
4.3.1 https://stats.libretexts.org/@go/page/41782

4.3: Binomial Distributions

Define the binomial random variable
Construct binomial distributions
Develop and use the probability distribution function for binomial random variables
Provide and use alternative formulas for expected value and variance of binomial random variables
Assess the necessity of independent trials

Binomial Random Variable
Suppose we had a weighted coin which only came up heads one-sixth of the time. If we flipped this coin  times, what is the probability that exactly  of
those flips would be heads? In order to answer this question, we would need to recognize that each of the coin flips are independent and that the probability of
getting heads is the same each time. The answer turns out to be about  we will demonstrate how to compute this soon.

Now suppose we were rolling a fair die  times. What is the probability that exactly  of those rolls would be six? The astute reader may notice that the
answer is the same:  Why is that? Well, we either roll a six or we don't. Rolling a six is analogous to flipping heads and not rolling a six is analogous to
flipping tails. Since each trial is independent and the probability of obtaining the outcome of interest is  the two scenarios are the same from the perspective
of probability.

In fact, we can be much more general. Suppose in a population consisting of millions of people, exactly one in six of them support some political candidate. If
we randomly and independently selected  people, what is the probability that  of them would be supporters of the candidate? Suppose a factory produces
light bulbs and one-sixth of them are dysfunctional. If an inspector were to randomly and independently select  of them, what is the probability that exactly 
of them would be dysfunctional? Suppose an archer hits the bulls-eye with probability  every time she shoots. If she takes  shots, what is the probability
that she gets exactly  bulls-eyes? The answers to all of these questions are the same:  It is clear that some of the details of the situations are irrelevant; all
that matters is that a trial is repeated  times, each trial is independent, and the probability of the outcome of interest occurring is  each time. These sorts of
situations are the object of our discussion: binomial random variables.

Binomial distributions are the probability distributions for a particular type of discrete random variable: the binomial random variable. With binomial random
variables, we are considering a single random experiment repeated, identically and independently, a fixed number of times. We call each repetition a trial and
indicate the number of trials with  As the adjective "binomial" indicates, we group the outcomes into two categories: successes and failures. The probability
of a success on any given trial is denoted  while the probability of a failure on any given trial is denoted  Note that since we have only two categories
covering the entire sample space,  We define the binomial random variable  as the number of successes throughout all  trials. Every trial may
fail, in which case,  On the other hand, every trial may be a success, in which case,  In most cases, some trials will succeed while others fail. As
such,  takes on any number in the set  In the examples discussed above,    and we were asking what is 

Consider an example to help solidify these ideas. In a previous text exercise, we considered tossing a fair die three times and determined the probability of
getting one or more throws landing with one face up. We can understand this situation as a binomial random variable. Our underlying random experiment is
rolling a fair die. We fix the number of trials to  The trials are identical because we are similarly rolling the same die each time. The trials are independent
because the outcomes of previous rolls do not affect current or future rolls. Since we are interested in rolling ones, we define that as a success. Rolling any
other value (     or ) constitutes a failure. We can easily compute the probabilities of success and failure on any individual trial;  and  We
define our binomial random variable  to be the number of ones rolled in  tosses of a fair die. The possible values for  are    and  Recall that our
interest in random variables lies in their probability distributions. We will now address constructing a binomial random variable's probability distribution.

Probability Distributions of Binomial Random Variables
We first build our intuition by constructing the probability distribution of our binomial random variable  the number of ones rolled in  tosses of a fair die.
When determining the probability for a particular value of a random variable, we generally considered all of the outcomes in the sample space and proceeded
from there. Considering all three trials based on the values landing up would result in  different outcomes. We can simplify our analysis by
considering all three trials based on successes and failures; that is, rolling a one is considered a success and rolling anything other than a one is considered a
failure. In this case, we only have  considerations. We shall use  to indicate a trial with success and  to indicate a trial with a failure, and represent the
possibility of a successful trial followed by failures on the second and third trials as . This procedure is illustrated for several, but not all, possible outcomes
in the figure below.

Figure : Outcomes of three rolls in succession understood in terms of successes and failures

The following figure groups the  possibilities by value of  and helps us build the probability distribution.
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Table : Initial probability distribution for the random variable 

Each trial occurs in sequence and is identical and independent; we can use both our addition and multiplication rules for probabilities to determine our
probabilities. Remember that    and   

Table : Probability distribution for the random variable 

 

Consider the random variable  that counts the number of heads in  flips of a fair coin. Verify that the random variable  is a binomial random variable
and construct its probability distribution.

Answer

The underlying random experiment is the flipping of the fair coin, which is to be repeated a fixed number of times; . We are flipping the same
coin in a similar fashion, meaning our trials are identical. We have independent trials because the outcome of one trial does not affect any of the other
trials. We are counting the number of heads; in a successful trial, heads land face up, and alternatively, landing a tail would be a failure. Since we are
using a fair coin, we have  or  confirming that  is a binomial random variable. Since we have  trials, the set of
possible values for  is  To construct the probability distribution, we consider the possible outcomes of all  trials in terms of successes
and failures.

Table : Initial probability distribution for the random variable 
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Again, each trial occurs in sequence and is identical and independent; we use both our addition and multiplication

rule for probabilities to determine our probabilities.
Table : Probability distribution for the random variable 

 

Hopefully, we have noticed some patterns after building probability distributions for two binomial random variables. Let us formulate the patterns in the
context of a general binomial random variable  with  trials and probability of success on any individual trial  Recall that  the probability of failure, is 

When we consider the possible outcomes of all trials in terms of successes and failures, the probabilities depend on the number of successes and failures, not on
the order in which those successes and failures appear. Each event in  has the same probability. If there are  successes, meaning we have 
failures, the probability of each event in  is  All that is left to do is count the number of such events for any particular value 

To count the number of ways that  successes can be assigned to the  trials, we can use combinations:  We have  many events in  each with
a probability of  Putting this all together, we arrive at a function that returns the probability of our binomial random variable. We call this the
probability distribution function for a binomial random variable 

Check that the formula works by using it on the preceding example.

1. A virtual education company produces short multiple-choice quizzes for each content module. They currently have  questions with  options for each
question. One school that uses this product worries about students passing these quizzes without learning the content. Determine the probability of a
student obtaining an A or a B (obtaining at least an ) on such a quiz by literally randomly guessing on each question.

Answer
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We can understand this situation as a binomial random variable. We have a random experiment of a student randomly guessing on a multiple-choice
question. The experiment is repeated  times because there are  questions. Since the student is randomly guessing on each question, the trials are
identical and independent, with a probability of success at  Let  be the binomial random variable that counts the number of correct guesses on
these  question multiple-choice quizzes. This means a student needs  or  correct answers to obtain an A or a B. We need to find  We
can use the probability distribution function to find the answer. Recall that  and  Thus,

Thus,    

2. Given the analysis in the first part of this text exercise, the virtual education company has decided to increase the number of options on each question
while keeping the number of questions fixed at  They are considering using  or  options. Determine the probability that a student randomly
guessing on a quiz will obtain an A or a B under both options.

Answer

Changing the number of options does not change the number of questions necessary, but it does change the probability of success on any given
question. Let  be the binomial random variable counting the number of correct guesses when there are  options on each question and  be for 
options. Thus, we are interested in  and  When there are  options, the probability of success,  is only  Similarly,
when there are  options, the probability of success,  is only 

Thus,     and     Increasing the number of

options significantly reduces the chances of a student obtaining an A or a B on a quiz by randomly selecting answers. We go from nearly  to just
below  to just over 

Expected Value, Variance, and Standard Deviation of Binomial Random Variables
Remember that binomial random variables are just a particular type of discrete random variable. That means everything we know about discrete random
variables applies to binomial random variables. Binomial random variables have some very nice properties that make the calculations of expected value and
variance much easier. Note that the formulas we develop here in this section only apply to binomial random variables and not all discrete random variables.

Using the definitions of expected value, variance, and standard deviation provided in the section on discrete random variables, determine these measures of
centrality and dispersion for the binomial random variables:  being the number of ones rolled in  tosses of a fair die and  being the number of heads in

 flips of a fair coin.

Answer

These are the same random variables that we have been using throughout this section. We can utilize the probability distributions that we have already
created.

Table : Table of computation for the random variable 
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Table : Table of computation for the random variable 

 

Having computed the expected value, variance, and standard deviation for two binomial random variables using the definitions, we now present quicker and
easier methods for computing the expected value and variance. Just as with the alternative formula for the variance of a discrete random variable, these
formulas are derived from our original definitions through mathematical simplification and produce the same values as the original definitions. We will not
provide the work for this mathematical simplification but will provide a little intuition before providing the formulas. For example, if  and 
then we are repeating a trial  times with probability of success being  We should expect, then, that half of the time, we will succeed. This means  

  Similarly, if  and  we should expect to see success  of the time, so    In general,  for
binomial distributions. For a binomial random variable  with  trials, probability of success on any individual trial  and probability of failure on any
individual trial  we can compute the expected value and variance using the following formulas.

Using the above formulas, compute the expected value and variance for the random variables:  being the number of ones rolled in  tosses of a fair die
and  being the number of heads in  flips of a fair coin. Verify that the values match what was computed in the previous text exercise.

Answer

When considering the random variable  we have that   and  We thus compute     and   
  These values match what was computed in the previous exercise.

When considering the random variable  we have that   and  We thus compute     and   
  These values again match what was computed in the previous exercise.

Necessity of Independent Trials

Binomial distributions are related to important distributions in inferential statistics, such as computing the probability of obtaining a sample with a particular
proportion. Recall our discussion regarding obtaining a random sample from a large population and having  of them be women. The probability of this
happening was significantly less with a sample size of  as opposed to   These probabilities were computed using the binomial
distribution. Here, we treated our random experiment as selecting an individual from a large enough population composed of equal numbers of men and
women. We considered selecting a woman a success and treated    In the case of a sample of size of  we noted that  of  is  And in the
case of a sample size of  we need  women to get  However, this fails to satisfy our definition of a binomial random variable because we do not have

X = xj P(X = )xj ⋅ P(X = )xj xj ⋅ P(X = )( − μ)xj
2

xj

3
1

216
3 ⋅ =

1

216

3

216
⋅ = ⋅ =(3 − )

1

2

2
1

216

25

4

1

216

25

864

μ = E(X) = 0 + + + = =
75

216

30

216

3

216

108

216

1

2

= Var(X) = + + + = = ≈ 0.4167σ2 125

864

75

864

135

864

25

864

360

864

5

12

σ = = ≈ 0.6455Var(X)
− −−−−−

√
5

12

−−−
√

4.3.6 Y

Y = yj P(Y = )yj ⋅ P(Y = )yj yj ⋅ P(Y = )( − μ)yj
2

yj

0
1

16
0 ⋅ = 0

1

16
⋅ = 4 ⋅ =(0 − 2) 2 1

16

1

16

1

4

1
1

4
1 ⋅ =

1

4

1

4
⋅ = 1 ⋅ =(1 − 2) 2 1

4

1

4

1

4

2
3

8
2 ⋅ =

3

8

3

4
⋅ = 0 ⋅ = 0(2 − 2) 2 3

8

3

8

3
1

4
3 ⋅ =

1

4

3

4
⋅ = 1 ⋅ =(3 − 2) 2 1

4

1

4

1

4

4
1

16
4 ⋅ =

1

16

1

4
⋅ = 4 ⋅ =(4 − 2) 2 1

16

1

16

1

4

μ = E(Y ) = 0 + + ⋯ + = = 2
1

4

1

4

8

4

= Var(X) = + + … + = = 1σ2 1

4

1

4

1

4

4

4

σ = = = 1Var(X)
− −−−−−

√ 1
–

√

p = 0.5 n = 10,
10 0.5. E(X)

= 0.5 ⋅ 10 = 5. p = 0.9 n = 100, 90% E(X) = 0.9 ⋅ 100 = 90. E(X) = np

X n p,
q,

μ = E(X) = np

= Var(X) = npqσ2

 Text Exercise 4.3.4

X 3
Y 4

X, n = 3, p = ,1
6

q = .5
6

μ = E(X) = 3 ⋅ 1
6

= 1
2

σ2 = Var(X)

= 3 ⋅ ⋅1
6

5
6

= .5
12

Y , n = 4, p = ,1
2

q = .1
2

μ = E(Y ) = 4 ⋅ 1
2

= 2 σ2 = Var(X)

= 4 ⋅ ⋅1
2

1
2

= 1.

80%
20 10 (0.4621% vs 4.3945%).

p = q = .1
2

10, 80% 10 8.

20, 16 80%.

https://libretexts.org/
https://en.wikipedia.org/wiki/Public_domain
https://stats.libretexts.org/@go/page/41782?pdf
https://stats.libretexts.org/Courses/Fort_Hays_State_University/Elements_of_Statistics/01%3A_Introduction_to_Statistics/1.04%3A_Sampling_Methods#Sample_Size_Matters


4.3.6 https://stats.libretexts.org/@go/page/41782

the same probabilities of success and failure for each trial. When one person is chosen, that person is no longer eligible to be chosen for subsequent trials. We
have fewer people to choose from and no longer equal numbers of men and women. Our trials are not independent.

We have run into this issue previously in a text exercise. When populations are huge (when the difference between an event's probability and a conditional
probability related to that event is relatively small) treating the events as if they were independent will result in a value which is approximately, not exactly,
correct. Since it is often much easier to compute assuming independence, this is common practice when the error would be negligible. It is difficult to define
exactly how large a population must be, in general, for the assumption of independence to be reasonable. For example, if there are  people, exactly
half of which are women, and we randomly select  individuals from this group, the probability that they are both women would be  

 If we had assumed independence, that is, that each time we selected a person, there was a  chance it was a woman, we would have
obtained   Notice the error we get from assuming independence is quite small. On the other hand, if the population size were  and  of them
were women, the assumption of independence is much less reasonable. If we randomly select  people from this group of  the probability that they are both
women is    Simply saying there's a  chance each time obtains an estimate of  Notice the error is much larger than before. If we take
our population size to be even smaller, the error gets larger. In summary, if the sample we are selecting is a tiny proportion of the population, then assuming
independence introduces little error; however, if we assume independence when the sample is a significant proportion of the population, then we will have large
errors in our estimates. The following exercise illustrates in more detail how much error there is in different population sizes.

1. Consider sampling  people from a population composed of an equal number of men and women. We denote the outcome of such a sampling as a
sequence of  and . Determine  for each of population size.

a. 
b. 
c. 
d. 

Answer

a.  
b.  
c.  
d.  

2. Determine the  as if each selection were independent with   and  .

Answer

  

3. Compare the value computed in each part of part  with the value computed in part  of this text exercise.

Answer
a. The difference is 
b. The difference is 
c. The difference is 
d. The difference is 

The difference in computations of these values is in the hundredths and thousandths of a percent and decreases as the population increases. We only
dealt with population sizes up to  In general, our populations of interest will be much larger than that so that we would expect even smaller
differences. The comparison between sample size and population size is really at play down deep. Without going into the details, we share a fairly
common recommendation. If the sample size is more than  of the population, we do not assume independence.

4.3: Binomial Distributions is shared under a Public Domain license and was authored, remixed, and/or curated by LibreTexts.

5.7: Binomial Distribution by David Lane is licensed Public Domain. Original source: https://onlinestatbook.com.
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499,999

999,999

≈ 0.24999975. 50%

⋅1
2

1
2

= 0.25. 6 3

2 6,
⋅3

6
2
5

= 1
5

= 0.2. 50% 0.25.

 Text Exercise 4.3.5

10
W M P (WWWWWWWWMM)

N = 50
N = 100
N = 200
N = 1000

P (WWWWWWWWMM)= ⋅25
50

⋅24
49

⋅23
48

⋅22
47

⋅21
46

⋅20
45

⋅19
44

⋅18
43

⋅25
42

24
41

≈ 0.0702%

P (WWWWWWWWMM)= ⋅50
100

⋅49
99

⋅48
98

⋅47
97

⋅46
96

⋅45
95

⋅44
94

⋅43
93

⋅25
92

24
91

≈ 0.08443%

P (WWWWWWWWMM)= ⋅100
200

⋅99
199

⋅98
198

⋅97
197

⋅96
196

⋅95
195

⋅94
194

⋅93
193

⋅100
192

99
191

≈ 0.09117%

P (WWWWWWWWMM)= ⋅500
1000

⋅499
999

⋅498
998

⋅497
997

⋅496
996

⋅495
995

⋅494
994

⋅493
993

⋅500
992

499
991

≈ 0.09638%

P (WWWWWWWWMM) P (W) = 1
2

P (M) = 1
2

P (WWWWWWWWMM) = ( )1
2

10
≈ 0.09766%

1 2
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0.01323%.
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0.0013%.
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