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6.4: Confidence Interval for Means (Sigma Unknown)

Form a basic intuition regarding the development and shape of -distributions
Introduce accumulation functions for -distributions
Discuss degrees of freedom
Find critical values
Construct confidence intervals for means using sample data
Estimating necessary sample sizes for desired margin of errors

� Section 6.4 Excel File (contains all of the data sets for this section)

Confidence Intervals for Means
Having developed a construction technique for confidence intervals for mean with  known, we now drop our simplifying assumption
and address the common case when we do not know much about the population; in particular, we do not know the population mean or
the population standard deviation. Having an idea of what the sampling distribution of sample means looks like is paramount to our
method. We must know that the sampling distribution of sample means is approximately normal. We encouraged the reader to review
the section on sampling distributions of sample means in the last chapter; hopefully, the conditions are committed to memory, but we
provide them now for quick reference: either the parent population is normal or the sample size  is greater than . Recall that this
threshold works for many populations but not all.

The sampling distribution of sample means is approximately normal with a mean,  and a standard deviation,   Now,

we do not know the value  in addition to not knowing the value of  We set a level of confidence, which we understand as the
percent of samples of size  that will produce a sample mean within a certain distance of the population mean; we call this distance the
margin of error,  In the previous section, we determined the margin of error by transforming the sampling distribution of sample
means into the standard normal distribution and finding our critical values. At this stage, we now run into difficulties because we do
not know  We can approximate with the following transformation, which we call the -transformation.

Notice, that we simply substituted  with  the sample standard deviation. Think about the ramifications of this; different samples
will naturally produce different values for . Thus, when we evaluate the -transformation, we do not expect to get the same values
that the -score transformation would produce since that transformation used  for every computation. We might expect that the
distribution that the sampling distribution of sample means will not be normally distributed.

We can build the theory just as we did with sampling distributions: by examining populations where we have all the data, computing
the value of the transformation for each sample, constructing a histogram, and identifying the general shape. The theory is formalized,
just as with sampling distributions, with some sophisticated mathematics beyond the scope of this course, but we will, hopefully, build
a basic intuition by trying to understand how the -transformation compares to the -score transformation.

The sampling distribution of sample means is approximately normal, and normal distributions are symmetric, meaning, half of the
samples of a given size produce sample means greater than  and the other half of the samples produce sample means less than  We
can also have samples with the same sample mean but with quite different standard deviations. So, we need to understand how these
sample standard deviations are distributed. We are interested in the probability that our sample standard deviation is less than the
population standard deviation. Note that the probability that the sample standard deviation is less than the population standard
deviation is the same as the sample variance being less than the population variance. The sampling distribution of population variance
is closely associated with the -distribution (an interested reader is encouraged to read or reread the sampling distribution of sample
variances section for further details) which we have seen to be skewed right. Recall that when a distribution is skewed right, the mean
is greater than the median and the probability that the sample variance is less than the population variance is greater than  So, we
are more likely to get sample standard deviations that are smaller than the population standard deviation than to get larger sample
standard deviations.

What does this all say about the -transformation? Since we are just as likely to get sample means larger or smaller than the mean, we
will be symmetric about  Since we are more likely to get sample standard deviations that are smaller than the population standard
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deviation, we will usually be dividing by a smaller number in the -transformation than in the -score transformation. When dividing
by smaller numbers, the quotient is larger. We expect larger magnitudes under the -transformation than under the -score
transformation. This indicates that there is a greater probability density in the tails (the distribution has thicker tails). Hopefully, at this
point, we recognize these descriptions as our descriptions of the Student's -distribution. This -distribution will have  degrees of
freedom, and we will explain why later in the section.

Determining the Margin of Error (  unknown)
Now that we have built an intuitive understanding of the -distribution, we are prepared to determine the necessary margin of error in
the context of not knowing the population standard deviation. We provide a similar progression of figures to illustrate the process
below.
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Figure : Sampling distribution of sample means under the -transformation

Knowing that the sampling distribution of sample means is transformed into a -distribution with  degrees of freedom enables us
to determine the necessary margin of error for our desired confidence level. Just as when  is known, the margin of error is scaled by a
known factor known to us. And once we determine the boundary points of our shaded region, the critical values  we can
compute the margin of error. Notice the additional subscripts in the notation for our critical values of the -distribution due to the
critical values depending on the confidence level and the degrees of freedom. Once again, we must use technology to determine
critical values with an accumulation functions specific to the -distribution.

In Excel, we utilize the  and  functions which work very similarly to the  and  functions
that we have been working with for quite some time. We use the distribution function to find the area to the left of a point. Using 

 we enter the point that we want the area to the left of, and the necessary information to describe the distribution; for normal
distributions, we used the mean and standard deviation, but for -distributions, we use the degrees of freedom. Finally, we then tell the
function to accumulate.

The  function is used to find the point in a -distribution with a certain number of degrees of freedom such that a given area is
to the left of the point. Using  we enter the area and the degrees of freedom.

Remaining in the context of constructing confidence intervals for population means when  is unknown, determine the positive
critical value for the  confidence level given the indicated sample size by roughly sketching the -distribution and then using
technology.

The rough sketches drawn by hand are important to ensure a proper approach to the problems, but we cannot accurately depict
what happens to the distributions as the degrees of freedom change. As you complete each part of this text exercise, examine the
computer-generated graphics to solidify what happens as the degrees of freedom increase.

1. 

Answer

We begin by sketching the -distribution with  degrees of freedom. It is symmetric about  and has thicker tails than the
standard normal distribution. We then form an interval centered at  and label the boundary points. The area under the curve
between these two points is our confidence level. Notice that the critical values are equal in magnitude but opposite in sign.
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Due to the symmetry of the distribution, the two tails have equal area giving  in each tail. Since our confidence level is 
the  value is  meaning the area in each tail is 

Figure : -Distribution with  degrees of freedom

Since the critical values are equal in magnitude but opposite in sign, we can compute the positive critical value by multiplying
the negative critical value by 

2. 

Answer

Keeping the same level of confidence but with a larger sample, our tasks throughout this text exercise are similar. The -
distribution now has  degrees of freedom, but the areas and the process remain the same.

Figure : -Distribution with  degrees of freedom
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3. 

Answer

Figure : -Distribution with  degrees of freedom

4. 

Answer

Figure : -Distribution with  degrees of freedom
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5. Describe what is happened to the -distributions as the degrees of freedom increased. What happened to the positive critical
values? What will happen if we use larger and larger sample sizes?

Answer

Since each figure is plotted with the same horizontal axis, we can tell that the area under the curve in the tails decreases fairly
noticeably with each subsequent figure. Since the total area is always  there is more area in the central portion of the
distribution. We can see this faintly as the curve rounds out near its peak and thickens ever so slightly by the labels of the areas
in the tails. The critical values are decreasing in magnitude with each increase in the degrees of freedom. This makes sense
because the tails are getting thinner. The rate at which the tails are thinning and the critical values are decreasing in magnitude
is slowing down. Recall that when we first introduced the -distribution, we said that the distribution gets closer and closer to
the standard normal distribution as the degrees of freedom increase. As such, we can expect the critical values of the -
distributions to approach the critical value of the standard normal distribution  as the sample size increases. With 

 degrees of freedom, we finally are less than  Only after  degrees of freedom will answers rounded to two decimal
places match for this level of confidence.

Recall that the shape of the -distribution is determined by a quantity called degrees of freedom  Notice that the degrees of
freedom in the figure above are related to the sample size,  in particular,  We shall now discuss the meaning of the
terminology. In reading "degrees of freedom", we might naturally think about the extent to which someone is capable of
determining and carrying out an action. That is a fine initial intuition; along those lines, we can think of the degrees of freedom as
a measure regarding the extent to which the data can vary independently, given any constraints on the data.

Suppose the sample mean of  observations was  With the current information that we have, we do not know anything about
the actual values; all we know is that the sum of the  observations is  There are infinitely many possible values for our 
observations that result in such a mean. If it was then revealed to us that the first observation value was  we would know the
sum of the last  observation values is  There are again infinitely many possible values for these  observations. If it was
then revealed that the second observation value was , we would know the sum of the last  observation values is  which
can again happen in infinitely many ways. At what point, after revealing many observation values, will we know what the
remaining observation values have to be knowing the sample mean is  Once  of the observation values are revealed, we will
be able to deduce the last observation without it being revealed. We thus say that the first  observations are free to vary
independently, but the  observation value depends entirely on the previous observation values since the sample mean is
known. Hence, there are  ( ) degrees of freedom.

When collecting data via random sampling, each observation value is independent of the others; the information gleaned from
each observation provides information independent of the other observations. However, once we know, say, the sample mean, a
constraint is placed on the data. The observation values are now connected through the expression      
Each bit of information is no longer perfectly independent. Degrees of freedom is a measure for how much independent
information remains given the constraint(s) in place.

So, why does the -distribution have  degrees of freedom in this situation? The sample mean only requires the observation
values; there are no constraints connecting the data within the definition of the sample mean. This is not the case when we
compute sample standard deviation. Here, we consider all the square deviations from the mean as the fundamental pieces of
information, but implicit within this description is an expression that connects all data values: the sample mean. Each square
deviation is not perfectly independent from every other square deviation. Since we needed the sample mean to compute the sample
standard deviation, we have a constraint within the analysis. As we have seen above, this constraint reduces the amount of
independent information by 

As a general rule of thumb, we expect the degrees of freedom to be the sample size minus the number of statistics used within
computations of the statistics involved in the analysis. Different statistical analyses have different degrees of freedom; so, it is
important to understand where the measurement comes from and to pay close attention to the literature explaining any particular
statistical analysis.

With the critical values in hand, we again notice that the positive critical value is equal to the length of the scaled margin of error and
determine our margin of error from there.
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Constructing Confidence Intervals for Means (  unknown)

We now have all the pieces to construct a confidence interval for the population mean.

We often write these confidence intervals as 

We have discussed the heights of adult females on several occasions; they are normally distributed with a mean of  inches with
a standard deviation of  inches. We have yet to discuss the heights of adult males. It seems reasonable to think that if the
heights of adult females are normally distributed, the heights of adult males will also be normally distributed (this is indeed the
case). We want to build a  confidence interval to catch the average height of adult males. To do so, we randomly sampled 
adult males. Their heights in inches from shortest to tallest are reported below. Construct and interpret the confidence interval.

Answer

In order to construct a confidence interval for means, we need the sampling distribution of sample means to be at least
approximately normal and the sample to have been randomly selected. Given that the heights of adult males are normally
distributed, we have that the sampling distribution of sample means is normally distributed despite the fact that we only have a
sample size of  The sample was randomly chosen; we can, therefore, proceed.

We need the sample mean, standard deviation, sample size, and positive critical value to construct the confidence interval. We
report, without explanation, that   inches,   inches, and  To calculate the positive critical value,
we must find  Since     Since we do not know the population standard deviation, our critical value comes
from the -distribution with  degrees of freedom. We sketch the distribution to help us compute the positive critical value.

Figure : -Distribution with  degrees of freedom
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At a confidence level of  the average height of all adult males  is between  inches and  inches.

For many, the confidence interval produced in the previous text exercise is rather disappointing; there is a wide range of values that the
population mean could be. We might desire to determine how large of a sample would be sufficient to expect that the margin of error is
less than some specified value. In our case, we might be interested in determining how large of a sample would be sufficient to expect
that at most one whole number falls in the constructed confidence interval while keeping the confidence level at 

A natural place to begin would be with the margin of error formula and trying to solve for  just as we did in the last section.

Difficulties, however, arise in several places. There are two values in the equation that depend on the value of  the critical value and
the square root of  We also do not know what our sample standard deviation will be without actually collecting the sample.
Unfortunately, these issues cannot be remedied perfectly, but there are paths forward that can arrive at reasonable estimates of a
sufficient sample size. These estimates on  are just that, estimates; they will not be guaranteed to work without fail, but in general,
we can rely on them to continue forward. The reader is encouraged to take more advanced statistics courses for a thorough
explanation. We shall only provide some basic intuition about the considerations. We first solve for the sample size 

We have not solved for  explicitly because the critical value from the -distribution depends on  Our path forward in estimating 
is to replace the values in the numerator with values that we believe are larger than the values that will end up being used when we
actually construct the confidence interval. When we replace one value in the numerator with one that is larger in the expression, the
product will be larger. If we use this larger product as our estimated , we have probably chosen a larger than necessary sample size
for our desired precision. Doing this will give us a conservative estimate of the sample size. We could always be wrong about whether
the values were larger or not and then possibly not reach the desired precision in the confidence interval. Let us go through this value
by value.

How do we pick a large enough value to overestimate the critical value? Recall that as the degrees of freedom increase, the -
distributions get closer and closer to the standard normal distribution and that the -distribution has fatter tails than the standard normal
distribution. These two facts imply that for a given confidence level, the critical values of the -distributions are farther away from 
than the critical values of the standard normal distribution, but as  increases the critical values of the -distributions approach the
critical values of the standard normal distribution. This means that the critical values in -distributions get smaller in magnitude as 
increases. This gives a conservative overestimate of the critical value by using the positive critical value at the same level of
confidence from a -distribution with fewer degrees of freedom than you expect to have from your future sample. If the underlying
distribution is not normal, we can expect to need at least a sample size of  so  would be an overestimate because we know we
need at least  observations in our sample. If the underlying distribution is normal, we could have less in our sample. In this case, we
could use the -distribution with only  degree of freedom. It will be at least as large as every possible critical value. This is the most
conservative estimate we can make.

Just as with constructing confidence intervals, there is a balancing act at play, not between confidence and precision, but between
confidence and work. The more conservative our estimate, the larger the estimated sample which requires more work on the part of the
researcher. There are time and financial constraints involved. Sometimes, researchers are satisfied with less conservative estimates
which is fine since the most conservative estimates are overestimates by a large margin. Indeed, some textbooks recommend using the
critical value from the standard normal distribution, which is guaranteed to be an underestimate of the critical value used when
constructing the confidence interval.

The decision to choose a large enough value to overestimate the sample standard deviation is a more difficult question. In essence, the
sample standard deviation is an estimate for the population standard deviation. We know that the sample standard deviation tends to be
an underestimate of the population standard deviation but that it can be larger. We have computed a sample standard deviation from an
initial study, but we do not know if it is larger than the population standard deviation or smaller. We expect that for larger samples our
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computed standard deviation is closer to the population standard deviation but that is not necessarily the case. As we might see (if you
study all of the bonus material, you will), it is sometimes possible to construct a confidence interval for the population standard
deviation. With such an estimate, we could estimate the upper bound of where we are confident the population standard deviation falls,
but even that could fail us. As such, some researchers construct confidence intervals from the pilot data. Others just use the sample
standard deviation found in the sample data. And, yet others add a certain amount to the computed sample standard deviation. Here is
where our guarantee must fail, but again that does not mean the estimate is not useful for continuing. We will be satisfied using the
sample standard deviation from the pilot study in this text.

Within this text, we adopt the practice of using the pilot study sample standard deviation, comparing both  and  when the
underlying distribution is normal, and otherwise just using  in our estimates. In this last case, if our estimated value is less than 

 we select  instead. Let us now estimate the sample size such that we expect to have only one whole number in confidence
interval.

We have a sample of size  and computed its sample standard deviation. We do not expect this standard deviation to be equal to the
population standard deviation or the future sample to have the same standard deviation as this sample, but we will use  to
approximate what the sample standard deviation of a future sample might be. Since the underlying distribution is normal, we will
compare   and   as overestimates of the critical value.

We also need to determine the margin of error specified in the problem. If there is to be at most one whole number in the interval, the
interval length must be less than  for the distance between consecutive whole numbers is  Thus if the length of our interval is larger
than  it is possible to have two whole numbers in our confidence interval. If the length is less than or equal to  then it is possible
that we do not have any whole numbers in our interval, but that is permitted in the phrasing of the question. Thus the maximal length
of the interval so that we have at most one whole number in the interval is  Since the margin of error is half of the interval length,
our desired margin of error is confirmed to be  inches. We thus consider the following two cases.

In the first case, the estimated sample size is  in the second case, the estimated sample size is  In both cases, the estimated
sample size is larger than  As such, we use the estimate from case  We expect that a random sample of  adult males will
produce a confidence interval that contains at most  whole number.

A pilot study of  randomly selected college students revealed that the average time spent scrolling on social media per day was 
 hours with a standard deviation of  hours. The researchers plan to conduct a larger study to construct a confidence interval

at a confidence level of  with a margin of error of  hours. Estimate the number of college students that should be randomly
sampled in the larger study to produce the desired results.

Answer

The goal is to build a confidence interval at the  confidence level with a margin of error that is no more than  hours.
The sample standard deviation from the pilot study is  hours. We do not know anything specific about the population. We,
therefore, use   to replace our critical value in the estimation.

Using the critical value for a sample size of  produced an estimated sample size of  We cannot use this result for two
reasons, in order to build our confidence interval in this situation, we need a sample size of at least  The critical value at the 

 confidence level with a sample of  will be larger than the critical value used in our estimate; we, therefore, must
proceed with caution. We are not guaranteed that the value would not be sufficient given the possibility that the sample
standard deviation in the large study might be smaller than in the pilot study. Luckily for us, the decision was forced with the
original consideration. If the underlying distribution is not normal and we do not know any more information about its
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distribution, we expect the sampling distribution of sample means to be approximately normal when  which is an
important requisite for constructing confidence intervals.

6.4: Confidence Interval for Means (Sigma Unknown) is shared under a Public Domain license and was authored, remixed, and/or curated by The
Math Department at Fort Hays State University.

10.7: Confidence Interval for Mean by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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