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HomeAnalysis of variance (ANOVA) serves the same purpose as the t tests we learned in : it tests for differences in group
means. ANOVA is more flexible in that it can handle any number of groups, unlike t tests, which are limited to two groups
(independent samples) or two time points (dependent samples). Thus, the purpose and interpretation of ANOVA will be the same as
it was for t tests, as will the hypothesis-testing procedure. However, ANOVA will, at first glance, look much different from a
mathematical perspective, although as we will see, the basic logic behind the test statistic for ANOVA is actually the same. This
chapter will describe the general design of ANOVA, with a focus on calculating the independent samples one-way ANOVA, which
is an extension of the independent samples t test, where three or more different groups are compared on a single independent (or
grouping) variable.

Observing and Interpreting Variability

We have seen time and again that scores, be they individual data or group means, will differ naturally. Sometimes this is due to
random chance, and other times it is due to actual differences. Our job as scientists, researchers, and data analysts is to determine if
the observed differences are systematic and meaningful (via a hypothesis test) and, if so, what is causing those differences.
Through this, it becomes clear that, although we are usually interested in the mean or average score, it is the variability in the
scores that is key.

Take a look at Figure 11.1, which shows scores for many people on a test of skill used as part of a job application. The x-axis has
each individual person, in no particular order, and the y-axis contains the score each person received on the test. As we can see, the
job applicants differed quite a bit in their performance, and understanding why that is the case would be extremely useful
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information. However, there’s no interpretable pattern in the data, especially because we only have information on the test, not on
any other variable (remember that the x-axis here only shows individual people and is not ordered or interpretable).

HomeFigure 11.1. Scores on a job test. (“Job Test Scores” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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Our goal is to explain this variability that we are seeing in the dataset. Let’s assume that as part of the job application procedure we
also collected data on the highest degree each applicant earned. With knowledge of what the job requires, we could sort our
applicants into three groups: applicants who have a college degree related to the job, applicants who have a college degree that is
not related to the job, and applicants who did not earn a college degree. This is a common way that job applicants are sorted, and
we can use ANOVA to test if these groups are actually different. Figure 11.2 presents the same job applicant scores, but now they
are color coded by group membership (i.e., which group they belong in). Now that we can differentiate between applicants this
way, a pattern starts to emerge: applicants with a relevant degree (coded red) tend to be near the top, applicants with no college
degree (coded black) tend to be near the bottom, and applicants with an unrelated degree (coded green) tend to fall into the middle.
However, even within these groups, there is still some variability, as shown in Figure 11.2.

HomeFigure 11.2. Applicant scores coded by degree earned. (“Job Test Scores by Degree” by Judy Schmitt is licensed under CC
BY-NC-SA 4.0.)
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This pattern is even easier to see when the applicants are sorted and organized into their respective groups, as shown in Figure 11.3.

HomeFigure 11.3. Applicant scores by group. (“Job Test Scores by Group” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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Now that we have our data visualized into an easily interpretable format, we can clearly see that our applicants’ scores differ
largely along group lines. Those applicants who do not have a college degree received the lowest scores, those who had a degree
relevant to the job received the highest scores, and those who did have a degree but one that is not related to the job tended to fall

somewhere in the middle. Thus, we have Homesystematic variabilitybetween our groups.

We can also clearly see that within each group, our applicants’ scores differed from one another. Those applicants without a degree
tended to score very similarly, since the scores are clustered close together. Our group of applicants with relevant degrees varied a
little bit more than that, and our group of applicants with unrelated degrees varied quite a bit. It may be that there are other factors
that cause the observed score differences within each group, or they could just be due to random chance. Because we do not have
any other explanatory data in our dataset, the variability we observe within our groups is considered Homerandom error, with any
deviations between a person and that person’s group mean caused only by chance. Thus, we have unsystematic (random) variability
within our groups.

https://stats.libretexts.org/@go/page/43820


https://libretexts.org/
https://stats.libretexts.org/@go/page/43820?pdf
https://stats.libretexts.org/
https://irl.umsl.edu/oer-img/79
https://creativecommons.org/licenses/by-nc-sa/4.0
https://stats.libretexts.org/
https://stats.libretexts.org/

LibreTextsw

The process and analyses used in ANOVA will take these two sources of variability (systematic variability between groups and
random error within groups, or how much groups differ from each other and how much people differ within each group) and
compare them to one another to determine if the groups have any explanatory value in our outcome variable. By doing this, we will
test for statistically significant differences between the group means, just like we did for t tests. We will go step by step to break
down the math to see how ANOVA actually works.

Sources of Variability

ANOVA is all about looking at the different Homesources of variability (i.e., the reasons that scores differ from one another) in a
dataset. Fortunately, the way we calculate these sources of variability takes a very familiar form: the sum of squares. Before we get
into the calculations themselves, we must first lay out some important terminology and notation.

In ANOVA, we are working with two variables, a grouping or explanatory variable and a continuous outcome variable. The
Homegrouping variable is our predictor (it predicts or explains the values in the outcome variable) or, in experimental terms, our
independent variable, and is made up of k groups, with k being any whole number 2 or greater. That is, ANOVA requires two or
more groups to work, and it is usually conducted with three or more. In ANOVA, we refer to groups as levels, so the number of
levels is just the number of groups, which again is k. In the above example, our grouping variable was education, which had 3
levels, so k = 3. When we report any descriptive value (e.g., mean, sample size, standard deviation) for a specific group, we will
use a subscript 1...k to denote which group it refers to. For example, if we have three groups and want to report the standard
deviation s for each group, we would report them as s1, s2, and s3.

Our second variable is our Homeoutcome variable. This is the variable on which people differ, and we are trying to explain or
account for those differences based on group membership. In the example above, our outcome was the score each person earned on
the test. Our outcome variable will still use X for scores as before. When describing the outcome variable using means, we will use

subscripts to refer to specific, Homeindividual group means. So if we have k = 3 groups, our means will be M, , M, , and . We
will also have a single mean representing the average of all participants across all groups. This is known as the Homegrand mean,

and we use the symbol Mg . These different means—the individual group means and the overall grand mean—will be how we
calculate our sums of squares.

Finally, we now have to differentiate between several different sample sizes. Our data will now have sample sizes for each group,
and we will denote these with a lower case n and a subscript, just like with our other descriptive statistics: n1, n2, and n3. We also
have the overall sample size in our dataset, and we will denote this with a capital N. The total sample size is just the group sample
sizes added together.

Between-Groups Sum of Squares

One source of variability we identified in Figure 11.3 of the above example was differences or variability between the groups. That
is, the groups clearly had different average levels. The variability arising from these differences is known as Homebetween-groups
variability, and between-groups sum of squares is used to calculate between-groups variability.

Our calculations for sums of squares in ANOVA will take on the same form as it did for regular calculations of variance. Each
observation, in this case the group means, is compared to the overall mean, in this case the grand mean, to calculate a deviation
score. These deviation scores are squared so that they do not cancel each other out and sum to zero. The squared deviations are then
added up, or summed. There is, however, one small difference. Because each group mean represents a group composed of multiple
people, before we sum the deviation scores we must multiply them by the number of people within that group. Incorporating this,
we find our equation for between-groups sum of squares to be:

The subscript j refers to the “jth” group where j = 1...k to keep track of which group mean and sample size we are working with.
As you can see, the only difference between this equation and the familiar sum of squares for variance is that we are adding in the
sample size. Everything else logically fits together in the same way.

Within-Groups Sum of Squares

The other source of variability in the figures—Homewithin-groups variability—comes from differences that occur within each
group. That is, each individual deviates a little bit from their respective group mean, just like the group means differed from the
grand mean. We therefore label this source the within-groups variance. Because we are trying to account for variance based on
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group-level means, any deviation from the group means indicates an inaccuracy or error. Thus, our within-groups variability
represents our error in ANOVA.

The formula for this sum of squares is again going to take on the same form and logic. What we are looking for is the distance
between each individual person and the mean of the group to which they belong. We calculate this deviation score, square it so that
they can be added together, then sum all of them into one overall value:

S8y = (X~ M;)’

In this instance, because we are calculating this deviation score for each individual person, there is no need to multiple by how
many people we have. The subscript j again represents a group and the subscript i refers to a specific person. So, Xij is read as “the
ith person of the jth group.” It is important to remember that the deviation score for each person is only calculated relative to their
group mean; do not calculate these scores relative to the other group means.

Total Sum of Squares

Total sum of squares can also be computed as a check for our calculations of between-groups and within-groups sums of squares.
The calculation for this score is exactly the same as it would be if we were calculating the overall variance in the dataset (because
that’s what we are interested in explaining) without worrying about or even knowing about the groups into which our scores fall:

S8t = 2.(X, - Mg )’

We can see that our total sum of squares is just each individual score minus the grand mean. As with our within-groups sum of
squares, we are calculating a deviation score for each individual person, so we do not need to multiply anything by the sample size;
that is only done for a between-groups sum of squares.

An important feature of the sums of squares in ANOVA is that they all fit together. We could work through the algebra to
demonstrate that if we added together the formulas for SSB and SSW, we would end up with the formula for SST. That is:

SST = SSB + SSW

This will prove to be very convenient, because if we know the values of any two of our sums of squares, it is very quick and easy to
find the value of the third. It is also a good way to check calculations: if you calculate each SS by hand, you can make sure that
they all fit together as shown above, and if not, you know that you made a math mistake somewhere.

We can see from the above formulas that calculating an ANOVA by hand from raw data can take a very, very long time. For this
reason, you will not be required to calculate the SS values by hand, but you should still take the time to understand how they fit
together and what each one represents to ensure you understand the analysis itself.

ANOVA Table

All of our sources of variability fit together in meaningful, interpretable ways as we saw above, and the easiest way to show these
relationships is to organize them in a table. The ANOVA table (Table 11.1) shows how we calculate the df, MS, and F values. The
first column of the ANOVA table, labeled “Source,” indicates which of our sources of variability we are using: between groups (B),
within groups (W), or total (T). The second column, labeled “SS,” contains our values for the sum of squared deviations, also
known as the sum of squares, that we learned to calculate above.

HomeTable 11.1. ANOVA table.

Source SS df MS F
SSu MS
Between SSB k-1 dfy MSy
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Source SS df MS F
SSw

Within SSW N-k
dfw

Total SST N-1

As noted previously, calculating these by hand takes too long, so the formulas are not presented in Table 11.1. However, remember
that SST is the sum of SSB and SSW, in case you are only given two SS values and need to calculate the third.

The next column, labeled “df,” is our degrees of freedom. As with the sums of squares, there is a different df for each group, and
the formulas are presented in the table. Total degrees of freedom is calculated by subtracting 1 from the overall sample size (N).
(Remember, the capital N in the df calculations refers to the overall sample size, not a specific group sample size.) Notice that dfT,
just like for total sums of squares, is the Between (dfB) and Within (dfW) rows added together. If you take N — k + k — 1, then the
“—k” and “+ k” portions will cancel out, and you are left with N — 1. This is a convenient way to quickly check your calculations.

The third column, labeled “MS,” shows our mean squared deviation for each source of variance. A Homemean square is just
another way to say variability and is calculated by dividing the sum of squares by its corresponding degrees of freedom. Notice that
we show this in the ANOVA table for the Between row and the Within row, but not for the Total row. There are two reasons for
this. First, our Total mean square would just be the variance in the full dataset (put together the formulas to see this for yourself), so
it would not be new information. Second, the mean square values for Between and Within would not add up to equal the Total
mean square because they are divided by different denominators. This is in contrast to the first two columns, where the Total row
was both the conceptual total (i.e., the overall variance and degrees of freedom) and the literal total of the other two rows.

The final column in the ANOVA table, labeled “F,” is our test statistic for ANOVA. The F statistic, just like a t or z statistic, is
compared to a critical value to see whether we can reject for fail to reject a null hypothesis. Thus, although the calculations look
different for ANOVA, we are still doing the same thing that we did in all of . We are simply using a new type of data to test
our hypotheses. We will see what these hypotheses look like shortly, but first, we must take a moment to address why we are doing
our calculations this way.

ANOVA and Type | Error

You may be wondering why we do not just use another t test to test our hypotheses about three or more groups the way we did in

. After all, we are still just looking at group mean differences. The reason is that our t statistic formula can only handle up to
two groups, one minus the other. With only two groups, we can move our population parameters for the group means around in our
null hypothesis and still get the same interpretation: the means are equal, which can also be concluded if one mean minus the other
mean is equal to zero. However, if we tried adding a third mean, we would no longer be able to do this. So, in order to use t tests to
compare three or more means, we would have to run a series of individual group comparisons.

For only three groups, we would have three t tests: Group 1 vs. Group 2, Group 1 vs. Group 3, and Group 2 vs. Group 3. This may
not sound like a lot, especially with the advances in technology that have made running an analysis very fast, but it quickly scales
up. With just one additional group, bringing our total to four, we would have six comparisons: Group 1 vs. Group 2, Group 1 vs.
Group 3, Group 1 vs. Group 4, Group 2 vs. Group 3, Group 2 vs. Group 4, and Group 3 vs. Group 4. This makes for a logistical
and computation nightmare for five or more groups.

A bigger issue, however, is our probability of committing a Type I error. Remember that a Type I error is a false positive, and the
chance of committing a Type I error is equal to our significance level, % . This is true if we are only running a single analysis (such
as a t test with only two groups) on a single dataset. However, when we start running multiple analyses on the same dataset, our
Type I error rate increases, raising the probability that we are capitalizing on random chance and rejecting a null hypothesis when
we should not. ANOVA, by comparing all groups simultaneously with a single analysis, averts this issue and keeps our error rate at
the & we set.
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Hypotheses in ANOVA

So far we have seen what ANOVA is used for, why we use it, and how we use it. Now we can turn to the formal hypotheses we will
be testing. As with before, we have a null and an alternative hypothesis to lay out. Our null hypothesis is still the idea of “no
difference” in our data. Because we have multiple group means, we simply list them out as equal to each other:

Hj: There is no difference in the group means

Ho:py =pp =3

We list as many H parameters as groups we have. In the example above, we have three groups to test, so we have three parameters

in our null hypothesis. If we had more groups, say, four, we would simply add another H 4o the list and give it the appropriate
subscript, giving us:

H: There is no difference in the group means
Ho:py = po = s = pg

Notice that we do not say that the means are all equal to zero, we only say that they are equal to one another; it does not matter
what the actual value is, so long as it holds for all groups equally.

Our alternative hypothesis for ANOVA is a little bit different. Let’s take a look at it and then dive deeper into what it means:

H,: At least one mean is different

The first difference is obvious: there is no mathematical statement of the alternative hypothesis in ANOVA. This is due to the
second difference: we are not saying which group is going to be different, only that at least one will be. Because we do not
hypothesize about which mean will be different, there is no way to write it mathematically. Similarly, we do not have directional
hypotheses (greater than or less than) like we did in . Due to this, our alternative hypothesis is always exactly the same: at
least one mean is different.

In , we saw that, if we reject the null hypothesis, we can adopt the alternative, and this made it easy to understand what the
differences looked like. In ANOVA, we will still adopt the alternative hypothesis as the best explanation of our data if we reject the
null hypothesis. However, when we look at the alternative hypothesis, we can see that it does not give us much information. We
will know that a difference exists somewhere, but we will not know where that difference is. Is only Group 1 different, but Groups
2 and 3 are the same? Is only Group 2 different? Are all three of them different? Based on just our alternative hypothesis, there is
no way to be sure. We will come back to this issue later and see how to find out specific differences. For now, just remember that
we are testing for any difference in group means, and it does not matter where that difference occurs.

Now that we have our hypotheses for ANOVA, let’s work through an example. We will continue to use the data from Figure 11.1,
Figure 11.2, and Figure 11.3 for continuity.
Example Scores on Job-Application Tests

Our data come from three groups of 10 people each, all of whom applied for a single job opening: those with no college degree,
those with a college degree that is not related to the job opening, and those with a college degree from a relevant field. We want to
know if we can use this group membership to account for our observed variability and, by doing so, test if there is a difference
between our three group means. We will start, as always, with our hypotheses.

Step 1: State the Hypotheses
Our hypotheses are concerned with the means of groups based on education level, so:

H,: There is no difference between the means of the education groups
Hy:py =py =13 H ,: At least one mean is different
Again, we phrase our null hypothesis in terms of what we are actually testing, and we use a number of population parameters equal

to our number of groups. Our alternative hypothesis is always exactly the same.

Step 2: Find the Critical Values
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Our test statistic for ANOVA, as we saw above, is F. Because we are using a new test statistic, we will get a new table: the F
distribution table, a portion of which is shown in Table 11.2. (The complete F table can be found in Appendix C.)

HomeTable 11.2. Ciritical values for F (F table).

df:De 4. Numerator (Between)

nomi

nator

(With

in) 2 3 4 5 6 7 8 9 10 11 12 14 16 20

1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248
2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 1940 1941 1942 1943 19.44
3 10.13 955 928 912 901 894 883 884 881 878 876 874 871 869 866
4 771 694 659 639 626 616 6.09 604 600 596 593 591 587 584 580
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68 4.64 4.60 4.56
6 599 514 476 453 439 428 421 415 410 4.06 4.03 400 396 392 387
7 559 474 435 412 397 387 379 373 368 363 360 357 352 349 344
8 532 446 4.07 384 369 358 350 344 339 334 331 328 323 320 315
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07 3.02 298 293

10 49 410 371 348 333 322 314 3.07 3.02 297 294 291 286 282 277

11 484 398 359 336 320 3.09 301 29 290 286 282 279 274 270 2.65

12 475 388 349 326 311 3.00 292 285 280 276 272 269 264 260 254

13 467 380 341 318 3.02 292 284 277 272 267 263 260 255 251 246

14 460 374 334 311 29 28 277 270 265 260 256 253 248 244 239

15 454 368 329 306 29 279 270 264 259 255 251 248 243 239 233

16 449 363 324 301 285 274 266 259 254 249 245 242 237 233 228

17 445 359 320 296 281 270 262 255 250 245 241 238 233 229 223
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df:De df:Numerator (Between)

nomi

nator

(With

in) 2 3 4 5 6 7 8 9 10 11 12 14 16 20

18 4.41 355 316 293 277 266 258 251 246 241 237 234 229 225 219

19 438 352 313 290 274 263 255 248 243 238 234 231 226 221 215

20 435 349 310 287 271 260 252 245 240 235 231 228 223 218 212

21 432 347 3.07 284 268 257 249 242 237 232 228 225 220 215 2.09

22 430 344 3.05 282 266 255 247 240 235 230 226 223 218 213 2.07

23 428 342 3.03 280 264 253 245 238 232 228 224 220 214 210 2.04

24 426 340 3.01 278 262 251 243 236 230 226 222 218 213 209 2.02

25 424 338 299 276 260 249 241 234 228 224 220 215 211 206 2.00

26 422 337 298 274 259 247 239 232 227 222 218 215 210 205 199

27 421 335 29 273 257 246 237 230 225 220 216 213 208 203 197

The F table only displays critical values for a = .05. This is because other significance levels are uncommon and so it is not worth it
to use up the space to present them. There are now two degrees of freedom we must use to find our critical value: numerator and
denominator. These correspond to the numerator and denominator of our test statistic, which, if you look at the ANOVA table
presented earlier (Table 11.1), are our Between and Within rows, respectively. The dfB is the “df: Numerator (Between)” because it
is the degrees of freedom value used to calculate the Mean Square Between, which in turn is the numerator of our F statistic.
Likewise, the dfW is the “df: Denominator (Within)” because it is the degrees of freedom value used to calculate the Mean Square
Within, which is our denominator for F.

The formula for dfB is k — 1; remember that k is the number of groups we are assessing. In this example, k = 3 so our dfB = 2. This
tells us that we will use the second column, the one labeled 2, to find our critical value. To find the proper row, we simply calculate
the dfW, which was N — k. The original prompt told us that we have “three groups of 10 people each,” so our total sample size is
30. This makes our value for dfW = 27. If we follow the second column down to the row for 27, we find that our critical value is
3.35. We use this critical value the same way as we did before: it is our criterion against which we will compare our obtained test
statistic to determine statistical significance.

Step 3: Calculate the Test Statistic and Effect Size

Now that we have our hypotheses and the criteria we will use to test them, we can calculate our test statistic. To do this, we will fill
in the ANOVA table, working our way from left to right and filling in each cell to get our final answer. We will assume that we are
given the SS values as shown below:
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Source SS df MS F
Between 8246

Within 3020

Total

These may seem like random numbers, but remember that they are based on the distances between the groups themselves and
within each group. Figure 11.4 shows the plot of the data with the group means and grand mean included. If we wanted to, we
could use this information, combined with our earlier information that each group has 10 people, to calculate the between-groups
sum of squares by hand. However, doing so would take some time, and without the specific values of the data points, we would not
be able to calculate our within-groups sum of squares, so we will trust that these values are the correct ones.

HomeFigure 11.4. Means. (“Job Test Scores Group Means” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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We were given the sums of squares values for our first two rows, so we can use those to calculate the total sum of squares.

Source SS df MS F
Between 8246

Within 3020

Total 11266

We also calculated our degrees of freedom earlier, so we can fill in those values. Additionally, we know that the total degrees of
freedom is N — 1, which is 29. This value of 29 is also the sum of the other two degrees of freedom, so everything checks out.

Source SS df MS F
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Source SS df MS F
Between 8246 2

Within 3020 27

Total 11266 29

Now we have everything we need to calculate our mean squares. Our MS values for each row are just the SS divided by the df for
that row, giving us:

Source SS df MS F
Between 8246 2 4123

Within 3020 27 111.85

Total 11266 29

Remember that we do not calculate a Total Mean Square, so we leave that cell blank. Finally, we have the information we need to
calculate our test statistic. F is our MSB divided by MSW.

Source SS df MS F
Between 8246 2 4123 36.86
Within 3020 27 111.85

Total 11266 29

So, working our way through the table, given only two SS values and the sample size and group size from before, we calculate our
test statistic to be Fobt = 36.86, which we will compare to the critical value in Step 4.

Effect Size: Variance Explained

Recall that the purpose of ANOVA is to take observed variability and see if we can explain those differences based on group
membership. To that end, our effect size will be just that: the variance explained. You can think of variance explained as the
proportion or percent of the differences we are able to account for based on our groups. We know that the overall observed
differences are quantified as the total sum of squares, and that our observed effect of group membership is the between-groups sum
of squares. Our effect size, therefore, is the ratio of these two sums of squares. Specifically:

2 S
SS;

The effect size h2 is called “eta-squared” and represents variance explained. For our example, our values give an effect size of:
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, 8246

11266

So, we are able to explain 73% of the variance in job-test scores based on education. This is, in fact, a huge effect size, and most of
the time we will not explain nearly that much variance. Our guidelines for the size of our effects are:

N, Size

.01 Small
.09 Medium
.25 Large

So, we found that not only do we have a statistically significant result, but that our observed effect was very large! However, we
still do not know specifically which groups are different from each other. It could be that they are all different, or that only those
job seekers who have a relevant degree are different from the others, or that only those who have no degree are different from the
others. To find out which is true, we need to do a special analysis called a post hoc test.

Step 4: Make the Decision
Our obtained test statistic was calculated to be Fobt = 36.86 and our critical value was found to be F* = 3.35. Our obtained statistic
is larger than our critical value, so we can reject the null hypothesis.

Reject HO. The results of the ANOVA indicated that there were significant differences in job skills test scores for applicants in each
of the three education groups, and the effect size was large, F(2, 27) = 36.86, p < .05, h2 = .73. Post hoc tests (see the next section)
were performed to determine where the differences were.

Notice that when we report F, we include both degrees of freedom. We always report the numerator and then the denominator,
separated by a comma. We must also note that, because we were only testing for any difference, we cannot yet conclude which
groups are different from the others. To do so, we need to perform a post hoc test.

HomePost Hoc Tests

A Homepost hoc test is used only after we find a statistically significant result and need to determine where our differences truly
came from. The term post hoc comes from the Latin for “after the event.” Many different post hoc tests have been developed, and
most of them will give us similar answers. We will only focus here on the most commonly used ones. We will also only discuss the
concepts behind each and will not worry about calculations.

Bonferroni Test

A Bonferroni test is perhaps the simplest post hoc analysis. A HomeBonferroni test is a series of t tests performed on each pair of
groups. As we discussed earlier, the number of groups quickly increases the number of comparisons, which inflates Type I error
rates. To avoid this, a Bonferroni test divides our significance level & by the number of comparisons we are making so that when
they are all run, they sum back up to our original Type I error rate. Once we have our new significance level, we simply run
independent samples t tests to look for differences between our pairs of groups. This adjustment is sometimes called a Bonferroni
Correction, and it is easy to do by hand if we want to compare obtained p values to our new corrected & level, but it is more
difficult to do when using critical values like we do for our analyses, so we will leave our discussion of it to that.

Tukey’s Honestly Significant Difference

HomeTukey’s honestly significant difference (HSD) is a popular post hoc analysis that, like Bonferroni’s, makes adjustments based
on the number of comparisons; however, it makes adjustments to the test statistic when running the comparisons of two groups.
These comparisons give us an estimate of the difference between the groups and a confidence interval for the estimate. We use this
confidence interval in the same way we use a confidence interval for a regular independent samples t test: if it contains 0.00, the
groups are not different, but if it does not contain 0.00 then the groups are different.
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Below are the differences between the group means and the Tukey’s HSD confidence intervals for the differences:

Comparison Difference Tukey’s HSD CI
None vs. relevant 40.60 (28.87, 52.33)
None vs. unrelated 19.50 (7.77, 31.23)
Relevant vs. unrelated 21.10 (9.37, 32.83)

As we can see, none of these intervals contain 0.00, so we can conclude that all three groups are different from one another.

Scheffé Test

Another common post hoc test is the Scheffé test. Like Tukey’s HSD, the HomeScheffé test adjusts the test statistic for how many
comparisons are made, but it does so in a slightly different way. The result is a test that is “conservative,” which means that it is
less likely to commit a Type I error, but this comes at the cost of less power to detect effects. We can see this by looking at the
confidence intervals that the Scheffé test gives us:

Comparison Difference Scheffé CI
None vs. relevant 40.60 (28.35, 52.85)
None vs. unrelated 19.50 (7.25, 31.75)
Relevant vs. unrelated 21.10 (8.85, 33.35)

As we can see, these are slightly wider than the intervals we got from Tukey’s HSD. This means that, all other things being equal,
they are more likely to contain zero. In our case, however, the results are the same, and we again conclude that all three groups
differ from one another.

There are many more post hoc tests than just these three, and they all approach the task in different ways, with some being more
conservative and others being more powerful. In general, though, they will give highly similar answers. What is important here is
to be able to interpret a post hoc analysis. If you are given post hoc analysis confidence intervals, like the ones seen above, read
them the same way we read confidence intervals in . If they contain zero, there is no difference; if they do not contain
zero, there is a difference.

Other ANOVA Designs

We have only just scratched the surface on ANOVA in this chapter. There are many other variations available for the one-way
ANOVA presented here. There are also other types of ANOVAs that you are likely to encounter. The first is called a factorial
ANOVA. A Homefactorial ANOVA uses multiple grouping variables, not just one, to look for group mean differences. Just as there
is no limit to the number of groups in a one-way ANOVA, there is no limit to the number of grouping variables in a factorial
ANOVA, but it becomes very difficult to find and interpret significant results with many factors, so usually they are limited to two
or three grouping variables with only a small number of groups in each.

Another ANOVA is called a Homerepeated measures ANOVA. This is an extension of a related samples t test, but in this case we
are measuring each person three or more times to look for a change. We can even combine both of these advanced ANOVAs into
mixed designs to test very specific and valuable questions. These topics are far beyond the scope of this text, but you should know
about their existence. Our treatment of ANOVA here is a small first step into a much larger world!
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Exercises

1. What sources of variability are analyzed in an ANOVA?

2. What does rejecting the null hypothesis in ANOVA tell us? What does it not tell us?
3. What is the purpose of post hoc tests?

4.F
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