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18.1: Multiple linear regression

Introduction

Last time we introduced simple linear regression:

o one independent X variable

o one dependent Y variable.

The linear relationship between Y and X was estimated by the method of Ordinary Least Squares (OLS). OLS minimizes the
sum of squared distances between the observed responses, Y;, and responses predicted by the line, }}, Simple linear regression is

analogous to our one-way ANOVA — one outcome or response variable and one factor or predictor variable (Chapter 12.2).

But the world is complicated and so, our one-way ANOVA was extended to the more general case of two or more predictor (factor)
variables (Chapter 14). As you might have guessed by now, we can extend simple regression to include more than one predictor
variable. In fact, combining ANOVA and regression gives you the general linear model! And, you should not be surprised that
statistics has extended this logic to include not only multiple predictor variables, but also multiple response variables. Multiple
response variables falls into a category of statistics called multivariate statistics.

Like multi-way ANOVA, multiple regression is the extension of simple linear regression from one independent predictor variable
to include two or more predictors. The benefit of this extension is obvious — our models gain realism. All else being equal, the
more predictors, the better the model will be at describing and/or predicting the response. Things are not all equal, of course, and
we’ll consider two complications of this basic premise, that more predictors are best; in some cases they are not.

However, before discussing the exceptions or even the complications of a multiple linear regression model, we begin by obtaining
estimates of the full model, then introduce aspects of how to evaluate the model. We also introduce comparisons of models and
whether a reduced model may be the preferred model.

R code

Multiple regression is easy to do in Rcmdr — recall that we used the general linear model function, 1m( ) , to analyze one-
way ANOVA and simple linear regression. In R Commander, we access 1m( ) by

Rcmdr: Statistics — Fit model — Linear model
You may, however, access linear regression through R Commander

We use the same general linear model function for cases of multi-way ANOVA and for multiple regression problems. Simply enter
more than one ratio-scale predictor variable and boom!

You now have yourself a multiple regression. You would then proceed to generate the ANOVA table for hypothesis testing
Rcmdr: Models — Hypothesis testing -~ ANOVA tables

From the output of the regression command, estimates of the coefficients along with standard errors for the estimate and results of
t-tests for each coefficient against the respective null hypotheses for each coefficient are also provided. In our discussion of simple
linear regression we introduced the components: the intercept, the slope, as well as the concept of model fit, as evidenced by R?,
the coefficient of determination. These components exist for the multiple regression problem, too, but now we call the slopes
partial regression slopes because there are more than one.

Our full multiple regression model becomes

Y, =B+ 81 X1+ BeXo 4+ X+ €

where the coefficients 81, B, . . . , 8, are the partial regression slopes and §y is the Y-intercept for a model with 1 —n predictor
variables. Each coefficient has a null hypothesis, each has a standard error, and therefore, each coefficient can be tested by the ¢-
test.

Now, regression, like ANOVA, is an enormous subject and we cannot do it justice in the few days we will devote to it. We can,
however, walk you through a fairly typical example. I’ve posted a small data set diabetesCholStatin at the end of this
page. Scroll down or click here. View the data set and complete your basic data exploration routine: make scatterplots and box
plots. We think (predict) that body size and drug dose cause variation in serum cholesterol levels in adult men. But do both predict
cholesterol levels?
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Selecting the best mode

We have two predictor variables, and we can start to see whether none, one, or both of the predictors contribute to differences in
cholesterol levels. In this case, both contribute significantly. The power of multiple regression approaches is that it provides a
simultaneous test of a model which may have many explanatory variables deemed appropriate to describe a particular response.
More generally, it is sometimes advisable to think more philosophically about how to select a best model.

In model selection, some would invoke Occam’s razor — given a set of explanations, the simplest should be selected — to justify
seeking simpler models. There are a number of approaches (forward selection, backward selection, or stepwise selection), and the
whole effort of deciding among competing models is complicated with a number of different assumptions, strengths and
weaknesses. 1 refer you to the discussion below, which of course is just a very brief introduction to a very large subject in
(bio)statistics!

Let’s get the full regression model

The statistical model is
ChLDL; =y +B1- BMI + 35 - Dose + 33 - Statin +¢;

As written in R format, our model is ChLDL ~ BMI + Dose + Statin .

BMI is ratio scale and Statin is categorical (two levels: Statinl, Statin2). Dose can be viewed as categorical, with
five levels (5, 10, 20, 40, 80 mg), interval scale, or ratio scale. If we are make the assumption that the difference between 5, 10,
up to 80 mg is meaningful, and that the effect of dose is at least proportional if not linear with respect to ChLDL, then we
would treat Dose as ratio scale, not interval scale. That’s what we did here.

We can now proceed in R Commander to fit the model.
Rmdr: Statistics — Fit models — Linear model

How the model is inputted into linear model menu is shown in Figure 18.1.1
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Figure 18.1.1: Screenshot of Rcmdr linear model menu with our model elements in place.

The output

summary(LinearModel.1)
Call:
Im(formula = ChLDL ~ BMI + Dose + Statin, data = cholStatins)

Residuals:
Min 1Q Median 3Q Max
-3.7756 -0.5147 -0.0449 0.5038 4.3821

Coefficients:
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Estimate Std. Error t value Pr(>]|t])

(Intercept) 1.016715 1.178430 0.863 0.39041

BMI 0.058078 0.047012 1.235 0.21970
Dose -0.014197 0.004829 -2.940 0.00411 **
Statin[Statin2] 0.514526  0.262127 1.963 0.05255
Signif. codes: @ '***' @.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

Residual standard error: 1.31 on 96 degrees of freedom
Multiple R-squared: 0.1231, Adjusted R-squared: 0.09565
F-statistic: 4.49 on 3 and 96 DF, p-value: 0.005407

Question. What are the estimates of the model coefficients (rounded)?
by = intercept = 1.017
b1 = slope for variable BMI = 0.058
by = slope for variable Dose = -0.014
bs = slope for variable Statin = -0.515
Question. Which of the three coefficients were statistically different from their null hypothesis?

Answer: Only the by coefficient was judged statistically significant at the Type I error level of 5% (p = 0.0041). Of the four null
hypotheses we have for the coefficients (Intercept = 0; by =0; by =0; bs =0), we only reject the null hypothesis for Dose
coefficient.

Note the important concept about the lack of a direct relationship between the magnitude of the estimate of the coefficient and the
likelihood that it will be statistically significant! In absolute value terms b; > by, but b; was not even close to statistical
significance (p = 0.220).

We generate a 2D scatterplot and include the regression lines (by group=Statin) to convey the relationship between at least one of
the predictors (Fig. 18.1.2).
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Figure \(\PageIndex{2\}\): Scatter plot of predicted LDL against dose of a statin drug. Regression lines represent the different statin
drugs (Statin1, Statin2).

Question. Based on the graph, can you explain why there will be no statistical differences between levels of the statin drug type,
Statin1 (shown open circles) vs. Statin2 (shown closed red circles)?
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Because we have two predictors (BMI and Statin Dose), you may also elect to use a 3D-scatterplot. Here’s one possible result (Fig.
18.1.9).

80

Figure 18.1.3: 3D plot of BMI and dose of Statin drugs on change in LDL levels (green Statin2, blue Statin1).
R code for Figure 18.1.3
Graph made in Remdr: Graphs — 3D Graph — 3D scatterplot ...

scatter3d(ChLDL~BMI+Dose|Statin, data=diabetesCholStatin, fit="linear",
residuals=TRUE, parallel=FALSE, bg="white", axis.scales=TRUE, grid=TRUE,
ellipsoid=FALSE)

Figure 18.1.3is a challenging graphic to interpret. I wouldn’t use it because it doesn’t convey a strong message. With some
effort we can see the two planes representing mean differences between the two statin drugs across all predictors, but it’s a
stretch. No doubt the graph can be improved by changing colors, for example, but I think the 2d plot (Figure 18.1.2) works
better. Alternatively, if the platform allows, you can use animation options to help your reader see the graph elements.
Interactive graphics are very promising and, again, unsurprisingly, there are several R packages available. For this example,

plot3d() of the package rgl can be used. Figure 18.1.4is one possible version; I saved images and made animated
gif.

Dose *
a0

Figure 18.1.4: An example of a possible interactive 3D plot; the file embedded in this page is not interactive, just an animation.

Diagnostic plots

While visualization concerns are important, let’s return to the statistics. All evaluations of regression equations should involve an
inspection of the residuals. Inspection of the residuals allows you to decide if the regression fits the data; if the fit is adequate, you
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then proceed to evaluate the statistical significance of the coefficients.
The default diagnostic plots (Fig. 18.1.5) R provides are available from Rcmdr: Models — Graphs — Basic diagnostics plots

Four plots are returned:
Im(ChLDL ~ BMI + Dose)
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Figure 18.1.5: R’s default regression diagnostic plots.

Each of these diagnostic plots in Figure 18.1.5gives you clues about the model fit.

1. Plot of residuals vs. fitted helps you identify patterns in the residuals

2. Normal Q-Q plot helps you to see if the residuals are approximately normally distributed
3. Scale-location plot provides a view of the spread of the residuals

4. The residuals vs. leverage plot allows you to identify influential data points.

We introduced these plots in Chapter 17.8 when we discussed fit of simple linear model to data. My conclusion? No obvious trend
in residuals, so linear regression is a fit to the data; data not normally distributed, as Q-Q plot shows S-shape.

Interpreting the diagnostic plots for this problem

The “Normal Q-Q” plot allows us to view our residuals against a normal distribution (the dotted line). Our residuals do no show
an ideal distribution: low for the first quartile, about on the line for intermediate values, then high for the 3rd and 4th quartile
residuals. If the data were bivariate normal we would see the data fall along a straight line. The “S-shape” suggests log-
transformation of the response and or one or more of the predictor variables.

Note that there also seems to be a pattern in residuals vs the predicted (fitted) values. There is a trend of increasing residuals as
cholesterol levels increase, which is particularly evident in the “scale-location” plot. Residuals tended to be positive at low and
high doses, but negative at intermediate doses. This suggests that the relationship between predictors and cholesterol levels may not
be linear, and it demonstrates what statisticians refer to as a monotonic spread of residuals.

The last diagnostic plot looks for individual points that influence, change, or “leverage” the regression — in other words, if a point
is removed, does the general pattern change? If so, then the point had “leverage” and thus we need to decide whether or not to
include the datum. diagnostic plots Cook’s distance is a measure of the influence of a point in regression. Points with large Cook’s
distance values warrant additional checking.

The multicollinearity problem

Statistical model building is a balancing act by the statistician. While simpler models may be easier to interpret and, perhaps, to
use, it is a basic truism that the more predictor variables the model includes, the more realistic the statistical model. However, each
additional parameter that is added to the statistical model must be independent of all other parameters already in the model. To the
extent that this assumption is violated, the problem is termed multicollinearity. If predictor variables are highly correlated, then
they are essentially just linear combinations and do not provide independent evidence. For example, one would naturally not
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include two core body temperature variables in a statistical model on basal metabolic rate, one in degrees Fahrenheit and the other
in degrees Celsius, because it is a simple linear conversion between the two units. This would be an example of structural
collinearity: the collinearity is because of misspecification of the model variables. In contrast, collinearity among predictor
variables may because the data are themselves correlated. For example, if multiple measures of body size are included (weight,
height, length of arm, etc.), then we would expect these to be correlated, i.e., data multicollinearity.

Collinearity in statistical models may have a number of undesirable effects on a multiple regression model. These include

o estimates of coefficients not stable: with collinearity, values of coefficients depend on other variables in the model; if collinear
predictors, then the assumption of independent predictor variables is violated.

o precision of the estimates decreases (standard error of estimates increase).

o statistical power decreases.

o p-values for individual coefficients not trust worthy.

Tolerance and Variance Inflation Factor

Absence of multicollinearity is important assumption of multiple regression. A partial test is to calculate product moment
correlations among predictor variables. For example, when we calculate the correlation between BMI and Dose for our model, we
get r=0.101 (p =0.3186), and therefore would tentatively conclude that there was little correlation between our predictor
variables.

A number of diagnostic statistics have been developed to test for multicollinearity. Tolerance for a particular independent variable
(X;) is defined as 1 minus the proportion of variance it shares with the other independent variables in the regression analysis
(1 - Rf) (O’Brien 2007). Tolerance reports the proportion of total variance explained by adding the X ith predictor variable that is
unrelated to the other variables in the model. A small value for tolerance indicates multicollinearity — and that the predictor
variable is nearly a perfect combination (linear) of the variables already in the model and therefore should be omitted from the
model. Because tolerance is defined in relation to the coefficient of determination, you can interpret a tolerance score as the unique
variance accounted for by a predictor variable.

A second, related diagnostic of multicollinearity is called the Variance Inflation Factor, VIF. VIF is the inverse of tolerance.

VIF = ;
tolerance

VIF shows how much of the variance of a regression coefficient is increased because of collinearity with the other predictor
variables in the model. VIF is easy to interpret: a tolerance of 0.01 has a VIF of 100; a tolerance of 0.1 has a VIF of 10; a tolerance
of 0.5 has a VIF of 2, and so on. Thus, small values of tolerance and large values of VIF are taken as evidence of multicollinearity.

Rcmdr: Models —~ Numerical diagnostics — Variation-inflation factors

vif(RegModel.2)
BMI Dose
1.010256 1.010256

A rule of thumb is that if VIF is greater than 5 then there is multicollinearity; with VIF values close to one we would conclude, like
our results from the partial correlation estimate above, that there is little evidence for a problem of collinearity between the two
predictor variables. They can therefore remain in the model.

Solutions for multicollinearity

If there is substantial multicollinearity then you cannot simply trust the estimates of the coefficients. Assuming that there hasn’t
been some kind of coding error on your part, then you may need to find a solution. One solution is to drop one of the predictor
variables and redo the regression model. Another option is to run what is called a Principle Components Regression. One takes the
predictor variables and runs a Principle Component Analysis to reduce the number of variables, then the regression is run on the
PCA components. By definition, the PCA components are independent of each other. Another option is to use ridge regression
approach.

Like any diagnostic rule, however, one should not blindly apply a rule of thumb. A VIF of 10 or more may indicate
multicollinearity, but it does not necessarily lead to the conclusion that the linear regression model requires that the researcher
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reduce the number of predictor variables or analyze the problem using a different statistical method to address multicollinearity as
the sole criteria of a poor statistical model. Rather, the researcher needs to address all of the other issues about model and parameter
estimate stability, including sample size. Unless the collinearity is extreme (like a correlation of 1.0 between predictor variables!),
larger sample sizes alone will work in favor of better model stability (by lowering the sample error) (O’Brien 2007).

Questions

1. Can you explain why the magnitude of the slope is not the key to statistical significance of a slope? Hint: look at the equation of
the t-test for statistical significance of the slope.

2. Consider the following scenario. A researcher repeatedly measures his subjects for blood pressure over several weeks, then
plots all of the values over time. In all, the data set consists of thousands of readings. He then proceeds to develop a model to
explain blood pressure changes over time. What kind of collinearity is present in his data set? Explain your choice.

3. We noted that Dose could be viewed as categorical variable. Convert Dose to factor variable ( TDose ) and redo the
linear model. Compare the summary output and discuss the additional coefficients.

o Use Remdr: Data — Manage variables in active data set —~ Convert numeric Variables to Factors to create a new
factor variable fDose . It’s ok to use the numbers as factor levels.
4. We flagged the change in LDL as likely to be not normally distributed. Create a logo-transformed variable for ChLDL and
perform the multiple regression again.
a. Write the new statistical model
b. Obtain the regression coefficients — are they statistically significant?
c¢. Run basic diagnostic plots and evaluate for fit of the linear model for this data set.

Data set

ID Statin Dose BMI LDL ChLDL

1 Statin2 5 19.5 3.497 2.7147779309
2 Statinl 20 20.2 4.268 1.2764831106
3 Statin2 40 20.3 3.989 2.6773769532
4 Statin2 20 20.3 3.502 2.4306181501
5 Statin2 80 20.4 3.766 1.7946303961
6 Statin2 20 20.6 3.44 2.2342950639
7 Statinl 20 20.7 3.414 2.6353051933
8 Statinl 10 20.8 3.222 0.8091810801
9 Statinl 10 21.1 4.04 3.2595985907
10 Statinl 40 21.2 4.429 1.7639974729
11 Statinl 5 21.2 3.528 3.3693768458
12 Statinl 40 21.5 3.01 -0.8271542022
13 Statin2 20 21.6 3.393 2.1117204833
14 Statinl 10 21.7 4.512 3.1662377996
15 Statinl 80 22 5.449 3.0083296182
16 Statin2 10 22.2 4.03 3.0501301624
17 Statin2 40 22.2 3.911 2.6460344888
18 Statin2 10 22.2 3.724 2.9456555243
19 Statinl 5 22.2 3.238 3.2095842825
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20 Statin2 10 22.5 4.123 3.0887629267
21 Statinl 20 22.6 3.859 5.1525478688
22 Statinl 10 23 4.926 2.58482964
23 Statin2 20 23 3.512 2.2919748394
24 Statinl 5 23 3.838 1.4689995606
25 Statin2 20 23.1 3.548 2.3407899756
26 Statinl 5 23.1 3.424 1.2043457967
27 Statinl 40 23.2 3.709 3.2381790892
28 Statinl 80 23.2 4.786 2.7486432463
29 Statinl 20 23.3 4.103 1.2500819426
30 Statinl 40 23.4 3.341 1.4322916002
31 Statinl 10 23.5 3.828 1.3817551192
32 Statin2 10 23.8 4.02 3.0391874265
33 Statinl 20 23.8 3.942 0.8483284736
34 Statin2 20 23.8 2.89 1.7211634664
35 Statinl 80 23.9 3.326 1.9393460444
36 Statinl 10 24.1 4.071 3.0907410326
37 Statinl 40 241 4.222 1.3223045884
38 Statin2 10 24.1 3.44 2.472222941
39 Statinl 5 24.2 3.507 0.0768171794
40 Statin2 20 24.2 3.647 2.4257575585
41 Statin2 80 24.3 3.812 1.7105748759
42 Statin2 40 24.3 3.305 1.9405724055
43 Statin2 5 24.3 3.455 2.5022137646
44 Statin2 5 24.4 4.258 3.2280077893
45 Statinl 5 24.4 4.16 3.4777470262
46 Statin2 80 24.4 4.128 2.0632471844
47 Statinl 80 24.5 4.507 3.784421647
48 Statinl 5 24.5 3.553 0.6957091748
49 Statin2 10 24.5 3.616 2.6998703189
50 Statin2 80 24.6 3.372 1.3004010967
51 Statin2 80 24.6 3.667 1.4181086606
52 Statin2 5 24.7 3.854 3.1266706892
53 Statinl 80 24.7 3.32 -1.2864388279
54 Statin2 5 24.7 3.756 2.4236635094
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55 Statinl 40 24.8 4.398 2.907472945
56 Statin2 40 24.9 3.621 2.3624285593
57 Statinl 10 25 3.17 1.264656476
58 Statinl 80 25.1 3.424 -2.4369077381
59 Statin2 10 25.1 3.196 2.0014648648
60 Statin2 80 25.2 3.367 1.1007041451
61 Statinl 80 25.2 3.067 -0.2315398019
62 Statinl 20 25.3 3.678 4.6628661348
63 Statin2 5 25.5 4.077 2.6117051224
64 Statinl 20 25.5 3.678 2.6330531096
65 Statin2 5 25.6 4.994 4.1800816149
66 Statinl 20 25.8 3.699 1.8990314684
67 Statinl 10 25.9 3.507 4.0637570533
68 Statin2 20 25.9 3.445 2.3037613081
69 Statinl 5 26 4.025 2.50142676

70 Statinl 5 26.3 3.616 0.7408631019
71 Statin2 40 26.4 3.937 2.5733214297
72 Statin2 40 26.4 3.823 2.3638394785
73 Statinl 10 26.7 4.46 2.1741977546
74 Statin2 5 26.7 5.03 3.845271327
75 Statin2 10 26.7 3.73 2.7088955103
76 Statin2 10 26.7 3.232 2.2726268196
77 Statinl 80 26.8 3.693 1.751169214
78 Statin2 80 27 4.108 1.8613104992
79 Statin2 40 27.2 5.398 4.0289773539
80 Statin2 80 27.2 4.517 2.3489030399
81 Statin2 20 27.3 3.901 2.7900467077
82 Statinl 80 27.3 5.247 5.8485450123
83 Statin2 80 27.4 3.507 1.2478629747
84 Statinl 20 27.4 3.807 -1.0799279924
85 Statin2 80 27.6 3.574 1.48678931

86 Statinl 40 27.8 4.16 2.4277532799
87 Statin2 20 28 4.501 3.2846482963
88 Statin2 5 28.1 3.621 2.6990067113
89 Statinl 40 28.2 3.652 -1.0912561688
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90 Statin2 40 28.2 4.191 2.8742307203
91 Statin2 40 28.4 5.791 4.4454535731
92 Statinl 40 28.6 4.698 3.2028737773
93 Statinl 5 29 4.32 4.0707532197
94 Statin2 10 29.1 3.776 2.7512805004
95 Statin2 5 29.2 4.703 3.6494895215
96 Statin2 40 29.9 4.128 2.8646910266
97 Statinl 40 30.4 4.693 4.9837039826
98 Statinl 20 30.4 4.123 2.2738979752
99 Statinl 80 30.5 3.921 -0.9034376511
100 Statinl 10 36.5 4.175 3.3114366758

This page titled 18.1: Multiple linear regression is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Michael R Dohm via source content that was edited to the style and standards of the LibreTexts platform.
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