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18.5: Selecting the best model

Introduction

This is a long entry in our textbook, with many topics to cover. We discuss aspects of model fitting, from why model fitting is
done to how to do it and what statistics are available to help us decide on the best model. Model selection very much depends on
what the intent of the study is. For example, if the purpose of model building is to provide the best description of the data, then in
general one should prefer the full (also called the saturated) model. On the other hand, if the purpose of model building is to make
a predictive statistical model, then a reduced model may prove to be a better choice. The text here deals mostly with the later
context of model selection, finding a justified reduced model.

From Full model to best Subset model

Model building is an essential part of being a scientist. As scientists, we seek models that explain as much of the variability about a
phenomenon as possible, but yet remain simple enough to be of practical use.

Having just completed the introduction to multiple regression, we now move to the idea of how to pick best models.

We distinguish between a full model, which includes as many variables (predictors, factors) as the regression function can work
with, returning interpretable, if not always statistically significant output, and a saturated model.

The saturated model is the one that includes all possible predictors, factors, and interactions in your experiment. In well-behaved
data sets, the full model and the saturated model will be the same model. However, they need not be the same model. For example,
if two predictor variables are highly collinear, then you may return an error in regression fitting.

For those of you working with meta-analysis problems, you are unlikely to be able to run a saturated model because some level of
a key factor are not available in all or at least most of the papers. Thus, in order to get the model to run, you start dropping factors,
or you start nesting factors. If you were unable to get more things in the model, then this is your “full” model. Technically we
wouldn’t call it saturated because there were other factors, they just didn’t have enough data to work with or they were essentially
the same as something else in the model.

Identify the model that does run to completion as your full model and proceed to assess model fit criteria for that model, and all
reduced models thereafter.

In R (Rcmdr) you know you have found the full model when the output lacks “NA” strings (missing values) in the output. Use the
full model to report the values for each coefficient, i.e., conducting the inferential statistics.

Get the estimates directly from the output from running the regression function. You can tell if the effect is positive (look at the
estimate for sample — it is positive) so you can say — more samples, greater likelihood to see more cases of cancer.

Remember, the experimental units are the papers themselves, so studies with larger numbers of subjects are going to find more
cases of diabetes. We would worry big time with your project if we did not see statistically significant and positive effects for
sample size.

For illustration, here’s an example output following a run with the linear model function on an experimental data set.
The variables were

BMI = Dependent variable, continuous]

Age = Independent variable, continuous

CalsPDay = Independent variable, continuous

CholPDay = Independent variable, continuous

Sex = Independent variable, categorical

Smoke = Independent variable, categorical

Im(formula = BMI ~ Age + CalsPDay + CholPDay + Sex + Smoke +
Sex:Smoke, data = BMI) Residuals:
Min 1Q Median 3Q Max
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-9.9685 -3.3766 -0.6609 2.5090 22.3482

Coefficients:
Estimate Std. Error t value Pr(>F)
(Intercept) 25.9351297 3.7205047 6.971 1.708e-09 ***
Age 0.890
CalsPDay -0.0005757 0.0009882 -0.583 0.562
CholPDay 0.0103521 0.0060722 1.705 0.093
Sex[T.M] -0.8529925 2.2209045 -0.384 0.702
Smoke[T.Yes] -1.1670159 1.9134734 -0.610 0.544
Sex[T.M]:Smoke[T.Yes] 0.9261469 2.8510680 0.325 0.746

The Y -variable was BMI, and the predictor variables included gender (male, female), smokers (yes, no), and the interaction, plus
two measures of diet quality (calories per day and amount of cholesterol).

Question. Write out the equation in symbol form.
We see that none of the factors or covariates were statistically significant, so I wouldn’t go on and on about positive or negative.

But, for didactic purposes here, imagine the P-value for was less than 0.05 (and therefore statistically significant).
We report the value (0.0103521 — I would round to 0.01), and note that those who had more cholesterol in their diet per day, those
individuals tended to have higher BMI (e.g., the sign of the coefficient — and I related the coefficient back to the most important
thing about your study — the biological interpretation).

Now’s a good time to be clear about HOW you report statistical results. DO NOT SIMPLY COPY AND PASTE EVERYTHING
into your report. Now, for the estimates above, you would report everything, but not all of the figures. Here’s how the output should
be reported in your Project paper.

Table 18.5.1 Coefficients from full model.

Estimate SE t P-value
Intercept 25.935 3.721 6.97 < 0.0001
Age -0.007 0.051 -0.14 0.8892
Calories/Day -0.001 0.001 -0.58 0.5622
Cholesterol/Day 0.010 0.006 1.71 0.0929
Sex -0.853 2.221 -0.38 0.7021
Smoke -1.167 1.915 -0.61 0.5440
Interaction Smoke:Sex 0.926 2.851 0.33 0.7463

Looks better, doesn’t it?

Once you have the full model, use this model for the inferential statistics. Use the significance tests of each parameter in the model
from the corresponding ANOVA table. Now, where is the ANOVA table? Remember, right after running the linear regression,

Rcmdr: Models — Hypothesis testing -~ ANOVA tables
Accept the default (partial marginality), and, Boom! Out pops the ANOVA table you should be familiar with.

From the ANOVA table you will tell me whether a Factor is significant or not. You report the ANOVA table in your paper. You
describe it.

Now, the next step is to decide what is the best model. It then guides you to the next step which is to decide whether a better model
(fewer parameters, Occam’s razor) can be found. Identify the parameter from the ANOVA table with the highest P-value and
remove it from the model when you run the regression again. Repeat the steps above, return the ANOVA table, checking the
estimates and P-values, until you have a model with only statistically significant parameters.
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Find the best model
Output from R follows:

Anova(LinearModel.1, type="II")
Anova Table (Type II tests)

Response: BMI

Sum Sq Df F value P
Age 0.62 1 0.0196 0.890
CalsPDay 10.79 1 0.3394 0.562
CholPDay 92.37 1 2.9065 0.093
Sex 1.52 1 0.0478 0.828
Smoke 8.84 1 0.2782 0.600
Sex:Smoke 3.35 1 0.1055 0.746

Residuals 2129.34 67

This is my full model and I would start anticipating the need to reduce my model because none of the factors are statistically
significant. By the criterion that simple models are better, I would proceed first to drop the interaction. See below for more on
selecting the best models.

But first, I want to take up an important point about your models that you may not have had a chance to think about. The order of
entry of parameters in your model can effect the significance and value of the estimates themselves. The order of parameter model
entry above can be read top to bottom. Age was first, followed in sequence by CalsPDay, CholPDay, and so on. By convention,
enter the covariates first (the ratio-scale predictors), that’s what I did above.

Here’s the output from a model in which I used a different order of parameters.

Anova(LinearModel.2, type="II")
Anova Table (Type II tests)

Response: BMI

Sum Sq Df F value Pr(>F)
Sex 1.52 1 0.0478 0.82764
Smoke 8.84 1 0.2782 0.59964
Age 0.62 1 0.0196 0.88918
CalsPDay 10.79 1 0.3394 0.56215
CholPDay 92.37 1 2.9065 0.09286
Sex:Smoke 3.35 1 0.1055 0.74631

Residuals 2129.34 67

The output is the same!!! So why did I give you a warning about parameter order? Run the ANOVA table summary command
again, but this time select Type III type of test, i.e., ignore marginality.

> Anova(LinearModel.2, type="III")
Anova Table (Type III tests)

Response: BMI

Sum Sq Df F value Pr(>F)
(Intercept) 1544.34 1 48.5929 1.708e-09 ***
Sex 4.69 1 0.1475 0.70214

https://stats.libretexts.org/@go/page/45262



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/45262?pdf

LibreTextsm

Smoke 11.82 1 0.3720 0.54400
Age 0.62 1 0.0196 0.88918
CalsPDay 10.79 1 0.3394 0.56215
CholPDay 92.37 1 2.9065 0.09286
Sex:Smoke 3.35 1 0.1055 0.74631
Residuals 2129.34 67

The output has changed — and in fact it now reports the significance test of the intercept. This output is the same as the output
from the linear model. Try again, this time selecting Type I, sequential:

> anova(LinearModel.?2)
Analysis of Variance Table

Response: BMI
Df  Sum Sq Mean Sq F value Pr(>F)

Sex 1 0.68 0.681 0.0214 0.88402
Smoke 1 2.82 2.816 0.0886 0.76690
Age 1 3.44 3.436 0.1081 0.74333
CalsPDay 1 2.27 2.272 0.0715 0.78998
CholPDay 1 96.30 96.299 3.0301 0.08633
Sex:Smoke 1 3.35 3.354 0.1055 0.74631
Residuals 67 2129.34 31.781

Here, we see the effect of order. So, as we are working to learn all of the issues of statistics and in particular mode fitting, I have
purposefully restricted you to Type II analyses — obeying marginality correctly handles most issues about order of entry.
Status check

Where are we??? Recall that the purpose of all of this effort is to find the best supported model. The question we are working on is
whether the full (saturated) model is the best model or if a reduced model can be supported.

We go back to my first full model output from ANOVA.
Model 1:

Anova(LinearModel.1, type="II")
Anova Table (Type II tests)

Response: BMI
Sum Sq Df F value Pr(>F)

Age 0.62 1 0.0196 0.88918
CalsPDay 10.79 1 0.3394 0.56215
CholPDay 92.37 1 2.9065 0.09286
Sex 1.52 1 0.0478 0.82764
Smoke 8.84 1 0.2782 0.59964
Sex:Smoke 3.35 1 0.1055 0.74631

Residuals 2129.34 67

We have two factors (Sex, Smoke), three covariates (Age, CalsPDay, CholPDay), and one two-way interaction (Sex:Smoke). We
would write our full model then as

BMI ~ Age+ CalsPDay+ CholPDay + Sex + Smoke + Sex : Smoke
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Get and save in your output the ANVOA table for this Full model. Proceed to test a series of nested reduced models. Start by
dropping the interaction terms, consistent with our Occam’s razor approach.

Model 2:

Anova Table (Type II tests)

Response: BMI
Sum Sq Df F value Pr(>F)

Age 0.63 1 0.0201 0.88760
CalsPDay 10.45 1 0.3331 0.56572
CholPDay 96.30 1 3.0704 0.08424
Sex 1.52 1 0.0484 0.82650
Smoke 8.84 1 0.2819 0.59720

Residuals 2132.69 68

Next, reduce by identifying Factors or Predictors with the highest P-values. Looks like “Age” is next.
Model 3:

Anova Table (Type II tests)

Response: BMI
Sum Sq Df F value Pr(>F)

CalsPDay 9.87 1 0.3194 0.57381
CholPDay 97.78 1 3.1627 0.07974
Sex 2.55 1 0.0824 0.77488
Smoke 8.61 1 0.2786 0.59934

Residuals 2133.32 69

Next up, drop the “Sex” parameter.

Model 4:

Anova Table (Type II tests)

Response: BMI
Sum Sq Df F value Pr(>F)

CalsPDay 10.45 1 0.3424 0.56032
CholPDay 96.12 1 3.1502 0.08027
Smoke 12.42 1 0.4070 0.52557

Residuals 2135.87 70

Next? You would select CalsPDay, right?
Model 5:

Anova Table (Type II tests)

Response: BMI
Sum Sq Df F value Pr(>F)
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CholPDay 90.24 1 2.9852 0.08837
Smoke 13.95 1 0.4613 0.49923
Residuals 2146.32 71

And finally, we remove the “Smoke” factor.

Model 6:

Anova Table (Type II tests)

Response: BMI

Sum Sq Df F value Pr(>F)
CholPDay 77.93 1 2.5974 0.1114
Residuals 2160.26 72

Oops!
What happened to Model 6? Nothing remains significant? Panic? What is the point??? Arggh, Dr Dohm...!!!

Easy there.... Take a deep breath, and guess what? Your best model needs to have significant parameters in it, right? Your best fit
model then is Model 5. And that model will be your candidate for best fit as we proceed to complete our model building.

BMI ~ CholPDay + Smoke

Now we proceed to gain some support evidence for our candidate best model. We are going to use an information criterion
approach.

Use a fit criterion for determining model fit

To help us evaluate evidence in favor of one model over another there are a number of statistics one may calculate to provide a
single number for each model for comparison purposes. The criteria model evaluators available to us include Mallow’s C_{p}\),
adjusted R2, Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC) to select best model.

We already introduced the coefficient of determination R? as a measure of fit — in general we favor models with larger values of
R?. However, values of R? will always be larger for models with more parameters. Thus, the other evaluators attempt to adjust for
the parameters in the model and how they contribute to increased model fit. For illustrative purposes we will use Mallow’s C,. The
equation for Mallow’s C), in linear regression is

_ Reduced SSyesidual
P Full MSresidual

—[n=2(p+1)]

where p is the number of parameters in the model. Mallow’s C, is thus equal to the number of parameters in the model plus an
additional amount due to lack of fit of the model (i.e., large residuals). All else being equal we favor the model in which the Cp is
close to the number of parameters in the model.

In Remdr, select Models — Subset model selection ... (Fig. 18.5.1)

fann x| Subset Model Selection
Criterion for Mode| Plot M lar o bk medkls 1 ]
BIC * of each size: [
Mallows Cp * . . -
Adjusted R-sq. Maximum size: ’7 |
R-squared * T
OK | Cancel | Help |

a

Figure 18.5.1: Rcmdr popup menu, Subset model selection...

From the menu, select the criterion and how many models to return. The function returns a graph that can be used to interpret
which model is best given the selection criterion used. Below is an example (although for a different data set!) for Mallow’s C),
(Fig. 18.5.2).
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Figure 18.5.2: Mallow’s C,, plot

Let’s break down the plot. First define the axes. The vertical axis is the range of values for the C,, calculated for each model. The
horizontal axis is categorical and reads from left to right: Intercept, Inspection[T.Yes], etc., up to Suspended. Looking into the
graph itself we see horizontal bars — the extent of shading indicates which model corresponds to the C), value. For example, the
lowest bar, which is associated with the C}, value of 8, extends all the way to the right of the graph. This says that the model
evaluated included all of the variables and therefore was the saturated or full model. The next bar from the bottom of the graph is
missing only one block (IgCarlIns), which tells us the C;, value 6 corresponds to a reduced model, and so forth.

Cross-validation

Once you have identified your Best Fit model, then, your proceed to run the diagnostics plots. For the rest of the discussion we
return to our first example.

Rcmdr: Models — Graphs — Basic diagnostic plots.

We’ll just concern ourselves with the first row of plots (Fig. 18.5.3).

Im(BMI ~ CholPDay + Smoke)
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Figure 18.5.3: Diagnostic plots.

The left one shows the residuals versus the predicted values — if you see a trend here, the assumption of linearity has been
violated. The second plot is a test of the assumption of normality of the residuals. Interpret them (residuals OK, Residuals normally
distributed? Yes/No), and you’re done. Here, I would say I see no real trend in the residuals vs. fitted plot, so assumption of linear
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fit is OK. For normality, there is a tailing off at the larger values of residuals, which might be of some concern (and I would start
thinking about possible leverage problems), but nothing dramatic. I would conclude that our Model 5 is a good fitting model and
one that could be used to make predictions.

Now, if you think a moment, you should identify a logical problem. We used the same data to “check” the model fit as we did to
make the model in the first place. In particular if the model is intended to make predictions it would be advisable to check the
performance of the model (e.g., does it make reasonable predictions?) by supplying new data, data not used to construct the model,
into the model. If new data are not available, one acceptable practice is to divide the full data set into at least two subsets, one used
to develop the model (sometimes called the calibration or training dataset) and the other used to test the model. The benefits of
cross-validation include testing for influence points, over fitting of model parameters, and a reality check on the predictions
generated from the model.

Questions
[pending]

This page titled 18.5: Selecting the best model is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Michael

R Dohm via source content that was edited to the style and standards of the LibreTexts platform.
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