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18.3: Logistic regression

Introduction

We briefly introduced logistic regression in the previous chapter on nonlinear regression. We expand our discussion of logistic
regression here.

Logistic regression is a statistical method for modeling the dependence of a categorical (binomial) outcome variable on one or

more categorical and continuous predictor variables (Bewick et al 2005).

The logistic function may be used to transform a sigmoidal curve to a more or less straight line while also changing the range of the
data from binary (0 to 1) to infinity (—oo, +00). For event with probability of occurring p, the logistic function is written as

logit(p) 1n< - P )

—-p

where In refers to the natural logarithm.
This is an odds ratio. It represents the effect of the predictor variable on the chance that the event will occur.

The logistic regression model then very much resembles the same general linear models we have seen before.
logit(p) = Bo +Br1 X1+ faXo+... + B X, +e

In R and Rcmdr we usethe glm() function to model the logistic function. Logistic regression is used to model a binary
outcome variable. What is a binary outcome variable? It is categorical! Examples include: Living or Dead; Diabetes Yes or No;
Coronary artery disease Yes or No. Male or Female. One of the categories could be scored 0, the other scored 1. For example,
living might be 0 and dead might be scored as 1. (By the way, for a binomial variable, the mean for the variable is simply the
number of experimental units with “1” divided by the total sample size.)

With the addition of a binary response variable, we are now really close to the Generalized Linear Model. Now we can handle
statistical models in which our predictor variables are either categorical or ratio scale. All of the rules of crossed, balanced, nested,
blocked designs still apply because our model is still of a linear form.

We write our generalized linear model

G ~ Model

just to distinguish it from a general linear model with the ratio-scale Y as the response variable.

Think of the logistic regression as modeling a threshold of change between the 0 and the 1 value. In another way, think of all of the
processes in nature in which there is a slow increase, followed by a rapid increase once a transition point is met, only to see the rate
of change slow down again. Growth is like that (see Chapter 20.10 for related growth and related models). We start small, stay
relatively small until birth, then as we reach our early teen years, a rapid change in growth (height, weight) is typically seed (well,
not in my case ... at least for the height). The curve I described is a logistic one (other models exist too). Where the linear
regression function was used to minimize the squared residuals as the definition of the best fitting line, now we use the logistic as
one possible way to describe or best fit this type of a curved relationship between an outcome and one or more predictor variables.
We then set out to describe a model which captures when an event is unlikely to occur (the probability of dying is close to zero)
AND to also describe when the event is highly likely to occur (the probability is close to one).

A simple way to view this is to think of time being the predictor (X) variable and risk of dying. If we’re talking about the lifetime
of a mouse (lifespan typically about 18-36 months), then the risk of dying at one months is very low, and remains low through
adulthood until the mouse begins the aging process. Here’s what the plot might look like, with the probability of dying at age X on
the Y axis (probability = 0 to 1) (Fig. 18.3.1).

https://stats.libretexts.org/@go/page/45260



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/45260?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Mikes_Biostatistics_Book_(Dohm)/18%3A_Multiple_Linear_Regression/18.3%3A_Logistic_regression
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Mikes_Biostatistics_Book_(Dohm)/20%3A_Additional_Topics/20.10%3A_Growth_equations_and_dose_response_calculations

@%meﬁm&m

2 e®®°®
®
@ —
= ° e
=
g 2 )
(o]
a
@ - Y
= —
= (e ]
5 ®
®
P ®
® @
See®
T T T T T
0 10 20 30 40
Months

Figure 18.3.1: Lifespan of 1881 mice from 31 inbred strains (Data from Yuan et al [2012] available at
https://phenome.jax.org/projects/Yuan2). Note: I labeled Y axis labeled “Survival Probability”; “Inverse Survival Probability”
would be more accurate.
We ask — of all the possible models we could draw — which model best fits the data? The curve fitting process is called the
logistic regression. The sample data set is listed at end of this page (scroll down or click here). Create data.frame called yuan.

With some minor, but important differences, running the logistic regression is the same as what you have been doing so far for
ANOVA and for linear regression. In Remdr, access the logistic regression function by calling the Generalized Linear Model

(Fig. 18.3.9.
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Figure 18.3.2: Access Generalized Linear Model via R Commander.
R results:

GLM.1 <- glm(cumFreq ~ Months, family=gaussian(identity), data=yuan)

> summary(GLM.1)

Call:
glm(formula = cumFreq ~ Months, family = gaussian(identity),
data = yuan)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.11070 -0.07799 -0.01728 0.06982 0.13345
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Coefficients:

Estimate Std. Error t value Pr(>]|t])
(Intercept) -0.132709 0.045757 -2.90 0.0124 *
Months 0.029605 0.001854 15.97 6.37e-10 ***

Signif. codes: @ '***' 0.001 '**' 0.01 '*' 0.605 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 0.008663679)
Null deviance: 2.32129 on 14 degrees of freedom

Residual deviance: 0.11263 on 13 degrees of freedom

AIC: -24.808

Number of Fisher Scoring iterations: 2

Rcmdr: Statistics — Fit models — Generalized linear model.
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Figure 18.3.3: Screenshot of Remdr GLM menu. For logistic on ratio-scale dependent variable, select gaussian family and identity

link function.
Select the model as before. The box to the left accepts your binomial dependent variable; the box at right accepts your factors, your
interactions, and your covariates. It permits you to inform R how to handle the factors: Crossed? Just enter the factors and follow
each with a plus. If fully crossed, then the interactions may be specified with “:” to explicitly call for a two-way interaction
between two (A:B) or a three-way interaction between three (A:B:C) variables. In the later case, if all of the two way interactions
are of interest, simply typing A*B*C would have done it. If nested, then use %in% to specify the nesting factor.

R output:

GLM.1 <- glm(cumFreq ~ Months, family=gaussian(identity), data=yuan)
summary(GLM.1)

Call:

glm(formula = cumFreq ~ Months, family = gaussian(identity),

data = yuan)

Deviance Residuals:
Min 1Q Median 3Q Max
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-0.11070 -0.07799 -0.01728 0.06982 0.13345

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.132709 0.045757 -2.90 0.0124 *
Months 0.029605 0.001854 15.97 6.37€-10 ***
Signif. codes: @ '***' @.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

(Dispersion parameter for gaussian family taken to be 0.008663679)
Null deviance: 2.32129 on 14 degrees of freedom
Residual deviance: 0.11263 on 13 degrees of freedom

AIC: -24.808

Number of Fisher Scoring iterations: 2

Assessing fit of the logistic regression mode

Some of the differences you will see with the logistic regression is the term “deviance.” deviance in statistics simply means
compare one model to another and calculate some test statistic we’ll call “the deviance.” We then evaluate the size of the deviance
like a chi-square goodness of fit. If the model fits the data poorly (residuals large relative to the predicted curve), then the deviance
will be small and the probability will also be high — the model explains little of the data variation. On the other hand, if the
deviance is large, then the probability will be small — the model explains the data, and the probability associated with the deviance
will be small (significantly so? You guessed it! P < 0.05).

The Wald statistic is

Bn \?
()

where n and  refer to any of the n coefficient from the logistic regression equation and SE refers to the standard error if the
coefficient. The Wald test is used to test the statistical significance of the coefficients. It is distributed approximately as a chi-
squared probability distribution with one degree of freedom. The Wald test is reasonable, but has been found to give values that are
not possible for the parameter (e.g., negative probability).

Likelihood ratio tests are generally preferred over the Wald test. For a coefficient, the likelihood test is written as
—2 X In(likelihood ratio) = —2 In(Lg/L1) = -2 x (In Ly —1n L,)

where Ly is the likelihood of the data when the coefficient is removed from the model (i.e., set to zero value), whereas L is the
likelihood of the data when the coefficient is the estimated value of the coefficient. It is also distributed approximately as a chi-
squared probability distribution with one degree of freedom.

Nonlinear regression

Nonlinear regression, nls() function, may be a better choice. It can be implemented as follows:

attach(yuan)
logisticModel <-nls(cumFreq~DD/(1+exp(-(CC+bb*Months))), start=list(DD=1,CC=0.2,bb=.5
summary(logisticModel)

Formula: yuan$cumFreq ~ DD/(1 + exp(-(CC + bb * yuan$Months)))
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Parameters:
Estimate Std. Error t value Pr(>|t])
DD 1.038504 0.014471 71.77 < 2e-16 ***
cc -4.626982 0.175109 -26.42 5.29e-12 ***
bb 0.206899 0.008777 23.57 2.03e-11 ***
Signif. codes: @ '***' @.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

Residual standard error: 0.01908 on 12 degrees of freedom

Number of iterations to convergence: 11
Achieved convergence tolerance: 0.000006909

Get fit statistics:

AIC(logisticModel)
[1] -71.54679

Because AIC for the nonlinear model much smaller (more negative) than AIC for logistic model, we may be tempted to judge fit of
the nonlinear regression as best. However, this comparison of models is not valid because the Y variables are different between the
two models and the fit families are different. One option is to evaluate fit of models by plots of residuals (see 17.7 — Regression

model fit).

Questions

[pending]

Data set

Months freq cumFreq

0 0 0

3 0.01063264221159 0.01063264221159
6 0.017012227538543 0.027644869750133
9 0.045188729399256 0.072833599149389
12 0.064327485380117 0.137161084529506
15 0.064859117490697 0.202020202020202
18 0.097820308346624 0.299840510366826
21 0.118553960659224 0.41839447102605
24 0.171185539606592 0.589580010632642
27 0.162147793726741 0.751727804359383
30 0.137161084529506 0.888888888888889
33 0.069643806485912 0.958532695374801
36 0.024455077086656 0.982987772461457
39 0.011695906432749 0.994683678894205
42 0.005316321105795 1
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