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3.3: Chapter 13- Linear Regression

Key Terms

curvilinear models

error

least squares error solution
line of best fit

mean squared error
moderation models

multiple regression

residual

standard error of the estimate

In , we learned about ANOVA, which involves a new way of looking at how our data are structured and the inferences
we can draw from that. In , we learned about correlations, which analyze two continuous variables at the same time to
see if they systematically relate in a linear fashion. In this chapter, we will combine these two techniques in an analysis called
simple linear regression, or regression for short. Regression uses the technique of variance partitioning from ANOVA to more
formally assess the types of relationships looked at in correlations. Regression is the most general and most flexible analysis
covered in this book, and we will only scratch the surface.

Line of Best Fit

In correlations, we referred to a linear trend in the data. That is, we assumed that there was a straight line we could draw through
the middle of our scatter plot that would represent the relationship between our two variables, X and Y. Regression involves
solving for the equation of that line, which is called the line of best fit.

The line of best fit can be thought of as the central tendency of our scatter plot. The term best fit means that the line is as close to
all points (with each point representing both variables for a single person) in the scatter plot as possible, with a balance of scores
above and below the line. This is the same idea as the mean, which has an equal weighting of scores above and below it and is the
best singular descriptor of all our data points for a single variable.

We have already seen many scatter plots in and , 50 we know by now that no scatter plot has points that form
a perfectly straight line. Because of this, when we put a straight line through a scatter plot, it will not touch all of the points, and it
may not even touch any! This will result in some distance between the line and each of the points it is supposed to represent, just
like a mean has some distance between it and all of the individual scores in the dataset.

The distances between the line of best fit and each individual data point go by two different names that mean the same thing: errors
and residuals. The term error in regression is closely aligned with the meaning of error in statistics (think standard error or
sampling error); it does not mean that we did anything wrong, it simply means that there was some discrepancy or difference
between what our analysis produced and the true value we are trying to get at. The term residual is new to our study of statistics,
and it takes on a very similar meaning in regression to what it means in everyday parlance: there is something left over. In
regression, what is “left over”—that is, what makes up the residual—is an imperfection in our ability to predict values of the Y
variable using our line. This definition brings us to one of the primary purposes of regression and the line of best fit: predicting
scores.

Prediction

The goal of regression is the same as the goal of ANOVA: to take what we know about one variable (X) and use it to explain our
observed differences in another variable (Y). In ANOVA, we talked about—and tested for—group mean differences, but in
regression we do not have groups for our explanatory variable; we have a continuous variable, like in correlation. Because of this,
our vocabulary will be a little bit different, but the process, logic, and end result are all the same.

In regression, we most frequently talk about prediction, specifically predicting our outcome variable Y from our explanatory
variable X, and we use the line of best fit to make our predictions. Let’s take a look at the equation for the line, which is quite
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simple:

Y=a+bX

The terms in the equation are defined as:

Y: the predicted value of Y for an individual person
a: the intercept of the line

b: the slope of the line

X: the observed value of X for an individual person

What this shows us is that we will use our known value of X for each person to predict the value of Y for that person. The predicted
value, Y (“Y-hat”), is our best guess for what a person’s score on the outcome is. Notice also that the form of the equation is very
similar to very simple linear equations that you have likely encountered before and has only two parameter estimates: an intercept
(where the line crosses the y-axis) and a slope (how steep—and the direction, positive or negative—the line is). These are
parameter estimates because, like everything else in statistics, we are interested in approximating the true value of the relationship
in the population but can only ever estimate it using sample data. We will soon see that one of these parameters, the slope, is the
focus of our hypothesis tests (the intercept is only there to make the math work out properly and is rarely interpretable). The
formulas for these parameter estimates use very familiar values:

a:MY_bMX

_covyy SP fs_Y

b =—=v
5%( SSX LSX

COV yy

We have seen each of these before. My and My are the means of Y and X, respectively; is the covariance of X and Y

2
we learned about with correlations; and *X is the variance of X. The formula for the slope is very similar to the formula for a

Pearson correlation coefficient; the only difference is that we are dividing by the variance of X instead of the product of the
standard deviations of X and Y. Because of this, our slope is scaled to the same scale as our X variable and is no longer constrained
to be between 0 and 1 in absolute value. This formula provides a clear definition of the slope of the line of best fit, and just like
with correlation, this definitional formula can be simplified into a short computational formula for easier calculations. In this case,
we are simply taking the sum of products and dividing by the sum of squares for X.

Notice that there is a third formula for the slope of the line that involves the correlation between X and Y. This is because
regression and correlation look for the same thing: a straight line through the middle of the data. The only difference between a
regression coefficient in simple linear regression and a Pearson correlation coefficient is the scale. So, if you lack raw data but have
summary information on the correlation and standard deviations for variables, you can still compute a slope, and therefore an
intercept, for a line of best fit.

It is important to point out that the Y values in the equations for a and b are our observed Y values in the dataset, not the predicted
Y values (Y) from our equation for the line of best fit. Thus, we will have three values for each person: the observed value of X
(X), the observed value of Y (Y), and the predicted value of Y (Y). You may be asking why we would try to predict Y if we have
an observed value of Y, and that is a reasonable question. The answer has two explanations. First, we need to use known values of
Y to calculate the parameter estimates in our equation, and we use the difference between our observed values and predicted values
(Y — Y) to see how accurate our equation is. And second, we often use regression to create a predictive model that we can then use
to predict values of Y for other people for whom we only have information on X.

Let’s look at this from an applied example. Businesses often have more applicants for a job than they have openings available, so
they want to know who among the applicants is most likely to be the best employee. There are many criteria that can be used, but
one is a personality test for conscientiousness, with the belief being that more conscientious (more responsible) employees are
better than less conscientious employees. A business might give their employees a personality inventory to assess
conscientiousness and study existing performance data to look for a relationship. In this example, we have known values of the
predictor (X, conscientiousness) and outcome (Y, job performance), so we can estimate an equation for a line of best fit and see
how accurately conscientiousness predicts job performance, then use this equation to predict future job performance of applicants
based only on their known values of conscientiousness from personality inventories given during the application process.
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The key in assessing whether a linear regression works well is the difference between our observed and known Y values and our
predicted Y values. As mentioned in passing above, we use subtraction to find the difference between them (Y — Y) in the same
way we use subtraction for deviation scores and sums of squares. The value (Y — Y) is our residual, which, as defined above, is
how close our line of best fit is to our actual values. We can visualize residuals to get a better sense of what they are by creating a
scatter plot and overlaying a line of best fit on it, as shown in Figure 13.1.

Figure 13.1. Scatter plot with residuals. (“Scatter Plot with Residuals” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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In Figure 13.1, the triangular dots represent observations from each person on both X and Y and the dotted line is the line of best fit
estimated by the equation Y = a + bX. For every person in the dataset, the line represents their predicted score. The brackets
between the triangular dots and the predicted scores on the line of best fit are our residuals. (For ease of viewing, they are only
drawn for four observations, but in reality there is one for every observation.) You can see that some residuals are positive and
some are negative, and that some are very large and some are very small. This means that some predictions are very accurate and
some are very inaccurate, and that some predictions overestimate values and some underestimate values. Across the entire dataset,
the line of best fit is the one that minimizes the total (sum) value of all residuals. That is, although predictions at an individual level
might be somewhat inaccurate, across our full sample and (theoretically) in future samples our total amount of error is as small as
possible. We call this property of the line of best fit the least squares error solution. This term means that the solution—or equation
—of the line is the one that provides the smallest possible value of the squared errors (squared so that they can be summed, just like
in standard deviation) relative to any other straight line we could draw through the data.

Predicting Scores and Explaining Variance

We have now seen that the purpose of regression is twofold: we want to predict scores based on our line and, as stated earlier,
explain variance in our observed Y variable just like in ANOVA. These two purposes go hand in hand, and our ability to predict
scores is literally our ability to explain variance. That is, if we cannot account for the variance in Y based on X, then we have no
reason to use X to predict future values of Y.

We know that the overall variance in Y is a function of each score deviating from the mean of Y (as in our calculation of variance
and standard deviation). So, just like the brackets in Figure 13.1 representing residuals, given as (Y — Y), we can visualize the

overall variance as each score’s distance from the overall mean of Y, given as (Y —My ), our normal deviation score. This is
shown in Figure 13.2.

Figure 13.2. Scatter plot with residuals and deviation scores. (“Scatter Plot with Residuals and Deviation Scores” by Judy Schmitt
is licensed under CC BY-NC-SA 4.0.)
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In Figure 13.2, the solid line is the mean of Y, and the blue brackets are the deviation scores between our observed values of Y and
the mean of Y. This represents the overall variance that we are trying to explain. Thus, the residuals and the deviation scores are the
same type of idea: the distance between an observed score and a given line, either the line of best fit that gives predictions or the
line representing the mean that serves as a baseline. The difference between these two values, which is the distance between the
lines themselves, is our model’s ability to predict scores above and beyond the baseline mean; that is, it is our model’s ability to
explain the variance we observe in Y based on values of X. If we have no ability to explain variance, then our line will be flat (the
slope will be 0.00) and will be the same as the line representing the mean, and the distance between the lines will be 0.00 as well.

We now have three pieces of information: the distance from the observed score to the mean, the distance from the observed score to
the prediction line, and the distance from the prediction line to the mean. These are our three pieces of information needed to test
our hypotheses about regression and to calculate effect sizes. They are our three sums of squares, just like in ANOVA. Our distance
from the observed score to the mean is the sum of squares total, which we are trying to explain. Our distance from the observed
score to the prediction line is our sum of squares error, or residual, which we are trying to minimize. Our distance from the
prediction line to the mean is our sum of squares model, which is our observed effect and our ability to explain variance. Each of
these will go into the ANOVA table to calculate our test statistic.

ANOVA Table

Our ANOVA table in regression follows the exact same format as it did for ANOVA (hence the name). The top row (Model) is our
observed effect, the middle row is our error, and the bottom row is our total. The columns take on the same interpretations as well:
from left to right, we have our sums of squares, our degrees of freedom, our mean squares, and our F statistic.

Source SS df MS F
M SSum MSy
Model y(Y - My 1 dfe ™ MS,
v SSg
Error (Y -Y)2 N-2 ?
E
Total y( Y - My )2 N-1

As with ANOVA, getting the values for the SS column is a straightforward but somewhat arduous process. First, you take the raw
scores of X and Y and calculate the means, variances, and covariance using the sum of products table introduced in our

. Next, you use the variance of X and the covariance of X and Y to calculate the slope of the line, b. (The formula for
calculating b was provided earlier.) After that, you use the means and the slope to find the intercept, a, which is given alongside b.
After that, you use the full prediction equation for the line of best fit to get predicted Y scores (Y) for each person. Finally, you use

the observed Y scores, predicted Y scores, and mean of Y (M

Y to find the appropriate deviation scores for each person for each
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sum of squares source in the table and sum them to get the sum of squares model, sum of squares error, and sum of squares total.
As with ANOVA, you won’t be required to compute the SS values by hand, but you will need to know what they represent and how
they fit together.

The other columns in the ANOVA table are all familiar. The degrees of freedom column still has N — 1 for our total, but now we
have N — 2 for our error degrees of freedom and 1 for our model degrees of freedom; this is because simple linear regression only
has one predictor, so our degrees of freedom for the model is always 1 and does not change. The total degrees of freedom must still
be the sum of the other two, so our degrees of freedom error will always be N — 2 for simple linear regression. The mean square
columns are still the SS column divided by the df column, and the test statistic F is still the ratio of the mean squares. Based on this,
it is now explicitly clear that not only do regression and ANOVA have the same goal but they are, in fact, the same analysis
entirely. The only difference is the type of data we feed into the predictor side of the equations: continuous for regression and
categorical for ANOVA.

Hypothesis Testing in Regression

Regression, like all other analyses, will test a null hypothesis in our data. In regression, we are interested in predicting Y scores and
explaining variance using a line, the slope of which is what allows us to get closer to our observed scores than the mean of Y can.
Thus, our hypotheses concern the slope of the line, which is estimated in the prediction equation by b (the slope of a population, as
opposed to b, which is the slope of a sample). Specifically, we want to test that the slope is not zero:

Hj: There is no explanatory relationship between our variables

Hy:B=0
H,: There is an explanatory relationship between our variables

Hy:B>0

H,:B<o0

Hpy:p#0
A non-zero slope indicates that we can explain values in Y based on X and therefore predict future values of Y based on X. Our
alternative hypotheses are analogous to those in correlation: positive relationships have values above zero, negative relationships
have values below zero, and two-tailed tests are possible. Just like ANOVA, we will test the significance of this relationship using

the F statistic calculated in our ANOVA table compared to a critical value from the F distribution table. Let’s take a look at an
example and regression in action.

Example Happiness and Well-being

Researchers are interested in explaining differences in how happy people are based on how healthy people are. They gather data on
each of these variables from 18 people and fit a linear regression model to explain the variance. We will follow the four-step
hypothesis-testing procedure to see if there is a relationship between these variables that is statistically significant.

Step 1: State the Hypotheses
The null hypothesis in regression states that there is no relationship between our variables. The alternative states that there is a
relationship, but because our research description did not explicitly state a direction of the relationship, we will use a non-
directional hypothesis.
Hj: There is no explanatory relationship between health and happiness

Hg: B =0
H,: There is an explanatory relationship between health and happiness

H A B #0

Step 2: Find the Critical Value

Because regression and ANOVA are the same analysis, our critical value for regression will come from the same place: the F
distribution table, which uses two types of degrees of freedom. We saw in the ANOVA table that the degrees of freedom for our
numerator—the Model line—is always 1 in simple linear regression, and that the denominator degrees of freedom—from the Error
line—is N — 2. In this instance, we have 18 people so our degrees of freedom for the denominator is 16. Going to our F table (a

https://stats.libretexts.org/@go/page/43825


https://libretexts.org/
https://stats.libretexts.org/@go/page/43825?pdf

LibreTextsw

portion of which is shown in Table 13.1), we find that the appropriate critical value for 1 and 16 degrees of freedom is F* = 4.49.
(The complete F table can be found in Appendix C.)

Table 13.1. Ciritical Values for F (F Table)

df:De

. df:Numerator (Between)
nomi
nator
(With 4 2 3 4 5 6 7 8 9 10 1 12 14 16 20
in)
1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248
2 1851 19.00 19.16 1925 19.30 19.33 19.36 19.37 1938 1939 19.40 1941 1942 19.43 19.44
3 1013 955 928 912 901 894 888 884 881 878 876 874 871 869 866
4 771 694 659 639 626 616 609 604 600 59 593 591 587 584 580
5 661 579 541 519 505 495 488 482 478 474 470 468 464 460 456
6 599 514 476 453 439 428 421 415 410 406 403 400 396 392 387
7 559 474 435 412 397 387 379 373 368 363 360 357 352 349 344
8 532 446 407 384 369 358 350 344 339 334 331 328 323 320 3.15
9 512 426 386 3.63 348 337 329 323 318 313 310 3.07 3.02 298 293

10 49 410 3.71 348 333 322 314 3.07 3.02 297 294 291 286 282 277
11 484 398 359 336 320 3.09 301 295 29 286 282 279 274 270 2.65
12 475 3.88 349 326 3.11 3.00 292 285 280 276 272 269 264 260 254
13 467 380 341 318 3.02 292 284 277 272 267 263 260 255 251 246
14 460 374 334 311 296 285 277 270 265 260 256 253 248 244 239
15 454 368 329 306 29 279 270 264 259 255 251 248 243 239 233

16 449 363 324 301 285 274 266 259 254 249 245 242 237 233 228

Step 3: Calculate the Test Statistic and Effect Size
The process of calculating the test statistic for regression first involves computing the parameter estimates for the line of best fit. To
do this, we first calculate the means, standard deviations, and sum of products for our X and Y variables, as shown below.

X (X - MX) (X - MX)2 Y (Y - MY) (Y - MY)2 Sfy)_ MX)(Y -
17.65 -2.13 453 10.36 ~7.10 50.37 15.10

16.99 -2.79 7.80 16.38 -1.08 1.16 3.01

18.30 ~1.48 2.18 15.23 -2.23 4.97 3.29

18.28 ~1.50 2.25 14.26 -3.19 10.18 4.79

21.89 2.11 4.47 17.71 0.26 0.07 0.55

22.61 2.83 8.01 16.47 -0.98 0.97 -2.79

17.42 -2.36 5.57 16.89 -0.56 0.32 1.33

20.35 0.57 0.32 18.74 1.29 1.66 0.73
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X (X - MX) (X - MX)2 Y (Y - MY) (Y - MY)2 SI(Y)_ MX)(Y -
18.89 ~0.89 0.79 21.96 4.50 20.26 -4.00
18.63 -1.15 1.32 17.57 0.11 0.01 -0.13
19.67 ~0.11 0.01 18.12 0.66 0.44 -0.08
18.39 ~1.39 1.94 12.08 -5.37 28.87 7.48
22.48 2.71 7.32 17.11 ~0.34 0.12 -0.93
23.25 3.47 12.07 21.66 421 17.73 14.63
19.91 0.13 0.02 17.86 0.40 0.16 0.05
18.21 -1.57 2.45 18.49 1.03 1.07 -1.62
23.65 3.87 14.99 22.13 4,67 21.82 18.08
19.45 -0.33 0.11 21.17 3.72 13.82 -1.22
356.02 0.00 76.14 314.18 0.00 173.99 58.29

From the raw data in our X and Y columns, we find that the means are Mx _ 19.78 and My _ 17.45. The deviation scores for
each variable sum to zero, so all is well there. The sums of squares for X and Y ultimately lead us to standard deviations of sX =
2.12 and sY = 3.20. Finally, our sum of products is 58.29, which gives us a covariance of covXY = 3.43, so we know our
relationship will be positive. This is all the information we need for our equations for the line of best fit.

First, we must calculate the slope of the line:

p=L 382 _, .,
SSy  76.14

This means that as X changes by 1 unit, Y will change by 0.77. In terms of our problem, as health increases by 1, happiness goes
up by 0.77, which is a positive relationship. Next, we use the slope, along with the means of each variable, to compute the

intercept:

a=My -bMy
=17.45-(0.77)(19.78)
=17.45-15.03
=242

For this particular problem (and most regressions), the intercept is not an important or interpretable value, so we will not read into
it further. Now that we have all of our parameters estimated, we can give the full equation for our line of best fit:

Y =242 +0.77X

We can plot this relationship in a scatter plot and overlay our line onto it, as shown in Figure 13.3.

Figure 13.3. Health and happiness data and line of best fit. (“Scatter Plot Health and Happiness” by Judy Schmitt is licensed under
CC BY-NC-SA 4.0.)
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We can use the line equation to find predicted values for each observation and use them to calculate our sums of squares model and
error, but this is tedious to do by hand, so we will let the computer software do the heavy lifting in that column of our ANOVA

table:
Source
Model
Error

Total

SS
44.62

129.37

df MS F

Now that we have these, we can fill in the rest of the ANOVA table. We already found our degrees of freedom in Step 2:

Source
Model
Error

Total

SS
44.62

129.37

df MS F
1

16

Our total line is always the sum of the other two lines, giving us:

Source
Model
Error

Total

SS
44.62
129.37

173.99

df MS F
1
16

17

Our mean squares column is only calculated for the model and error lines and is always our SS divided by our df, which is:

Source
Model
Error

Total

SS
44.62
129.37

173.99

df MS F
1 44.62

16 8.09

17

Finally, our F statistic is the ratio of the mean squares:
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Source SS df MS F
Model 44.62 1 44.62 5.52
Error 129.37 16 8.09

Total 173.99 17

This gives us an obtained F statistic of 5.52, which we will use to test our hypothesis.

Effect Size in Regression

We know that, because our statistic is significant, we should calculate an effect size. In regression, our effect size is variance
explained, just like it was in ANOVA. Instead of using h2 to represent this, we instead use R2, as we saw in correlation—yet more
evidence that all of these are the same analysis. (Note that in regression analysis, R2 is typically capitalized, although for simple
linear regression it represents the same value as r2 we used in correlation.) Variance explained is still the ratio of SSM to SST:

p2_SSu _ 4462 _
SS;  173.99

We are explaining 26% of the variance in happiness based on health, which is a large effect size. (R2 uses the same effect size
cutoffs as h2.)

Step 4: Make the Decision
We now have everything we need to make our final decision. Our obtained test statistic was F = 5.52 and our critical value was F*
= 4.49. Since our obtained test statistic is greater than our critical value, we can reject the null hypothesis.

Reject HO. Based on our sample of 18 people, we can predict levels of happiness based on how healthy someone is, and the effect
size was large, F(1, 16) = 5.52, p < .05, R2 < .26.

Figure 13.4 shows the output from JASP for this example.

Figure 13.4. Output from JASP for the linear regression described in the Happiness and Well-Being example. The output provides
the slope (b) of the line in the Coefficients table under Health Unstandardized (0.765), the y-intercept (a) of the line in the
Coefficients table under (Intercept) Unstandardized (2.317, note slightly different from hand calculations due to rounding). The
Model Summary — Happiness table provides R2 (.256). The ANOVA table provides the result of the F test statistic. Based on our
sample of 18 people, we can predict levels of happiness based on how healthy someone is, F(1, 16) = 5.5, p = .032. (“JASP linear
regression” by Rupa G. Gordon/Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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Linear Regression

Model Summary - Happiness
Model R R? Adjusted R* RMSE

Ho 0.506 0.256 0.210 2.844
Note. Null model includes Health

ANOVA
Model Sum of Squares df Mean Square F p
He Regression 44.562 1 44562 5509 0.032
Residual 128.431 16 8.089
Total 173.993 17

Note. Null mode! includes Health

Coefficients
Model Unstandardized Standard Error Standardized t p
Ho (Intercept) 2317 6.485 0.357 0726

Health 0.765 0.326 0.506 2347 0.032

Accuracy in Prediction
We found a large, statistically significant relationship between our variables, which is what we hoped for. However, if we want to

use our estimated line of best fit for future prediction, we will also want to know how precise or accurate our predicted values are.
What we want to know is the average distance from our predictions to our actual observed values, or the average size of the

residual (Y — Y). The average size of the residual is known by a specific name: the standard error of the estimate (S(Y'Y}), which is
given by the formula

[ Y-Y)
whH= Z:EV——2)

This formula is almost identical to our standard deviation formula, and it follows the same logic. We square our residuals, add them
up, then divide by the degrees of freedom. Although this sounds like a long process, we already have the sum of the squared
residuals in our ANOVA table! In fact, the value under the square root sign is just the SSE divided by the dfE, which is called the
mean squared error, or MSE:

2 -VY e
S(y-7) =4/ =—— =/MS
(Y-¥) N_2 E
For our example:

129.37 =4/8.09 =2.84

Siy-v) =

So on average, our predictions are just under 3 points away from our actual values. There are no specific cutoffs or guidelines for
how big our standard error of the estimate can or should be; it is highly dependent on both our sample size and the scale of our
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original Y variable, so expert judgment should be used. In this case, the estimate is not that far off and can be considered
reasonably precise.

Multiple Regression and Other Extensions

Simple linear regression as presented here is only a stepping stone toward an entire field of research and application. Regression is
an incredibly flexible and powerful tool, and the extensions and variations on it are far beyond the scope of this chapter. (Indeed,
even entire books struggle to accommodate all possible applications of the simple principles laid out here.) The next step in
regression is to study multiple regression, which uses multiple X variables as predictors for a single Y variable at the same time.
The math of multiple regression is very complex but the logic is the same: we are trying to use variables that are statistically
significantly related to our outcome to explain the variance we observe in that outcome. Other forms of regression include
curvilinear models that can explain curves in the data rather than the straight lines used here, as well as moderation models that
change the relationship between two variables based on levels of a third. The possibilities are truly endless and offer a lifetime of
discovery.

Exercises

1. How are ANOVA and linear regression similar? How are they different?

2. What is a residual?

3. How are correlation and regression similar? How are they different?

4. What are the two parameters of the line of best fit, and what do they represent?
5. What is our criterion for finding the line of best fit?

6. Fill out the rest of the ANOVA tables below for simple linear regressions:

1. Source SS df MS F
Model 34.21
Error
Total 66.12 54

o Source SS df MS F
Model 6.03
Error 16
Total 19.98

7.In , we found a statistically significant correlation between overall performance in class and how much time

someone studied. Use the summary statistics calculated in that problem (MX =1.61,sX=1.12, My =295,sY=0.99,r=
.65) to compute a line of best fit predicting success from study times.
8. Using the line of best fit equation created in Problem 7, predict the scores for how successful people will be based on how much

they study:
1. X=1.20
2. X=3.33
3. X=0.71
4, X =4.00

9. You have become suspicious that the draft rankings of your fantasy football league have no predictive value for how teams
place at the end of the season. You go back to historical league data and find rankings of teams after the draft and at the end of
the season (shown in the following table) to test for a statistically significant predictive relationship. Assume SSM = 2.65 and

SSE = 337.35.
Draft Projection Final Rankings
1 14
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Draft Projection Final Rankings
2 6
3 8
4 13
5 2
6 15
7 4
8 10
9 11
10 16
11 9
12 7
13 14
14 12
15 1
16 5

10. You have summary data for two variables: how extroverted someone is (X) and how often someone volunteers (Y). Using these
values, calculate the line of best fit predicting volunteering from extroversion, then test for a statistically significant relationship

using the hypothesis-testing procedure: Mx - 12.58, sX = 4.65, My _
215.77.

Answers to Odd-Numbered Exercises

1)

ANOVA and simple linear regression both take the total observed variance and partition it into pieces that we can explain and
cannot explain and use the ratio of those pieces to test for significant relationships. They are different in that ANOVA uses a
categorical variable as a predictor, whereas linear regression uses a continuous variable.

3)

Correlation and regression both involve taking two continuous variables and finding a linear relationship between them. Correlations find a standardized value

7.44,sY =2.12,r= .34, N =67, SSM = 19.79, SSE =

describing the direction and magnitude of the relationship, whereas regression finds the line of best fit and uses it to partition and explain variance.

5)

Least squares error solution; the line that minimizes the total amount of residual error in the dataset
7)

My

b= r*(sY/sX) = .65%(0.99/1.12) = .57; a= -b My _ 2.95 - (0.57)(1.61) = 3.87; Y = 3.87 + 0.57X

9)

Step 1:HO: b= 0 “There is no predictive relationship between draft rankings and final rankings in fantasy football,” HA: b# 0 “There is a predictive relationship
between draft rankings and final rankings in fantasy football.”

Step 2:0ur model will have 1 (based on the number of predictors) and 14 (based on how many observations we have) degrees of freedom, giving us a critical
value of F* = 4.60.

Step 3:Using the sum of products table, we find MX = 8.50, MY = 8.50, SSX= 339.86, SP= 29.99, giving us a line of best fit of: b= 29.99/339.86 = 0.09;
a=8.50 — (0.09)(8.50) = 7.74; Y = 7.74 + 0.09X. Our given SSvalues and our dffrom Step 2 allow us to fill in the ANOVA table:
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Source SS df MS F
Model 2.65 1 2.65 0.11
Error 337.35 14 24.10

Total 339.86 15

Step 4: Our obtained value was smaller than our critical value, so we fail to reject the null hypothesis. There is no evidence to
suggest that draft rankings have any predictive value for final fantasy football rankings, F(1, 14) = 0.11, p > .05

This page titled 3.3: Chapter 13- Linear Regression is shared under a not declared license and was authored, remixed, and/or curated by Linda R.
Cote, Rupa G. Gordon, Chrislyn E. Randell, Judy Schmitt, and Helena Marvin.
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