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4.4: Continuous Probability Distributions

Define the meaning of a continuous random variable probability distribution and its associated probability density function
Use graphs to represent continuous random variables' probability distribution
Connect area under the probability density function to probability measures for a continuous random variable
Find area/probability measures for distributions with basic shapes

Review and Preview
We have introduced the concept of probability distributions for random variables: a distribution that represents all possible
outcomes of a random variable and the associated probabilities for each. For example, we examined the discrete random variable of
the sum of two rolled dice. The outcomes were sums of value  through  and the probability of each is given in the table below.
A table is one way to represent the probability distribution; another is to produce a bar graph to have a pictorial representation of
the distribution. We noted that the sum of the probabilities must total  to have a complete probability distribution.

Table : Probability distribution of the sum of two fair dice in graphical and tabular formats

X: Sum on 
Two Dice Rolled

Probability 
Graphic Representation

Total:  

Another critical concept in the above example was that the random variable was discrete. Each outcome could be listed, and the
probability of each outcome was determined. Other examples include the random variable "number of days adults exercise per
week" or the random variable "amount of change in teenagers' pockets."

Next, we discussed finding the mean ("expected value"), variance, and standard deviation measures from our discrete probability
distribution tables. We saw how the computation concepts of grouped data (Sections  and ) are used to find these measures in
our probability distributions.
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We also discussed in Section  a unique collection of discrete probability distributions called Binomial Distributions,
distributions whose random variable is the number of successes in a given situation. If we have a well-defined success and failure
in the situation, a fixed number of independent trials, and a fixed probability of success in the trials, then the probability
distribution for the binomial situation is reasonably easy to construct.

Once we have the probability distribution table for a discrete random variable, we can use that information, along with our
probability rules, to determine probability measures in relation to any outcomes of interest.

Now, we turn our focus to probability distributions of continuous random variables. Recall the example from Section  about the
random variable of "the time (in seconds) it takes both dice in a two-dice roll to come to a complete stop after one die leaves our
hand." We can no longer get accurate probability measures from a table listing outcomes and associated probabilities as in the
discrete cases above. For example, there are always possible outcomes on a continuous variable between other values. Although we
might build an estimated probability distribution table using intervals on the continuous random variable, doing so causes us to lose
information about the distribution of the variable. We must use a different approach to maintain reasonable accuracy in dealing
with continuous random variables.

Continuous Probability Distributions
Recall that a continuous variable can take on any numerical value in an interval of real numbers; in particular, another value exists
between any two possible values. Examples of such variables included height, weight, ounces of water consumed, time elapsed,
age, amount of electricity consumed, and many more. We must be aware that even though another height measure exists between
any two heights, we measure using some chosen discrete scale, such as to the nearest inch. This rounded height measure does not
make the variable discrete, the variable is still continuous. We use this information in our following theory on probability
distributions on continuous variables.

A continuous random variable probability distribution assigns probability to an interval of values of the continuous random
variable. For example, the probability distribution on the continuous variable height should give us the probability of randomly
selecting a person whose height is between  feet and  feet; it should also assign a probability to any other interval of choice. This
is where we move away from histograms and relative frequency tables that have specifically chosen intervals for the classes.

In Section  we demonstrated the use of a continuous mathematical function that matches the shape of a histogram graphic. Our
example from that section is given below.

Figure : Histogram with fitted curve

In modeling a continuous variable's distribution, we produce a curve that matches the behavior of the various classes in the
histogram. If we move to more and more narrow class intervals, the variable will follow a function's curve. Another example is
given below, in which we demonstrate the curve matching to a distribution that is positively skewed.

 Figure : A second histogram with fitted curve
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To have a probability distribution, our variable's distribution and the curve fitting pf that distribution must be tied to probability
(which is closely related to relative frequency). Relative frequency histograms tend to lose meaning as the width of their classes
decreases, as pictured below on the left column in Figure  For example, recalling that this data set represents the heights of
people, notice that a little over  of people are  inches tall when their height is rounded to the nearest inch. If we instead
measured height to the nearest tenth of an inch, we see approximately  are  inches tall,  are  inches tall, and so on.
As we get more precise with our measurements, the proportion of people in any particular class gets smaller; hence, the relative
frequencies go to  If the heights of the bars are the relative frequencies, then the picture degenerates. A way to overcome this
issue is to represent the relative frequencies as areas instead of as heights. This is shown again below.

Figure : Probabilities of classes as class width decreases (height of bar on left and area of bar on the right)

The curves that fit the area graphics are called probability density functions (PDFs for short.) The function 

from the symmetric bell-shaped curve (commonly called the normal distribution) is the probability density function for the normal
curve with a population mean of  and standard deviation of  The curves are called density functions because the curve values
are not directly probability measures but are measures of the denseness of probability. To find probability values, we measure the
area under the density function values over an interval of values. We build regions under the probability density curve whose area
measures equate to probability measures. This connection and its use will become more evident in the following sections.

All probability density functions for continuous random variables will always have three key features.

1. The domain of the curve (even if the continuous random variable has a smaller domain) can be all real numbers (in
interval notation: 

2. The function values  for the density function will always be non-negative values; that is  for all values of
the continuous random variable 

3. The total area under the curve is equal to  and the area under the curve over an interval  of the
continuous variable will produce the probability measure 
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Figure : Examples of probability density functions

The horizontal scale will depend on the random variable being investigated. For example, the random variable represented by the
left density function in Figure  has its most commonly occurring outcomes between  and  the random variable of the
center density function has most outcomes between  and  the random variable of the right density function has outcomes
between  and  These horizontal scales are very important to the meaning of each random variable and that variable's
distribution and should be included. We also note that, at times, vertical axis scaling will not be explicitly given when working with
PDF graphs (compare the left two above with the right one); in general, this should not cause us concern provided we know the
curve is a PDF satisfying our three requirements.

We also briefly note that these probability density functions approximate probability measures for discrete cases due to the many
mathematical benefits of such curves. For example, if dealing with a binomial distribution situation in which the number of trials is
large, say  trials, instead of building a binomial distribution table of variable values from  to --a huge table to work with--
we can approximate that distribution with a single appropriate density function. This allows us to use functions instead of building
a large table to examine the distribution.

Let's examine this connection between area and probability with continuous variable probability distributions.

Probability Measures from Continuous Probability Distributions

We first examine graphs of probability distributions and answer some questions concerning those distributions. For example, we
might be given the graph below as a proposed probability distribution of a continuous random variable 

Figure : Example Probability Density Function

Notice for all values  the graph shows a density function value of  and for all other real number
values of  we have  This graph implies that the continuous variable  only has possible outcomes between  and 

 all other real values are "impossible" outcomes since their probability density is  In such graphs, we focus on those intervals
of variable values where 

We should check that the three requirements of a  are met in this graphic. First, the curve's domain is all real numbers, as
implied by the arrows at the end of the blue curve. Next, for all  we see that  Finally, we notice the rectangular region
between the curve and the -axis over the interval  The width of this rectangle is   units, and the height of
this rectangle is a probability density measure of  units. The area calculation finds the enclosed area between the curve and -
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axis on the rectangle:      We have a total probability measure of   in this
curve's area measure.

Even if we don't know the specific real-life context, this curve mathematically represents the probability distribution of some
continuous random variable  This graphic will allow us to find probability measures for different interval values; again, we focus
only on intervals in which the  is non-zero to eliminate unnecessary work involving impossible outcomes for the variable.

For this variable  with the given probability distribution shown above, we may wonder what the probability of randomly
selecting outcomes over the interval  would be; that is, we wish to determine  To illustrate, we can
color the area within this distribution that coincides with the  values of the interval.

Figure : Finding 

We notice that our shaded region is rectangular. The area of this shaded rectangle is the measure of the probability. The width of
this rectangle is   units in the continuous variable, and the height of this rectangle is a probability density measure of 

 units. The shaded area is again found by calculating the area of the rectangle:

In this distribution,    If we randomly select an outcome in this situation, then  of the time, we
would expect to see an outcome between  and  Stated equivalently,  of outcomes in this variable's distribution are
between  and 

Using our distribution of Figure  find the following probability measures.

Figure : Replication of previous probability distribution

1. Determine 

Answer

Area = base ⋅ height = 10 ⋅ 1
10

= 1 = 100%. 1.00 = 100%
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4.4.6 P (7 < x < 10)

10 −7 = 3
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1

10
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 Text Exercise 4.4.1
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We shade the region under the density curve over the variable's interval 

Figure : Finding 

Our shaded region is a rectangle with width  and height of . So,

About  of this continuous variable's outcomes are less than  units.

2. Determine 

Answer

We will take two approaches to make a critical point. Using the same approach, we shade under the density curve over the
variable's interval 

Figure : Finding 

Our region is a rectangle with width  and height of . So,

We might show or not show solid or dashed vertical boundary lines on our regions; inclusion or exclusion will not make a
measurement difference in the area.

3. Determine 

Answer

We shade under the density curve over the variable's interval 

x < 8.5.

4.4.7 P (x < 8.5)

8.5 −2 = 6.5 0.10

P (x < 8.5) = area of the region

= 6.5 ⋅ 0.10
= 0.65 = 65%.

65% 8.5

P (x > 8.5).

x > 8.5.

4.4.8 P (x > 8.5)

12 −8.5 = 3.5 0.10

P (x ≥ 8.5) = area of the shaded region

= 3.5 ⋅ 0.1
= 0.35 = 35%

P (2.75 < x < 5.5).

2.75 < x < 5.5.
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Figure : Finding 

Our shaded region is a rectangle with width  and height of .

About  of this continuous variable's outcomes are between  and  units.

The above examples and exercises were relatively straightforward since the regions of interest were always rectangles. Naturally,
not all continuous random variables will have this same distribution shape.

Here, we emphasize a crucial point. In our work, we make no distinction in area measures from regions formed on strict
inequalities, such as  or  on a continuous random variable and other inequalities, such as  or  With continuous
distributions, there is  area under the curve over a single value, that is, technically  for any single outcome 
Therefore, the area measure of regions such as  is the same as for 

Due to this, when dealing with regions under continuous probability distribution functions, strict inequalities can be used
interchangeably with non-strict inequalities. In our graphics of regions, we may or may not show dark or dashed vertical
boundary lines on our regions; inclusion or exclusion will not make a measurement difference in the area.

We also remind ourselves that there is a difference, in general, between the use of strict and non-strict inequalities in discrete
distribution probabilities discussed in earlier sections of this chapter. This demonstrates another reason why it is important to
know if the random variable being analyzed is continuous or discrete.

Now, let us examine a different continuous probability distribution.

Rectangle: 

Triangle: 

Trapezoid: 

Suppose the following continuous variable distribution is given. Answer the following questions concerning this distribution.

4.4.9 P (2.75 < x < 5.5)

5.5 −2.75 = 2.75 0.10

P (2.75 < x ≤ 5.5) = area of the region

= 2.75 ⋅ 0.10
= 0.275 = 27.5%

27.5% 2.75 5.5

 Note: Strict and Non-Strict Inequalities

< >, ≤ ≥.
0 P (x = a) = 0 a.

P (x < a) P (x ≤ a).

 Note: Pertinent Common Area Formulas

base ⋅ height

base ⋅ height
1

2

height
+base1 base2

2

 Text Exercise 4.4.2
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Figure : Another continuous variable distribution

1. Determine if this graph can be a probability density function for a continuous variable.

Answer

We notice for all values  the graph shows a changing density value, increasing from  to  and then decreasing
back to  For all other real number values of  we have  This graph implies that the continuous variable 
only has possible outcomes between  and  all other real values are "impossible" outcomes since their probability density
is 

We also check that the three requirements of a  are truly met in this graphic. Notice that the domain of the curve is
all real numbers, as implied by the arrows at the end of the blue curve. Next, for all  we see that  Finally, we
notice a triangular region between the curve and the -axis over the interval  The base of this triangle is 

 unit in the continuous variable, and the height of this rectangle is a probability density measure of  units. So
the enclosed area between the curve and x-axis is found by the area calculation on triangles:

Thus we have total probability measure of  in this curve's area. This analysis establishes that this curve does
represent a probability density function for some continuous variable.

2. Determine 

Answer

To find  we shade under the density curve over the variable's interval 

Figure : Finding 

We might easily notice that our shaded region is half of the total region. This implies that   

4.4.10

0 ≤ x ≤ 1, 0 2
0. x, P DF (x) = 0. x
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x, f(x) ≥ 0.
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1 −0 = 1 2.00
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base ⋅ height

2

=
1 ⋅ 2

2
= 1 = 100%

1.00 = 100%

P (x ≤ 0.50).

P (x ≤ 0.50), x ≤ 0.50.

4.4.11 P (x ≤ 0.50)

P (x ≤ 0.50) = 0.50 = 50%.
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To check this, we notice that our shaded region is a triangle with base  and height of  So,

About  of this continuous variable's values are at most  units on the continuous scale. We note that many similar
numbers are involved in this problem; often, we must focus more on the meaning of the values we use as we compute
instead of the actual values themselves.

3. Determine 

Answer

To find , we again shade the related region under the density curve over the variable's interval 

Figure : Finding 

4. Determine 

Answer

To find  we shade under the density curve over the variable's interval 

Figure : Finding 

We will find the area of this shaded region using two approaches. It is not about one way of thinking but finding a
reasonable way to determine the shaded region's area.

For our first approach, we recall the total area under all the density functions is  We also notice that the
shaded region is surrounded by two triangles (white regions in the graphic). If we subtract the area of the two white
triangles from the total area of  we will be left with the area of the red region. That is,

0.50 −0.00 = 0.50 2.00.

P (x ≤ 0.50) = area of the shaded region

=
0.50 ⋅ 2.00

2
= 0.50 = 50%.

50% 0.50

P (x ≥ 0.75).

P (x ≥ 0.75) x ≥ 0.75.

4.4.12 P (x ≥ 0.75)

P (0.25 ≤ x ≤ 0.50).

P (0.25 ≤ x ≤ 0.50), 0.25 ≤ x ≤ 0.50.

4.4.13 P (0.25 ≤ x ≤ 0.50)

1.00 = 100%.

1.00,
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So  of this continuous variable's values are between  and  units.

As a different approach, we might notice that the red-shaded region is a trapezoid, and the area of a trapezoid is found by
the average of the parallel sides (commonly called the trapezoid bases) multiplied by the distance between the parallel sides
(commonly called the height of the trapezoid). Using knowledge of trapezoids,

Although we found the area using a different approach, we see that  of this continuous variable's values are between 
 and  units.

As long as we have a probability distribution on a continuous variable with an appropriate probability density function, we can
answer any probability question for that variable by finding the area of the related regions. Since we are naturally curious, our
minds wonder what happens if our regions of interest are not always simple geometric figures. We examine such distributions at
times in the following two text sections.

Summary

This section has connected probability distribution graphs on continuous random variables, probability density functions, and areas
under probability density functions. Specifically, to find the probability of an interval of values for a continuous random variable,
we must find the area under the related probability density function over the interval of interest. The following section will examine
some of statistical analysis' most common continuous probability distributions.

4.4: Continuous Probability Distributions is shared under a Public Domain license and was authored, remixed, and/or curated by The Math
Department at Fort Hays State University.

3.3: Measures of Central Tendency by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.

P (0.25 ≤ x ≤ 0.50) = 1.00 −(area of left white triangle +area of right white triangle)

= 1.00 −( + )
0.25 ⋅ 1.00

2

0.50 ⋅ 2.00

2

= 1.00 −(0.125 +0.50)

= 1.00 −0.625 = 0.375 = 37.5%.

37.5% 0.25 0.50

P (0.25 ≤ x ≤ 0.50) = area of red trapezoid

= ⋅ (0.50 −0.25)
1.00 +2.00

2

= ⋅ 0.25
3

2
= 0.375 = 37.5%.
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