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2.7: Distributions- Using Centrality and Variability Together

State and apply Chebyshev's Inequality
Define unusual observations
Define normal distributions
State properties of normal distributions
Discuss distributions and curves
Define the standard normal distribution
State and apply the Empirical Rule
Define -score
Define outliers

� Section  Excel File (contains all of the data sets for this section)

Connecting Measures of Central Tendency & Measures of Dispersion
In the previous two sections, we developed two significant classes of descriptive statistics: measures of central tendency and
measures of dispersion. In this section, we begin to consider the power of these measures together. We have shown that the mean of
a data set is the balancing point of its frequency distribution and that it minimizes the sum of the square deviations. In the last
section, we defined the variance of a data set to be the mean of these square deviations (with appropriate modifications for sample
data). We set the standard deviation to be the square root of the variance. The coupling of these measures of centrality and
dispersion tells us a lot about the distribution of our data.

Think about what "standard deviation" means; it represents a measure of "typical distance" from the mean. If the mean of some
data set was  and the standard deviation was  then we would expect a good chunk of our data points to be between  and 

 that is, much of the data does not deviate from the mean by more than the standard deviation. We would expect most of the
data to fall between  and  that is, most of the data would be within two standard deviations of the mean. Think about it: if all
of our data points were less than  or more than  then all of them deviate from  by at least  How could a "typical"
deviation from the mean be  if most of the points are off by at least  Taking this further, we should find it incredibly rare that
a data point is more than  standard deviations away from the mean.

Consider the data set 

1. Give the population mean and population standard deviation.

Answer

Using the formulae from previous sections, the mean is   and the standard deviation is  

2. How many data points are within  standard deviation of the mean?

Answer

For a data point to be within  standard deviation of  means that its distance to  is no more than  Thus, any data
point between  and  would be within  standard deviation of the mean. We can see
that  data points fall in this range, meaning  of the data points are within  standard deviation of the mean.

3. What proportion of data points are within  standard deviations of the mean?

Answer

 standard deviations would be    Thus, any number whose distance to the mean is less than 
 is within  standard deviations of the mean. If we go  below the mean, that would be   If we

go  above the mean, that would be   Notice that all but  of our data points fall in this range. Since we
have  data points, that yields  of our data is within  standard deviations of the mean.
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4. What proportion of data points are within  standard deviations of the mean?

Answer

   Notice that none of the data points differ from the mean by more than  This means all of our
data is within  standard deviations of the mean. The proportion is 

We note that the behavior in the preceding example does not characterize all data sets. Generally, we can have data sets where some
points are   or any number of standard deviations above or below the mean. These examples have a lot of data points;
however, the basic intuition still stands: only a tiny proportion of points are far away from the mean. Let us be more precise with
this statement.

Chebyshev's Inequality

Around the middle of the nineteenth century, mathematicians (Pafutny Chebyshev, in particular) discovered an explicit connection
between a data set's mean and standard deviation and its distribution. The explicit development of such a result is beyond the scope
of an elementary statistics course, so we shall present the result and begin to digest the implications.

Given any data set with (population) mean,  and (population) standard deviation,  and any real number  the
proportion of observations that lie in the interval  is at least 

Using Chebyshev's Inequality, we can guarantee a minimum percentage of observations falling in an interval symmetric about the
mean. By starting at the mean and going a specified number of standard deviations above the mean and then below the mean, we
are guaranteed to catch at least a certain percentage of the observations in the data set. This result's great power and beauty come
from this inequality being valid for all data sets. That is important to remember. Consider the following basic applications of the
result:

If  we have that at least    of the observations fall between  and  Another way to say this is
that, for any data set, at least  of the data falls within two standard deviations of the mean.

If  we have that at least   of the observations fall between  and 

The implication of this is that for any data set, less than  of the observations fall more than  away from the mean  and less
than  of the observations fall more than  away from the mean  Most observations fall within  or  standard deviations
from the mean. When we have an observational value that falls away from the bulk of the observations, we consider it unusual. We
say that an observation is unusual by the  standard deviation rule if it is more than  standard deviations away from the mean;
likewise, an observation is unusual by the  standard deviation rule if it is more than  standard deviations away from the mean.

Suppose a sales department of some corporation is supposed to acquire a minimum of  in revenue each week.
Glancing at a long-term report over the last  years, we see that, on average, the department made  each week with
a population standard deviation of  What can be said about how often the department did not meet the quota?

Answer

Notice that the quota is  below the average revenue generated. We need to know how many standard deviations
equal  to apply Chebyshev's Inequality. Since the standard deviation is  we can divide to obtain this.

Each week the department did not meet the quota was at least  standard deviations below the mean. Chebyshev's
Inequality guarantees, on any data set, that the proportion of data points within  standard deviations of the mean is at
least   We can be confident that at least  of the time, the department met the quota. It is possible
that they met the quota far more than  (they could have met it  of the time). We would need more information to
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obtain a more precise estimate. Regardless, we can be sure that the department did not miss quota more than  of all
weeks in the last  years.

Using Chebyshev's Inequality, determine the number of standard deviations from the mean  to guarantee at least  of the
observations to be in the interval 

Answer

We first note that   Our problem reduces to solving the following equation:

Meaning that

Which yields the solution:

Remember,  can be any real number greater than  Hence 

Can we use the results of the previous exercise to compute the first and third quartiles for any data set? Explain.

Answer

There are at least two reasons why we cannot do this. While  of the observations do fall between the first and third
quartiles, it is also true that  fall below the first quartile and  fall above the third quartile. Chebyshev's Inequality
does not guarantee that the percentage of observations in each tail is 

Chebyshev's Inequality asserts a minimum percentage of observations in the interval. It does not claim that there are exactly
 of the observations; it argues that there are at least 

It is worth noting that Chebyshev's Inequality does tell us that the first quartile cannot be more than  standard deviations
below the mean, as this would imply that more than  of the data is larger than the first quartile. Similarly, the third
quartile cannot be more than  standard deviations above the mean.

Normal Distributions and Curve Fitting

While Chebyshev's Inequality is powerful because it applies to all distributions, more precise connections can be made when we
restrict our interest to particular classes of distributions. We shall encounter several classes throughout our course of study, but at
this point, we shall limit ourselves to normal distributions. Normal distributions are common in data from everyday life; heights,
IQ scores, and the "bell curve" of class grades are familiar examples. Normal distributions are symmetric and unimodal, with the
mean, median, and mode all equal.

To uniquely express the shape of a normal distribution, we must discuss modeling distributions with mathematical functions or
curves. We can use continuous functions to model both discrete and continuous data. Consider the following figure.
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Figure : Continuous function fit to a histogram

The curve highlights the shape of the histogram reasonably well and could continue to fit better if the histogram had more classes.
Increasing the number of classes is not always possible with discrete variables and finite data sets. Still, it could happen with
continuous variables provided enough data is available with sufficient measurement precision. Recall that frequency and relative
frequency distributions have similar graphical representations; the only differences are in the vertical scales. As such, we could
develop functions using either distribution. We consider relative frequency distributions; these curves will play an important role
throughout this course.

At each point along the horizontal axis, we have two values to compare vertically: the height of the bar versus the function value.
The height of the bar represents the percentage of observations that fall in that class. We want to be able to retain this information
with our model (function). As we can see, the value of the function changes within classes, making retaining this information
difficult. Our solution is to construct curves that closely resemble common classes of histograms so that the area underneath the
curve over a given interval corresponds to the relative frequency of the class(es) in that interval.

Consider this process visually using a data set from Statistics Online Computation Resource containing  height values
accurate to  decimal places. We construct relative frequency distributions with class widths of   and  and portray them
in two ways graphically. The histograms on the left represent the relative frequency of a class using the height of its bar. In contrast,
the graphical representations on the right represent the relative frequency of a class using the area of its bar. Note that the vertical
scales remain the same across all  graphs.

Figure : Graphical representations of relative frequency by height (left) and area (right)
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Since we have a finite data set, the relative frequencies of each class become extremely small, around  as the class widths
become smaller. We see each class's height get smaller until it is difficult to see (bottom left graph). We see a different story on the
right. Since our relative frequencies are represented by the area of the bars and the class widths are getting smaller, the shape of the
distribution seems to solidify as our class widths decrease. In taking smaller and smaller class widths, our graphical representation
becomes "smoother" in the shape of a continuous function, and the area underneath the function over an interval corresponds to the
relative frequency of the observations in that interval.

A significant component of statistical research is checking how closely any particular model fits our actual data set. Continuous
models allow us to build our statistical framework around these functions using the power of mathematics without needing to
construct something new for every data set we study.

Our chosen models preserve relative frequency through area. The relative frequency of observations over a given interval is the
area under the curve over that same interval. Recall that the sum of all the relative frequencies of a distribution is always equal to 
this means that the area underneath the entirety of these curves will also be  We will name these curves and continue to deepen
our understanding in the coming chapters.

With all of this build-up, we are now ready to define the class of normal distributions; the curve that defines them depends on two
factors: the mean and standard deviation. While the knowledge of the particular function bears little utility in this course, we now
provide it with the general normal distribution graphed below.

Figure : The normal distribution centered at  with standard deviation 

Use the figure to answer the following:

1. The means of these normal distributions are   and  Determine to which distribution each value belongs.

Answer

Given that the mean, median, and mode are all equal. The mean occurs at the peak of the distribution. Thus   
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2. The standard deviations of these normal distributions are   and  Determine to which distribution each value belongs.

Answer

The standard deviation is a measure of dispersion. The smaller the spread, the smaller the standard deviation. Since the blue
distribution is spread out the most, the blue distribution has the largest standard deviation. We can say    

 and  

Figure : Standard Normal Distribution  and 

The normal distribution shown above is called the standard normal distribution or the -distribution. The standard normal
distribution is the normal distribution with  and  We can quickly tell that the mean of the distribution is  There is
also a way to determine the standard deviation; the reasoning behind it is less apparent, but a first-semester calculus student should
be able to arrive at the conclusion. There are two inflection points on normal curves, and they happen at exactly one standard
deviation below and one standard deviation above the mean. All we need to do is identify an inflection point and determine the
distance to the mean. For those who do not know what inflection points are, look around the points  and  in the figure above to
see what is happening; note that these values are one standard deviation away from the mean. We notice that between  and , the
curve seems to open downward, and along the tails, the curve appears to open upward. At some point, the function switches from
opening upward to downward, and then at another point, the function switches from opening downward to upward; these points are
called inflection points. In a normal distribution, the inflection points always occur at one standard deviation above and below the
mean.

The Empirical Rule

We began our discussion about normal distributions by saying claims stronger than Chebyshev's Inequality can be made when we
restrict our distributions to particular classes. We now formulate such a result for normal distributions, which we call the Empirical
Rule.

Given a normal distribution with mean  and standard deviation  the percentage of observations within   and  standard
deviations of the mean is known
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Figure : The Empirical Rule

Figure : Empirical Rule with two normal distributions with different means and standard deviations on the same set of
axes

Note: the approximation signs in the statement of the Empirical Rule are used because the areas underneath the curves over the
appropriate intervals can be approximated to many decimal places. However, we do not expect that sort of precision at this
stage. In future chapters, we will use technology for greater accuracy.

Notice the difference between the claims of Chebyshev's Inequality and the Empirical Rule. Chebyshev's Inequality provides a
lower bound for the percentage of observations within  standard deviations of the mean for any data; meanwhile, the Empirical
Rule asserts what those percentages are for   and  standard deviations, but only for data that is normally distributed.

Let us revisit a previous example. Suppose a sales department of some corporation is supposed to acquire a minimum of 
 in revenue each week. Glancing at a long-term report over the last  years, we see that, on average, the department

made  each week with a population standard deviation of  Suppose that we also know that the data is
normally distributed. What can be said about how often the department did not meet the quota?

Answer

Last time, we noticed that the quota was  standard deviations below the mean and that Chebyshev's Inequality
guaranteed at least  of the data points were above  Now we have more information: we are given that the
data is normally distributed; therefore, we can be more precise. The Empirical Rule tells us that  of the data is no more
than  standard deviations away from the mean. Two standard deviations is  so we are saying  of the data falls
between   and   Therefore, at least  of our data is above
quota. We can use the symmetry of the normal distribution to say even more.
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The Empirical Rule tells us only  of the data is more than  standard deviations away from the mean. Because the curve
is symmetric, half lies above the mean and half below the mean. Anything above the mean was above the quota; the 
of the data points more than  standard deviations above the mean can be added to the values above the quota. We conclude
that at least  of the data was above the quota. The department missed the quota no more than  of the time. Later,
we will develop tools that will allow us to be even more precise.

We can also return to our ideas regarding unusual observations. When we are beyond  or  standard deviations away from the
mean for normal distributions, the percentage of observations that lie there are  or  respectively. Here the title of unusual,
rings a little stronger.

Use symmetry and the Empirical Rule to find the percentage of observations in each of the following intervals for a normal
distribution with mean  and standard deviation 

1. 

Answer

2. 

Answer

3. 

Answer

4. 

Answer
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7. 

Answer

8. 

Answer

IQ scores are generally thought to be normally distributed with a mean of  and standard deviation of  Determine the
percentage of the population with IQ scores in the given ranges.

1. Between  and 

Answer

Since  is  less than   corresponds to  standard deviation below the mean. Likewise,  is  standard deviation
above the mean. A direct application of the Empirical Rule tells us that  of the population is within this range.

2. Between  and 

Answer

Since  is  greater than  and    lies  standard deviations from the mean. We are looking at the interval
from  standard deviation below the mean to  standard deviations above the mean. The previous exercise shows that this
range contains   of the population.

3. Greater than 

Answer

Since  is  greater than  and    lies  standard deviations from the mean. The percentage of the
population that lies beyond that is 

4. Between  and 

Answer

Since  is  less than   is  standard deviations below the mean. Likewise,  is  standard deviations below the
mean. The percentage of the population that lies between  and  is 

5. Explain why we cannot determine the percentage of the population between  and  using the Empirical Rule and
symmetry.

Answer

It might be tempting to say that the percentage of the population between  and  is  because we have often split
the percentages evenly across our known intervals. We cannot do this because we do not have symmetry over the interval 

 The area under the curve from  to  is larger than the area under the curve from  to  In future
chapters, we will use technology to compute the area and thus deduce the percentage of the population within such
intervals.
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-scores
Notice that in both the Empirical Rule and Chebyshev's Inequality, we are interested in how many standard deviations an
observation is from the mean. In the previous exercise, we repeatedly determined how far away an observation was from the mean.
Then, we divided that difference by the standard deviation to determine the number of standard deviations the observation was
from the mean. This computation is commonly called a "standardization of the data" and is known as an observation's -score.

Our -scores do more than facilitate Empirical Rule calculations; as "standardized" measures, they enable us to compare
observational values across different populations.

As a married couple prepared to send their daughter to college in  they wanted to compare relative high school academic
prowess. The daughter only took the SAT. The mom and dad took the ACT, but there was an age gap of several years. The dad
took the ACT in  while the mom took the ACT in  After doing a little research, they found out that the average score
on the ACT in  was  with a standard deviation of  and in  the average score was  with a standard deviation
of  The average score on the SAT in  was  with a standard deviation of  Determine who achieved the highest
relative academic prowess on standardized tests if the dad earned a  the mom earned a  and the daughter earned a 
on their respective exams.

Answer

In comparing their values, we can see the dad barely outscored the mom. However, we cannot directly compare the
daughter's score as the scale for the SAT is entirely different from the scale for the ACT. One way to compare the observed
values in these three separate populations is to compute and then compare each observation's -score.

Based on the -scores, the dad performed the best, followed closely by his daughter. We might also consider whether these
values are significantly different from each other. That is, the dad's z-score was (\ 0.027 \) larger than the daughter's z-
score...is such a difference meaningful? We will answer these questions in future work once more measurements are
developed.

Unusual Observations and Outliers
As we have progressed through this section, we have referenced the idea of unusual observations twice and mentioned that there is
no standard definition agreed upon by all professionals. Chebyshev's Inequality allows us to estimate the minimum percentage of
observations within a certain number of standard deviations of the mean. The Empirical Rule only makes assertions about the
percentage of observations in normal distributions. From these two results, we know we have a very small percentage of
observations, many standard deviations away from the mean; we classify such observations as unusual. Sometimes, we have a few
isolated observations positioned far from the rest of our data, called outliers. Outliers can point to rare/unique occurrences or
possibly measurement errors. When an outlier is present, we want to check the validity of the measurement. If protocols were
violated or an error occurred in the measurement, we will likely remove the observation from our data analysis.

If an observation is considered unusual by the  standard deviation rule, what can we say about its -score?

Answer
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Since the observation is considered unusual by the  standard deviation rule, we know it lies at least  standard deviations
away from the mean. The -score is the number of standard deviations an observation is from the mean. We know the
magnitude of the -score is at least  It could be negative or positive.

One way to classify outliers is using box plots. The box contains  of the observations. How far must an observation be outside
this box to be classified as an outlier? Recall the interquartile range  a measure of dispersion, a range measure of the middle 

 of our ordered data. The box represents our central data region, and the  is the length of the box. It is common practice to
say any observation beyond the box by more than  is an outlier.

Using the  scores from the  point assignment in section  determine if there are any unusual observations or outliers.
Use both of the rules for determining unusual observations.

Answer

The rules about unusual observations depend on the mean and the standard deviation. We are studying this data as
population data. A quick computation gives us the following values    and   Since these are
intermediary steps to our conclusion, we do not want to use the rounded values in future computations. Reference them
exactly when using technology.

The first unusual observation rule is if the observation is beyond  standard deviations from the mean. The bounds for this
are     and    
By this standard, the single data value  is considered unusual.

The second unusual observation rule is if the observation is beyond  standard deviations from the mean. The bounds for
this standard are   and   By this standard, there are no unusual observations.

The outlier rule depends on  and    and   The    and   The bounds for
this standard are     and    

 Since no observations fall outside of this interval, there are no outliers.

2.7: Distributions- Using Centrality and Variability Together is shared under a Public Domain license and was authored, remixed, and/or curated
by The Math Department at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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lower bound = μ −2 ⋅ σ ≈ 7.267 −2 ⋅ 1.769≈ 3.729 upper bound = μ +2 ⋅ σ ≈ 7.267 +2 ⋅ 1.769 ≈ 10.804.

3

3
lower bound ≈ 1.96 upper bound ≈ 12.573.

Q1 .Q3 Q1 = 6 Q3 = 9. IQR = 9 −6 = 3 1.5 ⋅ IQR = 4.5.
lower bound = −1.5 ⋅ IQRQ1 = 6 −4.5 = 1.5 upper bound = +1.5 ⋅ IQRQ3 = 9 +4.5

= 13.5.
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