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9.2: Chi-square contingency tables

Introduction

We just completed a discussion about goodness of fit tests, inferences on categorical traits for which a theoretical distribution or expectation is available. We offered Mendelian ratios as an
example in which theory provides clear-cut expectations for the distribution of phenotypes in the F  offspring generation. This is an extrinsic model — theory external to the study guides
in the calculation of expected values — and it reflects a common analytical task in epidemiology.

But for many other kinds of categorical outcomes, no theory is available. Today, most of us accept the link between tobacco cigarette smoking and lung cancer. The evidence for this link
was reported in many studies, some better designed than others.

Consider the famous Doll and Hill (1950) report on smoking and lung cancer. They reported (Table IV Doll and Hill 1950), for men with lung cancer, only two out of 649 were non-
smokers. In comparison, 27 case-control patients (i.e., patients in the hospital but with other ailments, not lung cancer) were nonsmokers, but 622 were smokers (Table ).

Table . Smoking and lung cancer (Doll and Hill, 1950).

 Smokers Non-smokers

Lung cancer 647 2

Case controls, no lung cancer 622 27

A more recent example from the study of the efficacy of St John’s Wort (Hypericum perforatum) as a treatment for major depression (Shelton et al 2001, Apaydin et al. 2016). Of patients
who received St. John’s Wort over 8 weeks, 14 were deemed improved while 98 did not improve. In contrast 5 patients who received the placebo were deemed improved while 102 did not
improve (Table ).

Table . St. John’s Wort and depression.

 Improved Not improved

St. John’s Wort 14 98

Placebo 5 102

The St. John’s Wort problem is precisely a good time to remind any reader of Mike’s Biostatistics Book: under no circumstances is medical advice implied from my presentation. From
the National Center for Complementary and Integrative Medicine: “It has been clearly shown that St. John’s wort can interact in dangerous, sometimes life-threatening ways with a
variety of medicines.”

These kinds of problems are direct extensions of our risk analysis work in Chapter 7. Now, instead of simply describing the differences between case and control groups by Relative Risk
Reduction or odds ratios, we instruct how to do inference on the risk analysis problems.

Thus, faced with an absence of coherent theory as guide, the data themselves can be used (intrinsic model), and at least for now, we can employ the  test.

The preferred analysis is to use a logistic regression approach, Chapter 18.3, because additional covariates can be included in the model.

In this lesson we will learn how to extend the analyses of categorical data to cases where we do not have a prior expectation — we use the data to generate the tests of hypotheses. This
would be an intrinsic model. One of the most common two-variable categorical analysis involves 2×2 contingency tables. We may have one variable that is the treatment variable and the
second variable is the outcome variable. Some examples are provided in Table .

Table . Some examples of treatment and outcome variables suitable for contingency table analysis.

Treatment Variable and Levels Outcome Variable(s) Reference

Lead exposure
Levels: Low, Medium, High

Intelligence and development Bellinger et al 1987

Wood preservatives
Levels: Borates vs. Chromated Copper Arsenate

Effectiveness as fungicide Hrastnik et al 2013

Antidepressants
Levels: St. John’s Wort, conventional antidepressants, placebo

Depression relief Linde et al 2008

Coral reefs
Levels: Protected vs Unprotected

Fish community structure Guidetti 2006

Aspirin therapy
Levels: low dose vs none

Cancer incidence in women Cook et al 2013

Aspirin therapy
Levels: low dose vs none

Cancer mortality in women Cook et al 2013

Table  holds examples of published studies returned from a quick PubMed search; there are many examples (meta-analysis opportunities!). However, while they all can be analyzed by
contingency tables analysis, they are not exactly the same. In some cases, the treatments are fixed effects, where the researcher selects the levels of the treatments. In other cases, each of
these treatment variables need not be actual treatments (in the sense that an experiment was conducted), but it may be easier to think about these as types of experiments. These types of
experiments can be distinguished by how the sampling from the reference population were conducted. Before we move on to our main purpose, to discuss how to calculate contingency
tables, I wanted to provide some experimental design context by introducing two kinds of sampling (Chapter 5.5).

Our first kind of sampling scheme is called unrestricted sampling. In unrestricted sampling, you collect as many subjects (observations) as possible, then assign subjects to groups. A
common approach would be to sample with a grand total in mind; for example, your grant is limited and so you only have enough money to make 1000 copies of your survey and you
therefore approach 1000 people. If you categorize the subjects into just two categories (e.g., Liberal, Conservative), then you have a binomial sample. If instead you classify the subjects
according to a number of variables, e.g., Liberal or Conservative, Education levels, income levels, home owners or renters, etc., then this approach is called multinomial sampling. The
point in either case is that you have just utilized a multinomial sampling approach. The aim is to classify your subjects to their appropriate groups after you have collected the sample.
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Logically, what must follow unrestricted sampling would be restricted sampling. Sampling would be conducted with one set of “marginal totals” fixed. Margins refers to either the row
totals or to the column totals. The sampling scheme is referred to as compound multinomial. The important distinction from the other two types is that the number of individuals in one of
the categories is fixed ahead of time. For example, in order to determine if smoking influences respiratory health, you approach as many people as possible to obtain 100 smokers.

The contingency table analysis

We introduced the 2×2 contingency table (Table ) in Chapter 7.

Table . 2×2 contingency table.

Outcome

Exposure or Treatment group Yes No Marginal total

Exposure (Treatment) a b Row1 = a + b

Nonexposure (Control) c d Row2 = c + d

Marginal total Column1 = a + c Column2 = a + c N

Contingency tables are all of the form (Table )

Table . Basic format of a 2×2 table

Outcome 1 Outcome 2

Treatment 1 Yes No

Treatment 2 Yes No.

Regardless of how the sampling occurred, the analysis of the contingency table is the same; mechanically, we have a chi-square type of problem. In both contingency table and the
“goodness of fit” Chi-Square analyses the data types are discrete categories. The difference between GOF and contingency table problems is that we have no theory or external model to tell
us about what to expect. Thus, we calculate expected values and the degrees of freedom differently in contingency table problems. To learn about how to perform contingency tables we
will work through an example, first the long way, and then using a formula and the a, b, c, and d 2×2 table format. Of course, R can easily do contingency tables calculations for us.

Doctors noticed that a new form of Hepatitis (HG, now referred to as GB virus C), was common in some HIV+ populations (Xiang et al 2001). Accompanying the co-infection, doctors also
observed an inverse relationship between HG loads and HIV viral loads: patients with high HG titers often had low HIV levels. Thus, the question was whether co-infection alters the
outcome of patients with HIV — do HIV patients co-infected with this HG progress to AIDS and mortality at rates different from non-infected HIV patients? I’ve represented the Xiang et
al (2001) data in Table .

Table . Progression of AIDS for patients co-infected with HG [GB virus C], Xiang et al data (2001).

Lived Died Row totals

HG+ 103 41 144

HG- 95 123 218

Column totals 198 164 362

HG virus is no longer called a hepatitis virus, but instead is referred to as GB virus C, which, like hepatitis viruses, is in the Flaviviridae virus family. For more about the GB virus C,
see the review article by Bhattarai and Stapleton (2012).

Our question was: Do HIV patients co-infected with this HG progress to AIDS and mortality at rates different from non-infected HIV patients? A typical approach to analyze such data sets
is to view the data as discrete categories and analyze with a contingency table. So we proceed.

Set up the table for analysis

Rules of contingency tables (see Kroonenberg and Verbeek 2018).
What follows is a detailed walk though setting up and interpreting a 2×2 table. Note that I maintain our a, b, c, d cell order, with row 1 referencing subjects exposed or part of treatment
group and row 2 referencing subjects not exposed (or part of the control group), as introduced in Chapter 7.

The Hepatitis G data from Xiang et al 2001 data, arranged in 2×2 format (Table ).

Table . Format of 2×2 table Xiang et al (2001) dataset.

Lived Died Row totals

HG+ a b a + b

HG- c d c + d

Column totals a + c b + d N

The data are placed into the cells labeled a, b, c, and d.

Cell a : The number of HIV+ individuals infected with HG that lived beyond the end of the study.

Cell b : The number of HIV+ individuals infected with HG that died during the study.

Cell c : The number of HIV+ individuals not infected with HG that lived.

Cell d : The number of HIV+ individuals not infected with HG that died.

This is a contingency table because the probability of living or dying for these patients may have been contingent on coinfection with hepatitis G.

State the examined hypotheses

: There is NO association between the probability of living and coinfection with hepatitis G.

For a contingency table this means that there should be the same proportion of individuals with and without hepatitis G that either lived or died (1:1:1:1).
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Now, compute the Expected Values in the Four cells (a, b, c, d)
1. Calculate the Expected Proportion of Individuals that lived in Entire Sample: 

Column 1 Total / Total = Expected Proportion of those that lived beyond the study.
2. Calculate Expected Proportion of Individuals that died in Entire Sample: 

Column 2 Total / Total = Expected Proportion that died during the study.
3. Calculate the Expected Proportion of Individuals that lived and were HG+ 

Expected Proportion of living (step 1 above) × Row 1 Total = Expected For Cell A.
4. Calculate the Expected Proportion of Individuals that died and were HG+ 

Expected Proportion died × Row 1 Total = Expected For Cell B
5. Calculate the Expected Proportion of surviving individuals that were HG- 

Expected Proportion lived × Row 2 Total = Expected For Cell C
6. Calculate the Expected Proportion of individuals that died that were HG- 

Expected Proportion that died × Row 2 Total = Expected For Cell D

Yes, this can get a bit repetitive! But, we are now done — remember, we’re working through this to review how the intrinsic model is applied to obtain expected values.

Summary of what we’ve done so far
We now have arranged our observations in a 2×2 table, and calculated the expected proportions, i.e., the Expected values under the Null Hypothesis.

Now, we proceed to conduct the chi-square test of the null hypothesis — The observed values may differ from these expected values, meaning that the Null Hypothesis is False.

Table . Copy of Table  dataset.

Lived Died Row totals

HG+ 103 41 144

HG- 95 123 218

Column totals 198 164 362

Get the Expected Values

1. Calculate the Expected Proportion of Individuals that lived in Entire Sample: 
Column 1 Total (198) / Total (362) = 0.5470

2. Calculate Expected Proportion of Individuals that died in Entire Sample: 
Column 2 Total (164) / Total (362) = 0.4530

3. Calculate the Expected Proportion of Individuals that lived and were HG+ 
Expected Proportion of living (0.547) × Row 1 Total (218) = Cell A = 119.25

4. Calculate the Expected Proportion of Individuals that died and were HG+ 
Expected Proportion died (0.453) × Row 1 Total (218) = Cell B = 98.75.

5. Calculate the Expected Proportion of surviving individuals that were HG- 
Expected Proportion lived (0.547) × Row 2 Total (144) = Cell C = 78.768

6. Calculate the Expected Proportion of individuals that died that were HG- 
Expected Proportion that died (0.453) × Row 2 Total = Cell D = 65.232

Thus, we have Table .

Table . Expected values for Xiang et al (2001) data set (Table 6 and Table 8).

Lived Died Row totals

HG+ 78.768 65.232 144

HG- 119.25 98.75 218

Column totals 198 164 362

Now we are ready to calculate the Chi-Square Value

Recall the formula for the chi-square test:

Table . Worked contingency table for Xiang et al (2001) data set (Table 6 and Table 8).

Cell

a 7.4547

b 9.002

c 4.93134

d 5.95506

 27.3452

Adding all the parts we have the chi-square test statistic . To proceed with the inference, we test using the chi-square distribution.

Determine the Critical Value of  test and evaluate the null hypothesis

Now recall that we can get the critical value of this test in one of two (related!) ways. One, we could run this through our statistical software and get the p-value, the probability of our result
and the null hypothesis is true. Second, we look up the critical value from an appropriate statistical table. Here, we present option 2.

We need the Type I error rate  and calculate the degrees of freedom for the problem. By convention, we set . Degrees of freedom for contingency table is calculated as

Degrees of Freedom = 
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and for our example → .

Note. How did we get the 1 degree of freedom? Aren’t there 4 categories and shouldn’t we therefore have ? We do have four categories, yes, but the categories are not
independent. We need to take this into account when we evaluate the test, and this lack of independence is accounted for by the loss of degrees of freedom.

What exactly is not independent about our study?

1. The total number of observations is set in advance from the data collection.
2. We also have the column and row totals set in advance. The number of HIV individuals with or without Hepatitis G infection was determined at the beginning of the experiment. The

number of individuals that lived or died was also determined before we we conducted the test.
3. Then the first cell (let us make that cell A) can still vary any where from 0 to  (sample size of the first drug).
4. Once the first cell (A) is determined then the next cell in that row (B) will have to add up to .
5. Also the other cell in the same column as the first cell (C) must add up to the Column 1 Total.
6. Lastly, the last cell (D) must have the Row 1 Total add up to the correct number.

All this translates into there being only one cell that is FREE TO VARY, hence, only one degree of freedom.

Get the Critical Value from a chi-square distribution table: For our example, look up the critical value for , , you should get 3.841. The 3.841 is the value of the chi-square
we would expect at 5% and the null hypothesis is in fact true condition in the population.

Once we obtain the critical value we simply use the previous statement regarding the probability of the Null Hypothesis being TRUE. We reject the Null Hypothesis when the calculated 
test statistic is greater than the Critical Value. We Accept the Null Hypothesis when the calculated  is less than the Critical Value. In our example we got 27.3452 for our calculated test
statistic; thus we reject the null hypothesis and conclude that, at least for the sample in this study, there was an association between the probability of patients living past the study period
and the presence of hepatitis G.

 from a, b, c, and d 2×2 table format formula

If a hand calculation is required, a simpler formula to use is \[\chi^{2} = \frac{(ad - bc)^{2} \cdot N}{r_{1} \cdot r_{2} \cdot c_{1} \cdot c_{2} \nonumber\]

where  is the sum of all observations in the table,  and  are the marginal row totals, and  and  are the marginal column totals from the 2×2 contingency table (e.g., Table ). If
you are tempted to try this in a spreadsheet, and assuming your entries for a, b, c, d, and N look like Table , then a straightforward interpretation requires referencing five spreadsheet
cells no less than 13 times! Not to mention a separate call to the  distribution to calculate the p-value (one-tailed test).

This formulation was provided as equation 1 in Yates 1984 (referred to in Serra 2018), but is likely found in the earlier papers on  dating back to Pearson.

Table . Example spreadsheet with formulas for odds ratio (OR), Pearson’s , and p-value from  distribution.

A B C D E F G

1        

2 a 103   OR =(B2*B5)/(B3*B4)  

3 b 41      

4 c 95      

5 d 123   chisq, p
=(((B2*B5-B3*B4)^2)*B6)/ 
(SUM(B2:B3)*SUM(B4:B5)* 
SUM(B2,B4)*SUM(B3,B5))

=CHIDIST(F5,1)

6 N 632      

Now, let’s see how easy this is to do in R.

 effect size

Inference on hypotheses about association, there’s statistical significance — evaluate p-value compared to Type I error, e.g., 5% — and then there’s biological importance. The concept of
effect size is an attempt to communicate the likely importance of a result. Several statistics are available to communicate effect size: for  that’s , phi.

where  is the total. Phi for our example is

R code:

sqrt(27.3452/362)

returns

[1] "1.7e-07"

Effect size statistics typically range from 0 to 1; Cohen (1992) suggested the following interpretation:

Effect size Interpretation

< 0.2 Small, weak effect

0.5 Moderate effect

> 0.8 Large effect

DF = (2 −1) ×(2 −1) = 1

df = k−1 = 3

Ni

Ni

DF = 1 α = 0.05

χ2

χ2

χ
2

N r1 r2 c1 c2 9.2.4
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χ2

N
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For our example, , the effect size of the association between co-infection with GB virus C and mortality, was weak in the patients with HIV infection.

Contingency table analyses in Rcmdr

Assuming you have already summarized the data, you can enter the data directly in the Rcmdr  contingency table form. If your data are not summarized, then you would use 
Rcmdr's  Two-way table… for this. We will proceed under the assumption that you have already obtained the frequencies for each cell in the table.

Rcmdr: Statistics → Contingency tables → Enter and analyze two-way table…

Here you can tell R how many rows and how many columns.

Figure : Screenshot R Commander menu for 2×2 data entry with counts.

The default is a 2×2 table. For larger tables, use the sliders to increase the number of rows, columns, or both.

Next, enter the counts. You can edit every cell in this table, including the headers. In the next panel, I will show you the data entry and options. The actual calculation of the  test statistic
is done when you select the “Chi-square test of independence” check-box.

Figure : Display of Xiang et al data entered into R Commander menu.

After entering the data, click on the Statistics tab (Fig. 3).

Figure : Screenshot Statistics options for contingency table.

If you also select “Components of chi-square statistic” option, then R will show you the contributions of each cell  towards the chi-square test statistic value. This is helpful to
determine if rejection of the null is due to a subset of the categories, and it also forms the basis of the heterogeneity tests, a subject we will pick up in the next section.

Here’s the R output from R Commander. Note the “ 2, 2, byrow=TRUE ” instructions (check out R help to confirm what these settings confirm).

> .Table <- matrix(c(103,41,95,123), 2, 2, byrow=TRUE) 

> dimnames(.Table) <- list("rows"=c("HG+", "HG-"), "columns"=c("Lived", "Died")) 

 

> .Table # Counts 

     columns 

rows Lived Died 

 HG+   103   41 

 HG-   95   123 

 

> .Test <- chisq.test(.Table, correct=FALSE) 

> .Test 

 

Pearson's Chi-squared test 

ϕ
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data: .Table 

X-squared = 27.339, df = 1, p-value = 0.0000001708 

 

> round(.Test$residuals^2, 2) # Chi-square Components 

    columns 

rows Lived Died 

HG+   7.46 9.00 

HG-   4.93 5.95 

 

> remove(.Test) 

> remove(.Table) 

end R output.

R Commander often cleans up after itself by removing objects like .Test and .Table. This is not necessary for the code to work, but does make it easier for you to go back and modify
the code without worrying about confusing objects.

There is lots of output, but take a deep breath and remember… The minimum output we need to look at is…?

Value of the test statistic 27.339

Degrees of freedom 1

p-value 0.0000001708

We can see that the p-value, , is much less than Type 1 error ; thus, by our decision criterion we reject the null hypothesis (provisionally of course, as science goes).

It’s simple enough to get R to report numbers as you need. For example, R code

myNumber = 0.0000001708 

format(myNumber, scientific = TRUE, digits=2)

returns

[1] "1.7e-07"

Questions
1. Instead of R Commander, try the contingency table problem in R directly.

myData <- matrix(c(103,41,95,123)) 

chisq.test(myData)

Is this the correct  contingency table analysis? Why or why not?

2. For many years National Football League games that ended in ties went to “sudden death,” where the winner was determined by the first score in the extra period of play, regardless of
whether or not the other team got an opportunity to possess the ball on offense. Thus, in more than 100 games (140), the team that won the coin toss and therefore got the ball first in
overtime won the game either following a kicked field goal or after a touchdown was scored. In 337 other games under this system, the outcome was not determined by who got the ball
first. Many complained that the “sudden death” format was unfair and in 2013 the NFL changed its overtime rules. Beginning 2014 season, both teams got a chance to possess the ball
in overtime, unless the team that won the coin toss also went on to score a touchdown, at which time that team would be declared the winner. In this new era of overtime rules ten teams
that won the coin toss went on to score a touchdown in their first possession and therefore win the game, whereas in 54 other overtime games, the outcome was decided after both teams
had a chance on offense (data as of 1 December 2015). These data may be summarized in the table:

First possession win?

Yes No

Coin flip years 140 337

New era 10 54

A. What is the null hypothesis? 
B. Which is more appropriate: to calculate an odds ratio or to calculate an RRR? 
C. This is a contingency table problem. Explain why 
D. Conduct the test of the null hypothesis. 
E. What is the value of the test statistic? Degrees of freedom? P-value? 
F. Evaluate the results of your analysis — do you accept or reject the null hypothesis?

3. Return to the Doll and Hill (1950) data: 2 men with lung cancer were nonsmokers, 647 men with lung cancer were cigarette smokers. In comparison, 27 case-control patients (i.e.,
patients in the hospital but with other ailments, not lung cancer) were nonsmokers, but 622 were cigarette smokers. 
A. What is the null hypothesis? 
B. Which is more appropriate: to calculate an odds ratio or to calculate an RRR? 

 Note:
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C. This is a contingency table problem. Explain why 
D. Conduct the test of the null hypothesis. 
E. What is the value of the test statistic? Degrees of freedom? P-value? 
F. Evaluate the results of your analysis — do you accept or reject the null hypothesis?

4. A more recent example from the study of the efficacy of St John’s Wort as a treatment for major depression (Shelton et al 2001). Of patients who received St. John’s Wort over 8 weeks,
14 were deemed improved while 98 did not improve. In contrast 5 patients who received the placebo were deemed improved while 102 did not improve. 
A. What is the null hypothesis? 
B. Which is more appropriate: to calculate an odds ratio or to calculate an RRR? 
C. This is a contingency table problem. Explain why 
D. Conduct the test of the null hypothesis. 
E. What is the value of the test statistic? Degrees of freedom? P-value? 
F. Evaluate the results of your analysis — do you accept or reject the null hypothesis?
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