
Book: Linear Regression Using R - An
Introduction to Data Modeling (Lilja)

This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds
of other texts available within this powerful platform, it is freely available for reading, printing and "consuming." Most, but not all,
pages in the library have licenses that may allow individuals to make changes, save, and print this book. Carefully
consult the applicable license(s) before pursuing such effects.

Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their
students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new
technologies to support learning.

The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform
for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our
students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-
access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource
environment. The project currently consists of 14 independently operating and interconnected libraries that are constantly being
optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are
organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields)
integrated.

The LibreTexts libraries are Powered by NICE CXOne and are supported by the Department of Education Open Textbook Pilot
Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions
Program, and Merlot. This material is based upon work supported by the National Science Foundation under Grant No. 1246120,
1525057, and 1413739.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation nor the US Department of Education.

Have questions or comments? For information about adoptions or adaptions contact info@LibreTexts.org. More information on our
activities can be found via Facebook (https://facebook.com/Libretexts), Twitter (https://twitter.com/libretexts), or our blog
(http://Blog.Libretexts.org).

This text was compiled on 03/18/2025

https://libretexts.org/
https://www.nice.com/products
mailto:info@LibreTexts.org
https://facebook.com/Libretexts
https://twitter.com/libretexts
http://blog.libretexts.org/

1 https://stats.libretexts.org/@go/page/8892

TABLE OF CONTENTS

Licensing

1: Introduction
1.1: Prelude to Linear Regression
1.2: What is a Linear Regression Model?
1.3: What is R?
1.4: What's Next?

2: Understand Your Data
2.1: Missing Values
2.2: Sanity Checking and Data Cleaning
2.3: The Example Data
2.4: Data Frames
2.5: Accessing a Data Frame

3: One-Factor Regression
3.1: Visualize the Data
3.2: The Linear Model Function
3.3: Evaluating the Quality of the Model
3.4: Residual Analysis

4: Multi-factor Regression
4.1: Visualizing the Relationships in the Data
4.2: Identifying Potential Predictors
4.3: The Backward Elimination Process
4.4: An Example of the Backward Elimination Process
4.5: Residual Analysis
4.6: When Things Go Wrong

5: Predicting Responses
5.1: Data Splitting for Training and Testing
5.2: Training and Testing
5.3: Predicting Across Data Sets
5.4: Section 5-
5.5: Section 6-

6: Reading Data into the R Environment
6.1: Reading CSV files

7: Summary

8: A Few Things to Try Next

https://libretexts.org/
https://stats.libretexts.org/@go/page/8892?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/00:_Front_Matter/04:_Licensing
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01:_Introduction
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01:_Introduction/1.01:_Prelude_to_Linear_Regression
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01:_Introduction/1.02:_What_is_a_Linear_Regression_Model?
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01:_Introduction/1.03:_What_is_R?
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01:_Introduction/1.04:_What's_Next?
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02:_Understand_Your_Data
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02:_Understand_Your_Data/2.01:_Missing_Values
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02:_Understand_Your_Data/2.02:_Sanity_Checking_and_Data_Cleaning
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02:_Understand_Your_Data/2.03:_The_Example_Data
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02:_Understand_Your_Data/2.04:_Data_Frames
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02:_Understand_Your_Data/2.05:_Accessing_a_Data_Frame
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03:_One-Factor_Regression
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03:_One-Factor_Regression/3.01:_Visualize_the_Data
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03:_One-Factor_Regression/3.02:_The_Linear_Model_Function
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03:_One-Factor_Regression/3.03:_Evaluating_the_Quality_of_the_Model
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03:_One-Factor_Regression/3.04:_Residual_Analysis
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04:_Multi-factor_Regression
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04:_Multi-factor_Regression/4.01:_Visualizing_the_Relationships_in_the_Data
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04:_Multi-factor_Regression/4.02:_Identifying_Potential_Predictors
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04:_Multi-factor_Regression/4.03:_The_Backward_Elimination_Process
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04:_Multi-factor_Regression/4.04:_An_Example_of_the_Backward_Elimination_Process
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04:_Multi-factor_Regression/4.05:_Residual_Analysis
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04:_Multi-factor_Regression/4.06:_When_Things_Go_Wrong
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05:_Predicting_Responses
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05:_Predicting_Responses/5.01:_Data_Splitting_for_Training_and_Testing
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05:_Predicting_Responses/5.02:_Training_and_Testing
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05:_Predicting_Responses/5.03:_Predicting_Across_Data_Sets
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05:_Predicting_Responses/5.04:_Section_5-
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05:_Predicting_Responses/5.05:_Section_6-
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/06:_Reading_Data_into_the_R_Environment
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/06:_Reading_Data_into_the_R_Environment/6.01:_Reading_CSV_files
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/07:_Summary
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/08:_A_Few_Things_to_Try_Next

2 https://stats.libretexts.org/@go/page/8892

Index

Glossary

Detailed Licensing

https://libretexts.org/
https://stats.libretexts.org/@go/page/8892?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/zz:_Back_Matter/01:_Index
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/zz:_Back_Matter/20:_Glossary
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/zz:_Back_Matter/30:_Detailed_Licensing

1 https://stats.libretexts.org/@go/page/32557

Licensing
A detailed breakdown of this resource's licensing can be found in Back Matter/Detailed Licensing.

https://libretexts.org/
https://stats.libretexts.org/@go/page/32557?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/00%3A_Front_Matter/04%3A_Licensing
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/zz%3A_Back_Matter/30%3A_Detailed_Licensing

1

CHAPTER OVERVIEW

1: Introduction
One of the most fundamental of the broad range of data mining techniques that have been developed is regression modeling.
Regression modeling is simply generating a mathematical model from measured data. This model is said to explain an output value
given a new set of input values. Linear regression modeling is a specific form of regression modeling that assumes that the output
can be explained using a linear combination of the input values.

1.1: Prelude to Linear Regression
1.2: What is a Linear Regression Model?
1.3: What is R?
1.4: What's Next?

This page titled 1: Introduction is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja (University of
Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.01%3A_Prelude_to_Linear_Regression
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.02%3A_What_is_a_Linear_Regression_Model%3F
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.03%3A_What_is_R%3F
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.04%3A_What's_Next%3F
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

1.1.1 https://stats.libretexts.org/@go/page/5375

1.1: Prelude to Linear Regression
Data mining is a phrase that has been popularly used to suggest the process of finding useful information from within a large
collection of data. I like to think of data mining as encompassing a broad range of statistical techniques and tools that can be used
to extract different types of information from your data. Which particular technique or tool to use depends on your specific goals.

One of the most fundamental of the broad range of data mining techniques that have been developed is regression modeling.
Regression modeling is simply generating a mathematical model from measured data. This model is said to explain an output value
given a new set of input values. Linear regression modeling is a specific form of regression modeling that assumes that the output
can be explained using a linear combination of the input values.

A common goal for developing a regression model is to predict what the output value of a system should be for a new set of input
values, given that you have a collection of data about similar systems. For example, as you gain experience driving a car, you
begun to develop an intuitive sense of how long it might take you to drive somewhere if you know the type of car, the weather, an
estimate of the traffic, the distance, the condition of the roads, and so on. What you really have done to make this estimate of
driving time is constructed a multi-factor regression model in your mind. The inputs to your model are the type of car, the weather,
etc. The output is how long it will take you to drive from one point to another. When you change any of the inputs, such as a
sudden increase in traffic, you automatically re-estimate how long it will take you to reach the destination.

This type of model building and estimating is precisely what we are going to learn to do more formally in this tutorial. As a
concrete example, we will use real performance data obtained from thousands of measurements of computer systems to develop a
regression model using the R statistical software package. You will learn how to develop the model and how to evaluate how well it
fits the data. You also will learn how to use it to predict the performance of other computer systems.

As you go through this tutorial, remember that what you are developing is just a model. It will hopefully be useful in understanding
the system and in predicting future results. However, do not confuse a model with the real system. The real system will always
produce the correct results, regardless of what the model may say the results should be.

This page titled 1.1: Prelude to Linear Regression is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David
Lilja (University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/5375?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.01%3A_Prelude_to_Linear_Regression
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.01%3A_Prelude_to_Linear_Regression
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

1.2.1 https://stats.libretexts.org/@go/page/4395

1.2: What is a Linear Regression Model?
Suppose that we have measured the performance of several different computer systems using some standard benchmark program.
We can organize these measurements into a table, such as the example data shown in Table 1.1. The details of each system are
recorded in a single row. Since we measured the performance of n different systems, we need n rows in the table.

Table 1.1: An example of computer system performance data.

System Inputs Output

 Clock (MHz) Cache (kB) Transistors (M) Performance

1 1500 64 2 98

2 2000 128 2.5 134

...

i

n 1750 32 4.5 113

The first column in this table is the index number (or name) from 1 to n that we have arbitrarily assigned to each of the different
systems measured. Columns 2-4 are the input parameters. These are called the independent variables for the system we will be
modeling. The specific values of the

input parameters were set by the experimenter when the system was measured, or they were determined by the system
configuration. In either case, we know what the values are and we want to measure the performance obtained for these input values.
For example, in the first system, the processor’s clock was 1500 MHz, the cache size was 64 kbytes, and the processor contained 2
million transistors. The last column is the performance that was measured for this system when it executed a standard benchmark
program. We refer to this value as the output of the system. More technically, this is known as the system’s dependent variable or
the system’s response.

The goal of regression modeling is to use these n independent measurements to determine a mathematical function, f(), that
describes the relationship between the input parameters and the output, such as:

performance = f(Clock,Cache,Transistors)

This function, which is just an ordinary mathematical equation, is the regression model. A regression model can take on any form.
However, we will restrict ourselves to a function that is a linear combination of the input parameters. We will explain later that,
while the function is a linear combination of the input parameters, the parameters themselves do not need to be linear. This linear
combination is commonly used in regression modeling and is powerful enough to model most systems we are likely to encounter.

In the process of developing this model, we will discover how important each of these inputs are in determining the output value.
For example, we might find that the performance is heavily dependent on the clock frequency, while the cache size and the number
of transistors may be much less important. We may even find that some of the inputs have essentially no impact on the output
making it completely unnecessary to include them in the model. We also will be able to use the model we develop to predict the
performance we would expect to see on a system that has input values that did not exist in any of the systems that we actually
measured. For instance, Table 1.2 shows three new systems that were not part of the set of systems that we previously measured.
We can use our regression model to predict the performance of each of these three systems to replace the question marks in the
table.

Table 1.2: An example in which we want to predict the performance of new systems n + 1, n + 2, and n + 3 using the previously
measured results from the other n systems.

System Inputs Output

 Clock (MHz) Cache (kB) Transistors (M) Performance

1 1500 64 2 98

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4395?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.02%3A_What_is_a_Linear_Regression_Model%3F

1.2.2 https://stats.libretexts.org/@go/page/4395

2 2000 128 2.5 134

...

i

...

n 1750 32 4.5 113

n + 1 2500 256 2.8 ?

n + 2 1560 128 1.8 ?

n + 3 900 64 1.5 ?

As a final point, note that, since the regression model is a linear combination of the input values, the values of the model
parameters will automatically be scaled as we develop the model. As a result, the units used for the inputs and the output are
arbitrary. In fact, we can rescale the values of the inputs and the output before we begin the modeling process and still produce a
valid model.

This page titled 1.2: What is a Linear Regression Model? is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
David Lilja (University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts
platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4395?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.02%3A_What_is_a_Linear_Regression_Model%3F
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

1.3.1 https://stats.libretexts.org/@go/page/4396

1.3: What is R?
R is a computer language developed specifically for statistical computing. It is actually more than that, though. R provides a
complete environment for interacting with your data. You can directly use the functions that are provided in the environment to
process your data without writing a complete program. You also can write your own programs to perform operations that do not
have built-in functions, or to repeat the same task multiple times, for instance.

R is an object-oriented language that uses vectors and matrices as its basic operands. This feature makes it quite useful for
working on large sets of data using only a few lines of code. The R environment also provides excellent graphical tools for
producing complex plots relatively easily. And, perhaps best of all, it is free. It is an open source project developed by many
volunteers. You can learn more about the history of R, and download a copy to your own computer, from the R Project web site
[13].

As an example of using R, here is a copy of a simple interaction with the R environment. > x x [1] 2 4 6 8 10 12 14 16 > mean(x)
[1] 9 > var(x) [1] 24 > In this listing, the “>” character indicates that R is waiting for input. The line x <- c(2, 4, 6, 8, 10, 12, 14, 16)
concatenates all of the values in the argument into a vector and assigns that vector to the variable x. Simply typing x by itself
causes R to print the contents of the vector. Note that R treats vectors as a matrix with a single row. Thus, the “[1]” preceding the
values is R’s notation to show that this is the first row of the matrix x. The next line, mean(x), calls a function in R that computes
the arithmetic mean of the input vector, x. The function var(x) computes the corresponding variance.

This book will not make you an expert in programming using the R computer language. Developing good regression models is an
interactive process that requires you to dig in and play around with your data and your models. Thus, I am more interested in using
R as a computing environment for doing statistical analysis than as a programming language. Instead of teaching you the
language’s syntax and semantics directly, this tutorial will introduce what you need to know about R as you need it to perform the
specific steps to develop a regression model. You should already have some programming expertise so that you can follow the
examples in the remainder of the book. However, you do not need to be an expert programmer.

This page titled 1.3: What is R? is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja (University of
Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4396?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.03%3A_What_is_R%3F
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.03%3A_What_is_R%3F
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

1.4.1 https://stats.libretexts.org/@go/page/4397

1.4: What's Next?
Before beginning any sort of data analysis, you need to understand your data. Chapter 2 describes the sample data that will be used
in the examples throughout this tutorial, and how to read this data into the R environment. Chapter 3 introduces the simplest
regression model consisting of a single independent variable. The process used to develop a more complex regression model with
multiple independent input variables is explained in Chapter 4. Chapter 5 then shows how to use this multi-factor regression model
to predict the system response when given new input data. Chapter 6 explains in more detail the routines used to read a file
containing your data into the R environment. The process used to develop a multi-factor regression model is summarized in
Chapter 7 along with some suggestions for further reading. Finally, Chapter 8 provides some experiments you might want to try to
expand your understanding of the modeling process.

This page titled 1.4: What's Next? is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja (University
of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4397?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.04%3A_What's_Next%3F
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.04%3A_What's_Next%3F
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

1

CHAPTER OVERVIEW

2: Understand Your Data
Good data are the basis of any sort of regression model, because we use this data to actually construct the model. If the data is
flawed, the model will be flawed. It is the old maxim of garbage in, garbage out. Thus, the first step in regression modeling is to
ensure that your data is reliable. There is no universal approach to verifying the quality of your data, unfortunately. If you collect it
yourself, you at least have the advantage of knowing its provenance. If you obtain your data from somewhere else, though, you
depend on the source to ensure data quality. Your job then becomes verifying your source’s reliability and correctness as much as
possible.

2.1: Missing Values
2.2: Sanity Checking and Data Cleaning
2.3: The Example Data
2.4: Data Frames
2.5: Accessing a Data Frame

This page titled 2: Understand Your Data is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.01%3A_Missing_Values
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.02%3A_Sanity_Checking_and_Data_Cleaning
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.03%3A_The_Example_Data
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.04%3A_Data_Frames
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.05%3A_Accessing_a_Data_Frame
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

2.1.1 https://stats.libretexts.org/@go/page/4402

2.1: Missing Values
Any large collection of data is probably incomplete. That is, it is likely that there will be cells without values in your data table.
These missing values may be the result of an error, such as the experimenter simply forgetting to fill in a particular entry. They also
could be missing because that particular system configuration did not have that parameter available. For example, not every
processor tested in our example data had an L2 cache. Fortunately, R is designed to gracefully handle missing values. R uses the
notation NA to indicate that the corresponding value is not available.

Most of the functions in R have been written to appropriately ignore NA values and still compute the desired result. Sometimes,
however, you must explicitly tell the function to ignore the NA values. For example, calling the mean() function with an input
vector that contains NA values causes it to return NA as the result. To compute the mean of the input vector while ignoring the NA
values, you must explicitly tell the function to remove the NA values using mean(x, na.rm=TRUE).

This page titled 2.1: Missing Values is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4402?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.01%3A_Missing_Values
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.01%3A_Missing_Values
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

2.2.1 https://stats.libretexts.org/@go/page/4403

2.2: Sanity Checking and Data Cleaning
Regardless of where you obtain your data, it is important to do some sanity checks to ensure that nothing is drastically flawed. For
instance, you can check the minimum and maximum values of key input parameters (i.e., columns) of your data to see if anything
looks obviously wrong. One of the exercises in Chapter 8 encourages you explore other approaches for verifying your data. R also
provides good plotting functions to quickly obtain a visual indication of some of the key relationships in your data set. We will see
some examples of these functions in Section 3.1.

If you discover obvious errors or flaws in your data, you may have to eliminate portions of that data. For instance, you may find
that the performance reported for a few system configurations is hundreds of times larger than that of all of the other systems
tested. Although it is possible that this data is correct, it seems more likely that whoever recorded the data simply made a
transcription error. You may decide that you should delete those results from your data. It is important, though, not to throw out
data that looks strange without good justification. Sometimes the most interesting conclusions come from data that on first glance
appeared flawed, but was actually hiding an interesting and unsuspected phenomenon. This process of checking your data and
putting it into the proper format is often called data cleaning.

It also is always appropriate to use your knowledge of the system and the relationships between the inputs and the output to inform
your model building. For instance, from our experience, we expect that the clock rate will be a key parameter in any regression
model of computer systems performance that we construct. Consequently, we will want to make sure that our models include the
clock parameter. If the modeling methodology suggests that the clock is not important in the model, then using the methodology is
probably an error. We additionally may have deeper insights into the physical system that suggest how we should proceed in
developing a model. We will see a specific example of applying our insights about the effect of caches on system performance
when we begin constructing more complex models in Chapter 4.

These types of sanity checks help you feel more comfortable that your data is valid. However, keep in mind that it is impossible to
prove that your data is flawless. As a result, you should always look at the results of any regression modeling exercise with a
healthy dose of skepticism and think carefully about whether or not the results make sense. Trust your intuition. If the results don’t
feel right, there is quite possibly a problem lurking somewhere in the data or in your analysis.

This page titled 2.2: Sanity Checking and Data Cleaning is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
David Lilja (University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts
platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4403?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.02%3A_Sanity_Checking_and_Data_Cleaning
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.01%3A_Visualize_the_Data
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.02%3A_Sanity_Checking_and_Data_Cleaning
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

2.3.1 https://stats.libretexts.org/@go/page/4404

2.3: The Example Data
I obtained the input data used for developing the regression models in the subsequent chapters from the publicly available CPU DB
database [2]. This database contains design characteristics and measured performance results for a large collection of commercial
processors. The data was collected over many years and is nicely organized using a common format and a standardized set of
parameters. The particular version of the database used in this book contains information on 1,525 processors.

Many of the database’s parameters (columns) are useful in understanding and comparing the performance of the various processors.
Not all of these parameters will be useful as predictors in the regression models, however. For instance, some of the parameters,
such as the column labeled Instruction set width, are not available for many of the processors. Others, such as the Processor family,
are common among several processors and do not provide useful information for distinguishing among them. As a result, we can
eliminate these columns as possible predictors when we develop the regression model.

On the other hand, based on our knowledge of processor design, we know that the clock frequency has a large effect on
performance. It also seems likely that the parallelism-related parameters, specifically, the number of threads and cores, could have a
significant effect on performance, so we will keep these parameters available for possible inclusion in the regression model.

Technology-related parameters are those that are directly determined by the particular fabrication technology used to build the
processor. The number of transistors and the die size are rough indicators of the size and complexity of the processor’s logic. The
feature size, channel length, and FO4 (fanout-of-four) delay are related to gate delays in the processor’s logic. Because these
parameters both have a direct effect on how much processing can be done per clock cycle and effect the critical path delays, at least
some of these parameters could be important in a regression model that describes performance.

Finally, the memory-related parameters recorded in the database are the separate L1 instruction and data cache sizes, and the
unified L2 and L3 cache sizes. Because memory delays are critical to a processor’s performance, all of these memory-related
parameters have the potential for being important in the regression models.

The reported performance metric is the score obtained from the SPEC CPU integer and floating-point benchmark programs from
1992, 1995, 2000, and 2006 [6–8]. This performance result will be the regression model’s output. Note that performance results are
not available for every processor running every benchmark. Most of the processors have performance results for only those
benchmark sets that were current when the processor was introduced into the market. Thus, although there are more than 1,500
lines in the database representing more than 1,500 unique processor configurations, a much

This page titled 2.3: The Example Data is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4404?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.03%3A_The_Example_Data
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.03%3A_The_Example_Data
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

2.4.1 https://stats.libretexts.org/@go/page/4405

2.4: Data Frames
The fundamental object used for storing tables of data in R is called a data frame. We can think of a data frame as a way of
organizing data into a large table with a row for each system measured and a column for each parameter. An interesting and useful
feature of R is that all the columns in a data frame do not need to be the same data type. Some columns may consist of numerical
data, for instance, while other columns contain textual data. This feature is quite useful when manipulating large, heterogeneous
data files.

To access the CPU DB data, we first must read it into the R environment. R has built-in functions for reading data directly from
files in the csv (comma separated values) format and for organizing the data into data frames. The specifics of this reading process
can get a little messy, depending on how the data is organized in the file. We will defer the specifics of reading the CPU DB file
into R until Chapter 6. For now, we will use a function called extract_data(), which was specifically written for reading the CPU
DB file.

To use this function, copy both the all-data.csv and read-data.R files into a directory on your computer (you can download both of
these files from this book’s web site shown on p. ii). Then start the R environment and set the local directory in R to be this
directory using the File -> Change dir pull-down menu. Then use the File -> Source R code pull-down menu to read the read-
data.R file into R. When the R code in this file completes, you should have six new data frames in your R environment workspace:
int92.dat, fp92.dat, int95.dat, fp95.dat, int00.dat, fp00.dat, int06.dat, and fp06.dat.

The data frame int92.dat contains the data from the CPU DB database for all of the processors for which performance results were
available for the SPEC Integer 1992 (Int1992) benchmark program. Similarly, fp92.dat contains the data for the processors that
executed the Floating-Point 1992 (Fp1992) benchmarks, and so on. I use the .dat suffix to show that the corresponding variable
name is a data frame.

Simply typing the name of the data frame will cause R to print the entire table. For example, here are the first few lines printed
after I type int92.dat, truncated to fit within the page: nperf perf clock threads cores ... 1 9.662070 68.60000 100 1 1 ... 2 7.996196
63.10000 125 1 1 ... 3 16.363872 90.72647 166 1 1 ... 4 13.720745 82.00000 175 1 1 The first row is the header, which shows
the name of each column. Each subsequent row contains the data corresponding to an individual processor. The first column is the
index number assigned to the processor whose data is in that row. The next columns are the specific values recorded for that
parameter for each processor. The function head(int92.dat) prints out just the header and the first few rows of the corresponding
data frame. It gives you a quick glance at the data frame when you interact with your data.

Table 2.1shows the complete list of column names available in these data frames. Note that the column names are listed vertically
in this table, simply to make them fit on the page.

Table 2.1: The names and definitions of the columns in the data frames containing the data from CPU DB.

Column number Column name Definition

1 (blank) Processor index number

2 nperf Normalized performance

3 perf SPEC performance

4 clock Clock frequency (MHz)

5 threads Number of hardware threads available

6 cores Number of hardware cores available

7 TDP Thermal design power

8 transistors Number of transistors on the chip (M)

9 dieSize The size of the chip

10 voltage Nominal operating voltage

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4405?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.04%3A_Data_Frames

2.4.2 https://stats.libretexts.org/@go/page/4405

11 featureSize Fabrication feature size

12 channel Fabrication channel size

13 FO4delay Fan-out-four delay

14 L1icache Level 1 instruction cache size

15 L1dcache Level 1 data cache size

16 L2cache Level 2 cache size

17 L3cache Level 3 cache size

This page titled 2.4: Data Frames is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja (University
of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4405?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.04%3A_Data_Frames
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

2.5.1 https://stats.libretexts.org/@go/page/4406

2.5: Accessing a Data Frame
We access the individual elements in a data frame using square brackets to identify a specific cell. For instance, the following
accesses the data in the cell in row 15, column 12:

> int92.dat[15,12]
[1] 180

We can also access cells by name by putting quotes around the name:

 > int92.dat["71","perf"]
 [1] 105.1

This expression returns the data in the row labeled 71 and the column labeled perf . Note that this is not row 71, but rather
the row that contains the data for the processor whose name is 71 .

We can access an entire column by leaving the first parameter in the square brackets empty. For instance, the following prints the
value in every row for the column labeled clock :

> int92.dat[,"clock"]
[1] 100 125 166 175 190 ...

Similarly, this expression prints the values in all of the columns for row 36:

> int92.dat[36,]
nperf perf clock threads cores ...
36 13.07378 79.86399 80 1 1 ...

 The functions nrow() and ncol() return the number of rows and columns, respectively, in the data frame:

> nrow(int92.dat)
[1] 78
> ncol(int92.dat)
[1] 16

Because R functions can typically operate on a vector of any length, we can use built-in functions to quickly compute some useful
results. For example, the following expressions compute the minimum, maximum, mean, and standard deviation of the perf
 column in the int92.dat data frame:

> min(int92.dat[,"perf"])
[1] 36.7
> max(int92.dat[,"perf"])
[1] 366.857
> mean(int92.dat[,"perf"])
[1] 124.2859
> sd(int92.dat[,"perf"])
[1] 78.0974

This square-bracket notation can become cumbersome when you do a substantial amount of interactive computation within the R
environment. R provides an alternative notation using the $ symbol to more easily access a column. Repeating the previous
example using this notation:

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4406?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.05%3A_Accessing_a_Data_Frame

2.5.2 https://stats.libretexts.org/@go/page/4406

> min(int92.dat$perf)
[1] 36.7
> max(int92.dat$perf)
[1] 366.857
> mean(int92.dat$perf)
[1] 124.2859
> sd(int92.dat$perf)
[1] 78.0974

This notation says to use the data in the column named perf from the data frame named int92.dat . We can make yet a
further simplification using the attach function. This function makes the corresponding data frame local to the current
workspace, thereby eliminating the need to use the potentially awkward $ or square-bracket indexing notation. The following
example shows how this works:

> attach(int92.dat)

> min(perf)

[1] 36.7

> max(perf)

[1] 366.857

> mean(perf)

[1] 124.2859

> sd(perf)

[1] 78.0974

To change to a different data frame within your local workspace, you must first detach the current data frame:

> detach(int92.dat)
> attach(fp00.dat)
> min(perf)
[1] 87.54153
> max(perf)
[1] 3369
> mean(perf)
[1] 1217.282
> sd(perf)
[1] 787.4139

Now that we have the necessary data available in the R environment, and some understanding of how to access and manipulate this
data, we are ready to generate our first regression model.

This page titled 2.5: Accessing a Data Frame is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4406?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.05%3A_Accessing_a_Data_Frame
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

1

CHAPTER OVERVIEW

3: One-Factor Regression
The simplest linear regression model finds the relationship between one input variable, which is called the predictor variable, and
the output, which is called the system’s response. This type of model is known as a one-factor linear regression. To demonstrate the
regression-modeling process, we will begin developing a one-factor model for the SPEC Integer 2000 (Int2000) benchmark results
reported in the CPU DB data set. We will expand this model to include multiple input variables in this Chapter.

3.1: Visualize the Data
3.2: The Linear Model Function
3.3: Evaluating the Quality of the Model
3.4: Residual Analysis

This page titled 3: One-Factor Regression is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.01%3A_Visualize_the_Data
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.02%3A_The_Linear_Model_Function
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.03%3A_Evaluating_the_Quality_of_the_Model
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.04%3A_Residual_Analysis
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

3.1.1 https://stats.libretexts.org/@go/page/4409

3.1: Visualize the Data
The first step in this one-factor modeling process is to determine whether or not it looks as though a linear relationship exists
between the predictor and the output value. From our understanding of computer system design that is, from our domain-specific
knowledge we know that the clock frequency strongly influences a computer system’s performance. Consequently, we must look
for a roughly linear relationship between the processor’s performance and its clock frequency. Fortunately, R provides powerful
and flexible plotting functions that let us visualize this type relationship quite easily.

This R function call:

generates the plot shown in Figure 3.1. The first parameter in this function call is the value we will plot on the x-axis. In this case,
we will plot the clock values from the int00.dat data frame as the independent variable

Figure 3.1: A scatter plot of the performance of the processors that were tested using the Int2000 benchmark versus the clock
frequency.

on the x-axis. The dependent variable is the perf column from int00.dat , which we plot on the y-axis. The function
argument main="Int2000" provides a title for the plot, while xlab="Clock" and ylab="Performance" provide
labels for the xand y-axes, respectively.

This figure shows that the performance tends to increase as the clock frequency increases, as we expected. If we superimpose a
straight line on this scatter plot, we see that the relationship between the predictor (the clock frequency) and the output (the
performance) is roughly linear. It is not perfectly linear, however. As the clock frequency increases, we see a larger spread in
performance values. Our next step is to develop a regression model that will help us quantify the degree of linearity in the
relationship between the output and the predictor.

This page titled 3.1: Visualize the Data is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

> plot(int00.dat[,"clock"],int00.dat[,"perf"], main="Int2000", xlab="Clock", ylab="Pe

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4409?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.01%3A_Visualize_the_Data
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.01%3A_Visualize_the_Data
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

3.2.1 https://stats.libretexts.org/@go/page/4410

3.2: The Linear Model Function
We use regression models to predict a system’s behavior by extrapolating from previously measured output values when the system
is tested with known input parameter values. The simplest regression model is a straight line. It has the mathematical form:

y = a + a x

where x is the input to the system, a is the y-intercept of the line, a is the slope, and y is the output value the model predicts.

R provides the function lm() that generates a linear model from the data contained in a data frame. For this one-factor model, R
computes the values of a and a using the method of least squares. This method finds the line that most closely fits the measured
data by minimizing the distances between the line and the individual data points. For the data frame int00.dat , we compute
the model as follows:

> attach(int00.dat)
> int00.lm <lm(perf ~ clock)

The first line in this example attaches the int00.dat data frame to the current workspace. The next line calls the lm()
 function and assigns the resulting linear model object to the variable int00.lm. We use the suffix .lm to emphasize that
this variable contains a linear model. The argument in the lm() function, (perf ~ clock) , says that we want to find a
model where the predictor clock explains the output perf .

Typing the variable’s name, int00.lm , by itself causes R to print the argument with which the function lm() was called,
along with the computed coefficients for the regression model.

> int00.lm

Call:

lm(formula = perf ~ clock)

Coefficients:

(Intercept) clock

51.7871 0.5863

 In this case, the y-intercept is a = 51.7871 and the slope is a = 0.5863. Thus, the final regression model is:

Figure 3.1.

perf = 51.7871 + 0.5863 ∗ clock.

0 1 1

1 0 1

0 1

0 1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4410?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.02%3A_The_Linear_Model_Function

3.2.2 https://stats.libretexts.org/@go/page/4410

The following code plots the original data along with the fitted line, as shown in Figure 3.2. The function abline() is short
for (a,b)-line. It plots a line on the active plot window, using the slope and intercept of the linear model given in its argument.

> plot(clock,perf)
> abline(int00.lm)

This page titled 3.2: The Linear Model Function is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David
Lilja (University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4410?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.02%3A_The_Linear_Model_Function
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

3.3.1 https://stats.libretexts.org/@go/page/4411

3.3: Evaluating the Quality of the Model
The information we obtain by typing int00.lm shows us the regression model’s basic values, but does not tell us anything
about the model’s quality. In fact, there are many different ways to evaluate a regression model’s quality. Many of the techniques
can be rather technical, and the details of them are beyond the scope of this tutorial. However, the function summary() extracts
some additional information that we can use to determine how well the data fit the resulting model. When called with the model
object int00.lm as the argument, summary() produces the following information:

> summary(int00.lm)
Call:
lm(formula = perf ~ clock)
Residuals:
Min 1Q Median 3Q Max
-634.61 -276.17 -30.83 75.38 1299.52
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 51.78709 53.31513 0.971 0.332
clock 0.58635 0.02697 21.741 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 396.1 on 254 degrees of freedom
Multiple R-squared: 0.6505, Adjusted R-squared: 0.6491
F-statistic: 472.7 on 1 and 254 DF, p-value: < 2.2e-16

Let’s examine each of the items presented in this summary in turn.

> summary(int00.lm)
Call:
lm(formula = perf ~ clock)

 These first few lines simply repeat how the lm() function was called. It is useful to look at this information to verify that you
actually called the function as you intended.

Residuals:
 Min 1Q Median 3Q Max
 -634.61 -276.17 -30.83 75.38 1299.52

The residuals are the differences between the actual measured values and the corresponding values on the fitted regression line. In
Figure 3.2, each data point’s residual is the distance that the individual data point is above (positive residual) or below (negative
residual) the regression line. Min is the minimum residual value, which is the distance from the regression line to the point
furthest below the line. Similarly, Max is the distance from the regression line of the point furthest above the line. Median is
the median value of all of the residuals. The 1Q and 3Q values are the points that mark the first and third quartiles of all the
sorted residual values.

How should we interpret these values? If the line is a good fit with the data, we would expect residual values that are normally
distributed around a mean of zero. (Recall that a normal distribution is also called a Gaussian distribution.) This distribution
implies that there is a decreasing probability of finding residual values as we move further away from the mean. That is, a good
model’s residuals should be roughly balanced around and not too far away from the mean of zero. Consequently, when we look at
the residual values reported by summary() , a good model would tend to have a median value near zero, minimum and
maximum values of roughly the same magnitude, and first and third quartile values of roughly the same magnitude. For this model,

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4411?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.03%3A_Evaluating_the_Quality_of_the_Model

3.3.2 https://stats.libretexts.org/@go/page/4411

the residual values are not too far off what we would expect for Gaussian-distributed numbers. In Section 3.4, we present a simple
visual test to determine whether the residuals appear to follow a normal distribution.

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 51.78709 53.31513 0.971 0.332
clock 0.58635 0.02697 21.741 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This portion of the output shows the estimated coefficient values. These values are simply the fitted regression model values from
Equation 3.2. The Std. Error column shows the statistical standard error for each of the coefficients. For a good model, we
typically would like to see a standard error that is at least five to ten times smaller than the corresponding coefficient. For example,
the standard error for clock is 21.7 times smaller than the coefficient value (0.58635/0.02697 = 21.7). This large ratio means
that there is relatively little variability in the slope estimate, a . The standard error for the intercept, a , is 53.31513, which is
roughly the same as the estimated value of 51.78709 for this coefficient. These similar values suggest that the estimate of this
coefficient for this model can vary significantly.

The last column, labeled Pr(>|t|) , shows the probability that the corresponding coefficient is not relevant in the model. This
value is also known as the significance or p-value of the coefficient. In this example, the probability that clock is not relevant
in this model is 2 × 10−16 a tiny value. The probability that the intercept is not relevant is 0.332, or about a one-inthree chance that
this specific intercept value is not relevant to the model. There is an intercept, of course, but we are again seeing indications that the
model is not predicting this value very well.

The symbols printed to the right in this summary that is, the asterisks, periods, or spaces are intended to give a quick visual check
of the coefficients’ significance. The line labeled Signif. codes: gives these symbols’ meanings. Three asterisks (***)
means 0 < p ≤ 0.001, two asterisks (**) means 0.001 < p ≤ 0.01, and so on.

R uses the column labeled t value to compute the p-values and the corresponding significance symbols. You probably will
not use these values directly when you evaluate your model’s quality, so we will ignore this column for now.

Residual standard error: 396.1 on 254 degrees of freedom
Multiple R-squared: 0.6505, Adjusted R-squared: 0.6491
F-statistic: 472.7 on 1 and 254 DF, p-value: < 2.2e-16

These final few lines in the output provide some statistical information about the quality of the regression model’s fit to the data.
The Residual standard error is a measure of the total variation in the residual values. If the residuals are distributed normally,
the first and third quantiles of the previous residuals should be about 1.5 times this standard error .

The number of degrees of freedom is the total number of measurements or observations used to generate the model,
minus the number of coefficients in the model. This example had 256 unique rows in the data frame, corresponding to 256
independent measurements. We used this data to produce a regression model with two coefficients: the slope and the intercept.
Thus, we are left with (256 2 = 254) degrees of freedom.

The Multiple R-squared value is a number between 0 and 1. It is a statistical measure of how well the model describes the
measured data. We compute it by dividing the total variation that the model explains by the data’s total variation. Multiplying this
value by 100 gives a value that we can interpret as a percentage between 0 and 100. The reported R of 0.6505 for this model
means that the model explains 65.05 percent of the data’s variation. Random chance and measurement errors creep in, so the
model will never explain all data variation. Consequently, you should not ever expect an R value of exactly one. In general, values
of R2 that are closer to one indicate a better-fitting model. However, a good model does not necessarily require a large R value. It
may still accurately predict future observations, even with a small R value.

The Adjusted R-squared value is the R value modified to take into account the number of predictors used in the model.
The adjusted R is always smaller than the R value. We will discuss the meaining of the adjusted R in Chapter 4, when we present
regression models that use more than one predictor.

1 0

2

2

2

2

2

2 2 2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4411?pdf

3.3.3 https://stats.libretexts.org/@go/page/4411

The final line shows the F-statistic . This value compares the current model to a model that has one fewer parameters.
Because the one-factor model already has only a single parameter, this test is not particularly useful in this case. It is an interesting
statistic for the multi-factor models, however, as we will discuss later.

This page titled 3.3: Evaluating the Quality of the Model is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
David Lilja (University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts
platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4411?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.03%3A_Evaluating_the_Quality_of_the_Model
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

3.4.1 https://stats.libretexts.org/@go/page/4412

3.4: Residual Analysis
The summary() function provides a substantial amount of information to help us evaluate a regression model’s fit to the data
used to develop that model. To dig deeper into the model’s quality, we can analyze some additional information about the observed
values compared to the values that the model predicts. In particular, residual analysis examines these residual values to see what
they can tell us about the model’s quality.

Recall that the residual value is the difference between the actual measured value stored in the data frame and the value that the
fitted regression line predicts for that corresponding data point. Residual values greater than zero mean that the regression model
predicted a value that was too small compared to the actual measured value, and negative values indicate that the regression model
predicted a value that was too large. A model that fits the data well would tend to over-predict as often as it under-predicts. Thus, if
we plot the residual values, we would expect to see them distributed uniformly around zero for a well-fitted model.

The following function calls produce the residuals plot for our model, shown in Figure 3.3.

> plot(fitted(int00.lm),resid(int00.lm))

Figure 3.3: The residual values versus the input values for the one-factor model developed using the Int2000 data.

In this plot, we see that the residuals tend to increase as we move to the right. Additionally, the residuals are not uniformly scattered
above and below zero. Overall, this plot tells us that using the clock as the sole predictor in the regression model does not
sufficiently or fully explain the data. In general, if you observe any sort of clear trend or pattern in the residuals, you probably need
to generate a better model. This does not mean that our simple one-factor model is useless, though. It only means that we may be
able to construct a model that produces tighter residual values and better predictions.

Another test of the residuals uses the quantile-versus-quantile, or Q-Q, plot. Previously we said that, if the model fits the data well,
we would expect the residuals to be normally (Gaussian) distributed around a mean of zero. The Q-Q plot provides a nice visual
indication of whether the residuals from the model are normally distributed. The following function calls generate the Q-Q plot
shown in Figure 3.4:

> qqnorm(resid(int00.lm))
> qqline(resid(int00.lm))

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4412?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.04%3A_Residual_Analysis

3.4.2 https://stats.libretexts.org/@go/page/4412

Figure 3.4: The Q-Q plot for the one-factor model developed using the Int2000 data.

If the residuals were normally distributed, we would expect the points plotted in this figure to follow a straight line. With our
model, though, we see that the two ends diverge significantly from that line. This behavior indicates that the residuals are not
normally distributed. In fact, this plot suggests that the distribution’s tails are “heavier” than what we would expect from a normal
distribution. This test further confirms that using only the clock as a predictor in the model is insufficient to explain the data.

Our next step is to learn to develop regression models with multiple input factors. Perhaps we will find a more complex model that
is better able to explain the data.

This page titled 3.4: Residual Analysis is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4412?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.04%3A_Residual_Analysis
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

1

CHAPTER OVERVIEW

4: Multi-factor Regression
A multi-factor regression model is a generalization of the simple one- factor regression model discussed in Chapter 3. It
has n factors with the form:

y = a + a x + a x + ...a x ,

where the x values are the inputs to the system, the ai coefficients are the model parameters computed from the measured data,
and y is the output value predicted by the model. Everything we learned in Chapter 3 for one- factor models also applies to the
multi-factor models. To develop this type of multi-factor regression model, we must also learn how to select specific predictors to
include in the model

4.1: Visualizing the Relationships in the Data
4.2: Identifying Potential Predictors
4.3: The Backward Elimination Process
4.4: An Example of the Backward Elimination Process
4.5: Residual Analysis
4.6: When Things Go Wrong

This page titled 4: Multi-factor Regression is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

0 1 1 2 2 n n

i

https://libretexts.org/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.01%3A_Visualizing_the_Relationships_in_the_Data
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.02%3A_Identifying_Potential_Predictors
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.03%3A_The_Backward_Elimination_Process
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.04%3A_An_Example_of_the_Backward_Elimination_Process
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.05%3A_Residual_Analysis
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.06%3A_When_Things_Go_Wrong
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

4.1.1 https://stats.libretexts.org/@go/page/4416

4.1: Visualizing the Relationships in the Data
Before beginning model development, it is useful to get a visual sense of the relationships within the data. We can do this easily
with the following function call:

> pairs(int00.dat, gap=0.5)

The pairs() function produces the plot shown in Figure 4.1. This plot provides a pairwise comparison of all the data in the
 int00.dat data frame. The gap parameter in the function call controls the spacing between the individual plots. Set it to

zero to eliminate any space between plots.

As an example of how to read this plot, locate the box near the upper left corner labeled perf . This is the value of the
performance measured for the int00.dat data set. The box immediately to the right of this one is a scatter

Figure 4.1: All of the pairwise comparisons for the Int2000 data frame.

plot, with perf data on the vertical axis and clock data on the horizontal axis. This is the same information we previously
plotted in Figure 3.1. By scanning through these plots, we can see any obviously significant relationships between the variables.
For example, we quickly observe that there is a somewhat proportional relationship between perf and clock . Scanning
down the perf column, we also see that there might be a weakly inverse relationship between perf and featureSize .

Notice that there is a perfect linear correlation between perf and nperf . This relationship occurs because nperf is a
simple rescaling of perf . The reported benchmark performance values in the database that is, the perf values use different
scales for different benchmarks. To directly compare the values that our models will predict, it is useful to rescale perf to the
range [0,100]. Do this quite easily, using this R code:

max_perf = max(perf)
min_perf = min(perf)
range = max_perf min_perf
nperf = 100 * (perf min_perf) / range

Note that this rescaling has no effect on the models we will develop, because it is a linear transformation of perf . For
convenience and consistency, we use nperf in the remainder of this tutorial.

This page titled 4.1: Visualizing the Relationships in the Data is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by David Lilja (University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts
platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4416?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.01%3A_Visualizing_the_Relationships_in_the_Data
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.01%3A_Visualizing_the_Relationships_in_the_Data
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

4.2.1 https://stats.libretexts.org/@go/page/4417

4.2: Identifying Potential Predictors
The first step in developing the multi-factor regression model is to identify all possible predictors that we could include in the
model. To the novice model developer, it may seem that we should include all factors available in the data as predictors, because
more information is likely to be better than not enough information. However, a good regression model explains the relationship
between a system’s inputs and output as simply as possible. Thus, we should use the smallest number of predictors necessary to
provide good predictions. Furthermore, using too many or redundant predictors builds the random noise in the data into the model.
In this situation, we obtain an over-fitted model that is very good at predicting the outputs from the specific input data set used
to train the model. It does not accurately model the overall system’s response, though, and it will not appropriately predict the
system output for a broader range of inputs than those on which it was trained. Redundant or unnecessary predictors also can lead
to numerical instabilities when computing the coefficients.

We must find a balance between including too few and too many predictors. A model with too few predictors can produce biased
predictions. On the other hand, adding more predictors to the model will always cause the R value to increase. This can confuse
you into thinking that the additional predictors generated a better model. In some cases, adding a predictor will improve the model,
so the increase in the R value makes sense. In some cases, however, the R value increases simply because we’ve better modeled
the random noise.

The adjusted R attempts to compensate for the regular R ’s behavior by changing the R value according to the number of
predictors in the model. This adjustment helps us determine whether adding a predictor improves the fit of the model, or whether it
is simply modeling the noise better. It is computed as:

where n is the number of observations and m is the number of predictors in the model. If adding a new predictor to the model
increases the previous model’s R value by more than we would expect from random fluctuations, then the adjusted R will
increase. Conversely, it will decrease if removing a predictor decreases the R by more than we would expect due to random
variations. Recall that the goal is to use as few predictors as possible, while still producing a model that explains the data well.

Because we do not know a priori which input parameters will be useful predictors, it seems reasonable to start with all of the
columns available in the measured data as the set of potential predictors. We listed all of the column names in Table 2.1. Before we
throw all these columns into the modeling process, though, we need to step back and consider what we know about the underlying
system, to help us find any parameters that we should obviously exclude from the start.

There are two output columns: perf and nperf . The regression model can have only one output, however, so we must
choose only one column to use in our model development process. As discussed in Section 4.1, nperf is a linear transformation
of perf that shifts the output range to be between 0 and 100. This range is useful for quickly obtaining a sense of future
predictions’ quality, so we decide to use nperf as our model’s output and ignore the perf column.

Almost all the remaining possible predictors appear potentially useful in our model, so we keep them available as potential
predictors for now. The only exception is TDP . The name of this factor, thermal design power, does not clearly indicate whether
this could be a useful predictor in our model, so we must do a little additional research to understand it better. We discover [10] that
thermal design power is “the average amount of power in watts that a cooling system must dissipate. Also called the ‘thermal
guideline’ or ‘thermal design point,’ the TDP is provided by the chip manufacturer to the system vendor, who is expected to build a
case that accommodates the chip’s thermal requirements.” From this definition, we conclude that TDP is not really a parameter
that will directly affect performance. Rather, it is a specification provided by the processor’s manufacturer to ensure that the system
designer includes adequate cooling capability in the final product. Thus, we decide not to include TDP as a potential predictor in
the regression model.

In addition to excluding some apparently unhelpful factors (such as TDP) at the beginning of the model development process, we
also should consider whether we should include any additional parameters. For example, the terms in a regression model add
linearly to produce the predicted output. However, the individual terms themselves can be nonlinear, such as a x ,where m
 does not have to be equal to one.This flexibility lets us include additional powers of the individual factors. We should include these
non-linear terms, though, only if we have some physical reason to suspect that the output could be a nonlinear function of a
particular input.

For example, we know from our prior experience modeling processor performance that empirical studies have suggested that cache
miss rates are roughly proportional to the square root of the cache size [5]. Consequently, we will include terms for the square root

2

2 2

2 2 2

 = 1− (1−)R

2

adjusted

n−1

n−m

R

2

2 2

2

i i
m

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4417?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.02%3A_Identifying_Potential_Predictors

4.2.2 https://stats.libretexts.org/@go/page/4417

(m = 1/2) of each cache size as possible predictors. We must also include first-degree terms (m = 1) of each cache size as possible
predictors. Finally, we notice that only a few of the entries in the int00.dat data frame include values for the L3 cache, so we
decide to exclude the L3 cache size as a potential predictor. Exploiting this type of domain-specific knowledge when selecting
predictors ultimately can help produce better models than blindly applying the model development process.

The final list of potential predictors that we will make available for the model development process is shown in Table 4.1.

Table 4.1: The list of potential predictors to be used in the model development process.

This page titled 4.2: Identifying Potential Predictors is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David
Lilja (University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4417?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.02%3A_Identifying_Potential_Predictors
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

4.3.1 https://stats.libretexts.org/@go/page/4418

4.3: The Backward Elimination Process
We are finally ready to develop the multi-factor linear regression model for the int00.dat data set. As mentioned in the
previous section, we must find the right balance in the number of predictors that we use in our model. Too many predictors will
train our model to follow the data’s random variations (noise) too closely. Too few predictors will produce a model that may not be
as accurate at predicting future values as a model with more predictors.

We will use a process called backward elimination [1] to help decide which predictors to keep in our model and which to exclude.
In backward elimination, we start with all possible predictors and then use lm() to compute the model. We use the
summary() function to find each predictor’s significance level. The predictor with the least significance has the largest p-

value. If this value is larger than our predetermined significance threshold, we remove that predictor from the model and start over.
A typical threshold for keeping predictors in a model is p = 0.05, meaning that there is at least a 95 percent chance that the
predictor is meaningful. A threshold of p = 0.10 also is not unusual. We repeat this process until the significance levels of all of the
predictors remaining in the model are below our threshold.

All of these approaches have their advantages and disadvantages, their supporters and detractors. I prefer the backward elimination
process because it is usually straightforward to determine which factor we should drop at each step of the process. Determining
which factor to try at each step is more difficult with forward selection. Backward elimination has a further advantage, in that
several factors together may have better predictive power than any subset of these factors. As a result, the backward elimination
process is more likely to include these factors as a group in the final model than is the forward selection process.

The automated procedures have a very strong allure because, as technologically savvy individuals, we tend to believe that this type
of automated process will likely test a broader range of possible predictor combinations than we could test manually. However,
these automated procedures lack intuitive insights into the underlying physical nature of the system being modeled. Intuition can
help us answer the question of whether this is a reasonable model to construct in the first place.

As you develop your models, continually ask yourself whether the model “makes sense.” Does it make sense that factor i is
included but factor j is excluded? Is there a physical explanation to support the inclusion or exclusion of any potential factor?
Although the automated methods can simplify the process, they also make it too easy for you to forget to think about whether or
not each step in the modeling process makes sense.

This page titled 4.3: The Backward Elimination Process is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
David Lilja (University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts
platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4418?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.03%3A_The_Backward_Elimination_Process
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.03%3A_The_Backward_Elimination_Process
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

4.4.1 https://stats.libretexts.org/@go/page/4419

4.4: An Example of the Backward Elimination Process
We previously identified the list of possible predictors that we can include in our models, shown in Table 4.1. We start the
backward elimination process by putting all these potential predictors into a model for the int00.dat data frame using the
 lm() function.

> int00.lm <lm(nperf ~ clock + threads + cores + transistors +
dieSize + voltage + featureSize + channel + FO4delay + L1icache +
sqrt(L1icache) + L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache),
data=int00.dat)

This function call assigns the resulting linear model object to the variable int00.lm . As before, we use the suffix .lm to
remind us that this variable is a linear model developed from the data in the corresponding data frame, int00.dat . The
arguments in the function call tell lm() to compute a linear model that explains the output nperf as a function of the
predictors separated by the “+” signs. The argument data=int00.dat explicitly passes to the lm() function the name of
the data frame that should be used when developing this model. This data= argument is not necessary if we attach() the
data frame int00.dat to the current workspace. However, it is useful to explicitly specify the data frame that lm() should
use, to avoid confusion when you manipulate multiple models simultaneously.

The summary() function gives us a great deal of information about the linear model we just created:

> summary(int00.lm)
Call:
lm(formula = nperf ~ clock + threads + cores + transistors + dieSize +
voltage + featureSize + channel + FO4delay + L1icache + sqrt(L1icache) +
L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache), data = int00.dat)
Residuals:
Min 1Q Median 3Q Max
-10.804 -2.702 0.000 2.285 9.809

Coefficients:
 Estimate Std. Error t value Pr(>
(Intercept) -2.108e+01 7.852e+01 -0.268 0.78
clock 2.605e-02 1.671e-03 15.594 < 2e
threads -2.346e+00 2.089e+00 -1.123 0.26
cores 2.246e+00 1.782e+00 1.260 0.21
transistors -5.580e-03 1.388e-02 -0.402 0.68
dieSize 1.021e-02 1.746e-02 0.585 0.56
voltage -2.623e+01 7.698e+00 -3.408 0.00
freatureSize 3.101e+01 1.122e+02 0.276 0.78
channel 9.496e+01 5.945e+02 0.160 0.87
FO4delay -1.765e-02 1.600e+00 -0.011 0.99
L1icache 1.102e+02 4.206e+01 2.619 0.01
sqrt(L1icache) -7.390e+02 2.980e+02 -2.480 0.01
L1dcache -1.114e+02 4.019e+01 -2.771 0.00
sqrt(L1dcache) 7.492e+02 2.739e+02 2.735 0.00
L2cache -9.684e-03 1.745e-03 -5.550 6.57e
sqrt(L2cache) 1.221e+00 2.425e-01 5.034 4.54e

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4.632 on 61 degrees of freedom (179 observations deleted due
Multiple R-squared: 0.9652, Adjusted R-squared: 0.9566 F-statistic: 112.8 on 15 and 6

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4419?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.04%3A_An_Example_of_the_Backward_Elimination_Process

4.4.2 https://stats.libretexts.org/@go/page/4419

Notice a few things in this summary: First, a quick glance at the residuals shows that they are roughly balanced around a median of
zero, which is what we like to see in our models. Also, notice the line, (
179 observations deleted due to missingness). This tells us that in 179 of the rows in the data frame that is, in

179 of the processors for which performance results were reported for the Int2000 benchmark some of the values in the columns
that we would like to use as potential predictors were missing. These NA values caused R to automatically remove these data rows
when computing the linear model.

The total number of observations used in the model equals the number of degrees of freedom remaining 61 in this case plus the
total number of predictors in the model. Finally, notice that the R and adjusted R values are relatively close to one, indicating that
the model explains the nperf values well. Recall, however, that these large R values may simply show us that the model is
good at modeling the noise in the measurements. We must still determine whether we should retain all these potential predictors in
the model.

To continue developing the model, we apply the backward elimination procedure by identifying the predictor with the largest p-
value that exceeds our predetermined threshold of p = 0.05. This predictor is FO4delay , which has a p-value of 0.99123. We
can use the update() function to eliminate a given predictor and recompute the model in one step. The notation “.~.” means
that update() should keep the left and right-hand sides of the model the same. By including “ - FO4delay , ”we also tell
it to remove that predictor from the model, as shown in the following:

We repeat this process by removing the next potential predictor with the largest p-value that exceeds our predetermined threshold,
featureSize . As we repeat this process, we obtain the following sequence of possible models.

Remove featureSize :

> int00.lm <- update(int00.lm, .~. - FO4delay, data = int00.dat) > summary(int00.lm)
Call:
lm(formula = nperf ~ clock + threads + cores + transistors +
dieSize + voltage + featureSize + channel + L1icache + sqrt(L1icache) +
L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache), data = int00.dat)
Residuals:
 Min 1Q Median 3Q Max
-10.795 -2.714 0.000 2.283 9.809

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.088e+01 7.584e+01 -0.275 0.783983
clock 2.604e-02 1.563e-03 16.662 < 2e-16 ***
threads -2.345e+00 2.070e+00 -1.133 0.261641
cores 2.248e+00 1.759e+00 1.278 0.206080
transistors -5.556e-03 1.359e-02 -0.409 0.684020
dieSize 1.013e-02 1.571e-02 0.645 0.521488
voltage -2.626e+01 7.302e+00 -3.596 0.000642 ***
featureSize 3.104e+01 1.113e+02 0.279 0.781232
channel 8.855e+01 1.218e+02 0.727 0.469815
L1icache 1.103e+02 4.041e+01 2.729 0.008257 **
sqrt(L1icache) -7.398e+02 2.866e+02 -2.581 0.012230 *
L1dcache -1.115e+02 3.859e+01 -2.889 0.005311 **
sqrt(L1dcache) 7.500e+02 2.632e+02 2.849 0.005937 **
L2cache -9.693e-03 1.494e-01 -6.488 1.64e-08 ***
sqrt(L2cache) 1.222e+00 1.975e-01 6.189 5.33e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4.594 on 62 degrees of freedom (179 observations deleted due
Multiple R-squared: 0.9652, Adjusted R-squared: 0.9573 F-statistic: 122.8 on 14 and 6

2 2

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4419?pdf

4.4.3 https://stats.libretexts.org/@go/page/4419

Remove transistors:

> int00.lm <- update(int00.lm, .~. - featureSize, data=int00.dat)
> summary(int00.lm)

Call:
lm(formula = nperf ~ clock + threads + cores + transistors + dieSize +
voltage + channel + L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) +
L2cache + sqrt(L2cache), data = int00.dat)

Residuals:
 Min 1Q Median 3Q Max
-10.5548 -2.6442 0.0937 2.2010 10.0264

Coefficients:
 Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.129e+01 6.554e+01 -0.477 0.634666
clock 2.591e-02 1.471e-03 17.609 < 2e-16 ***
threads -2.447e+00 2.022e+00 -1.210 0.230755
cores 1.901e+00 1.233e+00 1.541 0.128305
transistors -5.366e-03 1.347e-02 -0.398 0.691700
dieSize 1.325e-02 1.097e-02 1.208 0.231608
voltage -2.519e+01 6.182e+00 -4.075 0.000131 ***
channel 1.188e+02 5.504e+01 2.158 0.034735 *
L1icache 1.037e+02 3.255e+01 3.186 0.002246 **
sqrt(L1icache) -6.930e+02 2.307e+02 -3.004 0.003818 **
L1icache -1.052e+02 3.106e+01 -3.387 0.001223 **
sqrt(L1dcache) 7.069e+02 2.116e+02 3.341 0.001406 **
L2cache -9.548e-03 1.390e-03 -6.870 3.37e-09 ***
sqrt(L2cache) 1.202e+00 1.821e-01 6.598 9.96e-09 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4.56 on 63 degrees of freedom
(179 observations deleted due to missingness)
Multiple R-squared: 0.9651, Adjusted R-squared: 0.958
F-statistic: 134.2 on 13 and 63 DF, p-value: < 2.2e-16

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4419?pdf

4.4.4 https://stats.libretexts.org/@go/page/4419

> int00.lm <- update(int00.lm, .~. - transistors, data=int00.dat)
> summary(int00.lm)
Call:
lm(formula = nperf ~ clock + threads + cores + dieSize + voltage + channel +
L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache),
data = int00.dat)
Residuals:
 Min 1Q Median 3Q Max
-9.8861 -3.0801 -0.1871 2.4534 10.4863

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.789e+01 4.318e+01 -1.804 0.075745 .
clock 2.566e-02 1.422e-03 18.040 < 2e-16 ***
threads -1.801e+00 1.995e+00 -0.903 0.369794
cores 1.805e+00 1.132e+00 1.595 0.115496
dieSize 1.111e-02 8.807e-03 1.262 0.211407
voltage -2.379e+01 5.734e+00 -4.148 9.64e-05 ***
channel 1.512e+02 3.918e+01 3.861 0.000257 ***
L1icache 8.159e+01 2.006e+01 4.067 0.000128 ***
sqrt(L1icache) -5.386e+02 1.418e+02 -3.798 0.000317 ***
L1dcache -8.422e+01 1.914e+01 -4.401 3.96e-05 ***
sqrt(L1dcache) 5.671e+02 1.299e+02 4.365 4.51e-05 ***
L2cache -8.700e-03 1.262e-03 -6.893 2.35e-09 ***
sqrt(L2cache) 1.069e+00 1.654e-01 6.465 1.36e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4.578 on 67 degrees of freedom
(176 observations deleted due to missingness)
Multiple R-squared: 0.9657, Adjusted R-squared: 0.9596
F-statistic: 157.3 on 12 and 67 DF, p-value: < 2.2e-16

Remove threads:

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4419?pdf

4.4.5 https://stats.libretexts.org/@go/page/4419

Remove dieSize:

> int00.lm <- update(int00.lm, .~. - threads, data=int00.dat)
> summary(int00.lm)

Call:
lm(formula = nperf ~ clock + cores + dieSize + voltage + channel + L1icache +
sqrt(L1icache) + L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache), data = int00.da

Residuals:
 Min 1Q Median 3Q Max
-9.7388 -3.2326 0.1496 2.6633 10.6255

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.022e+01 4.304e+01 -1.864 0.066675 .
clock 2.552e-02 1.412e-03 18.074 <2e-16 ***
cores 2.271e+00 1.006e+00 2.257 0.027226 *
dieSize 1.281e-02 8.592e-03 1.491 0.140520
voltage -2.299e+01 5.657e+00 -4.063 0.000128 ***
channel 1.491e+02 3.905e+01 3.818 0.000293 ***
L1icache 8.131e+01 2.003e+01 4.059 0.000130 ***
sqrt(L1icache) -5.356e+02 1.416e+02 -3.783 0.000329 ***
L1dcache -8.388e+01 1.911e+01 -4.390 4.05e-05 ***
sqrt(L1dcache) 5.637e+02 1.297e+02 4.346 4.74e-05 ***
L2cache -8.567e-03 1.252e-03 -6.844 2.71e-09
sqrt(L2cache). 1.040e+00 1.619e-01 6.422 1.54e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.572 on 68 degrees of freedom
(176 observations deleted due to missingness)
Multiple R-squared: 0.9653, Adjusted R-squared: 0.9597
F-statistic: 172 on 11 and 68 DF, p-value: < 2.2e-16

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4419?pdf

4.4.6 https://stats.libretexts.org/@go/page/4419

At this point, the p-values for all of the predictors are less than 0.02, which is less than our predetermined threshold of 0.05. This
tells us to stop the backward elimination process. Intuition and experience tell us that ten predictors are a rather large number to use
in this type of model. Nevertheless, all of these predictors have p-values below our significance threshold, so we have no reason to
exclude any specific predictor. We decide to include all ten predictors in the final model:

Looking back over the sequence of models we developed, notice that the number of degrees of freedom in each subsequent model
increases as predictors are excluded, as expected. In some cases, the number of degrees of freedom increases by more than one
when only a single predictor is eliminated from the model. To understand how an increase of more than one is possible, look at the
sequence of values in the lines labeled the number of observations dropped due to missingness . These
values show how many rows the update() function dropped because the value for one of the predictors in those rows was
missing and had the NA value. When the backward elimination process removed that predictor from the model, at least some of
those rows became ones we can use in computing the next version of the model, thereby increasing the number of degrees of
freedom.

Also notice that, as predictors drop from the model, the R values stay very close to 0.965. However, the adjusted R value tends to
increase very slightly with each dropped predictor. This increase indicates that the model with fewer predictors and more degrees of
freedom tends to explain the data slightly better than the previous model, which had one more predictor. These changes

> int00.lm <- update(int00.lm, .~. - dieSize, data=int00.dat)
> summary(int00.lm)
Call:
lm(formula = nperf ~ clock + cores + voltage + channel + L1icache + sqrt(L1icache) +
L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache), data = int00.dat)

Residuals:
 Min 1Q Median 3Q Max
-10.0240 -3.5195 0.3577 2.5486 12.0545

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.822e+01 3.840e+01 -1.516 0.133913
clock 2.482e-02 1.246e-03 19.922 < 2e-16 ***
cores 2.397e+00 1.004e+00 2.389 0.019561 *
voltage -2.358e+01 5.495e+00 -4.291 5.52e-05 ***
channel 1.399e+02 3.960e+01 3.533 0.000726 ***
L1icache 8.703e+01 1.972e+01 4.412 3.57e-05 ***
sqrt(L1icache) -5.768e+02 1.391e+02 -4.146 9.24e-05 ***
L1dcache -8.903e+01 1.888e+01 -4.716 1.17e-05 ***
sqrt(L1dcache) 5.980e+02 1.282e+02 4.665 1.41e-05 ***
L2cache -8.621e-03 1.273e-03 -6.772 3.07e-09 ***
sqrt(L2cache) 1.085e+00 1.645e-01 6.598 6.36e-09 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.683 on 71 degrees of freedom
(174 observations deleted due to missingness)
Multiple R-squared: 0.9641, Adjusted R-squared: 0.959
F-statistic: 190.7 on 10 and 71 DF, p-value: < 2.2e-16

nperf= −58.22+0.02482c loc k+2.397cores

−23.58voltage+139.9 channel +87.03L1icache

−576.8 −89.03L1dcache+598L1icache

− −−−−−−

√

L1dcache

− −−−−−−−

√

−0.008621L2cache+1.085 L2cache

− −−−−−−

√

2 2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4419?pdf

4.4.7 https://stats.libretexts.org/@go/page/4419

in R values are very small, though, so we should not read too much into them. It is possible that these changes are simply due to
random data fluctuations. Nevertheless, it is nice to see them behaving as we expect.

Roughly speaking, the F-test compares the current model to a model with one fewer predictor. If the current model is better than the
reduced model, the p-value will be small. In all of our models, we see that the p-value for the F-test is quite small and consistent
from model to model. As a result, this F-test does not particularly help us discriminate between potential models.

This page titled 4.4: An Example of the Backward Elimination Process is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by David Lilja (University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the
LibreTexts platform.

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4419?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.04%3A_An_Example_of_the_Backward_Elimination_Process
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

4.5.1 https://stats.libretexts.org/@go/page/4420

4.5: Residual Analysis
To check the validity of the assumptions used to develop our model, we can again apply the residual analysis techniques that we
used to examine the one-factor model in Section 3.4.

This function call:

> plot(fitted(int00.lm),resid(int00.lm))

produces the plot shown in Figure 4.2. We see that the residuals appear to be somewhat uniformly scattered about zero. At least, we
do not see any obvious patterns that lead us to think that the residuals are not well behaved. Consequently, this plot gives us no
reason to believe that we have produced a poor model.

 The Q-Q plot in Figure 4.3 is generated using these commands:

> qqnorm(resid(int00.lm))
> qqline(resid(int00.lm))

We see the that residuals roughly follow the indicated line. In this plot, we can see a bit more of a pattern and some obvious
nonlinearities, leading us to be slightly more cautious about concluding that the residuals are

Figure 4.2: The fitted versus residual values for the multi-factor model developed from the Int2000 data.

normally distributed. We should not necessarily reject the model based on this one test, but the results should serve as a reminder
that all models are imperfect.

This page titled 4.5: Residual Analysis is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4420?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.05%3A_Residual_Analysis
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.05%3A_Residual_Analysis
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

4.6.1 https://stats.libretexts.org/@go/page/4421

4.6: When Things Go Wrong
Sometimes when we try to develop a model using the backward elimination process, we get results that do not appear to make any
sense. For an example, let’s try to develop a multi-factor regression model for the Int1992 data using this process. As before, we
begin by including all of the potential predictors from Table 4.1 in the model. When we try that for Int1992, however, we obtain the
following result:

> int92.lm<-lm(nperf ~ clock + threads + cores + transistors + dieSize + voltage + fe
channel + FO4delay + L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) + L2cache
> summary(int92.lm)

Call:
lm(formula = nperf ~ clock + threads + cores + transistors +
 dieSize + voltage + featureSize + channel + FO4delay +
 L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) +
 L2cache + sqrt(L2cache))

Residuals:
 14 15 16 17 18 19
0.4096 1.3957 -2.3612 0.1498 -1.5513 1.9575
Coefficients: (14 not defined because of singularities)
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -25.93278 6.56141 -3.952 0.0168 *
clock 0.35422 0.02184 16.215 8.46e-05 ***
threads NA NA NA NA
cores NA NA NA NA
transistors NA NA NA NA
dieSize NA NA NA NA
voltage NA NA NA NA
featureSize NA NA NA NA
channel NA NA NA NA
FO4delay NA NA NA NA
L1icache NA NA NA NA
sqrt(L1icache) NA NA NA NA
L1dcache NA NA NA NA
sqrt(L1dcache) NA NA NA NA
L2cache NA NA NA NA
sqrt(L2cache) NA NA NA NA

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.868 on 4 degrees (72 observations deleted due to missingne
Multiple R-squared: 0.985, Adjusted R-squared: 0.9813 F-statistic: 262.9 on 1 and 4 D

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.06%3A_When_Things_Go_Wrong

4.6.2 https://stats.libretexts.org/@go/page/4421

Notice that every predictor but clock has NA for every entry. Furthermore, we see a line that says that fourteen coefficients
were “not defined because of singularities.” This statement means that R could not compute a value for those coefficients because
of some anomalies in the data. (More technically, it could not invert the matrix used in the least-squares minimization process.)

The first step toward resolving this problem is to notice that 72 observations were deleted due to “missingness,” leaving only four
degrees of freedom. We use the function nrow(int92.dat) to determine that there are 78 total rows in this data frame. These
78 separate observations sum up to the two predictors used in the model, plus four degrees of freedom, plus 72 deleted rows. When
we tried to develop the model using lm() , however, some of our data remained unused.

To determine why these rows were excluded, we must do a bit of sanity checking to see what data anomalies may be causing the
problem. The function table() provides a quick way to summarize a data vector, to see if anything looks obviously out of
place. Executing this function on the clock column, we obtain the following:

> table(clock)
clock
48 50 60 64 66 70 75 77 80 85 90 96 99 100 101 110
 118 120 125 133 150 166 175 180 190 200 225 231 233 250 266
 275 291 300 333 350
1 3 4 1 5 1 4 1 2 1 2 1 2 10 1 1
1 3 4 4 3 2 2 1 1 4 1 1 2 2 2 1 1 1 1 1

The top line shows the unique values that appear in the column. The list of numbers directly below that line is the count of how
many times that particular value appeared in the column. For example, 48 appeared once, while 50 appeared three times and
60 appeared four times. We see a reasonable range of values with minimum (48) and maximum (350) values that are not

unexpected. Some of the values occur only once; the most frequent value occurs ten times, which again does not seem
unreasonable. In short, we do not see anything obviously amiss with these results. We conclude that the problem likely is with a
different data column.

Executing the table() function on the next column in the data frame threads produces this output:

> table(threads)
threads
 1
78

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf

4.6.3 https://stats.libretexts.org/@go/page/4421

Aha! Now we are getting somewhere. This result shows that all of the 78 entries in this column contain the same value: 1 . An
input factor in which all of the elements are the same value has no predictive power in a regression model. If every row has the
same value, we have no way to distinguish one row from another. Thus, we conclude that threads is not a useful predictor for
our model and we eliminate it as a potential predictor as we continue to develop our Int1992 regression model.

We continue by executing table() on the column labeled cores . This operation shows that this column also consists of
only a single value, 1. Using the update() function to eliminate these two predictors from the model gives the following:

Unfortunately, eliminating these two predictors from consideration has not solved the problem. Notice that we still have only four
degrees of freedom, because 72 observations were again eliminated. This small number of degrees of freedom indicates that there
must be at least one more column with insufficient data.

By executing table() on the remaining columns, we find that the column labeled L2cache has only three unique values,
and that these appear in a total of only ten rows:

> table(L2cache)
L2cache
96 256 512
 6 2 2

> int92.lm <update(int92.lm, .~. threads cores)
> summary(int92.lm)
Call:
lm(formula = nperf ~ clock + transistors + dieSize + voltage +
 featureSize + channel + FO4delay + L1icache + sqrt(L1icache) +
 L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache))

Residuals:
 14 15 16 17 18 19
 0.4096 1.3957 -2.3612 0.1498 -1.5513 1.9575

Coefficients: (12 not defined because of singularities)
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -25.93278 6.56141 -3.952 0.0168 *
clock 0.35422 0.02184 16.215 8.46e-05 ***
transistors NA NA NA NA
dieSize NA NA NA NA
voltage NA NA NA NA
featureSize NA NA NA NA
channel NA NA NA NA
FO4delay NA NA NA NA
L1icache NA NA NA NA
sqrt(L1icache) NA NA NA NA
L1dcache NA NA NA NA
sqrt(L1dcache) NA NA NA NA
L2cache NA NA NA NA
sqrt(L2cache) NA NA NA NA

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.868 on 4 degrees of freedom (72 observations deleted due t
Multiple R-squared: 0.985, Adjusted R-squared: 0.9813 F-statistic: 262.9 on 1 and 4 D

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf

4.6.4 https://stats.libretexts.org/@go/page/4421

Although these specific data values do not look out of place, having only three unique values can make it impossible for lm() to
compute the model coefficients. Dropping L2cache and sqrt(L2cache) as potential predictors finally produces the type
of result we expect:

We now can proceed with the normal backward elimination process. We begin by eliminating the predictor that has the largest p-
value above our preselected threshold, which is transistors in this case. Eliminating this predictor gives the following:

> int92.lm <update(int92.lm, .~. L2cache sqrt(L2cache))
> summary(int92.lm)

Call:
lm(formula = nperf ~ clock + transistors + dieSize + voltage +
 featureSize + channel + FO4delay + L1icache + sqrt(L1icache) +
 L1dcache + sqrt(L1dcache))

Residuals:
 Min 1Q Median 3Q Max
-7.3233 -1.1756 0.2151 1.0157 8.0634

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -58.51730 17.70879 -3.304 0.00278 **
clock 0.23444 0.01792 13.084 6.03e-13 ***
transistors -0.32032 1.13593 -0.282 0.78018
dieSize 0.25550 0.04800 5.323 1.44e-05 ***
voltage 1.66368 1.61147 1.032 0.31139
featureSize 377.84287 69.85249 5.409 1.15e-05 ***
channel -493.84797 88.12198 -5.604 6.88e-06 ***
FO4delay 0.14082 0.08581 1.641 0.11283
L1icache 4.21569 1.74565 2.415 0.02307 *
sqrt(L1icache) -12.33773 7.76656 -1.589 0.12425
L1dcache -5.53450 2.10354 -2.631 0.01412 *
sqrt(L1dcache) 23.89764 7.98986 2.991 0.00602 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.68 on 26 degrees of freedom (40 observations deleted due t
Multiple R-squared: 0.985, Adjusted R-squared: 0.9786 F-statistic: 155 on 11 and 26 D

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf

4.6.5 https://stats.libretexts.org/@go/page/4421

After eliminating this predictor, however, we see something unexpected. The p-values for voltage and featureSize
 increased dramatically. Furthermore, the adjusted R-squared value dropped substantially, from 0.9786 to 0.9051. These
unexpectedly large changes make us suspect that transistors may actually be a useful predictor in the model even though at
this stage of the backward elimination process it has a high p-value. So, we decide to put transistors back into the model
and instead drop voltage , which has the next highest p-value. These changes produce the following result:

> int92.lm <update(int92.lm, .~. -transistors)
> summary(int92.lm)

Call:
lm(formula = nperf ~ clock + dieSize + voltage + featureSize +
 channel + FO4delay + L1icache + sqrt(L1icache) + L1dcache +
 sqrt(L1dcache))

Residuals:
 Min 1Q Median 3Q Max
 -13.2935 -3.6068 -0.3808 2.4535 19.9617

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -16.73899 24.50101 -0.683 0.499726
clock 0.19330 0.02091 9.243 2.77e-10 ***
dieSize 0.11457 0.02728 4.201 0.000219 ***
voltage 0.40317 2.85990 0.141 0.888834
featureSize 11.08190 104.66780 0.106 0.916385
channel -37.23928 104.22834 -0.357 0.723379
FO4delay -0.13803 0.14809 -0.932 0.358763
L1icache 7.84707 3.33619 2.352 0.025425 *
sqrt(L1icache) -16.28582 15.38525 -1.059 0.298261
L1dcache -14.31871 2.94480 -4.862 3.44e-05 ***
sqrt(L1dcache) 48.26276 9.41996 5.123 1.64e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 7.528 on 30 degrees of freedom (37 observations deleted due
Multiple R-squared: 0.9288, Adjusted R-squared: 0.9051 F-statistic: 39.13 on 10 and 3

> int92.lm <update(int92.lm, .~. +transistors -voltage)
> summary(int92.lm)

Call:
lm(formula = nperf ~ clock + dieSize + featureSize + channel +
FO4delay + L1icache + sqrt(L1icache) + L1dcache +
sqrt(L1dcache) +
transistors)

Residuals:
 Min 1Q Median 3Q Max
 -10.0828 -1.3106 0.1447 1.5501 8.7589

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf

4.6.6 https://stats.libretexts.org/@go/page/4421

The adjusted R-squared value now is 0.9746, which is much closer to the adjusted R-squared value we had before dropping
transistors . Continuing with the backward elimination process, we first drop sqrt(L1icache) with a p-value of

0.471413, then FO4delay with a p-value of 0.180836, and finally sqrt(L1dcache) with a p-value of 0.071730.

After completing this backward elimination process, we find that the following predictors belong in the final model for Int1992:

clock transistors dieSize featureSize

channel L1icache L1dcache

As shown below, all of these predictors have p-values below our threshold of 0.05. Additionally, the adjusted R-square looks quite
good at 0.9722.

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -50.28514 15.27839 -3.291 0.002700 **
clock 0.21854 0.01718 12.722 3.71e-13 ***
dieSize 0.20348 0.04401 4.623 7.77e-05 ***
featureSize 409.68604 67.00007 6.115 1.34e-06 ***
channel -490.99083 86.23288 -5.694 4.18e-06 ***
FO4delay 0.12986 0.09159 1.418 0.167264
L1icache 1.48070 1.21941 1.214 0.234784
sqrt(L1icache) -5.15568 7.06192 -0.730 0.471413
L1dcache -0.45668 0.10589 -4.313 0.000181 ***
sqrt(L1dcache) 4.77962 2.45951 1.943 0.062092 .
transistors 1.54264 0.88345 1.746 0.091750 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.96 on 28 degrees of freedom (39 observations deleted due t
Multiple R-squared: 0.9813, Adjusted R-squared: 0.9746 F-statistic: 146.9 on 10 and 2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf

4.6.7 https://stats.libretexts.org/@go/page/4421

This example illustrates that you cannot always look at only the p-values to determine which potential predictors to eliminate in
each step of the backward elimination process. You also must be careful to look at the broader picture, such as changes in the
adjusted R-squared value and large changes in the p-values of other predictors, after each change to the model.

This page titled 4.6: When Things Go Wrong is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

> int92.lm <update(int92.lm, .~. -sqrt(L1dcache))
> summary(int92.lm)

Call:
lm(formula = nperf ~ clock + dieSize + featureSize + channel +
L1icache + L1dcache + transistors, data = int92.dat)

Residuals:
 Min 1Q Median 3Q Max
-10.1742 -1.5180 0.1324 1.9967 10.1737

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -34.17260 5.47413 -6.243 6.16e-07 ***
clock 0.18973 0.01265 15.004 9.21e-16 ***
dieSize 0.11751 0.02034 5.778 2.31e-06 ***
featureSize 305.79593 52.76134 5.796 2.20e-06 ***
channel -328.13544 53.04160 -6.186 7.23e-07 ***
L1icache 0.78911 0.16045 4.918 2.72e-05 ***
L1dcache -0.23335 0.03222 -7.242 3.80e-08 ***
transistors 3.13795 0.51450 6.099 9.26e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.141 on 31 degrees of freedom (39 observations deleted due
Multiple R-squared: 0.9773, Adjusted R-squared: 0.9722 F-statistic: 191 on 7 and 31 D

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4421?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.06%3A_When_Things_Go_Wrong
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

1

CHAPTER OVERVIEW

5: Predicting Responses
PREDICTION is typically the primary goal of most regression modeling projects. That is, the model developer wants to use the
model to estimate or predict the system’s response if it were operated with input values that were never actually available in any of
the measured systems. For instance, we might want to use the model we developed using the Int2000 data set to predict the
performance of a new processor with a clock frequency, a cache size, or some other parameter combination that does not exist in
the data set. By inserting this new combination of parameter values into the model, we can compute the new processor’s expected
performance when executing that benchmark program.

Because the model was developed using measured data, the coefficient values necessarily are only estimates. Consequently, any
predictions we make with the model are also only estimates. The summary() function produces useful statistics about the
regression model’s quality, such as the R and adjusted R values. These statistics offer insights into how well the model explains
variation in the data. The best indicator of any regression model’s quality, however, is how well it predicts output values. The R
environment provides some powerful functions that help us predict new values from a given model and evaluate the quality of
these predictions.

5.1: Data Splitting for Training and Testing
5.2: Training and Testing
5.3: Predicting Across Data Sets
5.4: Section 5-
5.5: Section 6-

This page titled 5: Predicting Responses is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

2 2

https://libretexts.org/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.01%3A_Data_Splitting_for_Training_and_Testing
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.02%3A_Training_and_Testing
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.03%3A_Predicting_Across_Data_Sets
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.04%3A_Section_5-
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.05%3A_Section_6-
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

5.1.1 https://stats.libretexts.org/@go/page/4423

5.1: Data Splitting for Training and Testing
In Chapter 4 we used all of the data available in the int00.dat data frame to select the appropriate predictors to include in the
final regression model. Because we computed the model to fit this particular data set, we cannot now use this same data set to test
the model’s predictive capabilities. That would be like copying exam answers from the answer key and then using that same answer
key to grade your exam. Of course you would get a perfect result. Instead, we must use one set of data to train the model and
another set of data to test it.

The difficulty with this train-test process is that we need separate but similar data sets. A standard way to find these two different
data sets is to split the available data into two parts. We take a random portion of all the available data and call it our training set.
We then use this portion of the data in the lm() function to compute the specific values of the model’s coefficients. We use the
remaining portion of the data as our testing set to see how well the model predicts the results, compared to this test data.

The following sequence of operations splits the int00.dat data set into the training and testing sets:

rows <nrow(int00.dat)
f <0.5
upper_bound <floor(f * rows)
permuted_int00.dat <int00.dat[sample(rows),]
train.dat <permuted_int00.dat[1:upper_bound,]
test.dat <permuted_int00.dat[(upper_bound+1):rows,]

The first line assigns the total number of rows in the int00.dat data frame to the variable rows . The next line assigns to
the variable f the fraction of the entire data set we wish to use for the training set. In this case, we somewhat arbitrarily decide
to use half of the data as the training set and the other half as the testing set. The floor() function rounds its argument value
down to the nearest integer. So the line upper_bound <floor(f * rows) assigns the middle row’s index number to the
variable upper_bound .

The interesting action happens in the next line. The sample() function returns a permutation of the integers between 1
and n when we give it the integer value n as its input argument. In this code, the expression sample(rows) returns a vector
that is a permutation of the integers between 1 and rows , where rows is the total number of rows in the int00.dat data
frame. Using this vector as the row index for this data frame gives a random permutation of all of the rows in the data frame, which
we assign to the new data frame, permuted_int00.dat. The next two lines assign the lower portion of this new data frame
to the training data set and the top portion to the testing data set, respectively. This randomization process ensures that we obtain a
new random selection of the rows in the train-and-test data sets every time we execute this sequence of operations.

This page titled 5.1: Data Splitting for Training and Testing is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by David Lilja (University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts
platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4423?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.01%3A_Data_Splitting_for_Training_and_Testing
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.01%3A_Data_Splitting_for_Training_and_Testing
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

5.2.1 https://stats.libretexts.org/@go/page/4424

5.2: Training and Testing
With the data set partitioned into two randomly selected portions, we can train the model on the first portion, and test it on the
second portion. Figure 5.1shows the overall flow of this training and testing process. We next explain the details of this process to
train and test the model we previously developed for the Int2000 benchmark results.

Figure 5.1: The training and testing process for evaluating the predictions produced by a regression model.

The following statement calls the lm() function to generate a regression model using the predictors we identified in
Chapter 4 and the train.dat data frame we extracted in the previous section. It then assigns this model to the variable
 int00_new.lm. We refer to this process of computing the model’s coefficients as training the regression model.

The predict() function takes this new model as one of its arguments. It uses this model to compute the predicted outputs
when we use the test.dat data frame as the input, as follows:

predicted.dat <predict(int00_new.lm, newdata=test.dat)

We define the difference between the predicted and measured performance for each processor i to be ∆ = Predictedi − Measured ,
where Predicted is the value predicted by the model, which is stored in the data frame predicted.dat , and Measured is the
actual measured performance response, which we previously assigned to the test.dat data frame. The following statement
computes the entire vector of these ∆ values and assigns the vector to the variable delta .

delta <predicted.dat test.dat$nperf

Note that we use the $ notation to select the column with the output value, nperf , from the test.dat data frame.

The mean of these ∆ differences for n different processors is:

A confidence interval computed for this mean will give us some indication of how well a model trained on the train.dat data
set predicted the performance of the processors in the test.dat data set. The t.test() function computes a confidence
interval for the desired confidence level of these ∆ values as follows:

int00_new.lm <lm(nperf ~ clock + cores + voltage + channel + L1icache +
sqrt(L1icache) + L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache), data = train.da

i i

i i

i

=Δ

¯

1

n

∑

n

i=1

Δ

i

i

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4424?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.02%3A_Training_and_Testing

5.2.2 https://stats.libretexts.org/@go/page/4424

> t.test(delta, conf.level = 0.95)
 One Sample t-test

data: delta
t = -0.65496, df = 41, p-value = 0.5161
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:-2.232621 1.139121
sample estimates: mean of x -0.5467502

If the prediction were perfect, then ∆ = 0. If ∆ > 0, then the model predicted that the performance would be greater than it actually
was. A ∆ < 0, on the other hand, means that the model predicted that the performance was lower than it actually was.
Consequently, if the predictions were reasonably good, we would expect to see a tight confidence interval around zero. In this case,
we obtain a 95 percent confidence interval of [-2.23, 1.14]. Given that nperf is scaled to between 0 and 100, this is a reasonably
tight confidence interval that includes zero. Thus, we conclude that the model is reasonably good at predicting values in the
 test.dat data set when trained on the train.dat data set.

Another way to get a sense of the predictions’ quality is to generate a scatter plot of the ∆ values using the plot() function:

plot(delta)

This function call produces the plot shown in Figure 5.2. Good predictions would produce a tight band of values uniformly
scattered around zero. In this figure, we do see such a distribution, although there are a few outliers that are more than ten points
above or below zero.

It is important to realize that the sample() function will return a different random permutation each time we execute it. These
differing permutations will partition different processors (i.e., rows in the data frame) into the train and test sets. Thus, if we run
this experiment again with exactly the same inputs, we will likely get a different confidence interval and ∆ scatter plot. For
example, when we repeat the same test five times with identical inputs, we obtain the following confidence intervals: [-1.94, 1.46],
[-1.95, 2.68], [-2.66, 3.81], [-6.13, 0.75], [-4.21, 5.29]. Similarly, varying the fraction of the data we assign to the train and test sets
by changing f = 0.5 also changes the results.

It is good practice to run this type of experiment several times and observe how the results change. If you see the results vary
wildly when you re-run these tests, you have good reason for concern. On the other hand, a series of similar results does not
necessarily mean your results are good, only that they are consistently reproducible. It is often easier to spot a bad model than to
determine that a model is good.

Based on the repeated confidence interval results and the corresponding scatter plot, similar to Figure 5.2, we conclude that this
model is reasonably good at predicting the performance of a set of processors when the model is trained on a different set of
processors executing the same benchmark program. It is not perfect, but it is also not too bad. Whether the differences are large
enough to warrant concern is up to you.

i i

i

i

i

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4424?pdf

5.2.3 https://stats.libretexts.org/@go/page/4424

Figure 5.2: An example scatter plot of the differences between the predicted and actual performance results for the Int2000
benchmark when using the data-splitting technique to train and test the model.

This page titled 5.2: Training and Testing is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4424?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.02%3A_Training_and_Testing
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

5.3.1 https://stats.libretexts.org/@go/page/4425

5.3: Predicting Across Data Sets
As we saw in the previous section, data splitting is a useful technique for testing a regression model. If you have other data sets,
you can use them to further test your new model’s capabilities.

In our situation, we have several additional benchmark results in the data file that we can use for these tests. As an example, we use
the model we developed from the Int2000 data to predict the Fp2000 benchmark’s performance.

We first train the model developed using the Int2000 data, int00.lm , using all the Int2000 data available in the
int00.dat data frame. We then predict the Fp2000 results using this model and the fp00.dat data. Again, we assign the

differences between the predicted and actual results to the vector delta . Figure 5.3 shows the overall data flow for this training
and testing. The corresponding R commands are:

Figure 5.3: Predicting the Fp2000 results using the model developed with the Int2000 data.

The resulting confidence interval for the delta values contains zero and is relatively small. This result suggests that the model
developed using the Int2000 data is reasonably good at predicting the Fp2000 benchmark program’s results. The scatter plot in
Figure 5.4 shows the resulting delta values for each of the processors we used in the prediction. The results tend to be
randomly distributed around zero, as we would expect from a good regression model. Note, however, that some of the values differ
significantly from zero. The maximum positive deviation is almost 20, and the magnitude of the largest negative value is greater
than 43. The confidence interval suggests relatively good results, but this scatter plot shows that not all the values are well
predicted.

> int00.lm <lm(nperf ~ clock + cores + voltage + channel +
L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) + L2cache +
sqrt(L2cache), data = int00.dat)> predicted.dat <predict(int00.lm, newdata=fp00.dat)
> delta <predicted.dat fp00.dat$nperf
> t.test(delta, conf.level = 0.95)

One Sample t-test

data: delta
t = 1.5231, df = 80, p-value = 0.1317
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.4532477 3.4099288 sample estimates:
mean of x
1.478341

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4425?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.03%3A_Predicting_Across_Data_Sets

5.3.2 https://stats.libretexts.org/@go/page/4425

Figure 5.4: A scatter plot of the differences between the predicted and actual performance results for the Fp2000 benchmark when
predicted using the Int2000 regression model.

As a final example, we use the Int2000 regression model to predict the results of the benchmark program’s future Int2006 version.
The R code to compute this prediction is:

In this case, the confidence interval for the delta values does not include zero. In fact, the mean value of the differences is
50.9096, which indicates that the average of the model-predicted values is substantially larger than the actual average value. The
scatter plot shown in Figure 5.5 further confirms that the predicted values are all much larger than the actual values.

This example is a good reminder that models have their limits. Apparently, there are more factors that affect the performance of the
next generation of the benchmark programs, Int2006, than the model we developed using the Int2000 results captures. To develop a
model that better predicts future performance, we would have to uncover those factors. Doing so requires a deeper understanding of
the factors that affect computer performance, which is beyond the scope of this tutorial.

> int00.lm <lm(nperf ~ clock + cores + voltage + channel + L1icache + sqrt(L1icache)
sqrt(L1dcache) + L2cache + sqrt(L2cache), data = int00.dat)> predicted.dat <predict(i
> delta <predicted.dat int06.dat$nperf
> t.test(delta, conf.level = 0.95)

One Sample t-test

data: delta
t = 49.339, df = 168, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval: 48.87259 52.94662
sample estimates:
mean of x
 50.9096

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4425?pdf

5.3.3 https://stats.libretexts.org/@go/page/4425

Figure 5.5: A scatter plot of the differences between the predicted and actual performance results for the Int2006 benchmark,
predicted using the Int2000 regression model.

This page titled 5.3: Predicting Across Data Sets is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David
Lilja (University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4425?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.03%3A_Predicting_Across_Data_Sets
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

1 https://stats.libretexts.org/@go/page/4427

Welcome to the Statistics Library. This Living Library is a principal hub of the LibreTexts project, which is a multi-institutional
collaborative venture to develop the next generation of open-access texts to improve postsecondary education at all levels of higher
learning. The LibreTexts approach is highly collaborative where an Open Access textbook environment is under constant revision
by students, faculty, and outside experts to supplant conventional paper-based books.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4427?pdf
https://libretexts.org/

1 https://stats.libretexts.org/@go/page/4428

Welcome to the Statistics Library. This Living Library is a principal hub of the LibreTexts project, which is a multi-institutional
collaborative venture to develop the next generation of open-access texts to improve postsecondary education at all levels of higher
learning. The LibreTexts approach is highly collaborative where an Open Access textbook environment is under constant revision
by students, faculty, and outside experts to supplant conventional paper-based books.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4428?pdf
https://libretexts.org/

6.1 https://stats.libretexts.org/@go/page/4436

CHAPTER OVERVIEW

6: Reading Data into the R Environment
AS we have seen, the R environment provides some powerful functions to quickly and relatively easily develop and test regression
models. Ironically, simply reading the data into R in a useful format can be one of the most difficult aspects of developing a model.
R does not lack good input-output capabilities, but data often comes to the model developer in a messy form. For instance, the data
format may be inconsistent, with missing fields and incorrectly recorded values. Getting the data into the format necessary for
analysis and modeling is often called data cleaning. The specific steps necessary to “clean” data are heavily dependent on the data
set and are thus beyond the scope of this tutorial. Suffice it to say that you should carefully examine your data before you use it to
develop any sort of regression model. Section 2.2 provides a few thoughts on data cleaning.

In Chapter 2, we provided the functions used to read the example data into the R environment, but with no explanation about how
they worked. In this chapter, we will look at these functions in detail, as specific examples of how to read a data set into R. Of
course, the details of the functions you may need to write to input your data will necessarily change to match the specifics of your
data set.

6.1: Reading CSV files

This page titled 6: Reading Data into the R Environment is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
David Lilja (University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts
platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4436?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/06%3A_Reading_Data_into_the_R_Environment
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/06%3A_Reading_Data_into_the_R_Environment/6.01%3A_Reading_CSV_files
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/06%3A_Reading_Data_into_the_R_Environment
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

6.1.1 https://stats.libretexts.org/@go/page/4430

6.1: Reading CSV files
Perhaps the simplest format for exchanging data among computer systems is the de facto standard comma separated values, or csv,
file. R provides a function to directly read data from a csv file and assign it to a data frame:

> processors <- read.csv("all-data.csv")

The name between the quotes is the name of the csv-formatted file to be read. Each file line corresponds to one data record.
Commas separate the individual data fields in each record. This function assigns each data record to a new row in the data frame,
and assigns each data field to the corre- sponding column. When this function completes, the variable processors contains all
the data from the file all-data.csv nicely organized into rows and columns in a data frame.

If you type processors to see what is stored in the data frame, you will get a long, confusing list of data. Typing

> head(processors)

will show a list of column headings and the values of the first few rows of data. From this list, we can determine which columns to
extract for our model development. Although this is conceptually a simple problem, the execution can be rather messy, depending
on how the data was collected and organized in the file.

As with any programming language, R lets you define your own func- tions. This feature is useful when you must perform a
sequence of opera- tions multiple times on different data pieces, for instance. The format for defining a function is:

function-name <- function(a1, a2, ...) { R expressions
return(object)
}

where function-name is the function name you choose and a1, a2, ... is the list of arguments in your function. The
R system evaluates the expres- sions in the body of the definition when the function is called. A function can return any type of
data object using the return() statement.

We will define a new function called extract_data to extract all the rows that have a result for the given benchmark
program from the processors data frame. For instance, calling the function as follows:

> int92.dat <- extract_data("Int1992")
> fp92.dat <- extract_data("Fp1992")
> int95.dat <- extract_data("Int1995")
> fp95.dat <- extract_data("Fp1995")
> int00.dat <- extract_data("Int2000")
> fp00.dat <- extract_data("Fp2000")
> int06.dat <- extract_data("Int2006")
> fp06.dat <- extract_data("Fp2006")

extracts every row that has a result for the given benchmark program and assigns it to the corresponding data frame,
int92.dat, fp92.dat , and so on.

We define the extract_data function as follows:

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4430?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/06%3A_Reading_Data_into_the_R_Environment/6.01%3A_Reading_CSV_files

6.1.2 https://stats.libretexts.org/@go/page/4430

extract_data <- function(benchmark) {

temp <- paste(paste("Spec",benchmark,sep=""), "..average.base.", sep="")

perf <- get_column(benchmark,temp)

max_perf <- max(perf)
min_perf <- min(perf)
range <- max_perf - min_perf
nperf <- 100 * (perf - min_perf) / range

clock <- get_column(benchmark,"Processor.Clock..MHz.")
threads <- get_column(benchmark,"Threads.core")
cores <- get_column(benchmark,"Cores")
TDP <- get_column(benchmark,"TDP")
transistors <- get_column(benchmark,"Transistors..millions.")
dieSize <- get_column(benchmark,"Die.size..mm.2.")
voltage <- get_column(benchmark,"Voltage..low.")
featureSize <- get_column(benchmark,"Feature.Size..microns.")
channel <- get_column(benchmark,"Channel.length..microns.")
FO4delay <- get_column(benchmark,"FO4.Delay..ps.")
L1icache <- get_column(benchmark,"L1..instruction...on.chip.")
L1dcache <- get_column(benchmark,"L1..data...on.chip.")
L2cache <- get_column(benchmark,"L2..on.chip.")
L3cache <- get_column(benchmark,"L3..on.chip.")

return(data.frame(nperf, perf, clock, threads, cores, TDP, transistors, dieSize,
voltage, featureSize, channel, FO4delay, L1icache, L1dcache, L2cache, L3cache))
}

The first line with the paste functions looks rather complicated. How- ever, it simply forms the name of the column with the
given benchmark results. For example, when extract_data is called with Int2000 as the ar- gument, the nested
paste functions simply concatenate the strings " Spec ", " Int2000 ", and " ..average.base. ". The final string

corresponds to the name of the column in the processors data frame that contains the perfor- mance results for the
Int2000 benchmark, " SpecInt2000..average.base. ".

The next line calls the function get_column , which selects all the rows with the desired column name. In this case, that
column contains the actual performance result reported for the given benchmark program, perf . The next four lines compute
the normalized performance value, nperf , from the perf value we obtained from the data frame. The following sequence of
calls to get_column extracts the data for each of the predictors we intend to use in developing the regression model. Note that
the second parameter in each case, such as " Processor.Clock..MHz. ", is the name of a column in the processors
 data frame. Finally, the data.frame() function is a predefined R function that assembles all its arguments into a single data
frame. The new function we have just defined, extract_data() , returns this new data frame.

Next, we define the get_column() function to return all the data in a given column for which the given benchmark program
has been defined:

get_column <- function(x,y) {

benchmark <- paste(paste("Spec",x,sep=""), "..average.base.", sep="")
ix <- !is.na(processors[,benchmark]) return(processors[ix,y])
}

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4430?pdf

6.1.3 https://stats.libretexts.org/@go/page/4430

The argument x is a string with the name of the benchmark program, and y is a string with the name of the desired column.
The nested paste() func- tions produce the same result as the extract_data() function. The is.na() function
performs the interesting work. This function returns a vector with “ 1 ” values corresponding to the row numbers in the
processors data frame that have NA values in the column selected by the benchmark index. If there is a value in that

location, is.na() will return a corresponding value that is a 0 . Thus, is.na indicates which rows are missing
performance results for the benchmark of interest. Inserting the exclamation point in front of this function complements its output.
As a result, the variable ix will con- tain a vector that identifies every row that contains performance results for the indicated
benchmark program. The function then extracts the selected rows from the processors data frame and returns them.

These types of data extraction functions can be somewhat tricky to write, because they depend so much on the specific format of
your input file. The functions presented in this chapter are a guide to writing your own data extraction functions.

This page titled 6.1: Reading CSV files is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4430?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/06%3A_Reading_Data_into_the_R_Environment/6.01%3A_Reading_CSV_files
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

7.1 https://stats.libretexts.org/@go/page/4443

CHAPTER OVERVIEW

7: Summary
LINEAR regression modeling is one of the most basic of a broad collection of data mining techniques. It can demonstrate the
relationships between the inputs to a system and the corresponding output. It also can be used to predict the output given a new set
of input values. While the specifics for developing a regression model will depend on the details of your data, there are several key
steps to keep in mind when developing a new model using the R programming environment:

1. Read your data into the R environment.

As simple as it sounds, one of the trickiest tasks oftentimes is simply reading your data into R. Because you may not have
controlled how data was collected, or in what format, be prepared to spend some time writing new functions to parse your data
and load it into an R data frame. Chapter 6 provides an example of reading a moderately complicated csv file into R.

2. Sanity check your data.

Once you have your data in the R environment, perform some sanity checks to make sure that there is nothing obviously wrong
with the data. The types of checks you should perform depend on the specifics of your data. Some possibilities include:

Finding the values’ minimum, maximum, average, and standard deviation in each data frame column.

Looking for any parameter values that seem suspiciously outside the expected limits.

Determining the fraction of missing (NA) values in each column to ensure that there is sufficient data available.

Determining the frequency of categorical parameters, to see if any unexpected values pop up.

Any other data-specific tests.

Ultimately, you need to feel confident that your data set’s values are reasonable and consistent.

3. Visualize your data.

It is always good to plot your data, to get a basic sense of its shape and ensure that nothing looks out of place. For instance, you
may expect to see a somewhat linear relationship between two parameters. If you see something else, such as a horizontal line,
you should investigate further. Your assumption about a linear relationship could be wrong, or the data may be corrupted (see
item no. 2 above). Or perhaps something completely unexpected is going on. Regardless, you must understand what might be
happening before you begin developing the model. The pairs() function is quite useful for performing this quick visual
check, as described in Section 4.1.

4. Identify the potential predictors.

Before you can begin the backward elimination process, you must identify the set of all possible predictors that could go into
your model. In the simplest case, this set consists of all of the available columns in your data frame. However, you may know
that some of the columns will not be useful, even before you begin constructing the model. For example, a column containing
only a few valid entries probably is not useful in a model. Your knowledge of the system may also give you good reason to
eliminate a parameter as a possible predictor, much as we eliminated TDP as a possible predictor in Section 4.2, or to include
some of the parameters’ non-linear functions as possible predictors, as we did when we added the square root of the cache size
terms to our set of possible predictors.

5. Select the predictors.

Once you have identified the potential predictors, use the backward elimination process described in Section 4.3 to select the
predictors you’ll include in the final model, based on the significance threshold you decide to use.

6. Validate the model.

Examine your model’s R value and the adjusted-R value. Use residual analysis to further examine the model’s quality. You
also should split your data into training and testing sets, and then see how well your model predicts values from the test set.

7. Predict.

2 2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4443?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/07%3A_Summary

7.2 https://stats.libretexts.org/@go/page/4443

Now that you have a model that you feel appropriately explains your data, you can use it to predict previously unknown output
values.

A deep body of literature is devoted to both statistical modeling and the R language. If you want to learn more about R as a
programming language, many good books are available, including [11, 12, 15, 16]. These books focus on specific statistical ideas
and use R as the computational language [1, 3, 4, 14]. Finally, this book [9] gives an introduction to computer performance
measurement.

As you continue to develop your data-mining skills, remember that what you have developed is only a model. Ideally, it is a useful
tool for explaining the variations in your measured data and understanding the relationships between inputs and output. But like all
models, it is only an approximation of the real underlying system, and is limited in what it can tell us about that system. Proceed
with caution.

This page titled 7: Summary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja (University of
Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4443?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/07%3A_Summary
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

8.1 https://stats.libretexts.org/@go/page/4450

CHAPTER OVERVIEW

8: A Few Things to Try Next
HERE are a few suggested exercises to help you learn more about regression modeling using R.

1. Show how you would clean the data set for one of the selected benchmark results (Int1992, Int1995, etc.). For example, for
every column in the data frame, you could:

Compute the average, variance, minimum, and maximum.

Sort the column data to look for outliers or unusual patterns.

Determine the fraction of NA values for each column.

How else could you verify that the data looks reasonable?

2. Plot the processor performance versus the clock frequency for each of the benchmark results, similar to Figure 3.1.

3. Develop a one-factor linear regression model for all the benchmark results. What input factor should you use as the predictor?

4. Superimpose your one-factor models on the corresponding scatter plots of the data (see Figure 3.2).

5. Evaluate the quality of the one-factor models by discussing the residuals, the p-values of the coefficients, the residual standard
errors, the R values, the F-statistic, and by performing appropriate residual analysis.

6. Generate a pair-wise comparison plot for each of the benchmark results, similar to Figure 4.1.

7. Develop a multi-factor linear regression model for each of the benchmark results. Which predictors are the same and which are
different across these models? What other similarities and differences do you see across these models?

8. Evaluate the multi-factor models’ quality by discussing the residuals, the p-values of the coefficients, the residual standard
errors, the R values, the F-statistic, and by performing appropriate residual analysis.

9. Use the regression models you’ve developed to complete the follow- ing tables, showing how well the models from each row
predict the benchmark results in each column. Specifically, fill in the x and y values so that x is the mean of the delta
 values for the predictions and y is the width of the corresponding 95 percent confidence in- terval. You need only predict
forwards in time. For example, it is reasonable to use the model developed with Int1992 data to predict Int2006 results, but it
does not make sense to use a model developed with Int2006 data to predict Int1992 results.

 Int1992 Int1995 Int2000 Int2006

Int1992
Int1995
Int2000
Int2006
Fp1992
Fp1995
Fp2000
Fp2006

x(±y)

x(±y)

x(±y)
x(±y)

x(±y)
x(±y)

x(±y)
x(±y)
x(±y)

x(±y)
x(±y)
x(±y)

x(±y)
x(±y)
x(±y)
x(±y)
x(±y)
x(±y)
x(±y)
x(±y)

 Fp1992 Fp1995 Fp2000 Fp2006

2

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4450?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/08%3A_A_Few_Things_to_Try_Next

8.2 https://stats.libretexts.org/@go/page/4450

Int1992
Int1995
Int2000
Int2006
Fp1992
Fp1995
Fp2000
Fp2006

x(±y)

x(±y)

x(±y)
x(±y)

x(±y)
x(±y)

x(±y)
x(±y)
x(±y)

x(±y)
x(±y)
x(±y)

x(±y)
x(±y)
x(±y)
x(±y)
x(±y)
x(±y)
x(±y)
x(±y)

10. What can you say about these models’ predictive abilities, based on the results from the previous problem? For example, how
well does a model developed for the integer benchmarks predict the same-year performance of the floating-point benchmarks?
What about predic- tions across benchmark generations?

11. In the discussion of data splitting, we defined the value f as the fraction of the complete data set used in the training set. For the
Fp2000 data set, plot a 95 percent confidence interval for the mean of delta for f = [0.1, 0.2, ..., 0.9]. What value of f gives
the best result (i.e., the smallest confidence interval)? Repeat this test n = 5 times to see how the best value of f changes.

12. Repeat the previous problem, varying f for all the other data sets.

This page titled 8: A Few Things to Try Next is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by David Lilja
(University of Minnesota Libraries Publishing) via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/4450?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/08%3A_A_Few_Things_to_Try_Next
https://creativecommons.org/licenses/by-nc/4.0
https://ece.umn.edu/directory/lilja-david/
https://www.lib.umn.edu/publishing
https://conservancy.umn.edu/handle/11299/189222

1 https://stats.libretexts.org/@go/page/9136

Index
D
Data Frames (R)

2.4: Data Frames

https://libretexts.org/
https://stats.libretexts.org/@go/page/9136?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/zz%3A_Back_Matter/01%3A_Index
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.04%3A_Data_Frames

1 https://stats.libretexts.org/@go/page/13573

Glossary
Sample Word 1 | Sample Definition 1

https://libretexts.org/
https://stats.libretexts.org/@go/page/13573?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/zz%3A_Back_Matter/20%3A_Glossary

1 https://stats.libretexts.org/@go/page/32558

Detailed Licensing

Overview

Title: Book: Linear Regression Using R - An Introduction to Data Modeling (Lilja)

Webpages: 43

Applicable Restrictions: Noncommercial

All licenses found:

CC BY-NC 4.0: 72.1% (31 pages)
Undeclared: 27.9% (12 pages)

By Page

Book: Linear Regression Using R - An Introduction to Data
Modeling (Lilja) - CC BY-NC 4.0

Front Matter - Undeclared
TitlePage - Undeclared
InfoPage - Undeclared
Table of Contents - Undeclared
Licensing - Undeclared

1: Introduction - CC BY-NC 4.0
1.1: Prelude to Linear Regression - CC BY-NC 4.0
1.2: What is a Linear Regression Model? -
Undeclared
1.3: What is R? - Undeclared
1.4: What's Next? - Undeclared

2: Understand Your Data - CC BY-NC 4.0
2.1: Missing Values - CC BY-NC 4.0
2.2: Sanity Checking and Data Cleaning - CC BY-NC
4.0
2.3: The Example Data - CC BY-NC 4.0
2.4: Data Frames - CC BY-NC 4.0
2.5: Accessing a Data Frame - CC BY-NC 4.0

3: One-Factor Regression - CC BY-NC 4.0
3.1: Visualize the Data - CC BY-NC 4.0
3.2: The Linear Model Function - CC BY-NC 4.0
3.3: Evaluating the Quality of the Model - CC BY-NC
4.0
3.4: Residual Analysis - CC BY-NC 4.0

4: Multi-factor Regression - CC BY-NC 4.0
4.1: Visualizing the Relationships in the Data - CC
BY-NC 4.0
4.2: Identifying Potential Predictors - CC BY-NC 4.0
4.3: The Backward Elimination Process - CC BY-NC
4.0
4.4: An Example of the Backward Elimination
Process - CC BY-NC 4.0
4.5: Residual Analysis - CC BY-NC 4.0
4.6: When Things Go Wrong - CC BY-NC 4.0

5: Predicting Responses - CC BY-NC 4.0

5.1: Data Splitting for Training and Testing - CC BY-
NC 4.0
5.2: Training and Testing - CC BY-NC 4.0
5.3: Predicting Across Data Sets - CC BY-NC 4.0
5.4: Section 5- - CC BY-NC 4.0
5.5: Section 6- - CC BY-NC 4.0

6: Reading Data into the R Environment - CC BY-NC 4.0
6.1: Reading CSV files - CC BY-NC 4.0

7: Summary - CC BY-NC 4.0
8: A Few Things to Try Next - CC BY-NC 4.0
Back Matter - Undeclared

Index - Undeclared
Glossary - Undeclared
Detailed Licensing - Undeclared

https://libretexts.org/
https://stats.libretexts.org/@go/page/32558?pdf
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/zz%3A_Back_Matter/30%3A_Detailed_Licensing
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book:_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/00%3A_Front_Matter
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/00%3A_Front_Matter/01%3A_TitlePage
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/00%3A_Front_Matter/02%3A_InfoPage
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/00%3A_Front_Matter/03%3A_Table_of_Contents
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/00%3A_Front_Matter/04%3A_Licensing
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.01%3A_Prelude_to_Linear_Regression
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.02%3A_What_is_a_Linear_Regression_Model%3F
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.03%3A_What_is_R%3F
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/01%3A_Introduction/1.04%3A_What's_Next%3F
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.01%3A_Missing_Values
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.02%3A_Sanity_Checking_and_Data_Cleaning
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.03%3A_The_Example_Data
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.04%3A_Data_Frames
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/02%3A_Understand_Your_Data/2.05%3A_Accessing_a_Data_Frame
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.01%3A_Visualize_the_Data
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.02%3A_The_Linear_Model_Function
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.03%3A_Evaluating_the_Quality_of_the_Model
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/03%3A_One-Factor_Regression/3.04%3A_Residual_Analysis
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.01%3A_Visualizing_the_Relationships_in_the_Data
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.02%3A_Identifying_Potential_Predictors
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.03%3A_The_Backward_Elimination_Process
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.04%3A_An_Example_of_the_Backward_Elimination_Process
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.05%3A_Residual_Analysis
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/04%3A_Multi-factor_Regression/4.06%3A_When_Things_Go_Wrong
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.01%3A_Data_Splitting_for_Training_and_Testing
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.02%3A_Training_and_Testing
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.03%3A_Predicting_Across_Data_Sets
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.04%3A_Section_5-
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/05%3A_Predicting_Responses/5.05%3A_Section_6-
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/06%3A_Reading_Data_into_the_R_Environment
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/06%3A_Reading_Data_into_the_R_Environment/6.01%3A_Reading_CSV_files
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/07%3A_Summary
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/08%3A_A_Few_Things_to_Try_Next
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/zz%3A_Back_Matter
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/zz%3A_Back_Matter/01%3A_Index
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/zz%3A_Back_Matter/20%3A_Glossary
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Book%3A_Linear_Regression_Using_R_-_An_Introduction_to_Data_Modeling_(Lilja)/zz%3A_Back_Matter/30%3A_Detailed_Licensing

