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2.5: Scientific method and where statistics fits

Introduction

The scientific method is what makes science a “powerful way of knowing” (Church and Carpenter 2008), and by now, you should
be familiar with the outline: hypothesis, experiment, etc. What distinguishes science from other fields of inquiry is that at its best,
science accumulates verifiable evidence about our world. I begin with a disclaimer — our introductory textbooks tend to reify the
scientific method (cf. Blachowicz 2009). Outside of the classroom and introductory science textbooks, I don’t think you’ll find
much agreement among practicing scientists precisely what the scientific method entails, or whether strict adherence to a list of
steps distinguishes what scientists do compared with other professions. For one difference, typical discussions of the scientific
method may emphasize the experiment, which probably brings to mind images of a lab coat and test tubes, but should emphasize
the critical thinking “tool kit” (Wivagg and Allchin 2002), e.g., model-based inquiry. That said, holding a view that introductory
textbooks should present nuances of epistemology seems a big ask.

But we do emphasize experimentation with good reason. In principle it is straightforward to identify what control groups are
needed to conduct an experiment in the lab, but what are the control groups for an experiment conducted on the computer? In most
cases, one should argue that if an outcome is obtained by random processes, then no additional cause need be addressed. Therefore,
the control group for a simulation would be a random process generator.

Disagreements about the scientific method center about how science is really done (e.g., from a social perspective), but also
because there appear to be differences in approach in sciences that work on historical questions (physical cosmology, evolutionary
biology, geology), and those that conform to the classic experimental approach (chemistry, molecular biology, physics).
Epistemology is a fascinating area — “How do we know what we know?”, “What exactly is science and how is it different from
other areas of knowing?”, etc. But I will leave you only with the tantalizing suggestion to read more and start with you with a list of
readings to start (see Readings at the end of the chapter). This is the stuff of graduate and professional school; we have work to do.

Despite apparent differences between what scientists say they do and how they actually do sciences, there is broad agreement;
science as a way of knowing can be characterized by the following steps (National Academy of Sciences 1999).

1. Begin with facts, which are observations confirmed and treated as true
2. Formulate a hypothesis, with emphasis on hypotheses that are testable statements about relationships observed about the natural

world
3. Given the possible outcomes, state predictions derived from the hypothesis.
4. Make observations of perform an experiment designed to test the hypothesis.
5. Analyze the data from the experiment.
6. Evaluate the results of the experiment against the predictions.
7. Repeat.

This deceptively simple list hides much work to be done. Hypotheses are not “educated guesses,” where “educated guess” implies
an idea about how some phenomenon is likely the correct explanation because of the skill or knowledge of the person making the
guess. Good hypotheses make possible experimental tests whose results can be used to rule out alternative explanations, sensu
Platt’s “strong-inference”.

Hypothetico-deductive reasoning

I mention this disclaimer about the common (and reassuring) textbook discourse on the scientific method to suggest that, if you
have not already reached this point in your career, it is time to move past the cookbook approach to thinking about what it means to
do science in practice. There is induction and deduction and probabilistic thinking that must be grappled with, all emphasizing
efforts by the individual, and yet science if it is to make any progress must ultimately be a communal activity (Varmus 2009). In
particular, to the extent a researcher consistently applies hypothetico-deductive reasoning, or as Platt (1964) called it, “strong-
inference,” then good science can happen (see Fudge 2014 for an update). Strong inference according to Platt implies that
researchers should follow three steps (after Fudge 2014):

1. develop alternative hypotheses
2. think of a crucial experiment that can exclude one or more hypotheses
3. perform the experiment and obtain a clean result.

Then, beginning with step 1, repeat the procedure to refine the possibilities that remain.
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The list of elements of the scientific method no where point to the crucial role of scientists engaged in an active community of
scientists fits in. However, we can can quickly suppose that every step of the scientific method can involve input from others to
help shape, improve, and indeed carry out the activities needed to practice science. What scientists share is critical thinking and the
tools of statistics provides a common language.

It’s all about the probability of a particular event

Platt (1964) wrote that some of the observations we make are puzzling or hard to explain, which implies our understanding is
incomplete. We then proceed to ask questions about why the observations are different from our expectations, and we speculate
about how the outcome comes about. Thus, we have to consider the probability, or chance, of a particular outcome (event)
compared to other possible outcomes. Statistics is about analyzing the probability of outcomes. But there is a twist; there are two
distinct, but complementary, approaches to statistics. Most of the statistics you have been taught so far comes from the frequentist
approach. That is, how often (frequency) will we get the kind of results we observe given the hypothesis? Another approach can
be termed Bayesian, where the question is, how likely is the hypothesis to be correct given the data? These two approaches view
the data obtained from the same experiment differently. A frequentist views the data as random — repeat the experiment and the
results will differ — but the hypothesis is fixed (it is either true or it is not). A Bayesian, on the other hand, views the hypothesis as
random with a probability of being true somewhere between zero and 100 percent, and the data are fixed.

Which are you, a frequentist or a Bayesian? Consider the following from xkcd.com no. 1132 (Fig. ).

Figure : “Frequentists vs Bayesians,” xkcd.com no. 1132.

The Bayesian approach makes sense when there exists prior knowledge — the Sun came up this morning, as it did the day before,
and the day before that, etc. New data are assessed against what we already know. The Frequentist approach, despite philosophical
shortcomings, works for analyzing experiments where prior knowledge is lacking about outcomes. Because much of biomedical
research is based on the Frequentist approach, most of our efforts, too, will utilize that approach.

A statistical translation of the Scientific Method

Given our frequentist perspective, we can outline our Scientific Method as follows.

1. Formulate a Null and an Alternate hypothesis.
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2. State predictions from the Null and an Alternate hypotheses.
3. Design an experiment or observation.
4. Analyze the data from the experiment or observation.
5. Interpret the experiment or observation.
6. Evaluate the predictions from the Null and an Alternate hypotheses.
7. Accept (provisionally) or reject (provisionally) the Null hypothesis.
8. Evaluate model fit and robustness
9. Repeat.

In practice, there is more to statistics than these 8 (or 9) steps, but this does provide the outline of what statistical analyses are
about. There are nuances to how a Frequentist or a Bayesian views statistical analyses as evidence for or against a conclusion
(Goodman 1999a, 1999b). We need to distinguish between when data are acquired in the process; data may come before or after the
hypotheses are stated. In epistemology, hypotheses are either a priori or a posterori and we need to add these to our discussion of
Scientific Method. The terms are Latin, translated apparently as “from the earlier” and “from the later”, respectively

Note from the lists described as “the” scientific method how hypothesis comes first. Folks who think and write about how and why
we know what we know — the discipline is called epistemology — tell us we are generally on more solid footing when we design
experiments with specific intent, specific and testable hypotheses. The branch of statistics concerned with experimental design
provides rich context for many practical aspects of how to implement experiments — in other words, how to follow the Scientific
Method, even if turns out there isn’t just one universal definition of Scientific Methods out there.

When we say “experiment,” the hypothesis came first

More commonly in statistics, the phrases planned, and therefore a priori, and unplanned or a posterori, comparisons are
referenced. In practice, biologists design experiments and make observations accordingly to test one or more hypotheses, but they
may also address additional hypotheses after the fact, especially if the experiment generates a lot of data.

You may have also heard of the phrase data mining. Data mining is loosely defined, but mostly refers to sets of protocols and
procedures to extract patterns from large data sets stored in databases. Google apparently does lots of data mining, as do many
other businesses that obtain large amounts of data. Unplanned comparisons include any data mining protocols, no matter how
sophisticated the language sounds (feature selection, classification tree). Data mining is not consistent with classic experiments; it’s
different than Step 6 (Step 8 in the second list) listed above because no new data or experiment is carried out.

Can you get away with coming up with and testing new hypotheses from data gathered from an experiment designed to test a
different hypothesis? Yes, and of course, the process can be quite profitable for Google. However, you should proceed with caution
and restraint. If you are not careful about how you write it up — you will probably be called on it by a reviewer of your work. Is
this a posterori approach still science? Of course, yes! I’d even go so far as to say that when one studies real systems, you can’t
limit yourself to only planned hypotheses and testing. At least, one designs experiments and carries out those tests but then also
uses current data to generate new ideas. Science is also exploratory — you may not design an experiment at all, but through
observations, you probably will develop testable hypotheses! We’ll return to these concepts soon. What you must be aware of in
any unplanned comparison or data mining sojourn is the possibility of committing a data dredging (aka p-hacking) sin —
searching through data to come up with misleading, but statistically “significant” results (Ioannidis 2007; Stefan and Schönbrodt
2023).

Testing of unplanned a posterori hypotheses is a real concern in science. On the one hand, those who think about how we learn
about the world and make sense of it have stated emphatically that the best way we know is to follow the scientific method — and
that begins with hypotheses followed by designed experiments to test claims derived from those a priori hypotheses. We (teachers,
textbook author) continue to teach science as the act of individuals toiling away in the forest or in the lab, pursuing sets of
questions that may involve the collection of measurements on dozens to a few hundred subjects. While this type of science is still
in practice, there is no doubt that big science involving many people is more common and, perhaps, better at generating new
knowledge (Wuchty et al 2007). One result of “big science” is to generate a lot of data, the very essence now of big data, and there
must be room for testing of new hypotheses gathered on data sets. This is the essence of the argument for the ENCODE project
(ENCODE Project Consortium 2012), which generates lots of genetic data on the human genome using common techniques and
makes the data publicly available — new research can be conducted on old data.
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Bottom-up, top-down

Consider the pronouncements (almost daily, it seems!) about the discovery of a new gene for some disease, process, or behavior in
humans. Often times, although not always, these “discoveries” are not duplicated by other research groups. Why not? Well, for one,
the phrase “gene for” is a dubious short-hand for what is usually a more complex causation. But from our statistical perspective it is
problematic because the search for genes is really an a posterori exercise — one begins with phenotypic differences (some have the
disease, others do not) and some genetic information (SNPs, DNA sequencing) and then proceeds to see if there are any differences
in the genetic material at hand between the two groups. This approach, the Genome Wide Association Study, or GWAS, would be
termed “top-down” — begin with the phenotypic differences and search for genetic differences between those that do and those
who do not have the condition. Sampling is an issue (are the unaffected subjects a random sample from the entire population?), but
the problem also is one of logical design — the hypothesis is made after the fact — a statistical difference between the groups is
attributed to a particular genetic difference.

Case-control subjects, where patients with the condition are matched with other individuals who do not have the condition, but
match in other ways (e.g., age, income, etc.), are enrolled in such studies because there can be no random assignment of subjects to
treatment. Case-control subjects are selected such that affected and unaffected individuals are matched by characteristics in as
many meaningful ways as possible (e.g., age, gender, income, etc.). Because many tests are conducted in GWAS studies, i.e., is
there a difference between the control and affected group for the first gene, the second gene, and so on up to the number of genes
on the microarray chip (10,000 or more genes), the chance that any particular association is a false positive is high, discussed
further when we cover Risk Analysis in Chapter 7.

How to interpret a test result

You are a medical doctor reading the results of a test for three-month average glycated hemoglobin, A1C, levels for your patient.
For example, A1C above 6% is considered strong marker of diabetes. A marker, yes, but not the same as a guarantee that a person
has diabetes. A false positive (FP) is the case where a test result is positive, but the subject in fact does not have the condition.
False positive is equal to the ratio of

where  is the number of false positive readings and  refers to the true negative, the number of those who in fact do not
have the condition.

In Chapter 7 we will spend some time on risk analysis. To introduce this important subject in biostatistics, we’ll begin with an
example. A study of 15,934 subjects without diagnosed diabetes found that 3.8%, or 605 individuals, had elevated A1C levels,
which translates to about 7.1 million U.S. adults not yet diagnosed with diabetes (Selvin et al 2011). About 90% of these
individuals also had fasting glucose levels greater than 100 mg/dL, i.e., diabetic. This is clearly a good test. However, note that
10% of the 605 individuals had elevated A1C, but fasting glucose levels less than 100 mg/dl, i.e., did not meet the diagnostic of
type 2 diabetes. Thus, the false positive rate is about 0.4%, or nearly 30,000 adults with elevated A1C without diabetes.

Working through frequencies can be challenging, so applying a natural number approach helps. Having just read through the
frequencies and percentages, now look at how they translate to a probability tree (Fig. ). Start by utilizing a per-capita rate
standard: for proportions in the 10 – 20% range, a standard 1000 persons works well (Fig. ).

Figure : Probability tree diagram with prevalence of type 2 diabetes and sensitivity, specificity of A1C test, data from CDC
and Selvin et al 2011. Tree drawn with free diagrams.net app.
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How many individuals are expected to have A1C above 6%? Twenty-six total positives, of which only 23% are true positives. An
important lesson is that if the prevalence of a condition is low, then any diagnostic test with high sensitivity necessarily will
identify many false positives.

False discovery rate: claims must be stringently evaluated

The genome scientists involved in GWAS studies generally are aware of false positives, also termed false discovery rate (FDR),
conduct statistical corrections to account for false positives (e.g., Brzyski et al 2016), and generally are cautious in their
interpretation. But not always. Studies of associations between autism and environment come to mind (e.g., Waldman et al 2008),
and recent developments in the direct-to-consumer genetic testing market also suggest that the limitations of these kinds of studies
are not always represented.

There is a broader concern about the reliability of research, and the debate about how to improve reliability comes from a call to
understand how to do statistics better and, more importantly to understand how statistics are to be used in making claims from
statistical results (Ioannidis 2007; but see Goodman and Greenland 2007). A key element of scientific work is that findings are
repeatable: results from one group should apply to other groups. One dictate to improve reproducibility — increase number of
subjects in studies — is obvious, but given the cost of GWAS, currently an unreasonable demand.

In some cases, biologists already have a particular gene in mind, whose function is more or less known, and then the exercise
follows the Scientific Method listing much more directly. This bottom-up approach leads to a straightforward, testable genetic
hypotheses: a specific difference in genomic sequence predicts a difference in phenotype outcome. A good example is the
identification of more than 100 different single nucleotide mutations, called single nucleotide polymorphisms or SNPs, in the
CFTR gene of patients known to have cystic fibrosis disease (Castellani 2013). As of August 2018, the number of known
pathogenic or likely pathogenic SNPs is now listed at 440 in the SNP database; to put this in some context, there are more than
40,000 reported single nucleotide polymorphisms for the CFTR gene (this number includes SNP duplicates).

Conclusions

Epistemology, the theory of how knowledge is acquired, is a complicated business – what I want you to appreciate now is that
planned and unplanned comparisons affect interpretation of your statistical results, how the difference is likely also to affect the
reproducibility of your work. In the language or clinical trials and experimental design, planned and unplanned accompany
prospective and retrospective studies (Chapter 5). A prospective study in the case of GWAS means genetic differences among
individuals are known at the start of the study, and phenotypic differences arise naturally during the course of the study. Knowing
the strengths and limitations of, for example, a planned retrospective study is at the heart of experimental design (Chapter 5).

Questions
1. Follow links to and read papers by Platt (1964) and Cleland (2001) to answer the following questions.

What is the problem with a scientist coming up with only one hypothesis for his or her research?
What did Platt mean by “strong inference” and how did he recommend this be accomplished?
According to Cleland (2001) how do experimental sciences and historical sciences differ in how they handle the asymmetry
of causation?

2. Above we described how GWAS studies are generally top-down; what would constitute a bottom-up approach to GWAS?
3. In your own words, provide pro and con points of view on data mining of large data sets.
4. What would be the harm of a false positive in a GWAS study of prostate cancer (review in Benafif et al 2018)?
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