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18.2: Effect Sizes

“Statistical significance is the least interesting thing about the results. You should
describe the results in terms of measures of magnitude — not just, does a treatment daffect
people, but how much does it affect them.” Gene Glass (REF)
In the last chapter, we discussed the idea that statistical significance may not necessarily reflect practical significance. In order to

discuss practical significance, we need a standard way to describe the size of an effect in terms of the actual data, which we refer to
as an effect size. In this section we will introduce the concept and discuss various ways that effect sizes can be calculated.

An effect size is a standardized measurement that compares the size of some statistical effect to a reference quantity, such as the
variability of the statistic. In some fields of science and engineering, this idea is referred to as a “signal to noise ratio”. There are
many different ways that the effect size can be quantified, which depend on the nature of the data.

18.2.1 Cohen’s D

One of the most common measures of effect size is known as Cohen’s d, named after the statistician Jacob Cohen (who is most
famous for his 1994 paper titled “The Earth Is Round (p < .05)”). It is used to quantify the difference between two means, in terms
of their standard deviation:
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where X; and X , are the means of the two groups, and s is the pooled standard deviation (which is a combination of the standard
deviations for the two samples, weighted by their sample sizes):
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where n; and ny are the sample sizes and s? and s3 are the standard deviations for the two groups respectively. Note that this is
very similar in spirit to the t statistic — the main difference is that the denominator in the t statistic is based on the standard error of
the mean, whereas the denominator in Cohen’s D is based on the standard deviation of the data. This means that while the t statistic
will grow as the sample size gets larger, the value of Cohen’s D will remain the same.

There is a commonly used scale for interpreting the size of an effect in terms of Cohen’s d:

Table 18.1: Interpetation of Cohen’s D

D Interpretation
0.0-0.2 neglibible
0.2-0.5 small
0.5-0.8 medium

0.8 - large

It can be useful to look at some commonly understood effects to help understand these interpretations. For example, the effect size
for gender differences in height (d = 1.6) is very large by reference to our table above. We can also see this by looking at the
distributions of male and female heights in our sample. Figure 18.2 shows that the two distributions are quite well separated,
though still overlapping, highlighting the fact that even when there is a very large effect size for the difference between two groups,
there will be individuals from each group that are more like the other group.
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Figure 18.2: Smoothed histogram plots for male and female heights in the NHANES dataset, showing clearly distinct but also

clearly overlapping distributions.
It is also worth noting that we rarely encounter effects of this magnitude in science, in part because they are such obvious effects
that we don’t need scientific research to find them. As we will see in Chapter 32 on reproducibility, very large reported effects in
scientific research often reflect the use of questionable research practices rather than truly huge effects in nature. It is also worth
noting that even for such a huge effect, the two distributions still overlap - there will be some females who are taller than the
average male, and vice versa. For most interesting scientific effects, the degree of overlap will be much greater, so we shouldn’t
immediately jump to strong conclusions about different populations based on even a large effect size.

18.2.2 Pearson’s r

Pearson’s r, also known as the correlation coefficient, is a measure of the strength of the linear relationship between two continuous
variables. We will discuss correlation in much more detail in Chapter 24, so we will save the details for that chapter; here, we
simply introduce r as a way to quantify the relation between two variables.

r is a measure that varies from -1 to 1, where a value of 1 represents a perfect positive relationship between the variables, 0
represents no relationship, and -1 represents a perfect negative relationship. Figure 18.3 shows examples of various levels of
correlation using randomly generated data.
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Figure 18.3: Examples of various levels of Pearson’s r.
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18.2.3 Odds ratio

In our earlier discussion of probability we discussed the concept of odds — that is, the relative likelihood of some event happening
versus not happening:
odd A P(4)
sof A= PA)
We also discussed the odds ratio, which is simply the ratio of two odds. The odds ratio is a useful way to describe effect sizes for
binary variables.

For example, let’s take the case of smoking and lung cancer. A study published in the International Journal of Cancer in 2012
(Pesch et al. 2012) combined data regarding the occurrence of lung cancer in smokers and individuals who have never smoked
across a number of different studies. Note that these data come from case-control studies, which means that participants in the
studies were recruited because they either did or did not have cancer; their smoking status was then examined. These numbers thus
do not represent the prevalence of cancer amongst smokers in the general population — but they can tell us about the relationship
between cancer and smoking.

Table 18.2: Cancer occurrence separately for current smokers and those who have never smoked

Status NeverSmoked CurrentSmoker
No Cancer 2883 3829
Cancer 220 6784

We can convert these numbers to odds ratios for each of the groups. The odds of someone having lung cancer who has never
smoked is 0.08 whereas the odds of a current smoker having lung cancer is 1.77. The ratio of these odds tells us about the relative
likelihood of cancer between the two groups: The odds ratio of 23.22 tells us that the odds of cancer in smokers are roughly 23
times higher than never-smokers.
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