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3.4: Probability and Compound Events

Compute probability in compound events involving "and"
Compute probability in compound events involving "or"
Compute probability in compound events involving "and" and "or"
Use complements for computing the probability of compound events
Determine probability from two-way tables
Extend the use of probability rules to other compound events

Review and Preview Probability and Compound Events
In Chapter  we have discussed basic probability and counting concepts to prepare us for our future work with inferential statistics. To use the classical approach for
determining the probability of an event  we need to know the size of the sampe space,  and we need to know that each of those outcomes in the sample space is
equally likely to occur. Then, if event  can occur in  ways in that sample space,   We also discussed the empirical/experimental approach where we
collect data (preferably a large data set to satisfy our Law of Large Numbers more completely) related to our situation of interest. Then, in that data set of size  if  of
the data satisfy the description of event  we state   However, we must remember that the empirically based probability value only estimates the actual
probability when the data is from a sample set. For example, in Section  we had a relative frequency table on M&M colors built on data from a package of 
M&M's, as shown below.

Table : Frequencies and Relative Frequencies of Sampled M&M's

Color Relative Frequency

Brown

Red

Yellow

Green

Blue

Orange

From this empirical evidence, we have probability estimates for all M&M colors. If we picked a single M&M from the population of all M&M's ever made, we would
estimate, empirically,   and  

We have also discussed several counting rules to help us determine the size of an entire sample space and the number of outcomes matching an event description. We
established various multiplication rules for counting and an addition rule for counting. Each of these rules has conditions for their use. For example, to use the general
permutation rule, we had  distinct objects in which we were interested in how many ways we could select  of those objects where the order of selection mattered.
Knowing the conditions allowed us to quickly determine if a given event could be counted by a specific counting method. We now extend the multiplication and
addition rules of counting to similar multiplication and addition rules for probabilities of compound events.

Probability with Compound Events Involving "and"
As discussed, some event descriptions can be compound: descriptions involving multiple events. We have discussed two phrases used to combine events: "and" as well
as "or." For example, in rolling two dice, the event of  is a compound "and"
description. As another example, the event of  is a compound "or" description. The
event of  is a compound description involving
both "and" as well as "or" descriptions. Although compound event descriptions may get complicated, we aim to simplify determining the probability of such compound
events by developing computation methods similar to our counting methods.

We will deal first with the "and" type of event descriptions. Our previous work with probability established that with fair dice,   and 
  Our work with the sample space of all outcomes of two fair dice showed  

 We notice that the product of our two event probabilities,   is the same value as the compound "and" event probability. A multiplication operation
happens within probability, just as in counting. Also shown in Section  we must carefully check if the events separated by "and" depend on each other. Remember
the example of the deck of cards  When the events are dependent, the count changes for the second event causing the
probability to change.   We must notice if the probability of the second event changes when the first event
has occurred, as in the card example. With this added condition, we still see multiplication between the two event probabilities. We have a useful general Probability
Multiplication Rule. Given events  and 

Recall from Section  that  is read as "event  given event  has occurred." Such a probability involving the "given" condition,  is called a Conditional
Probability.

There are events in which   or equivalently in which  ; the occurrence of one event does not affect the occurrence of the other event.
For example, the results of the first die roll do not impact the second die roll. In events where   we say that the two events  and  are independent
of each other. But, in our example of selecting a spade card first and then a black card second, the occurrence of the first event did impact the occurrence of the second
event. In events where  we say that the two events  and  are dependent of each other. The conditional probability analysis is not needed if the
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independence of the events is already known, we need only multiply the two simple event probabilities together, a Probability Multiplication Rule for Known
Independent Events:

We reiterate, use of this rule requires us to know the independence of the events involved before computing our compound probability value. We see in later content that
the independence of events can be required to apply specific statistical analyses. Generally, it is best to assume events are dependent and be pleasantly surprised when
we can show the events are independent.

Answer the following compound probability questions. Recognize that the given event description is a compound event that can be broken down into multiple
events.

1. We throw a fair die and randomly select a card from a standard deck. What is the probability of getting a  on the die and an ace on the card draw?

Answer

This is a compound "and" event description. We also notice that the two simple events are independent of each other

2. We shuffle a standard deck of playing cards so the cards are randomly placed through the deck.
a. We draw two cards. What is the probability of getting two face cards if the first card is replaced randomly in the deck before drawing the second?
b. We draw two cards. What is the probability of getting two face cards if the first card is not replaced in the deck before drawing the second?

Answer
a. We do not want to build the sample space in this situation: there are   different outcomes. We notice that if the first card is replaced randomly

in the deck before drawing the second, the two events are independent. We also notice that the deck has  face cards. By our multiplication rule:

We notice this is not an unusual event.
b. If the first card is not replaced in the deck before drawing the second, the second event's probability depends on the first event occurring because the number

of face cards still in the deck will be down to  The number of cards in the entire deck will be  By our multiplication rule:

Although the probability measure does not differ from the first situation drastically, it is different. The event is a little less likely to occur if the first card is
not replaced; this is something we might have expected.

3. Suppose we have our bag of  M&M candies with the color distribution as given previously:
Table : Frequencies and Relative Frequencies of Sampled M&M's

Color Relative Frequency

Brown

Red

Yellow

Green

Blue

P (A and B) = P (A) ⋅P (B)

= P (B) ⋅P (A) .
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Color Relative Frequency

Orange

We randomly grab four candies, one at a time, without replacement. What is the probability that we have a red candy first, a green candy second, a brown candy
third, and a brown candy fourth?

Answer

These events are not independent. For example, the probability of getting a green candy second will vary depending on whether we had a red candy first. By our
multiplication rule:

4. Senior citizens make up about  of the U.S. adult population, according to the Pew Research Center website.
a. What is the probability of randomly selecting two U.S. adults who are both senior citizens?
b. What is the probability of randomly selecting two U.S. adults, the first not a senior citizen and the second is a senior citizen?
c. What is the probability of randomly selecting three U.S. adults such that the first two are not senior citizens and the third is a senior citizen

Answer
a. As the U.S. population of senior citizens is very large, we will assume independence in the events, realizing our probability measures are approximations. By

our multiplication rule:

We do emphasize that assumption of independence is not always reasonable, but is used at times when dealing with large population/sample sizes as
probability measures do not get impacted significantly in value. We can see this in an example of comparison on, say, a dependence measure of 

  versus assumed independence measure of   Although the probability values
are technically different, the practical interpretation for real-life application would not usually have practical meaning in the difference. We do note that we
reflect carefully before assuming independence as it can lead to drastic consequences.

b. Again, as the U.S. population is very large, we will assume independence in the events. By our complement rule, we note that about  of the U.S. adult
population is less than  years old. By our multiplication rule:

c. Again, as the U.S. population is very large, we will assume independence in the events. By our complement rule, we note that about  of the U.S. adult
population is less than  years old. By our multiplication rule:

Probability with Compound Events Involving "or"

Now that we have handled probability measures on events separated by "and," we turn to probability and events separated by "or." For example, we might ask, "In
rolling a single fair die, what is the probability of rolling a two or a three?" In the case of our M&M's, we might ask, "What is the probability of the next M&M we
randomly remove from a bag being a blue or an orange M&M?" As discussed in Section  the "or" compound description is tied to addition. As a reminder, our
developed Addition Rule for Counting was given as

Our developed rule reminds us to check for the outcomes that matched the descriptions of both events and to subtract the set of the twice-counted outcomes.

Similar to how the Multiplication Rule for Counting extends to the Multiplication Rule for Probability, the Addition Rule for Counting will also extend to an Addition
Rule for Probability.

In answering the question, "In rolling a single fair die, what is the probability of rolling a two or a three?", we can apply this addition rule to produce
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Since the sample space of rolling a single fair die is small in size, one could likely answer this question much faster by knowing that only two of the six outcomes in the
sample space meet the description of being "  But as we see in the text exercises, this addition rule can be very useful when the sample
spaces are large.

Answer the following compound probability questions. Recognize that the given event description is a compound event that can be broken down into multiple
events.

1. A standard deck of playing cards is well-shuffled for randomness. Determine the following probabilities about a single card draw.
a. Find the probability that a randomly drawn card is a king or a queen.
b. Find the probability that a randomly drawn card is black or an ace.
c. Find the probability that a randomly drawn card is a spade or a face card.

Answer

a. This is a compound "or" event description, as the event of interest is a king or queen card.

We notice that, because   these two events are mutually exclusive. There is a little over  probability that a random card
draw will produce a king or a queen. Although not highly probable, we would not consider this outcome unusual.

b. This is a compound "or" event description, as the event of interest is a black card or an ace.

We notice that, because  , these two events are not mutually exclusive. There is almost a  chance that a random card draw
will produce a black or an ace card; such an outcome is reasonably probable.

c. This is a compound "or" event description, as the event of interest is a card that is a spade or a face card. We note " " is also an "or" event since "
" means " ". Sometimes, event descriptions can be rephrased to make a compound event more evident as an "and" or

an "or" type event

We again notice, because  , these two events are not mutually exclusive. There is a little over  probability that a
random card draw will produce a spade or a face card.

2. An online clothing store has a liberal return policy since customers cannot try on the items before purchasing. From survey data gathered in the return process
from their customers,  of all purchased items are returned due to the item being too small/tight, while  are returned due to the item being too big/loose. If
a customer-purchased item is randomly selected from all purchases, what is the probability that the item will be returned due to being too big/loose or too
small/tight?

Answer

This is a compound "or" event description as the purchased item must be returned due to being too big/loose or too small/tight. We notice that these two events
are mutually exclusive; we assume that a clothing item cannot simultaneously be too big and too small

P (ROLLING A TWO or ROLLING A THREE)
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Twenty-five percent of all customer-purchased items are returned due to being either too big/loose or too small/tight. Such a significant return rate for these two
issues will likely require the store to find ways to help customers find a better fit for their orders.

3. We return to our bag of  M&M candies.
Table : Frequencies and Relative Frequencies of Sampled M&M's

Color Relative Frequency

Brown

Red

Yellow

Green

Blue

Orange

a. What is the probability of randomly drawing one candy of a primary color, red, yellow, or blue?
b. What is the probability of randomly drawing one candy that is not of one of those primary colors?

Answer

a. By our addition rule and noticing the events are mutually exclusive, we compute

b. We could apply our addition rule again relative to the colors of brown, green, and orange. But we notice this is also a complement to the previous event.

We notice that the probability of randomly selecting a primary color M&M is practically the same as getting a non-primary color. Stated equivalently, the
proportion of M&M's is approximately  for each color grouping.

Extended Concepts on Compound Events

As mentioned, we sometimes have event descriptions that include multiple compounding actions. Thankfully, we do not need any extra computation rules for these.
However, we do have to read very carefully to properly understand the compound event descriptions and ask for clarification if needed.

We must clarify a small detail about our "AND" rule. In our previous examples using compound "AND" event descriptions, we worked with descriptions involving
"sequential trials" of two or more trials: tossing two dice, drawing four M&M candies, and randomly selecting two people. What if we are describing an event with the
word "and" but in a single trial: Selecting a single M&M that is both red and brown, drawing a single card that is red and a face card? We use a compound "and," but
does our multiplication rule apply in a single trial event? We can often reflect on our sample space and naturally handle the "and" within a single trial. Our general
multiplication rule still works, but the two events separated by "and" will often be dependent in a single trial situation. We must carefully consider the conditional
probability on the second described event as we apply the multiplication rule.

Let us first examine the probability of selecting a single M&M that is both red and brown from our bag of  M&M's. Based on the given information (and our
experience eating M&M's), we can reason that there are no M&M's that meet that description, so the probability is   By reflecting on the sample space, we
determine the probability value; no special probability rule is necessary, but let us see that the multiplication rule still works.

We can see that in handling the conditional probability of selecting a single M&M that is  given that we are restricted to the  M&M's produces the
probability value  none of the red M&M's are brown. Our multiplication rule for "AND" still works for even single trial cases. It is acceptable and encouraged to
reflect on the sample space and not use our multiplication rule to determine such probability values. We should use sound reasoning, not blind use of formulas, to
determine measures.

To see another example, find the probability of drawing a single card that is both red and a face card. By thinking about the sample space of a deck of cards, one might
quickly reason that there are six cards in the deck of fifty-two that are red face cards. The probability is    Let us check that our multiplication rule
produces this value as well.

55

3.4.3

17
55

18
55

7
55

7
55

2
55

4
55
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We can see that in handling the conditional probability of selecting a single   given that we are restricted to the  cards produces the probability value 
 since six of the red cards are face cards. Using conditional probability with the multiplication rule can be handy in more challenging event descriptions.

Let's try a few single trial "and" compound event exercises.

Answer the following single-trial compound probability questions. Recognize that the given event description is a compound event that can be broken down into
multiple events.

1. We draw a single card from a well-shuffled standard deck of playing cards. What is the probability of getting a black ace?

Answer

This is a compound "and" event description as the card must be both black and an ace.

We could have answered this by reflecting on the sample space of the  outcomes, realizing there are  black aces, but our multiplication rule does work.

2. Based on  information from the U.S. Center for Disease Control website, about  of senior citizens (65 years and older) in the U.S. get the flu
vaccine, whereas about  of those adults under  years old get vaccinated. Senior citizens make up about  of the U.S. adult population, according to the
Pew Research Center website.
a. What is the probability of randomly selecting one U.S. adult who is a senior citizen and has had the flu shot?
b. What is the probability of randomly selecting one U.S. adult who is not a senior citizen and has not had the flu shot?

Answer

a. We can use our multiplication rule.

In  about  of the U.S. adult population consisted of senior citizens who had taken the flu shot.
b. We can use our multiplication rule.

In  about  of the U.S. adult population consisted of non-senior citizens who had not taken the flu shot. Notice that this tells health
officials about the demographics of those who did not have the flu shot.

Now, we focus on investigating our event descriptions with multiple compound events. No new probability calculation rules are necessary; we must apply our current
understanding to slightly new contexts. For example, suppose we wish to find the probability of first throwing a fair die with a result of an even number and then
drawing a card from a standard deck of playing cards that is either a red or a face card. This compound event description involves both "and" and "or." Reading
carefully, we break down the description: a first event involving throwing a fair die, then a second event involving drawing a card. We notice these two events are
independent. In the card draw event, we note that drawing a red card and a face card are not mutually exclusive. We have

P (RED  and FACE CARD) = P (RED) ⋅P (FACE CARD | RED )

= ⋅
26

52

6

26

= ⋅
26

52

6

26

= ≈ 11.5385%
6
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FACE  CARD RED
6
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 Text Exercise 3.4.3

P (BLACK CARD and ACE CARD) = P (BLACK CARD) ⋅P (ACE CARD | BLACK CARD)

= ⋅
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1
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Determine the probabilities of each of the following.

1. We draw five cards from a well-shuffled standard deck of playing cards. What is the probability of getting a flush (all cards share the same suit)?

Answer

This is a compound "and" event description, as the five cards must all be of one suit. We note that the suit does not matter, so the first card drawn can be of any
suit; the remaining cards must match the first. The events are not independent.

It should not be surprising that flush of five cards from a well-shuffled deck is a very unlikely event.

2. If we toss a fair die and then flip a fair coin, what is the probability that we get either a  on the die or a head on the coin (or both)?

Answer

We approach this in two different ways. The first may initially sound easier or more natural, but the second brings us different, valuable insights. Accurate
rephrasing of a given situation can make the probability calculation different yet produce the same results.

a. The basic events are a toss of a fair die followed by a flip of a fair coin. Our event description is of the "or" type. Since we can toss a  and get a head on the
coin in one execution of the situation, we note that our events are not mutually exclusive. By our addition rule, we obtain the following.

b. By examining complement descriptions first, the complement of "either a  on the die or a head on the coin (or both)" is "not getting a  on the die and also
not a head on the coin". Now, we can use our complement and multiplication rule.

We do notice we get the same answer although computed through a very different approach.

3. If we roll a fair die three times, what is the probability that one or more throws will come up with a 

Answer

On the surface, this sounds easy, but that changes once we think about the possible ways to have one or more of the three approaches produce a  We could
have the first toss produce a  while the other two do not, or we can have the second produce a  and the other two not, or we can have the first two tosses both
produce a  and the third not, or many other possibilities. We must determine many probabilities to use our rule with "or." However, there is an easier way.
Notice the complement of "at least one of the throws will be a " is given by "none of the three throws produce a "

We obtain the following by our complement and multiplication rule, utilizing the independence of the die throws.

P (DIE TOSS OF EVEN and  [CARD DRAW OF RED or FACE])

= P (DIE TOSS OF EVEN) ⋅P (CARD DRAW RED or FACE)

= P (DIE TOSS OF EVEN)

⋅ (P (CARD DRAW RED) +P (CARD DRAW FACE) −P (CARD DRAW RED and FACE))

= ⋅( + − )
3

6

26

52

12

52

6

52

= ⋅( )
1

2

32

52

= ⋅ = ≈ 30.7692%.
1

2

8

13

4

13

 Text Exercise 3.4.4

P (FLUSH)

= P (ANY SUIT CARD   and SAME SUIT CARD   and SAME SUIT CARD   and SAME SUIT CARD   and SAME SUIT CARD  )1st 2nd 3rd 4th 5th

= P (ANY SUIT CARD  ) ⋅P (SAME SUIT CARD  |  CARD SUIT) ⋅P (SAME SUIT CARD  | ,  CARD SUIT)1st 2nd 1st 3rd 1st 2nd

⋅P (SAME SUIT CARD  | , ,  CARD SUIT) ⋅P (SAME SUIT CARD  | , , ,  CARD SUIT)4th 1st 2nd 3rd 5th 1st 2nd 3rd 4th

= ⋅ ⋅ ⋅ ⋅
52

52

12

51

11

50

10

49

9

48

= ≈ 0.1981%
33

16660

6

6

P (6 ON DIE or HEAD ON COIN)

= P (6 ON DIE) +P (HEAD ON COIN) −P (6 ON DIE and HEAD ON COIN)

= + −( ⋅ )
1

6

1

2

1

6

1

2

= ≈ 58.3333%
7

12

6 6

P (6 ON DIE or HEAD ON COIN)

= 1 −(P (NOT A 6 ON DIE and NOT A HEAD ON COIN))

= 1 −(P (NOT A 6 ON DIE) ⋅P (NOT A HEAD ON COIN))

= 1 −( ⋅ )
5

6

1

2

= 1 − = ≈ 58.3333%
5

12

7

12

1?

1.

1 1

1

1 1.
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4. Based on  information from the U.S. Center for Disease Control website, about  of senior citizens (65 years and older) in the U.S. get the flu
vaccine, whereas about  of those adults under  years old get vaccinated. Senior citizens make up about  of the U.S. adult population, according to the
Pew Research Center website. What is the probability of randomly selecting two U.S. adults who are both senior citizens and recipients of the flu vaccine?

Answer

Due to the large population size, we assume the selection of individuals is independent. We believe that if the first selected adult is a senior citizen, the second
selected adult still has a  chance of being a senior citizen; likewise, we assume that the probability that the second person chosen is vaccinated is the same
as the first person. We now use our multiplication rule.

So in regard to this  data, it would be unusual for us to randomly select two U.S adults both of whom were flu vaccinated senior citizens.

Two-Way Tables and Probability
Sometimes, data frequencies for a collected single variable are disaggregated, separated into mutually exclusive subgroups. For example, quiz data frequencies for a
class may be separated by the frequency of those who passed the quiz versus those who did not. Alternatively, perhaps the data is separated into those students who are
in extra-curricular school activities and those who are not. If done well, this allows a comparison between subgroups.

Let us go one step further in this discussion: disaggregating data in two ways. These results are displayed in a Two-Way Table or a Contingency Table. We take the
quiz data of a class of  students first given in Section  and separate by passing,  or above, and non-passing scores, below  then by student involvement in extra-
curricular school activities resulting in the following two-way table.

Disaggregation Passed Quiz Failed Quiz

Not Involved in Extra-Curricular 
School Activities

Involved in Extra-Curricular 
School Activities

When reading the table, we must pay attention to the row and column headings. The value  in the table implies that  of the  students were involved in extra-
curricular activities and failed the quiz. We often include row and column totals for each disaggregation when working with two-way tables.

Disaggregation Passed Quiz Failed Quiz Row Totals

Not Involved in Extra-Curricular 
School Activities

Involved in Extra-Curricular 
School Activities

Column Totals

We can see a total of  student data points. Of those, there were  that passed the quiz, while there were  not involved in extra-curricular activities.

We can now answer several probability/proportion questions concerning these results. What is the probability that a randomly selected student from the class was
involved in extra-curricular school activities? By our classical probability approach,    

What is the probability that a randomly selected student from the class failed the quiz and was not involved in extra-curricular activities? Since randomly selecting a
student from the twenty,    This is because the table shows only  student in both the 

 column as well as the  row. We could also apply our multiplication rule, noting the events are not independent.

In this situation, the first approach is much easier due to the table information.

P (AT LEAST ONE - 1 AMONG THREE TOSSES)

= 1 −P (NOT 1 ON FIRST DIE and NOT 1 ON SECOND DIE and NOT 1 ON THIRD DIE)

= 1 −[P (NOT 1 ON FIRST DIE) ⋅P (NOT 1 ON SECOND DIE) ⋅P (NOT 1 ON THIRD DIE)]

= 1 −( ⋅ ⋅ )
5

6

5

6

5

6

= 1 − = ≈ 42.1296%
125

216

91

216

2023 −2024 70%

40 65 18%

18%

P ([FIRST IS A SENIOR CITIZEN and FIRST HAS FLU SHOT]  and  [ slightSECOND IS A SENIOR CITIZEN and SECOND HAS FLU SHOT])

= [P (FIRST IS A SENIOR CITIZEN) ⋅P (FIRST HAS FLU SHOT | FIRST IS A SENIOR CITIZEN)]

⋅ [P (SECOND IS A SENIOR CITIZEN) ⋅P (SECOND HAS FLU SHOT | SECOND IS A SENIOR CITIZEN)]

= (18% ⋅ 70%) ⋅ (18% ⋅ 70%)

≈ 1.5876%

2023 −2024

20 2.4 6 6,

7 1

9 3

3 3 20

7 1 8

9 3 12

16 4 20

20 16 8

P (IN EXTRA  CURRICULAR) = 12
20

= 3
5

= 60%.

P (FAILED  QUIZ and NOT  IN EXTRA  CURRICULAR) = 1
20

= 5%. 1 FAILED 

 QUIZ NOT  IN  EXTRA   CURRICULAR

P (FAILED QUIZ and NOT IN EXTRA CURRICULAR)

= P (FAILED QUIZ) ⋅P (NOT IN EXTRA CURRICULAR | FAILED QUIZ)

= ⋅ = = 5%
4

20

1

4

1

20
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Answer the following probability questions about a given two-way table.

1. A polygraph device is being studied for its accuracy in lie detection. A group of  randomly drawn participants were divided into two groups: those instructed
not to lie and those who were supposed to lie. The technician running the device did not know each participant's group. Each participant was tested with the
device, and a positive or negative detection of a lie was returned. The results are given in the following contingency table.

Disaggregation
Positive Lie 

Detection Reading
Negative Lie

Detection Reading

Participant Did Not Lie

Participant Did Lie

As an example,  of the  participants did not lie, and the detector did not sense a lie occurring.

a. What is the probability that a randomly selected participant had a positive lie detection reading?
b. What proportion of the participants had a false positive reading (the device detected a lie, but the participant did not lie)?
c. What is the probability of randomly selecting two participants in sequence so that both had a positive lie detection reading?
d. What is the probability of randomly selecting a participant who lied but had a negative detection reading or who did not lie but had a positive detection

reading? In other words, for what proportion of the trials was the device inaccurate?
e. What is the probability of randomly selecting two participants in sequence so that the first lied with a positive detection reading and the second did not lie

with a negative detection reading?

Answer

We first add column and row totals to our table.

Disaggregation
Positive Lie 

Detection Reading
Negative Lie

Detection Reading
Row Totals

Participant Did Not Lie

Participant Did Lie

Column Totals

Now, we answer the probability/proportion questions using appropriate probability rules.

a. From the two-way table, we notice there were  participants that had positive lie detection readings. So,   
 

b. From the table, we can notice there were  participants had a false positive reading. So, we can quickly produce results of 
  

We instead might have noticed this was an "and" compound event: . Therefore, it would also
have been appropriate (though more cumbersome) to measure the proportion using our general multiplication rule.

We mention two items in reflection of this exercise. First, we notice how the table is used for a conditional probability such as 
  The given condition of  requires us to use only the information in the table row of

"Participants Did Not Lie."

This exercise demonstrates that multiple approaches might be taken to a probability/proportion question, but there is only one correct answer.
What is important is to have sound reasoning in our approach. After that, experience is the best teacher in finding the easiest approaches without
making mistakes in our reasoning.

c. We notice the event description can be re-worded as 
, so we use the general multiplication rule.

We notice how these sequential events are not independent since we cannot pick the same participant twice.

 Text Exercise 3.4.5

200

9 71

85 35

71 200

9 71 80

85 35 120

94 106 200

94 P (POSITIVE   DETECTION) = 94

200

= 47

100
= 47%.

9 P (FALSE 

POSITIVE  DETECTION) = 9
200

= 4.5%.

DID NOT LIE and POSITIVE  LIE DETECTION

P (DID NOT LIE and POSITIVE LIE DETECTION)

= P (DID NOT LIE) ⋅P (POSITIVE LIE DETECTION | DID NOT LIE)

= ⋅
80

200

9

80

= = 4.5%
9

200

P (POSITIVE 

LIE DETECTION | DID NOT LIE) = .9
80

DID NOT LIE

FIRST PARTICIPANT  HAD  POSITIVE  LIE DETECTION and SECOND  PARTICIPANT 

HAD  POSITIVE  LIE DETECTION

P (FIRST PARTICIPANT HAD POSITIVE LIE DETECTION and SECOND PARTICIPANT HAD POSITIVE LIE DETECTION)

= P (FIRST HAD POSITIVE DETECTION) ⋅P (SECOND HAD POSITIVE DETECTION | FIRST HAD POSTIVE DETECTION)

= ⋅
94

200

93

199

= = ≈ 21.9648%
8, 742

39, 800

4371

19, 900
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d. We notice the event description appears to primarily be an "or" compound event. That is, our event of interest requires selection of one
participant that  so we use the general addition
rule noting these two events are mutually exclusive.

We observe that a test with a  inaccuracy rate is not very dependable. Also, we excluded the subtraction in the general addition rule for
possible double counting of  since we
recognized the events were mutually exclusive.

e. The event description is an "and" compound type as we want sequential selection of two participants with 
. We use the general

multiplication rule.

It would not be unusual, since the probability value is above 

3.4: Probability and Compound Events is shared under a Public Domain license and was authored, remixed, and/or curated by The Math Department at Fort Hays State University.

5.2: Basic Concepts of Probability by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
1.10: Distributions by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.

LIED WITH NEGATIVE  DETECTION or DID  NOT LIE WITH POSITIVE  LIE DETECTION,

P (LIED WITH NEGATIVE DETECTION or DID NOT LIE WITH POSITIVE LIE DETECTION)

= P (LIED WITH NEGATIVE DETECTION) +P (DID NOT LIE WITH POSITIVE LIE DETECTION)

= +
35

200

9

200

= = = 22%
44

200

11

50

22%

LIED WITH NEGATIVE  DETECTION and DID  NOT LIE WITH POSITIVE  LIE DETECTION

FIRST PARTICIPANT  LIED WITH 

POSITIVE  LIE DETECTION and SECOND  PARTICIPANT  DID NOT LIE WITH NEGATIVE  LIE DETECTION

P (  PARTICIPANT LIED WITH POSITIVE LIE DETECTION and   PARTICIPANT DID NOT LIE WITH NEGATIVE LIE DETECTION)1st 2nd

= P (  PARTICIPANT LIED WITH POSITIVE DETECTION)1st

⋅P (  PARTICIPANT DID NOT LIE WITH NEGATIVE DETECTION |  PARTICIPANT LIED WITH POSTIVE DETECTION)2nd 1st

= ⋅
85

200

71

199

= = = 15.1633%
6, 035

39, 800

1, 207

7, 960

5%.
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