
4.6.1 https://stats.libretexts.org/@go/page/4421

4.6: When Things Go Wrong
Sometimes when we try to develop a model using the backward elimination process, we get results that do not appear to make any
sense. For an example, let’s try to develop a multi-factor regression model for the Int1992 data using this process. As before, we
begin by including all of the potential predictors from Table 4.1 in the model. When we try that for Int1992, however, we obtain the
following result:

> int92.lm<-lm(nperf ~ clock + threads + cores + transistors + dieSize + voltage + fe
channel + FO4delay + L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) + L2cache
> summary(int92.lm)

Call:
lm(formula = nperf ~ clock + threads + cores + transistors +
 dieSize + voltage + featureSize + channel + FO4delay +
 L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) +
 L2cache + sqrt(L2cache))

Residuals:
 14 15 16 17 18 19
0.4096 1.3957 -2.3612 0.1498 -1.5513 1.9575
Coefficients: (14 not defined because of singularities)
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -25.93278 6.56141 -3.952 0.0168 *
clock 0.35422 0.02184 16.215 8.46e-05 ***
threads NA NA NA NA
cores NA NA NA NA
transistors NA NA NA NA
dieSize NA NA NA NA
voltage NA NA NA NA
featureSize NA NA NA NA
channel NA NA NA NA
FO4delay NA NA NA NA
L1icache NA NA NA NA
sqrt(L1icache) NA NA NA NA
L1dcache NA NA NA NA
sqrt(L1dcache) NA NA NA NA
L2cache NA NA NA NA
sqrt(L2cache) NA NA NA NA

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.868 on 4 degrees (72 observations deleted due to missingne
Multiple R-squared: 0.985, Adjusted R-squared: 0.9813 F-statistic: 262.9 on 1 and 4 D

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.06%3A_When_Things_Go_Wrong

4.6.2 https://stats.libretexts.org/@go/page/4421

Notice that every predictor but clock has NA for every entry. Furthermore, we see a line that says that fourteen coefficients
were “not defined because of singularities.” This statement means that R could not compute a value for those coefficients because
of some anomalies in the data. (More technically, it could not invert the matrix used in the least-squares minimization process.)

The first step toward resolving this problem is to notice that 72 observations were deleted due to “missingness,” leaving only four
degrees of freedom. We use the function nrow(int92.dat) to determine that there are 78 total rows in this data frame. These
78 separate observations sum up to the two predictors used in the model, plus four degrees of freedom, plus 72 deleted rows. When
we tried to develop the model using lm() , however, some of our data remained unused.

To determine why these rows were excluded, we must do a bit of sanity checking to see what data anomalies may be causing the
problem. The function table() provides a quick way to summarize a data vector, to see if anything looks obviously out of
place. Executing this function on the clock column, we obtain the following:

> table(clock)
clock
48 50 60 64 66 70 75 77 80 85 90 96 99 100 101 110
 118 120 125 133 150 166 175 180 190 200 225 231 233 250 266
 275 291 300 333 350
1 3 4 1 5 1 4 1 2 1 2 1 2 10 1 1
1 3 4 4 3 2 2 1 1 4 1 1 2 2 2 1 1 1 1 1

The top line shows the unique values that appear in the column. The list of numbers directly below that line is the count of how
many times that particular value appeared in the column. For example, 48 appeared once, while 50 appeared three times and
60 appeared four times. We see a reasonable range of values with minimum (48) and maximum (350) values that are not

unexpected. Some of the values occur only once; the most frequent value occurs ten times, which again does not seem
unreasonable. In short, we do not see anything obviously amiss with these results. We conclude that the problem likely is with a
different data column.

Executing the table() function on the next column in the data frame threads produces this output:

> table(threads)
threads
 1
78

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf

4.6.3 https://stats.libretexts.org/@go/page/4421

Aha! Now we are getting somewhere. This result shows that all of the 78 entries in this column contain the same value: 1 . An
input factor in which all of the elements are the same value has no predictive power in a regression model. If every row has the
same value, we have no way to distinguish one row from another. Thus, we conclude that threads is not a useful predictor for
our model and we eliminate it as a potential predictor as we continue to develop our Int1992 regression model.

We continue by executing table() on the column labeled cores . This operation shows that this column also consists of
only a single value, 1. Using the update() function to eliminate these two predictors from the model gives the following:

Unfortunately, eliminating these two predictors from consideration has not solved the problem. Notice that we still have only four
degrees of freedom, because 72 observations were again eliminated. This small number of degrees of freedom indicates that there
must be at least one more column with insufficient data.

By executing table() on the remaining columns, we find that the column labeled L2cache has only three unique values,
and that these appear in a total of only ten rows:

> table(L2cache)
L2cache
96 256 512
 6 2 2

> int92.lm <update(int92.lm, .~. threads cores)
> summary(int92.lm)
Call:
lm(formula = nperf ~ clock + transistors + dieSize + voltage +
 featureSize + channel + FO4delay + L1icache + sqrt(L1icache) +
 L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache))

Residuals:
 14 15 16 17 18 19
 0.4096 1.3957 -2.3612 0.1498 -1.5513 1.9575

Coefficients: (12 not defined because of singularities)
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -25.93278 6.56141 -3.952 0.0168 *
clock 0.35422 0.02184 16.215 8.46e-05 ***
transistors NA NA NA NA
dieSize NA NA NA NA
voltage NA NA NA NA
featureSize NA NA NA NA
channel NA NA NA NA
FO4delay NA NA NA NA
L1icache NA NA NA NA
sqrt(L1icache) NA NA NA NA
L1dcache NA NA NA NA
sqrt(L1dcache) NA NA NA NA
L2cache NA NA NA NA
sqrt(L2cache) NA NA NA NA

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.868 on 4 degrees of freedom (72 observations deleted due t
Multiple R-squared: 0.985, Adjusted R-squared: 0.9813 F-statistic: 262.9 on 1 and 4 D

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf

4.6.4 https://stats.libretexts.org/@go/page/4421

Although these specific data values do not look out of place, having only three unique values can make it impossible for lm() to
compute the model coefficients. Dropping L2cache and sqrt(L2cache) as potential predictors finally produces the type
of result we expect:

We now can proceed with the normal backward elimination process. We begin by eliminating the predictor that has the largest p-
value above our preselected threshold, which is transistors in this case. Eliminating this predictor gives the following:

> int92.lm <update(int92.lm, .~. L2cache sqrt(L2cache))
> summary(int92.lm)

Call:
lm(formula = nperf ~ clock + transistors + dieSize + voltage +
 featureSize + channel + FO4delay + L1icache + sqrt(L1icache) +
 L1dcache + sqrt(L1dcache))

Residuals:
 Min 1Q Median 3Q Max
-7.3233 -1.1756 0.2151 1.0157 8.0634

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -58.51730 17.70879 -3.304 0.00278 **
clock 0.23444 0.01792 13.084 6.03e-13 ***
transistors -0.32032 1.13593 -0.282 0.78018
dieSize 0.25550 0.04800 5.323 1.44e-05 ***
voltage 1.66368 1.61147 1.032 0.31139
featureSize 377.84287 69.85249 5.409 1.15e-05 ***
channel -493.84797 88.12198 -5.604 6.88e-06 ***
FO4delay 0.14082 0.08581 1.641 0.11283
L1icache 4.21569 1.74565 2.415 0.02307 *
sqrt(L1icache) -12.33773 7.76656 -1.589 0.12425
L1dcache -5.53450 2.10354 -2.631 0.01412 *
sqrt(L1dcache) 23.89764 7.98986 2.991 0.00602 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.68 on 26 degrees of freedom (40 observations deleted due t
Multiple R-squared: 0.985, Adjusted R-squared: 0.9786 F-statistic: 155 on 11 and 26 D

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf

4.6.5 https://stats.libretexts.org/@go/page/4421

After eliminating this predictor, however, we see something unexpected. The p-values for voltage and featureSize
 increased dramatically. Furthermore, the adjusted R-squared value dropped substantially, from 0.9786 to 0.9051. These
unexpectedly large changes make us suspect that transistors may actually be a useful predictor in the model even though at
this stage of the backward elimination process it has a high p-value. So, we decide to put transistors back into the model
and instead drop voltage , which has the next highest p-value. These changes produce the following result:

> int92.lm <update(int92.lm, .~. -transistors)
> summary(int92.lm)

Call:
lm(formula = nperf ~ clock + dieSize + voltage + featureSize +
 channel + FO4delay + L1icache + sqrt(L1icache) + L1dcache +
 sqrt(L1dcache))

Residuals:
 Min 1Q Median 3Q Max
 -13.2935 -3.6068 -0.3808 2.4535 19.9617

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -16.73899 24.50101 -0.683 0.499726
clock 0.19330 0.02091 9.243 2.77e-10 ***
dieSize 0.11457 0.02728 4.201 0.000219 ***
voltage 0.40317 2.85990 0.141 0.888834
featureSize 11.08190 104.66780 0.106 0.916385
channel -37.23928 104.22834 -0.357 0.723379
FO4delay -0.13803 0.14809 -0.932 0.358763
L1icache 7.84707 3.33619 2.352 0.025425 *
sqrt(L1icache) -16.28582 15.38525 -1.059 0.298261
L1dcache -14.31871 2.94480 -4.862 3.44e-05 ***
sqrt(L1dcache) 48.26276 9.41996 5.123 1.64e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 7.528 on 30 degrees of freedom (37 observations deleted due
Multiple R-squared: 0.9288, Adjusted R-squared: 0.9051 F-statistic: 39.13 on 10 and 3

> int92.lm <update(int92.lm, .~. +transistors -voltage)
> summary(int92.lm)

Call:
lm(formula = nperf ~ clock + dieSize + featureSize + channel +
FO4delay + L1icache + sqrt(L1icache) + L1dcache +
sqrt(L1dcache) +
transistors)

Residuals:
 Min 1Q Median 3Q Max
 -10.0828 -1.3106 0.1447 1.5501 8.7589

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf

4.6.6 https://stats.libretexts.org/@go/page/4421

The adjusted R-squared value now is 0.9746, which is much closer to the adjusted R-squared value we had before dropping
transistors . Continuing with the backward elimination process, we first drop sqrt(L1icache) with a p-value of

0.471413, then FO4delay with a p-value of 0.180836, and finally sqrt(L1dcache) with a p-value of 0.071730.

After completing this backward elimination process, we find that the following predictors belong in the final model for Int1992:

clock transistors dieSize featureSize

channel L1icache L1dcache

As shown below, all of these predictors have p-values below our threshold of 0.05. Additionally, the adjusted R-square looks quite
good at 0.9722.

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -50.28514 15.27839 -3.291 0.002700 **
clock 0.21854 0.01718 12.722 3.71e-13 ***
dieSize 0.20348 0.04401 4.623 7.77e-05 ***
featureSize 409.68604 67.00007 6.115 1.34e-06 ***
channel -490.99083 86.23288 -5.694 4.18e-06 ***
FO4delay 0.12986 0.09159 1.418 0.167264
L1icache 1.48070 1.21941 1.214 0.234784
sqrt(L1icache) -5.15568 7.06192 -0.730 0.471413
L1dcache -0.45668 0.10589 -4.313 0.000181 ***
sqrt(L1dcache) 4.77962 2.45951 1.943 0.062092 .
transistors 1.54264 0.88345 1.746 0.091750 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.96 on 28 degrees of freedom (39 observations deleted due t
Multiple R-squared: 0.9813, Adjusted R-squared: 0.9746 F-statistic: 146.9 on 10 and 2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf

4.6.7 https://stats.libretexts.org/@go/page/4421

This example illustrates that you cannot always look at only the p-values to determine which potential predictors to eliminate in
each step of the backward elimination process. You also must be careful to look at the broader picture, such as changes in the
adjusted R-squared value and large changes in the p-values of other predictors, after each change to the model.

This page titled 4.6: When Things Go Wrong is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

> int92.lm <update(int92.lm, .~. -sqrt(L1dcache))
> summary(int92.lm)

Call:
lm(formula = nperf ~ clock + dieSize + featureSize + channel +
L1icache + L1dcache + transistors, data = int92.dat)

Residuals:
 Min 1Q Median 3Q Max
-10.1742 -1.5180 0.1324 1.9967 10.1737

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -34.17260 5.47413 -6.243 6.16e-07 ***
clock 0.18973 0.01265 15.004 9.21e-16 ***
dieSize 0.11751 0.02034 5.778 2.31e-06 ***
featureSize 305.79593 52.76134 5.796 2.20e-06 ***
channel -328.13544 53.04160 -6.186 7.23e-07 ***
L1icache 0.78911 0.16045 4.918 2.72e-05 ***
L1dcache -0.23335 0.03222 -7.242 3.80e-08 ***
transistors 3.13795 0.51450 6.099 9.26e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.141 on 31 degrees of freedom (39 observations deleted due
Multiple R-squared: 0.9773, Adjusted R-squared: 0.9722 F-statistic: 191 on 7 and 31 D

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.06%3A_When_Things_Go_Wrong
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

