius variable through our linear model. We have a
nice model to help us understand the relationship between the height and radius of individuals. The possible values of an
individual's radius go beyond those collected in our sample. This is one of the reasons that we desired a model; so, that we could
estimate values for points where we did not have any data collected. As such, we might be tempted to estimate the height of an
individual with a radius of  centimeters.

Using the line of best fit found in the previous text exercise, estimate the height of an individual with a radius of 
centimeters. Consider the validity of such an estimation.

Answer

We would estimate that individual's height to be    centimeters. Both the radius and the
height values are within the contextual domain of our variables, but can we use the model in such a way? The predicted
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height is about three and a half feet tall; a rather short person. In reality, most likely a child. This begs the question: should
we use data from a sample of elementary statistics students who are fully formed adults to make predictions about a child?
Hopefully, at this stage in our development of statistics, we would be inclined to say no. We would not think that a sample
of adults would be representative of children without some significant argumentation explaining why they are
fundamentally the same. Our intuition would naturally be that the body structure of children is different than the body
structure of adults. We do not want to overgeneralize our results beyond that which we have actually studied. In practice,
we must consider both the contextual domain and the extent to which our sample is representative. In general, we do not
want to utilize our model too far beyond the values seen in our collected data. Do you want to predict the height of an
individual with a radius of  centimeters? Go right ahead! But, if you want to predict the height of an individual with a
radius of  best go collect data from individuals around that size.

We conclude this section with one last interpretative guideline. The slope of a linear function describes the rate of change of the
function. If the value of  increases by  the value of  changes in value equal to the slope. In the case of our last text exercise,
when we increase the radius by one centimeter, the predicted  value increases by  centimeters. Are we to interpret this to
indicate that if an individual had a radius of  centimeters and height of  centimeters and then grew to  centimeters, the
individual's height would be  centimeters? Unfortunately, the answer is no. We built the model by using data from 
individuals. The model predicts the typical relationship between the variables; it does not predict the individual change, nor does it
predict the changes in a perfect way. We must temper ourselves from concluding more than we can. We can expect that as
individuals increase in radius by  centimeter, the average gain in height is going to be close to  centimeters, but we cannot
make such a claim on the individual level.

This is, in fact, a theme pertaining to the entirety of this textbook. Statistics seeks to understand trends in large groups, and it is
almost always inappropriate to use information about a group to infer facts about an individual. If we say one group is shorter than
another group on average, that does not necessarily mean that every individual in the first group is shorter than every individual in
the second group. If we say that  of some group has a particular disease, that does not necessarily mean that each individual in
that group has an  chance of obtaining that disease. If we say that a hypothesis or model predicts a group to have certain
parameters, that says nothing about a specific individual in that group. Many issues in modern society arise from people
misunderstanding this. People often use facts about a group to inform their thoughts about individuals (such as with stereotyping).
People also often ignore facts about groups because of facts they know about an individual; for example, Bob smoked his whole
life and lived to be  We hope that this text has helped the reader understand how to properly understand facts about groups and
why such understanding can be useful.

8.3: Introduction to Simple Linear Regression is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.

14.1: Introduction to Linear Regression by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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