LibreTextsm

5.2: Training and Testing

With the data set partitioned into two randomly selected portions, we can train the model on the first portion, and test it on the
second portion. Figure 5.1shows the overall flow of this training and testing process. We next explain the details of this process to
train and test the model we previously developed for the Int2000 benchmark results.

train.dat int00.dat
g 2
Inputs
P '§ Inputs '§ f
@ e /

test.dat

Inputs

synding

Im() —

int00_new.Im

predict()
| N

predicted.dat _/ test.datSnperf

delta
Figure 5.1: The training and testing process for evaluating the predictions produced by a regression model.

The following statement calls the 1m() function to generate a regression model using the predictors we identified in
Chapter 4 and the train.dat data frame we extracted in the previous section. It then assigns this model to the variable
intOO_new.lm. We refer to this process of computing the model’s coefficients as training the regression model.

int@O_new.1lm <lm(nperf ~ clock + cores + voltage + channel + Llicache +
sgrt(Llicache) + Lildcache + sqrt(Lldcache) + L2cache + sqgrt(L2cache), data = train.d

The predict() function takes this new model as one of its arguments. It uses this model to compute the predicted outputs
when we use the test.dat dataframe as the input, as follows:

I predicted.dat <predict(int@0_new.lm, newdata=test.dat)

We define the difference between the predicted and measured performance for each processor i to be A; = Predictedi — Measured,;,
where Predicted; is the value predicted by the model, which is stored in the data frame predicted.dat ,and Measured; is the
actual measured performance response, which we previously assigned to the test.dat data frame. The following statement
computes the entire vector of these A; values and assigns the vector to the variable delta .

I delta <predicted.dat test.dat$nperf

Note that we use the $ notation to select the column with the output value, nperf | fromthe test.dat data frame.
The mean of these A differences for n different processors is:

A=13" A

i=1

A confidence interval computed for this mean will give us some indication of how well a model trained on the train.dat data
set predicted the performance of the processors in the test.dat dataset. The t.test() function computes a confidence
interval for the desired confidence level of these A; values as follows:

https://stats.libretexts.org/@go/page/4424

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4424?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.02%3A_Training_and_Testing

LibreTextsm

> t.test(delta, conf.level = 0.95)
One Sample t-test

data: delta

t = -0.65496, df = 41, p-value = 0.5161

alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:-2.232621 1.139121
sample estimates: mean of x -0.5467502

If the prediction were perfect, then A; = 0. If A; > 0, then the model predicted that the performance would be greater than it actually

was. A A; < 0, on the other hand, means that the model predicted that the performance was lower than it actually was.

Consequently, if the predictions were reasonably good, we would expect to see a tight confidence interval around zero. In this case,

we obtain a 95 percent confidence interval of [-2.23, 1.14]. Given that nperf is scaled to between 0 and 100, this is a reasonably

tight confidence interval that includes zero. Thus, we conclude that the model is reasonably good at predicting values in the
test.dat dataset when trained onthe train.dat data set.

Another way to get a sense of the predictions’ quality is to generate a scatter plot of the A; values using the plot() function:

I plot(delta)

This function call produces the plot shown in Figure 5.2. Good predictions would produce a tight band of values uniformly
scattered around zero. In this figure, we do see such a distribution, although there are a few outliers that are more than ten points
above or below zero.

It is important to realize that the sample() function will return a different random permutation each time we execute it. These
differing permutations will partition different processors (i.e., rows in the data frame) into the train and test sets. Thus, if we run
this experiment again with exactly the same inputs, we will likely get a different confidence interval and A; scatter plot. For
example, when we repeat the same test five times with identical inputs, we obtain the following confidence intervals: [-1.94, 1.46],
[-1.95, 2.68], [-2.66, 3.81], [-6.13, 0.75], [-4.21, 5.29]. Similarly, varying the fraction of the data we assign to the train and test sets
by changing f = 0.5 also changes the results.

It is good practice to run this type of experiment several times and observe how the results change. If you see the results vary
wildly when you re-run these tests, you have good reason for concern. On the other hand, a series of similar results does not
necessarily mean your results are good, only that they are consistently reproducible. It is often easier to spot a bad model than to
determine that a model is good.

Based on the repeated confidence interval results and the corresponding scatter plot, similar to Figure 5.2, we conclude that this
model is reasonably good at predicting the performance of a set of processors when the model is trained on a different set of
processors executing the same benchmark program. It is not perfect, but it is also not too bad. Whether the differences are large
enough to warrant concern is up to you.

https://stats.libretexts.org/@go/page/4424

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4424?pdf

LibreTextsw

delta
o

-15

T T T T T T I
0 20 40 60 80 100 120

Index

Figure 5.2: An example scatter plot of the differences between the predicted and actual performance results for the Int2000
benchmark when using the data-splitting technique to train and test the model.

This page titled 5.2: Training and Testing is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja

(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://stats.libretexts.org/@go/page/4424

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4424?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.02%3A_Training_and_Testing
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

