LibreTextsw

13.1: ANOVA assumptions

Introduction

Like all parametric tests, assumptions are made about the data in order to justify and trust estimates and inferences drawn from
ANOVA. These are

1. Data come from normal distributed population. View with a histogram or Q-Q) plot. Test with Shapiro-Wilks or other
appropriate goodness of fit test{. Normality tests are the subject of Chapter 13.3.
2. Sample size equal among groups.

o This is an example of a potentially confounding factor — If sample sizes differ, then any difference in means could be
simply because of differences in sample size! This gets us into weighed versus unweighted means.

o You shouldn’t be surprised that modern implementations of ANOVA in software easily handle (adjust for) these known
confounding factors. Depending on the program, you’ll see “Adjusted means,” “Least squares means,” “Marginal means,”
etc. This just implies that the group means are compared after accounting for confounding factors.

o Importantly, as long as sample sizes among the groups are roughly equivalent, normality assumption is not a big deal (low
impact on risk of type I error).

3. Independence of errors. One consequence of this assumption is that you would not view 100 repeated observations of a trait

on the same subject as 100 independent data points. We’ll return to this concept more in the next two lectures. Some examples:

o Colorimetric assay where the signal changes over time, and you measure in order (e.g., samples from group 1 first, samples
from group 2 second, etc.) — this confounds group with time.
= The consequence is that you are far more likely to reject the null hypothesis, committing a Type I error.

o Let’s say you are observing running speeds of ten mongoose. However, it turns out that five of your subjects are actually
from the same family, identical quintuplets! Do you really have ten subjects?

o Compare brain-body mass ratio among different species; this is a classic comparative method problem (Fig. 13.1.3). Since
1985 (Felsenstein 1985), it was recognized that the hierarchical evolutionary relationships among the species must be

accounted for to control for lack of independence among the taxa tested. See Phylogenetically independent contrasts,
Chapter 20.12.

4. Equal variances among groups. See Chapter 13.4 for how to test this for multiple groups.

Impact of assumptions

Note that R (and pretty much all statistics packages) will calculate the ANOVA and the p-value, but it is up to you to recognize that
the P-value is accurate only if the assumptions are met. Violation of the assumption of normality can lead to Type I errors occurring
more often than the 5% level. What to do if the assumptions are violated?

If the violation is due to only a handful of the data, you might proceed anyway. But following a significant test for normality, we
could avoid the ANOVA in favor of nonparametric alternatives (Chapter 15), or, we might try to transform the data.

Consider a histogram of body-mass measures in grams for a variety of mammals (Fig. 13.1.1).
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Figure 13.1.1: Histogram of body mass (g) for 24 mammals (data from Boddy et al 2012).

We will introduce a variety of statistical tests of the assumption of normality in Chapter 13.3, but looking at a histogram as part of
our data exploration, we clearly see the data are right-skewed (Fig. 13.1.1). Is this an example of normal distributed sample of
observations? Clearly not. If we proceed with statistical tests on the raw data set, then we are more likely to commit a Type I error
(i.e., we will reject the null hypothesis more often than we should).

A note on normality and biology. It is VERY possible that data may not be normally distributed or have equal variances on the
original scale, but a simple mathematical manipulation may take care of that. In fact, in many cases in biology that involve growth,
many types of variables are expected to not be normal on the original scale. For example, while the relationship between body
mass, M, and metabolic rate, M R, in many groups of organisms is allometric and increases positively, the relationship

MR=aqa-M"

is not directly proportional (linear) on the original scale. By taking the logarithm of both body mass and metabolic rate, however,
the relationship is linear:

log(MR) =log(a)+b-log(M)

In fact, taking the logarithm (base 10, base 2, or base e) is often a common solution to both non-normal data (Fig. 13.1.2) and
unequal variances.

Freguency

log(Body mass, Q)
Figure 13.1.2: Histogram of log;o-transformed body mass observations from Figure 13.1.1.
Other common transformations include taking the square root or the inverse of the square-root for skewed or kurtotic sample
distributions, and the arcsine for frequencies (since frequencies can only be from 0 to 1 — need to “stretch the data” to make

frequencies fit procedures like ANOVA). There are many issues about data transformation, but keep in mind three points. After
completing the transformation, you should check the assumptions (normality, equal variances) again.
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You may need to recode the data before applying a transform. For example, you cannot take the square root or logarithm of
negative numbers. If you do not recode the data, then you will lose these observations in your subsequent analyses. In many cases,
this problem is easily solved by adding 1 to all data points before making the transform. I prefer to make the minimum value 1 and
go from there. The justification for data transformation is basically to realize that there is no necessity to use the common
arithmetic or linear scale: many relationships are multiplicative or nonadditive (e.g., rates in biology and medicine).

Statistical outlier

Another topic we should at least mention here is the concept of outliers. While most observations tend to cluster around the mean
or middle of the sample distribution, occasionally one or more observations may differ substantially from the others. Such values
are called outliers, and we note that there are two possible explanations for an outlier:

1. the value could be an error.
2. it is a true value (and there may be an interesting biological explanation for its cause).

We encountered a clear outlier in the BMI homework. If the reason is (1), then we go back and either fix the error or delete it from
the worksheet. If (2), however, then we have no objective reason to exclude the point from our analyses.

We worry if the outlier influences our conclusions — so it is a good idea to run your analyses with and without the outlier. If your
conclusions remain the same, then no worries. If your conclusions change based on one observation, then this is problematic. For
the most part you are then obligated to include the outlier and the more conservative interpretation of your statistical tests.

ANOVA is robust to modest deviations from assumptions

A comment about ANOVA assumptions ANOVA turns out to be robust to violations of item (1) or (2). That means unless the data
are really skewed or the group sizes are very different, ANOVA will perform well (Type I error rate stays close to the specified 5%
level). We worry about this however when p-value is very close to alpha!!

The third assumption is more important in ANOVA.

Like the t-test, ANOVA makes the assumption of equal variances among the groups, so it will be helpful to review why this
assumption is important to both the t-test and ANOVA. In the two-sample independent t-test, the pooled sample variance, s3, is
taken as an estimate of the population variance, 2. If you recall,

2 n
>[50 x
5 8514585 , =1 Lj=1
Sp = — sp = 5
V1 + V2 Zi:l (n; —1)

where S5 refers to the sum of squares for the first group and SSs refers to the second group sum of squares (see our discussion
on measures of dispersion) and v; refers to the degrees of freedom for the first group and vs refers to the second group degrees of
freedom. We make a similar assumption in ANOVA. We assume that the variances for each sample are the same and therefore that
they all estimate the population variance o2. To say it in another way, we are assuming that all of our samples have identical
variability.

Once we make this assumption, we may pool (or combine) all of the SS's and DF"s for all groups as our best estimate of the
population variance, o%. The trick to understanding ANOVA is to realize that there can be two types of variability: there is
variability due to being part of a group (e.g., even though ten human subjects receive the same calorie-restricted diet, not all ten
will loose the same amount of weight) and there is variability among or between groups (e.g., on average, all subjects who received
the calorie-restricted diet lost more weight than did those subjects who were on the non-restricted diet).

Example

The encephalization index (or encephalization quotient) is defined as the ratio of size the brain compared to body size. While there
is a well-recognized increase in brain size given increased body size, encephalization describes a shift of function to cortex (frontal,
occipital, parietal, temporal) from noncortical parts of the brain (cerebellum, brainstem). Increased cortex is associated with
increased complexity of brain function; for some researchers, the index is taken as a crude estimate of intelligence. Figure 13.1.3A4
shows plot of brain mass in grams versus body size (grams) for 24 mammal species (data sampled from Boddy et al 2012); figure
13.1.3 Bshows the same data, but following log;o-transform of both variables.
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Figure 13.1.3: Plot of brain and body weights (A) and log;o-log;o transform (B) for a variety of species (data from Boddy et al
2012). The ratio is called encephalization index.

Looking at the two figures, the linear relationship between the two variables is obvious in Figure 13.1.3B, less so for Figure
13.1.3 A Thus, one biological justification for transformation of the raw data is exemplified with the brain-body mass dataset: the
association is allometric, not additive. The other reason to apply a transform is statistical; the logio-transform improves the
normality of the variables. Take a look at the Q-Q plot for the raw data (Figure 13.1.4) and for the log 10 -transformed data (Fig.

13.1.5).
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Figure 13.1.4: Q-Q plot, raw data. Compare to Figure 13.1.1.

Note the data don’t fall on the straight line; a few fall outside of the confidence interval (the curved dashed lines), which suggests
the data are not normally distributed (see histogram, Figure 13.1.1). And for the transformed data, the Q-Q plot is shown in Fig.

13.1.5
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Figure 13.1.5: Q-Q plot of same data, log;-transformed. Compare to Figure 13.1.2.

Compared to the raw data, the transformed data now fall on the line and none are outside of the confidence interval. We would
conclude that the transformed data are more normal, thus, better meeting the assumptions of our parametric tests.

Lack of independence among data

Species comparisons are common in evolutionary biology and related fields. As noted earlier, comparative data should not be
treated as independent data points. For our 24 species, I plotted the estimate of the phylogeny (timetree.org).
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Figure 13.1.6: Phylogenetic tree of 24 species used in this report.

The conclusion? We don’t have 24 data points, more like 8 points. Because the species are more or less related, there are fewer than
24 independent data points. Statistically, this would mean that the errors are correlated. Various approaches to account for this lack
of independence have been developed; perhaps the most common approach is to apply phylogenetically independent contrasts, a
topic discussed in Chapter 20.12. (Boddy et al 2012 used this approach.)

See Chapter 20.11 for help making a plot like the one shown in Figure 13.1.6

Questions
1. TShapiro-Wilks is one test of normality. Can you recall the name of the other normality test we named?
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Data set and R code used in this page

species, order, body, brain

'Herpestes ichneumon', Carnivora, 1764, 24.1
'Potos flavus', Carnivora, 2620, 31.05

'Vulpes vulpes', Carnivora, 3080, 49.5

'"Madoqua kirkii', Cetartiodactyla, 4570, 37

'Sus scrofa', Cetartiodactyla, 1000, 47.7
'Tragulus napu', Cetartiodactyla, 2510, 18.5
'Casinycteris argynnis', Chiroptera, 40.5, 0.92
'Cynopterus brachyotis', Chiroptera, 29, 0.88
'"Potorous platyops', Chiroptera, 718, 6.5
'Cercartetus nanus', Diprotodontia, 12, 0.44548
'Dactylopsila palpator', Diprotodontia, 474, 7.15876
'Vombatus ursinus', Diprotodontia, 1902, 11.396
'"Crocidura fuscomurina', Eulipotyphla, 5.6, 0.13
'Scalopus aquaticus', Eulipotyphla, 39.6, 1.48
'Sorex hoyi', Eulipotyphla, 2.6, 0.107
'Elephantulus fuscipes', Macroscelidea, 57, 1.33
'Rhynchocyon cirnei', Macroscelidea, 490, 6.1
'Rhynchocyon petersi', Macroscelidea, 717.3, 4.46
'Aotus trivirgatus', Primates, 480, 15.5

'Cebus capucinus', Primates, 590, 53.28
'"Leontopithecus rosalia', Primates, 502.5, 11.7
'Dipodomys agilis', Rodentia, 61.4, 1.34
'Peromyscus melanocarpus', Rodentia, 58.8, 1.03
'Sciurus carolinensis', Rodentia, 367, 6.49

The Newick code for the tree in Figure 13.1.6.

((Vombatus_ursinus:48.94499077,
((Potorous_platyops:47.59556667,Cercartetus_nanus:47.59556667)'14':0.66887333,Dactylo
(((((Crocidura_fuscomurina:33.74066667,Sorex_hoyi:33.74066667)'10':33.03022424,Scalop
(((Herpestes_brachyurus:54.32144118,
(Vulpes_vulpes:45.52834967,Potos_flavus:45.52834967)'9':8.79309151)'22':23.43351523,
((Tragulus_napu:43.96862857,Madoqua_kirkii:43.96862857)'8"':17.99735995, Sus_scrofa:61.!
(Casinycteris_argynnis:35.20000000,Cynopterus_brachyotis:35.20000000)'29':43.32874208
(((Peromyscus_melanocarpus:69.89837667,Dipodomys_agilis:69.89837667)'43':0.64655123,S
((Leontopithecus_rosalia:18.38385647,Aotus_trivirgatus:18.38385647)'40':1.29720005, Ce
(Elephantulus_fuscipes:39.23366667,

(Rhynchocyon_cirnei:15.34500000, Rhynchocyon_petersi:15.34500000)'39':23.88866667)'56'

This page titled 13.1: ANOVA assumptions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Michael R
Dohm via source content that was edited to the style and standards of the LibreTexts platform.
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