LibreTextsw

19.3: Monte Carlo methods

edits: — under construction —

Introduction

Statistical methods that employ Monte Carlo methods use repeated random sampling to estimate properties of a frequency
distribution. These distributions may be well-known, e.g., gamma-distribution, normal distribution, or t-distribution. The
simulation is based on generation of a set of random numbers on the open interval (0, 1) — the set of real numbers between zero
and one (all numbers greater than 0 and less than 1).

If the set included 0 and 1, then it would be called a closed set, i.e., the set includes the boundary points zero and one.

The Markov chain Monte Carlo (MCMC) sampling approach can be used to solve large scale problems. The Markov chain refers
to how the sample is drawn from a specified probability distribution. It can be drawn by discrete time steps (DTMC) or by a
continuous process (CTMC). The Markov process is “memoryless:” predictions of future events are derived solely from their
present state — the future and past states are independent.

Gibbs sampling is a common MCMC algorithm.

R code

R’s uniform generator is runif function. Examples of the samples generated over different values (100, 1000, 10000, 100000)
with output displayed as histograms (Fig. 1). Note that as sample size increases, the simulated distributions resemble more and
more the uniform distribution. Use set.seed() to reproduce the same set and sequence of numbers

require(RcmdrMisc)

par(mfrow = c(2, 2))

myUniformH <- data.frame(runif(100))

with(myUniformH, Hist(runif.100., scale="frequency", ylim=c(0,20), breaks="Sturges",
myUniformlK <- data.frame(runif(1000))

with(myUniformilK, Hist(runif.1000., scale="frequency", ylim=c(0,150), breaks="Sturges
myUniforml0K <- data.frame(runif(10000))

with(myUniform10K, Hist(runif.10000., scale="frequency", ylim=c(0,600), breaks="Sturg
myUniforml00K <- data.frame(runif(100000))

with(myUniform100K, Hist(runif.100000., scale="frequency", ylim=c(0,5000),breaks="Stu
#reset par()

dev.off()

Yes, a nice repeating function would be more elegant code, but we move on. As a suggestion, you should create one! Use
sapply() orabasic for loop

https://stats.libretexts.org/@go/page/45267

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/45267?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Mikes_Biostatistics_Book_(Dohm)/19%3A_Distribution-free_methods/19.3%3A_Monte_Carlo_methods

LibreTextsm

0
I
150
I

100

Count
Count

oo 02 04 06 08 10 00 02 04 06 08 10

100 samples 1K samples

Count
300
1
Count

T T T T T T T T T T T T
() 0.2 04 08 0a 10 0o 0.2 D4 (X1 08 1.0

10K samples 100K samples
Figure 19.3.1: Histograms of runif results with 100, 1K, 10K, and 100K numbers of values to be generated.

Looks pretty uniform. A property of random numbers is that history should not influence the future, i.e., no autocorrelation. We
can check using the acf () function (Fig. 19.3.2).

par(mfrow = c(2, 2))
acf(myUniformH, main="100")
acf(myUniformiK, main="1K")
acf(myUniformi0K, main="10K")
acf(myuUniforml100K, main="100K"

dev.off()
100 1K
L= o
w
i o
@
=l @ |
o [y =
-
% 5] T =
-) S
o o~
L il L S
T = T e N |
o = T T
5 T T T T T T T T T T
0 5 10 15 20 05 W0 15 20 m M
Lag Lag
10K 100K
o =
o @
= S
@ @
o = w =
o (5]
T = | T =
E=1 o
e o
=1 =1
e =
=5 T T T T =5 T T T T T
0 10 20 30 40 D10 20 I 40 50
Lag Lag

Figure 19.3.2: Autocorrelation plots of runif results with 100, 1K, 10K, and 100K numbers of values.

Correlations among points are plotted versus lag, where lag refers to the number of points between adjacent points, e.g., lag = 10
reflects the correlation among points 1 and 11, 2 and 12, and so forth. The band defined by two parallel blue dashed lines

https://stats.libretexts.org/@go/page/45267

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/45267?pdf

LibreTextsw

Questions
1.Use set.seed(123) andrepeat runif(10) twice. Confirm that the two sets are different (do not set seed) or the
same when set.seed isused. R hint: use function identical(x,y) , where x and y are the two generated samples.
This function tests whether the values and sequence of elements are the same between the two vectors.

This page titled 19.3: Monte Carlo methods is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Michael R
Dohm via source content that was edited to the style and standards of the LibreTexts platform.

https://stats.libretexts.org/@go/page/45267

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/45267?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Mikes_Biostatistics_Book_(Dohm)/19%3A_Distribution-free_methods/19.3%3A_Monte_Carlo_methods
https://creativecommons.org/licenses/by-nc-sa/4.0
https://chaminade.edu/nsm/nsm-faculty/michael-dohm/
https://biostatistics.letgen.org/

