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12.1: The need for ANOVA

Introduction

Moving from an experiment with two groups to multiple groups is deceptively simple: we move from one comparison to multiple
comparisons. Consider an experiment in which we have randomly assigned patients to receive one of three doses of a statin drug
(lower cholesterol), including a placebo (e.g., Tobert and Newman 2015). Thus, we have three groups or levels of a single
treatment factor and we’ll want to test the null hypothesis that the group (level) means are all equal as opposed to the alternate
hypothesis in which one or more of the group means, e.g., group A, group B, group C, are different.

The correct procedure is to analyze multiple levels of a single treatment with a one-way analysis of variance followed by a suitable
post-hoc (“after this”) test. Two common post-hoc tests are Tukey’s range test (aka Tukey’s HSD [honestly significant difference]
test), which is for all pairwise comparisons, or the Dunnett’s test, which compares groups against the control group. Post-hoc
tests are discussed in Chapter 12.6.

Thus, the family-wise (aka experiment-wise) error rate for multiple comparisons is kept at 5%, and each individual-wise
comparison is compared against a more strict (i.e., smaller Type I error rate). Put another way, the family-wise error rate is the
chance of a number of false positives: making a mistake when we consider many tests simultaneously. The simplest correction for
the individual-wise error rate is the Bonferroni correction: test each individual comparison at Type I error equal to , where 
is the number of comparisons.

To get the number of “pairwise” comparisons , let

For our three group experiment, how many pairwise comparisons can be tested? Therefore, , and we have

Thus, for our three groups, A, B, and C, there are three possible pairwise comparisons.

How many pairwise comparisons for a four-group experiment? Check your work, you should get .

The multiple comparison problem

Let’s say that we’re stubborn. We could do many single two-sample -tests — certainly, your statistical software won’t stop you —
but this is a situation that calls for statistical reasoning. Here’s why we should not: we will increase the probability of rejecting a
null hypothesis when the null hypothesis is true (e.g., discussion in Jafari and Ansari-Pour 2019). That is, the chance we will
commit a Type I error increases if we do not account for the lack of independence in these sets of pairwise tests evaluated by -
tests. This is multiplicity or the multiple comparison problem.

Review: when we perform a two-sample -test we are willing to reject a true null hypothesis 5% of the time. This is what is meant
by setting the critical probability value (alpha) = 0.05. By “willing” we mean that we know that our conclusions could be wrong
because we are working with samples, not the entire population. (Of course at the time, we have no way of actually knowing
WHEN we are wrong, but we do want to know how likely we could be wrong!) However, if we compare three population means
we have three separate null hypotheses.

: one or more of the means are different.
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But if we conduct these as separate independent sample t-tests, then we are implicitly making the following null hypothesis
statements:

Thus, we have a 5% chance of being wrong for the first hypothesis and/or a 5% chance of being wrong for the second hypothesis
and/or a 5% chance of being wrong for the third hypotheses. The chance that we will be wrong for at least one of these hypotheses
must now be greater than 5%.

For three separate hypotheses there is a 14% chance of being wrong when we have the probability value for each individual -test
set at . How did we get this result? The point is that these tests are not independent, they are done on the same data set;
therefore, you can’t simply apply the multiplication probability rule.

Here’s how to figure this: for the set of three hypotheses, the probability of incorrectly rejecting at least one of the null hypotheses
is 

So, for three -tests on the same experiment, the Type I error for the overall tests (experiment-wise) is actually 14%, not 5%. It gets
worse as the number of combinations (groups and therefore hypotheses) increases. For four groups, Type I error is actually 

.

That’s 18.5%, not 5%.

If we have just five populations means to compare, the probability of rejecting a null hypothesis when it is true climbs to 60%!
How did this happen? The probability of correctly rejecting all of them is now 

So, the probability of incorrectly rejecting one test (Type I error) is now  instead of
the 5% we think we are testing.

This is the key argument for why you must use ANOVA to analyze multiple samples instead of a combination of -tests!! ANOVA
guarantees that the overall error rate is the specified 5%.

Why is the Type I error not 5% for each test? Because we conducted ONE experiment, we can conduct only ONE test (we could be
right, we could be wrong 5% of the time). If we conduct the experiment over again, on new subjects, each time resulting in new
and therefore independent data sets, then Type I error = 5% for each of these independent experiments.

Now, I hope I have introduced you to the issue of Type I error at the level of a single comparison and the idea of an experiment,
holding Type I error-rates at 5% across all hypotheses to be evaluated in an experiment. You may wonder why anyone would make
this mistake now. Actually, people make this “mistake” all the time and in some fields like evaluating gene expression for
microarray data, this error was the norm, not the exception (see, for example, discussion of this in Jeanmougin et al 2010).

To conclude, if one does multiple tests on the same experiment, whether it is -tests or some other test for that matter, then our
subsequent tests are related. This is what we mean by independence in statistics — and there are many ways that nonindependence
may occur in experimental research. For example, we introduced the concept of pseudoreplication, when observations are treated
as if they are independent, but they are not (see Chapter 5.2). The “multiple comparison problem” specifically refers to the lack of
independence when all the data set from a single experiment is parsed into lots of separate tests. Philosophically, there must be a
logical penalty — and that is reflected in the increase in Type I error.

Clearly something must be done about this!

ANOVA is a solution

One possible solution for getting the correct experiment-wise error rate: adjust for differences in probability for multiple
comparisons with the -test. We used post-hoc tests presented above: you could evaluate the tests after accounting for the change in
Type I error. This is what is done in many cases. For example, in genomics. In the early days of gene expression profiling by
microarray, it was common to see researchers conduct -tests for each gene. Since microarrays can have thousands of genes
represented on the chip, then these researchers were conducting thousands of -tests, arranging the -tests by -value and counting
the number of -values less than 5% and declaring that the differences were statistically significant.

This error didn’t stand long, and there are now many options available to researchers to handle the “multiple comparisons” problem
(some probably better than others, research on this very much an ongoing endeavor in biostatistics). The Bonferroni correction was
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an available solution, largely replaced by the Holm (aka Holm-Bonferroni) method (Holm 1979). Recall that the Bonferroni
correction judged individual p-values statistically significant only if they were less than , where, again,  is the family-wise
error rate (e.g., ) and  was the number of comparisons. The Holm method orders the  p-values from lowest to highest
rank. The method then evaluates lowest p-value, if less than , then reject hypothesis for that comparison. Proceed to next p-
value, if less than , then reject hypothesis for that comparison, and so on until no more comparisons are less than .

A MUCH better alternative is to perform a single analysis that takes the multiple-comparisons problem into account: single-factor
ANOVA, also called the one-way ANOVA, plus the post-hoc tests with error correction. We introduce one-way ANOVA in the
next section. Post-hoc tests are discussed in Chapter 12.6.

Questions
1. You should be able to define and distinguish how Bonferoni correction, Dunnett’s test, and Tukey’s test methods protect against

inflation of Type I error.
2. What will be the experiment-wise error rate for an experiment in which there are only two treatment groups?
3. Experiment-wise error rate may also be called _______________ error rate.
4. List and compare the three described posthoc approaches to correct for multiple comparison problem,
5. Glycophosphate-tolerant soy bean is the number one GMO (genetically modified organism) crop plant worldwide.

Glycophosphate is the chief active ingredient in Roundup, the most widely used herbicide. A recent paper examined “food
quality” of the nutrient and elemental composition of plants drawn from fields which grow soy by organic methods (no
herbicides or pesticides) and GMO plants subject to herbicides and pesticides. A total of 28 individual -tests were used to
compare the treatment groups for different levels of nutrients and elements (e.g., vitamins, amino acids, etc.,); the authors
concluded that 10 of these -tests were statistically significant at Type I error rate of 5%. Discuss the approach to statistical
inference by the authors of this report; include correct use of the terms experiment-wise and individual-wise in your response
and suggest an alternative testing approach if it is appropriate in your view.

6. In a comparative study about resting metabolic rate for eleven species of mammals, how many pairwise species comparisons
can the study test?

7. In Chapter 4.2 we introduced a data set from an experiment. The experiment looked at DNA damage quantified by measuring
qualities in a Comet Assay including the Tail length, the percent of DNA in the tail, and olive moment. The data set is copied to
end of this page. In the next chapter I’ll ask you to conduct the ANOVA on this experiment. For now, answer the following
questions. 
a. What is the response variable? 
b. Explain why there is only one response variable. 
c. How many treatment variables are there? 
d. Why is this an ANOVA problem? Include as part of your explanation a statement of the null hypothesis.

Data used in this page

comet assay dataset

Data set, comet assay
Table . Comet assay data.

Treatment Tail TailPercent OliveMoment*

Copper-Hazel 10 9.7732 2.1501

Copper-Hazel 6 4.8381 0.9676

Copper-Hazel 6 3.981 0.836

Copper-Hazel 16 12.0911 2.9019

Copper-Hazel 20 15.3543 3.9921

Copper-Hazel 33 33.5207 10.7266

Copper-Hazel 13 13.0936 2.8806

Copper-Hazel 17 26.8697 4.5679

α/C α

α = 0.05 C C

α/C

α/C α/C

t

t

12.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/45211?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Mikes_Biostatistics_Book_(Dohm)/12%3A_One-way_Analysis_of_Variance/12.2%3A_One-way_ANOVA
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Mikes_Biostatistics_Book_(Dohm)/12%3A_One-way_Analysis_of_Variance/12.6%3A_ANOVA_post-hoc_tests
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Mikes_Biostatistics_Book_(Dohm)/04%3A_How_to_Report_Statistics/4.02%3A_Histograms


12.1.4 https://stats.libretexts.org/@go/page/45211

Treatment Tail TailPercent OliveMoment*

Copper-Hazel 30 53.8844 10.238

Copper-Hazel 19 14.983 3.7458

Copper 11 10.5293 2.1059

Copper 13 12.5298 2.506

Copper 27 38.7357 6.9724

Copper 10 10.0238 1.9045

Copper 12 12.8428 2.5686

Copper 22 32.9746 5.2759

Copper 14 13.7666 2.6157

Copper 15 18.2663 3.8359

Copper 7 10.2393 1.9455

Copper 29 22.6612 7.9314

Hazel 8 5.6897 1.3086

Hazel 15 23.3931 2.8072

Hazel 5 2.7021 0.5674

Hazel 16 22.519 3.1527

Hazel 3 1.9354 0.271

Hazel 10 5.6947 1.3098

Hazel 2 1.4199 0.2272

Hazel 20 29.9353 4.4903

Hazel 6 3.357 0.6714

Hazel 3 1.2528 0.2506

Rat lung cells treated with Hazel tea extract and exposed to copper metal. Tail refers to length of the comet tail, TailPercent is
percent DNA damage in tail, and Olive moment refers to Olive's (1990), defined as the fraction of DNA in the tail multiplied by
tail length.
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