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7.3: Comparing Means

Comparing a Mean to a Target Value

A straightforward question we could ask is whether a specific mean is higher or lower than a target value. For example, let’s
consider testing if the average diastolic blood pressure in adults from the NHANES dataset is greater than 80, a threshold for
hypertension set by the American College of Cardiology. Imagine we randomly selected 250 adults from the dataset to explore this.

We can answer this question using Student’s t-test, which you have already encountered earlier in the book. We will refer to the
mean as x and the hypothesised population mean as ... The t-test for a single mean is:

one sample ¢ test = ?XT:{-}
where SEM (as you may remember from the chapter on sampling) can be calculated by using the following formula: sondord devistion,
In essence, the t =-statistic asks how large the deviation of the sample mean from the hypothesised quantity is with respect to the
sampling variability of the mean.

To conduct one sample’s t-test in jamovi, go to Analyses > Exploration > but BPDiaAve into the dependent variables. Set the test
value at 80. As you learned from the previous chapters, we also want jamovi to give us effect size and descriptives.
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Figure 7.3.1. How to conduct one sample t-test in jamovi

This information reveals that the mean diastolic blood pressure in the dataset (70) is significantly lower than 80. Our test to check if
it’s above 80 is not even close to being statistically significant. It’s important to remember that a large p-value doesn’t offer
evidence in support of the null hypothesis because we initially assumed the null hypothesis to be true.
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Comparing Two Means

A more common statistical question often revolves around whether there’s a difference between the averages of two different
groups. For example, let’s say we want to find out if regular marijuana smokers consume more alcohol during the day than non-
regular smokers. We have the following hypothesis — smoking marijuana is linked to increased alcohol consumption (H,).

We can explore this question using the NHANES dataset. We take a sample of 5% from the dataset and investigate if the amount of
alcohol consumed per year is linked to regular marijuana use. In Figure 7.3.2, you can see these data visually presented with a box
plot. It’s evident that those who regularly use marijuana are also more likely to consume alcohol during the day.
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Figure 7.2.2. Box plot showing the data for the amount of alcohol drank during the day by regular marijuana use

We can also conduct the Student’s t-test to assess differences between two groups of independent observations, as we discussed in
an earlier chapter. As a recap, we assess the mean differences using the t-distribution. To calculate the degrees of freedom for this
test, we will use the Welch test given that the group sample size differs (e.g., non-regular smokers, n = 79 versus regular smokers, n
= 28). We also use the Welch test if our data violates the assumption of homogeneity of variances. We can check this in jamovi by
selecting the “Homogeneity test” under Assumption Checks.

To perform the independent t-test in jamovi, follow these steps: Go to Analyses > Exploration > Place “AlcoholDay” in the
dependent variables and “RegularMarij” in the Grouping Variable. As you’ve learned from previous chapters, we also want jamovi
to provide us with effect size and descriptives. In this particular scenario, we began with a specific hypothesis that smoking
marijuana is linked to increased alcohol consumption, so we’ll use a one-tailed test. Under Hypothesis, select “Group 1 < Group
2,” taking into account that the grouping in the “RegularMarij” variable is: 1 = No | 2 = Yes.
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Figure 7.3.3 How to conduct independent samples t-test in jamovi

Here are the results from jamovi. We observe a statistically significant difference between the groups, as we hypothesised.
Individuals who smoke marijuana are more likely to consume larger amounts of alcohol during the day.
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Independent Samples T-Test

Independent Samples T-Test

Statistic df p Mean difference  SE difference Effect Size
AlcoholDay  Student's t -2.662 105 0.004 -1.49 0.561 Cohen's d -0.585
Welch's t -2.45 413 0.009 -1.49 0.610 Cohen's d -0.560

Note. Ha Wyg < Hyes
2 Levene's test is significant (p < .05), suggesting a violation of the assumption of equal variances
[0]

Group Descriptives

Group N Mean Median SD SE
AlcoholDay No 79 272 2.00 2.42 0.273
Yes 28 4.21 3.00 2.88 0.545
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Figure 7.3.4. Results for the independent samples t-test in jamovi

Non-Parametric Independent t-Test: Mann-Whitney U

The t-test relies on the assumption that the data comes from populations with normal distributions. When dealing with small
sample sizes, it can be challenging to rigorously assess this assumption. Instead of assuming that our data was sampled from
normal populations, we can use the non-parametric Mann-Whitney test to assess differences between the two groups. Most
statistical software can provide this test.

In jamovi, you can find this option within the independent samples t-test window. To check if our data violates the normality
assumption, click on the “Normality test” under Assumption Checks. After performing the Shapiro-Wilk test, it appears that our
data indeed violates the normality assumption, as indicated by the significant p-value.

Using the Mann-Whitney U test, we obtained a p-value of 0.003, which remains statistically significant.
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Independent Samples T-Test

Independent Samples T-Test

Statistic df p Mean difference  SE difference Effect Size

AlcoholDay  Student's t -2.662 105 0.004 -1.49 0.561 Cohen's d -0.585
Welch's t -2.45 41.3 0.009 -1.49 0.610 Cohen's d -0.560

729 0.003 -1.00 Rank biserial correlation 0.341
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@ Levene's test is significant (p < .05), suggesting a violation of the assumption of equal variances
31

Assumptions

Normality Test (Shapiro-Wilk)
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Figure 7.3.5. Results for Mann-Whitney U test and normality assumption testing in jamovi

The t-Test as a Linear Model
The t-test is often presented as a specialised tool for comparing means, but it can also be viewed as an application of the GLM. In
this case, the model would look like this:

Alcohol DayConsumption = 3 x Marijuanaeeguiar + 50

Dummy coding
Since regular use of marijuana is a binary variable, we need to assign dummy coding to the levels of the variable. We will use 0 for
non-regular users and 1 for regular users. We do this by going into double-clicking the variable you want to dummy code. This will

open the data variable tab and type 0 for those who said no, and 1 for those who said yes.

Regularharij
Measure type & [Nominal  «| Levels
Datatype [Tamt  «] o

Missng values .

7.3.6. Dummy coding in jamovi

In that case, B1 is simply the difference in means between the two groups, and 0 is the mean for the group that was coded as zero.
We can fit this model using the general linear model function in our statistical software. To do this in jamovi, you have to install the
module named gamlj. As you can see in Figure 7.3.7 below, it will give the same t statistic above (without the Welch correction).
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General Linear Model

Model Info
Info
Estimate Linear model fit by OLS
Call AlcoholDay ~ 1 + RegularMari
R-squared 0.0632

Ad). R-squared  0.0543

Model Results

ANOVA Omnibus tests

ss df F p e
Model 461 1 7.09 0009 0063
RegularMari 461 1 7.09 0.009 0063
Residuals 6826 105
Total 7287 106

Fixed Effects Parameter Estimates

95% Confidence Interval

Names Effect Estimate SE Lower Upper B df t P
(Intercept) (Intercept) 347 0.280 2912 4.02 0000 105 1237 <.001
RegularMariji  1-0 149 0.561 0.381 260 0569 105 266 0009
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Figure 7.3.7. Results of the General Linear Model in jamovi

Comparing Paired Observations

In experimental research, we often use within-subjects designs, in which we compare the same person on multiple measurements.
The measurements that come from this kind of design are often referred to as repeated measures. For example, in the NHANES
dataset blood pressure was measured three times. Let’s say that we are interested in testing whether there is a difference in mean
systolic blood pressure between the first and second measurements across individuals in our sample.
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Figure 7.3.8. Left: Violin plot of systolic blood pressure on first and second recording, from NHANES. Right: Same violin plot

with lines connecting the two data points for each individual
We see that there does not seem to be much of a difference in mean blood pressure (about one point) between the first and second
measurements. First let’s test for a difference using an independent samples t-test, which ignores the fact that pairs of data points
come from the the same individuals.

This analysis shows no significant difference. However, this analysis is inappropriate since it assumes that the two samples are
independent, when in fact they are not, since the data come from the same individuals. We can plot the data with a line for each
individual to show this (see the right panel in Figure 7.3.8).

In this analysis, what we really care about is whether the blood pressure for each person changed in a systematic way between the
two measurements, a common strategy is to use a paired t-test, which is equivalent to a one-sample t-test for whether the mean
difference between the measurements within each person is zero. We can compute this using our statistical software, telling it that
the data points are paired. With this analysis, we see that there is in fact a significant difference between the two measurements.

Comparing More than Two Means

Often we want to compare more than two means to determine whether any of them differ from one another. Let’s say that we are
analysing data from a clinical trial to see the efficacy of drugs in improving mood. In the study, volunteers are randomized to one
of three conditions: anxifree, joyzepam or placebo. Our hypothesis is to see whether there is a significant difference in mood
improvement between these three conditions. For this scenario, let’s use sample data from jamovi’s data library titled “Clinical
Trial”. Let’s create a box plot for each drug with mood gain as our outcome variable (see Figure 7.3.9):

L

mood.gain

placebo anxifree pyzepam

drug

Figure 7.3.9. Box plots showing mood gain for three different groups in our clinical trial

Just from looking at the box plots above, there did seem to be differences between the groups. However, let’s see if these
differences are statistically significant.
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M Smodel = z
MServor = Jfeezen — S5preer
Where k is the number group means we have computed.

With ANOVA, we want to test whether the variance accounted for by the model is greater than what we would expect by chance,
under the null hypothesis of no differences between means. Instead of the t-distribution, we use another theoretical distribution that
describes how ratios of sums of squares are distributed under the null hypothesis: The F distribution (see Figure 7.3.10). This
distribution has two degrees of freedom, which correspond to the degrees of freedom for the numerator (which in this case is the
model), and the denominator (which in this case is the error).
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Figure 7.3.10. F distributions under the null hypothesis, for different values of degrees of freedom. Image by Poldrack, under
CC BY-NC 4.0.

Figure 7.3.11. Results for ANOVA in jamovi

Remember that the hypothesis that we started out wanting to test was whether there was any difference between any of the
conditions; we refer to this as an omnibus hypothesis test, and it is the test that is provided by the F statistic. In this case, we see
that the F test is significant (p-value is < 0.001), consistent with our impression that there did seem to be differences between the
groups. However, the output does not specifically inform us which of the drugs significantly differs from the placebo and by how
much. If we believe that one of the drugs is not significantly different from the placebo, would it not make more sense to opt for the
placebo?

We can ask jamovi to provide more tests for us. Post-hoc tests can be conducted to delve deeper into the differences between each
drug and the placebo. These tests can offer a more granular understanding of the comparative effects. By utilising additional post-
hoc tests in jamovi, we can enhance the precision of our analysis and make more informed decisions regarding the potential
efficacy of each drug compared to the placebo.

Why not Multiple t-Tests?
Let’s use the example we have above: anxifree, joyzepam and placebo. We might think of doing three separate t-tests: comparing

anxifree to joyzepam, anxifree to placebo and joyzepam to placebo.

But, we don’t do multiple t-tests because it increases the chance of making a Type I error. If T did three separate t-tests, set my
alpha (Type I error rate) at 5% for each, and knew for sure there’s actually no effect, each test has a 5% chance of making a Type I
error. But since we’re doing three tests, our overall error rate becomes 14.3%, not the 5% we set alpha at.

With more tests, it gets riskier:

o 1test: 5%

o 2 tests: 9.8%
o 3tests: 14.3%
o 4tests: 18.6%
o 5Stests: 22.6%
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e 10 tests: 40.1%
o 20 tests: 64.1%

So, doing 10 tests could have a 40% chance of showing a false positive (saying there’s an effect when there isn’t). To avoid this, we
use one-way ANOVA as one test to see if there’s a difference overall. We can also do things to control our error rate. Check out this

xked comic for a good visual explanation.

Post-Hoc and Planned Comparisons

Post-Hoc Comparisons

Sometimes, we want to know not just if there’s a difference overall (which the F-statistic tells us), but where exactly the differences
are between groups. To figure that out, we use planned contrasts when we have specific ideas we want to test or post-hoc
comparisons when we don’t have specific ideas. It’s important to mention that you only do these comparisons if the ombinus F-
statistic is statistically significant. There’s no point in looking at differences between groups if the test says there are no

differences between the groups!
Here are some details about post-hoc comparisons:

e No correction: This doesn’t correct for errors at all, like doing separate t-tests for each group. It’s not recommended because it
can mess up our error rate (as discussed above).

o Tukey: This is a common one. It controls errors well but isn’t as strict as Bonferroni. The p-values are smaller than unadjusted
but not as big as Bonferroni.

o Scheffe: It’s complicated, and I don’t use it much.

o Bonferroni: This is super conservative, good if you don’t have many comparisons or really want to control errors. It multiplies
your p-value by the number of comparisons.

e Holm: Like Bonferroni but adjusts p-values sequentially, making it less strict.

Remember, if you’re doing Welch’s F-test (unequal variances) or Kruskal-Wallis test (non-normal distribution), use the Games-
Howell or DSCF pairwise comparisons, respectively.

Planned Comparisons

If you already have specific ideas about differences between groups before analyzing your data, you’d use planned contrasts. You
can find these in the ANOVA setup as a drop-down menu. Just a heads up, you can’t do planned contrasts with Welch’s F-test or
Kruskal-Wallis test.

Even though there are six contrasts in jamovi, you usually only do one. Here they are for explanation:

o Deviation: Compares each category (except the first) to the overall effect. The order is alphabetical or numerical. Placebo is
considered the first category (because I have manually put this in the first level).

o Simple: Compares each category to the first. The order is alphabetical or numerical. Placebo is considered the first.

o Difference: Each category (except the first) is compared to the mean effect of all previous categories.

o Helmert: Each category (except the last) is compared to the mean effect of all subsequent categories.

¢ Repeated: Each category is compared to the last.

« Polynomial: Tests trends in the data. It looks at the n-1™ degree based on the number of groups. For example, with 3 groups, it
tests linear (1) and quadratic (2) trends. If there were 5 groups, it would test linear (1), quadratic (2), cubic (3), and quartic (4)
trends. Note: Your factor levels must be ordinal for a polynomial contrast to make sense.

Running ANOVA as a GLM

We can also just run ANOVA as a GLM using the methods above. Using GLM, jamovi will also provide the ANOVA omnibus tests
and you will see that the F test is identical to the ANOVA method. GLM will also provide us with the result of a t-test for each of
the conditions, which basically tells us whether each of the conditions separately differs from placebo; it appears that Drug 2
(joyzepam) does whereas Drug 1 (anxifree) does not. However, keep in mind that if we wanted to interpret these tests, we would
need to correct the p-values to account for the fact that we have done multiple hypothesis tests (otherwise, we are inflating our
€ITor).
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General Linear Model

Model Info
Info
Estimate Linear model fit by OLS
Cal mood.gain ~ 1 + drug
R-squared 0

Adj. R-squared  0.67

El

Model Results

ANOVA Omnibus tests

Ss df F p
Model 345 2 1861 <.001
drug 245 2 18.61 <.001
Residuals 139 15
Total 485 17

Fixed Effects Parameter Estimates

95% Confidence Interval

Names Effect Estimate SE Lower Upper B df t p
(Intercept)  (Intercept) 0.88 0.07 0.73 1.04 0.00 15 12.30 <.001
drugl 1-0 0.27 0.18 -01n 0.64 0.50 15 152 0.150
drug2 2-0 1.03 0.18 0.66 141 104 15 5.88 <.001

Figure 7.3.12. Results of the General Linear Model in jamovi

Chapter attribution
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