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5.2: **The Normal Distribution as a Limit of Binomial Distributions
The results of the derivation given here may be used to understand the origin of the Normal Distribution as a limit of Binomial
Distributions . A mathematical “trick” using logarithmic differentiation will be used.

First, recall the definition of the Binomial Distribution  as

where  is the probability of success,  is probability of failure and

is the binomial coefficient that counts the number of ways to select  items from  items without caring about the order of
selection. Here  is a discrete variable, , with .

The trick is to find a way to deal with the fact that  (  is a discrete variable) for the Binomial Distribution and  (  is a
continuous variable) for the Normal Distribution  In other words as we let  we need to come up with a way to let 
shrink  so that a probability density limit (the Normal Distribution) is reached from a sequence of probability distributions
(modified Binomial Distributions). So let  represent the Normal Distribution with mean  and variance . We
will show how  where each Binomial Distribution  also has mean  and variance .

The heart of the trick is to notice  that

This is perfectly true for the density . The trick is to substitute the distribution  for the density  in the RHS of
Equation (5.4) to get :

because . The trick is to now pretend that  is a continuous function defined at all ; we just don’t know what its
values should be for non-integer . With such a “continuation” of  we can write

Equation (5.8) has no limit; it blows up as . We need to transform  in such a way to gain control on  (getting it to
shrink as ) and to get something that converges. To do that we introduce  and a new variable 

. With this transformation of variables, the chain rule gives

and the RHS of Equation (5.8) becomes, using 
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Using Equation (5.9), for the LHS, and Equation (5.14), for the RHS, Equation (5.8) becomes

where  means terms that will go to zero as , and we have used the relation  to get
Equation (5.16}) and  to go from Equation (5.17) to Equation (5.18). Dividing both sides of Equation (5.19) by  leaves

Our transformation, with its , has given us the exact control we need to keep the limit from disappearing or blowing up.
Integrating Equation (5.20) gives

where  is the a constant of integration. Switching back to the  variable

To evaluate the constant of integration, , we impose  because we want  to be a probability distribution. So
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so

and

which is the Normal Distribution that approximates Binomial Distributions with the same mean and variance as  gets large.

Figure 5.1 : The transformation  effectively shrinks the  of the Binomial Distribution with mean  and

variance  by pulling a continuous version  back to the constant Normal Distribution . Another way of
thinking about it is that the transformation  takes the fixed Normal Distribution  to the Normal Distribution 

 that provides a better and better approximation of  as .

You may be wondering why that transformation  worked because it seems to have been pulled from the air.

According to Lindsay & Margenau, it was Laplace who first used this transformation and derivation in 1812. What this
transformation does is pull the Binomial Distribution  back to have a mean of zero (by subtracting ) which keeps 
from running off to infinity and, more importantly, allows us to define a function  with  that has a constant variance of 

 that we can match to  when we transform back to  at each , see Figure 5.1. Looking at it the other way around, the
Normal Distribution   with  is an approximation for Binomial Distribution  that “asymptotically”
approaches  as .

This is not the only way to form a probability density limit from a sequence of Binomial distributions. It is one that gives a good
approximation of the Binomial Distribution when  is fairly small if the term  in Equation (5.18) becomes small quickly. If  is
very small, this does not happen and another limit of Binomial Distributions that leads to the Poisson Distribution is more
appropriate. When  and  are close to 0.5 or more generally when  and  then the Normal approximation is a good
one. Either way, the density limit is a mathematical idealization, a convenience really, that is based on a discrete probability
distribution that just summarizes the result of counting outcomes. Counting gives the foundation for probability theory.

1. The formula for the Binomial Distribution was apparently derived by Newton according to: Lindsay RB, Margenau.
Foundations of Physics. Dover, New York, 1957 (originally published 1936). For that claim, Lindsay & Margenau quote: von
Mises R. Probability, Statistics, and Truth. Macmillan, New York, 1939 (originally published 1928). The derivation of the
Normal Distribution presented here largely follows that given in Lindsay & Margenau's book. ↵

2. In class we denoted the Binomial distribution as . Here we use  to avoid using too many P's and p's.
↵

3. Remember that the Normal Distribution is technically a probability density but we slur the use of the word distribution between
probability distribution (discrete ) and probability density (continuous ) like everyone else. ↵

4.  for the Binomial Distribution. ↵
5. Remember that  and use the chain rule to notice this. ↵
6. You can probably imagine many ways to continue the Binomial Distribution from  to . It doesn't matter which one

you pick as long as the behaviour of your new function is not too crazy between the integers; that is,  should
exist at all . ↵

7. Our symbols here are not mathematically clean; we should write something like  instead of  or  composed with 
 at , , instead of . But to emphasize the intuition we use . In clean symbols, the function 
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asymptotically approaches  where . ↵
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