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12.7: Many tests, one model

Introduction

In our introduction to parametric tests we so far have covered one- and two-sample t-tests and now the multiple sample or one-way
analysis of variance (ANOVA). In subsequent sections we will cover additional tests, each with their own name. It is time to let you
in on a little secret. All of these tests, t-tests, ANOVA, and linear and multiple regression that we will work on later in the book,
belong to one family of statistical models. That model is called the general Linear Model (LM), not to be confused with the
Generalized Linear Model (GLM) (Burton et al 1998; Guisan et al 2002). This greatly simplifies our approach to learning how to
implement statistical tests in R (or other statistical programs) — you only need to learn one approach: the general Linear Model
(LM) function lm() .

Brief overview of linear models

With the inventions of correlation, linear regression, t-tests, and analysis of variance in the period between 1890 and 1920,
subsequent work led to the realization that these tests (and many others!) were special cases of a general model, the general linear
model, or LM. The LM itself is a special case of the generalized linear model, or GLM; among the differences between LM and
GLM, in LM, the dependent variable is ratio scale and errors in the response (dependent) variable(s) are assumed to come from a
Gaussian (normal) distribution. In contrast, for GLM, the response variable may be categorical or continuous, and error
distributions other than normal (Gaussian), may be applied. The GLM user must specify both the error distribution family (e.g.,
Gaussian) and the link function, which specifies the relationship among the response and predictor variables. While we will use
the GLM functions when we attempt to model growth functions and calculate EC  in dose-response problems, we will not cover
GLM this semester.

The general Linear Model, LM

In matrix form, the LM can be written as 

where  is a matrix of response variables predicted by independent variables contained in matrix  and weighted by linear
coefficients in the vector . Basically, all of the predictor variables are combined to produce a single linear predictor . By
adding an error component we have the complete linear model: 

In the linear model, the error distribution is assumed to be normally distributed, or “Gaussian.”

R code

The bad news is that LM in R (and in any statistical package, actually) is a fairly involved set of commands; the good news is that
once you understand how to use this command, and can work with the Options, you will be able to conduct virtually all of the tests
we will use this semester, from two-sample t-tests to multiple linear regression. In the end, all you need is the one Rcmdr command
to perform all of these tests.

We begin with a data set, ohia.ch12 . Scroll down this page or click here to get the R code.

I found a nice report on a common garden experiment with o`hia (Corn and Hiesey 1973). O`hia (Metrosideros polymorpha) is an
endemic, but wide-spread tree in the Hawaiian islands (Fig. ). O`hia exhibits pronounced intraspecific variation: individuals
differ from each other. O`hia grows over wide range of environments, from low elevations along the ocean right up the sides of the
volcanoes, and takes on many different growth forms, from shrubs to trees. Substantial areas of o`hia trees on the Big Island are
dying, attributed to two exotic fungal species of the genus Ceratocystis (Asner et al., 2018).

Figure : O’hia, Metrosideros polymorpha. Public domain image from Wikipedia.
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The Biology. Individuals from distinct populations may differ because the populations differ genetically, or because the
environments differ, or, and this is more realistic, both. Phenotypic plasticity is the ability of one genotype to produce more than
one phenotype when exposed to different environments. Environmental differences are inevitable when populations are from
different geographic areas. Thus, in population comparisons, genetic and environmental differences are confounded. A common
garden experiment is a crucial genetic experiment to separate variation in phenotypes, , among populations into causal genetic or
environmental components.

If you recall from your genetics course,  where  stands for genetic (alleles) differences among individuals and 
stands for environmental differences among individuals. In brief, the common garden experiment begins with individuals from the
different populations are brought to the same location to control environmental differences. If the individuals sampled from the
populations continue to differ despite the common environment, then the original differences between the populations must have a
genetic basis, although the actual genetic scenario may be complicated (the short answer is that if genotype by environment
interaction exists, then results from a common garden experiment cannot be generalized back to the natural populations/locations
— this will make more sense when we talk about two-way ANOVA). For more about common garden experiments, see de
Villemereuil et al (2016). Nuismer and Gandon (2008) discuss statistical aspects of the common garden approach to studying local
adaptation of populations and the more powerful “reciprocal translocation” experimental design.

Managing data for linear models

First, your data must be stacked in the worksheet. That means one column is for group labels (independent variable), the other
column is for the response (dependent) variable.

If you have not already downloaded the data set, ohia.ch12 , do so now. Scroll down this page or click here to get the R code.

Confirm that the worksheet is stacked. If it is not, then you would rearrange your data set using Rcmdr: Data → Active data set
→ Stack variables in data set…

The data set contains one factor, “Site” with three levels (M-1, 2, 3). M stands for Maui, and collection sites were noted in Figure 2
of Corn and Hiesey (1973). Once the dataset is in Rcmdr , click on View to see the data (Fig. ). There are two response
variables, Height (shown in red below) and Width (shown in blue below).

Figure : The o`hia dataset as viewed in R Commander.

The data are from Table 5 of Corn and Hiesey (1973). (I simulated data based on their mean/SD reported in Table 5). This was a
very cool experiment: they collected o`hia seeds from three elevations on Maui, then grew the seeds in a common garden in
Honolulu. Thus, the researchers controlled the environment; what varied, then were the genotypes.

As always, you should look at the data. Box plots are good to compare central tendency (Fig. ).
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Figure : Box plots of growth responses of o`hia seedlings collected from three Maui sites, M-1 (elevation 750 ft), M-2
(elevation 1100 ft), and M-3 (elevation 6600 ft). Data adapted from Table 5 of Corn and Hiersey 1973.

R code to make Figure  plots:

par(mfrow=c(1,2)) 

Boxplot(Height ~ Site, data = ohia, id = list(method = "y")) 

Boxplot(Width ~ Site, data = ohia, id = list(method = "y"))

This dataset would typically be described as a one-way ANOVA problem. There was one treatment variable (population source)
with three levels (M-1, M-2, M-3). From Rcmdr  we select the one-way ANOVA: Statistics → Means → One-way ANOVA…
and after selecting the Groups (from the Site variable) and the Response variable (e.g., Height), we have

AnovaModel.1 <- aov(Height ~ Site, data = ohia.ch12) 

summary(AnovaModel.1) 

           Df Sum Sq   Mean Sq  F value          Pr(>F)  

Site        2   4070    2034.8    22.63 0.000000131 *** 

Residuals  47   4227      89.9  

--- 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Let us proceed to test the null hypothesis (what was it???) using instead the lm()  function. Four steps in all.

Step 1. Rcmdr: Statistics → Fit models → Linear model … (Fig. )

Figure : R Commander, select to fit a Linear model.

Step 2. The popup menu below (Fig. ) follows.

First, What is our response (dependent) variable? What is our predictor (independent) variable? We then input our model. In this
case, with only the one predictor variable, Sites, our model formula is simple to enter (Fig. ): Height ~ Site

12.7.3

12.7.3

12.7.4

12.7.4

12.7.5

12.7.5

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stats.libretexts.org/@go/page/45217?pdf


12.7.4 https://stats.libretexts.org/@go/page/45217

Figure : Input linear model formula, Height ~ Site

Step 3. Click OK to carry out the command.

Here is the R output and the statistical results from the application of the linear model.

LinearModel.1 <- lm(Height ~ Site, data=ohia.ch12)  

summary(LinearModel.1) 

 

Call: 

lm(formula = Height ~ Site, data = ohia.ch12) 

 

Residuals: 

    Min     1Q   Median     3Q     Max  

-18.808 -4.761   -1.755  4.758  29.257 

 

Coefficients: 

             Estimate  Std. Error  t value      Pr(>|t|) 

(Intercept)    15.314       2.121    7.222 0.00000000377 *** 

Site[T.M-2]    19.261       2.999    6.423 0.00000006153 *** 

Site[T.M-3]     2.924       3.673    0.796          0.43     

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 9.483 on 47 degrees of freedom 

Multiple R-squared:  0.4905, Adjusted R-squared:  0.4688  

F-statistic: 22.63 on 2 and 47 DF,  p-value: 0.0000001311

End R output

The linear model has produced a series of estimates of coefficients for the linear model, statistical tests of the significance of each
component of the model, and the coefficient of determination, R , which is a descriptive statistic of how well model fits the data.
Instead of our single factor variable for Source Population like in ANOVA we have a series of what are called dummy variables or
contrasts between the populations. Thus, there is a coefficient for the difference between M-1 and M-2. “ Site[T.M-2] ” in
the output, between M-1 and M-3, and between M-2 and M-3.

This is a brief description of linear model output; these topics will be discussed more fully in Chapter 17 and Chapter 18. The
residual standard error is a measure of how well a model fits the data. The Adjusted R-squared is calculated by dividing the
residual mean square error by the total mean square error. The result is then subtracted from 1.

It also produced our first statistic that assesses how well the model fits the data called the coefficient of determination, . A 
value of of 1.0 would indicate that all variation in the data set can be explained by the predictor variable(s) in the model with no
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residual error remaining. Our value of 49% indicates that nearly 50% of the variation in height of the seedlings grown under
common environments are due to the source population (= genetics).

Step 4. But we are not quite there — we want the traditional ANOVA results (recall the ANOVA table).

To get the ANOVA Table we have to ask Rcmdr  (and therefore R) to give us this. Select

Rcmdr: Models → Hypothesis tests → ANOVA table … (Fig. )

Figure : To retrieve an ANOVA table, select Models, Hypothesis tests, then ANOVA table…

Here’s the type of tests for the ANOVA table; select the default (Fig. ).

Figure : Options for types of tests for ANOVA table.

Now, in the future when we work with more complicated experimental designs, we will also need to tell R how to conduct the test.
For now, we will accept the default Type II type of test and ignore sandwich estimators. You should confirm that for a one-way
ANOVA, Type I and Type II choices give you the same results.

The reason they do is because there is only one factor — when there are more than one factors, and if one or both of the factors are
random effects, then Type I, II, and III will give you different answers. We will discuss this more as needed, but see the note below
about default choices.

Marginal or partial effects are slopes (or first derivatives): they quantify the change in one variable given change in one or
more independent variables. Type I tests are sequential: sums of squares are calculated in the order the predictor variables are
entered into the model. Type II tests the sums of squares as calculated after adjusting for some of the variables in the model.
For Type III, every sum of square calculation is adjusted for all other variables in the model. Sandwich estimator refers to
algorithms for calculating the structure of errors or residuals remaining after the predictor variables are fitted to the data. The
assumption for ordinary least-square estimation (see Chapter 17) is that errors across the predictors are equal, i.e., equal
variances assumption. HC refers to “heteroscedasticity consistent” (Hayes and Chai 2007).

By default, Rcmdr  makes Type II. In most of the situations we will find ourselves this semester, this is the correct choice.

Below is the output from the ANOVA table request. Confirm that the information is identical to the output from the call to 
aov()  function.
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Anova(LinearModel.1, type = "II") 

Anova Table (Type II tests) 

Response: Height 

          Sum Sq  Df   F value        Pr(>F)  

Site      4069.7   2    22.626  0.0000001311 *** 

Residuals 4226.9  47  

--- 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

And the other stuff we got from the linear model command? Ignore for now but make note that this is a hint that regression and
ANOVA are special cases of the same model, the linear model.

We do have some more work to do with ANOVA, but this is a good start.

Why use the linear model approach?

Chief among the reasons to use the lm()  approach is to emphasize that a model approach is in use. One purpose of developing a
model is to provide a formula to predict new values. Prediction from linear models is more fully developed in Chapter 17 and
Chapter 18, but for now, we introduce the predict()  function with our O`hia example.

Output from R

myModel <- predict(LinearModel.1, interval = "confidence") 

head(myModel, 3) 

       fit      lwr      upr 

1 15.31374 11.04775 19.57974 

2 15.31374 11.04775 19.57974 

3 15.31374 11.04775 19.57974 

with(myModel, tapply(fit, list(Site), mean, na.rm = TRUE)) 

     M-1      M-2      M-3 

15.31374 34.57474 18.23796

Questions

1. Revisit ANOVA problems in homework and questions from early parts of this chapter and apply lm()  followed by
Hypothesis testing (Rcmdr: Models → Hypothesis tests → ANOVA table) approach instead of one-way ANOVA command.
Compare results using lm()  to results from One-way ANOVA and other ANOVA problems.

Data set and R code used in this page
Corn and Hiesey (1973). Ohia common garden.

Site Height Width

M-1 12.5567 19.1264

M-1 13.2019 13.1547

myModel <- predict(LinearModel.1, interval = "confidence") 

head(myModel, 3)    #print out first 3 rows 

#Add the output to the data set 

ohiaPred <- data.frame(ohia,myModel) 

with(ohiaPred, tapply(fit, list(Site), mean, na.rm = TRUE))   #print out predicted val
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Site Height Width

M-1 8.0699 16.032

M-1 6.0952 22.8586

M-1 11.3879 11.0105

M-1 12.2242 21.8102

M-1 16.0147 11.0488

M-1 19.7403 25.9756

M-1 36.4824 25.2867

M-1 13.1233 20.0487

M-1 21.7725 24.8511

M-1 14.2013 43.7679

M-1 37.7629 37.3438

M-1 2.8652 2.5549

M-1 0.6456 22.8013

M-1 29.623 20.0194

M-1 10.5812 29.0328

M-1 18.3046 22.2867

M-1 19.0528 24.684

M-1 2.5693 35.74

M-2 45.0162 14.3878

M-2 40.8404 18.8396

M-2 27.1032 21.0547

M-2 29.8036 16.9327

M-2 63.8316 30.7037

M-2 42.107 3.2491

M-2 30.0322 47.4412

M-2 34.0516 42.239

M-2 15.7664 32.8354

M-2 35.1262 50.9698

M-2 43.6988 19.3897

M-2 26.7585 13.8168

M-2 36.7895 0.5817

M-2 30.9458 53.7757

M-2 26.8465 15.4137

M-2 40.3883 9.2161
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Site Height Width

M-2 30.6555 56.8456

M-2 19.9736 44.9411

M-2 27.676 36.8543

M-2 44.084 24.3396

M-3 15.2646 11.4999

M-3 19.6745 9.7757

M-3 23.275 12.7825

M-3 16.1161 2.4065

M-3 16.8393 1.1253

M-3 23.107 3.7349

M-3 21.5322 6.9725

M-3 13.4191 12.2867

M-3 14.7273 11.4841

M-3 18.4245 11.9078

ohia.ch12 <- read.table(header=TRUE, sep=",",text=" 

Site, Height, Width 

M-112.556719.1264 

M-113.201913.1547 

M-18.069916.032 

M-16.095222.8586 

M-111.387911.0105 

M-112.224221.8102 

M-116.014711.0488 

M-119.740325.9756 

M-136.482425.2867 

M-113.123320.0487 

M-121.772524.8511 

M-114.201343.7679 

M-137.762937.3438 

M-12.86522.5549 

M-10.645622.8013 

M-129.62320.0194 

M-110.581229.0328 

M-118.304622.2867 

M-119.052824.684 

M-12.569335.74 

M-245.016214.3878 

M-240.840418.8396 

M-227.103221.0547 

M-229.803616.9327 
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M-263.831630.7037 

M-242.1073.2491 

M-230.032247.4412 

M-234.051642.239 

M-215.766432.8354 

M-235.126250.9698 

M-243.698819.3897 

M-226.758513.8168 

M-236.78950.5817 

M-230.945853.7757 

M-226.846515.4137 

M-240.38839.2161 

M-230.655556.8456 

M-219.973644.9411 

M-227.67636.8543 

M-244.08424.3396 

M-315.264611.4999 

M-319.67459.7757 

M-323.27512.7825 

M-316.11612.4065 

M-316.83931.1253 

M-323.1073.7349 

M-321.53226.9725 

M-313.419112.2867 

M-314.727311.4841 

M-318.424511.90782") 

#check the dataframe 

head(ohia.ch12)
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