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18.1: Multiple linear regression

Introduction

Last time we introduced simple linear regression:

one independent  variable
one dependent  variable.

The linear relationship between  and  was estimated by the method of Ordinary Least Squares (OLS). OLS minimizes the
sum of squared distances between the observed responses, , and responses predicted by the line, . Simple linear regression is
analogous to our one-way ANOVA — one outcome or response variable and one factor or predictor variable (Chapter 12.2).

But the world is complicated and so, our one-way ANOVA was extended to the more general case of two or more predictor (factor)
variables (Chapter 14). As you might have guessed by now, we can extend simple regression to include more than one predictor
variable. In fact, combining ANOVA and regression gives you the general linear model! And, you should not be surprised that
statistics has extended this logic to include not only multiple predictor variables, but also multiple response variables. Multiple
response variables falls into a category of statistics called multivariate statistics.

Like multi-way ANOVA, multiple regression is the extension of simple linear regression from one independent predictor variable
to include two or more predictors. The benefit of this extension is obvious — our models gain realism. All else being equal, the
more predictors, the better the model will be at describing and/or predicting the response. Things are not all equal, of course, and
we’ll consider two complications of this basic premise, that more predictors are best; in some cases they are not.

However, before discussing the exceptions or even the complications of a multiple linear regression model, we begin by obtaining
estimates of the full model, then introduce aspects of how to evaluate the model. We also introduce comparisons of models and
whether a reduced model may be the preferred model.

R code

Multiple regression is easy to do in Rcmdr  — recall that we used the general linear model function, lm() , to analyze one-
way ANOVA and simple linear regression. In R Commander, we access lm()  by

Rcmdr: Statistics → Fit model → Linear model

You may, however, access linear regression through R Commander

We use the same general linear model function for cases of multi-way ANOVA and for multiple regression problems. Simply enter
more than one ratio-scale predictor variable and boom!

You now have yourself a multiple regression. You would then proceed to generate the ANOVA table for hypothesis testing

Rcmdr: Models → Hypothesis testing → ANOVA tables

From the output of the regression command, estimates of the coefficients along with standard errors for the estimate and results of
t-tests for each coefficient against the respective null hypotheses for each coefficient are also provided. In our discussion of simple
linear regression we introduced the components: the intercept, the slope, as well as the concept of model fit, as evidenced by ,
the coefficient of determination. These components exist for the multiple regression problem, too, but now we call the slopes
partial regression slopes because there are more than one.

Our full multiple regression model becomes

where the coefficients  are the partial regression slopes and  is the Y-intercept for a model with  predictor
variables. Each coefficient has a null hypothesis, each has a standard error, and therefore, each coefficient can be tested by the -
test.

Now, regression, like ANOVA, is an enormous subject and we cannot do it justice in the few days we will devote to it. We can,
however, walk you through a fairly typical example. I’ve posted a small data set diabetesCholStatin  at the end of this
page. Scroll down or click here. View the data set and complete your basic data exploration routine: make scatterplots and box
plots. We think (predict) that body size and drug dose cause variation in serum cholesterol levels in adult men. But do both predict
cholesterol levels?
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Selecting the best model

We have two predictor variables, and we can start to see whether none, one, or both of the predictors contribute to differences in
cholesterol levels. In this case, both contribute significantly. The power of multiple regression approaches is that it provides a
simultaneous test of a model which may have many explanatory variables deemed appropriate to describe a particular response.
More generally, it is sometimes advisable to think more philosophically about how to select a best model.

In model selection, some would invoke Occam’s razor — given a set of explanations, the simplest should be selected — to justify
seeking simpler models. There are a number of approaches (forward selection, backward selection, or stepwise selection), and the
whole effort of deciding among competing models is complicated with a number of different assumptions, strengths and
weaknesses. I refer you to the discussion below, which of course is just a very brief introduction to a very large subject in
(bio)statistics!

Let’s get the full regression model

The statistical model is

As written in R format, our model is ChLDL ~ BMI + Dose + Statin .

BMI  is ratio scale and Statin  is categorical (two levels: Statin1, Statin2). Dose  can be viewed as categorical, with
five levels (5, 10, 20, 40, 80 mg), interval scale, or ratio scale. If we are make the assumption that the difference between 5, 10,
up to 80 mg is meaningful, and that the effect of dose is at least proportional if not linear with respect to ChLDL, then we
would treat Dose  as ratio scale, not interval scale. That’s what we did here.

We can now proceed in R Commander to fit the model.

Rmdr: Statistics → Fit models → Linear model

How the model is inputted into linear model menu is shown in Figure .

Figure : Screenshot of Rcmdr linear model menu with our model elements in place.

The output

summary(LinearModel.1) 

Call: 

lm(formula = ChLDL ~ BMI + Dose + Statin, data = cholStatins) 

 

Residuals: 

Min 1Q Median 3Q Max 

-3.7756 -0.5147 -0.0449 0.5038 4.3821 

 

Coefficients: 

ChLD = + ⋅ BMI + ⋅ Dose + ⋅ Statin +Li β0 β1 β2 β3 ϵi

 Note:
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                      Estimate Std. Error t value Pr(>|t|) 

(Intercept)           1.016715   1.178430   0.863 0.39041 

BMI                   0.058078   0.047012   1.235 0.21970 

Dose                 -0.014197   0.004829  -2.940 0.00411 ** 

Statin[Statin2]       0.514526   0.262127   1.963 0.05255 . 

--- 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Residual standard error: 1.31 on 96 degrees of freedom 

Multiple R-squared: 0.1231, Adjusted R-squared: 0.09565 

F-statistic: 4.49 on 3 and 96 DF, p-value: 0.005407

Question. What are the estimates of the model coefficients (rounded)?

 = intercept = 1.017

 = slope for variable BMI = 0.058

 = slope for variable Dose = -0.014

 = slope for variable Statin = -0.515

Question. Which of the three coefficients were statistically different from their null hypothesis?

Answer: Only the  coefficient was judged statistically significant at the Type I error level of 5% (p = 0.0041). Of the four null
hypotheses we have for the coefficients (Intercept = 0; ; ; ), we only reject the null hypothesis for Dose
coefficient.

Note the important concept about the lack of a direct relationship between the magnitude of the estimate of the coefficient and the
likelihood that it will be statistically significant! In absolute value terms , but  was not even close to statistical
significance (p = 0.220).

We generate a 2D scatterplot and include the regression lines (by group=Statin) to convey the relationship between at least one of
the predictors (Fig. ).

Figure \(\PageIndex{2\}\): Scatter plot of predicted LDL against dose of a statin drug. Regression lines represent the different statin
drugs (Statin1, Statin2).

Question. Based on the graph, can you explain why there will be no statistical differences between levels of the statin drug type,
Statin1 (shown open circles) vs. Statin2 (shown closed red circles)?
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Because we have two predictors (BMI and Statin Dose), you may also elect to use a 3D-scatterplot. Here’s one possible result (Fig. 
).

Figure : 3D plot of BMI and dose of Statin drugs on change in LDL levels (green Statin2, blue Statin1).

R code for Figure .

Graph made in Rcmdr: Graphs → 3D Graph → 3D scatterplot …

scatter3d(ChLDL~BMI+Dose|Statin, data=diabetesCholStatin, fit="linear",  

residuals=TRUE, parallel=FALSE, bg="white", axis.scales=TRUE, grid=TRUE,  

ellipsoid=FALSE)

Figure  is a challenging graphic to interpret. I wouldn’t use it because it doesn’t convey a strong message. With some
effort we can see the two planes representing mean differences between the two statin drugs across all predictors, but it’s a
stretch. No doubt the graph can be improved by changing colors, for example, but I think the 2d plot (Figure ) works
better. Alternatively, if the platform allows, you can use animation options to help your reader see the graph elements.
Interactive graphics are very promising and, again, unsurprisingly, there are several R packages available. For this example, 
plot3d()  of the package rgl  can be used. Figure  is one possible version; I saved images and made animated

gif.

Figure : An example of a possible interactive 3D plot; the file embedded in this page is not interactive, just an animation.

Diagnostic plots

While visualization concerns are important, let’s return to the statistics. All evaluations of regression equations should involve an
inspection of the residuals. Inspection of the residuals allows you to decide if the regression fits the data; if the fit is adequate, you
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then proceed to evaluate the statistical significance of the coefficients.

The default diagnostic plots (Fig. ) R provides are available from Rcmdr: Models → Graphs → Basic diagnostics plots

Four plots are returned:

Figure : R’s default regression diagnostic plots.

Each of these diagnostic plots in Figure  gives you clues about the model fit.

1. Plot of residuals vs. fitted helps you identify patterns in the residuals
2. Normal Q-Q plot helps you to see if the residuals are approximately normally distributed
3. Scale-location plot provides a view of the spread of the residuals
4. The residuals vs. leverage plot allows you to identify influential data points.

We introduced these plots in Chapter 17.8 when we discussed fit of simple linear model to data. My conclusion? No obvious trend
in residuals, so linear regression is a fit to the data; data not normally distributed, as Q-Q plot shows S-shape.

Interpreting the diagnostic plots for this problem
The “Normal Q-Q” plot allows us to view our residuals against a normal distribution (the dotted line). Our residuals do no show
an ideal distribution: low for the first quartile, about on the line for intermediate values, then high for the 3rd and 4th quartile
residuals. If the data were bivariate normal we would see the data fall along a straight line. The “S-shape” suggests log-
transformation of the response and or one or more of the predictor variables.

Note that there also seems to be a pattern in residuals vs the predicted (fitted) values. There is a trend of increasing residuals as
cholesterol levels increase, which is particularly evident in the “scale-location” plot. Residuals tended to be positive at low and
high doses, but negative at intermediate doses. This suggests that the relationship between predictors and cholesterol levels may not
be linear, and it demonstrates what statisticians refer to as a monotonic spread of residuals.

The last diagnostic plot looks for individual points that influence, change, or “leverage” the regression — in other words, if a point
is removed, does the general pattern change? If so, then the point had “leverage” and thus we need to decide whether or not to
include the datum. diagnostic plots Cook’s distance is a measure of the influence of a point in regression. Points with large Cook’s
distance values warrant additional checking.

The multicollinearity problem

Statistical model building is a balancing act by the statistician. While simpler models may be easier to interpret and, perhaps, to
use, it is a basic truism that the more predictor variables the model includes, the more realistic the statistical model. However, each
additional parameter that is added to the statistical model must be independent of all other parameters already in the model. To the
extent that this assumption is violated, the problem is termed multicollinearity. If predictor variables are highly correlated, then
they are essentially just linear combinations and do not provide independent evidence. For example, one would naturally not
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include two core body temperature variables in a statistical model on basal metabolic rate, one in degrees Fahrenheit and the other
in degrees Celsius, because it is a simple linear conversion between the two units. This would be an example of structural
collinearity: the collinearity is because of misspecification of the model variables. In contrast, collinearity among predictor
variables may because the data are themselves correlated. For example, if multiple measures of body size are included (weight,
height, length of arm, etc.), then we would expect these to be correlated, i.e., data multicollinearity.

Collinearity in statistical models may have a number of undesirable effects on a multiple regression model. These include

estimates of coefficients not stable: with collinearity, values of coefficients depend on other variables in the model; if collinear
predictors, then the assumption of independent predictor variables is violated.
precision of the estimates decreases (standard error of estimates increase).
statistical power decreases.
p-values for individual coefficients not trust worthy.

Tolerance and Variance Inflation Factor

Absence of multicollinearity is important assumption of multiple regression. A partial test is to calculate product moment
correlations among predictor variables. For example, when we calculate the correlation between BMI and Dose for our model, we
get  , and therefore would tentatively conclude that there was little correlation between our predictor
variables.

A number of diagnostic statistics have been developed to test for multicollinearity. Tolerance for a particular independent variable 
 is defined as 1 minus the proportion of variance it shares with the other independent variables in the regression analysis 

 (O’Brien 2007). Tolerance reports the proportion of total variance explained by adding the  predictor variable that is
unrelated to the other variables in the model. A small value for tolerance indicates multicollinearity — and that the predictor
variable is nearly a perfect combination (linear) of the variables already in the model and therefore should be omitted from the
model. Because tolerance is defined in relation to the coefficient of determination, you can interpret a tolerance score as the unique
variance accounted for by a predictor variable.

A second, related diagnostic of multicollinearity is called the Variance Inflation Factor, VIF. VIF is the inverse of tolerance.

VIF shows how much of the variance of a regression coefficient is increased because of collinearity with the other predictor
variables in the model. VIF is easy to interpret: a tolerance of 0.01 has a VIF of 100; a tolerance of 0.1 has a VIF of 10; a tolerance
of 0.5 has a VIF of 2, and so on. Thus, small values of tolerance and large values of VIF are taken as evidence of multicollinearity.

Rcmdr: Models → Numerical diagnostics → Variation-inflation factors

vif(RegModel.2) 

      BMI     Dose  

1.010256 1.010256

A rule of thumb is that if VIF is greater than 5 then there is multicollinearity; with VIF values close to one we would conclude, like
our results from the partial correlation estimate above, that there is little evidence for a problem of collinearity between the two
predictor variables. They can therefore remain in the model.

Solutions for multicollinearity
If there is substantial multicollinearity then you cannot simply trust the estimates of the coefficients. Assuming that there hasn’t
been some kind of coding error on your part, then you may need to find a solution. One solution is to drop one of the predictor
variables and redo the regression model. Another option is to run what is called a Principle Components Regression. One takes the
predictor variables and runs a Principle Component Analysis to reduce the number of variables, then the regression is run on the
PCA components. By definition, the PCA components are independent of each other. Another option is to use ridge regression
approach.

Like any diagnostic rule, however, one should not blindly apply a rule of thumb. A VIF of 10 or more may indicate
multicollinearity, but it does not necessarily lead to the conclusion that the linear regression model requires that the researcher

r = 0.101 (p = 0.3186)
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reduce the number of predictor variables or analyze the problem using a different statistical method to address multicollinearity as
the sole criteria of a poor statistical model. Rather, the researcher needs to address all of the other issues about model and parameter
estimate stability, including sample size. Unless the collinearity is extreme (like a correlation of 1.0 between predictor variables!),
larger sample sizes alone will work in favor of better model stability (by lowering the sample error) (O’Brien 2007).

Questions
1. Can you explain why the magnitude of the slope is not the key to statistical significance of a slope? Hint: look at the equation of

the t-test for statistical significance of the slope.
2. Consider the following scenario. A researcher repeatedly measures his subjects for blood pressure over several weeks, then

plots all of the values over time. In all, the data set consists of thousands of readings. He then proceeds to develop a model to
explain blood pressure changes over time. What kind of collinearity is present in his data set? Explain your choice.

3. We noted that Dose  could be viewed as categorical variable. Convert Dose  to factor variable ( fDose ) and redo the
linear model. Compare the summary output and discuss the additional coefficients.

Use Rcmdr: Data → Manage variables in active data set → Convert numeric Variables to Factors to create a new
factor variable fDose . It’s ok to use the numbers as factor levels.

4. We flagged the change in LDL as likely to be not normally distributed. Create a log -transformed variable for ChLDL  and
perform the multiple regression again.
a. Write the new statistical model
b. Obtain the regression coefficients — are they statistically significant?
c. Run basic diagnostic plots and evaluate for fit of the linear model for this data set.

Data set

ID Statin Dose BMI LDL ChLDL

1 Statin2 5 19.5 3.497 2.7147779309

2 Statin1 20 20.2 4.268 1.2764831106

3 Statin2 40 20.3 3.989 2.6773769532

4 Statin2 20 20.3 3.502 2.4306181501

5 Statin2 80 20.4 3.766 1.7946303961

6 Statin2 20 20.6 3.44 2.2342950639

7 Statin1 20 20.7 3.414 2.6353051933

8 Statin1 10 20.8 3.222 0.8091810801

9 Statin1 10 21.1 4.04 3.2595985907

10 Statin1 40 21.2 4.429 1.7639974729

11 Statin1 5 21.2 3.528 3.3693768458

12 Statin1 40 21.5 3.01 -0.8271542022

13 Statin2 20 21.6 3.393 2.1117204833

14 Statin1 10 21.7 4.512 3.1662377996

15 Statin1 80 22 5.449 3.0083296182

16 Statin2 10 22.2 4.03 3.0501301624

17 Statin2 40 22.2 3.911 2.6460344888

18 Statin2 10 22.2 3.724 2.9456555243

19 Statin1 5 22.2 3.238 3.2095842825

10
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20 Statin2 10 22.5 4.123 3.0887629267

21 Statin1 20 22.6 3.859 5.1525478688

22 Statin1 10 23 4.926 2.58482964

23 Statin2 20 23 3.512 2.2919748394

24 Statin1 5 23 3.838 1.4689995606

25 Statin2 20 23.1 3.548 2.3407899756

26 Statin1 5 23.1 3.424 1.2043457967

27 Statin1 40 23.2 3.709 3.2381790892

28 Statin1 80 23.2 4.786 2.7486432463

29 Statin1 20 23.3 4.103 1.2500819426

30 Statin1 40 23.4 3.341 1.4322916002

31 Statin1 10 23.5 3.828 1.3817551192

32 Statin2 10 23.8 4.02 3.0391874265

33 Statin1 20 23.8 3.942 0.8483284736

34 Statin2 20 23.8 2.89 1.7211634664

35 Statin1 80 23.9 3.326 1.9393460444

36 Statin1 10 24.1 4.071 3.0907410326

37 Statin1 40 24.1 4.222 1.3223045884

38 Statin2 10 24.1 3.44 2.472222941

39 Statin1 5 24.2 3.507 0.0768171794

40 Statin2 20 24.2 3.647 2.4257575585

41 Statin2 80 24.3 3.812 1.7105748759

42 Statin2 40 24.3 3.305 1.9405724055

43 Statin2 5 24.3 3.455 2.5022137646

44 Statin2 5 24.4 4.258 3.2280077893

45 Statin1 5 24.4 4.16 3.4777470262

46 Statin2 80 24.4 4.128 2.0632471844

47 Statin1 80 24.5 4.507 3.784421647

48 Statin1 5 24.5 3.553 0.6957091748

49 Statin2 10 24.5 3.616 2.6998703189

50 Statin2 80 24.6 3.372 1.3004010967

51 Statin2 80 24.6 3.667 1.4181086606

52 Statin2 5 24.7 3.854 3.1266706892

53 Statin1 80 24.7 3.32 -1.2864388279

54 Statin2 5 24.7 3.756 2.4236635094
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55 Statin1 40 24.8 4.398 2.907472945

56 Statin2 40 24.9 3.621 2.3624285593

57 Statin1 10 25 3.17 1.264656476

58 Statin1 80 25.1 3.424 -2.4369077381

59 Statin2 10 25.1 3.196 2.0014648648

60 Statin2 80 25.2 3.367 1.1007041451

61 Statin1 80 25.2 3.067 -0.2315398019

62 Statin1 20 25.3 3.678 4.6628661348

63 Statin2 5 25.5 4.077 2.6117051224

64 Statin1 20 25.5 3.678 2.6330531096

65 Statin2 5 25.6 4.994 4.1800816149

66 Statin1 20 25.8 3.699 1.8990314684

67 Statin1 10 25.9 3.507 4.0637570533

68 Statin2 20 25.9 3.445 2.3037613081

69 Statin1 5 26 4.025 2.50142676

70 Statin1 5 26.3 3.616 0.7408631019

71 Statin2 40 26.4 3.937 2.5733214297

72 Statin2 40 26.4 3.823 2.3638394785

73 Statin1 10 26.7 4.46 2.1741977546

74 Statin2 5 26.7 5.03 3.845271327

75 Statin2 10 26.7 3.73 2.7088955103

76 Statin2 10 26.7 3.232 2.2726268196

77 Statin1 80 26.8 3.693 1.751169214

78 Statin2 80 27 4.108 1.8613104992

79 Statin2 40 27.2 5.398 4.0289773539

80 Statin2 80 27.2 4.517 2.3489030399

81 Statin2 20 27.3 3.901 2.7900467077

82 Statin1 80 27.3 5.247 5.8485450123

83 Statin2 80 27.4 3.507 1.2478629747

84 Statin1 20 27.4 3.807 -1.0799279924

85 Statin2 80 27.6 3.574 1.48678931

86 Statin1 40 27.8 4.16 2.4277532799

87 Statin2 20 28 4.501 3.2846482963

88 Statin2 5 28.1 3.621 2.6990067113

89 Statin1 40 28.2 3.652 -1.0912561688
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90 Statin2 40 28.2 4.191 2.8742307203

91 Statin2 40 28.4 5.791 4.4454535731

92 Statin1 40 28.6 4.698 3.2028737773

93 Statin1 5 29 4.32 4.0707532197

94 Statin2 10 29.1 3.776 2.7512805004

95 Statin2 5 29.2 4.703 3.6494895215

96 Statin2 40 29.9 4.128 2.8646910266

97 Statin1 40 30.4 4.693 4.9837039826

98 Statin1 20 30.4 4.123 2.2738979752

99 Statin1 80 30.5 3.921 -0.9034376511

100 Statin1 10 36.5 4.175 3.3114366758
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