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7: Analysis of Bivariate Quantitative Data
For the past three chapters you have been learning about making inferences for univariate data. For each research question that
could be asked, only one random variable was needed for the answer. That random variable could be either categorical or
quantitative. In some cases, the same random variable could be sampled and compared for two different populations, but that still
makes it univariate data. In this chapter, we will explore bivariate quantitative data. This means that for each unit in our sample,
two quantitative variables will be determined. The purpose of collecting two quantitative variables is to determine if there is a
relationship between them.

The last time the analysis of two quantitative variables was discussed was in Chapter 4 when you learned to make a scatter plot and
find the correlation. At the time, it was emphasized that even if a correlation exists, that fact alone is insufficient to prove causation.
There are a variety of possible explanations that could be provided for an observed correlation. These were listed in Chapter 4 and
provided again here.

1. Changing the x variable will cause a change in the y variable
2. Changing the y variable will cause a change in the x variable
3. A feedback loop may exist in which a change in the x variable leads to a change in the y variable which leads to another change

in the x variable, etc.
4. The changes in both variables are determined by a third variable
5. The changes in both variables are coincidental.
6. The correlation is the result of outliers, without which there would not be significant correlation.
7. The correlation is the result of confounding variables.

Causation is easier to prove with a manipulative experiment than an observational experiment. In a manipulative experiment, the
researcher will randomly assign subjects to different groups, thereby diminishing any possible effect from confounding variables.
In observational experiments, confounding variables cannot be distributed equitably throughout the population being studied.
Manipulative experiments cannot always be done because of ethical reasons. For example, the earth is currently undergoing an
observational experiment in which the explanatory variable is the amount of fossil fuels being converted to carbon dioxide and the
response variable is the mean global temperature. It would have been considered unethical if a scientist had proposed in the 1800s
that we should burn as many fossil fuels as possible to see how it affects the global temperature. Likewise, experiments that would
force someone to smoke, text while driving, or do other hazardous actions would not be considered ethical and so correlations must
be sought using observational experiments.

There are several reasons why it is appropriate to collect and analyze bivariate data. One such reason is that the dependent or
response variable is of greater interest but the independent or explanatory variable is easier to measure. Therefore, if there is a
strong relationship between the explanatory and response variable, that relationship can be used to calculate the response variable
using data from the explanatory variable. For example, a physician would really like to know the degree to which a patient’s
coronary arteries are blocked, but blood pressure is easier data to obtain. Therefore, since there is a strong relationship between
blood pressure and the degree to which arteries are blocked, then blood pressure can be used as a predictive tool.

Another reason for collecting and analyzing bivariate data is to establish norms for a population. As an example, infants are both
weighed and measured at birth and there should be a correlation between their weight and length (height?). A baby that is
substantially underweight compared to babies of the same length would raise concerns for the doctor.

In order to use the methods described in this chapter, the data must be independent, quantitative, continuous, and have a bivariate
normal distribution. The use of discrete quantitative data exceeds the scope of this chapter. Independence means that the magnitude
of one data value does not affect the magnitude of another data value. This is often violated when time series data are used. For
example, annual GDP (gross domestic product) data should not be used as one of the random variables for bivariate data analysis
because the size of the economy in one year has a tremendous influence on the size of it the next year. This is shown in the two
graphs below. The graph on the left is a time series graph of the actual GDP for the US. The graph on the right is a scatter plot that
uses the GDP for the US as the x variable and the GDP for the US one year later (lag 1) for the y value. The fact that these points
are in such a straight line indicates that the data are not independent. Consequently, this data should not be used in the type of the
analyses that will be discussed in this chapter.
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A bivariate normal distribution is one in which y values are normally distributed for each x value and x values are normally
distributed for each y value. If this could be graphed in three dimensions, the surface would look like a mountain with a rounded
peak.

We will now return to the example in chapter 4 in which the relationship between the wealth gap, as measured by the Gini
Coefficient, and poverty were explored. Life can be more difficult for those in poverty and certainly the influence they can have in
the country is far more limited than those who are affluent. Since people in poverty must channel their energies into survival, they
have less time and energy to put towards things that would benefit humanity as a whole. Therefore, it is in the interest of all people
to find a way to reduce poverty and thereby increase the number of people who can help the world improve.

There are a lot of possible variables that could contribute to poverty. A partial list is shown below. Not all of these are quantitative
variables and some can be difficult to measure, but they can still have an impact on poverty levels

1. Education
2. Parent’s income level
3. Community’s income level
4. Job availability
5. Mental Health
6. Knowledge
7. Motivation and determination
8. Physically disabilities or illness
9. Wealth gap

10. Race/ethnicity/immigration status/gender
11. Percent of population that is employed

In Chapter 4, only the relationship between wealth gap and poverty level was explored. Data was gathered from seven states to
determine if there is a correlation between these two variables. The scatter plot is reproduced below. The correlation is -0.65.
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As a reminder, correlation is a number between -1 and 1. The population correlation is represented with the Greek letter , while
the sample correlation coefficient is represented with the letter . A correlation of 0 indicates no correlation, whereas a correlation
of 1 or -1 indicates a perfect correlation. The question is whether the underlying population has a significant linear relationship.
The evidence for this comes from the sample. The hypotheses that are typically tested are:

 

This is a two-tailed test for a non-directional alternative hypothesis. A significant result indicates only that the correlation is not 0,
it does not indicate the direction of the correlation.

The logic behind this hypothesis test is based on the assumption the null hypothesis is true which means there is no correlation in
the population. An example is shown in the scatter plot on the left. From this distribution, the probability of getting the sample data
(shown in solid circles in the graph at the right), or more extreme data (forming a straighter line), is calculated.

The test used to determine if the correlation is significant is a t test. The formula is:

There are n - 2 degrees of freedom.

This can be demonstrated with the example of Gini coefficients and poverty rates as provided in Chapter 4 and using a level of
significance of 0.05. The correlation is -0.650. The sample size is 7, so there are 5 degrees of freedom. After substituting into the

test statistic, , the value of the test statistic is -1.91. Based on the t-table with 5 degrees of freedom, the two-
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sided p-value is greater than 0.10 (actual 0.1140). Consequently, there is not a significant correlation between Gini coefficient and
poverty rates.

Another explanatory variable that can be investigated for its correlation with poverty rates is the employment-population ratio
(percent). This is the percent of the population that is employed at least one hour in the month

.

The correlation for this data is -0.6445,  = -2.80 and  = 0.0174. Notice at the 0.05 level of significance, this correlation is
significant. Before exploring the meaning of a significant correlation, compare the results of the correlation between Gini
Coefficient and poverty rate which was -0.650 and the results of the correlation between Employment-Population Ratio and
poverty rates which is -0.6445. The former correlation was not significant while the later was significant even though it is less than
the former. This is a good example of why the knowledge of a correlation coefficient is not sufficient information to determine if
the correlation is significant. The other factor that influences the determination of significance is the sample size. The Employment-
Population Ratio/poverty rates data was determined from a larger sample size (13 compared with 7). Sample size plays an
important role in determining if the alternative is supported. With very large samples, very small sample correlations can be shown
to be significant. The question is whether significant corresponds with important.

The effect of sample size on possible correlations is shown in the four distributions below. These distributions were created by
starting with a population that had a correlation of .10,000 samples of size 5,15,35, and 300 were drawn from this
population, with replacement.

t p

ρ = 0.000
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Look carefully at the x-axis scales and the heights of the bars. Values near the middle of the graphs are likely values while values
on the far left and right of the graph are unlikely values which, when testing a hypothesis, would possibly lead to a significant
conclusion. With small sample sizes, the magnitude of the correlation must be very large to conclude there is significant
correlation. As the sample size increases, the magnitude of the correlation can be much smaller to conclude there is significant
correlation. The critical values for each of these are shown in the table below and are based on a two-tailed test with a level of
significance of 5%.

n 5 15 35 300

t 2.776 2.145 2.032 1.968

|r| 0.848 0.511 0.334 0.113

In the histogram in the bottom right in which the sample size was 300, a correlation that exceeds 0.113 would lead to a conclusion
of significant correlation, yet there is the question of whether a correlation that small is very meaningful, even if it is significant. It
might be meaningful or it might not. The researcher must determine that for each situation.

Returning to the analysis of Gini coefficients and poverty rates, since there was not a significant correlation between these two
variables, then there is no point in trying to use Gini Coefficients to estimate poverty rates or focusing on changes to the wealth gap
as a way of improving the poverty rate. There might be other reasons for wanting to change the wealth gap, but its impact on
poverty rates does not appear to be one of the reasons. On the other hand, because there is a significant correlation between
Employment-Population Ratio and poverty rates, then it is reasonable to use the relationship between them as a model for
estimating poverty rates for specific Employment-Population Ratios. If this relationship can be determined to be causal, then it
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justifies improving the employment-population ratio to help reduce poverty rates. In other words, people need jobs to get out of
poverty.

Since the Pearson Product Moment Correlation Coefficient measures the strength of the linear relationship between the two
variables, then it is reasonable to find the equation of the line that best fits the data. This line is called the least squares regression
line or the line of best fit. A regression line has been added to the graph for Employment-Population Ratio and Poverty Rates.
Notice that there is a negative slope to the line. This corresponds to the sign of the correlation coefficient.

The equation of the line, as it appears in the subtitle of the graph is , where  is the Employment-Population
Ratio and  is the poverty rate. As an algebra student, you were taught that a linear equation can be written in the form of 

. In statistics, linear regression equations are written in the form  except that they traditionally are shown
as  where  represents the y value predicted by the line,  represents the  intercept and  represents the slope.

To calculate the values of  and , 5 other values are needed first. These are the correlation (r), the mean and standard deviation for

 (  and ) and the mean and standard deviation for  (  and ). First find  using the formula: . Next, substitute , 

, and  into the basic linear equation  and solve for .

For this example, , , , , and .

Therefore, the final regression equation is . The difference between this equation and the one in the graph is
the result of rounding errors used for these calculations.

The regression equation allows us to estimate the y value, but does not provide an indication of the accuracy of the estimate. In
other words, what is the effect of the relationship between  and  on the  value?
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To determine the influence of the relationship between  and  begins with the idea that there is variation between the  value and
the mean of all the  values ( ). This is something that you have seen with univariate quantitative data. There are two reasons
why the  values are not equivalent to the mean. These are called explained variation and error variation. Explained variation is the
variation that is a consequence of the relationship  has with . In other words,  does not equal the mean of all the  values
because the relationship shown by the regression line influences it. The error variation is the variation between an actual point and
the  value predicted by the regression line that is a consequence of all the other factors that impact the response random variable.
This vertical distance between each actual data point and the predicted  value ( ) is called the residual. The explained variation
and error variation is shown in the graph below. The horizontal line at 13.8 is the mean of all the  values.

The total variation is given by the sum of the squared distance each value is from the average  value. This is shown as 
.

The explained variation is given by the sum of the squared distances the  value predicted by the regression equation ( ) is from
the average  value, . This is shown as

The error variation is given by the sum of the squared distances the actual  data value is from the predicted  value ( ). This is
shown as .

The relationship between these can be shown with a word equation and an algebraic equation.

Total Variation = Explained Variation + Error Variation

The primary reason for this discussion is to lead us to an understanding of the mathematical (though not necessarily causal)
influence of the  variable on the  variable. Since this influence is the explained variation, then we can find the ratio of the
explained variation to the total variation. We define this ratio as the coefficient of determination. The ratio is represented by .

The coefficient of determination is the square of the correlation coefficient. What it represents is the proportion of the variance of
one variable that results from the mathematical influence of the variance of the other variable. The coefficient of determination will
always be a value between 0 and 1, that is . While  is presented in this way, it is often spoken of in terms of percent,
which results by multiplying the  value by 100.

In the scatter plot of poverty rate against employment-population ratio, the correlation is , so . Therefore,
we conclude that 41.53% of the influence on the variance in poverty rate is from the variance in the employment-population ratio.
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The remaining influence that is considered error variation comes from some of the other items in the list of possible variables that
could affect poverty.

There is no definitive scale for determining desirable levels for . While values close to 1 show a strong mathematical relationship
and values close to 0 show a weak relationship, the researcher must contemplate the actual meaning of the  value in the context
of their research.

Technology

Calculating correlation and regression equations by hand can be very tedious and subject to rounding errors. Consequently,
technology is routinely employed to in regression analysis. The data that was used when comparing the Gini Coefficients to
poverty rates will be used here.

Gini Coefficient Poverty Rate

0.486 10.1

0.443 9.9

0.44 11.6

0.433 13

0.419 13.2

0.442 14.4

0.464 10.3

To enter the data, use Stat – Edit – Enter to get to the lists that were used in Chapter 4. Clear lists one and two by moving the
cursor up to L1, pushing the clear button and then moving the cursor down. Do the same for L2.

Enter the Gini Coefficients into L1, the Poverty Rate into L2. They must remain paired in the same way they are in the table.

To determine the value of t, the p-value, the r and r2 values and the numeric values in the regression equation, use Stat – Tests
– E: LinRegTTest. Enter the Xlist as L1 and the Ylist as L2. The alternate hypothesis is shown as  & :  0. Put cursor over
Calculate and press enter.

The output is:

LinRegTTest 
 

 and  
t = -1.912582657
p = 0.1140079665 
df = 5 
b = -52.72871602 

 (standard error) 
 

Microsoft’s Excel contains an add-in that must be installed in order to complete the regression analysis. In more recent versions of
Excel (2010), this addin can be installed by

Select the file tab
Select Options
On the left side, select Add-Ins
At the bottom, next to where it says Excel Add-ins, click on Go Check the first box, which says Analysis ToolPak then click ok.
You may need your Excel disk at this point.

r2

r2

ti 84 Calculator

β ρ ≠

y = a +bx

β ≠ 0 ρ ≠ 0

s = 1.479381344
= 0.4224975727r2

r = −0.6499981406
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To do the actual Analysis:

Select the data tab
Select the data analysis option (near the top right side of the screen)
Select Regression
Fill in the spaces for the y and x data ranges.
Click ok.

A new worksheet will be created that contains a summary output. Some of the numbers are shown in gray to help you know which
numbers to look for. Notice how they correspond to the output from the TI 84 and the calculations done earlier in this chapter.
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