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6.5: Null Hypothesis Testing
In the first chapter, we discussed the three major goals of statistics: to describe, decide and predict. So far, we have talked about
how we can use statistics to describe. In the next few sections, we will introduce the ideas behind the use of statistics to make
decisions – in particular, decisions about whether a particular hypothesis is supported by the data.

The specific type of hypothesis testing that we will discuss is known (for reasons that will become clear) as null hypothesis
statistical testing (NHST). You would be very familiar with this concept if you ever read any scientific literature. In their
introductory psychology textbook, Gerrig et al. (2002)  referred to NHST as the “backbone of psychological research”. Thus,
learning how to use and interpret the results from hypothesis testing is essential to understanding the results from many fields of
research.

It is also important for you to know, however, that NHST is deeply flawed, and that many statisticians and researchers (including
myself) think that it has been the cause of serious problems in science. For more than 50 years, there have been calls to abandon
NHST in favour of other approaches (like those that we will discuss in the following chapters).

In words: There is no difference in BMI between people who do not engage in physical activity compared to those who do.

In words: There will be a difference in BMI between people who do not engage in physical activity compared to those who do.

A directional hypothesis, on the other hand, predicts which direction the difference would go. For example, we have strong prior
knowledge to predict that people who engage in physical activity should weigh less than those who do not, so we would propose
the following directional alternative hypothesis:

Figure 6.5.1 shows an example of such a sample, with BMI shown separately for active and inactive individuals, and Table 6.5.1.
shows summary statistics for each group.

Table 6.5.1. Summary of BMI data for active versus inactive individuals

Figure 6.5.1. Box plot of BMI data from a sample of adults from the NHANES dataset, split by whether they reported engaging in
regular physical activity

Step 4: Fit a Model to the Data and Compute a Test Statistic

[1]

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/48983?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/A_Contemporary_Approach_to_Research_and_Statistics_in_Psychology_(Somoray)/06%3A_Modelling_Variations/6.05%3A_Null_Hypothesis_Testing


6.5.2 https://stats.libretexts.org/@go/page/48983

Figure 6.5.2).

In your coin toss, you got 52 heads. Does that give you some doubts that maybe the coin is not fair after all? Well, maybe not
because the probability of getting 52 heads out of 100 flips is still quite high (see below). In fact, if we use a probability calculator,
the probability of getting at least 52 heads is 0.38 or 38% chance of success. 38% is quite close to 50% – so it could be just by
chance that we got 52 heads out of 100 tosses.

What if, in our 100 tosses, we got 66 heads instead? Maybe doubts are starting to form. Around 2 thirds of the tosses are coming up
as heads. If you can see that the 66 heads out of 100 tosses got you questioning the fairness of the coin (compared to the other
sample) – then congratulations, you have the right mindset to understand the intuition behind hypothesis testing!

 

Figure 6.5.2. Are the $1 coins head-biased? The right panel shows two different samples. The middle panel shows the critical
regions where we reject the null hypothesis when we have a specific direction for a hypothesis and the left panel shows the critical
regions if we have a non-directional hypothesis

Basically, when we conduct NHST, we are essentially testing if the result that we get is extreme enough. We then make a decision
that this result is not due to chance. With the example we provided above, the probability of getting at least 66 heads is 0.00089 –
in other words, there is only 0.089% chance that we will get 66 heads out of 100 tosses!

As researchers, we try to make it easy on ourselves by appointing a value that we use to decide whether our result is rare enough to
reject the null hypothesis. This is where critical values come in. Critical values are designated points in which we are happy to say
that the result is rare enough that it may not be due to chance. Critical values can either be on only one side of the probability
distribution (Figure 6.5.2 – middle panel) or on both sides of the probability distribution (Figure 6.5.2 – left panel).

Our hypothesis determines whether we use one side or two sides of the probability distribution (we call these one-tailed or two-
tailed tests). If we are asking if the coin is biased in general (i.e., we don’t know whether it is tail-biased or head-biased) then you
will use these two critical points. If our results fall beyond either side of the critical value region,  then we can reject the null
hypothesis. If we are asking if the coin is only head-biased (or tail-biased) then we will use the one-tailed test. If our results fall
beyond on our chosen side of the critical value region, then we can reject the null hypothesis.

Computing p-Values Using the t Distribution

Now, let’s go back to our BMI example and compute a p-value for our BMI example using the t distribution. First, we compute
the t statistic using the values from our sample that we calculated above, where we find that t = 2.38. The question that we then
want to ask is: What is the likelihood that we would find a t statistic of this size, if the true difference between groups is zero (i.e.
the directional null hypothesis)?

We can use the t distribution to determine this probability. According to jamovi, the probability value (or more commonly known
as p-value) of getting t = 2.38 with a df of 275.83 is 0.018. In other words, our p-value is 0.018. This tells us that our observed t
statistic value of 2.38 is relatively unlikely if the null hypothesis really is true.

The p-value provided in jamovi is usually set to non-directional hypothesis as a default (see under Hypothesis, the Group 1 =\=
Group 2 will be selected). If we want to use a directional hypothesis (in which we only look at one end of the null distribution),
then we click the option Group 1 > Group 2 or Group 1 < Group 2. What you choose will depend on what you have written for
your hypothesis.

In our data, group 1 was the physically non-active group and group 2 is the physically active group. If we used the one-tailed test
with Group 1 > Group 2, then we get a p-value of 0.009. Here, we see that the p value for the two-tailed test is twice as large as that
for the one-tailed test, which reflects the fact that an extreme value is less surprising since it could have occurred in either direction.

How do you choose whether to use a one-tailed versus a two-tailed test?
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The two-tailed test is always going to be more conservative, so it’s always a good bet to use that one unless you had a very strong
prior reason for using a one-tailed test. In that case, you should have written down the hypothesis before you ever looked at the
data. In Chapter 4, we discussed the idea of pre-registration of hypotheses, which formalises the idea of writing down your
hypotheses before you ever see the actual data. You should never make a decision about how to perform a hypothesis test once you
have looked at the data, as this can introduce serious bias into the results. 

Step 6: Assess the “Statistical Significance” of the Result

The next step is to determine whether the p-value that results from the previous step is small enough that we are willing to reject
the null hypothesis and conclude instead that the alternative is true. How much evidence do we require? This is one of the most
controversial questions in statistics, in part because it requires a subjective judgment – there is no “correct” answer.

Historically, the most common answer to this question has been that we should reject the null hypothesis if the p-value is less than
0.05. This comes from the writings of Ronald Fisher, who has been referred to as “the single most important figure in 20th-century
statistics” (Efron 1998):

If P is between .1 and .9 there is certainly no reason to suspect the hypothesis tested. If it
is below .02 it is strongly indicated that the hypothesis fails to account for the whole of the
facts. We shall not often be astray if we draw a conventional line at .05 … it is convenient
to draw the line at about the level at which we can say: Either there is something in the
treatment, or a coincidence has occurred such as does not occur more than once in twenty
trials. (Fisher, 1925)

However, Fisher never intended p < 0.05 to be a fixed rule:

no scientific worker has a fixed level of significance at which from year to year, and in all
circumstances, he rejects hypotheses; he rather gives his mind to each particular case in
the light of his evidence and his ideas. (Fisher, 1956)

Instead, it is likely that p < 0.05 became a ritual due to its simplicity – before computing, people had to rely on reading tables of p-
values. Since all tables had an entry for 0.05, it was easy to determine whether one’s statistic exceeded the value needed to reach
that level of significance.

The choice of statistical thresholds remains deeply controversial, and researchers have been proposing to change the default
threshold to be more conservative (e.g., 0.05 to 0.005), making it substantially more stringent and thus more difficult to reject the
null hypothesis. In large part, this move is due to growing concerns that the evidence obtained from a significant result at p < 0.05
is relatively weak.

Hypothesis Testing as Decision-Making: The Neyman-Pearson Approach

Whereas Fisher thought that the p-value could provide evidence regarding a specific hypothesis, the statisticians Jerzy Neyman and
Egon Pearson disagreed vehemently. Instead, they proposed that we think of hypothesis testing in terms of its error rate in the long
run:

no test based upon a theory of probability can by itself provide any valuable evidence of
the truth or falsehood of a hypothesis. But we may look at the purpose of tests from
another viewpoint. Without hoping to know whether each separate hypothesis is true or
false, we may search for rules to govern our behaviour with regard to them, in following
which we insure that, in the long run of experience, we shall not often be wrong. (Neyman
& Pearson 1933)

That is: We can’t know which specific decisions are right or wrong, but if we follow the rules, we can at least know how often our
decisions will be wrong in the long run.

To understand the decision making framework that Neyman and Pearson developed, we first need to discuss statistical decision
making in terms of the kinds of outcomes that can occur. There are two possible states of reality (H  is true or H  is false) and two
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possible decisions (reject H  or retain H ).

There are two ways in which we can make a correct decision:

We can reject H when it is false (in the language of signal detection theory, we call this a hit).
We can retain H  when it is true (somewhat confusingly in this context, this is called a correct rejection).

There are also two kinds of errors we can make:

We can reject H when it is actually true (we call this a false alarm, or Type I error).
We can retain H when it is actually false (we call this a miss, or Type II error).

Neyman and Pearson coined two terms to describe the probability of these two types of errors in the long run:

P(Type I error) = 
P(Type II error) = 

That is, if we set  to 0.05, then in the long run we should make a Type I error 5% of the time. Whereas it’s common to
set as 0.05, the standard value for an acceptable level of  is 0.2 – that is, we are willing to accept that 20% of the
time we will fail to detect a true effect when it truly exists. We will return to this later when we discuss statistical power, which is
the complement of Type II error.

What does a Significant Result Mean?

There is a great deal of confusion about what p-values actually mean (Gigerenzer, 2004).  Let’s say that we do an experiment
comparing the means between conditions, and we find a difference with a p-value of .05. There are a number of possible
interpretations that one might entertain.

Does it mean that the probability of the null hypothesis being true is 0.01?
No. Remember that in null hypothesis testing, the p-value is the probability of the data given the null hypothesis. For those who
think in formula, p-value is calculated as P(data|H ). It does not warrant conclusions about the probability of the null hypothesis
given the data – this suggestsP(H0|data).

Does it mean that the probability that you are making the wrong decision is 0.01?
No – this suggests P(H |data). But remember as above that p-values are probabilities of data under H – not the other way around.

Does it mean that if you ran the study again, you would obtain the same result 99% of the time?
No. The p-value is a statement about the likelihood of a particular dataset under the null; it does not allow us to make inferences
about the likelihood of future events such as replication.

Does it mean that you have found a practically important effect?
No. There is an essential distinction between statistical significance and practical significance. As an example, let’s say that we
performed a randomised controlled trial to examine the effect of a particular diet on body weight, and we find a statistically
significant effect at p<.05. What this doesn’t tell us is how much weight was actually lost, which we refer to as the effect size (to be
discussed in more detail later on. If we think about a study of weight loss, then we probably don’t think that the loss of one ounce
(i.e. the weight of a few potato chips) is practically significant. Let’s look at our ability to detect a significant difference of 1 ounce
as the sample size increases.

Figure 6.5.3 shows how the proportion of significant results increases as the sample size increases, such that with a very large
sample size (about 262,000 total subjects), we will find a significant result in more than 90% of studies when there is a 1 ounce
difference in weight loss between the diets. While these are statistically significant, most physicians would not consider a weight
loss of one ounce to be practically or clinically significant. We will explore this relationship in more detail when we return to the
concept of statistical power in the next few section, but it should already be clear from this example that statistical significance is
not necessarily indicative of practical significance.
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Figure 6.5.3. The proportion of significant results for a very small change (1 ounce, which is about .001 standard deviations) as a
function of sample size. Image by Poldrack, licensed under CC BY-NC 4.0

In summary, being able to reject the null hypothesis is indirect evidence of the experimental or alternative hypothesis. However,
rejecting the null hypothesis

DOES NOT say whether the scientific conclusion is correct.
DOES NOT tell us anything about the mechanism behind any differences or the relationship (e.g., does not tell us WHY there’s
a difference in BMI compared with physically active and physically inactive adults).
DOES NOT tell us whether the study is well designed or well controlled.
DOES NOT PROVE ANYTHING.

Chapter attribution

This chapter contains material taken and adapted from Statistical thinking for the 21st Century by Russell A. Poldrack, used under
a CC BY-NC 4.0 licence.

Screenshots from the jamovi program. The jamovi project (V 2.2.5) is used under the AGPL3 licence.
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