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17.8: Assumptions and model diagnostics for simple linear regression

Introduction

The assumptions for all linear regression:

1. Linear model is appropriate. 
The data are well described (fit) by a linear model.

2. Independent values of  and equal variances. 
Although there can be more than one  for any value of , the 's cannot be related to each other (that’s what we mean by
independent). Since we allow for multiple 's for each , then we assume that the variances of the range of 's are equal for
each  value (this is similar to our ANOVA assumptions for equal variance by groups). Another term for equal variances is
homoscedasticity.

3. Normality. 
For each  value there is a normal distribution of 's (think of doing the experiment over and over).

4. Error 
The residuals (error) are normally distributed with a mean of zero.

Note the mnemonic device: Linear, Independent, Normal, Error or LINE.

Each of the four elements will be discussed below in the context of Model Diagnostics. These assumptions apply to how the model
fits the data. There are other assumptions that, if violated, imply you should use a different method for estimating the parameters of
the model.

Ordinary least squares makes the additional assumption about the quality of the independent variable that e that measurement of 
 is done without error. Measurement error is a fact of life in science, but the influence of error on regression differs if the error is

associated with the dependent or independent variable. Measurement error in the dependent variable increases the dispersion of
the residuals but will not affect the estimates of the coefficients; error associated with the independent variables, however, will
affect estimates of the slope. In short, error in  leads to biased estimates of the slope.

The equivalent, but less restrictive practical application of this assumption is that the error in  is at least negligible compared to
the measurements in the dependent variable.

Multiple regression makes one more assumption, about the relationship between the predictor variables (the  variables). The
assumption is that there is no multicollinearity, a subject we will bring up next time (see Chapter 18).

Model diagnostics

We just reviewed how to evaluate the estimates of the coefficients of the model. Now we need to address a deeper meaning — how
well the model explains the data. Consider a simple linear regression first. If  is not rejected, then the slope of the
regression equation is taken to not differ from zero. We would conclude that if repeated samples were drawn from the population,
on average, the regression equation would not fit the data well (lots of scatter) and it would not yield useful prediction.

However, recall that we assume that the fit is linear. One assumption we make in regression is that a line can, in fact, be used to
describe the relationship between  and .

Here are two very different situations where the slope = 0.

Example 1. Linear Slope = 0, no relationship between  and 

Example 2. Linear Slope = 0, a significant relationship between  and 

But even if  is rejected (and we conclude that a linear relationship between  and  is present), we still need to be
concerned about the fit of the line to the data — the relationship may be more nonlinear than linear, for example. Here are two very
different situations where the slope is not equal to 0.

Example 3. Linear Slope > 0, a linear relationship between  and 

Example 4. Linear Slope > 0, curve-linear relationship between  and 

How can you tell the difference? There are many regression diagnostic tests, many more than we can cover, but you can start with
looking at the coefficient of determination (low  means low fit to the line), and we can look at the pattern of residuals plotted
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against the either the predicted values or the  variables (my favorite). The important points are:

1. In linear regression, you fit a model (the slope + intercept) to the data;
2. We want the usual hypothesis tests (are the coefficients different from zero?) and
3. We need to check to see if the model fits the data well. Just like in our discussions of chi-square, a “perfect fit would mean that

the difference between our model and the data would be zero.

Graph options

Using residual plots to diagnose regression equations

Yes, we need to test the coefficients (intercept ; slope ) of a regression equation, but we also must decide if a
regression is an appropriate description of the data. This topic includes the use of diagnostic tests in regression. We address this
question chiefly by looking at

1. scatterplots of the independent (predictor) variable(s) vs. dependent (response) variable(s). 
what patterns appear between  and ? Do your eyes tell you “Line”? “Curve”? “No relation”?

2. coefficient of determination 
closer to zero than to one?

3. patterns of residuals plotted against the  variables (other types of residual plots are used to, this is one of my favorites)

Our approach is to utilize graphics along with statistical tests designed to address the assumptions.

One typical choice is to see if there are patterns in the residual values plotted against the predictor variable. If the LINE
assumptions hold for your data set, then the residuals should have a mean of zero with scatter about the mean. Deviations from
LINE assumptions will show up in residual plots.

Here are examples of POSSIBLE outcomes:

Figure : An ideal plot of residuals.

Solution: Proceed! Assumptions of linear regression met.

Compare to plots of residuals that differ from the ideal.
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Figure : We have a problem. Residual plot shows unequal variance (aka heteroscedasticity).

Solution. Try a transform like the log -transform.

Figure : Problem. Residual plot shows systematic trend.

Solution. Linear model a poor fit; may be related to measurement errors for one or more predictor variables. Try adding an
additional predictor variable or model the error in your general linear model.

Figure : Problem. Residual plot shows nonlinear trend.

Solution. Transform data or use more complex model.

This is a good time to mention that in statistical analyses, one often needs to do multiple rounds of analyses, involving description
and plots, tests of assumptions, tests of inference. With regression, in particular, we also need to decide if our model (e.g., linear
equation) is a good description of the data.
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Diagnostic plot examples

Return to our example.Tadpole  dataset. To obtain residual plots, Rcmdr: Models → Graphs → Basic diagnostic plots
yields four graphs.

Figure : Basic diagnostic plots. A: residual plot; B: Q-Q plot of residuals; C: Scale-location (aka spread-location) plot; D:
leverage residual plot.

In brief, we look at the plots:

A, the residual plot, to see if there are trends in the residuals. We are looking for a spread of points equally above and below the
mean of zero. In Figure  we count seven points above and six points below zero so there’s no indication of a trend in the
residuals vs the fitted VO2  (Y) values.

B, the Q-Q plot is used to see if normality holds. As discussed before, if our data are more or less normally distributed, then points
will fall along a straight line in a Q-Q plot.

C, the Scale- or spread-location plot is used to verify equal variances of errors.

D, Leverage plot — looks to see if an outlier has leverage on the fit of the line to the data, i.e., changes the slope. Additionally,
provides location of Cook’s distance measure (dashed red lines). Cook’s distance measures the effect on the regression by
removing one point at a time and then fitting a line to the data. Points outside the dashed lines have influence.

A note of caution about over-thinking with these plots. R provides a red line to track the points. However, these lines are
guides, not judges. We humans are generally good at detecting patterns, but with data visualization, there is the risk of seeing
patterns where none exits. In particular, recognizing randomness is not easy. If anything, we may tend to see patterns where
none exist, termed apophenia. So yes, by all means look at the graphs, but do so with a plan: red line more or less horizontal?
Then there is no pattern and the regression model is a good fit to the data.

Statistical test options

After building linear models, run statistical diagnostic tests that compliment graphics approaches. These are available via

Rcmdr: Models → Numerical diagnostics

Variance inflation factors (VIF): used to detect multicollinearity among the predictor variables. If correlations are present
among the predictor variables, then you can’t rely on the the coefficient estimates — whether predictor A causes change in
the response variable depends on whether the correlated B predictor is also included in the model. If correlation between
predictor A and B, the statistical effect is increased variance associated with the error of the coefficient estimates. There are
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VIF for each predictor variable. A VIF of one means there is no correlation between that predictor and the other predictor
variables. A VIF of 10 is taken as evidence of serious multicollinearity in the model.

Breusch-Pagan test for heteroscedasticity… Recall that heteroscedasticity is another name for unequal variances. The test
statistic can be calculated as 

Durbin-Watson for autocorrelation

RESET test for nonlinearity

Questions
1. Referring to Figures  –  on this page, which plot best suggests a regression line fits the data?
2. Return to the electoral college data set and your linear models of Electoral vs. POP_2010 and POP_2019. Obtain the four basic

diagnostic plots and comment on the fit of the regression line to the electoral college data.
Residual plot
Q-Q plot
Scale-location plot
Leverage plot

3. With respect to your answers in question 2, how well does the electoral college system reflect the principle of one person, one
vote?

This page titled 17.8: Assumptions and model diagnostics for simple linear regression is shared under a CC BY-NC-SA 4.0 license and was
authored, remixed, and/or curated by Michael R Dohm via source content that was edited to the style and standards of the LibreTexts platform.
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