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4.6: When Things Go Wrong
Sometimes when we try to develop a model using the backward elimination process, we get results that do not appear to make any
sense. For an example, let’s try to develop a multi-factor regression model for the Int1992 data using this process. As before, we
begin by including all of the potential predictors from Table 4.1 in the model. When we try that for Int1992, however, we obtain the
following result:

> int92.lm<-lm(nperf ~ clock + threads + cores + transistors + dieSize + voltage + fe
channel + FO4delay + L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) + L2cache 
> summary(int92.lm) 
 
Call:
lm(formula = nperf ~ clock + threads + cores + transistors + 
    dieSize + voltage + featureSize + channel + FO4delay + 
    L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) + 
    L2cache + sqrt(L2cache)) 
     
Residuals:  
  14      15      16       17       18      19 
0.4096  1.3957  -2.3612  0.1498  -1.5513   1.9575 
Coefficients: (14 not defined because of singularities) 
                    Estimate        Std. Error         t value        Pr(>|t|) 
(Intercept)         -25.93278        6.56141            -3.952          0.0168 * 
clock                 0.35422        0.02184            16.215        8.46e-05 *** 
threads                    NA             NA                NA              NA 
cores                      NA             NA                NA              NA 
transistors                NA             NA                NA              NA 
dieSize                    NA             NA                NA              NA 
voltage                    NA             NA                NA              NA 
featureSize                NA             NA                NA              NA 
channel                    NA             NA                NA              NA 
FO4delay                   NA             NA                NA              NA 
L1icache                   NA             NA                NA              NA 
sqrt(L1icache)             NA             NA                NA              NA 
L1dcache                   NA             NA                NA              NA 
sqrt(L1dcache)             NA             NA                NA              NA 
L2cache                    NA             NA                NA              NA 
sqrt(L2cache)              NA             NA                NA              NA 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 1.868 on 4 degrees (72 observations deleted due to missingne
Multiple R-squared: 0.985, Adjusted R-squared: 0.9813 F-statistic: 262.9 on 1 and 4 D
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Notice that every predictor but clock  has NA  for every entry. Furthermore, we see a line that says that fourteen coefficients
were “not defined because of singularities.” This statement means that R could not compute a value for those coefficients because
of some anomalies in the data. (More technically, it could not invert the matrix used in the least-squares minimization process.)

The first step toward resolving this problem is to notice that 72 observations were deleted due to “missingness,” leaving only four
degrees of freedom. We use the function nrow(int92.dat)  to determine that there are 78 total rows in this data frame. These
78 separate observations sum up to the two predictors used in the model, plus four degrees of freedom, plus 72 deleted rows. When
we tried to develop the model using  lm() , however, some of our data remained unused.

To determine why these rows were excluded, we must do a bit of sanity checking to see what data anomalies may be causing the
problem. The function table()  provides a quick way to summarize a data vector, to see if anything looks obviously out of
place. Executing this function on the clock  column, we obtain the following:

> table(clock) 
clock 
48  50  60  64  66  70  75  77  80  85  90  96  99 100 101 110 
    118 120 125 133 150 166 175 180 190 200 225 231 233 250 266 
    275 291 300 333 350  
1   3   4   1   5   1   4   1   2   1   2   1   2  10   1   1 
1   3   4   4   3   2   2   1   1   4   1   1   2  2    2   1    1   1   1   1  

 

The top line shows the unique values that appear in the column. The list of numbers directly below that line is the count of how
many times that particular value appeared in the column. For example, 48 appeared once, while 50 appeared three times and 
60  appeared four times. We see a reasonable range of values with minimum ( 48 ) and maximum ( 350 ) values that are not

unexpected. Some of the values occur only once; the most frequent value occurs ten times, which again does not seem
unreasonable. In short, we do not see anything obviously amiss with these results. We conclude that the problem likely is with a
different data column.

Executing the table()  function on the next column in the data frame threads produces this output:

> table(threads) 
threads 
 1 
78  
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Aha! Now we are getting somewhere. This result shows that all of the 78 entries in this column contain the same value: 1 . An
input factor in which all of the elements are the same value has no predictive power in a regression model. If every row has the
same value, we have no way to distinguish one row from another. Thus, we conclude that threads  is not a useful predictor for
our model and we eliminate it as a potential predictor as we continue to develop our Int1992 regression model.

We continue by executing  table()  on the column labeled cores . This operation shows that this column also consists of
only a single value, 1. Using the update() function to eliminate these two predictors from the model gives the following:

Unfortunately, eliminating these two predictors from consideration has not solved the problem. Notice that we still have only four
degrees of freedom, because 72 observations were again eliminated. This small number of degrees of freedom indicates that there
must be at least one more column with insufficient data.

By executing table()  on the remaining columns, we find that the column labeled L2cache  has only three unique values,
and that these appear in a total of only ten rows: 

> table(L2cache) 
L2cache 
96 256 512  
 6   2   2  

> int92.lm <update(int92.lm, .~. threads cores)  
> summary(int92.lm) 
Call: 
lm(formula = nperf ~ clock + transistors + dieSize + voltage + 
    featureSize + channel + FO4delay + L1icache + sqrt(L1icache) + 
    L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache))  

 
Residuals: 
     14      15      16      17      18      19 
   0.4096  1.3957 -2.3612  0.1498  -1.5513  1.9575 
 
Coefficients: (12 not defined because of singularities) 
                    Estimate        Std. Error        t value        Pr(>|t|) 
(Intercept)        -25.93278        6.56141            -3.952        0.0168 * 
clock                0.35422        0.02184            16.215      8.46e-05 *** 
transistors               NA             NA                NA            NA 
dieSize                   NA             NA                NA            NA 
voltage                   NA             NA                NA            NA 
featureSize               NA             NA                NA            NA 
channel                   NA             NA                NA            NA 
FO4delay                  NA             NA                NA            NA 
L1icache                  NA             NA                NA            NA 
sqrt(L1icache)            NA             NA                NA            NA 
L1dcache                  NA             NA                NA            NA 
sqrt(L1dcache)            NA             NA                NA            NA 
L2cache                   NA             NA                NA            NA 
sqrt(L2cache)             NA             NA                NA            NA 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.868 on 4 degrees of freedom (72 observations deleted due t
Multiple R-squared: 0.985, Adjusted R-squared: 0.9813 F-statistic: 262.9 on 1 and 4 D
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Although these specific data values do not look out of place, having only three unique values can make it impossible for lm()  to
compute the model coefficients. Dropping L2cache  and sqrt(L2cache)  as potential predictors finally produces the type
of result we expect:

We now can proceed with the normal backward elimination process. We begin by eliminating the predictor that has the largest p-
value above our preselected threshold, which is transistors  in this case. Eliminating this predictor gives the following:

> int92.lm <update(int92.lm, .~. L2cache sqrt(L2cache)) 
> summary(int92.lm) 
 
Call: 
lm(formula = nperf ~ clock + transistors + dieSize + voltage + 
    featureSize + channel + FO4delay + L1icache + sqrt(L1icache) + 
    L1dcache + sqrt(L1dcache))  

 
Residuals: 
    Min      1Q      Median      3Q         Max 
-7.3233   -1.1756    0.2151    1.0157      8.0634 
 
Coefficients: 
                    Estimate        Std. Error        t value        Pr(>|t|) 
(Intercept)        -58.51730        17.70879           -3.304         0.00278 ** 
clock                0.23444         0.01792           13.084        6.03e-13 *** 
transistors         -0.32032         1.13593           -0.282         0.78018 
dieSize              0.25550         0.04800            5.323        1.44e-05 *** 
voltage              1.66368         1.61147            1.032         0.31139 
featureSize        377.84287        69.85249            5.409        1.15e-05 *** 
channel           -493.84797        88.12198           -5.604        6.88e-06 *** 
FO4delay             0.14082         0.08581            1.641         0.11283 
L1icache             4.21569         1.74565            2.415         0.02307 * 
sqrt(L1icache)     -12.33773         7.76656           -1.589         0.12425 
L1dcache            -5.53450         2.10354           -2.631         0.01412 * 
sqrt(L1dcache)      23.89764         7.98986            2.991         0.00602 ** 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 3.68 on 26 degrees of freedom (40 observations deleted due t
Multiple R-squared: 0.985, Adjusted R-squared: 0.9786 F-statistic: 155 on 11 and 26 D
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After eliminating this predictor, however, we see something unexpected. The p-values for voltage  and featureSize
 increased dramatically. Furthermore, the adjusted R-squared value dropped substantially, from 0.9786 to 0.9051. These
unexpectedly large changes make us suspect that transistors  may actually be a useful predictor in the model even though at
this stage of the backward elimination process it has a high p-value. So, we decide to put transistors  back into the model
and instead drop voltage , which has the next highest p-value. These changes produce the following result:

> int92.lm <update(int92.lm, .~. -transistors)  
> summary(int92.lm)  
 
Call: 
lm(formula = nperf ~ clock + dieSize + voltage + featureSize + 
    channel + FO4delay + L1icache + sqrt(L1icache) + L1dcache + 
    sqrt(L1dcache)) 
 
Residuals: 
     Min       1Q       Median        3Q        Max 
  -13.2935  -3.6068     -0.3808     2.4535    19.9617 
 
Coefficients: 
                    Estimate         Std. Error         t value         Pr(>|t|) 
(Intercept)        -16.73899           24.50101            -0.683            0.499726
clock                0.19330            0.02091            9.243        2.77e-10 *** 
dieSize            0.11457            0.02728            4.201          0.000219 *** 
voltage            0.40317            2.85990            0.141            0.888834 
featureSize        11.08190            104.66780          0.106            0.916385 
channel            -37.23928            104.22834        -0.357            0.723379 
FO4delay            -0.13803            0.14809           -0.932        0.358763 
L1icache            7.84707            3.33619            2.352        0.025425 * 
sqrt(L1icache)       -16.28582        15.38525            -1.059        0.298261 
L1dcache            -14.31871         2.94480            -4.862        3.44e-05 *** 
sqrt(L1dcache)       48.26276        9.41996            5.123            1.64e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 7.528 on 30 degrees of freedom (37 observations deleted due 
Multiple R-squared: 0.9288, Adjusted R-squared: 0.9051 F-statistic: 39.13 on 10 and 3

 

 

> int92.lm <update(int92.lm, .~. +transistors -voltage) 
> summary(int92.lm) 
 
Call: 
lm(formula = nperf ~ clock + dieSize + featureSize + channel + 
FO4delay + L1icache + sqrt(L1icache) + L1dcache + 
sqrt(L1dcache) + 
transistors)  

 
Residuals: 
      Min         1Q        Median        3Q        Max 
 -10.0828    -1.3106        0.1447    1.5501     8.7589  
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The adjusted R-squared value now is 0.9746, which is much closer to the adjusted R-squared value we had before dropping 
transistors . Continuing with the backward elimination process, we first drop sqrt(L1icache)  with a p-value of

0.471413, then FO4delay  with a p-value of 0.180836, and finally sqrt(L1dcache)  with a p-value of 0.071730.

After completing this backward elimination process, we find that the following predictors belong in the final model for Int1992:

clock     transistors     dieSize     featureSize     

channel     L1icache     L1dcache

As shown below, all of these predictors have p-values below our threshold of 0.05. Additionally, the adjusted R-square looks quite
good at 0.9722.

Coefficients:  
                    Estimate        Std. Error        t value        Pr(>|t|) 
(Intercept)        -50.28514          15.27839         -3.291        0.002700 ** 
clock                0.21854           0.01718         12.722        3.71e-13 *** 
dieSize              0.20348           0.04401          4.623        7.77e-05 *** 
featureSize        409.68604          67.00007          6.115        1.34e-06 *** 
channel           -490.99083          86.23288         -5.694        4.18e-06 *** 
FO4delay             0.12986           0.09159          1.418        0.167264 
L1icache             1.48070           1.21941          1.214        0.234784 
sqrt(L1icache)      -5.15568           7.06192         -0.730        0.471413 
L1dcache            -0.45668           0.10589         -4.313        0.000181 *** 
sqrt(L1dcache)       4.77962           2.45951          1.943        0.062092 . 
transistors          1.54264           0.88345          1.746        0.091750 .  
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.96 on 28 degrees of freedom (39 observations deleted due t
Multiple R-squared: 0.9813, Adjusted R-squared: 0.9746 F-statistic: 146.9 on 10 and 2
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This example illustrates that you cannot always look at only the p-values to determine which potential predictors to eliminate in
each step of the backward elimination process. You also must be careful to look at the broader picture, such as changes in the
adjusted R-squared value and large changes in the p-values of other predictors, after each change to the model. 

This page titled 4.6: When Things Go Wrong is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

> int92.lm <update(int92.lm, .~. -sqrt(L1dcache))  
> summary(int92.lm) 
 
Call: 
lm(formula = nperf ~ clock + dieSize + featureSize + channel + 
L1icache + L1dcache + transistors, data = int92.dat) 
 
Residuals:  
     Min       1Q       Median       3Q       Max 
-10.1742  -1.5180       0.1324   1.9967   10.1737 
 
Coefficients: 
                Estimate        Std. Error        t value        Pr(>|t|) 
(Intercept)    -34.17260           5.47413         -6.243        6.16e-07 *** 
clock            0.18973           0.01265         15.004        9.21e-16 *** 
dieSize          0.11751           0.02034          5.778        2.31e-06 *** 
featureSize    305.79593          52.76134          5.796        2.20e-06 *** 
channel       -328.13544          53.04160         -6.186        7.23e-07 *** 
L1icache         0.78911           0.16045          4.918        2.72e-05 *** 
L1dcache        -0.23335           0.03222         -7.242        3.80e-08 *** 
transistors      3.13795           0.51450          6.099        9.26e-07 *** 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 4.141 on 31 degrees of freedom (39 observations deleted due 
Multiple R-squared: 0.9773, Adjusted R-squared: 0.9722 F-statistic: 191 on 7 and 31 D
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