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6.3: Combinations and permutations

Events

The simplest place to begin with probability is to define an event — an event is an outcome — a “Heads” from a toss of coin, or
the chance that the next card dealt is an ace in a game of Blackjack. In these simple cases we can enumerate how likely these events
are given a number of chances or trials. For example, if the coin is tossed once, then the coin will either land “Heads” or “Tails”

(Fig. 6.3.1).

Figure 6.3.1: Heads (left) and Tails (right) of a USA quarter.
We can then ask, what is the likelihood of ten “Heads” in ten tosses of a fair coin?
And this gets us to some basic rules of probability:

o if successive events are independent, then we multiply the probability

o if events are not independent, then the probability adds

e do we sample without replacement, i.e., an object can only be used once?

o do we sample with replacement, i.e., an object gets placed “back in the deck” and can be used again and again?

Combinations and Permutations
Combinations ignore the order of the events; permutations are ordered combinations. For replacement, the formula for
permutations is simply n"
In the case of the ten “Heads,” in ten successive trials, the probability is 1/2 “ten times” or (%)10 =0.0009766 (in R, just type
0.5M0 or (1/2)/M10 atthe R prompt).
Examples of permutations in biology include:
o Given the four nucleotide bases of DNA, adenine (A), cytosine (C), guanine (G), and thymine (T), how many codons are
possible?
4% =64
where the three (3) refers to the codon, a three-nucleotide genetic code. Codons are trinucleotide sequences of DNA or RNA

that correspond to a specific amino acid.
o How often do we expect to find by chance the heptamer (i.e., seven-base) consensus TATA box sequence, TATAWAW (W can

be either Adenine or Thymine, per Standard IUB/TUPAC nucleic acid code)?

4" = 16384
Thus, we would expect at random to find TATA box sequences every 16,384 bases along the genome. For the human genome of
3.3 billion bases, then we would expect at random more than 200,000 TATA box consensus sequences.

Another way to put this is to ask how many combinations of ten tosses gets us ten “Heads” then weigh this against all possible
outcomes of tossing a coin ten times — how many times do we get zero Heads? Two “Heads”? And so on. This introduces the
combinatorial.

n!

C(n,r)=

(n—r)lr!
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where n is the number of choices (the list of events) and r is how many times you choose or trials. The exclamation point is called
the factorial. The factorial instructs you to multiply the number over and over again, “down to one.” For example, if the number is
10, then

10!=10-9-8-7-6-5-4-3-2-1

InR, justtype factorial(10) atthe R prompt.

factorial(10)
[1] 3628800

An example

Consider an Extrasensory Perception, ESP, experiment. We place photocopies of two kinds of cards, “Queen” and “King,” into ten
envelopes, one card per envelope (Fig. 6.3.2). Thus, an envelope either contains a “Queen” or a “King.”

Figure 6.3.2: Playing cards with images commemorating 150th anniversary of Charles Darwin’s Origin of Species. (Design John
R. C. White, Master of the Worshipful Company of Makers of Playing Cards 2008 to 2009.)

We shuffle the envelopes containing the cards and volunteers guess the contents of the envelopes, one at a time. We score the
correct choices after all envelopes had been guessed. (It’s really hard to set these kinds of experiments up to rule out subtle cues
and other kinds of experimental error! Diaconis 1978, Pigliucci 2010, pp. 77-83.) By chance alone we would expect 50% correct
(e.g., one way to game the system would have been for the volunteer simply to guess “Queen” every time; since we had placed five
“Queen” cards the volunteer would end up being right 50%).

What are the possible combinations?

Let’s start with one correct; the volunteer could be right by guessing the first one correctly, then getting the next nine wrong, or
equivalently, the first choice was wrong, but the second was correct followed by eight incorrect choices, and so on.

We need math!
Letn=10andr=1.
Using the formula above, we have

10!

or ten ways to get one out of ten correct. This is the number of combinations without replacement.

In R, we can use the function choose( ) ,included in the base install of R. At the R prompt type

I choose(10,1)
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and R returns

I [1] 10

For permutations, use choose(n, k)*factorial(k) .

To get permutations for larger sets, you’ll need to write a function or take advantage of functions written by others and available in

packages for R. See gtools package, which contains programming tools for R. There are several packages that can be used to

expand capabilities of working with permutations and combinations. For example, install a package and library called
combinat andthenrunthe combn() function, together withthe dim( ) function, which will return

dim(combn(10,1))[2]
[1] 10

R explained

Inthe combn() the “10” is the total number of envelopes and the “1” is how many correct guesses. We also used the dim()

function to give us the size of the result. The dim() function returns two numbers, the number of rows and the number of

columns — combn( ) returns a matrix and so dim( ) saves you the trouble of counting the outcomes — the “[2]” tells R to

return the total number of columns in the matrix created by combn( ) . Here’s the output from combn() , but without the
dim() function

combn(10,1)

(11 [,2] [,3]1 [,4] [,5]1 [,61 [,7] [,8] [,9] [,10]
[1,] i 2 3 4 5 6 7 8 9 10

in order, we see that there is one case where the success came the first time [1,1], another case where success came on the second
try [1,2] andsoon.

We can write a simple function to return the combinations

for (many in seq(0, 10, by = 1)){
print(choose (10, many))

an inelegant function, but it works well enough, returning

[1] 1

[1] 10
[1] 45
[1] 120
[1] 210
[1] 252
[1] 210
[1] 120
[1] 45
[1] 10
[1] 1

Note that there’s only one way to get zero correct, only one way to get all ten correct.
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For completion, what would be the permutations? Use the permn() function (same combinat library) along with
length() function to get the number of permutations

length(permn(10))
[1] 3628800

Continue the example

Back to our ESP problem. If we continue with the formula, how many ways to get two correct? Three correct? And so on, we can

show the results in a bar graph (Fig. 6.3.3).
o o _-I I-_
01 2 3 4 5 6 7 8 9 10

MNumber correct

150 200
| 1

Count

50

Figure 6.3.3: Bar chart of the combinations of correct guesses out of 10 attempts (graph was presented in Chapter 4.1).

The graph in Figure 6.3.3 was made in R:

Combos <- seq(0,10, by=1)
HowMany <- c(1,10,45,120,210,252,210,120,45,10,1)
barplot(HowMany, names.arg = Combos, xlab = "Number correct", ylab = "Count",col = "d

If you recall, we had two students score eight out of ten. Is this evidence of “ESP?” It certainly seems pretty good, but how rare is
this to score 8 out of 10? The total number of outcomes was

1+10+4+45+---+45+10+1=1024 ways
Eight out of ten could be achieved in 45 different ways, so

45
To24 — 0.043945

So, eight out of ten is pretty unlikely! Is it evidence for ESP powers in our Biostatistics class? In fact, at the traditional Type I error
rate of 5% used in biology and other sciences to evaluate inferences from statistical tests (See Chapter 8), we would say that this
observation was statistically significant. Given that this would be an extraordinary claim, this should give you an important clue
that statistical significance is not the same thing as evidence for the claim of ESP. In other words, Is the result biologically
significant? Probably not, but I’ll keep my eyes on you, just in case.

Conclusions

Combinations or permutations?

Combinations refers to groups of n things taken & times without repetition. Note that order does not matter, just the combination of
things. Permutations, on the other hand, specifically relate the number of ways a particular arrangement can show up.
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Questions
1. Calculate the combinations, from zero correct to ten correct, from our ESP experiment, i.e., confirm the numbers reported in
Figure 6.3.3.
2. Consider our ESP tests based on guessing cards. Let’s say that one subject repeatedly reports correct guesses at a rate greater
than expected by chance. Why or why not should we view this as evidence the person may have extrasensory perception?
3. Consider a common DNA triplet repeat, the three letter CAG.
1. How many permutations are there for this triplet (word)?
2. How many combinations are there for this triplet (word)?
4. We call them combination locks, but given the definition of combination, is that the correct use of the term? Explain (and for
those of you who insist on searching for “the answer,” cite your sources).

This page titled 6.3: Combinations and permutations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by

Michael R Dohm via source content that was edited to the style and standards of the LibreTexts platform.
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