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CHAPTER OVERVIEW

1: Introduction

Having read this chapter, you should be able to:

Describe the central goals and fundamental concepts of statistics
Describe the difference between experimental and observational research with regard to what can be inferred about
causality
Explain how randomization provides the ability to make inferences about causation.

“Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write.” - H.G. Wells

1.1: What Is Statistical Thinking?
1.2: Dealing with Statistics Anxiety
1.3: What Can Statistics Do for Us?
1.4: The Big Ideas of Statistics
1.5: Causality and Statistics
1.6: Suggested Readings
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1.1: What Is Statistical Thinking?
Statistical thinking is a way of understanding a complex world by describing it in relatively simple terms that nonetheless capture
essential aspects of its structure, and that also provide us some idea of how uncertain we are about our knowledge. The foundations
of statistical thinking come primarily from mathematics and statistics, but also from computer science, psychology, and other fields
of study.

We can distinguish statistical thinking from other forms of thinking that are less likely to describe the world accurately. In
particular, human intuition often tries to answer the same questions that we can answer using statistical thinking, but often gets the
answer wrong. For example, in recent years most Americans have reported that they think that violent crime was worse compared
to the previous year (Pew Research Center). However, a statistical analysis of the actual crime data shows that in fact violent crime
has steadily decreased since the 1990’s. Intuition fails us because we rely upon best guesses (which psychologists refer to as
heuristics) that can often get it wrong. For example, humans often judge the prevalence of some event (like violent crime) using an
availability heuristic – that is, how easily can we think of an example of violent crime. For this reason, our judgments of increasing
crime rates may be more reflective of increasing news coverage, in spite of an actual decrease in the rate of crime. Statistical
thinking provides us with the tools to more accurately understand the world and overcome the fallibility of human intuition.
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A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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1.2: Dealing with Statistics Anxiety
Many people come to their first statistics class with a lot of trepidation and anxiety, especially once they hear that they will also
have to learn to code in order to analyze data. In my class I give students a survey prior to the first session in order to measure their
attitude towards statistics, asking them to rate a number of statments on a scale of 1 (strongly disagree) to 7 (strongly agree). One
of the items on the survey is “The thought of being enrolled in a statistics course makes me nervous”. In the most recent class,
almost two-thirds of the class responded with a five or higher, and about one-fourth of the students said that they strongly agreed
with the statement. So if you feel nervous about starting to learn statistics, you are not alone.

Anxiety feels uncomfortable, but psychology tells us that this kind of emotional arousal can actually help us perform better on
many tasks, by focusing our attention So if you start to feel anxious about the material in this course, remind yourself that many
others in the class are feeling similarly, and that the arousal could actually help you perform better (even if it doesn’t seem like it!).
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1.3: What Can Statistics Do for Us?
There are three major things that we can do with statistics:

Describe: The world is complex and we often need to describe it in a simplified way that we can understand.
Decide: We often need to make decisions based on data, usually in the face of uncertainty.
Predict: We often wish to make predictions about new situations based on our knowledge of previous situations.

Let’s look at an example of these in action, centered on a question that many of us are interested in: How do we decide what’s
healthy to eat?
There are many different sources of guidance, from government dietary guidelines to diet books to bloggers. 
Let’s focus in on a specific question: Is saturated fat in our diet a bad thing?

One way that we might answer this question is common sense. 
If we eat fat then it’s going to turn straight into fat in our bodies, right? 
And we have all seen photos of arteries clogged with fat, so eating fat is going to clog our arteries, right?

Another way that we might answer this question is by listening to authority figures. The Dietary Guidelines from the US Food and
Drug Administration have as one of their Key Recommendations that “A healthy eating pattern limits saturated fats”.You might
hope that these guidelines would be based on good science, and in some cases they are, but as Nina Teicholz outlined in her book
“Big Fat Surprise”(Teicholz 2014), this particular recommendation seems to be based more on the dogma of nutrition researchers
than on actual evidence.

Finally, we might look at actual scientific research. Let’s start by looking at a large study called the PURE study, which has
examined diets and health outcomes (including death) in more than 135,000 people from 18 different countries. In one of the
analyses of this dataset (published in The Lancet in 2017; Dehghan et al. (2017)), the PURE investigators reported an analysis of
how intake of various classes of macronutrients (including saturated fats and carbohydrates) was related to the likelihood of dying
during the time that people were followed. People were followed for a median of 7.4 years, meaning that half of the people in the
study were followed for less and half were followed for more than 7.4 years. Figure 1.1 plots some of the data from the study
(extracted from the paper), showing the relationship between the intake of both saturated fats and carbohydrates and the risk of
dying from any cause.

Figure 1.1: A plot of data from the PURE study, showing the relationship between death from any cause and the relative intake of
saturated fats and carbohydrates.

This plot is based on ten numbers. To obtain these numbers, the researchers split the group of 135,335 study participants (which we
call the “sample”) into 5 groups (“quintiles”) after ordering them in terms of their intake of either of the nutrients; the first quintile
contains the 20% of people with the lowest intake, and the 5th quintile contains the 20% with the highest intake. The researchers
then computed how often people in each of those groups died during the time they were being followed. The figure expresses this
in terms of the relative risk of dying in comparison to the lowest quintile: If this number is greater than 1 it means that people in the
group are more likely to die than are people in the lowest quintile, whereas if it’s less than one it means that people in the group are
less likely to die. The figure is pretty clear: People who ate more saturated fat were less likely to die during the study, with the
lowest death rate seen for people who were in the fourth quintile (that is, who ate more fat than the lowest 60% but less than the top
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20%). The opposite is seen for carbohydrates; the more carbs a person ate, the more likely they were to die during the study. This
example shows how we can use statistics to describe a complex dataset in terms of a much simpler set of numbers; if we had to
look at the data from each of the study participants at the same time, we would be overloaded with data and it would be hard to see
the pattern that emerges when they are described more simply.

The numbers in Figure 1.1 seem to show that deaths decrease with saturated fat and increase with carbohydrate intake, but we also
know that there is a lot of uncertainty in the data; there are some people who died early even though they ate a low-carb diet, and,
similarly, some people who ate a ton of carbs but lived to a ripe old age. Given this variability, we want to decide whether the
relationships that we see in the data are large enough that we wouldn’t expect them to occur randomly if there was not truly a
relationship between diet and longevity. Statistics provide us with the tools to make these kinds of decisions, and often people from
the outside view this as the main purpose of statistics. But as we will see throughout the book, this need for black-and-white
decisions based on fuzzy evidence has often led researchers astray.

Based on the data we would also like to make predictions about future outcomes. For example, a life insurance company might
want to use data about a particular person’s intake of fat and carbohydrate to predict how long they are likely to live. An important
aspect of prediction is that it requires us to generalize from the data we already have to some other situation, often in the future; if
our conclusions were limited to the specific people in the study at a particular time, then the study would not be very useful. In
general, researchers must assume that their particular sample is representative of a larger population, which requires that they
obtain the sample in a way that provides an unbiased picture of the population. For example, if the PURE study had recruited all of
its participants from religious sects that practice vegetarianism, then we probably wouldn’t want to generalize the results to people
who follow different dietary standards.
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1.4: The Big Ideas of Statistics
There are a number of very basic ideas that cut through nearly all aspects of statistical thinking. Several of these are outlined by
Stigler (2016) in his outstanding book “The Seven Pillars of Statistical Wisdom”, which I have augmented here.

1.4.1 Learning from data
One way to think of statistics is as a set of tools that enable us to learn from data. In any situation, we start with a set of ideas or
hypotheses about what might be the case. In the PURE study, the researchers may have started out with the expectation that eating
more fat would lead to higher death rates, given the prevailing negative dogma about saturated fats. Later in the course we will
introduce the idea of prior knowledge, which is meant to reflect the knowledge that we bring to a situation. This prior knowledge
can vary in its strength, often based on our amount of experience; if I visit a restaurant for the first time I am likely to have a weak
expectation of how good it will be, but if I visit a restaurant where I have eaten ten times before, my expectations will be much
stronger. Similarly, if I look at a restaurant review site and see that a restaurant’s average rating of four stars is only based on three
reviews, I will have a weaker expectation than I would if it was based on 300 reviews.

Statistics provides us with a way to describe how new data can be best used to update our beliefs, and in this way there are deep
links between statistics and psychology. In fact, many theories of human and animal learning from psychology are closely aligned
with ideas from the new field of machine learning. Machine learning is a field at the interface of statistics and computer science
that focuses on how to build computer algorithms that can learn from experience. While statistics and machine learning often try to
solve the same problems, researchers from these fields often take very different approaches; the famous statistician Leo Breiman
once referred to them as “The Two Cultures” to reflect how different their approaches can be (Breiman 2001). In this book I will
try to blend the two cultures together because both approaches provide useful tools for thinking about data.

1.4.2 Aggregation

Another way to think of statistics is “the science of throwing away data”. In the example of the PURE study above, we took more
than 100,000 numbers and condensed them into ten. It is this kind of aggregation that is one of the most important concepts in
statistics. When it was first advanced, this was revolutionary: If we throw out all of the details about every one of the participants,
then how can we be sure that we aren’t missing something important?

As we will see, statistics provides us ways to characterize the structure of aggregates of data, and with theoretical foundations that
explain why this usually works well. However, it’s also important to keep in mind that aggregation can go too far, and later we will
encounter cases where a summary can provide a misleading picture of the data being summarized.

1.4.3 Uncertainty

The world is an uncertain place. We now know that cigarette smoking causes lung cancer, but this causation is probabilistic: A 68-
year-old man who smoked two packs a day for the past 50 years and continues to smoke has a 15% (1 out of 7) risk of getting lung
cancer, which is much higher than the chance of lung cancer in a nonsmoker. However, it also means that there will be many people
who smoke their entire lives and never get lung cancer. Statistics provides us with the tools to characterize uncertainty, to make
decisions under uncertainty, and to make predictions whose uncertainty we can quantify.

One often sees journalists write that scientific researchers have “proven” some hypothesis. But statistical analysis can never
“prove” a hypothesis, in the sense of demonstrating that it must be true (as one would in a logical or mathematical proof). Statistics
can provide us with evidence, but it’s always tentative and subject to the uncertainty that is always present in the real world.

1.4.4 Sampling
The concept of aggregation implies that we can make useful insights by collapsing across data – but how much data do we need?
The idea of sampling says that we can summarize an entire population based on just a small number of samples from the
population, as long as those samples are obtained in the right way. For example, the PURE study enrolled a sample of about
135,000 people, but its goal was to provide insights about the billions of humans who make up the population from which those
people were sampled. As we already discussed above, the way that the study sample is obtained is critical, as it determines how
broadly we can generalize the results. Another fundamental insight about sampling is that while larger samples are always better (in
terms of their ability to accurately represent the entire population), there are diminishing returns as the sample gets larger. In fact,
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the rate at which the benefit of larger samples decreases follows a simple mathematical rule, growing as the square root of the
sample size, such that in order to double the quality of our data we need to quadruple the size of our sample.
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1.5: Causality and Statistics
The PURE study seemed to provide pretty strong evidence for a positive relationship between eating saturated fat and living longer,
but this doesn’t tell us what we really want to know: If we eat more saturated fat, will that cause us to live longer? This is because
we don’t know whether there is a direct causal relationship between eating saturated fat and living longer. The data are consistent
with such a relationship, but they are equally consistent with some other factor causing both higher saturated fat and longer life. For
example, it is likely that people who are richer eat more saturated fat and richer people tend to live longer, but their longer life is
not necessarily due to fat intake — it could instead be due to better health care, reduced psychological stress, better food quality, or
many other factors. The PURE study investigators tried to account for these factors, but we can’t be certain that their efforts
completely removed the effects of other variables. The fact that other factors may explain the relationship between saturated fat
intake and death is an example of why introductory statistics classes often teach that “correlation does not imply causation”, though
the renowned data visualization expert Edward Tufte has added, “but it sure is a hint.”

Although observational research (like the PURE study) cannot conclusively demonstrate causal relations, we generally think that
causation can be demonstrated using studies that experimentally control and manipulate a specific factor. In medicine, such a study
is referred to as a randomized controlled trial (RCT). Let’s say that we wanted to do an RCT to examine whether increasing
saturated fat intake increases life span. To do this, we would sample a group of people, and then assign them to either a treatment
group (which would be told to increase their saturated fat intake) or a control group (who would be told to keep eating the same as
before). It is essential that we assign the individuals to these groups randomly. Otherwise, people who choose the treatment might
be different in some way than people who choose the control group – for example, they might be more likely to engage in other
healthy behaviors as well. We would then follow the participants over time and see how many people in each group died. Because
we randomized the participants to treatment or control groups, we can be reasonably confident that there are no other differences
between the groups that would confound the treatment effect; however, we still can’t be certain because sometimes randomization
yields treatment versus control groups that do vary in some important way. Researchers often try to address these confounds using
statistical analyses, but removing the influence of a confound from the data can be very difficult.

A number of RCTs have examined the question of whether changing saturated fat intake results in better health and longer life.
These trials have focused on reducing saturated fat because of the strong dogma amongst nutrition researchers that saturated fat is
deadly; most of these researchers would have probably argued that it was not ethical to cause people to eat more saturated fat!
However, the RCTs have show a very consistent pattern: Overall there is no appreciable effect on death rates of reducing saturated
fat intake.
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1.6: Suggested Readings
The Seven Pillars of Statistical Wisdom, by Stephen Stigler
The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century, by David Salsburg
Naked Statistics: Stripping the Dread from the Data, by Charles Wheelan
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CHAPTER OVERVIEW

2: Working with Data

Having read this chapter, you should be able to:

Distinguish between different types of variables (quantitative/qualitative, binary/integer/real, discrete/continuous) and give
examples of each of these kinds of variables
Distinguish between the concepts of reliability and validity and apply each concept to a particular dataset

2.1: What Are Data?
2.2: Discrete Versus Continuous Measurements
2.3: Suggested Readings
2.4: Appendix
2.5: What Makes a Good Measurement?

This page titled 2: Working with Data is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A. Poldrack
via source content that was edited to the style and standards of the LibreTexts platform.

 Learning Objectives

https://libretexts.org/
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/02%3A_Working_with_Data/2.01%3A_What_Are_Data
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/02%3A_Working_with_Data/2.02%3A_Discrete_Versus_Continuous_Measurements
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/02%3A_Working_with_Data/2.03%3A_Suggested_Readings
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/02%3A_Working_with_Data/2.04%3A_Appendix
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/02%3A_Working_with_Data/2.05%3A_What_Makes_a_Good_Measurement
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/02%3A_Working_with_Data
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


2.1.1 https://stats.libretexts.org/@go/page/7735

2.1: What Are Data?
The first important point about data is that data are - meaning that the word “data” is plural (though some people disagree with me
on this). You might also wonder how to pronounce “data” – I say “day-tah” but I know many people who say “dah-tah” and I have
been able to remain friends with them in spite of this. Now if I heard them say “the data is” then that would be bigger issue…

2.1.1 Qualitative data
Data are composed of variables, where a variable reflects a unique measurement or quantity. Some variables are qualitative,
meaning that they describe a quality rather than a numeric quantity. For example, in my stats course I generally give an
introductory survey, both to obtain data to use in class and to learn more about the students. One of the questions that I ask is
“What is your favorite food?”, to which some of the answers have been: blueberries, chocolate, tamales, pasta, pizza, and mango.
Those data are not intrinsically numerical; we could assign numbers to each one (1=blueberries, 2=chocolate, etc), but we would
just be using the numbers as labels rather than as real numbers; for example, it wouldn’t make sense to add the numbers together in
this case. However, we will often code qualitative data using numbers in order to make them easier to work with, as you will see
later.

2.1.2 Quantitative data
More commonly in statistics we will work with quantitative data, meaning data that are numerical. For example, here Table 2.1
shows the results from another question that I ask in my introductory class, which is “Why are you taking this class?”

Table 2.1: Counts of the prevalence of different responses to the question “Why are you taking this class?”

Why are you taking this class? Number of students

It fulfills a degree plan requirement 105

It fulfills a General Education Breadth Requirement 32

It is not required but I am interested in the topic 11

Other 4

Note that the students’ answers were qualitative, but we generated a quantitative summary of them by counting how many students
gave each response.

2.1.2.1 Types of numbers

There are several different types of numbers that we work with in statistics. It’s important to understand these differences, in part
because programming languages like R often distinguish between them.

Binary numbers. The simplest are binary numbers – that is, zero or one. We will often use binary numbers to represent whether
something is true or false, or present or absent. For example, I might ask 10 people if they have ever experienced a migraine
headache, recording their answers as “Yes” or “No”. It’s often useful to instead use logical values, which take the value of either 
TRUE  or FALSE . We can create these by testing whether each value is equal to “Yes”, which we can do using the ==

symbol. This will return the value TRUE  for any matching “Yes” values, and FALSE  otherwise. These are useful to R knows
how to interpret them natively, whereas it doesn’t know what “Yes” and “No” mean.

In general, most programming languages treat truth values and binary numbers equivalently. The number 1 is equal to the logical
value TRUE , and the number zero is equal to the logical value FALSE .

Integers. Integers are whole numbers with no fractional or decimal part. We most commonly encounter integers when we count
things, but they also often occur in psychological measurement. For example, in my introductory survey I administer a set of
questions about attitudes towards statistics (such as “Statistics seems very mysterious to me.”), on which the students respond with
a number between 1 (“Disagree strongly”) and 7 (“Agree strongly”).

Real numbers. Most commonly in statistics we work with real numbers, which have a fractional/decimal part. For example, we
might measure someone’s weight, which can be measured to an arbitrary level of precision, from whole pounds down to
micrograms.
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2.2: Discrete Versus Continuous Measurements
A discrete measurement is one that takes one of a set of particular values. These could be qualitative values (for example, different
breeds of dogs) or numerical values (for example, how many friends one has on Facebook). Importantly, there is no middle ground
between the measurements; it doesn’t make sense to say that one has 33.7 friends.

A continuous measurement is one that is defined in terms of a real number. It could fall anywhere in a particular range of values,
though usually our measurement tools will limit the precision with which we can measure; for example, a floor scale might
measure weight to the nearest pound, even though weight could in theory be measured with much more precision.

It is common in statistics courses to go into more detail about different “scales” of measurement, which are discussed in more detail
in the Appendix to this chapter. The most important takeaway from this is that some kinds of statistics don’t make sense on some
kinds of data. For example, imagine that we were to collect postal Zip Code data from a number of individuals. Those numbers are
represented as integers, but they don’t actually refer to a numeric scale; each zip code basically serves as a label for a different
region. For this reason, it wouldn’t make sense to talk about the average zip code, for example.
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2.3: Suggested Readings
An introduction to psychometric theory with applications in R - A free online textbook on psychological measurement
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2.4: Appendix

2.4.1 Scales of measurement

All variables must take on at least two different possible values (otherwise they would be a constant rather than a variable), but
different values of the variable can relate to each other in different ways, which we refer to as scales of measurement. There are
four ways in which the different values of a variable can differ.

Identity: Each value of the variable has a unique meaning.
Magnitude: The values of the variable reflect different magnitudes and have an ordered relationship to one another — that is,
some values are larger and some are smaller.
Equal intervals: Units along the scale of measurement are equal to one another. This means, for example, that the difference
between 1 and 2 would be equal in its magnitude to the difference between 19 and 20.
Absolute zero: The scale has a true meaningful zero point. For example, for many measurements of physical quantities such as
height or weight, this is the complete absence of the thing being measured.

There are four different scales of measurement that go along with these different ways that values of a variable can differ.

Nominal scale. A nominal variable satisfies the criterion of identity, such that each value of the variable represents something
different, but the numbers simply serve as qualitative labels as discussed above. For example, we might ask people for their
political party affiliation, and then code those as numbers: 1 = “Republican”, 2 = “Democrat”, 3 = “Libertarian”, and so on.
However, the different numbers do not have any ordered relationship with one another.

Ordinal scale. An ordinal variable satisfies the criteria of identity and magnitude, such that the values can be ordered in terms of
their magnitude. For example, we might ask a person with chronic pain to complete a form every day assessing how bad their pain
is, using a 1-7 numeric scale. Note that while the person is presumably feeling more pain on a day when they report a 6 versus a
day when they report a 3, it wouldn’t make sense to say that their pain is twice as bad on the former versus the latter day; the
ordering gives us information about relative magnitude, but the differences between values are not necessarily equal in magnitude.

Interval scale. An interval scale has all of the features of an ordinal scale, but in addition the intervals between units on the
measurement scale can be treated as equal. A standard example is physical temperature measured in Celsius or Farenheit; the
physical difference between 10 and 20 degrees is the same as the physical difference between 90 and 100 degrees, but each scale
can also take on negative values.

Ratio scale. A ratio scale variable has all four of the features outlined above: identity, magnitude, equal intervals, and absolute zero.
The difference between a ratio scale variable and an interval scale variable is that the ratio scale variable has a true zero point.
Examples of ratio scale variables include physical height and weight, along with temperature measured in Kelvin.

There are two important reasons that we must pay attention to the scale of measurement of a variable. First, the scale determines
what kind of mathematical operations we can apply to the data (see Table 2.2). A nominal variable can only be compared for
equality; that is, do two observations on that variable have the same numeric value? It would not make sense to apply other
mathematical operations to a nominal variable, since they don’t really function as numbers in a nominal variable, but rather as
labels. With ordinal variables, we can also test whether one value is greater or lesser than another, but we can’t do any arithmetic.
Interval and ratio variables allow us to perform arithmetic; with interval variables we can only add or subtract values, whereas with
ratio variables we can also multiply and divide values.

Table 2.2: Different scales of measurement admit different types of numeric operations

Equal/not equal >/< +/- Multiply/divide

Nominal OK    

Ordinal OK OK   

Interval OK OK OK  

Ratio OK OK OK OK

These constraints also imply that there are certain kinds of statistics that we can compute on each type of variable. Statistics that
simply involve counting of different values (such as the most common value, known as the mode), can be calculated on any of the
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variable types. Other statistics are based on ordering or ranking of values (such as the median, which is the middle value when all
of the values are ordered by their magnitude), and these require that the value at least be on an ordinal scale. Finally, statistics that
involve adding up values (such as the average, or mean), require that the variables be at least on an interval scale. Having said that,
we should note that it’s quite common for researchers to compute the mean of variables that are only ordinal (such as responses on
personality tests), but this can sometimes be problematic.
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2.5: What Makes a Good Measurement?
In many fields such as psychology, the thing that we are measuring is not a physical feature, but instead is an unobservable
theoretical concept, which we usually refer to as a construct. For example, let’s say that I want to test how well you understand the
distinction between the four different scales of measurement described above. I could give you a pop quiz that would ask you
several questions about these concepts and count how many you got right. This test might or might not be a good measurement of
the construct of your actual knowledge — for example, if I were to write the test in a confusing way or use language that you don’t
understand, then the test might suggest you don’t understand the concepts when really you do. On the other hand, if I give a
multiple choice test with very obvious wrong answers, then you might be able to perform well on the test even if you don’t actually
understand the material.

It is usually impossible to measure a construct without some amount of error. In the example above, you might know the answer
but you might mis-read the question and get it wrong. In other cases there is error intrinsic to the thing being measured, such as
when we measure how long it takes a person to respond on a simple reaction time test, which will vary from trial to trial for many
reasons. We generally want our measurement error to be as low as possible.

Sometimes there is a standard against which other measurements can be tested, which we might refer to as a “gold standard” — for
example, measurement of sleep can be done using many different devices (such as devices that measure movement in bed), but
they are generally considered inferior to the gold standard of polysomnography (which uses measurement of brain waves to
quantify the amount of time a person spends in each stage of sleep). Often the gold standard is more difficult or expensive to
perform, and the cheaper method is used even though it might have greater error.

When we think about what makes a good measurement, we usually distinguish two different aspects of a good measurement.

2.5.1 Reliability
Reliability refers to the consistency of our measurements. One common form of reliability, known as “test-retest reliability”,
measures how well the measurements agree if the same measurement is performed twice. For example, I might give you a
questionnaire about your attitude towards statistics today, repeat this same questionnaire tomorrow, and compare your answers on
the two days; we would hope that they would be very similar to one another, unless something happened in between the two tests
that should have changed your view of statistics (like reading this book!).

Another way to assess reliability comes in cases where the data includes subjective judgments. For example, let’s say that a
researcher wants to determine whether a treatment changes how well an autistic child interacts with other children, which is
measured by having experts watch the child and rate their interactions with the other children. In this case we would like to make
sure that the answers don’t depend on the individual rater — that is, we would like for there to be high inter-rater reliability. This
can be assessed by having more than one rater perform the rating, and then comparing their ratings to make sure that they agree
well with one another.

Reliability is important if we want to compare one measurement to another. The relationship between two different variables can’t
be any stronger than the relationship between either of the variables and itself (i.e., its reliability). This means that an unreliable
measure can never have a strong statistical relationship with any other measure. For this reason, researchers developing a new
measurement (such as a new survey) will often go to great lengths to establish and improve its reliability.
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Figure 2.1: A figure demonstrating the distinction between reliability and validity, using shots at a bullseye. Reliability refers to the
consistency of location of shots, and validity refers to the accuracy of the shots with respect to the center of the bullseye.

2.5.2 Validity
Reliability is important, but on its own it’s not enough: After all, I could create a perfectly reliable measurement on a personality
test by re-coding every answer using the same number, regardless of how the person actually answers. We want our measurements
to also be valid — that is, we want to make sure that we are actually measuring the construct that we think we are measuring
(Figure 2.1). There are many different types of validity that are commonly discussed; we will focus on three of them.

Face validity. Does the measurement make sense on its face? If I were to tell you that I was going to measure a person’s blood
pressure by looking at the color of their tongue, you would probably think that this was not a valid measure on its face. On the
other hand, using a blood pressure cuff would have face validity. This is usually a first reality check before we dive into more
complicated aspects of validity.

Construct validity. Is the measurement related to other measurements in an appropriate way? This is often subdivided into two
aspects. Convergent validity means that the measurement should be closely related to other measures that are thought to reflect the
same construct. Let’s say that I am interested in measuring how extroverted a person is using a questionnaire or an interview.
Convergent validity would be demonstrated if both of these different measurements are closely related to one another. On the other
hand, measurements thought to reflect different constructs should be unrelated, known as divergent validity. If my theory of
personality says that extraversion and conscientiousness are two distinct constructs, then I should also see that my measurements of
extraversion are unrelated to measurements of conscientiousness.

Predictive validity. If our measurements are truly valid, then they should also be predictive of other outcomes. For example, let’s
say that we think that the psychological trait of sensation seeking (the desire for new experiences) is related to risk taking in the
real world. To test for predictive validity of a measurement of sensation seeking, we would test how well scores on the test predict
scores on a different survey that measures real-world risk taking.
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CHAPTER OVERVIEW

3: Introduction to R

Having finished this chapter, you should be able to:

Interact with an RMarkdown notebook in RStudio
Describe the difference between a variable and a function
Describe the different types of variables
Create a vector or data frame and access its elements
Install and load an R library
Load data from a file and view the data frame

This chapter is the first of several distributed throughout the book that will introduce you to increasingly sophisticated things that
you can do using the R programming language. The name “R” is a play on the names of the two authors of the software package
(Ross Ihaka and Robert Gentleman) as well as an homage to an older statistical software package called “S”. R has become one of
the most popular programming languages for statistical analysis and “data science”. Unlike general-purpose programming
languages such as Python or Java, R is purpose-built for statistics. That doesn’t mean that you can’t do more general things with it,
but the place where it really shines is in data analysis and statistics.

3.1: Why Programming Is Hard to Learn
3.2: Using RStudio
3.3: Getting Started with R
3.4: Variables
3.5: Functions
3.6: Vectors
3.7: Math with Vectors
3.8: Data Frames
3.9: Using R Libraries
3.10: Working with Data Files
3.11: Suggested Readings and Videos
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3.1: Why Programming Is Hard to Learn
Programming a computer is a skill, just like playing a musical instrument or speaking a second language. And just like those skills,
it takes a lot of work to get good at it — the only way to acquire a skill is through practice. There is nothing special or magical
about people who are experts, other than the quality and quantity of their experience! However, not all practice is equally effective.
A large amount of psychological research has shown that practice needs to be deliberate, meaning that it focuses on developing the
specific skills that one needs to perform the skill, at a level that is always pushing one’s ability.

If you have never programmed before, then it’s going to seem hard, just as it would seem hard for a native English speaker to start
speaking Mandarin. However, just as a beginning guitarist needs to learn to play their scales, we will teach you how to perform the
basics of programming, which you can then use to do more powerful things.

One of the most important aspects of computer programming is that you can try things to your heart’s content; the worst thing that
can happen is that the program will crash. Trying new things and making mistakes is one of the keys to learning.

The hardest part of programming is figuring out why something didn’t work, which we call debugging. In programming, things are
going to go wrong in ways that are often confusing and opaque. Every programmer has a story about spending hours trying to
figure out why something didn’t work, only to realize that the problem was completely obvious. The more practice you get, the
better you will get at figuring out how to fix these errors. But there are a few strategies that can be helpful.

3.1.1 Use the web
In particular, you should take advantage of the fact that there are millions of people programming in R around the world, so nearly
any error message you see has already been seen by someone else. Whenever I experience an error that I don’t understand, the first
thing that I do is to copy and paste the error message into a search engine Often this will provide several pages discussing the
problem and the ways that people have solved it.

3.1.2 Rubber duck debugging

The idea behind rubber duck debugging is to pretend that you are trying to explain what your code is doing to an inanimate object,
like a rubber duck. Often, the process of explaning it aloud is enough to help you find the problem.

This page titled 3.1: Why Programming Is Hard to Learn is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/7723?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/03%3A_Introduction_to_R/3.01%3A_Why_Programming_Is_Hard_to_Learn
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/03%3A_Introduction_to_R/3.01%3A_Why_Programming_Is_Hard_to_Learn
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


3.2.1 https://stats.libretexts.org/@go/page/7724

3.2: Using RStudio
When I am using R in my own work, I generally use a free software package called RStudio, which provides a number of nice tools
for working with R. In particular, RStudio provides the ability to create “notebooks” that mix together R code and text (formatted
using the Markdown text formatting system). In fact, this book is written using exactly that system! You can see the R code used to
generate this book here.
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3.3: Getting Started with R
When we work with R, we often do this using a command line in which we type commands and it responds to those commands. In
the simplest case, if we just type in a number, it will simply respond with that number. Go into the R console and type the number
3. You should see somethign like this:

> 3
[1] 3

The >  symbol is the command prompt, which is prompting you to type something in. The next line ( [1] 3 ) is R’s answer.
Let’s try something a bit more complicated:

> 3 + 4 
[1] 7

R spits out the answer to whatever you type in, as long as it can figure it out. Now let’s try typing in a word:

> hello 
Error: object 'hello' not found

What? Why did this happen? When R encounters a letter or word, it assumes that it is referring to the name of a variable — think
of X  from high school algebra. We will return to variables in a little while, but if we want R to print out the word hello then we
need to contain it in quotation marks, telling R that it is a character string.

> "hello" 
[1] "hello"

There are many types of variables in R. You have already seen two examples: integers (like the number 3) and character strings
(like the word “hello”). Another important one is real numbers, which are the most common kind of numbers that we will deal with
in statistics, which span the entire number line including the spaces in between the integers. For example:

> 1/3 
[1] 0.33

In reality the result should be 0.33 followed by an infinite number of threes, but R only shows us two decimal points in this
example.

Another kind of variable is known as a logical variable, because it is based on the idea from logic that a statement can be either true
or false. In R, these are capitalized ( TRUE  and FALSE ).

To determine whether a statement is true or not, we use logical operators. You are already familiar with some of these, like the
greater-than ( > ) and less-than ( < ) operators.

> 1 < 3 
[1] TRUE 
> 2 > 4 
[1] FALSE 

Often we want to know whether two numbers are equal or not equal to one another. There are special operators in R to do this: 
==  for equals, and !=  for not-equals:
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> 3 == 3 
[1] TRUE 
> 4 != 4 
[1] FALSE 
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3.4: Variables
A variable is a symbol that stands for another value (just like “X” in algebra). We can create a variable by assigning a value to it
using the <-  operator. If we then type the name of the variable R will print out its value.

> x <- 4 
> x
[1] 4 

The variable now stands for the value that it contains, so we can perform operations on it and get the same answer as if we used the
value itself.

> x + 3 
[1] 7 
> x == 5 
[1] FALSE

We can change the value of a variable by simply assigning a new value to it.

> x <- x + 1 
> x
[1] 5 

A note: You can also use the equals sign =  instead of the <-
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3.5: Functions
A function is an operator that takes some input and gives an output based on the input. For example, let’s say that have a number
and we want to determine its absolute value. R has a function called abs()  that takes in a number and outputs its absolute
value:

> x <- -3 
> abs(x) 
[1] 3 

Most functions take an input like the abs()  function (which we call an argument), but some also have special keywords that
can be used to change how the function works. For example, the rnorm()  function generates random numbers from a normal
distribution (which we will learn more about later). Have a look at the help page for this function by typing help(rnorm)  in
the console, which will cause a help page to appear below. The section of the help page for the rnorm()  function shows the
following:

rnorm(n, mean = 0, sd = 1) 
 
Arguments 
 
n     number of observations.  
 
mean    vector of means. 
 
sd   vector of standard deviations.

You can also obtain some examples of how the function is used by typing example(rnorm)  in the console.

We can see that the rnorm function has two arguments, mean and sd, that are shown to be equal to specific values. This means that
those values are the default settings, so that if you don’t do anything, then the function will return random numbers with a mean of
0 and a standard deviation of 1. The other argument, n, does not have a default value. Try typing in the function rnorm()  with
no arguments and see what happens — it will return an error telling you that the argument “n” is missing and does not have a
default value.

If we wanted to create random numbers with a different mean and standard deviation (say mean == 100 and standard deviation ==
15), then we could simply set those values in the function call. Let’s say that we would like 5 random numbers from this
distribution:

> my_random_numbers <- rnorm(5, mean=100, sd=15) 
> my_random_numbers 
[1] 104 115 101  97 115 

You will see that I set the variable to the name my_random_numbers . In general, it’s always good to be as descriptive as
possible when creating variables; rather than calling them x or y, use names that describe the actual contents. This will make it
much easier to understand what’s going on once things get more complicated.
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3.6: Vectors
You may have noticed that the my_random_numbers  created above wasn’t like the variables that we had seen before — it
contained a number of values in it. We refer to this kind of variable as a vector.

If you want to create your own new vector, you can do that using the c()  function:

> my_vector <- c(4, 5, 6) 
> my_vector 
[1] 4 5 6 

You can access the individual elements within a vector by using square brackets along with a number that refers to the location
within the vector. These index values start at 1, which is different from many other programming languages that start at zero. Let’s
say we want to see the value in the second place of the vector:

> my_vector[2] 
[1] 5 

You can also look at a range of positions, by putting the start and end locations with a colon in between:

> my_vector[2:3] 
[1] 5 6 

You can also change the values of specific locations using the same indexing:

> my_vector[3] <- 7 
> my_vector 
[1] 4 5 7 
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3.7: Math with Vectors
You can apply mathematical operations to the elements of a vector just as you would with a single number:

> my_vector <- c(4, 5, 6) 
> my_vector_times_ten <- my_vector*10 
> my_vector_times_ten 
[1] 40 50 60 

You can also apply mathematical operations on pairs of vectors. In this case, each matching element is used for the operation.

> my_first_vector <- c(1,2,3) 
> my_second_vector <- c(10, 20, 20) 
> my_first_vector + my_second_vector 
[1] 11 22 23 

We can also apply logical operations across vectors; again, this will return a vector with the operation applied to the pairs of values
at each position.

> vector_a <- c(1,2,3) 
> vector_b <- c(1,2,4) 
> vector_a == vector_b 
[1]  TRUE  TRUE FALSE 
 

Most functions will work with vectors just as they would with a single number. For example, let’s say we wanted to obtain the
trignometric sine for each of a set of values. We could create a vector and pass it to the sin()  function, which will return as
many sine values as there are input values:

> my_angle_values <- c(0, 1, 2) 
> my_sin_values <- sin(my_angle_values) 
> my_sin_values 
[1] 0.00 0.84 0.91 
k
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3.8: Data Frames
Often in a dataset we will have a number of different variables that we want to work with. Instead of having a different named
variable that stores each one, it is often useful to combine all of the separate variables into a single package, which is referred to as
a data frame.

If you are familiar with a spreadsheet (say from Microsoft Excel) then you already have a basic understanding of a data frame. 
Let’s say that we have values of price and mileage for three different types of cars. We could start by creating a variable for each
one, making sure that the three cars are in the same order for each of the variables:

car_model <- c("Ford Fusion", "Hyundai Accent", "Toyota Corolla") 
car_price <- c(25000, 16000, 18000) 
car_mileage <- c(27, 36, 32) 

We can then combine these into a single data frame, using the data.frame()  function. I like to use "_df" in the names of data
frames just to make clear that it’s a data frame, so we will call this one “cars_df”:

cars_df <- data.frame(model=car_model, price=car_price, mileage=car_mileage) 

We can view the data frame by using the View()  function:

View(cars_df)

Which will present a view of the data frame much like a spreadsheet, as shown in Figure 2.1:

Figure 2.1: A view of the cars data frame generated by the View() function.

Each of the columns in the data frame contains one of the variables, with the name that we gave it when we created the data frame.
We can access each of those columns using the $  operator. For example, if we wanted to access the mileage variable, we would
combine the name of the data frame with the name of the variable as follows:

> cars_df$mileage 
[1] 27 36 32 

This is just like any other vector, in that we can refer to its individual values using square brackets as we did with regular vectors:

> cars_df$mileage[3] 
[1] 32 

In some of the examples in the book, you will see something called a tibble; this is basically a souped-up version of a data frame,
and can be treated mostly in the same way.
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3.9: Using R Libraries
Many of the useful features in R are not contained in the primary R package, but instead come from libraries that have been
developed by various members of the R community. For example, the ggplot2  package provides a number of features for
visualizing data, as we will see in a later chapter. Before we can use a package, we need to install it on our system, using the 
install.packages()  function:

> install.packages("ggplot2") 
trying URL 'https://cran.rstudio.com/... 
Content type 'application/x-gzip' length 3961383 bytes (3.8 MB) 
================================================== 
downloaded 3.8 MB 
 
 
The downloaded binary packages are in 
    /var/folders/.../downloaded_packages 

This will automatically download the package from the Comprehensive R Archive Network (CRAN) and install it on your system.
Once it’s installed, you can then load the library using the library()  function:

> library(ggplot2)

After loading the function, you can now access all of its features. If you want to learn more about its features, you can find them
using the help function:

> help(ggplot2)
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3.10: Working with Data Files
When we are doing statistics, we often need to load in the data that we will analyze. Those data will live in a file on one’s computer
or on the internet. For this example, let’s use a file that is hosted on the internet, which contains the gross domestic product (GDP)
values for a number of countries around the world. This file is stored as comma-delimited text, meaning that the values for each of
the variables in the dataset are separate by commas. There are three variables: the relative rank of the countries, the name of the
country, and its GDP value. Here is what the first few lines of the file look like:

Rank,Country,GDP 
1,Liechtenstein,141100 
2,Qatar,104300 
3,Luxembourg,81100 

We can load a comma-delimited text file into R using the read.csv()  function, which will accept either the location of a file
on one’s computer, or a URL for files that are located on the web:

url='https://raw.githubusercontent.com/psych10/ 
psych10/master/notebooks/Session03-IntroToR/gdp.csv' 
gdp_df <- read.csv(url)

Once you have done this, take a look at the data frame using the View()  function, and make sure that it looks right — it should
have a column for each of the three variables.

Let’s say that we wanted to create a new file, which contained GDP values in Euros rather than US Dollars. We use today’s
exchange rate, which is 1 USD == 0.90 Euros. To convert from Dollars to Euros, we simply multiple the GDP values by the
exchange rate, and assign those values to a new variable within the data frame:

> exchange_rate = 0.9 
> gdp_df$GDP_euros <- gdp_df$GDP * exchange_rate 

You should now see a new variable within the data frame, called “GDP_euros” which contains the new values. Now let’s save this
to a comma-delimited text file on our computer called “gdp_euro.csv”. We do this using the write.table()  command.

> write.table(gdp_df, file='gdp_euro.csv') 

This file will be created with the working directory that RStudio is using. You can find this directory using the getwd()
function:

> getwd() 
[1] "/Users/me/MyClasses/Psych10/LearningR" 
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3.11: Suggested Readings and Videos
There are many online resources for learning R. Here are a few:

Datacamp: Offers free online courses for many aspects of R programming
A Student’s Guide to R
R for cats: A humorous introduction to R programming
aRrgh: a newcomer’s (angry) guide to R
Quick-R
RStudio Cheat Sheets: Quick references for many different aspects of R programming
tidverse Style Guide: Make your code beautiful and reader-friendly!
R for Data Science: This free online book focuses on working with data in R.
Advanced R: This free online book by Hadley Wickham will help you get to the next level once your R skills start to develop.
R intro for Python users: Used Python before? Check this out for a guide on how to transition to R.
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CHAPTER OVERVIEW

4: Summarizing Data
I mentioned in the Introduction that one of the big discoveries of statistics is the idea that we can better understand the world by
throwing away information, and that’s exactly what we are doing when we summarize a dataset. In this Chapter we will discuss
why and how to summarize data.

4.1: Why Summarize Data?
4.2: Summarizing Data Using Tables
4.3: Idealized Representations of Distributions
4.4: Suggested Readings
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4.1: Why Summarize Data?
When we summarize data, we are necessarily throwing away information, and one might plausibly object to this. As an example,
let’s go back to the PURE study that we discussed in Chapter 1. Are we not supposed to believe that all of the details about each
individual matter, beyond those that are summarized in the dataset? What about the specific details of how the data were collected,
such as the time of day or the mood of the participant? All of these details are lost when we summarize the data.

We summarize data in general because it provides us with a way to generalize - that is, to make general statements that extend
beyond specific observations. The importance of generalization was highlighted by the writer Jorge Luis Borges in his short story
“Funes the Memorious”, which describes an individual who loses the ability to forget. Borges focuses in on the relation between
generalization (i.e. throwing away data) and thinking: “To think is to forget a difference, to generalize, to abstract. In the overly
replete world of Funes, there were nothing but details.”

Psychologists have long studied all of the ways in which generalization is central to thinking. One example is categorization: We
are able to easily recognize different examples of the category of “birds” even though the individual examples may be very
different in their surface features (such as an ostrich, a robin, and a chicken). Importantly, generalization lets us make predictions
about these individuals – in the case of birds, we can predict that they can fly and eat worms, and that they probably can’t drive a
car or speak English. These predictions won’t always be right, but they are often good enough to be useful in the world.
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4.2: Summarizing Data Using Tables
A simple way to summarize data is to generate a table representing counts of various types of observations. This type of table has
been used for thousands of years (see Figure 4.1).

Figure 4.1: A Sumerian tablet from the Louvre, showing a sales contract for a house and field. Public domain, via Wikimedia
Commons.

Let’s look at some examples of the use of tables, again using the NHANES dataset. Type the command help(NHANES)  in the
RStudio console, and scroll through the help page, which should open within the Help panel if you are using RStudio. This page
provides some information about the dataset as well as a listing of all of the variables included in the dataset. Let’s have a look at a
simple variable, called “PhysActive” in the dataset. This variable contains one of three different values: “Yes” or “No” (indicating
whether or not the person reports doing “moderate or vigorous-intensity sports, fitness or recreational activities”), or “NA” if the
data are missing for that individual. There are different reasons that the data might be missing; for example, this question was not
asked of children younger than 12 years of age, while in other cases an adult may have declined to answer the question during the
interview.

4.2.1 Frequency distributions

Let’s look at how many people fall into each of these categories. We will do this in R by selecting the variable of interest
(PhysActive) from the NHANES dataset, grouping the data by the different values of the variable, and then counting how many
values there are in each group:

PhysActive AbsoluteFrequency

No 2473

Yes 2972

NA 1334

This table shows the frequencies of each of the different values; there were 2473 individuals who responded “No” to the question,
2972 who responded “Yes”, and 1334 for whom no response was given. We call this a frequency distribution because it tells us
how frequent each of the possible values is within our sample.

This shows us the absolute frequency of the two responses, for everyone who actually gave a response. We can see from this that
there are more people saying “Yes” than “No”, but it can be hard to tell from absolute numbers how big the difference is. For this
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reason, we often would rather present the data using relative frequency, which is obtained by dividing each frequency by the sum of
all frequencies:

The relative frequency provides a much easier way to see how big the imbalance is. We can also interpret the relative frequencies
as percentages by multiplying them by 100. In this example, we will drop the NA values as well, since we would like to be able to
interpret the relative frequencies of active versus inactive people.

Table 4.1: Absolute and relative frequencies and percentages for PhysActive variable

PhysActive AbsoluteFrequency RelativeFrequency Percentage

No 2473 0.45 45

Yes 2972 0.55 55

This lets us see that 45.4 percent of the individuals in the NHANES sample said “No” and 54.6 percent said “Yes”.

4.2.2 Cumulative distributions
The PhysActive variable that we examined above only had two possible values, but often we wish to summarize data that can have
many more possible values. When those values are quantitative, then one useful way to summarize them is via what we call a
cumulative frequency representation: rather than asking how many observations take on a specific value, we ask how many have a
value of at least some specific value.

Let’s look at another variable in the NHANES dataset, called SleepHrsNight which records how many hours the participant reports
sleeping on usual weekdays. Let’s create a frequency table as we did above, after removing anyone who didn’t provide a response
to the question.

Table 4.2: Frequency distribution for number of hours of sleep per night in the NHANES dataset

SleepHrsNight AbsoluteFrequency RelativeFrequency Percentage

2 9 0.00 0.18

3 49 0.01 0.97

4 200 0.04 3.97

5 406 0.08 8.06

6 1172 0.23 23.28

7 1394 0.28 27.69

8 1405 0.28 27.90

9 271 0.05 5.38

10 97 0.02 1.93

11 15 0.00 0.30

12 17 0.00 0.34

We can already begin to summarize the dataset just by looking at the table; for example, we can see that most people report
sleeping between 6 and 8 hours. Let’s plot the data to see this more clearly. To do this we can plot a histogram which shows the
number of cases having each of the different values; see left panel of Figure 4.2. The ggplot2() library has a built in histogram
function ( geom_histogram() ) which we will often use. We can also plot the relative frequencies, which we will often refer
to as densities - see the right panel of Figure 4.2.
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Figure 4.2: Left: Histogram showing the number (left) and proportion (right) of people reporting each possible value of the
SleepHrsNight variable.

What if we want to know how many people report sleeping 5 hours or less? To find this, we can compute a cumulative distribution.
To compute the cumulative frequency for some value j, we add up the frequencies for all of the values up to and including j:

cumulative frequency  absolute frequency 

Table 4.3: Absolute and cumulative frquency distributions for SleepHrsNight variable

SleepHrsNight AbsoluteFrequency CumulativeFrequency

2 9 9

3 49 58

4 200 258

5 406 664

6 1172 1836

7 1394 3230

8 1405 4635

9 271 4906

10 97 5003

11 15 5018

12 17 5035

In the left panel of Figure 4.3 we plot the data to see what these representations look like; the absolute frequency values are plotted
in solid lines, and the cumulative frequencies are plotted in dashed lines We see that the cumulative frequency is monotonically
increasing – that is, it can only go up or stay constant, but it can never decrease. Again, we usually find the relative frequencies to
be more useful than the absolute; those are plotted in the right panel of Figure 4.3.
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Figure 4.3: A plot of the relative (solid) and cumulative relative (dashed) values for frequency (left) and proportion (right) for the
possible values of SleepHrsNight.

4.2.3 Plotting histograms

Figure 4.4: A histogram of the Age (left) and Height (right) variables in NHANES.

The variables that we examined above were fairly simple, having only a few possible values. Now let’s look at a more complex
variable: Age. First let’s plot the Age variable for all of the individuals in the NHANES dataset (see left panel of Figure 4.4). What
do you see there? First, you should notice that the number of individuals in each age group is declining over time. This makes sense
because the population is being randomly sampled, and thus death over time leads to fewer people in the older age ranges. Second,
you probably notice a large spike in the graph at age 80. What do you think that’s about?

If you look at the help function for the NHANES dataset, you will see the following definition: “Age in years at screening of study
participant. Note: Subjects 80 years or older were recorded as 80.” The reason for this is that the relatively small number of
individuals with very high ages would make it potentially easier to identify the specific person in the dataset if you knew their exact
age; researchers generally promise their participants to keep their identity confidential, and this is one of the things they can do to
help protect their research subjects. This also highlights the fact that it’s always important to know where one’s data have come
from and how they have been processed; otherwise we might interpret them improperly, thinking that 80-year-olds had been
somehow overrepresented in the sample.

Let’s look at another more complex variable in the NHANES dataset: Height. The histogram of height values is plotted in the right
panel of Figure 4.4. The first thing you should notice about this distribution is that most of its density is centered around about 170
cm, but the distribution has a “tail” on the left; there are a small number of individuals with much smaller heights. What do you
think is going on here?

You may have intuited that the small heights are coming from the children in the dataset. One way to examine this is to plot the
histogram with separate colors for children and adults (left panel of Figure 4.5). This shows that all of the very short heights were
indeed coming from children in the sample. Let’s create a new version of NHANES that only includes adults, and then plot the
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histogram just for them (right panel of Figure 4.5). In that plot that the distribution looks much more symmetric. As we will see
later, this is a nice example of a normal (or Gaussian) distribution.

Figure 4.5: Histogram of heights for NHANES. A: values plotted separately for children (gray) and adults (black). B: values for
adults only. C: Same as B, but with bin width = 0.1

4.2.4 Histogram bins
In our earlier example with the sleep variable, the data were reported in whole numbers, and we simply counted the number of
people who reported each possible value. However, if you look at a few values of the Height variable in NHANES, you will see
that it was measured in centimeters down to the first decimal place:

Table 4.4: A few values from the NHANES data frame.

Height

170

170

168

155

174

174

Panel C of Figure 4.5 shows a histogram that counts the density of each possible value. That histogram looks really jagged, which
is because of the variability in specific decimal place values. For example, the value 173.2 occurs 32 times, while the value 173.3
only occurs 15 times. We probably don’t think that there is really such a big difference between the prevalence of these two
weights; more likely this is just due to random variability in our sample of people.
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In general, when we create a histogram of data that are continuous or where there are many possible values, we will bin the values
so that instead of counting and plotting the frequency of every specific value, we count and plot the frequency of values falling
within a specific range. That’s why the plot looked less jagged above in Panel B of 4.5; in this panel we set the bin width to 1,
which means that the histogram is computing by combining values within bins with a width of one; thus, the values 1.3, 1.5, and
1.6 would all count toward the frequency of the same bin, which would span from values equal to one up through values less than
2.

Note that once the bin size has been selected, then the number of bins is determined by the data:

number of bins 

There is no hard and fast rule for how to choose the optimal bin width. Occasionally it will be obvious (as when there are only a
few possible values), but in many cases it would require trial and error. There are methods that try to find an optimal bin size
automatically, such as the Freedman-Diaconis method (that is implemented within the nclass.FD()  function in R); we will
use this function in some later examples.

This page titled 4.2: Summarizing Data Using Tables is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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4.3: Idealized Representations of Distributions
Datasets are like snowflakes, in that every one is different, but nonetheless there are patterns that one often sees in different types
of data. This allows us to use idealized representations of the data to further summarize them. Let’s take the adult height data
plotted in 4.5, and plot them alongside a very different variable: pulse rate (heartbeats per minute), also measured in NHANES (see
Figure 4.6).

Figure 4.6: Histograms for height (left) and pulse (right) in the NHANES dataset, with the normal distribution overlaid for each
dataset.

While these plots certainly don’t look exactly the same, both have the general characteristic of being relatively symmetric around a
rounded peak in the middle. This shape is in fact one of the commonly observed shapes of distributions when we collect data,
which we call the normal (or Gaussian) distribution. This distribution is defined in terms of two values (which we call parameters
of the distribution): the location of the center peak (which we call the mean) and the width of the distribution (which is described in
terms of a parameter called the standard deviation). Figure 4.6 shows the appropriate normal distribution plotted on top of each of
the histrograms.You can see that although the curves don’t fit the data exactly, they do a pretty good job of characterizing the
distribution – with just two numbers!

As we will see later in the course when we discuss the central limit theorem, there is a deep mathematical reason why many
variables in the world exhibit the form of a normal distribution.

4.3.1 Skewness
The examples in Figure 4.6 followed the normal distribution fairly well, but in many cases the data will deviate in a systematic way
from the normal distribution. One way in which the data can deviate is when they are asymmetric, such that one tail of the
distribution is more dense than the other. We refer to this as “skewness”. Skewness commonly occurs when the measurement is
constrained to be non-negative, such as when we are counting things or measuring elapsed times (and thus the variable can’t take
on negative values).

An example of skewness can be seen in the average waiting times at the airport security lines at San Francisco International
Airport, plotted in the left panel of Figure 4.7. You can see that while most wait times are less than 20 minutes, there are a number
of cases where they are much longer, over 60 minutes! This is an example of a “right-skewed” distribution, where the right tail is
longer than the left; these are common when looking at counts or measured times, which can’t be less than zero. It’s less common
to see “left-skewed” distributions, but they can occur, for example when looking at fractional values that can’t take a value greater
than one.
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Figure 4.7: Examples of right-skewed and long-tailed distributions. Left: Average wait times for security at SFO Terminal A (Jan-
Oct 2017), obtained from

https://awt.cbp.gov/
. Right: A histogram of the number of Facebook friends amongst 3,663 individuals, obtained from the Stanford Large Network
Database. The person with the maximum number of friends is indicated by the diamond.

4.3.2 Long-tailed distributions

Historically, statistics has focused heavily on data that are normally distributed, but there are many data types that look nothing like
the normal distribution. In particular, many real-world distributions are “long-tailed”, meaning that the right tail extends far beyond
the most typical members of the distribution. One of the most interesting types of data where long-tailed distributions occur arise
from the analysis of social networks. For an example, let’s look at the Facebook friend data from the Stanford Large Network
Database and plot the histogram of number of friends across the 3,663 people in the database (see right panel of Figure 4.7). As we
can see, this distribution has a very long right tail – the average person has 24.09 friends, while the person with the most friends
(denoted by the blue dot) has 1043!

Long-tailed distributions are increasingly being recognized in the real world. In particular, many features of complex systems are
characterized by these distributions, from the frequency of words in text, to the number of flights in and out of different airports, to
the connectivity of brain networks. There are a number of different ways that long-tailed distributions can come about, but a
common one occurs in cases of the so-called “Matthew effect” from the Christian Bible:

For to every one who has will more be given, and he will have abundance; but from him
who has not, even what he has will be taken away. — Matthew 25:29, Revised Standard
Version

This is often paraphrased as “the rich get richer”. In these situations, advantages compound, such that those with more friends have
access to even more new friends, and those with more money have the ability do things that increase their riches even more.

As the course progresses we will see several examples of long-tailed distributions, and we should keep in mind that many of the
tools in statistics can fail when faced with long-tailed data. As Nassim Nicholas Taleb pointed out in his book “The Black Swan”,
such long-tailed distributions played a critical role in the 2008 financial crisis, because many of the financial models used by
traders assumed that financial systems would follow the normal distribution, which they clearly did not.
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4.4: Suggested Readings
The Black Swan: The Impact of the Highly Improbable, by Nassim Nicholas Taleb
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CHAPTER OVERVIEW

5: Summarizing Data with R (with Lucy King)
This chapter will introduce you to how to summarize data using R, as well as providing an introduction to a popular set of R tools
known as the “Tidyverse.”

Before doing anything else we need to load the libraries that we will use in this notebook.

library(tidyverse) 
library(cowplot) 
library(knitr) 
set.seed(123456) 
opts_chunk$set(tidy.opts=list(width.cutoff=80)) 
options(tibble.width = 60)

We will use the NHANES dataset for several of our examples, so let’s load the library that contains the data.

# load the NHANES data library 
# first unload it if it's already loaded, to make sure 
# we have a clean version 
 
if("NHANES" %in% (.packages())){ 
  detach('package:NHANES', unload=TRUE) 
} 
library(NHANES)  

5.1: Introduction to the Tidyverse
5.2: Creating or Modifying Variables Using Mutate()
5.3: Tidyverse in Action
5.4: Looking at Individual Variables Using Pull() and Head()
5.5: Computing a Frequency Distribution (Section 4.2.1)
5.6: Computing a Cumulative Distribution (Section 4.2.2)
5.7: Data Cleaning and Tidying with R
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5.1: Introduction to the Tidyverse
In this chapter we will introduce a way of working with data in R that is often referred to as the “Tidyverse.” This comprises a set
of packages that provide various tools for working with data, as well as a few special ways of using those functions

5.1.1 Making a data frame using tibble()
The tidyverse provides its over version of a data frame, which known as a tibble. A tibble is a data frame but with some smart
tweaks that make it easier to work with, expecially when using functions from the tidyverse. See here for more information on the
function tibble() : https://r4ds.had.co.nz/tibbles.html

# first create the individual variables 
n <- c("russ", "lucy", "jaclyn", "tyler") 
x <- c(1, 2, 3, 4) 
y <- c(4, 5, 6, 7) 
z <- c(7, 8, 9, 10) 
 
# create the data frame 
myDataFrame <- 
  tibble( 
    n, #list each of your columns in the order you want them 
    x, 
    y, 
    z 
  )
 
myDataFrame

## # A tibble: 4 x 4 
##   n          x     y     z 
##   <chr>  <dbl> <dbl> <dbl> 
## 1 russ       1     4     7 
## 2 lucy       2     5     8 
## 3 jaclyn     3     6     9 
## 4 tyler      4     7    10

Take a quick look at the properties of the data frame using glimpse() :

glimpse(myDataFrame) 

## Observations: 4 
## Variables: 4 
## $ n <chr> "russ", "lucy", "jaclyn", "tyler" 
## $ x <dbl> 1, 2, 3, 4 
## $ y <dbl> 4, 5, 6, 7 
## $ z <dbl> 7, 8, 9, 10

5.1.2 Selecting an element

There are various ways to access the contents within a data frame.
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5.1.2.1 Selecting a row or column by name

myDataFrame$x

## [1] 1 2 3 4

The first index refers to the row, the second to the column.

myDataFrame[1, 2]

## # A tibble: 1 x 1 
##       x 
##   <dbl> 
## 1     1

myDataFrame[2, 3]

## # A tibble: 1 x 1 
##       y 
##   <dbl> 
## 1     5

5.1.2.2 Selecting a row or column by index

myDataFrame[1, ]

## # A tibble: 1 x 4 
##   n         x     y     z 
##   <chr> <dbl> <dbl> <dbl> 
## 1 russ      1     4     7

myDataFrame[, 1]

## # A tibble: 4 x 1 
##   n      
##   <chr>  
## 1 russ   
## 2 lucy   
## 3 jaclyn 
## 4 tyler

5.1.2.3 Select a set of rows

myDataFrame %>%  
  slice(1:2) 
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## # A tibble: 2 x 4 
##   n         x     y     z 
##   <chr> <dbl> <dbl> <dbl> 
## 1 russ      1     4     7 
## 2 lucy      2     5     8

slice()  is a function that selects out rows based on their row number.

You will also notice something we haven’t discussed before: %>% . This is called a “pipe”, which is commonly used within the
tidyverse; you can read more here. A pipe takes the output from one command and feeds it as input to the next command. In this
case, simply writing the name of the data frame (myDataFrame) causes it to be input to the slice()  command following the
pipe. The benefit of pipes will become especially apparent when we want to start stringing together multiple data processing
operations into a single command.

In this example, no new variable is created - the output is printed to the screen, just like it would be if you typed the name of the
variable. If you wanted to save it to a new variable, you would use the <-  assignment operator, like this:

myDataFrameSlice <- myDataFrame %>%  
  slice(1:2)  
 
myDataFrameSlice

## # A tibble: 2 x 4 
##   n         x     y     z 
##   <chr> <dbl> <dbl> <dbl> 
## 1 russ      1     4     7 
## 2 lucy      2     5     8

5.1.2.4 Select a set of rows based on specific value(s)

myDataFrame %>%  
  filter(n == "russ")

## # A tibble: 1 x 4 
##   n         x     y     z 
##   <chr> <dbl> <dbl> <dbl> 
## 1 russ      1     4     7

filter()  is a function that retains only those rows that meet your stated criteria. We can also filter for multiple criteria at once
— in this example, the |  symbol indicates “or”:

myDataFrame %>%  
  filter(n == "russ" | n == "lucy")

## # A tibble: 2 x 4 
##   n         x     y     z 
##   <chr> <dbl> <dbl> <dbl> 
## 1 russ      1     4     7 
## 2 lucy      2     5     8
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5.1.2.5 Select a set of columns

myDataFrame %>%  
  select(x:y)

## # A tibble: 4 x 2 
##       x     y 
##   <dbl> <dbl> 
## 1     1     4 
## 2     2     5 
## 3     3     6 
## 4     4     7

select()  is a function that selects out only those columns you specify using their names

You can also specify a vector of columns to select.

myDataFrame %>%  
  select(c(x,z))

## # A tibble: 4 x 2 
##       x     z 
##   <dbl> <dbl> 
## 1     1     7 
## 2     2     8 
## 3     3     9 
## 4     4    10

5.1.3 Adding a row or column
add a named row

tiffanyDataFrame <- 
  tibble( 
    n = "tiffany", 
    x = 13, 
    y = 14, 
    z = 15 
  )
 
myDataFrame %>%  
  bind_rows(tiffanyDataFrame)

## # A tibble: 5 x 4 
##   n           x     y     z 
##   <chr>   <dbl> <dbl> <dbl> 
## 1 russ        1     4     7 
## 2 lucy        2     5     8 
## 3 jaclyn      3     6     9 
## 4 tyler       4     7    10 
## 5 tiffany    13    14    15
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bind_rows()  is a function that combines the rows from another dataframe to the current dataframe

This page titled 5.1: Introduction to the Tidyverse is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell
A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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5.2: Creating or Modifying Variables Using Mutate()
Often we will want to either create a new variable based on an existing variable, or modify the value of an existing variable. Within
the tidyverse, we do this using a function called mutate() . Let’s start with a toy example by creating a data frame containing a
single variable.

toy_df <- data.frame(x = c(1,2,3,4)) 
glimpse(toy_df)

## Observations: 4 
## Variables: 1 
## $ x <dbl> 1, 2, 3, 4

Let’s say that we wanted to create a new variable called y  that would contain the value of x multiplied by 10. We could do this
using mutate()  and then assign the result back to the same data frame:

toy_df <- toy_df %>% 
  # create a new variable called y that contains x*10 
  mutate(y = x*10) 
glimpse(toy_df)

## Observations: 4 
## Variables: 2 
## $ x <dbl> 1, 2, 3, 4 
## $ y <dbl> 10, 20, 30, 40

We could also overwrite a variable with a new value:

toy_df2 <- toy_df %>% 
  # create a new variable called y that contains x*10 
  mutate(y = y + 1) 
glimpse(toy_df2)

## Observations: 4 
## Variables: 2 
## $ x <dbl> 1, 2, 3, 4 
## $ y <dbl> 11, 21, 31, 41

We will use mutate()  often so it’s an important function to understand.

Here we can use it with our example data frame to create a new variable that is the sum of several other variables.

myDataFrame <-  
  myDataFrame %>% 
  mutate(total = x + y + z) 
 
kable(myDataFrame)

n x y z total

russ 1 4 7 12
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n x y z total

lucy 2 5 8 15

jaclyn 3 6 9 18

tyler 4 7 10 21

mutate() is a function that creates a new variable in a data frame using the existing variables. In this case, it creates a variable called
total that is the sum of the existing variables x, y, and z.

5.2.1 Remove a column using the select() function
Adding a minus sign to the name of a variable within the select()  command will remove that variable, leaving all of the
others.

myDataFrame <-  
  myDataFrame %>% 
  dplyr::select(-total) 
 
kable(myDataFrame)

n x y z

russ 1 4 7

lucy 2 5 8

jaclyn 3 6 9

tyler 4 7 10
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5.3: Tidyverse in Action
To see the tidyverse in action, let’s clean up the NHANES dataset. Each individual in the NHANES dataset has a unique identifier
stored in the variable ID . First let’s look at the number of rows in the dataset:

nrow(NHANES)

## [1] 6779

Now let’s see how many unique IDs there are. The unique()  function returns a vector containing all of the unique values for a
particular variable, and the length()  function returns the length of the resulting vector.

length(unique(NHANES$ID))

## [1] 6779

This shows us that while there are 10,000 observations in the data frame, there are only 6779 unique IDs. This means that if we
were to use the entire dataset, we would be reusing data from some individuals, which could give us incorrect results. For this
reason, we wold like to discard any observations that are duplicated.

Let’s create a new variable called NHANES_unique  that will contain only the distinct observations, with no individuals
appearing more than once. The dplyr  library provides a function called distinct()  that will do this for us. You may
notice that we didn’t explicitly load the dplyr  library above; however, if you look at the messages that appeared when we
loaded the tidyverse  library, you will see that it loaded dplyr  for us. To create the new data frame with unique
observations, we will pipe the NHANES data frame into the distinct()  function and then save the output to our new
variable.

NHANES_unique <-  
  NHANES %>%  
  distinct(ID, .keep_all = TRUE)

If we number of rows in the new data frame, it should be the same as the number of unique IDs (6779):

nrow(NHANES_unique)

## [1] 6779

In the next example you will see the power of pipes come to life, when we start tying together multiple functions into a single
operation (or “pipeline”).

This page titled 5.3: Tidyverse in Action is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A.
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5.6: Computing a Cumulative Distribution (Section 4.2.2)
Let’s compute a cumulative distribution for the SleepHrsNight  variable in NHANES. This looks very similar to what we
saw in the previous section.

# create summary table for relative frequency of different 
# values of SleepHrsNight  
 
SleepHrsNight_cumulative <-  
  NHANES_unique %>% 
  # drop NA values for SleepHrsNight variable 
  drop_na(SleepHrsNight) %>% 
  # remove other variables 
  dplyr::select(SleepHrsNight) %>%
  # group by values 
  group_by(SleepHrsNight) %>% 
  # create summary table 
  summarize(AbsoluteFrequency = n()) %>% 
  # create relative and cumulative frequencies 
  mutate( 
    RelativeFrequency = AbsoluteFrequency / sum(AbsoluteFrequency), 
    CumulativeDensity = cumsum(RelativeFrequency) 
  )
 
kable(SleepHrsNight_cumulative)

SleepHrsNight AbsoluteFrequency RelativeFrequency CumulativeDensity

2 9 0.00 0.00

3 49 0.01 0.01

4 200 0.04 0.05

5 406 0.08 0.13

6 1172 0.23 0.36

7 1394 0.28 0.64

8 1405 0.28 0.92

9 271 0.05 0.97

10 97 0.02 0.99

11 15 0.00 1.00

12 17 0.00 1.00
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5.7: Data Cleaning and Tidying with R
Now that you know a bit about the tidyverse, let’s look at the various tools that it provides for working with data. We will use as an
example an analysis of whether attitudes about statistics are different between the different student year groups in the class.

5.7.1 Statistics attitude data from course survey
These data were collected using the Attitudes Towards Statistics (ATS) scale (from
https://www.stat.auckland.ac.nz/~iase/cblumberg/wise2.pdf).

The 29-item ATS has two subscales. The Attitudes Toward Field subscale consists of the following 20 items, with reverse-keyed
items indicated by an “(R)”: 1, 3, 5, 6(R), 9, 10(R), 11, 13, 14(R), 16(R), 17, 19, 20(R), 21, 22, 23, 24, 26, 28(R), 29

The Attitudes Toward Course subscale consists of the following 9 items: 2(R), 4(R), 7(R), 8, 12(R), 15(R), 18(R), 25(R), 27(R)

For our purposes, we will just combine all 29 items together, rather than separating them into these subscales.

Note: I have removed the data from the graduate students and 5+ year students, since those would be too easily identifiable given
how few there are.

Let’s first save the file path to the data.

attitudeData_file <- 'data/statsAttitude.txt'

Next, let’s load the data from the file using the tidyverse function read_tsv() . There are several functions available for
reading in different file formats as part of the the readr  tidyverse package.

attitudeData <- read_tsv(attitudeData_file) 
                          
glimpse(attitudeData)
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Right now the variable names are unwieldy, since they include the entire name of the item; this is how Google Forms stores the
data. Let’s change the variable names to be somewhat more readable. We will change the names to “ats” where is replaced with the
question number and ats indicates Attitudes Toward Statistics scale. We can create these names using the rename()  and 
paste0()  functions. rename()  is pretty self-explanatory: a new name is assigned to an old name or a column position.

The paste0()  function takes a string along with a set of numbers, and creates a vector that combines the string with the
number.

## Observations: 148 
## Variables: 31 
## $ `What year are you at Stanford?`                                                
## $ `Have you ever taken a statistics course before?`                               
## $ `I feel that statistics will be useful to me in my profession.`                 
## $ `The thought of being enrolled in a statistics course makes me nervous.`        
## $ `A good researcher must have training in statistics.`                           
## $ `Statistics seems very mysterious to me.`                                       
## $ `Most people would benefit from taking a statistics course.`                    
## $ `I have difficulty seeing how statistics relates to my field of study.`         
## $ `I see being enrolled in a statistics course as a very unpleasant experience.`  
## $ `I would like to continue my statistical training in an advanced course.`       
## $ `Statistics will be useful to me in comparing the relative merits of different o
## $ `Statistics is not really very useful because it tells us what we already know a
## $ `Statistical training is relevant to my performance in my field of study.`      
## $ `I wish that I could have avoided taking my statistics course.`                 
## $ `Statistics is a worthwhile part of my professional training.`                  
## $ `Statistics is too math oriented to be of much use to me in the future.`        
## $ `I get upset at the thought of enrolling in another statistics course.`         
## $ `Statistical analysis is best left to the "experts" and should not be part of a 
## $ `Statistics is an inseparable aspect of scientific research.`                   
## $ `I feel intimidated when I have to deal with mathematical formulas.`            
## $ `I am excited at the prospect of actually using statistics in my job.`          
## $ `Studying statistics is a waste of time.`                                       
## $ `My statistical training will help me better understand the research being done 
## $ `One becomes a more effective "consumer" of research findings if one has some tr
## $ `Training in statistics makes for a more well-rounded professional experience.` 
## $ `Statistical thinking can play a useful role in everyday life.`                 
## $ `Dealing with numbers makes me uneasy.`                                         
## $ `I feel that statistics should be required early in one's professional training
## $ `Statistics is too complicated for me to use effectively.`                      
## $ `Statistical training is not really useful for most professionals.`             
## $ `Statistical thinking will one day be as necessary for efficient citizenship as 
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##  [1] "Year"        "StatsBefore" "ats1"        "ats2"        "ats3"        
##  [6] "ats4"        "ats5"        "ats6"        "ats7"        "ats8"        
## [11] "ats9"        "ats10"       "ats11"       "ats12"       "ats13"       
## [16] "ats14"       "ats15"       "ats16"       "ats17"       "ats18"       
## [21] "ats19"       "ats20"       "ats21"       "ats22"       "ats23"       
## [26] "ats24"       "ats25"       "ats26"       "ats27"       "ats28"       
## [31] "ats29"

#check out the data again 
glimpse(attitudeData)

nQuestions <- 29 # other than the first two columns, the rest of the columns are for 
 
# use rename to change the first two column names 
# rename can refer to columns either by their number or their name 
attitudeData <- 
  attitudeData %>%  
  rename(     # rename using columm numbers 
    # The first column is the year  
    Year = 1,  
    # The second column indicates whether the person took stats before 
    StatsBefore = 2  
  ) %>%  
  rename_at(  
    # rename all the columns except Year and StatsBefore 
    vars(-Year, -StatsBefore),  
    #rename by pasting the word "stat" and the number 
    funs(paste0('ats', 1:nQuestions))  
  )
 
# print out the column names 
names(attitudeData)
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## Observations: 148 
## Variables: 31 
## $ Year        <dbl> 3, 4, 2, 1, 2, 3, 4, 2, 2, 2, 4, 2, 3… 
## $ StatsBefore <chr> "Yes", "No", "No", "Yes", "No", "No",… 
## $ ats1        <dbl> 6, 4, 6, 3, 7, 4, 6, 5, 7, 5, 5, 4, 2… 
## $ ats2        <dbl> 1, 5, 5, 2, 7, 5, 5, 4, 2, 2, 3, 3, 7… 
## $ ats3        <dbl> 7, 6, 5, 7, 2, 4, 7, 7, 7, 5, 6, 5, 7… 
## $ ats4        <dbl> 2, 5, 5, 2, 7, 3, 3, 4, 5, 3, 3, 2, 3… 
## $ ats5        <dbl> 7, 5, 6, 7, 5, 4, 6, 6, 7, 5, 3, 5, 4… 
## $ ats6        <dbl> 1, 4, 5, 2, 2, 4, 2, 3, 1, 2, 2, 3, 1… 
## $ ats7        <dbl> 1, 4, 3, 2, 4, 4, 2, 2, 3, 2, 4, 2, 4… 
## $ ats8        <dbl> 2, 1, 4, 3, 1, 4, 4, 4, 7, 3, 2, 4, 1… 
## $ ats9        <dbl> 5, 4, 5, 5, 7, 4, 5, 5, 7, 6, 3, 5, 5… 
## $ ats10       <dbl> 2, 3, 2, 2, 1, 4, 2, 2, 1, 3, 3, 1, 1… 
## $ ats11       <dbl> 6, 4, 6, 2, 7, 4, 6, 5, 7, 3, 3, 4, 2… 
## $ ats12       <dbl> 2, 4, 1, 2, 5, 7, 2, 1, 2, 4, 4, 2, 4… 
## $ ats13       <dbl> 6, 4, 5, 5, 7, 3, 6, 6, 7, 5, 2, 5, 1… 
## $ ats14       <dbl> 2, 4, 3, 3, 3, 4, 2, 1, 1, 3, 3, 2, 1… 
## $ ats15       <dbl> 2, 4, 3, 3, 5, 6, 3, 4, 2, 3, 2, 4, 3… 
## $ ats16       <dbl> 1, 3, 2, 5, 1, 5, 2, 1, 2, 3, 2, 2, 1… 
## $ ats17       <dbl> 7, 7, 5, 7, 7, 4, 6, 6, 7, 6, 6, 7, 4… 
## $ ats18       <dbl> 2, 5, 4, 5, 7, 4, 2, 4, 2, 5, 2, 4, 6… 
## $ ats19       <dbl> 3, 3, 4, 3, 2, 3, 6, 5, 7, 3, 3, 5, 2… 
## $ ats20       <dbl> 1, 4, 1, 2, 1, 4, 2, 2, 1, 2, 3, 2, 3… 
## $ ats21       <dbl> 6, 3, 5, 5, 7, 5, 6, 5, 7, 3, 4, 6, 6… 
## $ ats22       <dbl> 7, 4, 5, 6, 7, 5, 6, 5, 7, 5, 5, 5, 5… 
## $ ats23       <dbl> 6, 4, 6, 6, 7, 5, 6, 7, 7, 5, 3, 5, 3… 
## $ ats24       <dbl> 7, 4, 4, 6, 7, 5, 6, 5, 7, 5, 5, 5, 3… 
## $ ats25       <dbl> 3, 5, 3, 3, 5, 4, 3, 4, 2, 3, 3, 2, 5… 
## $ ats26       <dbl> 7, 4, 5, 6, 2, 4, 6, 5, 7, 3, 4, 4, 2… 
## $ ats27       <dbl> 2, 4, 2, 2, 4, 4, 2, 1, 2, 3, 3, 2, 1… 
## $ ats28       <dbl> 2, 4, 3, 5, 2, 3, 3, 1, 1, 4, 3, 2, 2… 
## $ ats29       <dbl> 4, 4, 3, 6, 2, 1, 5, 3, 3, 3, 2, 3, 2…

The next thing we need to do is to create an ID for each individual. To do this, we will use the rownames_to_column()
function from the tidyverse. This creates a new variable (which we name “ID”) that contains the row names from the data frame;
thsee are simply the numbers 1 to N.

# let's add a participant ID so that we will be able to identify them later 
attitudeData <-  
  attitudeData %>%  
  rownames_to_column(var = 'ID') 
 
head(attitudeData)
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## # A tibble: 6 x 32 
##   ID     Year StatsBefore  ats1  ats2  ats3  ats4  ats5 
##   <chr> <dbl> <chr>       <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 1         3 Yes             6     1     7     2     7 
## 2 2         4 No              4     5     6     5     5 
## 3 3         2 No              6     5     5     5     6 
## 4 4         1 Yes             3     2     7     2     7 
## 5 5         2 No              7     7     2     7     5 
## 6 6         3 No              4     5     4     3     4 
## # … with 24 more variables: ats6 <dbl>, ats7 <dbl>, 
## #   ats8 <dbl>, ats9 <dbl>, ats10 <dbl>, ats11 <dbl>,
## #   ats12 <dbl>, ats13 <dbl>, ats14 <dbl>, ats15 <dbl>, 
## #   ats16 <dbl>, ats17 <dbl>, ats18 <dbl>, ats19 <dbl>, 
## #   ats20 <dbl>, ats21 <dbl>, ats22 <dbl>, ats23 <dbl>, 
## #   ats24 <dbl>, ats25 <dbl>, ats26 <dbl>, ats27 <dbl>, 
## #   ats28 <dbl>, ats29 <dbl>

If you look closely at the data, you can see that some of the participants have some missing responses. We can count them up for
each individual and create a new variable to store this to a new variable called numNA  using mutate() .

We can also create a table showing how many participants have a particular number of NA values. Here we use two additional
commands that you haven’t seen yet. The group_by()  function tells other functions to do their analyses while breaking the
data into groups based on one of the variables. Here we are going to want to summarize the number of people with each possible
number of NAs, so we will group responses by the numNA variable that we are creating in the first command here.

The summarize() function creates a summary of the data, with the new variables based on the data being fed in. In this case, we just
want to count up the number of subjects in each group, which we can do using the special n() function from dpylr.

## # A tibble: 3 x 2 
##   numNA     n 
##   <dbl> <int> 
## 1     0   141 
## 2     1     6 
## 3     2     1

We can see from the table that there are only a few participants with missing data; six people are missing one answer, and one is
missing two answers. Let’s find those individuals, using the filter() command from dplyr. filter() returns the subset of rows from a
data frame that match a particular test - in this case, whether numNA is > 0.

attitudeData %>%  
  filter(numNA > 0)

# compute the number of NAs for each participant 
attitudeData <-  
  attitudeData %>%  
  mutate( 
    numNA = rowSums(is.na(.)) # we use the . symbol to tell the is.na function to loo
  )
   
# present a table with counts of the number of missing responses 
attitudeData %>%  
  count(numNA)
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## # A tibble: 7 x 33 
##   ID     Year StatsBefore  ats1  ats2  ats3  ats4  ats5 
##   <chr> <dbl> <chr>       <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 42        2 No             NA     2     7     5     6 
## 2 55        1 No              5     3     7     4     5 
## 3 90        1 No              7     2     7     5     7 
## 4 113       2 No              5     7     7     5     6 
## 5 117       2 Yes             6     6     7     4     6 
## 6 137       3 No              7     5     6     5     6 
## 7 139       1 No              7     5     7     5     6 
## # … with 25 more variables: ats6 <dbl>, ats7 <dbl>, 
## #   ats8 <dbl>, ats9 <dbl>, ats10 <dbl>, ats11 <dbl>,
## #   ats12 <dbl>, ats13 <dbl>, ats14 <dbl>, ats15 <dbl>, 
## #   ats16 <dbl>, ats17 <dbl>, ats18 <dbl>, ats19 <dbl>, 
## #   ats20 <dbl>, ats21 <dbl>, ats22 <dbl>, ats23 <dbl>, 
## #   ats24 <dbl>, ats25 <dbl>, ats26 <dbl>, ats27 <dbl>, 
## #   ats28 <dbl>, ats29 <dbl>, numNA <dbl>

There are fancy techniques for trying to guess the value of missing data (known as “imputation”) but since the number of
participants with missing values is small, let’s just drop those participants from the list. We can do this using the drop_na()
function from the tidyr  package, another tidyverse package that provides tools for cleaning data. We will also remove the
numNA variable, since we won’t need it anymore after removing the subjects with missing answeres. We do this using the 
select()  function from the dplyr  tidyverse package, which selects or removes columns from a data frame. By putting a

minus sign in front of numNA, we are telling it to remove that column.

select()  and filter()  are similar - select()  works on columns (i.e. variables) and filter()  works on rows
(i.e. observations).

# this is equivalent to drop_na(attitudeData) 
attitudeDataNoNA <-  
  attitudeData %>%  
  drop_na() %>%  
  select(-numNA) 
 
glimpse(attitudeDataNoNA)
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## Observations: 141 
## Variables: 32 
## $ ID          <chr> "1", "2", "3", "4", "5", "6", "7", "8… 
## $ Year        <dbl> 3, 4, 2, 1, 2, 3, 4, 2, 2, 2, 4, 2, 3… 
## $ StatsBefore <chr> "Yes", "No", "No", "Yes", "No", "No",… 
## $ ats1        <dbl> 6, 4, 6, 3, 7, 4, 6, 5, 7, 5, 5, 4, 2… 
## $ ats2        <dbl> 1, 5, 5, 2, 7, 5, 5, 4, 2, 2, 3, 3, 7… 
## $ ats3        <dbl> 7, 6, 5, 7, 2, 4, 7, 7, 7, 5, 6, 5, 7… 
## $ ats4        <dbl> 2, 5, 5, 2, 7, 3, 3, 4, 5, 3, 3, 2, 3… 
## $ ats5        <dbl> 7, 5, 6, 7, 5, 4, 6, 6, 7, 5, 3, 5, 4… 
## $ ats6        <dbl> 1, 4, 5, 2, 2, 4, 2, 3, 1, 2, 2, 3, 1… 
## $ ats7        <dbl> 1, 4, 3, 2, 4, 4, 2, 2, 3, 2, 4, 2, 4… 
## $ ats8        <dbl> 2, 1, 4, 3, 1, 4, 4, 4, 7, 3, 2, 4, 1… 
## $ ats9        <dbl> 5, 4, 5, 5, 7, 4, 5, 5, 7, 6, 3, 5, 5… 
## $ ats10       <dbl> 2, 3, 2, 2, 1, 4, 2, 2, 1, 3, 3, 1, 1… 
## $ ats11       <dbl> 6, 4, 6, 2, 7, 4, 6, 5, 7, 3, 3, 4, 2… 
## $ ats12       <dbl> 2, 4, 1, 2, 5, 7, 2, 1, 2, 4, 4, 2, 4… 
## $ ats13       <dbl> 6, 4, 5, 5, 7, 3, 6, 6, 7, 5, 2, 5, 1… 
## $ ats14       <dbl> 2, 4, 3, 3, 3, 4, 2, 1, 1, 3, 3, 2, 1… 
## $ ats15       <dbl> 2, 4, 3, 3, 5, 6, 3, 4, 2, 3, 2, 4, 3… 
## $ ats16       <dbl> 1, 3, 2, 5, 1, 5, 2, 1, 2, 3, 2, 2, 1… 
## $ ats17       <dbl> 7, 7, 5, 7, 7, 4, 6, 6, 7, 6, 6, 7, 4… 
## $ ats18       <dbl> 2, 5, 4, 5, 7, 4, 2, 4, 2, 5, 2, 4, 6… 
## $ ats19       <dbl> 3, 3, 4, 3, 2, 3, 6, 5, 7, 3, 3, 5, 2… 
## $ ats20       <dbl> 1, 4, 1, 2, 1, 4, 2, 2, 1, 2, 3, 2, 3… 
## $ ats21       <dbl> 6, 3, 5, 5, 7, 5, 6, 5, 7, 3, 4, 6, 6… 
## $ ats22       <dbl> 7, 4, 5, 6, 7, 5, 6, 5, 7, 5, 5, 5, 5… 
## $ ats23       <dbl> 6, 4, 6, 6, 7, 5, 6, 7, 7, 5, 3, 5, 3… 
## $ ats24       <dbl> 7, 4, 4, 6, 7, 5, 6, 5, 7, 5, 5, 5, 3… 
## $ ats25       <dbl> 3, 5, 3, 3, 5, 4, 3, 4, 2, 3, 3, 2, 5… 
## $ ats26       <dbl> 7, 4, 5, 6, 2, 4, 6, 5, 7, 3, 4, 4, 2… 
## $ ats27       <dbl> 2, 4, 2, 2, 4, 4, 2, 1, 2, 3, 3, 2, 1… 
## $ ats28       <dbl> 2, 4, 3, 5, 2, 3, 3, 1, 1, 4, 3, 2, 2… 
## $ ats29       <dbl> 4, 4, 3, 6, 2, 1, 5, 3, 3, 3, 2, 3, 2…

Try the following on your own: Using the attitudeData data frame, drop the NA values, create a new variable called mystery that
contains a value of 1 for anyone who answered 7 to question ats4 (“Statistics seems very mysterious to me”). Create a summary
that includes the number of people reporting 7 on this question, and the proportion of people who reported 7.

5.7.1.1 Tidy data

These data are in a format that meets the principles of “tidy data”, which state the following:

Each variable must have its own column.
Each observation must have its own row.
Each value must have its own cell.

This is shown graphically the following figure (from Hadley Wickham, developer of the “tidyverse”):

[Following three rules makes a dataset tidy: variables are in columns, observations are in rows, and values are in cells..]

In our case, each column represents a variable: ID  identifies which student responded, Year  contains their year at Stanford, 
StatsBefore  contains whether or not they have taken statistics before, and ats1 through ats29 contain their responses to each

item on the ATS scale. Each observation (row) is a response from one individual student. Each value has its own cell (e.g., the
values for Year  and StatsBefoe  are stored in separate cells in separate columns).
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For an example of data that are NOT tidy, take a look at these data Belief in Hell - click on the “Table” tab to see the data.

What are the variables
Why aren’t these data tidy?

5.7.1.2 Recoding data

We now have tidy data; however, some of the ATS items require recoding. Specifically, some of the items need to be “reverse
coded”; these items include: ats2, ats4, ats6, ats7, ats10, ats12, ats14, ats15, ats16, ats18, ats20, ats25, ats27 and ats28. The raw
responses for each item are on the 1-7 scale; therefore, for the reverse coded items, we need to reverse them by subtracting the raw
score from 8 (such that 7 becomes 1 and 1 becomes 7). To recode these items, we will use the tidyverse mutate()  function.
It’s a good idea when recoding to preserve the raw original variables and create new recoded variables with different names.

There are two ways we can use mutate()  function to recode these variables. The first way is easier to understand as a new
code, but less efficient and more prone to error. Specifically, we repeat the same code for every variable we want to reverse code as
follows:

attitudeDataNoNA %>%  
  mutate( 
    ats2_re = 8 - ats2, 
    ats4_re = 8 - ats4, 
    ats6_re = 8 - ats6, 
    ats7_re = 8 - ats7, 
    ats10_re = 8 - ats10, 
    ats12_re = 8 - ats12, 
    ats14_re = 8 - ats14, 
    ats15_re = 8 - ats15, 
    ats16_re = 8 - ats16, 
    ats18_re = 8 - ats18, 
    ats20_re = 8 - ats20, 
    ats25_re = 8 - ats25, 
    ats27_re = 8 - ats27, 
    ats28_re = 8 - ats28 
  ) 
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## # A tibble: 141 x 46 
##    ID     Year StatsBefore  ats1  ats2  ats3  ats4  ats5 
##    <chr> <dbl> <chr>       <dbl> <dbl> <dbl> <dbl> <dbl> 
##  1 1         3 Yes             6     1     7     2     7 
##  2 2         4 No              4     5     6     5     5 
##  3 3         2 No              6     5     5     5     6 
##  4 4         1 Yes             3     2     7     2     7 
##  5 5         2 No              7     7     2     7     5 
##  6 6         3 No              4     5     4     3     4 
##  7 7         4 Yes             6     5     7     3     6 
##  8 8         2 Yes             5     4     7     4     6 
##  9 9         2 Yes             7     2     7     5     7 
## 10 10        2 Yes             5     2     5     3     5 
## # … with 131 more rows, and 38 more variables: ats6 <dbl>, 
## #   ats7 <dbl>, ats8 <dbl>, ats9 <dbl>, ats10 <dbl>, 
## #   ats11 <dbl>, ats12 <dbl>, ats13 <dbl>, ats14 <dbl>, 
## #   ats15 <dbl>, ats16 <dbl>, ats17 <dbl>, ats18 <dbl>, 
## #   ats19 <dbl>, ats20 <dbl>, ats21 <dbl>, ats22 <dbl>, 
## #   ats23 <dbl>, ats24 <dbl>, ats25 <dbl>, ats26 <dbl>, 
## #   ats27 <dbl>, ats28 <dbl>, ats29 <dbl>, ats2_re <dbl>, 
## #   ats4_re <dbl>, ats6_re <dbl>, ats7_re <dbl>, 
## #   ats10_re <dbl>, ats12_re <dbl>, ats14_re <dbl>, 
## #   ats15_re <dbl>, ats16_re <dbl>, ats18_re <dbl>, 
## #   ats20_re <dbl>, ats25_re <dbl>, ats27_re <dbl>, 
## #   ats28_re <dbl>

The second way is more efficient and takes advatange of the use of “scoped verbs”
(https://dplyr.tidyverse.org/reference/scoped.html), which allow you to apply the same code to several variables at once. Because
you don’t have to keep repeating the same code, you’re less likely to make an error:

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8732?pdf
https://dplyr.tidyverse.org/reference/scoped.html


5.7.10 https://stats.libretexts.org/@go/page/8732

ats_recode <- #create a vector of the names of the variables to recode 
  c( 
    "ats2", 
    "ats4", 
    "ats6", 
    "ats7", 
    "ats10", 
    "ats12", 
    "ats14", 
    "ats15", 
    "ats16", 
    "ats18", 
    "ats20", 
    "ats25", 
    "ats27", 
    "ats28" 
  )
 
 
attitudeDataNoNA <- 
  attitudeDataNoNA %>%  
  mutate_at( 
    vars(ats_recode), # the variables you want to recode 
    funs(re = 8 - .) # the function to apply to each variable 
  )

Whenever we do an operation like this, it’s good to check that it actually worked correctly. It’s easy to make mistakes in coding,
which is why it’s important to check your work as well as you can.

We can quickly select a couple of the raw and recoded columns from our data and make sure things appear to have gone according
to plan:

attitudeDataNoNA %>%  
  select( 
    ats2, 
    ats2_re, 
    ats4, 
    ats4_re 
  )
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## # A tibble: 141 x 4 
##     ats2 ats2_re  ats4 ats4_re 
##    <dbl>   <dbl> <dbl>   <dbl> 
##  1     1       7     2       6 
##  2     5       3     5       3 
##  3     5       3     5       3 
##  4     2       6     2       6 
##  5     7       1     7       1 
##  6     5       3     3       5 
##  7     5       3     3       5 
##  8     4       4     4       4 
##  9     2       6     5       3 
## 10     2       6     3       5 
## # … with 131 more rows

Let’s also make sure that there are no responses outside of the 1-7 scale that we expect, and make sure that no one specified a year
outside of the 1-4 range.

attitudeDataNoNA %>%  
  summarise_at( 
    vars(ats1:ats28_re), 
    funs(min, max) 
  )
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## # A tibble: 1 x 86 
##   ats1_min ats2_min ats3_min ats4_min ats5_min ats6_min 
##      <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl> 
## 1        1        1        2        1        2        1 
## # … with 80 more variables: ats7_min <dbl>, ats8_min <dbl>, 
## #   ats9_min <dbl>, ats10_min <dbl>, ats11_min <dbl>,
## #   ats12_min <dbl>, ats13_min <dbl>, ats14_min <dbl>, 
## #   ats15_min <dbl>, ats16_min <dbl>, ats17_min <dbl>, 
## #   ats18_min <dbl>, ats19_min <dbl>, ats20_min <dbl>, 
## #   ats21_min <dbl>, ats22_min <dbl>, ats23_min <dbl>, 
## #   ats24_min <dbl>, ats25_min <dbl>, ats26_min <dbl>, 
## #   ats27_min <dbl>, ats28_min <dbl>, ats29_min <dbl>, 
## #   ats2_re_min <dbl>, ats4_re_min <dbl>, 
## #   ats6_re_min <dbl>, ats7_re_min <dbl>, 
## #   ats10_re_min <dbl>, ats12_re_min <dbl>, 
## #   ats14_re_min <dbl>, ats15_re_min <dbl>, 
## #   ats16_re_min <dbl>, ats18_re_min <dbl>, 
## #   ats20_re_min <dbl>, ats25_re_min <dbl>, 
## #   ats27_re_min <dbl>, ats28_re_min <dbl>, ats1_max <dbl>, 
## #   ats2_max <dbl>, ats3_max <dbl>, ats4_max <dbl>, 
## #   ats5_max <dbl>, ats6_max <dbl>, ats7_max <dbl>, 
## #   ats8_max <dbl>, ats9_max <dbl>, ats10_max <dbl>, 
## #   ats11_max <dbl>, ats12_max <dbl>, ats13_max <dbl>, 
## #   ats14_max <dbl>, ats15_max <dbl>, ats16_max <dbl>, 
## #   ats17_max <dbl>, ats18_max <dbl>, ats19_max <dbl>, 
## #   ats20_max <dbl>, ats21_max <dbl>, ats22_max <dbl>, 
## #   ats23_max <dbl>, ats24_max <dbl>, ats25_max <dbl>, 
## #   ats26_max <dbl>, ats27_max <dbl>, ats28_max <dbl>, 
## #   ats29_max <dbl>, ats2_re_max <dbl>, ats4_re_max <dbl>, 
## #   ats6_re_max <dbl>, ats7_re_max <dbl>, 
## #   ats10_re_max <dbl>, ats12_re_max <dbl>, 
## #   ats14_re_max <dbl>, ats15_re_max <dbl>, 
## #   ats16_re_max <dbl>, ats18_re_max <dbl>, 
## #   ats20_re_max <dbl>, ats25_re_max <dbl>, 
## #   ats27_re_max <dbl>, ats28_re_max <dbl>

attitudeDataNoNA %>%  
  summarise_at( 
    vars(Year), 
    funs(min, max) 
  )

## # A tibble: 1 x 2 
##     min   max 
##   <dbl> <dbl> 
## 1     1     4

5.7.1.3 Different data formats

Sometimes we need to reformat our data in order to analyze it or visualize it in a specific way. Two tidyverse functions, 
gather()  and spread() , help us to do this.
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For example, say we want to examine the distribution of the raw responses to each of the ATS items (i.e., a histogram). In this case,
we would need our x-axis to be a single column of the responses across all the ATS items. However, currently the responses for
each item are stored in 29 different columns.

This means that we need to create a new version of this dataset. It will have four columns: - ID - Year - Question (for each of the
ATS items) - ResponseRaw (for the raw response to each of the ATS items)

Thus, we want change the format of the dataset from being “wide” to being “long”.

We change the format to “wide” using the gather()  function.

gather()  takes a number of variables and reformates them into two variables: one that contains the variable values, and
another called the “key” that tells us which variable the value came from. In this case, we want it to reformat the data so that each
response to an ATS question is in a separate row and the key column tells us which ATS question it corresponds to. It is much
better to see this in practice than to explain in words!

## # A tibble: 20 x 5 
##    ID     Year StatsBefore question response 
##    <chr> <dbl> <chr>       <chr>       <dbl> 
##  1 1         3 Yes         ats1            6 
##  2 2         4 No          ats1            4 
##  3 3         2 No          ats1            6 
##  4 4         1 Yes         ats1            3 
##  5 5         2 No          ats1            7 
##  6 6         3 No          ats1            4 
##  7 7         4 Yes         ats1            6 
##  8 8         2 Yes         ats1            5 
##  9 9         2 Yes         ats1            7 
## 10 10        2 Yes         ats1            5 
## 11 11        4 No          ats1            5 
## 12 12        2 No          ats1            4 
## 13 13        3 Yes         ats1            2 
## 14 14        1 Yes         ats1            6 
## 15 15        2 No          ats1            7 
## 16 16        4 No          ats1            7 
## 17 17        2 No          ats1            7 
## 18 18        2 No          ats1            6 
## 19 19        1 No          ats1            6 
## 20 20        1 No          ats1            3

glimpse(attitudeData_long)

attitudeData_long <-  
  attitudeDataNoNA %>%  
  select(-ats_recode) %>% #remove the raw variables that you recoded 
  gather( 
    key = question, # key refers to the new variable containing the question number 
    value = response, # value refers to the new response variable 
    -ID, -Year, -StatsBefore #the only variables we DON'T want to gather 
  )
 
attitudeData_long %>%  
  slice(1:20)
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## Observations: 4,089 
## Variables: 5 
## $ ID          <chr> "1", "2", "3", "4", "5", "6", "7", "8… 
## $ Year        <dbl> 3, 4, 2, 1, 2, 3, 4, 2, 2, 2, 4, 2, 3… 
## $ StatsBefore <chr> "Yes", "No", "No", "Yes", "No", "No",… 
## $ question    <chr> "ats1", "ats1", "ats1", "ats1", "ats1… 
## $ response    <dbl> 6, 4, 6, 3, 7, 4, 6, 5, 7, 5, 5, 4, 2…

Say we now wanted to undo the gather()  and return our dataset to wide format. For this, we would use the function 
spread() .

attitudeData_wide <- 
  attitudeData_long %>%  
  spread( 
    key = question, #key refers to the variable indicating which question each respon
    value = response 
  )
 
attitudeData_wide %>%  
  slice(1:20)
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## # A tibble: 20 x 32 
##    ID     Year StatsBefore  ats1 ats10_re ats11 ats12_re 
##    <chr> <dbl> <chr>       <dbl>    <dbl> <dbl>    <dbl> 
##  1 1         3 Yes             6        6     6        6 
##  2 10        2 Yes             5        5     3        4 
##  3 100       4 Yes             5        6     4        2 
##  4 101       2 No              4        7     2        4 
##  5 102       3 Yes             5        6     5        6 
##  6 103       2 No              6        7     5        7 
##  7 104       2 Yes             6        5     5        3 
##  8 105       3 No              6        6     5        6 
##  9 106       1 No              4        4     4        4 
## 10 107       2 No              1        2     1        1 
## 11 108       2 No              7        7     7        7 
## 12 109       2 No              4        4     4        6 
## 13 11        4 No              5        5     3        4 
## 14 110       3 No              5        7     4        4 
## 15 111       2 No              6        6     6        3 
## 16 112       3 No              6        7     5        7 
## 17 114       2 No              5        4     4        3 
## 18 115       3 No              5        7     5        1 
## 19 116       3 No              5        6     5        5 
## 20 118       2 No              6        6     6        1 
## # … with 25 more variables: ats13 <dbl>, ats14_re <dbl>, 
## #   ats15_re <dbl>, ats16_re <dbl>, ats17 <dbl>, 
## #   ats18_re <dbl>, ats19 <dbl>, ats2_re <dbl>, 
## #   ats20_re <dbl>, ats21 <dbl>, ats22 <dbl>, ats23 <dbl>, 
## #   ats24 <dbl>, ats25_re <dbl>, ats26 <dbl>, 
## #   ats27_re <dbl>, ats28_re <dbl>, ats29 <dbl>, 
## #   ats3 <dbl>, ats4_re <dbl>, ats5 <dbl>, ats6_re <dbl>, 
## #   ats7_re <dbl>, ats8 <dbl>, ats9 <dbl>

Now that we have created a “long” version of our data, they are in the right format to create the plot. We will use the tidyverse
function ggplot()  to create our histogram with geom_histogram .

0.5

attitudeData_long %>%  
  ggplot(aes(x = response)) + 

  geom_histogram(binwidth = ) +
  scale_x_continuous(breaks = seq.int(1, 7, 1))

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8732?pdf


5.7.16 https://stats.libretexts.org/@go/page/8732

It looks like responses were fairly positively overall.

We can also aggregate each participant’s responses to each question during each year of their study at Stanford to examine the
distribution of mean ATS responses across people by year.

We will use the group_by()  and summarize()  functions to aggregate the responses.

attitudeData_agg <- 
  attitudeData_long %>%  
  group_by(ID, Year) %>% 
  summarize( 
    mean_response = mean(response) 
  )
attitudeData_agg

## # A tibble: 141 x 3 
## # Groups:   ID [141] 
##    ID     Year mean_response 
##    <chr> <dbl>         <dbl> 
##  1 1         3          6    
##  2 10        2          4.66 
##  3 100       4          5.03 
##  4 101       2          5.10 
##  5 102       3          4.66 
##  6 103       2          5.55 
##  7 104       2          4.31 
##  8 105       3          5.10 
##  9 106       1          4.21 
## 10 107       2          2.45 
## # … with 131 more rows
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First let’s use the geom_density argument in ggplot()  to look at mean responses across people, ignoring year of response. The
density argrument is like a histogram but smooths things over a bit.

attitudeData_agg %>%  
  ggplot(aes(mean_response)) + 
  geom_density()

Now we can also look at the distribution for each year.

attitudeData_agg %>%  
  ggplot(aes(mean_response, color = factor(Year))) + 
  geom_density()
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Or look at trends in responses across years.

attitudeData_agg %>%  
  group_by(Year) %>%  
  summarise( 
    mean_response = mean(mean_response) 
  ) %>%  
  ggplot(aes(Year, mean_response)) + 
  geom_line()
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This looks like a precipitous drop - but how might that be misleading?
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CHAPTER OVERVIEW

6: Data Visualization

Describe the principles that distinguish between good and bad graphs, and use them to identify good versus bad graphs.
Understand the human limitations that must be accommodated in order to make effective graphs.
Promise to never create a pie chart. Ever.

On January 28, 1986, the Space Shuttle Challenger exploded 73 seconds after takeoff, killing all 7 of the astronauts on board. As
when any such disaster occurs, there was an official investigation into the cause of the accident, which found that an O-ring
connecting two sections of the solid rocket booster had leaked, resulting in failure of the joint and explosion of the large liquid fuel
tank (see figure 6.1).

Figure 6.1: An image of the solid rocket booster leaking fuel, seconds before the explosion. By NASA (Great Images in NASA
Description) [Public domain], via Wikimedia Commons

The investigation found that many aspects of the NASA decision making process were flawed, and focused in particular on a
meeting that was had between NASA staff and engineers from Morton Thiokol, a contractor who had built the solid rocket
boosters. These engineers were particularly concerned because the temperatures were forecast to be very cold on the morning of the
launch, and they had data from previous launches showing that performance of the O-rings was compromised at lower
temperatures. In a meeting on the evening before the launch, the engineers presented their data to the NASA managers, but were
unable to convince them to postpone the launch. Their evidence was a set of hand-written slides showing numbers from various
past launches.

The visualization expert Edward Tufte has argued that with a proper presentation of all of the data, the engineers could have been
much more persuasive. In particular, they could have shown a figure like the one in Figure 6.2, which highlights two important
facts. First, it shows that the amount of O-ring damage (defined by the amount of erosion and soot found outside the rings after the
solid rocket boosters were retrieved from the ocean in previous flights) was closely related to the temperature at takeoff. Second, it
shows that the range of forecasted temperatures for the morning of January 28 (shown in the shaded area) was well outside of the
range of all previous launches. While we can’t know for sure, it seems at least plausible that this could have been more persuasive.

 Learning Objectives

https://libretexts.org/
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Figure 6.2: A replotting of Tufte’s damage index data. The line shows the trend in the data, and the shaded patch shows the
projected temperatures for the morning of the launch.

6.1: Anatomy of a Plot
6.2: Principles of Good Visualization
6.3: Accommodating Human Limitations
6.4: Correcting for Other Factors
6.5: Suggested readings and videos
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6.1: Anatomy of a Plot
The goal of plotting data is to present a summary of a dataset in a two-dimensional (or occasionally three-dimensional)
presentation. We refer to the dimensions as axes – the horizontal axis is called the X-axis and the vertical axis is called the Y-axis.
We can arrange the data along the axes in a way that highlights the data values. These values may be either continuous or
categorical.

There are many different types of plots that we can use, which have different advantages and disadvantages. Let’s say that we are
interested in characterizing the difference in height between men and women in the NHANES dataset. Figure 6.3 shows four
different ways to plot these data.

1. The bar graph in panel A shows the difference in means, but doesn’t show us how much spread there is in the data around these
means – and as we will see later, knowing this is essential to determine whether we think the difference between the groups is
large enough to be important.

2. The second plot shows the bars with all of the data points overlaid - this makes it a bit clearer that the distributions of height for
men and women are overlapping, but it’s still hard to see due to the large number of data points.

In general we prefer using a plotting technique that provides a clearer view of the distribution of the data points.

3. In panel C, we see one example of a violin plot, which plots the distribution of data in each condition (after smoothing it out a
bit).

4. Another option is the box plot shown in panel D, which shows the median (central line), a measure of variability (the width of
the box, which is based on a measure called the interquartile range), and any outliers (noted by the points at the ends of the
lines). These are both effective ways to show data that provide a good feel for the distribution of the data.

Figure 6.3: Four different ways of plotting the difference in height between men and women in the NHANES dataset. Panel A plots
the means of the two groups, which gives no way to assess the relative overlap of the two distributions. Panel B shows the same
bars, but also overlays the data points, jittering them so that we can see their overall distribution. Panel C shows a violin plot,
which shows the distribution of the datasets for each group. Panel D shows a box plot, which highlights the spread of the
distribution along with any outliers (which are shown as individual points).
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6.2: Principles of Good Visualization
Many books have been written on effective visualization of data. There are some principles that most of these authors agree on,
while others are more contentious. Here we summarize some of the major principles; if you want to learn more, then some good
resources are listed in the Suggested Readings section at the end of this chapter.

6.2.1 Show the data and make them stand out
Let’s say that I had performed a study that examined the relationship between dental health and time spent flossing, and I would
like to visualize my data. Figure 6.4 shows four possible presentations of these data.

1. In panel A, we don’t actually show the data, just a line expressing the relationship between the data. This is clearly not optimal,
because we can’t actually see what the underlying data look like.

Panels B-D show three possible outcomes from plotting the actual data, where each plot shows a different way that the data might
have looked.

2. If we saw the plot in Panel B, we would probably be suspicious – rarely would real data follow such a precise pattern.
3. The data in Panel C, on the other hand, look like real data – they show a general trend, but they are messy, as data in the world

usually are.
4. The data in Panel D show us that the apparent relationship between the two variables is solely caused by one individual, who

we would refer to as an outlier because they fall so far outside of the pattern of the rest of the group. It should be clear that we
probably don’t want to conclude very much from an effect that is driven by one data point. This figure highlights why it is
always important to look at the raw data before putting too much faith in any summary of the data.

Figure 6.4: Four different possible presentations of data for the dental health example. Each point in the scatter plot represents one
data point in the dataset, and the line in each plot represents the linear trend in the data.

6.2.2 Maximize the data/ink ratio
Edward Tufte has proposed an idea called the data/ink ratio:

 data/ink ratio=

amount of  ink used on data

total amount of  ink
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The point of this is to minimize visual clutter and let the data show through. For example, take the two presentations of the dental
health data in Figure 6.5. Both panels show the same data, but panel A is much easier to apprehend, because of its relatively higher
data/ink ratio.

Figure 6.5: An example of the same data plotted with two different data/ink ratios.

6.2.3 Avoid chartjunk
It’s especially common to see presentations of data in the popular media that are adorned with lots of visual elements that are
thematically related to the content but unrelated to the actual data. This is known as chartjunk, and should be avoided at all costs.

One good way to avoid chartjunk is to avoid using popular spreadsheet programs to plot one’s data. For example, the chart in
Figure 6.6 (created using Microsoft Excel) plots the relative popularity of different religions in the United States. There are at least
three things wrong with this figure:

it has graphics overlaid on each of the bars that have nothing to do with the actual data
it has a distracting background texture
it uses three-dimensional bars, which distort the data

Figure 6.6: An example of chart junk.
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6.2.4 Avoid distorting the data
It’s often possible to use visualization to distort the message of a dataset. A very common one is use of different axis scaling to
either exaggerate or hide a pattern of data. For example, let’s say that we are interested in seeing whether rates of violent crime
have changed in the US. In Figure 6.7, we can see these data plotted in ways that either make it look like crime has remained
constant, or that it has plummeted. The same data can tell two very different stories!

Figure 6.7: Crime data from 1990 to 2014 plotted over time. Panels A and B show the same data, but with different axis ranges.
Data obtained from https://www.ucrdatatool.gov/Search/Crime/State/RunCrimeStatebyState.cfm

One of the major controversies in statistical data visualization is how to choose the Y axis, and in particular whether it should
always include zero. In his famous book “How to lie with statistics”, Darrell Huff argued strongly that one should always include
the zero point in the Y axis. On the other hand, Edward Tufte has argued against this:

“In general, in a time-series, use a baseline that shows the data not the zero point; don’t
spend a lot of empty vertical space trying to reach down to the zero point at the cost of
hiding what is going on in the data line itself.” (from https://qz.com/418083/its-ok-not-to-
start-your-y-axis-at-zero/)

There are certainly cases where using the zero point makes no sense at all. Let’s say that we are interested in plotting body
temperature for an individual over time. In Figure 6.8 we plot the same (simulated) data with or without zero in the Y axis. It
should be obvious that by plotting these data with zero in the Y axis (Panel A) we are wasting a lot of space in the figure, given that
body temperature of a living person could never go to zero! By including zero, we are also making the apparent jump in
temperature during days 21-30 much less evident. In general, my inclination for line plots and scatterplots is to use all of the space
in the graph, unless the zero point is truly important to highlight.

Figure 6.8: Body temperature over time, plotted with or without the zero point in the Y axis.

Edward Tufte introduced the concept of the lie factor to describe the degree to which physical differences in a visualization
correspond to the magnitude of the differences in the data. If a graphic has a lie factor near 1, then it is appropriately representing
the data, whereas lie factors far from one reflect a distortion of the underlying data.

The lie factor supports the argument that one should always include the zero point in a bar chart in many cases. In Figure 6.9 we
plot the same data with and without zero in the Y axis. In panel A, the proportional difference in area between the two bars is
exactly the same as the proportional difference between the values (i.e. lie factor = 1), whereas in Panel B (where zero is not
included) the proportional difference in area between the two bars is roughly 2.8 times bigger than the proportional difference in
the values, and thus it visually exaggerates the size of the difference.
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Figure 6.9: Two bar charts with associated lie factors.
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6.3: Accommodating Human Limitations
Humans have both perceptual and cognitive limitations that can make some visualizations very difficult to understand. It’s always
important to keep these in mind when building a visualization.

6.3.1 Perceptual limitations
One important perceptual limitation that many people (including myself) suffer from is color blindness. This can make it very
difficult to perceive the information in a figure (like the one in Figure 6.10) where there is only color contrast between the elements
but no brightness contrast. It is always helpful to use graph elements that differ substantially in brightness and/or texture, in
addition to color. There are also “colorblind-friendly” pallettes available for use in R, which we used in Figure ??.

Figure 6.10: Example of a bad figure that relies solely on color contrast.

Even for people with perfect color vision, there are perceptual limitations that can make some plots ineffective. This is one reason
why statisticians never use pie charts: It can be very difficult for humans to accurately perceive differences in the volume of shapes.
The pie chart in Figure 6.11 (presenting the same data on religious affiliation that we showed above) shows how tricky this can be.

Figure 6.11: An example of a pie chart, highlighting the difficult in apprehending the relative volume of the different pie slices.
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This plot is terrible for several reasons. First, it requires distinguishing a large number of colors from very small patches at the
bottom of the figure. Second, the visual perspective distorts the relative numbers, such that the pie wedge for Catholic appears
much larger than the pie wedge for None, when in fact the number for None is slightly larger (22.8 vs 20.8 percent), as was evident
in Figure 6.6. Third, by separating the legend from the graphic, it requires the viewer to hold information in their working memory
in order to map between the graphic and legend and to conduct many “table look-ups” in order to continuously match the legend
labels to the visualization. And finally, it uses text that is far too small, making it impossible to read without zooming in.

Plotting the data using a more reasonable approach (Figure 6.12), we can see the pattern much more clearly. This plot may not look
as flashy as the pie chart generated using Excel, but it’s a much more effective and accurate representation of the data.

Figure 6.12: A clearer presentation of the religious affiliation data (obtained from http://www.pewforum.org/religious-landscape-
study/).

This plot allows the viewer to make comparisons based on the the length of the bars along a common scale (the y-axis). Humans
tend to be more accurate when decoding differences based on these perceptual elements than based on area or color.
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6.4: Correcting for Other Factors
Often we are interested in plotting data where the variable of interest is affected by other factors than the one we are interested in.
For example, let’s say that we want to understand how the price of gasoline has changed over time. Figure 6.13 shows historical
gas price data, plotted either with or without adjustment for inflation. Whereas the unadjusted data show a huge increase, the
adjusted data show that this is mostly just reflective of inflation. Other examples where one needs to adjust data for other factors
include population size (as we saw in the crime rate examples in an earlier chapter) and data collected across different seasons.

Figure 6.13: The price of gasoline in the US from 1930 to 201 (obtained from
http://www.thepeoplehistory.com/70yearsofpricechange.html) with or without correction for inflation (based on Consumer Price
Index).

This page titled 6.4: Correcting for Other Factors is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell
A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8737?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/06%3A__Data_Visualization/6.04%3A_Correcting_for_Other_Factors
http://www.thepeoplehistory.com/70yearsofpricechange.html
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/06%3A__Data_Visualization/6.04%3A_Correcting_for_Other_Factors
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


6.5.1 https://stats.libretexts.org/@go/page/8738

6.5: Suggested readings and videos
Fundamentals of data visualization, by Claus Wilke
Visual Explanations, by Edward Tufte
Visualizing Data, by William S. Cleveland
Graph Design for the Eye and Mind, by Stephen M. Kosslyn
How Humans See Data, by John Rauser
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CHAPTER OVERVIEW

7: Data Visualization with R
There are many different tools for plotting data in R, but we will focus on the ggplot()  function provided by a package called 
ggplot2 . ggplot is very powerful, but using it requires getting one’s head around how it works.

7.1: The Grammar of Graphics
7.2: Getting Started
7.3: Let’s Think Through a Visualization
7.4: Plotting the Distribution of a Single Variable
7.5: Plots with Two Variables
7.6: Creating a More Complex Plot
7.7: Additional Reading and Resources
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7.1: The Grammar of Graphics
or, the “gg” in ggplot

Each language has a grammar consisting of types of words and the rules with which to string them together into sentences. If a
sentence is grammatically correct, we’re able to parse it, even though that doesn’t ensure that it’s interesting, beautiful, or even
meaningful.

Similarly, plots can be divided up into their core components, which come together via a set of rules.

Some of the major components are :

data
aesthetics
geometries
themes

The data are the actual variables we’re plotting, which we pass to ggplot through the data argument. As you’ve learned, ggplot
takes a dataframe in which each column is a variable.

Now we need to tell ggplot how to plot those variables, by mapping each variable to an axis of the plot. You’ve seen that when we
plot histograms, our variable goes on the x axis. Hence, we set x=<variable>  in a call to aes()  within ggplot() .
This sets aesthetics, which are mappings of data to certain scales, like axes or things like color or shape. The plot still had two axes
– x and y – but we didn’t need to specify what went on the y axis because ggplot knew by default that it should make a count
variable.

How was ggplot able to figure that out? Because of geometries, which are shapes we use to represent our data. You’ve seen 
geom_histogram , which basically gives our graph a bar plot shape, except that it also sets the default y axis variable to be 
count . Other shapes include points and lines, among many others.

We’ll go over other aspects of the grammar of graphics (suxh as facets, statistics, and coordinates) as they come up. Let’s start
visualizing some data by first choosing a theme, which describes all of the non-data ink in our plot, like grid lines and text.
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7.2: Getting Started
Load ggplot and choose a theme you like (see here for examples).

library(tidyverse) 
 
theme_set(theme_bw()) # I like this fairly minimal one
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7.3: Let’s Think Through a Visualization
Principles we want to keep in mind:

Show the data without distortion
Use color, shape, and location to encourage comparisons
Minimize visual clutter (maximize your information to ink ratio)

The two questions you want to ask yourself before getting started are:

What type of variable(s) am I plotting?
What comparison do I want to make salient for the viewer (possibly myself)?

Figuring out how to highlight a comparison and include relevant variables usually benefits from sketching the plot out first.
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7.4: Plotting the Distribution of a Single Variable
How do you choose which geometry to use? ggplot allows you to choose from a number of geometries. This choice will determine
what sort of plot you create. We will use the built-in mpg dataset, which contains fuel efficiency data for a number of different cars.

7.4.1 Histogram
The histogram shows the ogerall distribution of the data. Here we use the nclass.FD function to compute the optimal bin size.

ggplot(mpg, aes(hwy)) + 
  geom_histogram(bins = nclass.FD(mpg$hwy)) + 
  xlab('Highway mileage') 

Instead of creating discrete bins, we can look at relative density continuously.

7.4.2 Density plot

ggplot(mpg, aes(hwy)) + 
  geom_density() + 
  xlab('Highway mileage') 
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A note on defaults: The default statistic (or “stat”) underlying geom_density  is called “density” – not surprising. The default
stat for geom_histogram  is “count”. What do you think would happen if you overrode the default and set 
stat="count" ?

ggplot(mpg, aes(hwy)) + 
  geom_density(stat = "count")

What we discover is that the geometric difference between geom_histogram  and geom_density  can actually be
generalized. geom_histogram  is a shortcut for working with geom_bar , and geom_density  is a shortcut for
working with geom_line .

7.4.3 Bar vs. line plots

ggplot(mpg, aes(hwy)) + 
  geom_bar(stat = "count")
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Note that the geometry tells ggplot what kind of plot to use, and the statistic (stat) tells it what kind of summary to present.

ggplot(mpg, aes(hwy)) + 
  geom_line(stat = "density")
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7.5: Plots with Two Variables
Let’s check out mileage by car manufacturer. We’ll plot one continuous variable by one nominal one.

First, let’s make a bar plot by choosing the stat “summary” and picking the “mean” function to summarize the data.

ggplot(mpg, aes(manufacturer, hwy)) + 
  geom_bar(stat = "summary", fun.y = "mean")  +  
  ylab('Highway mileage')

One problem with this plot is that it’s hard to read some of the labels because they overlap. How could we fix that? Hint: search the
web for “ggplot rotate x axis labels” and add the appropriate command.

TBD: fix

ggplot(mpg, aes(manufacturer, hwy)) + 
  geom_bar(stat = "summary", fun.y = "mean")  +  
  ylab('Highway mileage')
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7.5.1 Adding on variables
What if we wanted to add another variable into the mix? Maybe the year of the car is also important to consider. We have a few
options here. First, you could map the variable to another aesthetic.

# first, year needs to be converted to a factor 
mpg$year <- factor(mpg$year)  
 
ggplot(mpg, aes(manufacturer, hwy, fill = year)) + 
  geom_bar(stat = "summary", fun.y = "mean")

By default, the bars are stacked on top of one another. If you want to separate them, you can change the position  argument
form its default to “dodge”.

ggplot(mpg, aes(manufacturer, hwy, fill=year)) + 
  geom_bar(stat = "summary",  
           fun.y = "mean",  
           position = "dodge")
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ggplot(mpg, aes(year, hwy,  
                group=manufacturer, 
                color=manufacturer)) + 
  geom_line(stat = "summary", fun.y = "mean")

For a less visually cluttered plot, let’s try facetting. This creates subplots for each value of the year  variable.

ggplot(mpg, aes(manufacturer, hwy)) + 
  # split up the bar plot into two by year 
  facet_grid(year ~ .) +  
  geom_bar(stat = "summary",  
           fun.y = "mean")

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8743?pdf


7.5.4 https://stats.libretexts.org/@go/page/8743

7.5.2 Plotting dispersion
Instead of looking at just the means, we can get a sense of the entire distribution of mileage values for each manufacturer.

7.5.2.1 Box plot

ggplot(mpg, aes(manufacturer, hwy)) + 
  geom_boxplot()

A box plot (or box and whiskers plot) uses quartiles to give us a sense of spread. The thickest line, somewhere inside the box,
represents the median. The upper and lower bounds of the box (the hinges) are the first and third quartiles (can you use them to
approximate the interquartile range?). The lines extending from the hinges are the remaining data points, excluding outliers, which
are plotted as individual points.

7.5.2.2 Error bars

Now, let’s do something a bit more complex, but much more useful – let’s create our own summary of the data, so we can choose
which summary statistic to plot and also compute a measure of dispersion of our choosing.
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# summarise data 
mpg_summary <- mpg %>% 
  group_by(manufacturer) %>%  
  summarise(n = n(),  
            mean_hwy = mean(hwy),  
            sd_hwy = sd(hwy)) 
 
# compute confidence intervals for the error bars 
# (we'll talk about this later in the course!) 
 
limits <- aes( 
  # compute the lower limit of the error bar 

  ymin = mean_hwy -  * sd_hwy / sqrt(n),  
  # compute the upper limit 

  ymax = mean_hwy +  * sd_hwy / sqrt(n)) 
 
# now we're giving ggplot the mean for each group,  
# instead of the datapoints themselves 
 
ggplot(mpg_summary, aes(manufacturer, mean_hwy)) + 
  # we set stat = "identity" on the summary data  
  geom_bar(stat = "identity") +  
  # we create error bars using the limits we computed above 

  geom_errorbar(limits, width=) 

Error bars don’t always mean the same thing – it’s important to determine whether you’re looking at e.g. standard error or
confidence intervals (which we’ll talk more about later in the course).

7.5.2.2.1 Minimizing non-data ink

The plot we just created is nice and all, but it’s tough to look at. The bar plots add a lot of ink that doesn’t help us compare engine
sizes across manufacturers. Similarly, the width of the error bars doesn’t add any information. Let’s tweak which geometry we use,
and tweak the appearance of the error bars.
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ggplot(mpg_summary, aes(manufacturer, mean_hwy)) + 
  # switch to point instead of bar to minimize ink used 
  geom_point() +  
  # remove the horizontal parts of the error bars 
  geom_errorbar(limits, width = 0) 

Looks a lot cleaner, but our points are all over the place. Let’s make a final tweak to make learning something from this plot a bit
easier.

mpg_summary_ordered <- mpg_summary %>% 
  mutate( 
    # we sort manufacturers by mean engine size 
    manufacturer = reorder(manufacturer, -mean_hwy) 
  )
 
ggplot(mpg_summary_ordered, aes(manufacturer, mean_hwy)) + 
  geom_point() +  
  geom_errorbar(limits, width = 0) 

7.5.3 Scatter plot
When we have multiple continuous variables, we can use points to plot each variable on an axis. This is known as a scatter plot.
You’ve seen this example in your reading.

ggplot(mpg, aes(displ, hwy)) + 
  geom_point()
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7.5.3.1 Layers of data

We can add layers of data onto this graph, like a line of best fit. We use a geometry known as a smooth to accomplish this.

ggplot(mpg, aes(displ, hwy)) + 
  geom_point() + 
  geom_smooth(color = "black")

We can add on points and a smooth line for another set of data as well (efficiency in the city instead of on the highway).
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ggplot(mpg) + 
  geom_point(aes(displ, hwy), color = "grey") + 
  geom_smooth(aes(displ, hwy), color = "grey") + 
  geom_point(aes(displ, cty), color = "limegreen") + 
  geom_smooth(aes(displ, cty), color = "limegreen")
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7.6: Creating a More Complex Plot
In this section we will recreate Figure 6.2 from Chapter @ref{data-visualization}. Here is the code to generate the figure; we will
go through each of its sections below.

27.5
0.3

27.5

oringDf <- read.table("data/orings.csv", sep = ",", 
                      header = TRUE) 
 
oringDf %>% 
  ggplot(aes(x = Temperature, y = DamageIndex)) + 
  geom_point() + 
  geom_smooth(method = "loess", 
              se = FALSE, span = 1) +  
  ylim(0, 12) + 

  geom_vline(xintercept = , size =8,  
             alpha = , color = "red") + 

  labs( 
    y = "Damage Index", 
    x = "Temperature at time of launch" 
  ) + 
  scale_x_continuous(breaks = seq.int(25, 85, 5)) + 
  annotate( 
    "text", 
    angle=90, 

    x = , 
    y = 6, 
    label = "Forecasted temperature on Jan 28", 
    size = 5 
  )
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7.7: Additional Reading and Resources
ggplot theme reference
knockoff tech themes
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CHAPTER OVERVIEW

8: Fitting Models to Data

Describe the basic equation for statistical models (outcome=model + error)
Describe different measures of central tendency and dispersion, how they are computed, and which are appropriate under
what circumstance.
Describe the concept of a Z-score and when they are useful.

One of the fundamental activities in statistics is creating models that can summarize data using a small set of numbers, thus
providing a compact description of the data. In this chapter we will discuss the concept of a statistical model and how it can be used
to describe data.

8.1: Appendix
8.2: What Is a Model?
8.3: Statistical Modeling- An Example
8.4: What Makes a Model “Good”?
8.5: Can a Model Be Too Good?
8.6: The Simplest Model- The Mean
8.7: The Mode
8.8: Variability- How Well Does the Mean Fit the Data?
8.9: 8.8 Using Simulations to Understand Statistics
8.10: Z-scores
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8.1: Appendix
error  
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8.2: What Is a Model?
In the physical world, “models” are generally simplifications of things in the real world that nonetheless convey the essence of the
thing being modeled. A model of a building conveys the structure of the building while being small and light enough to pick up
with one’s hands; a model of a cell in biology is much larger than the actual thing, but again conveys the major parts of the cell and
their relationships.

In statistics, a model is meant to provide a similarly condensed description, but for data rather than for a physical structure. Like
physical models, a statistical model is generally much simpler than the data being described; it is meant to capture the structure of
the data as simply as possible. In both cases, we realize that the model is a convenient fiction that necessarily glosses over some of
the details of the actual thing being modeled. As the statistician George Box famously said: “All models are wrong but some are
useful.”

The basic structure of a statistical model is:

This expresses the idea that the data can be described by a statistical model, which describes what we expect to occur in the data,
along with the difference between the model and the data, which we refer to as the error.

This page titled 8.2: What Is a Model? is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A. Poldrack
via source content that was edited to the style and standards of the LibreTexts platform.
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8.3: Statistical Modeling- An Example
Let’s look at an example of fitting a model to data, using the data from NHANES. In particular, we will try to build a model of the
height of children in the NHANES sample. First let’s load the data and plot them (see Figure 8.1).

Figure 8.1: Histogram of height of children in NHANES.

Remember that we want to describe the data as simply as possible while still capturing their important features. What is the
simplest model we can imagine that might still capture the essence of the data? How about the most common value in the dataset
(which we call the mode)?

This redescribes the entire set of 1691 children in terms of a single number. If we wanted to predict the height of any new children,
then our guess would be the same number: 166.5 centimeters.

We put the hat symbol over the name of the variable to show that this is our predicted value. The error for this individual would
then be the difference between the predicted value (  )and their actual height (  ):

How good of a model is this? In general we define the goodness of a model in terms of the error, which represents the difference
between model and the data; all things being equal, the model that produces lower error is the better model.

What we find is that the average individual has a fairly large error of -28.8 centimeters. We would like to have a model where the
average error is zero, and it turns out that if we use the arithmetic mean (commonly known as the average) as our model then this
will be the case.

The mean (often denoted by a bar over the variable, such as ) is the sum of all of the values, divided by the number of values.
Mathematically, we express this as:

We can prove mathematically that the sum of errors from the mean (and thus the average error) is zero (see the proof at the end of
the chapter if you are interested). Given that the average error is zero, this seems like a better model.
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Figure 8.2: Distribution of errors from the mean.

Even though the average of errors from the mean is zero, we can see from the histogram in Figure 8.2 that each individual still has
some degree of error; some are positive and some are negative, and those cancel each other out. For this reason, we generally
summarize errors in terms of some kind of measure that counts both positive and negative errors as bad. We could use the absolute
value of each error value, but it’s more common to use the squared errors, for reasons that we will see later in the course.

There are several common ways to summarize the squared error that you will encounter at various points in this book, so it’s
important to understand how they relate to one another. First, we could simply add them up; this is referred to as the sum of squared
errors. The reason we don’t usually use this is that its magnitude depends on the number of data points, so it can be difficult to
interpret unless we are looking at the same number of observations. Second, we could take the mean of the squared error values,
which is referred to as the mean squared error (MSE). However, because we squared the values before averaging, they are not on
the same scale as the original data; they are in centimeters . For this reason, it’s also common to take the square root of the MSE,
which we refer to as the root mean squared error (RMSE), so that the error is measured in the same units as the original values (in
this example, centimeters).

The mean has a pretty substantial amount of error – any individual data point will be about 27 cm from the mean on average – but
it’s still much better than the mode, which has an average error of about 39 cm.

8.2.1 Improving our model
Can we imagine a better model? Remember that these data are from all children in the NHANES sample, who vary from 2 to 17
years of age. Given this wide age range, we might expect that our model of height should also include age. Let’s plot the data for
height against age, to see if this relationship really exists.
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Figure 8.3: Height of children in NHANES, plotted without a model (A), with a linear model including only age (B) or age and a
constant (C), and with a linear model that fits separate effects of age for males and females (D).

The black points in Panel A of Figure 8.3 show individuals in the dataset, and there seems to be a strong relationship between
height and age, as we would expect. Thus, we might build a model that relates height to age:

where β \beta is a parameter that we multiply by age to get the smallest error.

You may remember from algebra that a line is define as follows:

y = slope ∗ x + intercept

If age is the X variable, then that means that our prediction of height from age will be a line with a slope of β and an intercept of
zero - to see this, let’s plot the best fitting line in blue on top of the data (Panel B in Figure 8.3). Something is clearly wrong with
this model, as the line doesn’t seem to follow the data very well. In fact, the RMSE for this model (39.16) is actually higher than
the model that only includes the mean! The problem comes from the fact that our model only includes age, which means that the
predicted value of height from the model must take on a value of zero when age is zero. Even though the data do not include any
children with an age of zero, the line is mathematically required to have a y-value of zero when x is zero, which explains why the
line is pulled down below the younger datapoints. We can fix this by including a constant value in our model, which basically
represents the estimated value of height when age is equal to zero; even though an age of zero is not plausible in this dataset, this is
a mathematical trick that will allow the model to account for the overall magnitude of the data. The model is:

where constant is a constant value added to the prediction for each individual; we also call the intercept, since it maps onto the
intercept in the equation for a line. We will learn later how it is that we actually compute these values for a particular dataset; for
now, we will use the lm()  function in R to compute the values of the constant and β that give us the smallest error for these
particular data. Panel C in Figure 8.3 shows this model applied to the NHANES data, where we see that the line matches the data
much better than the one without a constant.

Our error is much smaller using this model – only 8.36 centimeters on average. Can you think of other variables that might also be
related to height? What about gender? In Panel D of Figure 8.3 we plot the data with lines fitted separately for males and females.
From the plot, it seems that there is a difference between males and females, but it is relatively small and only emerges after the age
of puberty. Let’s estimate this model and see how the errors look. In Figure 8.4 we plot the root mean squared error values across
the different models. From this we see that the model got a little bit better going from mode to mean, much better going from mean
to mean+age, and only very slighly better by including gender as well.
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 Figure 8.4: Mean squared error plotted for each of the models tested above.
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8.4: What Makes a Model “Good”?
There are generally two different things that we want from our statistical model. First, we want it to describe our data well; that is,
we want it to have the lowest possible error when modeling our data. Second, we want it to generalize well to new datasets; that is,
we want its error to be as low as possible when we apply it to a new dataset. It turns out that these two features can often be in
conflict.

To understand this, let’s think about where error comes from. First, it can occur if our model is wrong; for example, if we
inaccurately said that height goes down with age instead of going up, then our error will be higher than it would be for the correct
model. Similarly, if there is an important factor that is missing from our model, that will also increase our error (as it did when we
left age out of the model for height). However, error can also occur even when the model is correct, due to random variation in the
data, which we often refer to as “measurement error” or “noise”. Sometimes this really is due to error in our measurement – for
example, when the measurements rely on a human, such as using a stopwatch to measure elapsed time in a footrace. In other cases,
our measurement device is highly accurate (like a digital scale to measure body weight), but the thing being measured is affected
by many different factors that cause it to be variable. If we knew all of these factors then we could build a more accurate model, but
in reality that’s rarely possible.

Let’s use an example to show this. Rather than using real data, we will generate some data for the example using a computer
simulation (about which we will have more to say in a few chapters). Let’s say that we want to understand the relationship between
a person’s blood alcohol content (BAC) and their reaction time on a simulated driving test. We can generate some simulated data
and plot the relationship (see Panel A of Figure 8.5).

Figure 8.5: Simulated relationship between blood alcohol content and reaction time on a driving test, with best-fitting linear model
represented by the line. A: linear relationship with low measurement error. B: linear relationship with higher measurement error. C:
Nonlinear relationship with low measurement error and (incorrect) linear model

In this example, reaction time goes up systematically with blood alcohol content – the line shows the best fitting model, and we can
see that there is very little error, which is evident in the fact that all of the points are very close to the line.

We could also imagine data that show the same linear relationship, but have much more error, as in Panel B of Figure 8.5. Here we
see that there is still a systematic increase of reaction time with BAC, but it’s much more variable across individuals.

These were both examples where the linear model seems appropriate, and the error reflects noise in our measurement. The linear
model specifies that the relationship between two variables follows a straight line. For example, in a linear model, change in BAC
is always associated with a specific change in ReactionTime, regardless of the level of BAC.
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On the other hand, there are other situations where the linear model is incorrect, and error will be increased because the model is
not properly specified. Let’s say that we are interested in the relationship between caffeine intake and performance on a test. The
relation between stimulants like caffeine and test performance is often nonlinear - that is, it doesn’t follow a straight line. This is
because performance goes up with smaller amounts of caffeine (as the person becomes more alert), but then starts to decline with
larger amounts (as the person becomes nervous and jittery). We can simulate data of this form, and then fit a linear model to the
data (see Panel C of Figure 8.5). The blue line shows the straight line that bests fits these data; clearly, there is a high degree of
error. Although there is a very lawful relation between test performance and caffeine intake, it follows a curve rather than a straight
line. The linear model has high error because it’s the wrong model for these data.
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8.5: Can a Model Be Too Good?
Error sounds like a bad thing, and usually we will prefer a model that has lower error over one that has higher error. However, we
mentioned above that there is a tension between the ability of a model to accurately fit the current dataset and its ability to
generalize to new datasets, and it turns out that the model with the lowest error often is much worse at generalizing to new datasets!

To see this, let’s once again generate some data so that we know the true relation between the variables. We will create two
simulated datasets, which are generated in exactly the same way – they just have different random noise added to them.

Figure 8.6: An example of overfitting. Both datasets were generated using the same model, with different random noise added to
generate each set. The left panel shows the data used to fit the model, with a simple linear fit in blue and a complex (8th order
polynomial) fit in red. The root mean square error (RMSE) values for each model are shown in the figure; in this case, the complex
model has a lower RMSE than the simple model. The right panel shows the second dataset, with the same model overlaid on it and
the RMSE values computed using the model obtained from the first dataset. Here we see that the simpler model actually fits the
new dataset better than the more complex model, which was overfitted to the first dataset.

The left panel in Figure 8.6 shows that the more complex model (in red) fits the data better than the simpler model (in blue).
However, we see the opposite when the same model is applied to a new dataset generated in the same way – here we see that the
simpler model fits the new data better than the more complex model. Intuitively, we can see that the more complex model is
influenced heavily by the specific data points in the first dataset; since the exact position of these data points was driven by random
noise, this leads the more complex model to fit badly on the new dataset. This is a phenomenon that we call overfitting. For now
it’s important to keep in mind that our model fit needs to be good, but not too good. As Albert Einstein (1933) said: “It can scarcely
be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without
having to surrender the adequate representation of a single datum of experience.” Which is often paraphrased as: “Everything
should be as simple as it can be, but not simpler.”
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8.6: The Simplest Model- The Mean
We have already encountered the mean (or average), and in fact most people know about the average even if they have never taken
a statistics class. It is commonly used to describe what we call the “central tendency” of a dataset – that is, what value are the data
centered around? Most people don’t think of computing a mean as fitting a model to data. However, that’s exactly what we are
doing when we compute the mean.

We have already seen the formula for computing the mean of a sample of data:

Note that I said that this formula was specifically for a sample of data, which is a set of data points selected from a larger
population. Using a sample, we wish to characterize a larger population – the full set of individuals that we are interested in. For
example, if we are a political pollster our population of interest might be all registered voters, whereas our sample might just
include a few thousand people sampled from this population. Later in the course we will talk in more detail about sampling, but for
now the important point is that statisticians generally like to use different symbols to differentiate statistics that describe values for
a sample from parameters that describe the true values for a population; in this case, the formula for the population mean (denoted
as μ) is:

where N is the size of the entire population.

We have already seen that the mean is the summary statistic that is guaranteed to give us a mean error of zero. The mean also has
another characteristic: It is the summary statistic that has the lowest possible value for the sum of squared errors (SSE). In statistics,
we refer to this as being the “best” estimator. We could prove this mathematically, but instead we will demonstrate it graphically in
Figure 8.7.

Figure 8.7: A demonstration of the mean as the statistic that minimizes the sum of squared errors. Using the NHANES child height
data, we compute the mean (denoted by the blue bar). Then, we test a range of other values, and for each one we compute the sum
of squared errors for each data point from that value, which are denoted by the black curve. We see that the mean falls at the
minimum of the squared error plot.

This minimization of SSE is a good feature, and it’s why the mean is the most commonly used statistic to summarize data.
However, the mean also has a dark side. Let’s say that five people are in a bar, and we examine each person’s income:

Table 8.1: Income for our five bar patrons

income person

48000 Joe

64000 Karen

58000 Mark

72000 Andrea
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income person

66000 Pat

The mean (61600.00) seems to be a pretty good summary of the income of those five people. Now let’s look at what happens if
Beyoncé Knowles walks into the bar:

Table 8.2: Income for our five bar patrons plus Beyoncé Knowles.

income person

4.8e+04 Joe

6.4e+04 Karen

5.8e+04 Mark

7.2e+04 Andrea

6.6e+04 Pat

5.4e+07 Beyonce

The mean is now almost 10 million dollars, which is not really representative of any of the people in the bar – in particular, it is
heavily driven by the outlying value of Beyoncé. In general, the mean is highly sensitive to extreme values, which is why it’s
always important to ensure that there are no extreme values when using the mean to summarize data.

8.5.1 The median
If we want to summarize the data in a way that is less sensitive to outliers, we can use another statistic called the median. If we
were to sort all of the values in order of their magnitude, then the median is the value in the middle. If there is an even number of
values then there will be two values tied for the middle place, in which case we take the mean (i.e. the halfway point) of those two
numbers.

Let’s look at an example. Say we want to summarize the following values:

8  6  3 14 12  7  6  4  9

If we sort those values:

3  4  6  6  7  8  9 12 14

Then the median is the middle value – in this case, the 5th of the 9 values.

Whereas the mean minimizes the sum of squared errors, the median minimizes a slighty different quantity: The sum of absolute
errors. This explains why it is less sensitive to outliers – squaring is going to exacerbate the effect of large errors compared to
taking the absolute value. We can see this in the case of the income example: The median is much more representative of the group
as a whole, and less sensitive to the one large outlier.

Table 8.3: Summary statistics for income after arrival of Beyoncé Knowles.

Statistic Value

Mean 9051333

Median 65000

Given this, why would we ever use the mean? As we will see in a later chapter, the mean is the “best” estimator in the sense that it
will vary less from sample to sample compared to other estimators. It’s up to us to decide whether that is worth the sensitivity to
potential outliers – statistics is all about tradeoffs.
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8.7: The Mode
Sometimes we wish to describe the central tendency of a dataset that is not numeric. For example, let’s say that we want to know
which models of iPhone are most commonly used. Let’s say we ask a large group of iPhone users which model each one owns. If
we were to take the average of these values, we would see that the mean iPhone model is 9.51, which is clearly nonsensical, since
the iPhone model numbers are not meant to be quantitative measurements. In this case, a more appropriate measure of central
tendency is the mode, which is the most common value in the dataset, as we discussed above.

This page titled 8.7: The Mode is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A. Poldrack via
source content that was edited to the style and standards of the LibreTexts platform.
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8.8: Variability- How Well Does the Mean Fit the Data?
Once we have described the central tendency of the data, we often also want to describe how variable the data are – this is
sometimes also referred to as “dispersion”, reflecting the fact that it describes how widely dispersed the data are.

We have already encountered the sum of squared errors above, which is the basis for the most commonly used measures of
variability: the variance and the standard deviation. The variance for a population (referred to as σ ) is simply the sum of squared
errors divided by the number of observations - that is, it is exactly the same as the mean squared error that you encountered earlier:

where μ is the population mean. The standard deviation is simply the square root of this – that is, the root mean squared error that
we saw before. The standard deviation is useful because the errors are in the same units as the original data (undoing the squaring
that we applied to the errors).

We usually don’t have access to the entire population, so we have to compute the variance using a sample, which we refer to as ,
with the “hat” representing the fact that this is an estimate based on a sample. The equation for  is similar to the one for σ :

The only difference between the two equations is that we divide by n - 1 instead of N. This relates to a fundamental statistical
concept: degrees of freedom. Remember that in order to compute the sample variance, we first had to estimate the sample mean .
Having estimated this, one value in the data is no longer free to vary. For example, let’s say we have the following data points for a
variable x: [3, 5, 7, 9, 11], the mean of which is 7. Because we know that the mean of this dataset is 7, we can compute what any
specific value would be if it were missing. For example, let’s say we were to obscure the first value (3). Having done this, we still
know that its value must be 3, because the mean of 7 implies that the sum of all of the values is 7∗n=35 and 35−(5+7+9+11)=3.

So when we say that we have “lost” a degree of freedom, it means that there is a value that is not free to vary after fitting the
model. In the context of the sample variance, if we don’t account for the lost degree of freedom, then our estimate of the sample
variance will be biased, causing us to underestimate the uncertainty of our estimate of the mean.

This page titled 8.8: Variability- How Well Does the Mean Fit the Data? is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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8.10: Z-scores
Having characterized a distribution in terms of its central tendency and variability, it is often useful to express the individual scores
in terms of where they sit with respect to the overall distribution. Let’s say that we are interested in characterizing the relative level
of crimes across different states, in order to determine whether California is a particularly dangerous place. We can ask this
question using data for 2014 from the FBI’s Uniform Crime Reporting site. The left panel of Figure 8.8 shows a histogram of the
number of violent crimes per state, highlighting the value for California. Looking at these data, it seems like California is terribly
dangerous, with 153709 crimes in that year.

Figure 8.8: Left: Histogram of the number of violent crimes. The value for CA is plotted in blue. Right: A map of the same data,
with number of crimes plotted for each state in color.

With R it’s also easy to generate a map showing the distribution of a variable across states, which is presented in the right panel of
Figure 8.8.

It may have occurred to you, however, that CA also has the largest population of any state in the US, so it’s reasonable that it will
also have a larger number of crimes. If we plot the two against one another (see left panel of Figure 8.9), we see that there is a
direct relationship between population and the number of crimes.

Figure 8.9: Left: A plot of number of crimes versus population by state. Right: A histogram of per capita crime rates, expressed as
crimes per 100,000 people.

Instead of using the raw numbers of crimes, we should instead use the per-capita violent crime rate, which we obtain by dividing
the number of crimes by the population of the state. The dataset from the FBI already includes this value (expressed as rate per
100,000 people). Looking at the right panel of Figure 8.9, we see that California is not so dangerous after all – its crime rate of
396.10 per 100,000 people is a bit above the mean across states of 346.81, but well within the range of many other states. But what
if we want to get a clearer view of how far it is from the rest of the distribution?
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The Z-score allows us to express data in a way that provides more insight into each data point’s relationship to the overall
distribution. The formula to compute a Z-score for a data point given that we know the value of the population mean  and
standard deviation  is:

Intuitively, you can think of a Z-score as telling you how far away from the mean any data point is, in units of standard deviation.
We can compute this for the crime rate data, as shown in Figure 8.10.

## [1] "mean of Z-scored data: 1.4658413372004e-16"

## [1] "std deviation of Z-scored data: 1"

Figure 8.10: Scatterplot of original crime rate data against Z-scored data.

The scatterplot shows us that the process of Z-scoring doesn’t change the relative distribution of the data points (visible in the fact
that the orginal data and Z-scored data fall on a straight line when plotted against each other) – it just shifts them to have a mean of
zero and a standard deviation of one. However, if you look closely, you will see that the mean isn’t exactly zero – it’s just very
small. What is going on here is that the computer represents numbers with a certain amount of numerical precision - which means
that there are numbers that are not exactly zero, but are small enough that R considers them to be zero.

Figure 8.11 shows the Z-scored crime data using the geographical view.

μ

σ

Z(x)=

x−μ

σ
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Figure 8.11: Crime data rendered onto a US map, presented as Z-scores.

This provides us with a slightly more interpretable view of the data. For example, we can see that Nevada, Tennessee, and New
Mexico all have crime rates that are roughly two standard deviations above the mean.

8.9.1 Interpreting Z-scores

The “Z” in “Z-score”" comes from the fact that the standard normal distribution (that is, a normal distribution with a mean of zero
and a standard deviation of 1) is often referred to as the “Z” distribution. We can use the standard normal distribution to help us
understand what specific Z scores tell us about where a data point sits with respect to the rest of the distribution.

Figure 8.12: Density (top) and cumulative distribution (bottom) of a standard normal distribution, with cutoffs at one standard
deviation above/below the mean.

The upper panel in Figure 8.12 shows that we expect about 16% of values to fall in , and the same proportion to fall in 
.

Z ≥ 1

Z ≤−1
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Figure 8.13: Density (top) and cumulative distribution (bottom) of a standard normal distribution, with cutoffs at two standard
deviations above/below the mean

Figure 8.13 shows the same plot for two standard deviations. Here we see that only about 2.3% of values fall in  and the
same in . Thus, if we know the Z-score for a particular data point, we can estimate how likely or unlikely we would be to
find a value at least as extreme as that value, which lets us put values into better context.

8.9.2 Standardized scores
Let’s say that instead of Z-scores, we wanted to generate standardized crime scores with a mean of 100 and standard deviation of
10. This is similar to the standardization that is done with scores from intelligence tests to generate the intelligence quotient (IQ).
We can do this by simply multiplying the Z-scores by 10 and then adding 100.

Figure 8.14: Crime data presented as standardized scores with mean of 100 and standard deviation of 10.

8.9.2.1 Using Z-scores to compare distributions

One useful application of Z-scores is to compare distributions of different variables. Let’s say that we want to compare the
distributions of violent crimes and property crimes across states. In the left panel of Figure 8.15 we plot those against one another,
with CA plotted in blue. As you can see the raw rates of property crimes are far higher than the raw rates of violent crimes, so we
can’t just compare the numbers directly. However, we can plot the Z-scores for these data against one another (right panel of Figure
8.15)– here again we see that the distribution of the data does not change. Having put the data into Z-scores for each variable
makes them comparable, and lets us see that California is actually right in the middle of the distribution in terms of both violent
crime and property crime.

Z ≤−2

Z ≥ 2
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Figure 8.15: Plot of violent vs. property crime rates (left) and Z-scored rates (right).

Let’s add one more factor to the plot: Population. In the left panel of Figure 8.16 we show this using the size of the plotting symbol,
which is often a useful way to add information to a plot.

Figure 8.16: Left: Plot of violent vs. property crime rates, with population size presented through the size of the plotting symbol;
California is presented in blue. Right: Difference scores for violent vs. property crime, plotted against population.

Because Z-scores are directly comparable, we can also compute a “Violence difference” score that expresses the relative rate of
violent to non-violent (property) crimes across states. We can then plot those scores against population (see right panel of Figure
8.16). This shows how we can use Z-scores to bring different variables together on a common scale.

It is worth noting that the smallest states appear to have the largest differences in both directions. While it might be tempting to
look at each state and try to determine why it has a high or low difference score, this probably reflects the fact that the estimates
obtained from smaller samples are necessarily going to be more variable, as we will discuss in the later chapter on Sampling.
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1

CHAPTER OVERVIEW

9: Fitting Simple Models with R
In this chapter we will focus on how to compute the measures of central tendency and variability that were covered in the previous
chapter. Most of these can be computed using a built-in R function, but we will show how to do them manually in order to give
some intuition about how they work.

9.1: Mean
9.2: Median
9.3: Mode
9.4: Variability
9.5: Z-scores

This page titled 9: Fitting Simple Models with R is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell
A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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9.1: Mean
The mean is defined as the sum of values divided by the number of values being summed:

Let’s say that we want to obtain the mean height for adults in the NHANES database (contained in the data Height ). We would
sum the individual heights (using the sum()  function) and then divide by the number of values:

sum(NHANES$Height)/length(NHANES$Height)

## [1] NA

This returns the value NA, because there are missing values for some rows, and the sum()  function doesn’t automatically
handle those. To address this, we could filter the data frame using drop_na()  to drop rows with NA values for this variable:

height_noNA <- NHANES %>% 
  drop_na(Height) %>% 
  pull(Height) 
 
sum(height_noNA)/length(height_noNA)

## [1] 160

There is, of course, a built-in function in R called mean()  that will compute the mean. Like the sum()  function, mean()
will return NA if there are any NA values in the data:

mean(NHANES$Height)

## [1] NA

The mean()  function includes an optional argument called na.rm  that will remove NA values if it is set to TRUE:

mean(NHANES$Height, na.rm=TRUE)

## [1] 160

This page titled 9.1: Mean is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A. Poldrack via source
content that was edited to the style and standards of the LibreTexts platform.
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9.2: Median
The median is the middle value after sorting the entire set of values. Let’s use the cleand-up height_noNA  variable created
above to determine this for the NHANES height data. First we sort the data in order of their values:

height_sorted <- sort(height_noNA)

Next we find the median value. If there is an odd number of values in the list, then this is just the value in the middle, whereas if
the number of values is even then we take the average of the two middle values. We can determine whether the number of items is
even by dividing the length by two and seeing if there is a remainder; we do this using the %%  operator, which is known as the
modulus and returns the remainder:

5 %% 2

## [1] 1

Here we will test whether the remainder is equal to one; if it is, then we will take the middle value, otherwise we will take the
average of the two middle values. We can do this using an if/else structure, which executes different processes depending on which
of the arguments are true:

if (logical value) { 
  functions to perform if logical value is true 
} else { 
  functions to perform if logical value is false 
 
}

Let’s do this with our data. To find the middle value when the number of items is odd, we will divide the length and then round up,
using the ceiling()  function:

if (length(height_sorted) %% 2 == 1){ 
  # length of vector is odd 
  median_height <- height_sorted[ceiling(length(height_sorted) / 2)] 
} else { 
  median_height <- (height_sorted[length(height_sorted) / 2] +  
                    height_sorted[1 + length(height_sorted) / (2)])/2 
} 
 
median_height

## [1] 165

We can compare this to the result from the built-in median function:

median(height_noNA)

## [1] 165
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9.3: Mode
The mode is the most frequent value that occurs in a variable. R has a function called mode()  but if you look at the help page
you will see that it doesn’t actually copute the mode. In fact, R doesn’t have a built-in function to compute the mode, so we need to
create one. Let start with some toy data:

mode_test = c('a', 'b', 'b', 'c', 'c', 'c') 
mode_test

## [1] "a" "b" "b" "c" "c" "c"

We can see by eye that the mode is “a” since it occurs more often than the others. To find it computationally, let’s first get the
unique values

To do this, we first create a table with the counts for each value, using the table()  function:

mode_table <- table(mode_test) 
mode_table

## mode_test 
## a b c  
## 1 2 3

Now we need to find the maximum value. We do this by comparing each value to the maximum of the table; this will work even if
there are multiple values with the same frequency (i.e. a tie for the mode).

table_max <- mode_table[mode_table == max(mode_table)] 
table_max

## c  
## 3

This variable is a special kind of value called a named vector, and its name contains the value that we need to identify the mode.
We can pull it out using the names()  function:

my_mode <- names(table_max)[1] 
my_mode

## [1] "c"

Let’s wrap this up into our own custom function:

getmode <- function(v, print_table=FALSE) { 
  mode_table <- table(v) 
  if (print_table){ 
    print(kable(mode_table)) 
  }
  table_max <- mode_table[mode_table == max(mode_table)] 
  return(names(table_max)) 
}
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We can then apply this to real data. Let’s apply this to the MaritalStatus  variable in the NHANES dataset:

getmode(NHANES$MaritalStatus)

## [1] "Married"

This page titled 9.3: Mode is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A. Poldrack via source
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9.4: Variability
Let’s first compute the variance, which is the average squared difference between each value and the mean. Let’s do this with our
cleaned-up version of the height data, but instead of working with the entire dataset, let’s take a random sample of 150 individuals:

height_sample <- NHANES %>% 
  drop_na(Height) %>% 
  sample_n(150) %>% 
  pull(Height)

First we need to obtain the sum of squared errors from the mean. In R, we can square a vector using **2 :

SSE <- sum((height_sample - mean(height_sample))**2) 
SSE

## [1] 63419

Then we divide by N - 1 to get the estimated variance:

var_est <- SSE/(length(height_sample) - 1) 
var_est

## [1] 426

We can compare this to the built-in var()  function:

var(height_sample)

## [1] 426

We can get the standard deviation by simply taking the square root of the variance:

sqrt(var_est)

## [1] 21

Which is the same value obtained using the built-in sd()  function:

sd(height_sample)

## [1] 21
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9.5: Z-scores
A Z-score is obtained by first subtracting the mean and then dividing by the standard deviation of a distribution. Let’s do this for
the height_sample  data.

mean_height <- mean(height_sample) 
sd_height <- sd(height_sample) 
 
z_height <- (height_sample - mean_height)/sd_height

Now let’s plot the histogram of Z-scores alongside the histogram for the original values. We will use the plot_grid()
function from the cowplot  library to plot the two figures alongside one another. First we need to put the values into a data
frame, since ggplot()  requires the data to be contained in a data frame.

height_df <- data.frame(orig_height=height_sample,  
                        z_height=z_height) 
 
# create individual plots 
plot_orig <- ggplot(height_df, aes(orig_height)) +  
  geom_histogram() 
plot_z <- ggplot(height_df, aes(z_height)) +  
  geom_histogram() 
 
# combine into a single figure 
plot_grid(plot_orig, plot_z)

You will notice that the shapes of the histograms are similar but not exactly the same. This occurs because the binning is slightly
different between the two sets of values. However, if we plot them against one another in a scatterplot, we will see that there is a
direct linear relation between the two sets of values:

ggplot(height_df, aes(orig_height, z_height)) +  
  geom_point()
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CHAPTER OVERVIEW

10: Probability

Describe the sample space for a selected random experiment.
Compute relative frequency and empirical probability for a given set of events
Compute probabilities of single events, complementary events, and the unions and intersections of collections of events.
Describe the law of large numbers.
Describe the difference between a probability and a conditional probability
Describe the concept of statistical independence
Use Bayes’ theorem to compute the inverse conditional probability.

Probability theory is the branch of mathematics that deals with chance and uncertainty. It forms an important part of the foundation
for statistics, because it provides us with the mathematical tools to describe uncertain events. The study of probability arose in part
due to interest in understanding games of chance, like cards or dice. These games provide useful examples of many statistical
concepts, because when we repeat these games the likelihood of different outcomes remains (mostly) the same. However, there are
deep questions about the meaning of probability that we will not address here; see Suggested Readings at the end if you are
interested in learning more about this fascinating topic and its history.

10.1: What Do Probabilities Mean?
10.2: Suggested Readings
10.3: Appendix
10.4: What Is Probability?
10.5: How Do We Determine Probabilities?
10.6: Probability Distributions
10.7: Conditional Probability
10.8: Computing Conditional Probabilities from Data
10.9: Independence
10.10: Reversing a Conditional Probability- Bayes’ Rule
10.11: Learning from Data
10.12: Odds and Odds Ratios
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10.1: What Do Probabilities Mean?
It might strike you that it is a bit odd to talk about the probability of a person having cancer depending on a test result; after all, the
person either has cancer or they don’t. Historically, there have been two different ways that probabilities have been interpreted. The
first (known as the frequentist interpretation) interprets probabilities in terms of long-run frequencies. For example, in the case of a
coin flip, it would reflect the relative frequencies of heads in the long run after a large number of flips. While this interpretation
might make sense for events that can be repeated many times like a coin flip, it makes less sense for events that will only happen
once, like an individual person’s life or a particular presidential election; and as the economist John Maynard Keynes famously
said, “In the long run, we are all dead.”

The other interpretation of probablities (known as the Bayesian interpretation) is as a degree of belief in a particular proposition. If
I were to ask you “How likely is it that the US will return to the moon by 2026”, you can provide an answer to this question based
on your knowledge and beliefs, even though there are no relevant frequencies to compute a frequentist probability. One way that
we often frame subjective probabilities is in terms of one’s willingness to accept a particular gamble. For example, if you think that
the probability of the US landing on the moon by 2026 is 0.1 (i.e. odds of 9 to 1), then that means that you should be willing to
accept a gamble that would pay off with anything more than 9 to 1 odds if the event occurs.

As we will see, these two different definitions of probability are very relevant to the two different ways that statisticians think about
testing statistical hypotheses, which we will encounter in later chapters.
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10.2: Suggested Readings
The Drunkard’s Walk: How Randomness Rules Our Lives, by Leonard Mlodinow
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10.3: Appendix
Proof (Derivation of Bayes’ rule). First, remember the rule for computing a conditional probability:

We can rearrange this to get the formula to compute the joint probability using the conditional:

Using this we can compute the inverse probability:
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10.4: What Is Probability?
Informally, we usually think of probability as a number that describes the likelihood of some event occurring, which ranges from
zero (impossibility) to one (certainty). Sometimes probabilities will instead be expressed in percentages, which range from zero to
one hundred, as when the weather forecast predicts a twenty percent chance of rain today. In each case, these numbers are
expressing how likely that particular event is, ranging from absolutely impossible to absolutely certain.

To formalize probability theory, we first need to define a few terms:

An experiment is any activity that produces or observes an outcome. Examples are flipping a coin, rolling a 6-sided die, or
trying a new route to work to see if it’s faster than the old route.
The sample space is the set of possible outcomes for an experiment. We represent these by listing them within a set of squiggly
brackets. For a coin flip, the sample space is {heads, tails}. For a six-sided die, the sample space is each of the possible numbers
that can appear: {1,2,3,4,5,6}. For the amount of time it takes to get to work, the sample space is all possible real numbers
greater than zero (since it can’t take a negative amount of time to get somewhere, at least not yet). We won’t bother trying to
write out all of those numbers within the brackets.
An event is a subset of the sample space. In principle it could be one or more of possible outcomes in the sample space, but
here we will focus primarily on elementary events which consist of exactly one possible outcome. For example, this could be
obtaining heads in a single coin flip, rolling a 4 on a throw of the die, or taking 21 minutes to get home by the new route.

Now that we have those definitions, we can outline the formal features of a probability, which were first defined by the Russian
mathematician Andrei Kolmogorov. These are the features that a value has to have if it is going to be a probability. If  is the
probability of event X :

Probability cannot be negative: 
The total probability of all outcomes in the sample space is 1; that is, if we take the probability of each element in the sample
space and add them up, they must sum to 1. We can express this using the summation symbol ∑:

This is interpreted as saying “Take all of the N elementary events, which we have labeled from 1 to N, and add up their
probabilities. These must sum to one.” 
- The probability of any individual event cannot be greater than one: . This is implied by the previous point; since they
must sum to one, and they can’t be negative, then any particular probability must be less than or equal to one.
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10.5: How Do We Determine Probabilities?
Now that we know what a probability is, how do we actually figure out what the probability is for any particular event?

10.2.1 Personal belief

Let’s say that I asked you what the probability was that the Beatles would have been equally successful if they had not replaced
their original drummer Pete Best with Ringo Starr in 1962. We will define “success” in terms of the number of number-one hits on
the Billboard Hot 100 (which we refer to as N ); the Beatles had 20 such number-one hits, so the sample space is
{N <20,N ≥20 }. We can’t actually do the experiment to find the outcome. However, most people with knowledge of the
Beatles would be willing to at leaste offer a guess at the probability of this event. In many cases personal knowledge and/or opinion
is the only guide we have determining the probability of an event, but this is not very scientifically satisfying.

10.2.2 Empirical frequency

Another way to determine the probability of an event is to do the experiment many times and count how often each event happens.
From the relative frequency of the different outcomes, we can compute the probability of each. For example, let’s say that we are
interested in knowing the probability of rain in San Francisco. We first have to define the experiment — let’s say that we will look
at the National Weather Service data for each day in 2017 and determine whether there was any rain at the downtown San
Francisco weather station.

Number of rainy days Number of days measured P(rain)

73 365 0.2

According to these data , in 2017 there were rain

y days. To compute the probability of rain
in San Francisco, we simply divide the
number of rainy days by the number of

days counted (365), giving P(rain in SF in
2017) = .

How do we know that empirical probability gives us the right number? The answer to this question comes from the law of large
numbers, which shows that the empirical probability will approach the true probability as the sample size increases. We can see this
by simulating a large number of coin flips, and looking at our estimate of the probability of heads after each flip. We will spend
more time discussing simulation in a later chapter; for now, just assume that we have a computational way to generate a random
outcome for each coin flip.

The left panel of Figure 10.1 shows that as the number of samples (i.e., coin flip trials) increases, the estimated probability of heads
converges onto the true value of 0.5. However, note that the estimates can be very far off from the true value when the sample sizes
are small. A real-world example of this was seen in the 2017 special election for the US Senate in Georgia, which pitted the
Republican Roy Moore against Democrat Doug Jones. The right panel of Figure 10.1 shows the relative amount of the vote
reported for each of the candidates over the course of the evening, as an increasing number of ballots were counted. Early in the
evening the vote counts were especially volatile, swinging from a large initial lead for Jones to a long period where Moore had the
lead, until finally Jones took the lead to win the race.

hits

hits hits
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Figure 10.1: Left: A demonstration of the law of large numbers. A coin was flipped 30,000 times, and after each flip the probability
of heads was computed based on the number of heads and tail collected up to that point. It takes about 15,000 flips for the
probability to settle at the true probability of 0.5. Right: Relative proportion of the vote in the Dec 12, 2017 special election for the
US Senate seat in Georgia, as a function of the percentage of precincts reporting. These data were transcribed from
https://www.ajc.com/news/national/alabama-senate-race-live-updates-roy-moore-doug-jones/KPRfkdaweoiXICW3FHjXqI/

These two examples show that while large samples will ultimately converge on the true probability, the results with small samples
can be far off. Unfortunately, many people forget this and overinterpret results from small samples. This was referred to as the law
of small numbers by the psychologists Danny Kahneman and Amos Tversky, who showed that people (even trained researchers)
often behave as if the law of large numbers applies even to small samples, giving too much credence to results from small datasets.
We will see examples throughout the course of just how unstable statistical results can be when they are generated on the basis of
small samples.

10.2.3 Classical probability

It’s unlikely that any of us has ever flipped a coin tens of thousands of times, but we are nonetheless willing to believe that the
probability of flipping heads is 0.5. This reflects the use of yet another approach to computing probabilities, which we refer to as
classical probability. In this approach, we compute the probability directly based on our knowledge of the situation.

Classical probability arose from the study of games of chance such as dice and cards. A famous example arose from a problem
encountered by a French gambler who went by the name of Chevalier de Méré. de Méré played two different dice games: In the
first he bet on the chance of at least one six on four rolls of a six-sided die, while in the second he bet on the chance of at least one
double-six on 24 rolls of two dice. He expected to win money on both of these gambles, but he found that while on average he won
money on the first gamble, he actually lost money on average when he played the second gamble many times. To understand this
he turned to his friend, the mathematician Blaise Pascal, who is now recognized as one of the founders of probability theory.

How can we understand this question using probability theory? In classical probability, we start with the assumption that all of the
elementary events in the sample space are equally likely; that is, when you roll a die, each of the possible outcomes ({1,2,3,4,5,6})
is equally likely to occur. (No loaded dice allowed!) Given this, we can compute the probability of any individual outcome as one
divided by the number of possible outcomes:

For the six-sided die, the probability of each individual outcome is 1/6.

This is nice, but de Méré was interested in more complex events, like what happens on multiple dice throws. How do we compute
the probability of a complex event (which is a union of single events), like rolling a one on the first or the second throw? 
We represent the union of events mathematically using the ∪ symbol: for example, if the probability of rolling a one on the first
throw is referred to as P(Roll1 ) and the probability of rolling a one on the second throw is P(Roll1 ), then the union is
referred to as P(Roll1 ∪Roll1 ).

de Méré thought (incorrectly, as we will see below) that he could simply add together the probabilities of the individual events to
compute the probability of the combined event, meaning that the probability of rolling a one on the first or second roll would be
computed as follows:

 P (outcom ) =e

i

1

number of  possible outcomes

throw1 throw2

throw1 throw2
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de Méré reasoned based on this that the probability of at least one six in four rolls was the sum of the probabilities on each of the
individual throws: . Similarly, he reasoned that since the probability of a double-six in throws of dice is 1/36, then the
probability of at least one double-six on 24 rolls of two dice would be . Yet, while he consistently won money on the
first bet, he lost money on the second bet. What gives?

To understand de Méré’s error, we need to introduce some of the rules of probability theory. The first is the rule of subtraction,
which says that the probability of some event A not happening is one minus the probability of the event happening:

P(¬A)=1−P(A)

where ¬A means “not A”. This rule derives directly from the axioms that we discussed above; because A and ¬A are the only
possible outcomes, then their total probability must sum to 1. For example, if the probability of rolling a one in a single throw is ,
then the probability of rolling anything other than a one is .

A second rule tells us how to compute the probability of a conjoint event – that is, the probability that both of two events will
occur. We refer to this as an intersection, which is signified by the ∩ symbol; thus, P(A∩B) means the probability that both A and
B will occur.

This version of the rule tells us how to compute this quantity in the special case when the two events are independent from one
another; we will learn later exactly what the concept of independence means, but for now we can just take it for granted that the
two die throws are independent events. We compute the probability of the union of two independent events by simply multiplying
the probabilities of the individual events:

P(A∩B)=P(A)∗P(B) if and only if A and B are independent

Thus, the probability of throwing a six on both of two rolls is 

The third rule tells us how to add together probabilities - and it is here that we see the source of de Méré’s error. The addition rule
tells us that to obtain the probability of either of two events occurring, we add together the individual probabilities, but then
subtract the likelihood of both occurring together:

P(A∪B)=P(A)+P(B)−P(A∩B)

In a sense, this prevents us from counting those instances twice, and that’s what distinguishes the rule from de Méré’s incorrect
computation. Let’s say that we want to find the probability of rolling 6 on either of two throws. According to our rules:

 

P (Roll ) = 1/61

throw1

P (Roll ) = 1/61

throw2

 deMér s error :é′

P (Roll  ∪ ) = P (Roll  )+P (Roll  ) = 1/6+1/6 = 1/31

throw1

Roll 

tthrow2

1

throw1

1

throw2

 4 ∗ =

1

6

2

3

 24 ∗ =

1

36

2

3

 

1

6

 

5

6

  ∗ =

1

6

1

6

1

36

P (Roll  ∪  Roll  ) = P (Roll  )+P (Roll  )−P ( ∩ )1

throw1 

1

throw 2

1

throw1 

1

throw 2

Roll 

throw 1

Roll 

throw 2

  = + − =

1

6

1

6

1

36

11

36

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8765?pdf


10.5.4 https://stats.libretexts.org/@go/page/8765

Figure 10.2: Each cell in this matrix represents one outcome of two throws of a die, with the columns representing the first throw
and the rows representing the second throw. Cells shown in red represent the cells with a one in either the first or second throw; the
rest are shown in blue.

Let’s use a graphical depiction to get a different view of this rule. Figure 10.2 shows a matrix representing all possible
combinations of results across two throws, and highlights the cells that involve a one on either the first or second throw. If you
count up the cells in light blue you will see that there are 11 such cells. This shows why the addition rule gives a different answer
from de Méré’s; if we were to simply add together the probabilities for the two throws as he did, then we would count (1,1) towards
both, when it should really only be counted once.

10.2.4 Solving de Méré’s problem

Blaise Pascal used the rules of probability to come up with a solution to de Méré’s problem. First, he realized that computing the
probability of at least one event out of a combination was tricky, whereas computing the probability that something does not occur
across several events is relatively easy – it’s just the product of the probabilities of the individual events. Thus, rather than
computing the probability of at least one six in four rolls, he instead computed the probability of no sixes across all rolls:

He then used the fact that the probability of no sixes in four rolls is the complement of at least one six in four rolls (thus they must
sum to one), and used the rule of subtraction to compute the probability of interest:

de Méré’s gamble that he would throw at least one six in four rolls has a probability of greater than 0.5, explaning why de Méré
made money on this bet on average.

But what about de Méré’s second bet? Pascal used the same trick:

 

The probability of this outcome was slightly below 0.5, showing why de Méré lost money on average on this bet.
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10.6: Probability Distributions
A probability distribution describes the probability of all of the possible outcomes in an experiment. For example, on Jan 20 2018,
the basketball player Steph Curry hit only 2 out of 4 free throws in a game against the Houston Rockets. We know that Curry’s
overall probability of hitting free throws across the entire season was 0.91, so it seems pretty unlikely that he would hit only 50%
of his free throws in a game, but exactly how unlikely is it? We can determine this using a theoretical probability distribution;
during this course we will encounter a number of these probability distributions, each of which is appropriate to describe different
types of data. In this case, we use the binomial distribution, which provides a way to compute the probability of some number of
successes out of a number of trials on which there is either success or failure and nothing in between (known as “Bernoulli trials”)
given some known probability of success on each trial. This distribution is defined as:

[\P(k ; n, p)=P(X=k)=\left(

\right) p^{k}(1-p)^{n-k}\]

This refers to the probability of k successes on n trials when the probability of success is p. You may not be familiar with (nk),
which is referred to as the binomial coefficient. The binomial coefficient is also referred to as “n-choose-k” because it describes the
number of different ways that one can choose k items out of n total items. The binomial coefficient is computed as:

where the explanation point (!) refers to the factorial of the number:

In the example of Steph Curry’s free throws:

This shows that given Curry’s overall free throw percentage, it is very unlikely that he would hit only 2 out of 4 free throws. Which
just goes to show that unlikely things do actually happen in the real world.

10.3.1 Cumulative probability distributions
Often we want to know not just how likely a specific value is, but how likely it is to find a value that is as extreme or more than a
particular value; this will become very important when we discuss hypothesis testing in a later chapter. To answer this question, we
can use a cumulative probability distribution; whereas a standard probability distribution tells us the probability of some specific
value, the cumulative distribution tells us the probability of a value as large or larger (or as small or smaller) than some specific
value.

In the free throw example, we might want to know: What is the probability that Steph Curry hits 2 or fewer free throws out of four,
given his overall free throw probability of 0.91. To determine this, we could simply use the the binomial probability equation and
plug in all of the possible values of k and add them together:

In many cases the number of possible outcomes would be too large for us to compute the cumulative probability by enumerating all
possible values; fortunately, it can be computed directly. For the binomial, we can do this in R using the pbinom()  function:

Table 10.1: Cumulative probability distribution for number of successful free throws by Steph Curry in 4 attempts.

numSuccesses probability

n

k

(10.6.1)

( ) =

n

k

n!

k!(n−k)!

(10.6.2)

n! = i = n ∗ (n−1)∗…∗ 2 ∗ 1∏

i=1

n

(10.6.3)

P (2; 4, 0.91) =( ) (1−0.91 = 0.040

4

2

0.91

2

)

4−2

(10.6.4)

P (k≤ 2) = P (k= 2)+P (k= 1)+P (k= 0)

= 6 +0.002+0.040e

−5

= 0.043
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numSuccesses probability

0 0.00

1 0.00

2 0.04

3 0.31

4 1.00

From the table we can see that the probability of Curry landing 2 or fewer free throws out of 4 attempts is 0.043.
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10.7: Conditional Probability
So far we have limited ourselves to simple probabilities - that is, the probability of a single event or combination of events.
However, we often wish to determine the probability of some event given that some other event has occurred, which are known as
conditional probabilities.

Let’s take the 2016 US Presidential election as an example. There are two simple probabilities that we could use to describe the
electorate. First, we know the probability that a voter in the US affiliated with the Republican party: . We
also know the probability that a voter cast their vote in favor of Donald Trump: Trump voter)=0.46. However, let’s say that we
want to know the following: What is the probability that a person cast their vote for Donald Trump, given that they are a
Republican?

To compute the conditional probability of A given B (which we write as , “probability of A, given B”), we need to know
the joint probability (that is, the probability of both A and B occurring) as well as the overall probability of B:

That is, we want to know the probability that both things are true, given that the one being conditioned upon is true.

Figure 10.3: A graphical depiction of conditional probability, showing how the conditional probability limits our analysis to a
subset of the data.

It can be useful to think of this is graphically. Figure 10.3 shows a flow chart depicting how the full population of voters breaks
down into Republicans and Democrats, and how the conditional probability (conditioning on party) further breaks down the
members of each party according to their vote.
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10.10: Reversing a Conditional Probability- Bayes’ Rule
In many cases, we know  but we really want to know . This commonly occurs in medical screening, where we
know  but what we want to know is . For example, some doctors
recommend that men over the age of 50 undergo screening using a test called prostate specific antigen (PSA) to screen for possible
prostate cancer. Before a test is approved for use in medical practice, the manufacturer needs to test two aspects of the test’s
performance. First, they need to show how sensitive it is – that is, how likely is it to find the disease when it is present: 

. They also need to show how specific it is: that is, how likely is it to give a negative
result when there is no disease present: . For the PSA test, we know that sensitivity is
about 80% and specificity is about 70%. However, these don’t answer the question that the physician wants to answer for any
particular patient: what is the likelihood that they actually have cancer, given that the test comes back positive? This requires that
we reverse the conditional probability that defines sensitivity: instead of P(positive test| disease) we want to know
P(disease|positive test).

In order to reverse a conditional probability, we can use Bayes’ rule:

Bayes’ rule is fairly easy to derive, based on the rules of probability that we learned earlier in the chapter (see the Appendix for this
derivation).

If we have only two outcomes, we can express Bayes’ rule in a somewhat clearer way, using the sum rule to redefine :

Using this, we can redefine Bayes’s rule:

We can plug the relevant numbers into this equation to determine the likelihood that an individual with a positive PSA result
actually has cancer – but note that in order to do this, we also need to know the overall probability of cancer in the person, which
we often refer to as the base rate. Let’s take a 60 year old man, for whom the probability of prostate cancer in the next 10 years is 

. Using the sensitivity and specificity values that we outlined above, we can compute the individual’s
likelihood of having cancer given a positive test:

That’s pretty small – do you find that surprising? Many people do, and in fact there is a substantial psychological literature showing
that people systematically neglect base rates (i.e. overall prevalence) in their judgments.
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10.11: Learning from Data
Another way to think of Bayes’ rule is as a way to update our beliefs on the basis of data – that is, learning about the world using
data. Let’s look at Bayes’ rule again:

The different parts of Bayes’ rule have specific names, that relate to their role in using Bayes rule to update our beliefs. We start out
with an initial guess about the probability of B ( ), which we refer to as the prior probability. In the PSA example we used the
base rate for the prior, since it was our best guess as to the individual’s chance of cancer before we knew the test result. We then
collect some data, which in our example was the test result. The degree to which the data A are consistent with outcome B is given
by , which we refer to as the likelihood. You can think of this as how likely the data are, given the particular hypothesis
being tested. In our example, the hypothesis being tested was whether the individual had cancer, and the likelihood was based on
our knowledge about the sensitivity of the test (that is, the probability of cancer given a positive test outcome). The denominator (

) is referred to as the marginal likelihood, because it expresses the overall likelihood of the data, averaged across all of the
possible values of A (which in our example were the positive and negative test results). The outcome to the left ( ) is
referred to as the posterior - because it’s what comes out the back end of the computation.

There is a another way of writing Bayes rule that makes this a bit clearer:

The part on the left ( ) tells us how much more or less likely the data A are given B, relative to the overall (marginal)

likelihood of the data, while the part on the right side ( ) tells us how likely we thought B was before we knew anything about
the data. This makes it clearer that the role of Bayes theorem is to update our prior knowledge based on the degree to which the
data are more likely given B than they would be overall. If the hypothesis is more likely given the data than it would be in general,
then we increase our belief in the hypothesis; if it’s less likely given the data, then we decrease our belief.
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10.12: Odds and Odds Ratios
The result in the last section showed that the likelihood that the individual has cancer based on a positive PSA test result is still
fairly low, even though it’s more than twice as big as it was before we knew the test result. We would often like to quantify the
relation between probabilities more directly, which we can do by converting them into odds which express the relative likelihood of
something happening or not: 

In our PSA example, the odds of having cancer (given the positive test) are:

This tells us that the that the odds are fairly low of having cancer, even though the test was positive. For comparison, the odds of
rolling a 6 in a single dice throw are:

As an aside, this is a reason why many medical researchers have become increasingly wary of the use of widespread screening tests
for relatively uncommon conditions; most positive results will turn out to be false positives.

We can also use odds to compare different probabilities, by computing what is called an odds ratio - which is exactly what it
sounds like. For example, let’s say that we want to know how much the positive test increases the individual’s odds of having
cancer. We can first compute the prior odds – that is, the odds before we knew that the person had tested positively. These are
computed using the base rate:

We can then compare these with the posterior odds, which are computed using the posterior probability:

ods ratio 

This tells us that the odds of having cancer are increased by 2.62 times given the positive test result. An odds ratio is example of
what we will later call an effect size, which is a way of quantifying how relatively large any particular statistical effect is.
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CHAPTER OVERVIEW

11: Probability in R
In this chapter we will go over probability computations in R.

11.1: Basic Probability Calculations

11.1.1: Empirical Frequency (Section 10.2.2)

11.2: Conditional Probability (Section 10.4)
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11.1: Basic Probability Calculations
Let’s create a vector of outcomes from one to 6, using the seq()  function to create such a sequence:

outcomes <- seq(1, 6) 
outcomes

## [1] 1 2 3 4 5 6

Now let’s create a vector of logical values based on whether the outcome in each position is equal to 1. Remember that ==  tests
for equality of each element in a vector:

outcome1isTrue <- outcomes == 1  
outcome1isTrue

## [1]  TRUE FALSE FALSE FALSE FALSE FALSE

Rememer that the simple probability of an outcome is number of occurrences of the outcome divided by the total number of events.
To compute a probability, we can take advantage of the fact that TRUE/FALSE are equivalent to 1/0 in R. The formula for the
mean (sum of values divided by the number of values) is thus exactly the same as the formula for the simple probability! So, we
can compute the probability of the event by simply taking the mean of the logical vector.

p1isTrue <- mean(outcome1isTrue) 
p1isTrue

## [1] 0.17
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11.1.1: Empirical Frequency (Section 10.2.2)
Let’s walk through how we computed empirical frequency of rain in San Francisco.

First we load the data:

# we will remove the STATION and NAME variables  
# since they are identical for all rows 
SFrain <- read_csv("data/SanFranciscoRain/1329219.csv") %>%  
  dplyr::select(-STATION, -NAME) 
   
glimpse(SFrain)

## Observations: 365 
## Variables: 2 
## $ DATE <date> 2017-01-01, 2017-01-02, 2017-01-03, 2017-01… 
## $ PRCP <dbl> 0.05, 0.10, 0.40, 0.89, 0.01, 0.00, 0.82, 1.…

We see that the data frame contains a variable called PRCP  which denotes the amount of rain each day. Let’s create a new
variable called rainToday  that denotes whether the amount of precipitation was above zero:

SFrain <-  
  SFrain %>% 
  mutate(rainToday = as.integer(PRCP > 0)) 
 
glimpse(SFrain)

## Observations: 365 
## Variables: 3 
## $ DATE      <date> 2017-01-01, 2017-01-02, 2017-01-03, 20… 
## $ PRCP      <dbl> 0.05, 0.10, 0.40, 0.89, 0.01, 0.00, 0.8… 
## $ rainToday <int> 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, …

Now we will summarize the data to compute the probability of rain:

pRainInSF <-  
  SFrain %>% 
  summarize( 
    pRainInSF = mean(rainToday) 
  ) %>% 
  pull() 
 
pRainInSF

## [1] 0.2
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11.2: Conditional Probability (Section 10.4)
Let’s determine the conditional probability of someone being unhealthy, given that they are over 70 years of age, using the
NHANES dataset. Let’s create a new data frame that

healthDataFrame <- 
  NHANES %>% 
  mutate( 
    Over70 = Age > 70, 
    Unhealthy = DaysPhysHlthBad > 0 
  ) %>% 
  dplyr::select(Unhealthy, Over70) %>% 
  drop_na() 
 
glimpse(healthDataFrame)

## Observations: 4,891 
## Variables: 2 
## $ Unhealthy <lgl> FALSE, FALSE, FALSE, TRUE, FALSE, TRUE,… 
## $ Over70    <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALS…

First, what’s the probability of being over 70?

pOver70 <-  
  healthDataFrame %>% 
  summarise(pOver70 = mean(Over70)) %>%  
  pull() 
 
# to obtain the specific value, we need to extract it from the data frame 
 
pOver70

## [1] 0.11

Second, what’s the probability of being unhealthy?

pUnhealthy <-  
  healthDataFrame %>% 
  summarise(pUnhealthy = mean(Unhealthy)) %>%  
  pull() 
 
pUnhealthy

## [1] 0.36

What’s the probability for each combination of unhealthy/healthly and over 70/ not? We can create a new variable that finds the
joint probability by multiplying the two individual binary variables together; since anything times zero is zero, this will only have
the value 1 for any case where both are true.
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pBoth <- healthDataFrame %>%  
  mutate( 
    both = Unhealthy*Over70 
  ) %>% 
  summarise( 
    pBoth = mean(both)) %>%  
  pull() 
 
pBoth

## [1] 0.043

Finally, what’s the probability of someone being unhealthy, given that they are over 70 years of age?

pUnhealthyGivenOver70 <- 
  healthDataFrame %>% 
  filter(Over70 == TRUE) %>% # limit to Over70 
  summarise(pUnhealthy = mean(Unhealthy)) %>%  
  pull() 
 
pUnhealthyGivenOver70

## [1] 0.38

# compute the opposite: 
# what the probability of being over 70 given that  
# one is unhealthy? 
pOver70givenUnhealthy <- 
  healthDataFrame %>% 
  filter(Unhealthy == TRUE) %>% # limit to Unhealthy 
  summarise(pOver70 = mean(Over70)) %>%  
  pull() 
 
pOver70givenUnhealthy

## [1] 0.12
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CHAPTER OVERVIEW

12: Sampling

Distinguish between a population and a sample, and between population parameters and statistics
Describe the concepts of sampling error and sampling distribution
Compute the standard error of the mean
Describe how the Central Limit Theorem determines the nature of the sampling distribution of the mean
Compute a confidence interval for the mean based on the normal distribution, and describe its proper interpretation

One of the foundational ideas in statistics is that we can make inferences about an entire population based on a relatively small
sample of individuals from that population. In this chapter we will introduce the concept of statistical sampling and discuss why it
works.

Anyone living in the United States will be familiar with the concept of sampling from the political polls that have become a central
part of our electoral process. In some cases, these polls can be incredibly accurate at predicting the outcomes of elections. The best
known example comes from the 2008 and 2012 US Presidential elections, when the pollster Nate Silver correctly predicted
electoral outcomes for 49/50 states in 2008 and for all 50 states in 2012. Silver did this by combining data from 21 different polls,
which vary in the degree to which they tend to lean towards either the Republican or Democratic side. Each of these polls included
data from about 1000 likely voters – meaning that Silver was able to almost perfectly predict the pattern of votes of more than 125
million voters using data from only 21,000 people, along with other knowledge (such as how those states have voted in the past).

12.1: How Do We Sample?
12.2: Sampling Error
12.3: Standard Error of the Mean
12.4: The Central Limit Theorem
12.5: Confidence Intervals
12.6: Suggested Readings
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source content that was edited to the style and standards of the LibreTexts platform.
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12.1: How Do We Sample?
Our goal in sampling is to determine the value of a statistic for an entire population of interest, using just a small subset of the
population. We do this primarily to save time and effort – why go to the trouble of measuring every individual in the population
when just a small sample is sufficient to accurately estimate the variable of interest?

In the election example, the population is all registered voters, and the sample is the set of 1000 individuals selected by the polling
organization. The way in which we select the sample is critical to ensuring that the sample is representative of the entire
population, which is a main goal of statistical sampling. It’s easy to imagine a non-representative sample; if a pollster only called
individuals whose names they had received from the local Democratic party, then it would be unlikely that the results of the poll
would be representative of the population as a whole. In general, we would define a representative poll as being one in which every
member of the population has an equal chance of being selected. When this fails, then we have to worry about whether the statistic
that we compute on the sample is biased - that is, whether its value is systematically different from the population value (which we
refer to as a parameter). Keep in mind that we generally don’t know this population parameter, because if we did then we wouldn’t
need to sample! But we will use examples where we have access to the entire population, in order to explain some of the key ideas.

It’s important to also distinguish between two different ways of sampling: with replacement versus without replacement. In
sampling with replacement, after a member of the population has been sampled, they are put back into the pool so that they can
potentially be sampled again. In sampling without replacement, once a member has been sampled they are not eligible to be
sampled again. It’s most common to use sampling without replacement, but there will be some contexts in which we will use
sampling with replacement, as when we discuss a technique called bootstrapping in Chapter 14.
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12.3: Standard Error of the Mean
Later in the course it will become essential to be able to characterize how variable our samples are, in order to make inferences
about the sample statistics. For the mean, we do this using a quantity called the standard error of the mean (SEM), which one can
think of as the standard deviation of the sampling distribution. To compute the standard error of the mean for our sample, we divide
the estimated standard deviation by the square root of the sample size:

Note that we have to be careful about computing SEM using the estimated standard deviation if our sample is small (less than about
30).

Because we have many samples from the NHANES population and we actually know the population SEM (which we compute by
dividing the population standard deviation by the size of the population), we can confirm that the SEM computed using the
population parameter (1.44) is very close to the observed standard deviation of the means for the samples that we took from the
NHANES dataset (1.44).

The formula for the standard error of the mean says that the quality of our measurement involves two quantities: the population
variability, and the size of our sample. Because the sample size is the denominator in the formula for SEM, a larger sample size will
yield a smaller SEM when holding the population variability constant. We have no control over the population variability, but we
do have control over the sample size. Thus, if we wish to improve our sample statistics (by reducing their sampling variability) then
we should use larger samples. However, the formula also tells us something very fundamental about statistical sampling – namely,
that the utility of larger samples diminishes with the square root of the sample size. This means that doubling the sample size will
not double the quality of the statistics; rather, it will improve it by a factor of 
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12.4: The Central Limit Theorem
The Central Limit Theorem tells us that as sample sizes get larger, the sampling distribution of the mean will become normally
distributed, even if the data within each sample are not normally distributed.

We can see this in real data. Let’s work with the variable AlcoholYear in the NHANES distribution, which is highly skewed, as
shown in the left panel of Figure ??. This distribution is, for lack of a better word, funky – and definitely not normally distributed.
Now let’s look at the sampling distribution of the mean for this variable. Figure 12.2 shows the sampling distribution for this
variable, which is obtained by repeatedly drawing samples of size 50 from the NHANES dataset and taking the mean. Despite the
clear non-normality of the original data, the sampling distribution is remarkably close to the normal.

Figure 12.2: Left: Distribution of the variable AlcoholYear in the NHANES dataset, which reflects the number of days that the
individual drank in a year. Right: The sampling distribution of the mean for AlcoholYear in the NHANES dataset, obtained by
drawing repeated samples of size 50, in blue. The normal distribution with the same mean and standard deviation is shown in red.

The Central Limit Theorem is important for statistics because it allows us to safely assume that the sampling distribution of the
mean will be normal in most cases. This means that we can take advantage of statistical techniques that assume a normal
distribution, as we will see in the next section.
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12.6: Suggested Readings
The Signal and the Noise: Why So Many Predictions Fail - But Some Don’t, by Nate Silver
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CHAPTER OVERVIEW

13: Sampling in R
First we load the necessary libraries and set up the NHANES adult dataset

library(tidyverse) 
library(ggplot2) 
library(knitr) 
library(cowplot) 
 
set.seed(123456) 
opts_chunk$set(tidy.opts=list(width.cutoff=80)) 
options(tibble.width = 60) 
 
 
# load the NHANES data library 
library(NHANES) 
 
# create a NHANES dataset without duplicated IDs  
NHANES <- 
  NHANES %>% 
  distinct(ID, .keep_all = TRUE)  
 
#create a dataset of only adults 
NHANES_adult <-  
  NHANES %>% 
  filter(  
    Age >= 18 
  ) %>% 
  drop_na(Height)

13.1: Sampling Error (Section @ref{samplingerror})
13.2: Central Limit Theorem
13.3: Confidence Intervals (Section @ref{confidence-intervals})

This page titled 13: Sampling in R is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A. Poldrack via
source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/13%3A_Sampling_in_R/13.01%3A_Sampling_Error_(Section_@refsamplingerror)
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/13%3A_Sampling_in_R/13.02%3A_Central_Limit_Theorem
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/13%3A_Sampling_in_R/13.03%3A_Confidence_Intervals_(Section_@refconfidence-intervals)
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/13%3A_Sampling_in_R
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


13.1.1 https://stats.libretexts.org/@go/page/8790

13.1: Sampling Error (Section @ref{samplingerror})
Here we will repeatedly sample from the NHANES Height variable in order to obtain the sampling distribution of the mean.

sampSize <- 50 # size of sample 
nsamps <- 5000 # number of samples we will take 
 
# set up variable to store all of the results 
sampMeans <- tibble(meanHeight=rep(NA,nsamps)) 
 
# Loop through and repeatedly sample and compute the mean 
for (i in 1:nsamps) { 
  sampMeans$meanHeight[i] <- NHANES_adult %>% 
    sample_n(sampSize) %>% 
    summarize(meanHeight=mean(Height)) %>% 
    pull(meanHeight) 
}

Now let’s plot the sampling distribution. We will also overlay the sampling distribution of the mean predicted on the basis of the
population mean and standard deviation, to show that it properly describes the actual sampling distribution.
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# pipe the sampMeans data frame into ggplot 
sampMeans %>%  
  ggplot(aes(meanHeight)) + 
  # create histogram using density rather than count 
  geom_histogram( 
    aes(y = ..density..), 
    bins = 50, 
    col = "gray",  
    fill = "gray" 
  ) + 
  # add a vertical line for the population mean 
  geom_vline(xintercept = mean(NHANES_adult$Height), 

             size=) + 
  # add a label for the line 
  annotate( 
    "text", 

    x = ,  
    y = , 

    label = "Population mean", 
    size=6 
  ) + 
  # label the x axis 
  labs(x = "Height (inches)") + 
  # add normal based on population mean/sd 
  stat_function( 
      fun = dnorm, n = sampSize, 
      args = list( 
        mean = mean(NHANES_adult$Height), 
        sd = sd(NHANES_adult$Height)/sqrt(sampSize) 
      ),  

      size = , 
      color = "black", 
      linetype='dotted' 
    ) 
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13.2: Central Limit Theorem
The central limit theorem tells us that the sampling distribution of the mean becomes normal as the sample size grows. Let’s test
this by sampling a clearly non-normal variable and look at the normality of the results using a Q-Q plot. We saw in Figure
@ref{fig:alcDist50} that the variable AlcoholYear  is distributed in a very non-normal way. Let’s first look at the Q-Q plot
for these data, to see what it looks like. We will use the stat_qq()  function from ggplot2  to create the plot for us.

# prepare the dta 
NHANES_cleanAlc <- NHANES %>% 
  drop_na(AlcoholYear) 
 
ggplot(NHANES_cleanAlc, aes(sample=AlcoholYear)) + 
  stat_qq() +  
  # add the line for x=y 
  stat_qq_line()

We can see from this figure that the distribution is highly non-normal, as the Q-Q plot diverges substantially from the unit line.

Now let’s repeatedly sample and compute the mean, and look at the resulting Q-Q plot. We will take samples of various sizes to see
the effect of sample size. We will use a function from the dplyr  package called do() , which can run a large number of
analyses at once.
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set.seed(12345) 
 
sampSizes <- c(16, 32, 64, 128) # size of sample 
nsamps <- 1000 # number of samples we will take 
 
# create the data frame that specifies the analyses 
input_df <- tibble(sampSize=rep(sampSizes,nsamps), 
                      id=seq(nsamps*length(sampSizes))) 
 
 
# create a function that samples and returns the mean 
# so that we can loop over it using replicate() 
get_sample_mean <- function(sampSize){ 
  meanAlcYear <-  
    NHANES_cleanAlc %>% 
    sample_n(sampSize) %>% 
    summarize(meanAlcoholYear = mean(AlcoholYear)) %>% 
    pull(meanAlcoholYear) 
  return(tibble(meanAlcYear = meanAlcYear, sampSize=sampSize))
} 
 
# loop through sample sizes 
# we group by id so that each id will be run separately by do() 
all_results = input_df %>%  
  group_by(id) %>% 
  # "." refers to the data frame being passed in by do() 
  do(get_sample_mean(.$sampSize))

Now let’s create separate Q-Q plots for the different sample sizes.

# create empty list to store plots 
 
qqplots = list() 
 
for (N in sampSizes){ 
  sample_results <-  
    all_results %>% 
    filter(sampSize==N) 
 
  qqplots[[toString(N)]] <- ggplot(sample_results,  
                                aes(sample=meanAlcYear)) + 
    stat_qq() +  
    # add the line for x=y 
    stat_qq_line(fullrange = TRUE) +  
    ggtitle(sprintf('N = %d', N)) +  
   xlim(-4, 4)  
 
} 
 
plot_grid(plotlist = qqplots)
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This shows that the results become more normally distributed (i.e. following the straight line) as the samples get larger.
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13.3: Confidence Intervals (Section @ref{confidence-intervals})
Remember that confidence intervals are intervals that will contain the population parameter on a certain proportion of times. In this
example we will walk through the simulation that was presented in Section @ref{confidence-intervals} to show that this actually
works properly. Here we will use a function called do()  that lets us
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CHAPTER OVERVIEW

14: Resampling and Simulation

Describe the concept of a Monte Carlo simulation.
Describe the meaning of randomness in statistics
Obtain random numbers from the uniform and normal distributions
Describe the concept of the bootstrap

The use of computer simulations has become an essential aspect of modern statistics. For example, one of the most important books
in practical computer science, called Numerical Recipes, says the following:

“Offered the choice between mastery of a five-foot shelf of analytical statistics books and
middling ability at performing statistical Monte Carlo simulations, we would surely
choose to have the latter skill.”

In this chapter we will introduce the concept of a Monte Carlo simulation and discuss how it can be used to perform statistical
analyses.

14.1: Monte Carlo Simulation
14.2: Randomness in Statistics
14.3: Generating Random Numbers
14.4: Using Monte Carlo Simulation
14.5: Using Simulation for Statistics- The Bootstrap
14.6: Suggested Readings
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14.1: Monte Carlo Simulation
The concept of Monte Carlo simulation was devised by the mathematicians Stan Ulam and Nicholas Metropolis, who were
working to develop an atomic weapon for the US as part of the Manhattan Project. They needed to compute the average distance
that a neutron would travel in a substance before it collided with an atomic nucleus, but they could not compute this using standard
mathematics. Ulam realized that these computations could be simulated using random numbers, just like a casino game. In a casino
game such as a roulette wheel, numbers are generated at random; to estimate the probability of a specific outcome, you could play
the game hundreds of times. Ulam’s uncle had gambled at the Monte Carlo casino in Monaco, which is apparently where the name
came from for this new technique.

There are four steps to performing a Monte Carlo simulation:

1. Define a domain of possible values
2. Generate random numbers within that domain from a probability distribution
3. Perform a computation using the random numbers
4. Combine the results across many repetitions

As an example, let’s say that I want to figure out how much time to allow for an in-class quiz. Say that we know that the
distribution of quiz completion times is normal, with mean of 5 minutes and standard deviation of 1 minute. Given this, how long
does the test period need to be so that we expect all students to finish the exam 99% of the time? There are two ways to solve this
problem. The first is to calculate the answer using a mathematical theory known as the statistics of extreme values. However, this
involves complicated mathematics. Alternatively, we could use Monte Carlo simulation. To do this, we need to generate random
samples from a normal distribution.
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14.2: Randomness in Statistics
The term “random” is often used colloquially to refer to things that are bizarre or unexpected, but in statistics the term has a very
specific meaning: A process is random if it is unpredictable. For example, if I flip a fair coin 10 times, the value of the outcome on
one flip does not provide me with any information that lets me predict the outcome on the next flip. It’s important to note that the
fact that something is unpredictable doesn’t necessarily mean that it is not deterministic. For example, when we flip a coin, the
outcome of the flip is determined by the laws of physics; if we knew all of the conditions in enough detail, we should be able to
predict the outcome of the flip. However, many factors combine to make the outcome of the coin flip unpredictable in practice.

Psychologists have shown that humans actually have a fairly bad sense of randomness. First, we tend to see patterns when they
don’t exist. In the extreme, this leads to the phenomenon of pareidolia, in which people will perceive familiar objects within
random patterns (such as perceiving a cloud as a human face or seeing the Virgin Mary in a piece of toast). Second, humans tend to
think of random processes as self-correcting, which leads us to expect that we are “due for a win” after losing many rounds in a
game of chance, a phenonenon known as the “gambler’s fallacy”.
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14.3: Generating Random Numbers
Running a Monte Carlo simulation requires that we generate random numbers. Generating truly random numbers (i.e. numbers that
are completely unpredictable) is only possible through physical processes, such as the decay of atoms or the rolling of dice, which
are difficult to obtain and/or too slow to be useful for computer simulation (though they can be obtained from the NIST
Randomness Beacon).

In general, instead of truly random numbers we use pseudo-random numbers generated using a computer algorithm; these numbers
will seem random in the sense that they are difficult to predict, but the series of numbers will actually repeat at some point. For
example, the random number generator used in R will repeate after  numbers. That’s far more than the number of
seconds in the history of the universe, and we generally think that this is fine for most purposes in statistical analysis.

In R, there is a function to generate random numbers for each of the major probability distributions, such as:

runif()  - uniform distribution (all values between 0 and 1 equally)
rnorm()  - normal distribution
rbinom()  - binomial distribution (e.g. rolling the dice, coin flips)

Figure 14.1 shows examples of numbers generated using the runif()  and rnorm()  functions, generated using the
following code:

Figure 14.1: Examples of random numbers generated from a uniform (left) or normal (right) distribution.

You can also generate random numbers for any distribution if you have a quantile function for the distribution. This is the inverse
of the cumulative distribution function; instead of identifying the cumulative probabilities for a set of values, the quantile function
identifies the values for a set of cumulative probabilities. Using the quantile function, we can generate random numbers from a
uniform distribution, and then map those into the distribution of interest via its quantile function.

By default, R will generate a different set of random numbers every time you run one of the random number generator functions
described above. However, it is also possible to generate exactly the same set of random numbers, by setting what is called the
random seed to a specific value. We will do this in many of the examples in this book, in order to make sure that the examples are
reproducible.

If we run the rnorm()  function twice, it will give us different sets of pseudorandom numbers each time:

print(rnorm(n = 5))

## [1]  1.48  0.18  0.21 -0.15 -1.72

print(rnorm(n = 5))

## [1] -0.691 -2.231  0.391  0.029 -0.647
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However, if we set the random seed to the same value each time using the set.seed()  function, then it will give us the same
series of pseudorandom numbers each time:

set.seed(12345) 
print(rnorm(n = 5))

## [1]  0.59  0.71 -0.11 -0.45  0.61

set.seed(12345) 
print(rnorm(n = 5))

## [1]  0.59  0.71 -0.11 -0.45  0.61
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14.4: Using Monte Carlo Simulation
Let’s go back to our example of exam finishing times. Let’s say that I administer three quizzes and record the finishing times for
each student for each exam, which might look like the distributions presented in Figure 14.2.

Figure 14.2: Simulated finishing time distributions.

However, what we really want to know is not what the distribution of finishing times looks like, but rather what the distribution of
the longest finishing time for each quiz looks like. To do this, we can simulate the finishing time for a quiz, using the assumption
that the finishing times are distributed normally, as stated above; for each of these simulated quizzes, we then record the longest
finishing time. We repeat this simulation a large number of times (5000 should be enough) and record the distribution of finishing
times, which is shown in Figure 14.3.

Figure 14.3: Distribution of maximum finishing times across simulations.

This shows that the 99th percentile of the finishing time distribution falls at 8.81, meaning that if we were to give that much time
for the quiz, then everyone should finish 99% of the time. It’s always important to remember that our assumptions matter – if they
are wrong, then the results of the simulation are useless. In this case, we assumed that the finishing time distribution was normally
distributed with a particular mean and standard deviation; if these assumptions are incorrect (and they almost certainly are), then
the true answer could be very different.
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14.5: Using Simulation for Statistics- The Bootstrap
So far we have used simulation to demonstrate statistical principles, but we can also use simulation to answer real statistical
questions. In this section we will introduce a concept known as the bootstrap that lets us use simulation to quantify our uncertainty
about statistical estimates. Later in the course, we will see other examples of how simulation can often be used to answer statistical
questions, especially when theoretical statistical methods are not available or when their assumptions are too difficult to meet.

14.5.1 Computing the bootstrap
In the section above, we used our knowledge of the sampling distribution of the mean to compute the standard error of the mean
and confidence intervals. But what if we can’t assume that the estimates are normally distributed, or we don’t know their
distribution? The idea of the bootstrap is to use the data themselves to estimate an answer. The name comes from the idea of pulling
one’s self up by one’s own bootstraps, expressing the idea that we don’t have any external source of leverage so we have to rely
upon the data themselves. The bootstrap method was conceived by Bradley Efron of the Stanford Department of Statistics, who is
one of the world’s most influential statisticians.

The idea behind the bootstrap is that we repeatedly sample from the actual dataset; importantly, we sample with replacement, such
that the same data point will often end up being represented multiple times within one of the samples. We then compute our
statistic of interest on each of the bootstrap samples, and use the distribution of those estimates.

Let’s start by using the bootstrap to estimate the sampling distribution of the mean, so that we can compare the result to the
standard error of the mean (SEM) that we discussed earlier.

Figure 14.4: An example of bootstrapping to compute the standard error of the mean. The histogram shows the distribution of
means across bootstrap samples, while the red line shows the normal distribution based on the sample mean and standard deviation.

Figure 14.4 shows that the distribution of means across bootstrap samples is fairly close to the theoretical estimate based on the
assumption of normality. We can also use the bootstrap samples to compute a confidence interval for the mean, simply by
computing the quantiles of interest from the distribution of bootstrap samples.

Table 14.1: Confidence limits for normal distribution and bootstrap methods

type 2.5% 97.5%

Normal 165 172

Bootstrap 165 172

We would not usually employ the bootstrap to compute confidence intervals for the mean (since we can generally assume that the
normal distribution is appropriate for the sampling distribution of the mean, as long as our sample is large enough), but this
example shows how the method gives us roughly the same result as the standard method based on the normal distribution. The
bootstrap would more often be used to generate standard errors for estimates of other statistics where we know or suspect that the
normal distribution is not appropriate.
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14.6: Suggested Readings
Computer Age Statistical Inference: Algorithms, Evidence and Data Science, by Bradley Efron and Trevor Hastie
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15.1: Generating Random Samples (Section @ref{generating-random-numbers})
Here we will generate random samples from a number of different distributions and plot their histograms.
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0.25

nsamples <- 10000 
nhistbins <- 100 
 
# uniform distribution 
 
p1 <- 
  tibble( 
    x = runif(nsamples) 
  ) %>%  
  ggplot((aes(x))) + 
  geom_histogram(bins = nhistbins) +  
  labs(title = "Uniform") 
 
# normal distribution 
p2 <- 
  tibble( 
    x = rnorm(nsamples) 
  ) %>%  
  ggplot(aes(x)) + 
  geom_histogram(bins = nhistbins) + 
  labs(title = "Normal") 
 
# Chi-squared distribution 
p3 <- 
  tibble( 
    x = rnorm(nsamples) 
  ) %>%  
  ggplot(aes(x)) + 
  geom_histogram(bins = nhistbins) + 
  labs(title = "Normal") 
 
# Chi-squared distribution 
p3 <- 
  tibble( 
    x = rchisq(nsamples, df=1) 
  ) %>%  
  ggplot(aes(x)) + 
  geom_histogram(bins = nhistbins) + 
  labs(title = "Chi-squared") 
 
# Poisson distribution 
p4 <- 
  tibble( 

    x = rbinom(nsamples, 20, ) 
  ) %>%  
  ggplot(aes(x)) + 
  geom_histogram(bins = nhistbins) + 
  labs(title = "Binomial (p=0.25, 20 trials)") 
 
 
plot_grid(p1, p2, p3, p4, ncol = 2)
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15.2: Simulating the Maximum Finishing Time
Let’s simulate 150 samples, collecting the maximum value from each sample, and then plotting the distribution of maxima.

0.99

# sample maximum value 5000 times and compute 99th percentile 
nRuns <- 5000 
sampSize <- 150 
 
sampleMax <- function(sampSize = 150) { 
  samp <- rnorm(sampSize, mean = 5, sd = 1) 
  return(tibble(max=max(samp))) 
} 
 
input_df <- tibble(id=seq(nRuns)) %>% 
  group_by(id) 
 
maxTime <- input_df %>% do(sampleMax()) 
 

cutoff <- quantile(maxTime$max, ) 
 
 
ggplot(maxTime,aes(max)) + 
  geom_histogram(bins = 100) + 
  geom_vline(xintercept = cutoff, color = "red")
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CHAPTER OVERVIEW

16: Hypothesis Testing

Identify the components of a hypothesis test, including the parameter of interest, the null and alternative hypotheses, and
the test statistic.
Describe the proper interpretations of a p-value as well as common misinterpretations
Distinguish between the two types of error in hypothesis testing, and the factors that determine them.
Describe how resampling can be used to compute a p-value.
Define the concept of statistical power, and compute statistical power for a given statistical test.
Describe the main criticisms of null hypothesis statistical testing

In the first chapter we discussed the three major goals of statistics:

Describe
Decide
Predict

In this chapter we will introduce the ideas behind the use of statistics to make decisions – in particular, decisions about whether a
particular hypothesis is supported by the data.

16.1: Null Hypothesis Statistical Testing (NHST)
16.2: Null Hypothesis Statistical Testing- An Example
16.3: The Process of Null Hypothesis Testing
16.4: NHST in a Modern Context- Multiple Testing
16.5: Suggested Readings

This page titled 16: Hypothesis Testing is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A.
Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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16.1: Null Hypothesis Statistical Testing (NHST)
The specific type of hypothesis testing that we will discuss is known (for reasons that will become clear) as null hypothesis
statistical testing (NHST). If you pick up almost any scientific or biomedical research publication, you will see NHST being used
to test hypotheses, and in their introductory psycholology textbook, Gerrig & Zimbardo (2002) referred to NHST as the “backbone
of psychological research”. Thus, learning how to use and interpret the results from hypothesis testing is essential to understand the
results from many fields of research.

It is also important for you to know, however, that NHST is deeply flawed, and that many statisticians and researchers (including
myself) think that it has been the cause of serious problems in science, which we will discuss in Chapter 32. For more than 50
years, there have been calls to abandon NHST in favor of other approaches (like those that we will discuss in the following
chapters):

“The test of statistical significance in psychological research may be taken as an instance of a kind of essential mindlessness in
the conduct of research” (Bakan, 1966)
Hypothesis testing is “a wrongheaded view about what constitutes scientific progress” (Luce, 1988)

NHST is also widely misunderstood, largely because it violates our intuitions about how statistical hypothesis testing should work.
Let’s look at an example to see.

This page titled 16.1: Null Hypothesis Statistical Testing (NHST) is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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16.2: Null Hypothesis Statistical Testing- An Example
There is great interest in the use of body-worn cameras by police officers, which are thought to reduce the use of force and improve
officer behavior. However, in order to establish this we need experimental evidence, and it has become increasingly common for
governments to use randomized controlled trials to test such ideas. A randomized controlled trial of the effectiveness of body-worn
cameras was performed by the Washington, DC government and DC Metropolitan Police Department in 2015/2016 in order to test
the hypothesis that body-worn cameras are effective. Officers were randomly assigned to wear a body-worn camera or not, and
their behavior was then tracked over time to determine whether the cameras resulted in less use of force and fewer civilian
complaints about officer behavior.

Before we get to the results, let’s ask how you would think the statistical analysis might work. Let’s say we want to specifically test
the hypothesis of whether the use of force is decreased by the wearing of cameras. The randomized controlled trial provides us with
the data to test the hypothesis – namely, the rates of use of force by officers assigned to either the camera or control groups. The
next obvious step is to look at the data and determine whether they provide convincing evidence for or against this hypothesis. That
is: What is the likelihood that body-worn cameras reduce the use of force, given the data and everything else we know?

It turns out that this is not how null hypothesis testing works. Instead, we first take our hypothesis of interest (i.e. whether body-
worn cameras reduce use of force), and flip it on its head, creating a null hypothesis – in this case, the null hypothesis would be that
cameras do not reduce use of force. Importantly, we then assume that the null hypothesis is true. We then look at the data, and
determine whether the data are sufficiently unlikely under the null hypothesis that we can reject the null in favor of the alternative
hypothesis which is our hypothesis of interest. If there is not sufficient evidence to reject the null, then we say that we “failed to
reject” the null.

Understanding some of the concepts of NHST, particularly the notorious “p-value”, is invariably challenging the first time one
encounters them, because they are so counter-intuitive. As we will see later, there are other approaches that provide a much more
intuitive way to address hypothesis testing (but have their own complexities). However, before we get to those, it’s important for
you to have a deep understanding of how hypothesis testing works, because it’s clearly not going to go away any time soon.

This page titled 16.2: Null Hypothesis Statistical Testing- An Example is shared under a CC BY-NC 4.0 license and was authored, remixed,
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16.3: The Process of Null Hypothesis Testing
We can break the process of null hypothesis testing down into a number of steps:

1. Formulate a hypothesis that embodies our prediction (before seeing the data)
2. Collect some data relevant to the hypothesis
3. Specify null and alternative hypotheses
4. Fit a model to the data that represents the alternative hypothesis and compute a test statistic
5. Compute the probability of the observed value of that statistic assuming that the null hypothesis is true
6. Assess the “statistical significance” of the result

For a hands-on example, let’s use the NHANES data to ask the following question: Is physical activity related to body mass index?
In the NHANES dataset, participants were asked whether they engage regularly in moderate or vigorous-intensity sports, fitness or
recreational activities (stored in the variable ). The researchers also measured height and weight and used them to
compute the Body Mass Index (BMI):

16.3.1 Step 1: Formulate a hypothesis of interest
For step 1, we hypothesize that BMI is greater for people who do not engage in physical activity, compared to those who do.

16.3.2 Step 2: Collect some data
For step 2, we collect some data. In this case, we will sample 250 individuals from the NHANES dataset. Figure 16.1 shows an
example of such a sample, with BMI shown separately for active and inactive individuals.

Table 16.1: Summary of BMI data for active versus inactive individuals

PhysActive N mean sd

No 131 30 9.0

Yes 119 27 5.2

Figure 16.1: Box plot of BMI data from a sample of adults from the NHANES dataset, split by whether they reported engaging in
regular physical activity.

16.3.3 Step 3: Specify the null and alternative hypotheses
For step 3, we need to specify our null hypothesis (which we call ) and our alternative hypothesis (which we call ).  is the
baseline against which we test our hypothesis of interest: that is, what would we expect the data to look like if there was no effect?
The null hypothesis always involves some kind of equality (=, , or ).  describes what we expect if there actually is an effect.

PhysActive

BMI =

weight(kg)

height(m)
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The alternative hypothesis always involves some kind of inequality ( , >, or <). Importantly, null hypothesis testing operates under
the assumption that the null hypothesis is true unless the evidence shows otherwise.

We also have to decide whether to use directional or non-directional hypotheses. A non-directional hypothesis simply predicts that
there will be a difference, without predicting which direction it will go. For the BMI/activity example, a non-directional null
hypothesis would be:

and the corresponding non-directional alternative hypothesis would be:

A directional hypothesis, on the other hand, predicts which direction the difference would go. For example, we have strong prior
knowledge to predict that people who engage in physical activity should weigh less than those who do not, so we would propose
the following directional null hypothesis:

and directional alternative:

As we will see later, testing a non-directional hypothesis is more conservative, so this is generally to be preferred unless there is a
strong a priori reason to hypothesize an effect in a particular direction. Any direction hypotheses should be specified prior to
looking at the data!

16.3.4 Step 4: Fit a model to the data and compute a test statistic
For step 4, we want to use the data to compute a statistic that will ultimately let us decide whether the null hypothesis is rejected or
not. To do this, the model needs to quantify the amount of evidence in favor of the alternative hypothesis, relative to the variability
in the data. Thus we can think of the test statistic as providing a measure of the size of the effect compared to the variability in the
data. In general, this test statistic will have a probability distribution associated with it, because that allows us to determine how
likely our observed value of the statistic is under the null hypothesis.

For the BMI example, we need a test statistic that allows us to test for a difference between two means, since the hypotheses are
stated in terms of mean BMI for each group. One statistic that is often used to compare two means is the t-statistic, first developed
by the statistician William Sealy Gossett, who worked for the Guiness Brewery in Dublin and wrote under the pen name “Student”
- hence, it is often called “Student’s t-statistic”. The t-statistic is appropriate for comparing the means of two groups when the
sample sizes are relatively small and the population standard deviation is unknown. The t-statistic for comparison of two
independent groups is computed as:

where  and  are the means of the two groups,  and  are the estimated variances of the groups, and  and  are the
sizes of the two groups. Note that the denominator is basically an average of the standard error of the mean for the two samples.
Thus, one can view the the t-statistic as a way of quantifying how large the difference between groups is in relation to the sampling
variability of the means that are being compared.

The t-statistic is distributed according to a probability distribution known as a t distribution. The t distribution looks quite similar to
a normal distribution, but it differs depending on the number of degrees of freedom, which for this example is the number of
observations minus 2, since we have computed two means and thus given up two degrees of freedom. When the degrees of freedom
are large (say 1000), then the t distribution looks essentialy like the normal distribution, but when they are small then the t
distribution has longer tails than the normal (see Figure 16.2).
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Figure 16.2: Each panel shows the t distribution (in blue dashed line) overlaid on the normal distribution (in solid red line). The left
panel shows a t distribution with 4 degrees of freedom, in which case the distribution is similar but has slightly wider tails. The
right panel shows a t distribution with 1000 degrees of freedom, in which case it is virtually identical to the normal.

16.3.5 Step 5: Determine the probability of the data under the null hypothesis
This is the step where NHST starts to violate our intuition – rather than determining the likelihood that the null hypothesis is true
given the data, we instead determine the likelihood of the data under the null hypothesis - because we started out by assuming that
the null hypothesis is true! To do this, we need to know the probability distribution for the statistic under the null hypothesis, so
that we can ask how likely the data are under that distribution. Before we move to our BMI data, let’s start with some simpler
examples.

16.3.5.1 Randomization: A very simple example

Let’s say that we wish to determine whether a coin is fair. To collect data, we flip the coin 100 times, and we count 70 heads. In this
example,  and , and our test statistic is simply the number of heads that we counted.
The question that we then want to ask is: How likely is it that we would observe 70 heads if the true probability of heads is 0.5. We
can imagine that this might happen very occasionally just by chance, but doesn’t seem very likely. To quantify this probability, we
can use the binomial distribution:

This equation will tell us the likelihood of a certain number of heads or fewer, given a particular probability of heads. However,
what we really want to know is the probability of a certain number or more, which we can obtain by subtracting from one, based on
the rules of probability:

: P (heads)= 0.5H

0

: P (heads)≠ 0.5H

A
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i=0
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N
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Figure 16.3: Distribution of numbers of heads (out of 100 flips) across 100,000 simulated runsl with the observed value of 70 flips
represented by the vertical line.

We can compute the probability for our example using the pbinom()  function. The probability of 69 or fewer heads given
P(heads)=0.5 is 0.999961, so the probability of 70 or more heads is simply one minus that value (0.000039) This computation
shows us that the likelihood of getting 70 heads if the coin is indeed fair is very small.

Now, what if we didn’t have the pbinom()  function to tell us the probability of that number of heads? We could instead
determine it by simulation – we repeatedly flip a coin 100 times using a true probability of 0.5, and then compute the distribution of
the number of heads across those simulation runs. Figure 16.3 shows the result from this simulation. Here we can see that the
probability computed via simulation (0.000030) is very close to the theoretical probability (.00004).

Let’s do the analogous computation for our BMI example. First we compute the t statistic using the values from our sample that we
calculated above, where we find that (t = 3.86). The question that we then want to ask is: What is the likelihood that we would find
a t statistic of this size, if the true difference between groups is zero or less (i.e. the directional null hypothesis)?

We can use the t distribution to determine this probability. Our sample size is 250, so the appropriate t distribution has 248 degrees
of freedom because lose one for each of the two means that we computed. We can use the pt()  function in R to determine the
probability of finding a value of the t-statistic greater than or equal to our observed value. Note that we want to know the
probability of a value greater than our observed value, but by default pt()  gives us the probability of a value less than the one
that we provide it, so we have to tell it explicitly to provide us with the “upper tail” probability (by setting 
lower.tail = FALSE ). We find that (p(t > 3.86, df = 248) = 0.000), which tells us that our observed t-statistic value of 3.86

is relatively unlikely if the null hypothesis really is true.

In this case, we used a directional hypothesis, so we only had to look at one end of the null distribution. If we wanted to test a non-
directional hypothesis, then we would need to be able to identify how unexpected the size of the effect is, regardless of its
direction. In the context of the t-test, this means that we need to know how likely it is that the statistic would be as extreme in either
the positive or negative direction. To do this, we multiply the observed t value by -1, since the t distribution is centered around
zero, and then add together the two tail probabilities to get a two-tailed p-value: (p(t > 3.86 or t< -3.86, df = 248) = 0.000). Here we
see that the p value for the two-tailed test is twice as large as that for the one-tailed test, which reflects the fact that an extreme
value is less surprising since it could have occurred in either direction.

How do you choose whether to use a one-tailed versus a two-tailed test? The two-tailed test is always going to be more
conservative, so it’s always a good bet to use that one, unless you had a very strong prior reason for using a one-tailed test. In that
case, you should have written down the hypothesis before you ever looked at the data. In Chapter 32 we will discuss the idea of
pre-registration of hypotheses, which formalizes the idea of writing down your hypotheses before you ever see the actual data. You
should never make a decision about how to perform a hypothesis test once you have looked at the data, as this can introduce serious
bias into the results.

16.3.5.2 Computing p-values using randomization

So far we have seen how we can use the t-distribution to compute the probability of the data under the null hypothesis, but we can
also do this using simulation. The basic idea is that we generate simulated data like those that we would expect under the null
hypothesis, and then ask how extreme the observed data are in comparison to those simulated data. The key question is: How can

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8804?pdf


16.3.5 https://stats.libretexts.org/@go/page/8804

we generate data for which the null hypothesis is true? The general answer is that we can randomly rearrange the data in a
particular way that makes the data look like they would if the null was really true. This is similar to the idea of bootstrapping, in the
sense that it uses our own data to come up with an answer, but it does it in a different way.

16.3.5.3 Randomization: a simple example

Let’s start with a simple example. Let’s say that we want to compare the mean squatting ability of football players with cross-
country runners, with  and . We measure the maximum squatting ability of 5 football players and 5
cross-country runners (which we will generate randomly, assuming that , , and ).

Table 16.2: Squatting data for the two groups

group squat

FB 335

FB 350

FB 230

FB 290

FB 325

XC 115

XC 115

XC 170

XC 175

XC 215

Table 16.2: Squatting data after randomly scrambling group labels

squat scrambledGroup

335 FB

350 FB

230 XC

290 FB

325 FB

115 XC

115 XC

170 FB

175 XC

215 XC

: ≤H

0

μ

FB

μ

XC

: >H

A

μ

FB

= 300μ

FB

= 140μ

XC

σ = 30
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Figure 16.4: Left: Box plots of simulated squatting ability for football players and cross-country runners.Right: Box plots for
subjects assigned to each group after scrambling group labels.

From the plot in Figure 16.4 it’s clear that there is a large difference between the two groups. We can do a standard t-test to test our
hypothesis, using the t.test()  command in R, which gives the following result:

## 
##  Two Sample t-test 
## 
## data:  squat by group 
## t = 5, df = 8, p-value = 4e-04 
## alternative hypothesis: true difference in means is greater than 0 
## 95 percent confidence interval: 
##   95 Inf 
## sample estimates: 
## mean in group FB mean in group XC  
##              306              158

If we look at the p-value reported here, we see that the likelihood of such a difference under the null hypothesis is very small, using
the t distribution to define the null.

Now let’s see how we could answer the same question using randomization. The basic idea is that if the null hypothesis of no
difference between groups is true, then it shouldn’t matter which group one comes from (football players versus cross-country
runners) – thus, to create data that are like our actual data but also conform to the null hypothesis, we can randomly reorder the
group labels for the individuals in the dataset, and then recompute the difference between the groups. The results of such a shuffle
are shown in Figure ??.
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Figure 16.5: Histogram of t-values for the difference in means between the football and cross-country groups after randomly
shuffling group membership. The vertical line denotes the actual difference observed between the two groups, and the dotted line
shows the theoretical t distribution for this analysis.

After scrambling the labels, we see that the two groups are now much more similar, and in fact the cross-country group now has a
slightly higher mean. Now let’s do that 10000 times and store the t statistic for each iteration; this may take a moment to complete.
Figure 16.5 shows the histogram of the t-values across all of the random shuffles. As expected under the null hypothesis, this
distribution is centered at zero (the mean of the distribution is -0.016. From the figure we can also see that the distribution of t
values after shuffling roughly follows the theoretical t distribution under the null hypothesis (with mean=0), showing that
randomization worked to generate null data. We can compute the p-value from the randomized data by measuring how many of the
shuffled values are at least as extreme as the observed value: p(t > 5.14, df = 8) using randomization = 0.00380. This p-value is
very similar to the p-value that we obtained using the t distribution, and both are quite extreme, suggesting that the observed data
are very unlikely to have arisen if the null hypothesis is true - and in this case we know that it’s not true, because we generated the
data.

16.3.5.3.1 Randomization: BMI/activity example

Now let’s use randomization to compute the p-value for the BMI/activity example. In this case, we will randomly shuffle the 
PhysActive  variable and compute the difference between groups after each shuffle, and then compare our observed t statistic

to the distribution of t statistics from the shuffled datasets. Figure 16.6 shows the distribution of t values from the shuffled samples,
and we can also compute the probability of finding a value as large or larger than the observed value. The p-value obtained from
randomization (0.0000) is very similar to the one obtained using the t distribution (0.0001). The advantage of the randomization
test is that it doesn’t require that we assume that the data from each of the groups are normally distributed, though the t-test is
generally quite robust to violations of that assumption. In addition, the randomization test can allow us to compute p-values for
statistics when we don’t have a theoretical distribution like we do for the t-test.

Figure 16.6: Histogram of t statistics after shuffling of group labels, with the observed value of the t statistic shown in the vertical
line, and values at least as extreme as the observed value shown in lighter gray

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8804?pdf


16.3.8 https://stats.libretexts.org/@go/page/8804

We do have to make one main assumption when we use the randomization test, which we refer to as exchangeability. This means
that all of the observations are distributed in the same way, such that we can interchange them without changing the overall
distribution. The main place where this can break down is when there are related observations in the data; for example, if we had
data from individuals in 4 different families, then we couldn’t assume that individuals were exchangeable, because siblings would
be closer to each other than they are to individuals from other families. In general, if the data were obtained by random sampling,
then the assumption of exchangeability should hold.

16.3.6 Step 6: Assess the “statistical significance” of the result
The next step is to determine whether the p-value that results from the previous step is small enough that we are willing to reject
the null hypothesis and conclude instead that the alternative is true. How much evidence do we require? This is one of the most
controversial questions in statistics, in part because it requires a subjective judgment – there is no “correct” answer.

Historically, the most common answer to this question has been that we should reject the null hypothesis if the p-value is less than
0.05. This comes from the writings of Ronald Fisher, who has been referred to as “the single most important figure in 20th century
statistics”(Efron 1998):

“If P is between .1 and .9 there is certainly no reason to suspect the hypothesis tested. If it
is below .02 it is strongly indicated that the hypothesis fails to account for the whole of the
facts. We shall not often be astray if we draw a conventional line at .05 … it is convenient
to draw the line at about the level at which we can say: Either there is something in the
treatment, or a coincidence has occurred such as does not occur more than once in twenty
trials” (Fisher 1925)

However, Fisher never intended  to be a fixed rule:

“no scientific worker has a fixed level of significance at which from year to year, and in
all circumstances, he rejects hypotheses; he rather gives his mind to each particular case
in the light of his evidence and his ideas” [fish:1956]

Instead, it is likely that it became a ritual due to the reliance upon tables of p-values that were used before computing made it easy
to compute p values for arbitrary values of a statistic. All of the tables had an entry for 0.05, making it easy to determine whether
one’s statistic exceeded the value needed to reach that level of significance.

The choice of statistical thresholds remains deeply controversial, and recently (Benjamin et al., 2018) it has been proposed that the
standard threshold be changed from .05 to .005, making it substantially more stringent and thus more difficult to reject the null
hypothesis. In large part this move is due to growing concerns that the evidence obtained from a significant result at 

16.3.6.1 Hypothesis testing as decision-making: The Neyman-Pearson approach

Whereas Fisher thought that the p-value could provide evidence regarding a specific hypothesis, the statisticians Jerzy Neyman and
Egon Pearson disagreed vehemently. Instead, they proposed that we think of hypothesis testing in terms of its error rate in the long
run:

“no test based upon a theory of probability can by itself provide any valuable evidence of
the truth or falsehood of a hypothesis. But we may look at the purpose of tests from
another viewpoint. Without hoping to know whether each separate hypothesis is true or
false, we may search for rules to govern our behaviour with regard to them, in following
which we insure that, in the long run of experience, we shall not often be wrong”
(Neyman and Pearson 1933)

That is: We can’t know which specific decisions are right or wrong, but if we follow the rules, we can at least know how often our
decisions will be wrong on average.

p < 0.05
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To understand the decision making framework that Neyman and Pearson developed, we first need to discuss statistical decision
making in terms of the kinds of outcomes that can occur. There are two possible states of reality (  is true, or  is false), and
two possible decisions (reject , or fail to reject ). There are two ways in which we can make a correct decision:

We can decide to reject  when it is false (in the language of decision theory, we call this a hit)
We can fail to reject  when it is true (we call this a correct rejection)

There are also two kinds of errors we can make:

We can decide to reject  when it is actually true (we call this a false alarm, or Type I error)
We can fail to reject  when it is actually false (we call this a miss, or Type II error)

Neyman and Pearson coined two terms to describe the probability of these two types of errors in the long run:

P(Type I error) = 
P(Type II error) = 

That is, if we set 

16.3.7 What does a significant result mean?

There is a great deal of confusion about what p-values actually mean (Gigerenzer, 2004). Let’s say that we do an experiment
comparing the means between conditions, and we find a difference with a p-value of .01. There are a number of possible
interpretations.

16.3.7.1 Does it mean that the probability of the null hypothesis being true is .01?

No. Remember that in null hypothesis testing, the p-value is the probability of the data given the null hypothesis ( ). It
does not warrant conclusions about the probability of the null hypothesis given the data ( ). We will return to this
question when we discuss Bayesian inference in a later chapter, as Bayes theorem lets us invert the conditional probability in a way
that allows us to determine the latter probability.

16.3.7.2 Does it mean that the probability that you are making the wrong decision is .01?

No. This would be , but remember as above that p-values are probabilities of data under , not probabilities of
hypotheses.

16.3.7.3 Does it mean that if you ran the study again, you would obtain the same result 99% of the time?

No. The p-value is a statement about the likelihood of a particular dataset under the null; it does not allow us to make inferences
about the likelihood of future events such as replication.

16.3.7.4 Does it mean that you have found a meaningful effect?

No. There is an important distinction between statistical significance and practical significance. As an example, let’s say that we
performed a randomized controlled trial to examine the effect of a particular diet on body weight, and we find a statistically
significant effect at p<.05. What this doesn’t tell us is how much weight was actually lost, which we refer to as the effect size (to be
discussed in more detail in Chapter 18). If we think about a study of weight loss, then we probably don’t think that the loss of ten
ounces (i.e. the weight of a bag of potato chips) is practically significant. Let’s look at our ability to detect a significant difference
of 1 ounce as the sample size increases.

Figure 16.7 shows how the proportion of significant results increases as the sample size increases, such that with a very large
sample size (about 262,000 total subjects), we will find a significant result in more than 90% of studies when there is a 1 ounce
weight loss. While these are statistically significant, most physicians would not consider a weight loss of one ounce to be
practically or clinically significant. We will explore this relationship in more detail when we return to the concept of statistical
power in Section 18.3, but it should already be clear from this example that statistical significance is not necessarily indicative of
practical significance.
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Figure 16.7: The proportion of signifcant results for a very small change (1 ounce, which is about .001 standard deviations) as a
function of sample size.
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16.4: NHST in a Modern Context- Multiple Testing
So far we have discussed examples where we are interested in testing a single statistical hypothesis, and this is consistent with
traditional science which often measured only a few variables at a time. However, in modern science we can often measure
millions of variables per individual. For example, in genetic studies that quantify the entire genome, there may be many millions of
measures per individual, and in brain imaging we often collect data from more than 100,000 locations in the brain at once. When
standard hypothesis testing is applied in these contexts, bad things can happen unless we take appropriate care.

Let’s look at an example to see how this might work. There is great interest in understanding the genetic factors that can predispose
individuals to major mental illnesses such as schizophrenia, because we know that about 80% of the variation between individuals
in the presence of schizophrenia is due to genetic differences. The Human Genome Project and the ensuing revolution in genome
science has provided tools to examine the many ways in which humans differ from one another in their genomes. One approach
that has been used in recent years is known as a genome-wide association study (GWAS), in which the genome of each individual
is characterized at one million or more places in their genome to determine which letters of the genetic code (which we call
“variants”) they have at that location. After these have been determined, the researchers perform a statistical test at each location in
the genome to determine whether people diagnosed with schizoprenia are more or less likely to have one specific variant at that
location.

Let’s imagine what would happen if the researchers simply asked whether the test was significant at p<.05 at each location, when in
fact there is no true effect at any of the locations. To do this, we generate a large number of simulated t values from a null
distribution, and ask how many of them are significant at p<.05. Let’s do this many times, and each time count up how many of the
tests come out as significant (see Figure 16.8).

## [1] "corrected familywise error rate: 0.036"

Figure 16.8: Left: A histogram of the number of significant results in each set of 1 million statistical tests, when there is in fact no
true effect. Right: A histogram of the number of significant results across all simulation runs after applying the Bonferroni
correction for multiple tests.

This shows that about 5% of all of the tests were significant in each run, meaning that if we were to use p < .05 as our threshold for
statistical significance, then even if there were no truly significant relationships present, we would still “find” about 500 genes that
were seemingly significant (the expected number of significant results is simply ). That is because while we controlled for the
error per test, we didn’t control the familywise error, or the error across all of the tests, which is what we really want to control if
we are going to be looking at the results from a large number of tests. Using p<.05, our familywise error rate in the above example
is one – that is, we are pretty much guaranteed to make at least one error in any particular study.

A simple way to control for the familywise error is to divide the alpha level by the number of tests; this is known as the Bonferroni
correction, named after the Italian statistician Carlo Bonferroni. Using the data from our example above, we see in Figure ?? that
only about 5 percent of studies show any significant results using the corrected alpha level of 0.000005 instead of the nominal level
of .05. We have effectively controlled the familywise error, such that the probability of making any errors in our study is controlled
at right around .05.

n *α
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16.5: Suggested Readings
Mindless Statistics, by Gerd Gigerenzer
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CHAPTER OVERVIEW

17: Hypothesis Testing in R
In this chapter we will present several examples of using R to perform hypothesis testing.

17.1: Simple Example- Coin-flipping (Section 16.3.5.1)
17.2: Simulating p-values
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17.1: Simple Example- Coin-flipping (Section 16.3.5.1)
Let’s say that we flipped 100 coins and observed 70 heads. We would like to use these data to test the hypothesis that the true
probability is 0.5.

First let’s generate our data, simulating 100,000 sets of 100 flips. We use such a large number because it turns out that it’s very rare
to get 70 heads, so we need many attempts in order to get a reliable estimate of these probabilties. This will take a couple of
minutes to complete.

0.5

# simulate tossing of 100,000 flips of 100 coins to identify  
# empirical probability of 70 or more heads out of 100 flips 
 
nRuns <- 100000 
 
# create function to toss coins 
tossCoins <- function() { 

  flips <- runif(100) >   
  return(tibble(nHeads=sum(flips))) 
} 
 
# create an input data frame for do() 
input_df <- tibble(id=seq(nRuns)) %>% 
  group_by(id) 
 
# use do() to perform the coin flips 
flip_results <- input_df %>% 
  do(tossCoins()) %>% 
  ungroup() 
 
p_ge_70_sim <-  
  flip_results %>% 
  summarise(p_gt_70 = mean(nHeads >= 70)) %>% 
  pull() 
 
p_ge_70_sim

## [1] 3e-05

For comparison, we can also compute the p-value for 70 or more heads based on a null hypothesis of , using the
binomial distribution.

0.5

# compute the probability of 69 or fewer heads,  
# when P(heads)=0.5 

p_lt_70 <- pbinom(69, 100, )  
 
# the probability of 70 or more heads is simply  
# the complement of p_lt_70 
p_ge_70 <- 1 - p_lt_70 
 
p_ge_70

= 0.5P

heads
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## [1] 3.9e-05
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17.2: Simulating p-values
In this exercise we will perform hypothesis testing many times in order to test whether the p-values provided by our statistical test
are valid. We will sample data from a normal distribution with a mean of zero, and for each sample perform a t-test to determine
whether the mean is different from zero. We will then count how often we reject the null hypothesis; since we know that the true
mean is zero, these are by definition Type I errors.

nRuns <- 5000 
 
# create input data frame for do() 
input_df <- tibble(id=seq(nRuns)) %>% 
  group_by(id) 
 
# create a function that will take a sample 
# and perform a one-sample t-test 
 
sample_ttest <- function(sampSize=32){ 
  tt.result <- t.test(rnorm(sampSize)) 
  return(tibble(pvalue=tt.result$p.value)) 
} 
 
# perform simulations 
 
sample_ttest_result <- input_df %>% 
  do(sample_ttest()) 
 
p_error <- 
  sample_ttest_result %>% 
  ungroup() %>% 
  summarize(p_error = mean(pvalue<.05)) %>% 
  pull() 
 
p_error

## [1] 0.048

We should see that the proportion of samples with  is about 5%.

This page titled 17.2: Simulating p-values is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A.
Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

18: Quantifying Effects and Desiging Studies

Describe the proper interpretation of a confidence interval, and compute a confidence interval for the mean of a given
dataset.
Define the concept of effect size, and compute the effect size for a given test.

In the previous chapter we discussed how we can use data to test hypotheses. Those methods provided a binary answer: we either
reject or fail to reject the null hypothesis. However, this kind of decision overlooks a couple of important questions. First, we would
like to know how much uncertainty we have about the answer (regardless of which way it goes). In addition, sometimes we don’t
have a clear null hypothesis, so we would like to see what range of estimates are consistent with the data. Second, we would like to
know how large the effect actually is, since as we saw in the weight loss example in the previous chapter, a statistically significant
effect is not necessarily a practically important effect.

In this chapter we will discuss methods to address these two questions: confidence intervals to provide a measure of our uncertainty
about our estimates, and effect sizes to provide a standardized way to understand how large the effects are. We will also discuss the
concept of statistical power which tells us how well we can expect to find any true effects that might exist.

18.1: Confidence Intervals
18.2: Effect Sizes
18.3: Statistical Power
18.4: Suggested Readings
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18.1: Confidence Intervals
So far in the book we have focused on estimating the specific value of a statistic. For example, let’s say we want to estimate the
mean weight of adults in the NHANES dataset. Let’s take a sample from the dataset and estimate the mean. In this sample, the
mean weight was 79.92 kilograms. We refer to this as a point estimate since it provides us with a single number to describe the
difference. However, we know from our earlier discussion of sampling error that there is some uncertainty about this estimate,
which is described by the standard error. You should also remember that the standard error is determined by two components: the
population standard deviation (which is the numerator), and the square root of the sample size (which is in the denominator). The
population standard deviation is an unknown but fixed parameter that is not under our control, whereas the sample size is under our
control. Thus, we can decrease our uncertainty about the estimate by increasing our sample size – up to the limit of the entire
population size, at which point there is no uncertainty at all because we can just calculate the population parameter directly from
the data of the entire population.

You may also remember that earlier we introduced the concept of a confidence interval, which is a way of describing our
uncertainty about a statistical estimate. Remember that a confidence interval describes an interval that will on average contain the
true population parameter with a given probability; for example, the 95% confidence interval is an interval that will capture the true
population parameter 95% of the time. Note again that this is not a statement about the population parameter; any particular
confidence interval either does or does not contain the true parameter. As Jerzy Neyman, the inventor of the confidence interval,
said:

“The parameter is an unknown constant and no probability statement concerning its
value may be made.”(Neyman 1937)

The confidence interval for the mean is computed as:

where the critical value is determined by the sampling distribution of the estimate. The important question, then, is what that
sampling distribution is.

18.1.1 Confidence intervals using the normal distribution

If we know the population standard deviation, then we can use the normal distribution to compute a confidence interval. We usually
don’t, but for our example of the NHANES dataset we do (it’s 21.3 for weight).

Let’s say that we want to compute a 95% confidence interval for the mean. The critical value would then be the values of the
standard normal distribution that capture 95% of the distribution; these are simply the 2.5th percentile and the 97.5th percentile of
the distribution, which we can compute using the qnorm()  function in R, and come out to . Thus, the confidence interval
for the mean ( ) is:

Using the estimated mean from our sample (79.92) and the known population standard deviation, we can compute the confidence
interval of [77.28,82.56].

18.1.2 Confidence intervals using the t distribution

As stated above, if we knew the population standard deviation, then we could use the normal distribution to compute our
confidence intervals. However, in general we don’t – in which case the t distribution is more appropriate as a sampling distribution.
Remember that the t distribution is slightly broader than the normal distribution, especially for smaller samples, which means that
the confidence intervals will be slightly wider than they would if we were using the normal distribution. This incorporates the extra
uncertainty that arises when we make conclusions based on small samples.

We can compute the 95% confidence interval in a way similar to the normal distribution example above, but the critical value is
determined by the 2.5th percentile and the 97.5th percentile of the t distribution, which we can compute using the qt()  function
in R. Thus, the confidence interval for the mean ( ) is:

CI = point estimate ±critical value

±1.96

X

¯¯̄

CI = ±1.96 *SEX

¯¯̄

X

¯¯̄

CI = ± *SEX

¯¯̄
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where  is the critical t value. For the NHANES weight example (with sample size of 250), the confidence interval would be
79.92 +/- 1.97 [77.15 - 82.69].

Remember that this doesn’t tell us anything about the probability of the true population value falling within this interval, since it is
a fixed parameter (which we know is 81.77 because we have the entire population in this case) and it either does or does not fall
within this specific interval (in this case, it does). Instead, it tells us that in the long run, if we compute the confidence interval
using this procedure, 95% of the time that confidence interval will capture the true population parameter.

18.1.3 Confidence intervals and sample size

Because the standard error decreases with sample size, the means confidence interval should get narrower as the sample size
increases, providing progressively tighter bounds on our estimate. Figure 18.1 shows an example of how the confidence interval
would change as a function of sample size for the weight example. From the figure it’s evident that the confidence interval becomes
increasingly tighter as the sample size increases, but increasing samples provide diminishing returns, consistent with the fact that
the denominator of the confidence interval term is proportional to the square root of the sample size.

Figure 18.1: An example of the effect of sample size on the width of the confidence interval for the mean.

18.1.4 Computing confidence intervals using the bootstrap
In some cases we can’t assume normality, or we don’t know the sampling distribution of the statistic. In these cases, we can use the
bootstrap (which we introduced in Chapter 14). As a reminder, the bootstrap involves repeatedly resampling the data with
replacement, and then using the distribution of the statistic computed on those samples as a surrogate for the sampling distribution
of the statistic. R includes a package called boot  that we can use to run the bootstrap and compute confidence intervals. It’s
always good to use a built-in function to compute a statistic if it is available, rather than coding it up from scratch — both because
it saves you extra work, and because the built-in version will be better tested. These are the results when we use the boot()  to
compute the confidence interval for weight in our NHANES sample:

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
## Based on 1000 bootstrap replicates 
## 
## CALL :  
## boot.ci(boot.out = bs, type = "perc") 
## 
## Intervals :  
## Level     Percentile      
## 95%   (77, 83 )   
## Calculations and Intervals on Original Scale

These values are fairly close to the values obtained using the t distribution above, though not exactly the same.

t

crit
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18.1.5 Relation of confidence intervals to hypothesis tests
There is a close relationship between confidence intervals and hypothesis tests. In particular, if the confidence interval does not
include the null hypothesis, then the associated statistical test would be statistically significant. For example, if you are testing
whether the mean of a sample is greater than zero with , you could simply check to see whether zero is contained within
the 95% confidence interval for the mean.

Things get trickier if we want to compare the means of two conditions (Schenker and Gentleman 2001). There are a couple of
situations that are clear. First, if each mean is contained within the confidence interval for the other mean, then there is certainly no
significant difference at the chosen confidence level. Second, if there is no overlap between the confidence intervals, then there is
certainly a significant difference at the chosen level; in fact, this test is substantially conservative, such that the actual error rate will
be lower than the chosen level. But what about the case where the confidence intervals overlap one another but don’t contain the
means for the other group? In this case the answer depends on the relative variability of the two variables, and there is no general
answer. In general we should avoid using the “visual test” for overlapping confidence intervals.

This page titled 18.1: Confidence Intervals is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A.
Poldrack via source content that was edited to the style and standards of the LibreTexts platform.

α = 0.05

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8809?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/18%3A_Quantifying_Effects_and_Desiging_Studies/18.01%3A_Confidence_Intervals
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


18.2.1 https://stats.libretexts.org/@go/page/8810

18.2: Effect Sizes

“Statistical significance is the least interesting thing about the results. You should
describe the results in terms of measures of magnitude – not just, does a treatment affect
people, but how much does it affect them.” Gene Glass (REF)

In the last chapter, we discussed the idea that statistical significance may not necessarily reflect practical significance. In order to
discuss practical significance, we need a standard way to describe the size of an effect in terms of the actual data, which we refer to
as an effect size. In this section we will introduce the concept and discuss various ways that effect sizes can be calculated.

An effect size is a standardized measurement that compares the size of some statistical effect to a reference quantity, such as the
variability of the statistic. In some fields of science and engineering, this idea is referred to as a “signal to noise ratio”. There are
many different ways that the effect size can be quantified, which depend on the nature of the data.

18.2.1 Cohen’s D
One of the most common measures of effect size is known as Cohen’s d, named after the statistician Jacob Cohen (who is most
famous for his 1994 paper titled “The Earth Is Round (p < .05)”). It is used to quantify the difference between two means, in terms
of their standard deviation:

where  and  are the means of the two groups, and  is the pooled standard deviation (which is a combination of the standard
deviations for the two samples, weighted by their sample sizes):

where  and  are the sample sizes and  and  are the standard deviations for the two groups respectively. Note that this is
very similar in spirit to the t statistic — the main difference is that the denominator in the t statistic is based on the standard error of
the mean, whereas the denominator in Cohen’s D is based on the standard deviation of the data. This means that while the t statistic
will grow as the sample size gets larger, the value of Cohen’s D will remain the same.

There is a commonly used scale for interpreting the size of an effect in terms of Cohen’s d:

Table 18.1: Interpetation of Cohen’s D

D Interpretation

0.0 - 0.2 neglibible

0.2 - 0.5 small

0.5 - 0.8 medium

0.8 - large

It can be useful to look at some commonly understood effects to help understand these interpretations. For example, the effect size
for gender differences in height (d = 1.6) is very large by reference to our table above. We can also see this by looking at the
distributions of male and female heights in our sample. Figure 18.2 shows that the two distributions are quite well separated,
though still overlapping, highlighting the fact that even when there is a very large effect size for the difference between two groups,
there will be individuals from each group that are more like the other group.
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Figure 18.2: Smoothed histogram plots for male and female heights in the NHANES dataset, showing clearly distinct but also
clearly overlapping distributions.

It is also worth noting that we rarely encounter effects of this magnitude in science, in part because they are such obvious effects
that we don’t need scientific research to find them. As we will see in Chapter 32 on reproducibility, very large reported effects in
scientific research often reflect the use of questionable research practices rather than truly huge effects in nature. It is also worth
noting that even for such a huge effect, the two distributions still overlap - there will be some females who are taller than the
average male, and vice versa. For most interesting scientific effects, the degree of overlap will be much greater, so we shouldn’t
immediately jump to strong conclusions about different populations based on even a large effect size.

18.2.2 Pearson’s r

Pearson’s r, also known as the correlation coefficient, is a measure of the strength of the linear relationship between two continuous
variables. We will discuss correlation in much more detail in Chapter 24, so we will save the details for that chapter; here, we
simply introduce r as a way to quantify the relation between two variables.

r is a measure that varies from -1 to 1, where a value of 1 represents a perfect positive relationship between the variables, 0
represents no relationship, and -1 represents a perfect negative relationship. Figure 18.3 shows examples of various levels of
correlation using randomly generated data.

Figure 18.3: Examples of various levels of Pearson’s r.
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18.2.3 Odds ratio
In our earlier discussion of probability we discussed the concept of odds – that is, the relative likelihood of some event happening
versus not happening:

We also discussed the odds ratio, which is simply the ratio of two odds. The odds ratio is a useful way to describe effect sizes for
binary variables.

For example, let’s take the case of smoking and lung cancer. A study published in the International Journal of Cancer in 2012
(Pesch et al. 2012) combined data regarding the occurrence of lung cancer in smokers and individuals who have never smoked
across a number of different studies. Note that these data come from case-control studies, which means that participants in the
studies were recruited because they either did or did not have cancer; their smoking status was then examined. These numbers thus
do not represent the prevalence of cancer amongst smokers in the general population – but they can tell us about the relationship
between cancer and smoking.

Table 18.2: Cancer occurrence separately for current smokers and those who have never smoked

Status NeverSmoked CurrentSmoker

No Cancer 2883 3829

Cancer 220 6784

We can convert these numbers to odds ratios for each of the groups. The odds of someone having lung cancer who has never
smoked is 0.08 whereas the odds of a current smoker having lung cancer is 1.77. The ratio of these odds tells us about the relative
likelihood of cancer between the two groups: The odds ratio of 23.22 tells us that the odds of cancer in smokers are roughly 23
times higher than never-smokers.

This page titled 18.2: Effect Sizes is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A. Poldrack via
source content that was edited to the style and standards of the LibreTexts platform.

odds of A=

P (A)

P (¬A)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8810?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/18%3A_Quantifying_Effects_and_Desiging_Studies/18.02%3A_Effect_Sizes
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


18.3.1 https://stats.libretexts.org/@go/page/8811

18.3: Statistical Power
Remember from the previous chapter that under the Neyman-Pearson hypothesis testing approach, we have to specify our level of
tolerance for two kinds of errors: False positives (which they called Type I error) and false negatives (which they called Type II
error). People often focus heavily on Type I error, because making a false positive claim is generally viewed as a very bad thing;
for example, the now discredited claims by Wakefield (1999) that autism was associated with vaccination led to anti-vaccine
sentiment that has resulted in substantial increases in childhood diseases such as measles. Similarly, we don’t want to claim that a
drug cures a disease if it really doesn’t. That’s why the tolerance for Type I errors is generally set fairly low, usually at .
But what about Type II errors?

The concept of statistical power is the complement of Type II error – that is, it is the likelihood of finding a positive result given
that it exists:

Another important aspect of the Neyman-Pearson model that we didn’t discuss above is the fact that in addition to specifying the
acceptable levels of Type I and Type II errors, we also have to describe a specific alternative hypothesis – that is, what is the size of
the effect that we wish to detect? Otherwise, we can’t interpret  – the likelihood of finding a large effect is always going to be
higher than finding a small effect, so  will be different depending on the size of effect we are trying to detect.

There are three factors that can affect power:

Sample size: Larger samples provide greater statistical power
Effect size: A given design will always have greater power to find a large effect than a small effect (because finding large
effects is easier)
Type I error rate: There is a relationship between Type I error and power such that (all else being equal) decreasing Type I error
will also decrease power.

We can see this through simulation. First let’s simulate a single experiment, in which we compare the means of two groups using a
standard t-test. We will vary the size of the effect (specified in terms of Cohen’s d), the Type I error rate, and the sample size, and
for each of these we will examine how the proportion of significant results (i.e. power) is affected. Figure 18.4 shows an example
of how power changes as a function of these factors.

Figure 18.4: Results from power simulation, showing power as a function of sample size, with effect sizes shown as different
colors, and alpha shown as line type. The standard criterion of 80 percent power is shown by the dotted black line.

This simulation shows us that even with a sample size of 96, we will have relatively little power to find a small effect ( )
with . This means that a study designed to do this would be futile – that is, it is almost guaranteed to find nothing even if
a true effect of that size exists.

There are at least two important reasons to care about statistical power, one of which we discuss here and the other of which we
will return to in Chapter 32. If you are a researcher, you probably don’t want to spend your time doing futile experiments. Running
an underpowered study is essentially futile, because it means that there is a very low likelihood that one will find an effect, even if
it exists.

α = 0.05

power= 1−β

β

β

d = 0.2

α = 0.005
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18.3.1 Power analysis
Fortunately, there are tools available that allow us to determine the statistical power of an experiment. The most common use of
these tools is in planning an experiment, when we would like to determine how large our sample needs to be in order to have
sufficient power to find our effect of interest.

Let’s say that we are interested in running a study of how a particular personality trait differs between users of iOS versus Android
devices. Our plan is collect two groups of individuals and measure them on the personality trait, and then compare the two groups
using a t-test. In order to determine the necessary sample size, we can use the pwr.t.test()  function from the pwr
library:

## 
##      Two-sample t test power calculation  
## 
##               n = 64 
##               d = 0.5 
##       sig.level = 0.05 
##           power = 0.8 
##     alternative = two.sided 
## 
## NOTE: n is number in *each* group

This tells us that we would need at least 64 subjects in each group in order to have sufficient power to find a medium-sized effect.
It’s always important to run a power analysis before one starts a new study, to make sure that the study won’t be futile due to a
sample that is too small.

It might have occurred to you that if the effect size is large enough, then the necessary sample will be very small. For example, if
we run the same power analysis with an effect size of d=2, then we will see that we only need about 5 subjects in each group to
have sufficient power to find the difference.

## 
##      Two-sample t test power calculation  
## 
##               n = 5.1 
##               d = 2 
##       sig.level = 0.05 
##           power = 0.8 
##     alternative = two.sided 
## 
## NOTE: n is number in *each* group

However, it’s rare in science to be doing an experiment where we expect to find such a large effect – just as we don’t need statistics
to tell us that 16-year-olds are taller than than 6-year-olds. When we run a power analysis, we need to specify an effect size that is
plausible for our study, which would usually come from previous research. However, in Chapter 32 we will discuss a phenomenon
known as the “winner’s curse” that likely results in published effect sizes being larger than the true effect size, so this should also
be kept in mind.
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18.4: Suggested Readings
Robust misinterpretation of confidence intervals, by Hoekstra et al.
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19: Statistical Power in R
In this chapter we focus specifically on statistical power.

19.1: Power Analysis
19.2: Power Curves
19.3: Simulating Statistical Power
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19.1: Power Analysis
We can compute a power analysis using functions from the pwr  package. Let’s focus on the power for a t-test in order to
determine a difference in the mean between two groups. Let’s say that we think than an effect size of Cohen’s d=0.5 is realistic for
the study in question (based on previous research) and would be of scientific interest. We wish to have 80% power to find the effect
if it exists. We can compute the sample size needed for adequate power using the pwr.t.test()  function:

0.5pwr.t.test(d=, power=.8)

## 
##      Two-sample t test power calculation  
## 
##               n = 64 
##               d = 0.5 
##       sig.level = 0.05 
##           power = 0.8 
##     alternative = two.sided 
## 
## NOTE: n is number in *each* group

Thus, about 64 participants would be needed in each group in order to test the hypothesis with adequate power.
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19.2: Power Curves
We can also create plots that can show us how the power to find an effect varies as a function of effect size and sample size. We
willl use the crossing()  function from the tidyr  package to help with this. This function takes in two vectors, and
returns a tibble that contains all possible combinations of those values.

0.20.50.8effect_sizes <- c(, , )  
sample_sizes = seq(10, 500, 10) 
 
# 
input_df <- crossing(effect_sizes,sample_sizes) 
glimpse(input_df)

## Observations: 150 
## Variables: 2 
## $ effect_sizes <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0… 
## $ sample_sizes <dbl> 10, 20, 30, 40, 50, 60, 70, 80, 90, …

Using this, we can then perform a power analysis for each combination of effect size and sample size to create our power curves. In
this case, let’s say that we wish to perform a two-sample t-test.

# create a function get the power value and 
# return as a tibble 
get_power <- function(df){ 
  power_result <- pwr.t.test(n=df$sample_sizes,  
                             d=df$effect_sizes, 
                             type='two.sample') 
  df$power=power_result$power 
  return(df) 
} 
 
# run get_power for each combination of effect size  
# and sample size 
 
power_curves <- input_df %>% 
  do(get_power(.)) %>% 
  mutate(effect_sizes = as.factor(effect_sizes)) 

Now we can plot the power curves, using a separate line for each effect size.

0.8

ggplot(power_curves,  
       aes(x=sample_sizes, 
           y=power,  
           linetype=effect_sizes)) +  
  geom_line() +  

  geom_hline(yintercept = ,  
             linetype='dotdash')

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8815?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/19%3A_Statistical_Power_in_R/19.02%3A_Power_Curves


19.2.2 https://stats.libretexts.org/@go/page/8815

This page titled 19.2: Power Curves is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A. Poldrack
via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8815?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/19%3A_Statistical_Power_in_R/19.02%3A_Power_Curves
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


19.3.1 https://stats.libretexts.org/@go/page/8816

19.3: Simulating Statistical Power
Let’s simulate this to see whether the power analysis actually gives the right answer. We will sample data for two groups, with a
difference of 0.5 standard deviations between their underlying distributions, and we will look at how often we reject the null
hypothesis.

0.5
nRuns <- 5000 

effectSize <-  
# perform power analysis to get sample size 
pwr.result <- pwr.t.test(d=effectSize, power=.8) 
# round up from estimated sample size 
sampleSize <- ceiling(pwr.result$n) 
 
# create a function that will generate samples and test for 
# a difference between groups using a two-sample t-test 
 
get_t_result <- function(sampleSize, effectSize){ 
  # take sample for the first group from N(0, 1) 
  group1 <- rnorm(sampleSize) 
  group2 <- rnorm(sampleSize, mean=effectSize) 
  ttest.result <- t.test(group1, group2) 
  return(tibble(pvalue=ttest.result$p.value)) 
} 
 
index_df <- tibble(id=seq(nRuns)) %>% 
  group_by(id) 
 
power_sim_results <- index_df %>% 
  do(get_t_result(sampleSize, effectSize)) 
 
p_reject <- 
  power_sim_results %>% 
  ungroup() %>% 
  summarize(pvalue = mean(pvalue<.05)) %>% 
  pull() 
 
p_reject

## [1] 0.8

This should return a number very close to 0.8.
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20: Bayesian Statistics

Describe the main differences between Bayesian analysis and null hypothesis testing
Describe and perform the steps in a Bayesian analysis
Describe the effects of different priors, and the considerations that go into choosing a prior
Describe the difference in interpretation between a confidence interval and a Bayesian credible interval

In this chapter we will take up the approach to statistical modeling and inference that stands in contrast to the null hypothesis
testing framework that you encountered in Chapter 16. This is known as “Bayesian statistics” after the Reverend Thomas Bayes,
whose theorem you have already encountered in Chapter 10. In this chapter you will learn how Bayes’ theorem provides a way of
understanding data that solves many of the conceptual problems that we discussed regarding null hypothesis testing.

20.1: Generative Models
20.2: Bayes’ Theorem and Inverse Inference
20.3: Doing Bayesian Estimation
20.4: Estimating Posterior Distributions
20.5: Choosing a Prior
20.6: Bayesian Hypothesis Testing
20.7: Suggested Readings
20.8: Appendix-
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20.1: Generative Models
Say you are walking down the street and a friend of yours walks right by but doesn’t say hello. You would probably try to decide
why this happened – Did they not see you? Are they mad at you? Are you suddenly cloaked in a magic invisibility shield? One of
the basic ideas behind Bayesian statistics is that we want to infer the details of how the data are being generated, based on the data
themselves. In this case, you want to use the data (i.e. the fact that your friend did not say hello) to infer the process that generated
the data (e.g. whether or not they actually saw you, how they feel about you, etc).

The idea behind a generative model is that a latent (unseen) process generates the data we observe, usually with some amount of
randomness in the process. When we take a sample of data from a population and estimate a parameter from the sample, what we
are doing in essence is trying to learn the value of a latent variable (the population mean) that gives rise through sampling to the
observed data (the sample mean). Figure 20.1 shows a schematic of this idea.

Figure 20.1: A schematic of the idea of a generative model.

If we know the value of the latent variable, then it’s easy to reconstruct what the observed data should look like. For example, let’s
say that we are flipping a coin that we know to be fair, such that we would expect it to land on heads 50% of the time. We can
describe the coin by a binomial distribution with a value of , and then we could generate random samples from such a
distribution in order to see what the observed data should look like. However, in general we are in the opposite situation: We don’t
know the value of the latent variable of interest, but we have some data that we would like to use to estimate it.

This page titled 20.1: Generative Models is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A.
Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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20.2: Bayes’ Theorem and Inverse Inference
The reason that Bayesian statistics has its name is because it takes advantage of Bayes’ theorem to make inferences from data about
the underlying process that generated the data. Let’s say that we want to know whether a coin is fair. To test this, we flip the coin
10 times and come up with 7 heads. Before this test we were pretty sure that the ), but finding 7 heads out of 10 flips
would certainly give us pause if we believed that . We already know how to compute the conditional probability that
we would flip 7 or more heads out of 10 if the coin is really fair ( ), using the binomial distribution.

TBD: MOTIVATE SWITCH FROM 7 To 7 OR MORE

The resulting probability is 0.055. That is a fairly small number, but this number doesn’t really answer the question that we are
asking – it is telling us about the likelihood of 7 or more heads given some particular probability of heads, whereas what we really
want to know is the probability of heads. This should sound familiar, as it’s exactly the situation that we were in with null
hypothesis testing, which told us about the likelihood of data rather than the likelihood of hypotheses.

Remember that Bayes’ theorem provides us with the tool that we need to invert a conditional probability:

We can think of this theorem as having four parts:

prior ( ): Our degree of belief about hypothesis H before seeing the data D
likelihood ( ): How likely are the observed data D under hypothesis H?
marginal likelihood ( ): How likely are the observed data, combining over all possible hypotheses?
posterior ( ): Our updated belief about hypothesis H, given the data D

In the case of our coin-flipping example: - prior ( ): Our degree of belief the likelhood of flipping heads, which was 
 - likelihood ( ): How likely are 7 or more heads out of 10 flips if 
? - marginal likelihood ( ): How likely are we to observe 7 heads out of 10 coin

flips, in general? - posterior ( ): Our updated belief about  given the observed
coin flips

Here we see one of the primary differences between frequentist and Bayesian statsistics. Frequentists do not believe in the idea of a
probability of a hypothesis (i.e., our degree of belief about a hypothesis) – for them, a hypothesis is either true or it isn’t. Another
way to say this is that for the frequentist, the hypothesis is fixed and the data are random, which is why frequentist inference
focuses on describing the probability of data given a hypothesis (i.e. the p-value). Bayesians, on the other hand, are comfortable
making probability statements about both data and hypotheses.

This page titled 20.2: Bayes’ Theorem and Inverse Inference is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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20.3: Doing Bayesian Estimation
We ultimately want to use Bayesian statistics to make decisions about hypotheses, but before we do that we need to estimate the
parameters that are necessary to make the decision. Here we will walk through the process of Bayesian estimation. Let’s use
another screening example: Airport security screening. If you fly a lot, it’s just a matter of time until one of the random explosive
screenings comes back positive; I had the particularly unfortunate experience of this happening soon after September 11, 2001,
when airport security staff were especially on edge.

What the security staff want to know is what is the likelihood that a person is carrying an explosive, given that the machine has
given a positive test. Let’s walk through how to calculate this value using Bayesian analysis.

20.3.1 Specifying the prior
To use Bayes’ theorem, we first need to specify the prior probability for the hypothesis. In this case, we don’t know the real number
but we can assume that it’s quite small. According to the FAA, there were 971,595,898 air passengers in the U.S. in 2017. Let’s say
that one out of those travelers was carrying an explosive in their bag — that would give a prior probability of 1 out of 971 million,
which is very small! The security personnel may have reasonably held a stronger prior in the months after the 9/11 attack, so let’s
say that their subjective belief was that one out of every million flyers was carrying an explosive.

20.3.2 Collect some data

The data are composed of the results of the explosive screening test. Let’s say that the security staff runs the bag through their
testing apparatus 3 times, and it gives a positive reading on 3 of the 3 tests.

20.3.3 Computing the likelihood
We want to compute the likelihood of the data under the hypothesis that there is an explosive in the bag. Let’s say that we know
(from the machine’s manufacturer) that the sensitivity of the test is 0.99 – that is, when a device is present, it will detect it 99% of
the time. To determine the likelihood of our data under the hypothesis that a device is present, we can treat each test as a Bernoulli
trial (that is, a trial with an outcome of true or false) with a probability of success of 0.99, which we can model using a binomial
distribution.

20.3.4 Computing the marginal likelihood

We also need to know the overall likelihood of the data – that is, finding 3 positives out of 3 tests. Computing the marginal
likelihood is often one of the most difficult aspects of Bayesian analysis, but for our example it’s simple because we can take
advantage of the specific form of Bayes’ theorem for a binary outcome that we introduced in Section 10.7:

where  refers to the presence of explosives, and  refers to a postive test result.

The marginal likelihood in this case is a weighted average of the likelihood of the data under either presence or absence of the
explosive, multiplied by the probability of the explosive being present (i.e. the prior). In this case, let’s say that we know (from the
manufacturer) that the specificity of the test is 0.99, such that the likelihood of a positive result when there is no explosive (

) is 0.01.

20.3.5 Computing the posterior
We now have all of the parts that we need to compute the posterior probability of an explosive being present, given the observed 3
positive outcomes out of 3 tests. 
This result shows us that the posterior probability of an explosive in the bag given these positive tests (0.492) is just under 50%,
again highlighting the fact that testing for rare events is almost always liable to produce high numbers of false positives, even when
the specificity and sensitivity are very high.

An important aspect of Bayesian analysis is that it can be sequential. Once we have the posterior from one analysis, it can become
the prior for the next analysis!

P (E|T )=

P (T |E)*P (E)

P (T |E)*P (E)+P (T |¬E)*P (¬E)

E T

P (T |¬E)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8819?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/20%3A_Bayesian_Statistics/20.03%3A_Doing_Bayesian_Estimation


20.3.2 https://stats.libretexts.org/@go/page/8819

This page titled 20.3: Doing Bayesian Estimation is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell
A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8819?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/20%3A_Bayesian_Statistics/20.03%3A_Doing_Bayesian_Estimation
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


20.4.1 https://stats.libretexts.org/@go/page/8820

20.4: Estimating Posterior Distributions
In the previous example there were only two possible outcomes – the explosive is either there or it’s not – and we wanted to know which outcome was most likely given the data. However, in other
cases we want to use Bayesian estimation to estimate the numeric value of a parameter. Let’s say that we want to know about the effectiveness of a new drug for pain; to test this, we can administer
the drug to a group of patients and then ask them whether their pain was improved or not after taking the drug. We can use Bayesian analysis to estimate the proportion of people for whom the drug
will be effective using these data.

20.4.1 Specifying the prior
TBD: MH: USE PRIOR BIASED TOWARDS ZERO?

In this case, we don’t have any prior information about the effectiveness of the drug, so we will use a uniform distribution as our prior, since all values are equally likely under a uniform distribution.
In order to simplify the example, we will only look at a subset of 99 possible values of effectiveness (from .01 to .99, in steps of .01). Therefore, each possible value has a prior probability of 1/99.

20.4.2 Collect some data

We need some data in order to estimate the effect of the drug. Let’s say that we administer the drug to 100 individuals, we find that 64 respond positively to the drug.

20.4.3 Computing the likelihood
We can compute the likelihood of the data under any particular value of the effectiveness parameter using the dbinom()  function in R. In Figure 20.2 you can see the likelihood curves over
numbers of responders for several different values of . Looking at this, it seems that our observed data are relatively more likely under the hypothesis of , somewhat less likely
under the hypothesis of , and quite unlikely under the hypothesis of . One of the fundamental ideas of Bayesian inference is that we should upweight our belief in values
of our parameter of interest in proportion to how likely the data are under those values, balanced against what we believe about the parameter values before having seen the data (our prior
knowledge).

Figure 20.2: Likelihood of each possible number of responders under several different hypotheses (p(respond)=0.5 (solid), 0.7 (dotted), 0.3 (dashed). Observed value shown in the vertical line

20.4.4 Computing the marginal likelihood

In addition to the likelihood of the data under different hypotheses, we need to know the overall likelihood of the data, combining across all hypotheses (i.e., the marginal likelihood). This marginal
likelihood is primarily important beacuse it helps to ensure that the posterior values are true probabilities. In this case, our use of a set of discrete possible parameter values makes it easy to compute
the marginal likelihood, because we can just compute the likelihood of each parameter value under each hypothesis and add them up.

MH:not sure there’s a been clear discussion of the marginal likelihood up this point. it’s a confusing and also very deep construct.. the overall likelihood of the data is the likelihood of the data under
each hypothesis, averaged togeteher (weifhted by) the prior probability of those hypotheses. it is how likely the data is under your prior beliefs about the hypotheses.

might be worth thinking of two examples, where the likelihood of the data under thet hypothesis of interest is the same, but where the marginal likelihood changes i.e., the hypothesis is pretty good at
predicting the data, while other hypothese are bad vs. other hypotheses are always good (perhaps better)

20.4.5 Computing the posterior

We now have all of the parts that we need to compute the posterior probability distribution across all possible values of 

Figure 20.3: Posterior probability distribution for the observed data plotted in solid line against uniform prior distribution (dotted line). The maximum a posteriori (MAP) value is signified by the
diamond symbol.

20.4.6 Maximum a posteriori (MAP) estimation

Given our data we would like to obtain an estimate of 

20.4.7 Credible intervals
Often we would like to know not just a single estimate for the posterior, but an interval in which we are confident that the posterior falls. We previously discussed the concept of confidence intervals
in the context of frequentist inference, and you may remember that the interpretation of confidence intervals was particularly convoluted: It was an interval that will contain the the value of the
parameter 95% of the time. What we really want is an interval in which we are confident that the true parameter falls, and Bayesian statistics can give us such an interval, which we call a credible
interval.
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The interpretation of this credible interval is much closer to what we had hoped we could get from a confidence interval (but could not): It tells us that there is a 95% probability that the value of 
 falls between these two values. Importantly, it shows that we have high confidence that , meaning that the drug seems to have a positive effect.

In some cases the credible interval can be computed numerically based on a known distribution, but it’s more common to generate a credible interval by sampling from the posterior distribution and
then to compute quantiles of the samples. This is particularly useful when we don’t have an easy way to express the posterior distribution numerically, which is often the case in real Bayesian data
analysis. One such method (rejection sampling) is explained in more detail in the Appendix at the end of this chapter.

20.4.8 Effects of different priors

In the previous example we used a flat prior, meaning that we didn’t have any reason to believe that any particular value of  was more or less likely. However, let’s say that we had instead
started with some previous data: In a previous study, researchers had tested 20 people and found that 10 of them had responded positively. This would have lead us to start with a prior belief that the
treatment has an effect in 50% of people. We can do the same computation as above, but using the information from our previous study to inform our prior (see oanel A in Figure 20.4).

MH: i wonder what you’re doing here: is this the same thing as doing a bayesian inference assuming 10 / 20 data and using the posterior from that as the prior for this analysis? that is what woud
normally be the straightfoward thing to do.

Note that the likelihood and marginal likelihood did not change - only the prior changed. The effect of the change in prior to was to pull the posterior closer to the mass of the new prior, which is
centered at 0.5.

Now let’s see what happens if we come to the analysis with an even stronger prior belief. Let’s say that instead of having previously observed 10 responders out of 20 people, the prior study had
instead tested 500 people and found 250 responders. This should in principle give us a much stronger prior, and as we see in panel B of Figure 20.4 , that’s what happens: The prior is much more
concentrated around 0.5, and the posterior is also much closer to the prior. The general idea is that Bayesian inference combines the information from the prior and the likelihood, weighting the
relative strength of each.

This example also highlights the sequential nature of Bayesian analysis – the posterior from one analysis can become the prior for the next analysis.

Finally, it is important to realize that if the priors are strong enough, they can completely overwhelm the data. Let’s say that you have an absolute prior that  is 0.8 or greater, such that you set
the prior likelihood of all other values to zero. What happens if we then compute the posterior?

Figure 20.4: A: Effects of priors on the posterior distribution. The original posterior distribution based on a flat prior is plotted in blue. The prior based on the observation of 10 responders out of 20
people is plotted in the dotted black line, and the posterior using this prior is plotted in red. B: Effects of the strength of the prior on the posterior distribution. The blue line shows the posterior
obtained using the prior based on 50 heads out of 100 people. The dotted black line shows the prior based on 250 heads out of 500 flips, and the red line shows the posterior based on that prior. C:
Effects of the strength of the prior on the posterior distribution. The blue line shows the posterior obtained using an absolute prior which states that p(respond) is 0.8 or greater. The prior is shown in
the dotted black line.

In panel C of Figure 20.4 we see that there is zero density in the posterior for any of the values where the prior was set to zero - the data are overwhelmed by the absolute prior.
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20.5: Choosing a Prior
The impact of priors on the resulting inferences are the most controversial aspect of Bayesian statistics.What is the right prior to
use? If the choice of prior determines the results (i.e., the posterior), how can you be sure you results are trustworthy? These are
difficult quetsions, but we should not back away just because we are faced with hard questions. As we discussed previously,
Bayesian analyses give us interpretable results (credible intervals, etc.). This alone should inspire us to think hard about these
questions s0 that we can arrive with results that are reasonable and interpretable.

There are various ways to choose one’s priors, which (as we saw above) can impact the resulting inferences. Sometimes we have a
very specific prior, as in the case where we expected our coin to lands heads 50% of the time, but in many cases we don’t have such
strong a starting point. Uninformative priors attempt to influence the resulting posterior as little as possible, as we saw in the
example of the uniform prior above. It’s also common to use weakly informative priors (or default priors), which influence the
result only very slightly. For example, if we had used a binomial distribution based on one heads out of two coin flips, the prior
would have been centered around 0.5 but fairly flat, influence the posterior only slightly. 
It is also possible to use priors based on the scientific literature or pre-existing data, which we would call empirical priors. In
general, however, we will stick to the use of uninformative/weakly informative priors, since they raise the least concern about
influencing our results.

This page titled 20.5: Choosing a Prior is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A. Poldrack
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20.6: Bayesian Hypothesis Testing
Having learned how to perform Bayesian estimation, we now turn to the use of Bayesian methods for hypothesis testing. Let’s say
that there are two politicians who differ in their beliefs about whether the public is in favor an extra tax to support the national
parks. Senator Smith thinks that only 40% of people are in favor of the tax, whereas Senator Jones thinks that 60% of people are in
favor. They arrange to have a poll done to test this, which asks 1000 randomly selected people whether they support such a tax. The
results are that 490 of the people in the polled sample were in favor of the tax. Based on these data, we would like to know: Do the
data support the claims of one senator over the other,and by how much? We can test this using a concept known as the Bayes
factor,which quantifies which hypothesis is better by comparing how well each predicts the observed data.

20.6.1 Bayes factors
The Bayes factor characterizes the relative likelihood of the data under two different hypotheses. It is defined as:

for two hypotheses  and . In the case of our two senators, we know how to compute the likelihood of the data under each
hypothesis using the binomial distribution. We will put Senator Smith in the numerator and Senator Jones in the denominator, so
that a value greater than one will reflect greater evidence for Senator Smith, and a value less than one will reflect greater evidence
for Senator Jones. The resulting Bayes Factor (3325.26) provides a measure of the evidence that the data provides regarding the
two hypotheses - in this case, it tells us the data support Senator Smith more than 3000 times more strongly than they support
Senator Jones.

20.6.2 Bayes factors for statistical hypotheses
In the previous example we had specific predictions from each senator, whose likelihood we could quantify using the binomial
distribution. However, in real data analysis we generally must deal with uncertainty about our parameters, which complicates the
Bayes factor. However, in exchange we gain the ability to quantify the relative amount of evidence in favor of the null versus
alternative hypotheses.

Let’s say that we are a medical researcher performing a clinical trial for the treatment of diabetes, and we wish to know whether a
particular drug reduces blood glucose compared to placebo. We recruit a set of volunteers and randomly assign them to either drug
or placebo group, and we measure the change in hemoglobin A1C (a marker for blood glucose levels) in each group over the period
in which the drug or placebo was administered. What we want to know is: Is there a difference between the drug and placebo?

First, let’s generate some data and analyze them using null hypothesis testing (see Figure 20.5). Then let’s perform an independent-
samples t-test, which shows that there is a significant difference between the groups:

Figure 20.5: Box plots showing data for drug and placebo groups.
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## 
##  Welch Two Sample t-test 
## 
## data:  hbchange by group 
## t = 2, df = 32, p-value = 0.02 
## alternative hypothesis: true difference in means is greater than 0 
## 95 percent confidence interval: 
##  0.11  Inf 
## sample estimates: 
## mean in group 0 mean in group 1  
##          -0.082          -0.650

This test tells us that there is a significant difference between the groups, but it doesn’t quantify how strongly the evidence supports
the null versus alternative hypotheses. To measure that, we can compute a Bayes factor using ttestBF  function from the
BayesFactor package in R:

## Bayes factor analysis 
## -------------- 
## [1] Alt., r=0.707 0<d<Inf    : 3.4  ±0% 
## [2] Alt., r=0.707 !(0<d<Inf) : 0.12 ±0% 
## 
## Against denominator: 
##   Null, mu1-mu2 = 0  
## --- 
## Bayes factor type: BFindepSample, JZS

We are particularly interested in the Bayes Factor for an effect greater than zero, which is listed in the line marked “[1]” in the
report. The Bayes factor here tells us that the alternative hypothesis (i.e. that the difference is greater than zero) is about 3 times
more likely than the point null hypothesis (i.e. a mean difference of exactly zero) given the data. Thus, while the effect is
significant, the amount of evidence it provides us in favor of the alternative hypothesis is rather weak.

20.6.2.1 One-sided tests

We generally are less interested in testing against the null hypothesis of a specific point value (e.g. mean difference = 0) than we
are in testing against a directional null hypothesis (e.g. that the difference is less than or equal to zero). We can also perform a
directional (or one-sided) test using the results from ttestBF  analysis, since it provides two Bayes factors: one for the
alternative hypothesis that the mean difference is greater than zero, and one for the alternative hypothesis that the mean difference
is less than zero. If we want to assess the relative evidence for a positive effect, we can compute a Bayes factor comparing the
relative evidence for a positive versus a negative effect by simply dividing the two Bayes factors returned by the function:

## Bayes factor analysis 
## -------------- 
## [1] Alt., r=0.707 0<d<Inf : 29 ±0% 
## 
## Against denominator: 
##   Alternative, r = 0.707106781186548, mu =/= 0 !(0<d<Inf)  
## --- 
## Bayes factor type: BFindepSample, JZS

Now we see that the Bayes factor for a positive effect versus a negative effect is substantially larger (almost 30).
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20.6.2.2 Interpreting Bayes Factors

How do we know whether a Bayes factor of 2 or 20 is good or bad? There is a general guideline for interpretation of Bayes factors
suggested by Kass & Rafferty (1995):

BF Strength of evidence

1 to 3 not worth more than a bare mention

3 to 20 positive

20 to 150 strong

>150 very strong

Based on this, even though the statisical result is significant, the amount of evidence in favor of the alternative vs. the point null
hypothesis is weak enough that it’s not worth even mentioning, whereas the evidence for the directional hypothesis is relatively
strong.

20.6.3 Assessing evidence for the null hypothesis
Because the Bayes factor is comparing evidence for two hypotheses, it also allows us to assess whether there is evidence in favor of
the null hypothesis, which we couldn’t do with standard null hypothesis testing (because it starts with the assumption that the null
is true). This can be very useful for determining whether a non-significant result really provides strong evidence that there is no
effect, or instead just reflects weak evidence overall.

This page titled 20.6: Bayesian Hypothesis Testing is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell
A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8822?pdf
https://www.andrew.cmu.edu/user/kk3n/simplicity/KassRaftery1995.pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/20%3A_Bayesian_Statistics/20.06%3A_Bayesian_Hypothesis_Testing
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


20.7.1 https://stats.libretexts.org/@go/page/8823

20.7: Suggested Readings
The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and
Emerged Triumphant from Two Centuries of Controversy, by Sharon Bertsch McGrayne
Doing Bayesian Data Analysis: A Tutorial Introduction with R, by John K. Kruschke
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20.8: Appendix-

20.8.1 Rejection sampling

We will generate samples from our posterior distribution using a simple algorithm known as rejection sampling. The idea is that we
choose a random value of x (in this case 

0.0250.975

# Compute credible intervals for example 
 
nsamples <- 100000 
 
# create random uniform variates for x and y 
x <- runif(nsamples) 
y <- runif(nsamples) 
 
# create f(x) 
fx <- dbinom(x = nResponders, size = 100, prob = x) 
 
# accept samples where y < f(x) 
accept <- which(y < fx) 
accepted_samples <- x[accept] 
 
credible_interval <- quantile(x = accepted_samples,  

                              probs = c(, )) 
kable(credible_interval)

x

2.5% 0.54

98% 0.73

Figure 20.6: Rejection sampling example.The black line shows the density of all possible values of p(respond); the blue lines show
the 2.5th and 97.5th percentiles of the distribution, which represent the 95 percent credible interval for the estimate of p(respond).
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CHAPTER OVERVIEW

21: Bayesian Statistics in R
21.1: A Simple Example (Section 20.3)
21.2: Estimating Posterior Distributions (Section 20.4)
21.3: Bayes Factors (Section 20.6.1)
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21.1: A Simple Example (Section 20.3)

0.99
0.99

0.99

bayes_df = data.frame(prior=NA,  
                      likelihood=NA,  
                      marginal_likelihood=NA,  
                      posterior=NA) 
 
bayes_df$prior <- 1/1000000  
 
 
nTests <- 3 
nPositives <- 3 

sensitivity <-  
specificity <-  

 
bayes_df$likelihood <- dbinom(nPositives, nTests, ) 

 
bayes_df$marginal_likelihood <-  
  dbinom( 
    x = nPositives,  
    size = nTests,  
    prob = sensitivity 
  ) * bayes_df$prior +  
  dbinom( 
    x = nPositives,  
    size = nTests,  
    prob = 1 - specificity 
  ) *  
  (1 - bayes_df$prior) 
 
bayes_df$posterior <-  
  (bayes_df$likelihood * bayes_df$prior) /  
  bayes_df$marginal_likelihood
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21.2: Estimating Posterior Distributions (Section 20.4)

# create a table with results 
nResponders <- 64 
nTested <- 100 
 
drugDf <- tibble( 
  outcome = c("improved", "not improved"), 
  number = c(nResponders, nTested - nResponders) 
)

Computing likelihood

likeDf <- 
  tibble(resp = seq(1,99,1)) %>% 
  mutate( 
    presp=resp/100, 
    likelihood5 = dbinom(resp,100,.5), 
    likelihood7 = dbinom(resp,100,.7), 
    likelihood3 = dbinom(resp,100,.3) 
) 
 
ggplot(likeDf,aes(resp,likelihood5)) +  
  geom_line() + 
  xlab('number of responders') + ylab('likelihood') + 
  geom_vline(xintercept = drugDf$number[1],color='blue') + 
  geom_line(aes(resp,likelihood7),linetype='dotted') + 
  geom_line(aes(resp,likelihood3),linetype='dashed')

Computing marginal likelihood
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# compute marginal likelihood 
likeDf <-  
  likeDf %>% 
  mutate(uniform_prior = array(1 / n())) 
 
# multiply each likelihood by prior and add them up 
marginal_likelihood <-  
  sum( 
    dbinom( 
      x = nResponders, # the number who responded to the drug 
      size = 100, # the number tested 
      likeDf$presp # the likelihood of each response  
    ) * likeDf$uniform_prior 
  )

Comuting posterior
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0.010.990.01

bayesDf <- 
  tibble( 

    steps = seq(from = , to = , by = ) 
  ) %>% 
  mutate( 
    likelihoods = dbinom( 
      x = nResponders,  
      size = 100,  
      prob = steps 
    ), 
    priors = dunif(steps) / length(steps), 
    posteriors = (likelihoods * priors) / marginal_likelihood 
  )
 
# compute MAP estimate 
MAP_estimate <-  
  bayesDf %>%  
  arrange(desc(posteriors)) %>%  
  slice(1) %>%  
  pull(steps) 
 
 
 
ggplot(bayesDf,aes(steps,posteriors)) + 
  geom_line() + 
  geom_line(aes(steps,priors), 
            color='black', 
            linetype='dotted') + 
  xlab('p(respond)') +  
  ylab('posterior probability of the observed data') + 
  annotate( 
    "point",  
    x = MAP_estimate,  
    y = max(bayesDf$posteriors),  
    shape=9,  
    size = 3 
  )
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21.3: Bayes Factors (Section 20.6.1)
Example showing how BFs and p-values relate
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CHAPTER OVERVIEW

22: Modeling Categorical Relationships

Describe the concept of a contingency table for categorical data.
Describe the concept of the chi-squared test for association and compute it for a given contingency table.
Describe Simpson’s paradox and why it is important for categorical data analysis.

So far we have discussed the general concept of statistical modeling and hypothesis testing, and applied them to some simple
analyses. In this chapter we will focus on the modeling of categorical relationships, by which we mean relationships between
variables that are measured qualitatively. These data are usually expressed in terms of counts; that is, for each value of the variable
(or combination of values of multiple variables), how many observations take that value? For example, when we count how many
people from each major are in our class, we are fitting a categorical model to the data.

22.1: Example- Candy Colors
22.2: Pearson’s chi-squared Test
22.3: Contingency Tables and the Two-way Test
22.4: Standardized Residuals
22.5: Odds Ratios
22.6: Bayes Factor
22.7: Categorical Analysis Beyond the 2 X 2 Table
22.8: Beware of Simpson’s Paradox
22.9: Additional Readings
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22.1: Example- Candy Colors
Let’s say that I have purchased a bag of 100 candies, which are labeled as having 1/3 chocolates, 1/3 licorices, and 1/3 gumballs.
When I count the candies in the bag, we get the following numbers: 30 chccolates, 33 licorices, and 37 gumballs. Because I like
chocolate much more than licorice or gumballs, I feel slightly ripped off and I’d like to know if this was just a random accident. To
answer than question, I need to know: What is the likelihood that the count would come out this way if the true probability of each
candy type is the averaged proportion of 1/3 each?

This page titled 22.1: Example- Candy Colors is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A.
Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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22.3: Contingency Tables and the Two-way Test
Another way that we often use the chi-squared test is to ask whether two categorical variables are related to one another. As a more
realistic example, let’s take the question of whether a black driver is more likely to be searched when they are pulled over by a
police officer, compared to a white driver. The Stanford Open Policing Project (https://openpolicing.stanford.edu/) has studied this,
and provides data that we can use to analyze the question. We will use the data from the State of Connecticut since they are fairly
small. These data were first cleaned up to remove all unnecessary data.

The standard way to represent data from a categorical analysis is through a contingency table, which presents the number or
proportion of observations falling into each possible combination of values for each of the variables. The table below shows the
contingency table for the police search data. It can also be useful to look at the contingency table using proportions rather than raw
numbers, since they are easier to compare visually, so we include both absolute and relative numbers here.

Table 22.2: Contingency table for police search data

searched Black White Black (relative) White (relative)

FALSE 36244 239241 0.13 0.86

TRUE 1219 3108 0.00 0.01

The Pearson chi-squared test allows us to test whether observed frequencies are different from expected frequencies, so we need to
determine what frequencies we would expect in each cell if searches and race were unrelated – which we can define as being
independent. Remember from the chapter on probability that if X and Y are independent, then:

That is, the joint probability under the null hypothesis of independence is simply the product of the marginal probabilities of each
individual variable. The marginal probabilities are simply the probabilities of each event occuring regardless of other events. We
can compute those marginal probabilities, and then multiply them together to get the expected proportions under independence.

Black White

Not searched P(NS)*P(B) P(NS)*P(W) P(NS)

Searched P(S)*P(B) P(S)*P(W) P(S)

 P(B) P(W)  

Table 22.3: Summary of the 2-way contingency table for police search data

searched driver_race n expected stdSqDiff

FALSE Black 36244 36884 11.1

TRUE Black 1219 579 706.3

FALSE White 239241 238601 1.7

TRUE White 3108 3748 109.2

We then compute the chi-squared statistic, which comes out to 828.3. To compute a p-value, we need to compare it to the null chi-
squared distribution in order to determine how extreme our chi-squared value is compared to our expectation under the null
hypothesis. The degrees of freedom for this distribution are  - thus, for a 2X2 table like the
one here, . The intuition here is that computing the expected frequencies requires us to use three values: the
total number of observations and the marginal probability for each of the two variables. Thus, once those values are computed,
there is only one number that is free to vary, and thus there is one degree of freedom. Given this, we can compute the p-value for
the chi-squared statistic, which is about as close to zero as one can get: . This shows that the observed data would be
highly unlikely if there was truly no relationship between race and police searches, and thus we should reject the null hypothesis of
independence.

P (X∩Y )= P (X)*P (Y )

df =(nRows−1)*(nColumns−1)

df =(2−1)*(2−1)=

3.79e

−182
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We can also perform this test easily using the chisq.test()  function in R:

## 
##  Pearson's Chi-squared test 
## 
## data:  summaryDf2wayTable 
## X-squared = 828, df = 1, p-value <2e-16
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22.5: Odds Ratios
We can also represent the relative likelihood of different outcomes in the contingency table using the odds ratio that we introduced
earlier, in order to better understand the size of the effect. First, we represent the odds of being stopped for each race:

The odds ratio shows that the odds of being searched are 2.59 times higher for black versus white drivers, based on this dataset.
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22.6: Bayes Factor
We discussed Bayes factors in the earlier chapter on Bayesian statistics – you may remember that it represents the ratio of the
likelihood of the data under each of the two hypotheses:

We can compute the Bayes factor for the police search data using the contingencyTableBF()  function from the
BayesFactor package:

## Bayes factor analysis 
## -------------- 
## [1] Non-indep. (a=1) : 1.8e+142 ±0% 
## 
## Against denominator: 
##   Null, independence, a = 1  
## --- 
## Bayes factor type: BFcontingencyTable, independent multinomial

This shows that the evidence in favor of a relationship between driver race and police searches in this dataset is exceedingly strong.
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22.8: Beware of Simpson’s Paradox
The contingency tables presented above represent summaries of large numbers of observations, but summaries can sometimes be
misleading. Let’s take an example from baseball. The table below shows the batting data (hits/at bats and batting average) for
Derek Jeter and David Justice over the years 1995-1997:

Player 1995 1996 1997 Combined

Derek Jeter 12/48 .250 183/582 .314 190/654 .291 385/1284 .300

David
Justice

104/411 .253 45/140 .321 163/495 .329 312/1046 .298

If you look closely, you will see that something odd is going on: In each individual year Justice had a higher batting average than
Jeter, but when we combine the data across all three years, Jeter’s average is actually higher than Justice’s! This is an example of a
phenomenon known as Simpson’s paradox, in which a pattern that is present in a combined dataset may not be present in any of the
subsets of the data. This occurs when there is another variable that may be changing across the different subsets – in this case, the
number of at-bats varies across years, with Justice batting many more times in 1995 (when batting averages were low). We refer to
this as a lurking variable, and it’s always important to be attentive to such variables whenever one examines categorical data.
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22.9: Additional Readings
Simpson’s paradox in psychological science: a practical guide
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23: Modeling Categorical Relationships in R

23 Modeling categorical relationships in R

So far we have discussed the general concept of statistical modeling and hypothesis testing, and applied them to some simple
analyses. In this chapter we will focus on the modeling of categorical relationships, by which we mean relationships between
variables that are measured qualitatively. These data are usually expressed in terms of counts; that is, for each value of the variable
(or combination of values of multiple variables), how many observations take that value? For example, when we count how many
people from each major are in our class, we are fitting a categorical model to the data.

23.1 The Pearson Chi-squared test (Section 22.2)

23.2 Two-way tests (Section @refwo-way-test})
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CHAPTER OVERVIEW

24: Modeling Continuous Relationships

Describe the concept of the correlation coefficient and its interpretation
Compute the correlation between two continuous variables
Describe the potential causal influences that can give rise to a correlation.

Most people are familiar with the concept of correlation, and in this chapter we will provide a more formal understanding for this
commonly used and misunderstood concept.

24.1: An Example- Hate Crimes and Income Inequality
24.2: Is income Inequality Related to Hate Crimes?
24.3: Covariance and Correlation
24.4: Correlation and Causation
24.5: Suggested Readings
24.6: Appendix-

This page titled 24: Modeling Continuous Relationships is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.

 Learning Objectives

https://libretexts.org/
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/24%3A_Modeling_Continuous_Relationships/24.01%3A_An_Example-_Hate_Crimes_and_Income_Inequality
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/24%3A_Modeling_Continuous_Relationships/24.02%3A_Is_income_Inequality_Related_to_Hate_Crimes%3F
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/24%3A_Modeling_Continuous_Relationships/24.03%3A_Covariance_and_Correlation
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/24%3A_Modeling_Continuous_Relationships/24.04%3A_Correlation_and_Causation
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/24%3A_Modeling_Continuous_Relationships/24.05%3A_Suggested_Readings
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/24%3A_Modeling_Continuous_Relationships/24.06%3A_Appendix-
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/24%3A_Modeling_Continuous_Relationships
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


24.1.1 https://stats.libretexts.org/@go/page/8841

24.1: An Example- Hate Crimes and Income Inequality
In 2017, the web site Fivethirtyeight.com published a story titled Higher Rates Of Hate Crimes Are Tied To Income Inequality
which discussed the relationship between the prevalence of hate crimes and income inequality in the wake of the 2016 Presidential
election. The story reported an analysis of hate crime data from the FBI and the Southern Poverty Law Center, on the basis of
which they report:

“we found that income inequality was the most significant determinant of population-
adjusted hate crimes and hate incidents across the United States”.

The data for this analysis are included in the fivethirtyeight  R package, which makes it easy for us to access them. The
analysis reported in the story focused on the relationship between income inequality (defined by a quantity called the Gini index —
see Appendix for more details) and the prevalence of hate crimes in each state.
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24.2: Is income Inequality Related to Hate Crimes?

Figure 24.1: Plot of rates of hate crimes vs. Gini index.

The relationship between income inequality and rates of hate crimes is shown in Figure 24.1. Looking at the data, it seems that
there may be a positive relationship between the two variables. How can we quantify that relationship?
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24.3: Covariance and Correlation
One way to quantify the relationship between two variables is the covariance. Remember that variance for a single variable is
computed as the average squared difference between each data point and the mean:

This tells us how far each observation is from the mean, on average, in squared units. Covariance tells us whether there is a relation
between the deviations of two different variables across observations. It is defined as:

This value will be far from zero when x and y are both highly deviant from the mean; if they are deviant in the same direction then
the covariance is positive, whereas if they are deviant in opposite directions the covariance is negative. Let’s look at a toy example
first. The data are shown in the table, along with their individual deviations from the mean and their crossproducts.

Table 24.1: Data for toy example of covariance

x y y_dev x_dev crossproduct

3 5 -3.6 -4.6 16.56

5 4 -4.6 -2.6 11.96

8 7 -1.6 0.4 -0.64

10 10 1.4 2.4 3.36

12 17 8.4 4.4 36.96

The covariance is simply the mean of the crossproducts, which in this case is 17.05. We don’t usually use the covariance to
describe relationships between variables, because it varies with the overall level of variance in the data. Instead, we would usually
use the correlation coefficient (often referred to as Pearson’s correlation after the statistician Karl Pearson). The correlation is
computed by scaling the covariance by the standard deviations of the two variables:

In this case, the value is0.89. We can also compute the correlation value easily using the cor()  function in R, rather than
computing it by hand.

The correlation coefficient is useful because it varies between -1 and 1 regardless of the nature of the data - in fact, we already
discussed the correlation coefficient earlier in the discussion of effect sizes. As we saw in the previous chapter on effect sizes, a
correlation of 1 indicates a perfect linear relationship, a correlation of -1 indicates a perfect negative relationship, and a correlation
of zero indicates no linear relationship.

24.3.1 Hypothesis testing for correlations
The correlation value of 0.42 seems to indicate a reasonably strong relationship between the hate crimes and income inequality, but
we can also imagine that this could occur by chance even if there is no relationship. We can test the null hypothesis that the
correlation is zero, using a simple equation that lets us convert a correlation value into a t statistic:

Under the null hypothesis , this statistic is distributed as a t distribution with  degrees of freedom. We can
compute this using the cor.test()  function in R:

=s

2

( −∑

n

i=1

x

i

x̄)

2

N −1

covariance=

( − )( − )∑

n

i=1

x

i

x

¯

y

i

y

¯

N −1

r= =

covariance

s

x

s

y

( − )( − )∑

n

i=1

x

i

x

¯

y

i

y

¯

(N −1)s

x

s

y

=t

r

r N−2√

1−r

2

√

: r= 0H

0

N −2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8843?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/24%3A_Modeling_Continuous_Relationships/24.03%3A_Covariance_and_Correlation


24.3.2 https://stats.libretexts.org/@go/page/8843

## 
##  Pearson's product-moment correlation 
## 
## data:  hateCrimes$avg_hatecrimes_per_100k_fbi and hateCrimes$gini_index 
## t = 3, df = 48, p-value = 0.002 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  0.16 0.63 
## sample estimates: 
##  cor  
## 0.42

This test shows that the likelihood of an r value this extreme or more is quite low, so we would reject the null hypothesis of .
Note that this test assumes that both variables are normally distributed.

We could also test this by randomization, in which we repeatedly shuffle the values of one of the variables and compute the
correlation, and then compare our observed correlation value to this null distribution to determine how likely our observed value
would be under the null hypothesis. The results are shown in Figure 24.2. The p-value computed using randomization is reasonably
similar to the answer give by the t-test.

Figure 24.2: Histogram of correlation values under the null hypothesis, obtained by shuffling values. Observed value is denoted by
blue line.

We could also use Bayesian inference to estimate the correlation; see the Appendix for more on this.

24.3.2 Robust correlations
You may have noticed something a bit odd in Figure 24.1 – one of the datapoints (the one for the District of Columbia) seemed to
be quite separate from the others. We refer to this as an outlier, and the standard correlation coefficient is very sensitive to outliers.
For example, in Figure 24.3 we can see how a single outlying data point can cause a very high positive correlation value, even
when the actual relationship between the other data points is perfectly negative.

r= 0
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Figure 24.3: An simulated example of the effects of outliers on correlation. Without the outlier the remainder of the datapoints have
a perfect negative correlation, but the single outlier changes the correlation value to highly positive.

One way to address outliers is to compute the correlation on the ranks of the data after ordering them, rather than on the data
themselves; this is known as the Spearman correlation. Whereas the Pearson correlation for the example in Figure 24.3 was 0.83,
the Spearman correlation is -0.45, showing that the rank correlation reduces the effect of the outlier.

We can compute the rank correlation on the hate crime data using the cor.test  function:

## 
##  Spearman's rank correlation rho 
## 
## data:  hateCrimes$avg_hatecrimes_per_100k_fbi and hateCrimes$gini_index 
## S = 20146, p-value = 0.8 
## alternative hypothesis: true rho is not equal to 0 
## sample estimates: 
##   rho  
## 0.033

Now we see that the correlation is no longer significant (and in fact is very near zero), suggesting that the claims of the
FiveThirtyEight blog post may have been incorrect due to the effect of the outlier.
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24.4: Correlation and Causation
When we say that one thing causes another, what do we mean? There is a long history in philosophy of discussion about the
meaning of causality, but in statistics one way that we commonly think of causation is in terms of experimental control. That is, if
we think that factor X causes factor Y, then manipulating the value of X should also change the value of Y.

In medicine, there is a set of ideas known as Koch’s postulates which have historically been used to determine whether a particular
organism causes a disease. The basic idea is that the organism should be present in people with the disease, and not present in those
without it – thus, a treatment that eliminates the organism should also eliminate the disease. Further, infecting someone with the
organism should cause them to contract the disease. An example of this was seen in the work of Dr. Barry Marshall, who had a
hypothesis that stomach ulcers were caused by a bacterium (Helicobacter pylori). To demonstrate this, he infected himself with the
bacterium, and soon thereafter developed severe inflammation in his stomach. He then treated himself with an antibiotic, and his
stomach soon recovered. He later won the Nobel Prize in Medicine for this work.

Often we would like to test causal hypotheses but we can’t actually do an experiment, either because it’s impossible (“What is the
relationship between human carbon emissions and the earth’s climate?”) or unethical (“What are the effects of severe abuse on
child brain development?”). However, we can still collect data that might be relevant to those questions. For example, in the latter
example, we can potentially collect data from children who have been abused as well as those who have not, and we can then ask
whether their brain development differs.

Let’s say that we did such an analysis, and we found that abused children had poorer brain development than non-abused children.
Would this demonstrate that abuse causes poorer brain development? No. Whenever we observe a statistical association between
two variables, it is certainly possible that one of those two variables causes the other. However, it is also possible that both of the
variables are being influenced by a third variable; in this example, it could be that child abuse is associated with family stress,
which could also cause poorer brain development through less intellectual engagement, food stress, or many other possible
avenues. The point is that a correlation between two variables generally tells us that something is probably causing somethign else,
but it doesn’t tell us what is causing what.

24.4.1 Causal graphs
One useful way to describe causal relations between variables is through a causal graph, which shows variables as circles and
causal relations between them as arrows. For example, Figure 24.4 shows the causal relationships between study time and two
variables that we think should be affected by it: exam grades and exam finishing times.

However, in reality the effects on finishing time and grades are not due directly to the amount of time spent studying, but rather to
the amount of knowledge that the student gains by studying. We would usually say that knowledge is a latent variable – that is, we
can’t measure it directly but we can see it reflected in variables that we can measure (like grades and finishing times). Figure 24.5
shows this.
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Figure 24.4: A graph showing causal relationships between three variables: study time, exam grades, and exam finishing time. A
green arrow represents a positive relationship (i.e. more study time causes exam grades to increase), and a red arrow represents a
negative relationship (i.e. more study time causes faster completion of the exam).

Figure 24.5: A graph showing the same causal relationships as above, but now also showing the latent variable (knowledge) using a
square box.

Here we would say that knowledge mediates the relationship between study time and grades/finishing times. That means that if we
were able to hold knowledge constant (for example, by administering a drug that causes immediate forgetting), then the amount of
study time should no longer have an effect on grades and finishing times.

Note that if we simply measured exam grades and finishing times we would generally see negative relationship between them,
because people who finish exams the fastest in general get the highest grades. However, if we were to interpret this correlation as a
causal relation, this would tell us that in order to get better grades, we should actually finish the exam more quickly! This example
shows how tricky the inference of causality from non-experimental data can be.

Within statistics and machine learning, there is a very active research community that is currently studying the question of when
and how we can infer causal relationships from non-experimental data. However, these methods often require strong assumptions,
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and must generally be used with great caution.
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24.5: Suggested Readings
The Book of Why by Judea Pearl - an excellent introduction to the ideas behind causal inference.
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24.6: Appendix-

24.6.1 Quantifying inequality: The Gini index

Before we look at the analysis reported in the story, it’s first useful to understand how the Gini index is used to quantify inequality.
The Gini index is usually defined in terms of a curve that describes the relation between income and the proportion of the
population that has income at or less than that level, known as a Lorenz curve. However, another way to think of it is more
intuitive: It is the relative mean absolute difference between incomes, divided by two (from
https://en.Wikipedia.org/wiki/Gini_coefficient):

Figure 24.6: Lorenz curves for A) perfect equality, B) normally distributed income, and C) high inequality (equal income except for
one very wealthy individual).

Figure 24.6 shows the Lorenz curves for several different income distributions. The top left panel (A) shows an example with 10
people where everyone has exactly the same income. The length of the intervals between points are equal, indicating each person
earns an identical share of the total income in the population. The top right panel (B) shows an example where income is normally
distributed. The bottom left panel shows an example with high inequality; everyone has equal income ($40,000) except for one

G=

| − |∑

n

i=1

∑

n

j=1

x

i

x

j

2n∑

i=

1

n

x

i

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8846?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/24%3A_Modeling_Continuous_Relationships/24.06%3A_Appendix-
https://en.wikipedia.org/wiki/Gini_coefficient


24.6.2 https://stats.libretexts.org/@go/page/8846

person, who has income of $40,000,000. According to the US Census, the United States had a Gini index of 0.469 in 2010, falling
roughly half way between our normally distributed and maximally inequal examples.

24.6.2 Bayesian correlation analysis
We can also analyze the FiveThirtyEight data using Bayesian analysis, which has two advantages. First, it provides us with a
posterior probability – in this case, the probability that the correlation value exceeds zero. Second, the Bayesian estimate combines
the observed evidence with a prior, which has the effect of regularizing the correlation estimate, effectively pulling it towards zero.
Here we can compute it using the jzs_cor  function from the BayesMed package.

## Compiling model graph 
##    Resolving undeclared variables 
##    Allocating nodes 
## Graph information: 
##    Observed stochastic nodes: 50 
##    Unobserved stochastic nodes: 4 
##    Total graph size: 230 
## 
## Initializing model

## $Correlation 
## [1] 0.41 
## 
## $BayesFactor 
## [1] 11 
## 
## $PosteriorProbability 
## [1] 0.92

Notice that the correlation estimated using the Bayesian method is slightly smaller than the one estimated using the standard
correlation coefficient, which is due to the fact that the estimate is based on a combination of the evidence and the prior, which
effectively shrinks the estimate toward zero. However, notice that the Bayesian analysis is not robust to the outlier, and it still says
that there is fairly strong evidence that the correlation is greater than zero.
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25.2: Hate Crime Example
Now we will look at the hate crime data from the fivethirtyeight  package. First we need to prepare the data by getting rid
of NA values and creating abbreviations for the states. To do the latter, we use the state.abb  and state.name  variables
that come with R along with the match()  function that will match the state names in the hate_crimes  variable to those in
the list.

hateCrimes <-  
  hate_crimes %>% 
  mutate(state_abb = state.abb[match(state,state.name)]) %>% 
  drop_na(avg_hatecrimes_per_100k_fbi, gini_index) 
 
# manually fix the DC abbreviation 
hateCrimes$state_abb[hateCrimes$state=="District of Columbia"] <- 'DC'

## 
##  Pearson's product-moment correlation 
## 
## data:  hateCrimes$avg_hatecrimes_per_100k_fbi and hateCrimes$gini_index 
## t = 3, df = 48, p-value = 0.001 
## alternative hypothesis: true correlation is greater than 0 
## 95 percent confidence interval: 
##  0.21 1.00 
## sample estimates: 
##  cor  
## 0.42

Remember that we can also compute the p-value using randomization. To to this, we shuffle the order of one of the variables, so
that we break the link between the X and Y variables — effectively making the null hypothesis (that the correlation is less than or
equal to zero) true. Here we will first create a function that takes in two variables, shuffles the order of one of them (without
replacement) and then returns the correlation between that shuffled variable and the original copy of the second variable.

Now we take the distribution of observed correlations after shuffling and compare them to our observed correlation, in order to
obtain the empirical probability of our observed data under the null hypothesis.

mean(shuffleDist$cor >corr_results$estimate )

## [1] 0.0066

This value is fairly close (though a bit larger) to the one obtained using cor.test() .
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25.3: Robust Correlations (24.3.2)
In the previous chapter we also saw that the hate crime data contained one substantial outlier, which appeared to drive the
significant correlation. To compute the Spearman correlation, we first need to convert the data into their ranks, which we can do
using the order()  function:

hateCrimes <- hateCrimes %>% 
  mutate(hatecrimes_rank = order(avg_hatecrimes_per_100k_fbi), 
         gini_rank = order(gini_index))

We can then compute the Spearman correlation by applying the Pearson correlation to the rank variables"

cor(hateCrimes$hatecrimes_rank,
  hateCrimes$gini_rank)

## [1] 0.057

We see that this is much smaller than the value obtained using the Pearson correlation on the original data. We can assess its
statistical signficance using randomization:

## [1] 0.0014

Here we see that the p-value is substantially larger and far from significance.

This page titled 25.3: Robust Correlations (24.3.2) is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell
A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8849?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/25%3A_Modeling_Continuous_Relationships_in_R/25.03%3A_Robust_Correlations_(24.3.2)
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/25%3A_Modeling_Continuous_Relationships_in_R/25.03%3A_Robust_Correlations_(24.3.2)
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


1

CHAPTER OVERVIEW

26: The General Linear Model

Describe the concept of linear regression and apply it to a bivariate dataset
Describe the concept of the general linear model and provide examples of its application
Describe how cross-validation an allow us to estimate the predictive performance of a model on new data

Remember that early in the book we described the basic model of statistics:

where our general goal is to find the model that minimizes the error, subject to some other constraints (such as keeping the model
relatively simple so that we can generalize beyond our specific dataset). In this chapter we will focus on a particular
implementation of this approach, which is known as the general linear model (or GLM). You have already seen the general linear
model in the earlier chapter on Fitting Models to Data, where we modeled height in the NHANES dataset as a function of age; here
we will provide a more general introduction to the concept of the GLM and its many uses.

Before we discuss the general linear model, let’s first define two terms that will be important for our discussion:

dependent variable: This is the outcome variable that our model aims to explain (usually referred to as Y)
independent variable: This is a variable that we wish to use in order to explain the dependent variable (usually referred to as X).

There may be multiple independent variables, but for this course we will focus primarily on situations where there is only one
dependent variable in our analysis.

A general linear model is one in which the model for the dependent variable is composed of a linear combination of independent
variables that are each multiplied by a weight (which is often referred to as the Greek letter beta - ), which determines the relative
contribution of that independent variable to the model prediction.

Figure 26.1: Relation between study time and grades

As an example, let’s generate some simulated data for the relationship between study time and exam grades (see Figure 26.1).
Given these data, we might want to engage in each of the three fundamental activities of statistics:

Describe: How strong is the relationship between grade and study time?
Decide: Is there a statistically significant relationship between grade and study time?
Predict: Given a particular amount of study time, what grade do we expect?

In the last chapter we learned how to describe the relationship between two variables using the correlation coefficient, so we can
use that to describe the relationship here, and to test whether the correlation is statistically significant using the cor.test()
function in R:

 Learning Objectives

outcome=model+error

β
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## 
##  Pearson's product-moment correlation 
## 
## data:  df$grade and df$studyTime 
## t = 2, df = 6, p-value = 0.05 
## alternative hypothesis: true correlation is greater than 0 
## 95 percent confidence interval: 
##  0.014 1.000 
## sample estimates: 
##  cor  
## 0.63

The correlation is quite high, but just barely reaches statistical significance because the sample size is so small.

26.1: Linear Regression
26.2: Fitting More Complex Models
26.3: Interactions Between Variables
26.4: Beyond Linear Predictors and Outcomes
26.5: Criticizing Our Model and Checking Assumptions
26.6: What Does “Predict” Really Mean?
26.7: Suggested Readings
26.8: Appendix
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26.1: Linear Regression
We can also use the general linear model to describe the relation between two variables and to decide whether that relationship is
statistically significant; in addition, the model allows us to predict the value of the dependent variable given some new value(s) of
the independent variable(s). Most importantly, the general linear model will allow us to build models that incorporate multiple
independent variables, whereas correlation can only tell us about the relationship between two individual variables.

The specific version of the GLM that we use for this is referred to as as linear regression. The term regression was coined by
Francis Galton, who had noted that when he compared parents and their children on some feature (such as height), the children of
extreme parents (i.e. the very tall or very short parents) generally fell closer to the mean than their parents. This is an extremely
important point that we return to below.

The simplest version of the linear regression model (with a single independent variable) can be expressed as follows:

The  value tells us how much we would expect y to change given a one-unit change in x. The intercept  is an overall offset,
which tells us what value we would expect y to have when ; you may remember from our early modeling discussion that this
is important to model the overall magnitude of the data, even if  never actually attains a value of zero. The error term  refers to
whatever is left over once the model has been fit. If we want to know how to predict y (which we call ), then we can drop the
error term:

Figure 26.2: The linear regression solution for the study time data is shown in the solid line The value of the intercept is equivalent
to the predicted value of the y variable when the x variable is equal to zero; this is shown with a dotted line. The value of beta is
equal to the slope of the line – that is, how much y changes for a unit change in x. This is shown schematically in the dashed lines,
which show the degree of increase in grade for a single unit increase in study time.

We will not go into the details of how the best fitting slope and intercept are actually estimated from the data; if you are interested,
details are available in the Appendix.

26.1.1 Regression to the mean

The concept of regression to the mean was one of Galton’s essential contributions to science, and it remains a critical point to
understand when we interpret the results of experimental data analyses. Let’s say that we want to study the effects of a reading
intervention on the performance of poor readers. To test our hypothesis, we might go into a school and recruit those individuals in
the bottom 25% of the distribution on some reading test, administer the intervention, and then examine their performance. Let’s say
that the intervention actually has no effect, such that reading scores for each individual are simply independent samples from a
normal distribution. We can simulate this:

Table 26.1: Reading scores for Test 1 (which is lower, because it was the basis for selecting the students) and Test 2 (which is higher because it
was not related to Test 1).

Score

y = x * + + ϵβ

x
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Unexpected text node: '26.2 shows an example of this model applied to the study time example.'
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Score

Test 1 88

Test 2 101

If we look at the difference between the mean test performance at the first and second test, it appears that the intervention has
helped these students substantially, as their scores have gone up by more than ten points on the test! However, we know that in fact
the students didn’t improve at all, since in both cases the scores were simply selected from a random normal distribution. What has
happened is that some subjects scored badly on the first test simply due to random chance. If we select just those subjects on the
basis of their first test scores, they are guaranteed to move back towards the mean of the entire group on the second test, even if
there is no effect of training. This is the reason that we need an untreated control group in order to interpret any changes in reading
over time; otherwise we are likely to be tricked by regression to the mean.

26.1.2 The relation between correlation and regression

There is a close relationship between correlation coefficients and regression coefficients. Remember that Pearson’s correlation
coefficient is computed as the ratio of the covariance and the product of the standard deviations of x and y:

whereas the regression beta is computed as:

Based on these two equations, we can derive the relationship between  and :

That is, the regression slope is equal to the correlation value multiplied by the ratio of standard deviations of y and x. One thing this
tells us is that when the standard deviations of x and y are the same (e.g. when the data have been converted to Z scores), then the
correlation estimate is equal to the regression slope estimate.

26.1.3 Standard errors for regression models
If we want to make inferences about the regression parameter estimates, then we also need an estimate of their variability. To
compute this, we first need to compute the residual variance or error variance for the model – that is, how much variability in the
dependent variable is not explained by the model. We can compute the model residuals as follows:

We then compute the sum of squared errors (SSE):

and from this we compute the mean squared error:

where the degrees of freedom ( ) are determined by subtracting the number of estimated parameters (2 in this case:  and )
from the number of observations ( ). Once we have the mean squared error, we can compute the standard error for the model as:
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In order to get the standard error for a specific regression parameter estimate, , we need to rescale the standard error of the
model by the square root of the sum of squares of the X variable:

}

26.1.4 Statistical tests for regression parameters
Once we have the parameter estimates and their standard errors, we can compute a t statistic to tell us the likelihood of the observed
parameter estimates compared to some expected value under the null hypothesis. In this case we will test against the null
hypothesis of no effect (i.e. ):

In R, we don’t need to compute these by hand, as they are automatically returned to us by the lm()  function:

## 
## Call: 
## lm(formula = grade ~ studyTime, data = df) 
## 
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -10.656  -2.719   0.125   4.703   7.469  
## 
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)    76.16       5.16   14.76  6.1e-06 *** 
## studyTime       4.31       2.14    2.01    0.091 .   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 6.4 on 6 degrees of freedom 
## Multiple R-squared:  0.403,  Adjusted R-squared:  0.304  
## F-statistic: 4.05 on 1 and 6 DF,  p-value: 0.0907

In this case we see that the intercept is significantly different from zero (which is not very interesting) and that the effect of
studyTime on grades is marginally significant (p = .09).

26.1.5 Quantifying goodness of fit of the model
Sometimes it’s useful to quantify how well the model fits the data overall, and one way to do this is to ask how much of the
variability in the data is accounted for by the model. This is quantified using a value called  (also known as the coefficient of
determination). If there is only one x variable, then this is easy to compute by simply squaring the correlation coefficient:

In the case of our study time example,  = 0.4, which means that we have accounted for about 40% of the variance in grades.

More generally we can think of  as a measure of the fraction of variance in the data that is accounted for by the model, which
can be computed by breaking the variance into multiple components:
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where  is the variance of the data ( ) and  and  are computed as shown earlier in this chapter. Using this, we
can then compute the coefficient of determination as:

A small value of  tells us that even if the model fit is statistically significant, it may only explain a small amount of information
in the data.
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26.2: Fitting More Complex Models
Often we would like to understand the effects of multiple variables on some particular outcome, and how they relate to one another.
In the context of our study time example, let’s say that we discovered that some of the students had previously taken a course on
the topic. If we plot their grades (see Figure 26.3), we can see that those who had a prior course perform much better than those
who had not, given the same amount of study time. We would like to build a statistical model that takes this into account, which we
can do by extending the model that we built above:

## 
## Call: 
## lm(formula = grade ~ studyTime + priorClass, data = df) 
## 
## Residuals: 
##       1       2       3       4       5       6       7       8  
##  3.5833  0.7500 -3.5833 -0.0833  0.7500 -6.4167  2.0833  2.9167  
## 
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)    70.08       3.77   18.60  8.3e-06 *** 
## studyTime       5.00       1.37    3.66    0.015 *   
## priorClass1     9.17       2.88    3.18    0.024 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 4 on 5 degrees of freedom 
## Multiple R-squared:  0.803,  Adjusted R-squared:  0.724  
## F-statistic: 10.2 on 2 and 5 DF,  p-value: 0.0173

Figure 26.3: The relation between study time and grade including prior experience as an additional component in the model. The
solid line relates study time to grades for students who have not had prior experience, and the dashed line relates grades to study
time for students with prior experience. The dotted line corresponds to the difference in means between the two groups.

This page titled 26.2: Fitting More Complex Models is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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26.3: Interactions Between Variables
In the previous model, we assumed that the effect of study time on grade (i.e., the regression slope) was the same for both groups.
However, in some cases we might imagine that the effect of one variable might differ depending on the value of another variable,
which we refer to as an interaction between variables.

Let’s use a new example that asks the question: What is the effect of caffeine on public speaking? First let’s generate some data and
plot them. Looking at panel A of Figure 26.4, there doesn’t seem to be a relationship, and we can confirm that by performing linear
regression on the data:

## 
## Call: 
## lm(formula = speaking ~ caffeine, data = df) 
## 
## Residuals: 
##    Min     1Q Median     3Q    Max  
## -33.10 -16.02   5.01  16.45  26.98  
## 
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|) 
## (Intercept)   -7.413      9.165   -0.81     0.43 
## caffeine       0.168      0.151    1.11     0.28 
## 
## Residual standard error: 19 on 18 degrees of freedom 
## Multiple R-squared:  0.0642, Adjusted R-squared:  0.0122  
## F-statistic: 1.23 on 1 and 18 DF,  p-value: 0.281

But now let’s say that we find research suggesting that anxious and non-anxious people react differently to caffeine. First let’s plot
the data separately for anxious and non-anxious people.

As we see from panel B in Figure 26.4, it appears that the relationship between speaking and caffeine is different for the two
groups, with caffeine improving performance for people without anxiety and degrading performance for those with anxiety. We’d
like to create a statistical model that addresses this question. First let’s see what happens if we just include anxiety in the model.

## 
## Call: 
## lm(formula = speaking ~ caffeine + anxiety, data = df) 
## 
## Residuals: 
##    Min     1Q Median     3Q    Max  
## -32.97  -9.74   1.35  10.53  25.36  
## 
## Coefficients: 
##                   Estimate Std. Error t value Pr(>|t|) 
## (Intercept)        -12.581      9.197   -1.37     0.19 
## caffeine             0.131      0.145    0.91     0.38 
## anxietynotAnxious   14.233      8.232    1.73     0.10 
## 
## Residual standard error: 18 on 17 degrees of freedom 
## Multiple R-squared:  0.204,  Adjusted R-squared:  0.11  
## F-statistic: 2.18 on 2 and 17 DF,  p-value: 0.144
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Here we see there are no significant effects of either caffeine or anxiety, which might seem a bit confusing. The problem is that this
model is trying to fit the same line relating speaking to caffeine for both groups. If we want to fit them using separate lines, we
need to include an interaction in the model, which is equivalent to fitting different lines for each of the two groups; in R this is
denoted by the  symbol.

## 
## Call: 
## lm(formula = speaking ~ caffeine + anxiety + caffeine * anxiety,  
##     data = df) 
## 
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -11.385  -7.103  -0.444   6.171  13.458  
## 
## Coefficients: 
##                            Estimate Std. Error t value Pr(>|t|)     
## (Intercept)                 17.4308     5.4301    3.21  0.00546 **  
## caffeine                    -0.4742     0.0966   -4.91  0.00016 *** 
## anxietynotAnxious          -43.4487     7.7914   -5.58  4.2e-05 *** 
## caffeine:anxietynotAnxious   1.0839     0.1293    8.38  3.0e-07 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 8.1 on 16 degrees of freedom
## Multiple R-squared:  0.852,  Adjusted R-squared:  0.825  
## F-statistic: 30.8 on 3 and 16 DF,  p-value: 7.01e-07

From these results we see that there are significant effects of both caffeine and anxiety (which we call main effects) and an
interaction between caffeine and anxiety. Panel C in Figure 26.4 shows the separate regression lines for each group.
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Figure 26.4: A: The relationship between caffeine and public speaking. B: The relationship between caffeine and public speaking,
with anxiety represented by the shape of the data points. C: The relationship between public speaking and caffeine, including an
interaction with anxiety. This results in two lines that separately model the slope for each group (dashed for anxious, dotted for
non-anxious).

Sometimes we want to compare the relative fit of two different models, in order to determine which is a better model; we refer to
this as model comparison. For the models above, we can compare the goodness of fit of the model with and without the interaction,
using the anova()  command in R:

## Analysis of Variance Table 
## 
## Model 1: speaking ~ caffeine + anxiety 
## Model 2: speaking ~ caffeine + anxiety + caffeine * anxiety 
##   Res.Df  RSS Df Sum of Sq    F Pr(>F)     
## 1     17 5639                              
## 2     16 1046  1      4593 70.3  3e-07 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This tells us that there is good evidence to prefer the model with the interaction over the one without an interaction. Model
comparison is relatively simple in this case because the two models are nested – one of the models is a simplified version of the
other model. Model comparison with non-nested models can get much more complicated.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8852?pdf


26.3.4 https://stats.libretexts.org/@go/page/8852

This page titled 26.3: Interactions Between Variables is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8852?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/26%3A_The_General_Linear_Model/26.03%3A_Interactions_Between_Variables
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


26.4.1 https://stats.libretexts.org/@go/page/8853

26.4: Beyond Linear Predictors and Outcomes
It is important to note that despite the fact that it is called the general linear model, we can actually use the same machinery to
model effects that don’t follow a straight line (such as curves). The “linear” in the general linear model doesn’t refer to the shape of
the response, but instead refers to the fact that model is linear in its parameters — that is, the predictors in the model only get
multiplied the parameters, rather than a nonlinear relationship like being raised to a power of the parameter. It’s also common to
analyze data where the outcomes are binary rather than continuous, as we saw in the chapter on categorical outcomes. There are
ways to adapt the general linear model (known as generalized linear models) that allow this kind of analysis. We will explore both
of these points in more detail in the following chapter.
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26.5: Criticizing Our Model and Checking Assumptions
The saying “garbage in, garbage out” is as true of statistics as anywhere else. In the case of statistical models, we have to make sure
that our model is properly specified and that our data are appropriate for the model.

When we say that the model is “properly specified”, we mean that we have included the appropriate set of independent variables in
the model. We have already seen examples of misspecified models, in Figure 8.3. Remember that we saw several cases where the
model failed to properly account for the data, such as failing to include an intercept. When building a model, we need to ensure that
it includes all of the appropriate variables.

We also need to worry about whether our model satisifies the assumptions of our statisical methods. One of the most important
assumptions that we make when using the general linear model is that the residuals (that is, the difference between the model’s
predictions and the actual data) are normally distributed. This can fail for many reasons, either because the model was not properly
specified or because the data that we are modeling are inappropriate.

We can use something called a Q-Q (quantile-quantile) plot to see whether our residuals are normally distributed. You have already
encountered quantiles — they are the value that cuts off a particular proportion of a cumulative distribution.The Q-Q plot presents
the quantiles of two distributions against one another; in this case, we will present the quantiles of the actual data from the quantiles
of a normal distribution. Figure 26.5 shows examples of two such Q-Q plots. The left panel shows a Q-Q plot for data from a
normal distribution, while the right panel shows a Q-Q plot from non-normal data. The data points in the right panel diverge
substantially from the line, reflecting the fact that they are not normally distributed.

qq_df <- tibble(norm=rnorm(100), 
                unif=runif(100)) 
 
p1 <- ggplot(qq_df,aes(sample=norm)) +  
  geom_qq() +  
  geom_qq_line() +  
  ggtitle('Normal data') 
 
p2 <- ggplot(qq_df,aes(sample=unif)) +  
  geom_qq() +  
  geom_qq_line()+  
  ggtitle('Non-normal data') 
 
plot_grid(p1,p2)

Figure 26.5: Q-Q plotsof normal (left) and non-normal (right) data. The line shows the point at which the x and y axes are equal.
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Model diagnostics will be explored in more detail in the following chapter.
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26.6: What Does “Predict” Really Mean?
When we talk about “prediction” in daily life, we are generally referring to the ability to estimate the value of some variable in
advance of seeing the data. However, the term is often used in the context of linear regression to refer to the fitting of a model to
the data; the estimated values (

As an example, let’s take a sample of 48 children from NHANES and fit a regression model for weight that includes several
regressors (age, height, hours spent watching TV and using the computer, and household income) along with their interactions.

Table 26.2: Root mean squared error for model applied to original data and new data, and after shuffling the order of the y variable (in essence
making the null hypothesis true)

Data type RMSE (original data) RMSE (new data)

True data 3.0 21

Shuffled data 7.6 59

Here we see that whereas the model fit on the original data showed a very good fit (only off by a few pounds per individual), the
same model does a much worse job of predicting the weight values for new children sampled from the same population (off by
more than 25 pounds per individual). This happens because the model that we specified is quite complex, since it includes not just
each of the individual variables, but also all possible combinations of them (i.e. their interactions), resulting in a model with 32
parameters. Since this is almost as many coefficients as there are data points (i.e., the heights of 48 children), the model overfits the
data, just like the complex polynomial curve in our initial example of overfitting in Section 8.4.

Another way to see the effects of overfitting is to look at what happens if we randomly shuffle the values of the weight variable
(shown in the second row of the table). Randomly shuffling the value should make it impossible to predict weight from the other
variables, because they should have no systematic relationship. This shows us that even when there is no true relationship to be
modeled (because shuffling should have obliterated the relationship), the complex model still shows a very low error in its
predictions, because it fits the noise in the specific dataset. However, when that model is applied to a new dataset, we see that the
error is much larger, as it should be.

26.6.1 Cross-validation
One method that has been developed to help address the problem of overfitting is known as cross-validation. This technique is
commonly used within the field of machine learning, which is focused on building models that will generalize well to new data,
even when we don’t have a new dataset to test the model. The idea behind cross-validation is that we fit our model repeatedly, each
time leaving out a subset of the data, and then test the ability of the model to predict the values in each held-out subset.
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Figure 26.6: A schematic of the cross-validation procedure.

Let’s see how that would work for our weight prediction example. In this case we will perform 12-fold cross-validation, which
means that we will break the data into 12 subsets, and then fit the model 12 times, in each case leaving out one of the subsets and
then testing the model’s ability to accurately predict the value of the dependent variable for those held-out data points. The 
caret  package in R provides us with the ability to easily run cross-validation across our dataset. Using this function we can run

cross-validation on 100 samples from the NHANES dataset, and compute the RMSE for cross-validation, along with the RMSE for
the original data and a new dataset, as we computed above.

Table 26.3: Root mean squared error from cross-validation and new data, showing that cross-validation provides a reasonable estimate of the
model’s performance on new data.

Root mean squared error

Original data 3

New data 24

Cross-validation 146

Here we see that cross-validation gives us an estimate of predictive accuracy that is much closer to what we see with a completely
new dataset than it is to the inflated accuracy that we see with the original dataset – in fact, it’s even slighlty more pessimistic than
the average for a new dataset, probably because only part of the data are being used to train each of the models.

Note that using cross-validation properly is tricky, and it is recommended that you consult with an expert before using it in practice.
However, this section has hopefully shown you three things:

“Prediction” doesn’t always mean what you think it means
Complex models can overfit data very badly, such that one can see seemingly good prediction even when there is no true signal
to predict
You should view claims about prediction accuracy very skeptically unless they have been done using the appropriate methods.
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26.7: Suggested Readings
The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd Edition) - The “bible” of machine learning
methods, available freely online.
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26.8: Appendix

26.8.1 Estimating linear regression parameters

We generally estimate the parameters of a linear model from data using linear algebra, which is the form of algebra that is applied
to vectors and matrices. If you aren’t familiar with linear algebra, don’t worry – you won’t actually need to use it here, as R will do
all the work for us. However, a brief excursion in linear algebra can provide some insight into how the model parameters are
estimated in practice.

First, let’s introduce the idea of vectors and matrices; you’ve already encountered them in the context of R, but we will review them
here. A matrix is a set of numbers that are arranged in a square or rectangle, such that there are one or more dimensions across
which the matrix varies. It is customary to place different observation units (such as people) in the rows, and different variables in
the columns. Let’s take our study time data from above. We could arrange these numbers in a matrix, which would have eight rows
(one for each student) and two columns (one for study time, and one for grade). If you are thinking “that sounds like a data frame in
R” you are exactly right! In fact, a data frame is a specialized version of a matrix, and we can convert a data frame to a matrix
using the as.matrix()  function.

df <- 
  tibble( 
    studyTime = c(2, 3, 5, 6, 6, 8, 10, 12) / 3, 
    priorClass = c(0, 1, 1, 0, 1, 0, 1, 0) 
  ) %>% 
  mutate( 
    grade =  
      studyTime * betas[1] +  
      priorClass * betas[2] +  
      round(rnorm(8, mean = 70, sd = 5)) 
  )
 
df_matrix <-  
  df %>% 
  dplyr::select(studyTime, grade) %>% 
  as.matrix()

We can write the general linear model in linear algebra as follows:

This looks very much like the earlier equation that we used, except that the letters are all capitalized, which is meant to express the
fact that they are vectors.

We know that the grade data go into the Y matrix, but what goes into the 

Y =X * β+E
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Figure 26.7: A depiction of the linear model for the study time data in terms of matrix algebra.

The rules of matrix multiplication tell us that the dimensions of the matrices have to match with one another; in this case, the
design matrix has dimensions of 8 (rows) X 2 (columns) and the Y variable has dimensions of 8 X 1. Therefore, the  matrix needs
to have dimensions 2 X 1, since an 8 X 2 matrix multiplied by a 2 X 1 matrix results in an 8 X 1 matrix (as the matching middle
dimensions drop out). The interpretation of the two values in the  matrix is that they are the values to be multipled by study time
and 1 respectively to obtain the estimated grade for each individual. We can also view the linear model as a set of individual
equations for each individual:

…

Remember that our goal is to determine the best fitting values of  given the known values of  and . A naive way to do this
would be to solve for  using simple algebra – here we drop the error term  because it’s out of our control:

The challenge here is that  and  are now matrices, not single numbers – but the rules of linear algebra tell us how to divide by a
matrix, which is the same as multiplying by the inverse of the matrix (referred to as ). We can do this in R:
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# compute beta estimates using linear algebra 
 
#create Y variable 8 x 1 matrix 
Y <- as.matrix(df$grade)  
 #create X variable 8 x 2 matrix 
X <- matrix(0, nrow = 8, ncol = 2) 
#assign studyTime values to first column in X matrix 
X[, 1] <- as.matrix(df$studyTime) 
#assign constant of 1 to second column in X matrix 
X[, 2] <- 1  
 
# compute inverse of X using ginv() 
# %*% is the R matrix multiplication operator 
 
beta_hat <- ginv(X) %*% Y #multiple the inverse of X by Y 
print(beta_hat)

##      [,1] 
## [1,]  4.3 
## [2,] 76.0

Anyone who is interested in serious use of statistical methods is highly encouraged to invest some time in learning linear algebra,
as it provides the basis for nearly all of the tools that are used in standard statistics.
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27.1: Linear Regression (Section 26.1)
To perform linear regression in R, we use the lm()  function. Let’s generate some data and use this function to compute the
linear regression solution.

0.5

0.6

npoints <- 100 
intercept = 10 
# slope of X/Y relationship 

slope= 
# this lets us control the strength of the relationship 
# by varying the amount of noise added to the y variable

noise_sd =  
 
regression_data <- tibble(x = rnorm(npoints)) %>% 
  mutate(y = x*slope + rnorm(npoints)*noise_sd + intercept) 
 
ggplot(regression_data,aes(x,y)) +  
  geom_point()

We can then apply lm()  to these data:

lm_result <- lm(y ~ x, data=regression_data) 
summary(lm_result)
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## 
## Call: 
## lm(formula = y ~ x, data = regression_data) 
## 
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -1.5563 -0.3042 -0.0059  0.3804  1.2522  
## 
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   9.9761     0.0580  172.12  < 2e-16 *** 
## x             0.3725     0.0586    6.35  6.6e-09 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.58 on 98 degrees of freedom 
## Multiple R-squared:  0.292,  Adjusted R-squared:  0.284  
## F-statistic: 40.4 on 1 and 98 DF,  p-value: 6.65e-09

We should see three things in the lm()  results:

The estimate of the Intercept in the model should be very close to the intercept that we specified
The estimate for the x parameter should be very close to the slope that we specified
The residual standard error should be roughly similar to the noise standard deviation that we specified
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27.2: Model Criticism and Diagnostics (Section 26.5)
Once we have fitted the model, we want to look at some diagnostics to determine whether the model is actually fitting properly. We
can do this using the autoplot()  function from the ggfortify  package.

autoplot(lm_result,which=1:2)

The left panel in this plot shows the relationship between the predicted (or “fitted”) values and the residuals. We would like to
make sure that there is no clear relationship between these two (as we will see below). The right panel shows a Q-Q plot, which
helps us assess whether the residuals from the model are normally distributed. In this case, they look reasonably normal, as the
points don’t differ too much from the unit line.
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27.3: Examples of Problematic Model Fit
Let’s say that there was another variable at play in this dataset, which we were not aware of. This variable causes some of the cases
to have much larger values than others, in a way that is unrelated to the X variable. We play a trick here using the seq()
function to create a sequence from zero to one, and then threshold those 0.5 (in order to obtain half of the values as zero and the
other half as one) and then multiply by the desired effect size:

0.5

effsize=2 
regression_data <- regression_data %>% 

  mutate(y2=y + effsize*(seq(1/npoints,1,1/npoints)>)) 
 
lm_result2 <- lm(y2 ~ x, data=regression_data) 
summary(lm_result2)

## 
## Call: 
## lm(formula = y2 ~ x, data = regression_data) 
## 
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -2.3324 -0.9689 -0.0939  1.0421  2.2591  
## 
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   10.978      0.117   93.65   <2e-16 *** 
## x              0.270      0.119    2.27    0.025 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 1.2 on 98 degrees of freedom
## Multiple R-squared:  0.0501, Adjusted R-squared:  0.0404  
## F-statistic: 5.17 on 1 and 98 DF,  p-value: 0.0252

One thing you should notice is that the model now fits overall much worse; the R-squared is about half of what it was in the
previous model, which reflects the fact that more variability was added to the data, but it wasn’t accounted for in the model. Let’s
see if our diagnostic reports can give us any insight:

autoplot(lm_result2,which=1:2)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8860?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/27%3A_The_General_Linear_Model_in_R/27.03%3A_Examples_of_Problematic_Model_Fit


27.3.2 https://stats.libretexts.org/@go/page/8860

The residual versus fitted graph doesn’t give us much insight, but we see from the Q-Q plot that the residuals are diverging quite a
bit from the unit line.

Let’s look at another potential problem, in which the y variable is nonlinearly related to the X variable. We can create these data by
squaring the X variable when we generate the Y variable:

effsize=2 
regression_data <- regression_data %>% 
  mutate(y3 = (x**2)*slope + rnorm(npoints)*noise_sd + intercept) 
 
lm_result3 <- lm(y3 ~ x, data=regression_data) 
summary(lm_result3)

## 
## Call: 
## lm(formula = y3 ~ x, data = regression_data) 
## 
## Residuals: 
##    Min     1Q Median     3Q    Max  
## -1.610 -0.568 -0.065  0.359  3.266  
## 
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  10.5547     0.0844  125.07   <2e-16 *** 
## x            -0.0419     0.0854   -0.49     0.62     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.84 on 98 degrees of freedom 
## Multiple R-squared:  0.00245,    Adjusted R-squared:  -0.00773  
## F-statistic: 0.241 on 1 and 98 DF,  p-value: 0.625

Now we see that there is no significant linear relationship between  and Y/ But if we look at the residuals the problem with the
model becomes clear:

autoplot(lm_result3,which=1:2)
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In this case we can see the clearly nonlinear relationship between the predicted and residual values, as well as the clear lack of
normality in the residuals.

As we noted in the previous chapter, the “linear” in the general linear model doesn’t refer to the shape of the response, but instead
refers to the fact that model is linear in its parameters — that is, the predictors in the model only get multiplied the parameters (e.g.,
rather than being raised to a power of the parameter). Here is how we would build a model that could account for the nonlinear
relationship:

# create x^2 variable 
regression_data <- regression_data %>% 
  mutate(x_squared = x**2) 
 
lm_result4 <- lm(y3 ~ x + x_squared, data=regression_data) 
summary(lm_result4)

## 
## Call: 
## lm(formula = y3 ~ x + x_squared, data = regression_data) 
## 
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -1.4101 -0.3791 -0.0048  0.3908  1.4437  
## 
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  10.1087     0.0739   136.8   <2e-16 *** 
## x            -0.0118     0.0600    -0.2     0.84     
## x_squared     0.4557     0.0451    10.1   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.59 on 97 degrees of freedom 
## Multiple R-squared:  0.514,  Adjusted R-squared:  0.504  
## F-statistic: 51.2 on 2 and 97 DF,  p-value: 6.54e-16
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Now we see that the effect of  is significant, and if we look at the residual plot we should see that things look much better:

autoplot(lm_result4,which=1:2)

 Not perfect, but much
better than before!
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27.4: Extending Regression to Binary Outcomes.
Let’s say that we have a blood test (which is often referred to as a biomarker) and we want to know whether it predicts who is
going to have a heart attack within the next year. We will generate a synthetic dataset for a population that is at very high risk for a
heart attack in the next year.

0.5

0.6

# sample size 
npatients=1000 
 
# probability of heart attack 

p_heartattack =  
 
# true relation to biomarker 

true_effect <-  
 
# assume biomarker is normally distributed 
disease_df <- tibble(biomarker=rnorm(npatients)) 
 
# generate another variable that reflects risk for  
# heart attack, which is related to the biomarker 
disease_df <- disease_df %>% 
  mutate(risk = biomarker*true_effect + rnorm(npatients)) 
 
# create another variable that shows who has a  
# heart attack, based on the risk variable 
disease_df <- disease_df %>% 
  mutate( 
    heartattack = risk > quantile(disease_df$risk, 
                                       1-p_heartattack)) 
 
glimpse(disease_df)

## Observations: 1,000 
## Variables: 3 
## $ biomarker   <dbl> 1.15, 0.68, 1.21, -0.72, -1.00, -0.12… 
## $ risk        <dbl> 1.054, -0.529, 0.675, -0.474, -1.398,… 
## $ heartattack <lgl> TRUE, FALSE, TRUE, FALSE, FALSE, TRUE…

Now we would like to build a model that allows us to predict who will have a heart attack from these data. However, you may have
noticed that the heartattack variable is a binary variable; because linear regression assumes that the residuals from the model will be
normally distributed, and the binary nature of the data will violate this, we instead need to use a different kind of model, known as
a logistic regression model, which is built to deal with binary outcomes. We can fit this model using the glm()  function:

glm_result <- glm(heartattack ~ biomarker, data=disease_df,
                  family=binomial()) 
summary(glm_result)
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## 
## Call: 
## glm(formula = heartattack ~ biomarker, family = binomial(), data = disease_df) 
## 
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -2.1301  -1.0150   0.0305   1.0049   2.1319   
## 
## Coefficients: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -0.00412    0.06948   -0.06     0.95     
## biomarker    0.99637    0.08342   11.94   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
##     Null deviance: 1386.3  on 999  degrees of freedom
## Residual deviance: 1201.4  on 998  degrees of freedom
## AIC: 1205 
## 
## Number of Fisher Scoring iterations: 3

This looks very similar to the output from the lm()  function, and it shows us that there is a significant relationship between the
biomarker and heart attacks. The model provides us with a predicted probability that each individual will have a heart attack; if this
is greater than 0.5, then that means that the model predicts that the individual is more likely than not to have a heart attack. 
We can start by simply comparing those predictions to the actual outcomes.

0.5

# add predictions to data frame 
disease_df <- disease_df %>% 

  mutate(prediction = glm_result$fitted.values>, 
         heartattack = heartattack) 
 
# create table comparing predicted to actual outcomes 
CrossTable(disease_df$prediction, 
           disease_df$heartattack, 
           prop.t=FALSE, 
           prop.r=FALSE, 
           prop.chisq=FALSE)
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## 
##   
##    Cell Contents 
## |-------------------------| 
## |                       N | 
## |           N / Col Total | 
## |-------------------------| 
## 
##   
## Total Observations in Table:  1000  
## 
##   
##                       | disease_df$heartattack  
## disease_df$prediction |     FALSE |      TRUE | Row Total |  
## ----------------------|-----------|-----------|-----------| 
##                 FALSE |       332 |       157 |       489 |  
##                       |     0.664 |     0.314 |           |  
## ----------------------|-----------|-----------|-----------| 
##                  TRUE |       168 |       343 |       511 |  
##                       |     0.336 |     0.686 |           |  
## ----------------------|-----------|-----------|-----------| 
##          Column Total |       500 |       500 |      1000 |  
##                       |     0.500 |     0.500 |           |  
## ----------------------|-----------|-----------|-----------| 
## 
## 

This shows us that of the 500 people who had heart attacks, the model corrected predicted a heart attack for 343 of them. It also
predicted heart attacks for 168 people who didn’t have them, and it failed to predict a heart attack for 157 people who had them.
This highlights the distinction that we mentioned before between statistical and practical significance; even though the biomarker
shows a highly significant relationship to heart attacks, it’s ability to predict them is still relatively poor. As we will see below, it
gets even worse when we try to generalize this to a new group of people.
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27.5: Cross-validation (Section 26.6.1)
Cross-validation is a powerful technique that allows us to estimate how well our results will generalize to a new dataset. Here we
will build our own crossvalidation code to see how it works, continuing the logistic regression example from the previous section.

In cross-validation, we want to split the data into several subsets and then iteratively train the model while leaving out each subset
(which we usually call folds) and then test the model on that held-out fold Let’s write our own code to do this splitting; one
relatively easy way to this is to create a vector that contains the fold numbers, and then randomly shuffle it to create the fold
assigments for each data point.

0.5

nfolds <- 4 # number of folds 
 
# we use the kronecker() function to repeat the folds 
fold <-  kronecker(seq(nfolds),rep(1,npatients/nfolds)) 
# randomly shuffle using the sample() function 
fold <- sample(fold) 
 
# add variable to store CV predictions 
disease_df <- disease_df %>% 
  mutate(CVpred=NA) 
 
# now loop through folds and separate training and test data 
for (f in seq(nfolds)){ 
  # get training and test data 
  train_df <- disease_df[fold!=f,] 
  test_df <- disease_df[fold==f,] 
  # fit model to training data 
  glm_result_cv <- glm(heartattack ~ biomarker, data=train_df, 
                  family=binomial()) 
  # get probability of heart attack on test data 
  pred <- predict(glm_result_cv,newdata = test_df) 
  # convert to prediction and put into data frame 

  disease_df$CVpred[fold==f] = (pred>) 
 
}

Now let’s look at the performance of the model:

# create table comparing predicted to actual outcomes 
CrossTable(disease_df$CVpred, 
           disease_df$heartattack, 
           prop.t=FALSE, 
           prop.r=FALSE, 
           prop.chisq=FALSE)
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## 
##   
##    Cell Contents 
## |-------------------------| 
## |                       N | 
## |           N / Col Total | 
## |-------------------------| 
## 
##   
## Total Observations in Table:  1000  
## 
##   
##                   | disease_df$heartattack  
## disease_df$CVpred |     FALSE |      TRUE | Row Total |  
## ------------------|-----------|-----------|-----------| 
##             FALSE |       416 |       269 |       685 |  
##                   |     0.832 |     0.538 |           |  
## ------------------|-----------|-----------|-----------| 
##              TRUE |        84 |       231 |       315 |  
##                   |     0.168 |     0.462 |           |  
## ------------------|-----------|-----------|-----------| 
##      Column Total |       500 |       500 |      1000 |  
##                   |     0.500 |     0.500 |           |  
## ------------------|-----------|-----------|-----------| 
## 
## 

Now we see that the model only accurately predicts less than half of the heart attacks that occurred when it is predicting to a new
sample. This tells us that this is the level of prediction that we could expect if were to apply the model to a new sample of patients
from the same population.
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CHAPTER OVERVIEW

28: Comparing Means

Describe the rationale behind the sign test
Describe how the t-test can be used to compare a single mean to a hypothesized value
Compare the means for two paired or unpaired groups using a two-sample t-test

We have already encountered a number of cases where we wanted to ask questions about the mean of a sample. In this chapter, we
will delve deeper into the various ways that we can compare means.

28.1: Testing the Value of a Single Mean
28.2: Comparing Two Means
28.3: The t-test as a Linear Model
28.4: Bayes Factor for Mean Differences
28.5: Comparing Paired Observations
28.6: Comparing More Than Two Means
28.7: Appendix

This page titled 28: Comparing Means is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell A. Poldrack
via source content that was edited to the style and standards of the LibreTexts platform.

 Learning Objectives

https://libretexts.org/
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/28%3A_Comparing_Means/28.01%3A_Testing_the_Value_of_a_Single_Mean
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/28%3A_Comparing_Means/28.02%3A_Comparing_Two_Means
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/28%3A_Comparing_Means/28.03%3A_The_t-test_as_a_Linear_Model
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/28%3A_Comparing_Means/28.04%3A_Bayes_Factor_for_Mean_Differences
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/28%3A_Comparing_Means/28.05%3A_Comparing_Paired_Observations
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/28%3A_Comparing_Means/28.06%3A_Comparing_More_Than_Two_Means
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/28%3A_Comparing_Means/28.07%3A_Appendix
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/28%3A_Comparing_Means
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


28.1.1 https://stats.libretexts.org/@go/page/8863

28.1: Testing the Value of a Single Mean
The simplest question we might want to ask of a mean is whether it has a specific value. Let’s say that we want to test whether the
mean BMI value in adults from the NHANES dataset is above 25, which is the lower cutoff for being overweight according to the
US Centers for Disease Control. We take a sample of 200 adults in order to ask this question.

One simple way to test for this difference is using a test called the sign test, which asks whether the proportion of positive
differences between the actual value and the hypothesized value is different than what we would expect by chance. To do this, we
take the differences between each data point and the hypothesized mean value and compute their sign. In our sample, we see that
66.0 percent of individuals have a BMI greater than 25. We can then use a binomial test to ask whether this proportion of positive
differences is greater than 0.5, using the binom.test()  function in R:

## 
##  Exact binomial test 
## 
## data:  npos and nrow(NHANES_sample) 
## number of successes = 132, number of trials = 200, p-value = 4e-06 
## alternative hypothesis: true probability of success is greater than 0.5 
## 95 percent confidence interval: 
##  0.6 1.0 
## sample estimates: 
## probability of success  
##                   0.66

Here we see that the proportion of individuals with positive signs would be very surprising under the null hypothesis of .

We can also ask this question using Student’s t-test, which you have already encountered earlier in the book. We will refer to the
mean as  and the hypothesized population mean as . Then, the t test for a single mean is:

where SEM (as you may remember from the chapter on sampling) is defined as:

In essence, the t statistic asks how large the deviation of the sample mean from the hypothesized quantity is with respect to the
sampling variability of the mean.

We can compute this for the NHANES dataset using the t.test()  function in R:

## 
##  One Sample t-test 
## 
## data:  NHANES_adult$BMI 
## t = 38, df = 4785, p-value <2e-16 
## alternative hypothesis: true mean is not equal to 25 
## 95 percent confidence interval: 
##  29 29 
## sample estimates: 
## mean of x  
##        29

This shows us that the mean BMI in the dataset (28.79) is significantly larger than the cutoff for overweight.
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28.2: Comparing Two Means
A more common question that often arises in statistics is whether there is a difference between the means of two different groups.
Let’s say that we would like to know whether regular marijuana smokers watch more television. We can ask this question using the
NHANES dataset; let’s take a sample of 200 individuals from the dataset and test whether the number of hours of television
watching per day is related to regular marijuana use. The left panel of Figure 28.1 shows these data using a violin plot.

Figure 28.1: Left: Violin plot showing distributions of TV watching separated by regular marijuana use. Right: Violin plots
showing data for each group, with a dotted line connecting the predicted values for each group, computed on the basis of the results
of the linear model..

We can also use Student’s t test to test for differences between two groups of independent observations (as we saw in an earlier
chapter); we will turn later in the chapter to cases where the observations are not independent. As a reminder, the t-statistic for
comparison of two independent groups is computed as:

where  and  are the means of the two groups,  and  are the variances for each of the groups, and  and  are the
sizes of the two groups. Under the null hypothesis of no difference between means, this statistic is distributed according to a t
distribution with n-2 degrees of freedom (since we have computed two parameter estimates, namely the means of the two groups).
We can compute the t-test in R using the t.test()  function. In this case, we started with the specific hypothesis that smoking
marijuana is associated with greater TV watching, so we will use a one-tailed test. Since the t.test function orders the conditions
alphabetically, the “No” group comes first, and thus we need to test the alternative hypothesis of whether the first group is less than
the second (“Yes”) group; for this reason, we specify ‘less’ as our alternative.

## 
##  Two Sample t-test 
## 
## data:  TVHrsNum by RegularMarij 
## t = -3, df = 198, p-value = 0.004 
## alternative hypothesis: true difference in means is less than 0 
## 95 percent confidence interval: 
##   -Inf -0.25 
## sample estimates: 
##  mean in group No mean in group Yes  
##               2.1               2.8

In this case we see that there is a statistically significant difference between groups, in the expected direction - regular pot smokers
watch more TV.
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28.3: The t-test as a Linear Model
The t-test is often presented as a specialized tool for comparing means, but it can also be viewed as an application of the general
linear model. In this case, the model would look like this:

However, smoking is a binary variable, so we treat it as a dummy variable like we discussed in the previous chapter, setting it to a
value of 1 for smokers and zero for nonsmokers. In that case,  is simply the difference in means between the two groups, and 
is the mean for the group that was coded as zero. We can fit this model using the lm()  function, and see that it gives the same t
statistic as the t-test above:

## 
## Call: 
## lm(formula = TVHrsNum ~ RegularMarij, data = NHANES_sample) 
## 
## Residuals: 
##    Min     1Q Median     3Q    Max  
## -2.293 -1.133 -0.133  0.867  2.867  
## 
## Coefficients: 
##                 Estimate Std. Error t value Pr(>|t|)     
## (Intercept)        2.133      0.119   17.87   <2e-16 *** 
## RegularMarijYes    0.660      0.249    2.65   0.0086 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 1.5 on 198 degrees of freedom 
## Multiple R-squared:  0.0343, Adjusted R-squared:  0.0295  
## F-statistic: 7.04 on 1 and 198 DF,  p-value: 0.00861

We can also view the linear model results graphically (see the right panel of Figure 28.1). In this case, the predicted value for
nonsmokers is  (2.13) and the predicted value for smokers is  (2.79).

To compute the standard errors for this analysis, we can use exactly the same equations that we used for linear regression – since
this really is just another example of linear regression. In fact, if you compare the p-value from the t-test above with the p-value in
the linear regression analysis for the marijuana use variable, you will see that the one from the linear regression analysis is exactly
twice the one from the t-test, because the linear regression analysis is performing a two-tailed test.

28.3.1 Effect sizes for comparing two means

The most commonly used effect size for a comparison between two means is Cohen’s d, which (as you may remember from
Chapter 18) is an expression of the effect in terms of standard error units. For the t-test estimated using the general linear model
outlined above (i.e. with a single dummy-coded variable), this is expressed as:

We can obtain these values from the analysis output above, giving us a d = 0.45, which we would generally interpret as a medium
sized effect.

We can also compute  for this analysis, which tells us how much variance in TV watching is accounted for. This value (which is
reported in the summary of the lm() analysis) is 0.03, which tells us that while the effect may be statistically significant, it accounts
for relatively little of the variance in TV watching.
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28.4: Bayes Factor for Mean Differences
As we discussed in the chapter on Bayesian analysis, Bayes factors provide a way to better quantify evidence in favor or against the
null hypothesis of no difference. In this case, we want to specifically test against the null hypothesis that the difference is greater
than zero - because the difference is computed by the function between the first group (‘No’) and the second group (‘Yes’). Thus,
we specify a “null interval” going from zero to infinity, which means that the alternative is less than zero.

## Bayes factor analysis 
## -------------- 
## [1] Alt., r=0.707 0<d<Inf    : 0.051 ±0% 
## [2] Alt., r=0.707 !(0<d<Inf) : 8.7   ±0% 
## 
## Against denominator: 
##   Null, mu1-mu2 = 0  
## --- 
## Bayes factor type: BFindepSample, JZS

This shows us that the evidence against the null hypothesis is moderately strong.
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28.5: Comparing Paired Observations

Figure 28.2: Left: Violin plot of systolic blood pressure on first and second recording, from NHANES. Right: Same violin plot with
lines connecting the two data points for each individual.

In experimental research, we often use within-subjects designs, in which we compare the same person on multiple measurements.
The measurement that come from this kind of design are often referred to as repeated measures. For example, in the NHANES
dataset blood pressure was measured three times. Let’s say that we are interested in testing whether there is a difference in mean
blood pressure between the first and second measurement (Figure 28.2). We see that there does not seem to be much of a difference
in mean blood pressure between time points (about one point). First let’s test for a difference using an independent samples t-test,
which ignores the fact that pairs of data points come from the the same individuals.

## 
##  Two Sample t-test 
## 
## data:  BPsys by timepoint 
## t = 0.6, df = 398, p-value = 0.5 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  -2.1  4.1 
## sample estimates: 
## mean in group BPSys1 mean in group BPSys2  
##                  121                  120

This analysis shows no significant difference. However, this analysis is inappropriate since it assumes that the two samples are
independent, when in fact they are not, since the data come from the same individuals. We can plot the data with a line for each
individual to show this (see Figure ??).

In this analysis, what we really care about is whether the blood pressure for each person changed in a systematic way between the
two measurements, so another way to represent the data is to compute the difference between the two timepoints for each
individual, and then analyze these difference scores rather than analyzing the individual measurements. In Figure 28.3, we show a
histogram of these difference scores, with a blue line denoting the mean difference.
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Figure 28.3: Histogram of difference scores between first and second BP measurement. The vertical line represents the mean
difference in the sample.

28.5.1 Sign test
One simple way to test for differences is using the sign test. To do this, we take the differences and compute their sign, and then we
use a binomial test to ask whether the proportion of positive signs differs from 0.5.

## 
##  Exact binomial test 
## 
## data:  npos and nrow(NHANES_sample) 
## number of successes = 96, number of trials = 200, p-value = 0.6 
## alternative hypothesis: true probability of success is not equal to 0.5 
## 95 percent confidence interval: 
##  0.41 0.55 
## sample estimates: 
## probability of success  
##                   0.48

Here we see that the proportion of individuals with positive signs (0.48) is not large enough to be surprising under the null
hypothesis of . However, one problem with the sign test is that it is throwing away information about the magnitude of the
differences, and thus might be missing something.

28.5.2 Paired t-test
A more common strategy is to use a paired t-test, which is equivalent to a one-sample t-test for whether the mean difference
between the measurements is zero. We can compute this using the t.test()  function in R and setting paired=TRUE .

## 
##  Paired t-test 
## 
## data:  BPsys by timepoint 
## t = 3, df = 199, p-value = 0.007 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  0.29 1.75 
## sample estimates: 
## mean of the differences  
##                       1

p = 0.5
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With this analyses we see that there is in fact a significant difference between the two measurements. Let’s compute the Bayes
factor to see how much evidence is provided by the result:

## Bayes factor analysis 
## -------------- 
## [1] Alt., r=0.707 : 3 ±0% 
## 
## Against denominator: 
##   Null, mu = 0  
## --- 
## Bayes factor type: BFoneSample, JZS

This shows us that although the effect was significant in a paired t-test, it actually provides very little evidence in favor of the
alternative hypothesis.

The paired t-test can also be defined in terms of a linear model; see the Appendix for more details on this.
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28.6: Comparing More Than Two Means
Often we want to compare more than two means to determine whether any of them differ from one another. Let’s say that we are
analyzing data from a clinical trial for the treatment of high blood pressure. In the study, volunteers are randomized to one of three
conditions: Drug 1, Drug 2 or placebo. Let’s generate some data and plot them (see Figure 28.4)

Figure 28.4: Box plots showing blood pressure for three different groups in our clinical trial.

28.6.1 Analysis of variance
We would first like to test the null hypothesis that the means of all of the groups are equal – that is, neither of the treatments had
any effect. We can do this using a method called analysis of variance (ANOVA). This is one of the most commonly used methods
in psychological statistics, and we will only scratch the surface here. The basic idea behind ANOVA is one that we already
discussed in the chapter on the general linear model, and in fact ANOVA is just a name for a specific implementation of such a
model.

Remember from the last chapter that we can partition the total variance in the data ( ) into the variance that is explained by
the model ( ) and the variance that is not ( ). We can then compute a mean square for each of these by dividing them
by their degrees of freedom; for the error this is  (where  is the number of means that we have computed), and for the
model this is :

With ANOVA, we want to test whether the variance accounted for by the model is greater than what we would expect by chance,
under the null hypothesis of no differences between means. Whereas for the t distribution the expected value is zero under the null
hypothesis, that’s not the case here, since sums of squares are always positive numbers. Fortunately, there is another standard
distribution that describes how ratios of sums of squares are distributed under the null hypothesis: The F distribution (see figure
28.5). This distribution has two degrees of freedom, which correspond to the degrees of freedom for the numerator (which in this
case is the model), and the denominator (which in this case is the error).
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Figure 28.5: F distributions under the null hypothesis, for different values of degrees of freedom.

To create an ANOVA model, we extend the idea of dummy coding that you encountered in the last chapter. Remember that for the
t-test comparing two means, we created a single dummy variable that took the value of 1 for one of the conditions and zero for the
others. Here we extend that idea by creating two dummy variables, one that codes for the Drug 1 condition and the other that codes
for the Drug 2 condition. Just as in the t-test, we will have one condition (in this case, placebo) that doesn’t have a dummy variable,
and thus represents the baseline against which the others are compared; its mean defines the intercept of the model. Let’s create the
dummy coding for drugs 1 and 2.

Now we can fit a model using the same approach that we used in the previous chapter:

## 
## Call: 
## lm(formula = sysBP ~ d1 + d2, data = df) 
## 
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -29.084  -7.745  -0.098   7.687  23.431  
## 
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   141.60       1.66   85.50  < 2e-16 *** 
## d1            -10.24       2.34   -4.37  2.9e-05 *** 
## d2             -2.03       2.34   -0.87     0.39     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 9.9 on 105 degrees of freedom 
## Multiple R-squared:  0.169,  Adjusted R-squared:  0.154  
## F-statistic: 10.7 on 2 and 105 DF,  p-value: 5.83e-05

The output from this command provides us with two things. First, it shows us the result of a t-test for each of the dummy variables,
which basically tell us whether each of the conditions separately differs from placebo; it appears that Drug 1 does whereas Drug 2
does not. However, keep in mind that if we wanted to interpret these tests, we would need to correct the p-values to account for the
fact that we have done multiple hypothesis tests; we will see an example of how to do this in the next chapter.

Remember that the hypothesis that we started out wanting to test was whether there was any difference between any of the
conditions; we refer to this as an omnibus hypothesis test, and it is the test that is provided by the F statistic. The F statistic
basically tells us whether our model is better than a simple model that just includes an intercept. In this case we see that the F test is
highly significant, consistent with our impression that there did seem to be differences between the groups (which in fact we know
there were, because we created the data).
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28.7: Appendix

28.7.1 The paired t-test as a linear model

We can also define the paired t-test in terms of a general linear model. To do this, we include all of the measurements for each
subject as data points (within a tidy data frame). We then include in the model a variable that codes for the identity of each
individual (in this case, the ID variable that contains a subject ID for each person). This is known as a mixed model, since it
includes effects of independent variables as well as effects of individuals. The standard model fitting procedure lm()  can’t do
this, but we can do it using the lmer()  function from a popular R package called lme4, which is specialized for estimating
mixed models. The (1|ID)  in the formula tells lmer()  to estimate a separate intercept (which is what the 1  refers to) for
each value of the ID  variable (i.e. for each individual in the dataset), and then estimate a common slope relating timepoint to BP.

# compute mixed model for paired test 
 
lmrResult <- lmer(BPsys ~ timepoint + (1 | ID),  
                  data = NHANES_sample_tidy) 
summary(lmrResult)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [ 
## lmerModLmerTest] 
## Formula: BPsys ~ timepoint + (1 | ID) 
##    Data: NHANES_sample_tidy 
## 
## REML criterion at convergence: 2895 
## 
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -2.3843 -0.4808  0.0076  0.4221  2.1718  
## 
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  ID       (Intercept) 236.1    15.37    
##  Residual              13.9     3.73    
## Number of obs: 400, groups:  ID, 200 
## 
## Fixed effects: 
##                 Estimate Std. Error      df t value Pr(>|t|)     
## (Intercept)      121.370      1.118 210.361  108.55   <2e-16 *** 
## timepointBPSys2   -1.020      0.373 199.000   -2.74   0.0068 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Correlation of Fixed Effects: 
##             (Intr) 
## tmpntBPSys2 -0.167

You can see that this shows us a p-value that is very close to the result from the paired t-test computed using the t.test()
function.
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29.1: Testing the Value of a Single Mean (Section 28.1)
In this example, we will show multiple ways to test a hypothesis about the value of a single mean. As an example, let’s test whether
the mean systolic blood pressure (BP) in the NHANES dataset (averaged over the three measurements that were taken for each
person) is greater than 120 mm, which is the standard value for normal systolic BP.

First let’s perform a power analysis to see how large our sample would need to be in order to detect a small difference (Cohen’s d =
.2).

0.20.8pwr.result <- pwr.t.test(d=, power=,  
           type='one.sample',  
           alternative='greater') 
pwr.result

## 
##      One-sample t test power calculation  
## 
##               n = 156 
##               d = 0.2 
##       sig.level = 0.05 
##           power = 0.8 
##     alternative = greater

Based on this, we take a sample of 156 individuals from the dataset.

NHANES_BP_sample <- NHANES_adult %>% 
  drop_na(BPSysAve) %>% 
  dplyr::select(BPSysAve) %>% 
  sample_n(pwr.result$n) 
 
print('Mean BP:')

## [1] "Mean BP:"

meanBP <- NHANES_BP_sample %>% 
  summarize(meanBP=mean(BPSysAve)) %>% 
  pull() 
meanBP

## [1] 123

First let’s perform a sign test to see whether the observed mean of 123.11 is significantly different from zero. To do this, we count
the number of values that are greater than the hypothesized mean, and then use a binomial test to ask how surprising that number is
if the true proportion is 0.5 (as it would be if the distribution were centered at the hypothesized mean).
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NHANES_BP_sample <- NHANES_BP_sample %>% 
  mutate(BPover120=BPSysAve>120) 
 
nOver120 <- NHANES_BP_sample %>% 
  summarize(nOver120=sum(BPover120)) %>% 
  pull() 
 
binom.test(nOver120, nrow(NHANES_BP_sample), alternative='greater')

## 
##  Exact binomial test 
## 
## data:  nOver120 and nrow(NHANES_BP_sample) 
## number of successes = 84, number of trials = 155, p-value = 0.2 
## alternative hypothesis: true probability of success is greater than 0.5 
## 95 percent confidence interval: 
##  0.47 1.00 
## sample estimates: 
## probability of success  
##                   0.54

This shows no significant difference. Next let’s perform a one-sample t-test:

t.test(NHANES_BP_sample$BPSysAve, mu=120, alternative='greater')

## 
##  One Sample t-test 
## 
## data:  NHANES_BP_sample$BPSysAve 
## t = 2, df = 154, p-value = 0.01 
## alternative hypothesis: true mean is greater than 120
## 95 percent confidence interval: 
##  121 Inf 
## sample estimates: 
## mean of x  
##       123

Here we see that the difference is not statistically signficant. Finally, we can perform a randomization test to test the hypothesis.
Under the null hypothesis we would expect roughly half of the differences from the expected mean to be positive and half to be
negative (assuming the distribution is centered around the mean), so we can cause the null hypothesis to be true on average by
randomly flipping the signs of the differences.
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0.5

nruns = 5000 
 
# create a function to compute the  
# t on the shuffled values  
shuffleOneSample <- function(x,mu) { 
  # randomly flip signs 

  flip <- runif(length(x))> 
  diff <- x - mu 
  diff[flip]=-1*diff[flip] 
  # compute and return correlation  
  # with shuffled variable 
  return(tibble(meanDiff=mean(diff))) 
} 
 
index_df <- tibble(id=seq(nruns)) %>% 
  group_by(id) 
 
shuffle_results <- index_df %>%
  do(shuffleOneSample(NHANES_BP_sample$BPSysAve,120)) 
 
observed_diff <- mean(NHANES_BP_sample$BPSysAve-120) 
p_shuffle <- mean(shuffle_results$meanDiff>observed_diff) 
p_shuffle

## [1] 0.014

This gives us a very similar p value to the one observed with the standard t-test.

We might also want to quantify the degree of evidence in favor of the null hypothesis, which we can do using the Bayes Factor:

ttestBF(NHANES_BP_sample$BPSysAve, 
        mu=120,   
        nullInterval = c(-Inf, 0))

## Bayes factor analysis 
## -------------- 
## [1] Alt., r=0.707 -Inf<d<0    : 0.029 ±0.29% 
## [2] Alt., r=0.707 !(-Inf<d<0) : 1.8   ±0% 
## 
## Against denominator: 
##   Null, mu = 120  
## --- 
## Bayes factor type: BFoneSample, JZS

This tells us that our result doesn’t provide particularly strong evidence for either the null or alternative hypothesis; that is, it’s
inconclusive.
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29.2: Comparing Two Means (Section 28.2)
To compare two means from independent samples, we can use the two-sample t-test. Let’s say that we want to compare blood
pressure of smokers and non-smokers; we don’t have an expectation for the direction, so we will use a two-sided test. First let’s
perform a power analysis, again for a small effect:

0.20.8power_results_2sample <- pwr.t.test(d=, power=, 
                                    type='two.sample' 
                                    ) 
power_results_2sample

## 
##      Two-sample t test power calculation  
## 
##               n = 393 
##               d = 0.2 
##       sig.level = 0.05 
##           power = 0.8 
##     alternative = two.sided 
## 
## NOTE: n is number in *each* group

This tells us that we need 394 subjects in each group, so let’s sample 394 smokers and 394 nonsmokers from the NHANES dataset,
and then put them into a single data frame with a variable denoting their smoking status.

nonsmoker_df <- NHANES_adult %>% 
  dplyr::filter(SmokeNow=="Yes") %>% 
  drop_na(BPSysAve) %>% 
  dplyr::select(BPSysAve,SmokeNow) %>% 
  sample_n(power_results_2sample$n) 
 
smoker_df <- NHANES_adult %>% 
  dplyr::filter(SmokeNow=="No") %>% 
  drop_na(BPSysAve) %>% 
  dplyr::select(BPSysAve,SmokeNow) %>% 
  sample_n(power_results_2sample$n) 
 
sample_df <- smoker_df %>% 
  bind_rows(nonsmoker_df)

Let’s test our hypothesis using a standard two-sample t-test. We can use the formula notation to specify the analysis, just like we
would for lm() .

t.test(BPSysAve ~ SmokeNow, data=sample_df)
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## 
##  Welch Two Sample t-test 
## 
## data:  BPSysAve by SmokeNow 
## t = 4, df = 775, p-value = 3e-05 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  2.9 7.8 
## sample estimates: 
##  mean in group No mean in group Yes  
##               125               120

This shows us that there is a significant difference, though the direction is surprising: Smokers have lower blood pressure!

Let’s look at the Bayes factor to quantify the evidence:

sample_df <- sample_df %>% 
  mutate(SmokeNowInt=as.integer(SmokeNow)) 
ttestBF(formula=BPSysAve ~ SmokeNowInt,  
        data=sample_df)

## Bayes factor analysis 
## -------------- 
## [1] Alt., r=0.707 : 440 ±0% 
## 
## Against denominator: 
##   Null, mu1-mu2 = 0  
## --- 
## Bayes factor type: BFindepSample, JZS

This shows that there is very strong evidence against the null hypothesis of no difference.
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29.3: The t-test as a Linear Model (Section 28.3)
We can also use lm()  to implement these t-tests.

The one-sample t-test is basically a test for whether the intercept is different from zero, so we use a model with only an intercept
and apply this to the data after subtracting the null hypothesis mean (so that the expectation under the null hypothesis is an intercept
of zero):

NHANES_BP_sample <- NHANES_BP_sample %>% 
  mutate(BPSysAveDiff = BPSysAve-120) 
lm_result <- lm(BPSysAveDiff ~ 1, data=NHANES_BP_sample) 
summary(lm_result)

## 
## Call: 
## lm(formula = BPSysAveDiff ~ 1, data = NHANES_BP_sample) 
## 
## Residuals: 
##    Min     1Q Median     3Q    Max  
## -36.11 -13.11  -1.11   9.39  67.89  
## 
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     3.11       1.41     2.2    0.029 * 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 18 on 154 degrees of freedom

You will notice that this p-value is twice as big as the one obtained from the one-sample t-test above; this is because that was a one-
tailed test, while lm()  is performing a two-tailed test.

We can also run the two-sample t-test using lm() :

lm_ttest_result <- lm(BPSysAve ~ SmokeNow, data=sample_df) 
summary(lm_ttest_result)
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## 
## Call: 
## lm(formula = BPSysAve ~ SmokeNow, data = sample_df) 
## 
## Residuals: 
##    Min     1Q Median     3Q    Max  
## -45.16 -11.16  -2.16   8.84 101.18  
## 
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  125.160      0.897  139.54  < 2e-16 *** 
## SmokeNowYes   -5.341      1.269   -4.21  2.8e-05 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 18 on 784 degrees of freedom
## Multiple R-squared:  0.0221, Adjusted R-squared:  0.0209  
## F-statistic: 17.7 on 1 and 784 DF,  p-value: 2.84e-05

This gives the same p-value for the SmokeNowYes variable as it did for the two-sample t-test above.

This page titled 29.3: The t-test as a Linear Model (Section 28.3) is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Russell A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://stats.libretexts.org/@go/page/8872?pdf
https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Statistical_Thinking_for_the_21st_Century_(Poldrack)/29%3A_Comparing_Means_in_R/29.03%3A_The_t-test_as_a_Linear_Model_(Section_28.3)
https://creativecommons.org/licenses/by-nc/4.0
https://poldracklab.stanford.edu/
https://statsthinking21.github.io/statsthinking21-core-site


29.4.1 https://stats.libretexts.org/@go/page/8873

29.4: Comparing Paired Observations (Section 28.5)
Let’s look at how to perform a paired t-test in R. In this case, let’s generate some data for a set of individuals on two tests, where
each indivdual varies in their overall ability, but there is also a practice effect such that performance on the second test is generally
better than the first.

First, let’s see how big of a sample we will require to find a medium (d=0.5) sized effect. Let’s say that we want to be extra sure in
our results, so we will find the sample size that gives us 95% power to find an effect if it’s there:

0.50.95paired_power <- pwr.t.test(d=, power=, type='paired', alternative='greater') 
paired_power

## 
##      Paired t test power calculation  
## 
##               n = 45 
##               d = 0.5 
##       sig.level = 0.05 
##           power = 0.95 
##     alternative = greater 
## 
## NOTE: n is number of *pairs*

Now let’s generate a dataset with the required number of subjects:

subject_id <- seq(paired_power$n) 
# we code the tests as 0/1 so that we can simply 
# multiply this by the effect to generate the data 
test_id <- c(0,1) 
repeat_effect <- 5 
noise_sd <- 5 
 
subject_means <- rnorm(paired_power$n, mean=100, sd=15) 
paired_data <- crossing(subject_id,test_id) %>% 
  mutate(subMean=subject_means[subject_id], 
         score=subject_means +  
           test_id*repeat_effect +  
           rnorm(paired_power$n, mean=noise_sd))

Let’s perform a paired t-test on these data. To do that, we need to separate the first and second test data into separate variables,
which we can do by converting our long data frame into a wide data frame.

paired_data_wide <- paired_data %>% 
  spread(test_id, score) %>% 
  rename(test1=`0`, 
         test2=`1`) 
 
glimpse(paired_data_wide)
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## Observations: 44 
## Variables: 4 
## $ subject_id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,… 
## $ subMean    <dbl> 116, 95, 103, 91, 97, 91, 89, 97, 99, … 
## $ test1      <dbl> 121, 108, 102, 94, 105, 111, 110, 89, … 
## $ test2      <dbl> 104, 101, 102, 107, 108, 101, 157, 126…

Now we can pass those new variables into the t.test()  function:

paired_ttest_result <- t.test(paired_data_wide$test1, 
                              paired_data_wide$test2, 
                              type='paired') 
paired_ttest_result 

## 
##  Welch Two Sample t-test 
## 
## data:  paired_data_wide$test1 and paired_data_wide$test2 
## t = -1, df = 73, p-value = 0.2 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  -10.5   2.3 
## sample estimates: 
## mean of x mean of y  
##       108       112

This analysis is a bit trickier to perform using the linear model, because we need to estimate a separate intercept for each subject in
order to account for the overall differences between subjects. We can’t do this using lm()  but we can do it using a function
called lmer()  from the lme4  package. To do this, we need to add (1|subject_id)  to the formula, which tells 
lmer()  to add a separate intercept (“1”) for each value of subject_id .

paired_test_lmer <- lmer(score ~ test_id + (1|subject_id), 
                         data=paired_data) 
summary(paired_test_lmer)
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## Linear mixed model fit by REML. t-tests use Satterthwaite's method [ 
## lmerModLmerTest] 
## Formula: score ~ test_id + (1 | subject_id) 
##    Data: paired_data 
## 
## REML criterion at convergence: 719 
## 
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -2.5424 -0.6214 -0.0929  0.7349  2.9793  
## 
## Random effects: 
##  Groups     Name        Variance Std.Dev. 
##  subject_id (Intercept)   0       0.0     
##  Residual               228      15.1     
## Number of obs: 88, groups:  subject_id, 44 
## 
## Fixed effects: 
##             Estimate Std. Error     df t value Pr(>|t|)     
## (Intercept)   107.59       2.28  86.00   47.26   <2e-16 *** 
## test_id         4.12       3.22  86.00    1.28      0.2     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Correlation of Fixed Effects: 
##         (Intr) 
## test_id -0.707 
## convergence code: 0 
## boundary (singular) fit: see ?isSingular

This gives a similar answer to the standard paired t-test. The advantage is that it’s more flexible, allowing us to perform repeated
measures analyses, as we will see below.

This page titled 29.4: Comparing Paired Observations (Section 28.5) is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
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29.5: Analysis of Variance (Section 28.6.1)
Often we want to compare several different means, to determine whether any of them are different from the others. In this case,
let’s look at the data from NHANES to determine whether Marital Status is related to sleep quality. First we clean up the data:

NHANES_sleep_marriage <-  
  NHANES_adult %>% 
  dplyr::select(SleepHrsNight, MaritalStatus, Age) %>% 
  drop_na()

In this case we are going to treat the full NHANES dataset as our sample, with the goal of generalizing to the entire US population
(from which the NHANES dataset is mean to be a representative sample). First let’s look at the distribution of the different values
of the MaritalStatus  variable:

NHANES_sleep_marriage %>% 
  group_by(MaritalStatus) %>% 
  summarize(n=n()) %>% 
  kable()

MaritalStatus n

Divorced 437

LivePartner 370

Married 2434

NeverMarried 889

Separated 134

Widowed 329

There are reasonable numbers of most of these categories, but let’s remove the Separated  category since it has relatively few
members:

NHANES_sleep_marriage <- 
  NHANES_sleep_marriage %>% 
  dplyr::filter(MaritalStatus!="Separated")

Now let’s use lm()  to perform an analysis of variance. Since we also suspect that Age is related to the amount of sleep, we will
also include Age in the model.

lm_sleep_marriage <- lm(SleepHrsNight ~ MaritalStatus + Age, 
                        data=NHANES_sleep_marriage) 
summary(lm_sleep_marriage)
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## 
## Call: 
## lm(formula = SleepHrsNight ~ MaritalStatus + Age, data = NHANES_sleep_marriage) 
## 
## Residuals: 
##    Min     1Q Median     3Q    Max  
## -5.016 -0.880  0.107  1.082  5.282  
## 
## Coefficients: 
##                           Estimate Std. Error t value Pr(>|t|)     
## (Intercept)                6.51758    0.09802   66.49  < 2e-16 *** 
## MaritalStatusLivePartner   0.14373    0.09869    1.46  0.14536     
## MaritalStatusMarried       0.23494    0.07094    3.31  0.00093 *** 
## MaritalStatusNeverMarried  0.25172    0.08404    3.00  0.00276 **  
## MaritalStatusWidowed       0.26304    0.10327    2.55  0.01090 *   
## Age                        0.00318    0.00141    2.25  0.02464 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 1.4 on 4453 degrees of freedom 
## Multiple R-squared:  0.00458,    Adjusted R-squared:  0.00347  
## F-statistic:  4.1 on 5 and 4453 DF,  p-value: 0.00102

This tells us that there is a highly significant effect of marital status (based on the F test), though it accounts for a very small
amount of variance (less than 1%).

It’s also useful to look in more detail at which groups differ from which others, which we can do by examining the estimated
marginal means for each group using the emmeans()  function.

# compute the differences between each of the means 
leastsquare <- emmeans(lm_sleep_marriage,  
                      pairwise ~ MaritalStatus, 
                      adjust="tukey") 
  
# display the results by grouping using letters 
 
CLD(leastsquare$emmeans,  
    alpha=.05,   
    Letters=letters)

##  MaritalStatus emmean    SE   df lower.CL upper.CL .group 
##  Divorced         6.7 0.066 4453      6.5      6.8  a     
##  LivePartner      6.8 0.073 4453      6.7      7.0  ab    
##  Married          6.9 0.028 4453      6.8      7.0   b    
##  NeverMarried     6.9 0.050 4453      6.8      7.0   b    
##  Widowed          6.9 0.082 4453      6.8      7.1  ab    
## 
## Confidence level used: 0.95  
## P value adjustment: tukey method for comparing a family of 5 estimates  
## significance level used: alpha = 0.05
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The letters in the group  column tell us which individual conditions differ from which others; any pair of conditions that don’t
share a group identifier (in this case, the letters a  and b ) are significantly different from one another. In this case, we see that
Divorced people sleep less than Married or Widowed individuals; no other pairs differ significantly.

29.5.1 Repeated measures analysis of variance
The standard analysis of variance assumes that the observations are independent, which should be true for different people in the
NHANES dataset, but may not be true if the data are based on repeated measures of the same individual. For example, the
NHANES dataset involves three measurements of blood pressure for each individual. If we want to test whether there are any
differences between those, then we would need to use a repeated measures analysis of variance. We can do this using lmer()
as we did above. First, we need to create a “long” version of the dataset.

NHANES_bp_all <- NHANES_adult %>% 
  drop_na(BPSys1,BPSys2,BPSys3) %>% 
  dplyr::select(BPSys1,BPSys2,BPSys3, ID) %>% 
  gather(test, BPsys, -ID)

Then we fit a model that includes a separate intercept for each individual.

repeated_lmer <-lmer(BPsys ~ test + (1|ID), data=NHANES_bp_all) 
summary(repeated_lmer)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [ 
## lmerModLmerTest] 
## Formula: BPsys ~ test + (1 | ID) 
##    Data: NHANES_bp_all 
## 
## REML criterion at convergence: 89301 
## 
## Scaled residuals:  
##    Min     1Q Median     3Q    Max  
## -4.547 -0.513 -0.005  0.495  4.134  
## 
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  ID       (Intercept) 280.9    16.8     
##  Residual              16.8     4.1     
## Number of obs: 12810, groups:  ID, 4270 
## 
## Fixed effects: 
##              Estimate Std. Error        df t value Pr(>|t|)     
## (Intercept)  122.0037     0.2641 4605.7049   462.0   <2e-16 *** 
## testBPSys2    -0.9283     0.0887 8538.0000   -10.5   <2e-16 *** 
## testBPSys3    -1.6215     0.0887 8538.0000   -18.3   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Correlation of Fixed Effects: 
##            (Intr) tsBPS2 
## testBPSys2 -0.168        
## testBPSys3 -0.168  0.500
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This shows us that the second and third tests are significant different from the first test (which was automatically assigned as the
baseline by lmer() ). We might also want to know whether there is an overall effect of test. We can determine this by
comparing the fit of our model to the fit of a model that does not include the test variable, which we will fit here. We then compare
the models using the anova()  function, which performs an F test to compare the two models.

repeated_lmer_baseline <-lmer(BPsys ~ (1|ID), data=NHANES_bp_all) 
anova(repeated_lmer,repeated_lmer_baseline)

## Data: NHANES_bp_all 
## Models: 
## repeated_lmer_baseline: BPsys ~ (1 | ID) 
## repeated_lmer: BPsys ~ test + (1 | ID) 
##                        Df   AIC   BIC logLik deviance Chisq Chi Df Pr(>Chisq) 
## repeated_lmer_baseline  3 89630 89652 -44812    89624                         
## repeated_lmer           5 89304 89341 -44647    89294   330      2     <2e-16 
##                            
## repeated_lmer_baseline     
## repeated_lmer          *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This shows that blood pressure differs significantly across the three tests.
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CHAPTER OVERVIEW

30: Practical statistical modeling
In this chapter we will bring together everything that we have learned to apply our knowledge to a practical example.

30.1: The Process of Statistical Modeling

This page titled 30: Practical statistical modeling is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Russell
A. Poldrack via source content that was edited to the style and standards of the LibreTexts platform.
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30.1: The Process of Statistical Modeling
There is a set of steps that we generally go through when we want to use our statistical model to test a scientific hypothesis:

1. Specify your question of interest
2. Identify or collect the appropriate data
3. Prepare the data for analysis
4. Determine the appropriate model
5. Fit the model to the data
6. Criticize the model to make sure it fits properly
7. Test hypothesis and quantify effect size

Let’s look at a real example. In 2007, Christopher Gardner and colleagues from Stanford published a study in the Journal of the
American Medical Association titled “Comparison of the Atkins, Zone, Ornish, and LEARN Diets for Change in Weight and
Related Risk Factors Among Overweight Premenopausal Women The A TO Z Weight Loss Study: A Randomized Trial” (Gardner
et al. 2007).

30.1.1 1: Specify your question of interest

According to the authors, the goal of their study was:

To compare 4 weight-loss diets representing a spectrum of low to high carbohydrate
intake for effects on weight loss and related metabolic variables.

30.1.2 2: Identify or collect the appropriate data

To answer their question, the investigators randomly assigned each of 311 overweight/obese women to one of four different diets
(Atkins, Zone, Ornish, or LEARN), and measured their weight and other measures of health over time.

The authors recorded a large number of variables, but for the main question of interest let’s focus on a single variable: Body Mass
Index (BMI). Further, since our goal is to measure lasting changes in BMI, we will only look at the measurement taken at 12
months after onset of the diet.

30.1.3 3: Prepare the data for analysis

Figure 30.1: Violin plots for each condition, with the 50th percentile (i.e the median) shown as a black line for each group.
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The actual data from the A to Z study are not publicly available, so we will use the summary data reported in their paper to
generate some synthetic data that roughly match the data obtained in their study. Once we have the data, we can visualize them to
make sure that there are no outliers. Violin plots are useful to see the shape of the distributions, as shown in Figure 30.1. Those data
look fairly reasonable - in particular, there don’t seem to be any serious outliers. However, we can see that the distributions seem to
differ a bit in their variance, with Atkins and Ornish showing greater variability than the others.

This means that any analyses that assume the variances are equal across groups might be inappropriate. Fortunately, the ANOVA
model that we plan to use is fairly robust to this.

30.1.4 4. Determine the appropriate model

There are several questions that we need to ask in order to determine the appropriate statistical model for our analysis.

What kind of dependent variable?
BMI : continuous, roughly normally distributed

What are we comparing?
mean BMI across four diet groups
ANOVA is appropriate

Are observations independent?
Random assignment and use of difference scores should ensure that the assumption of independence is appropriate

30.1.5 5. Fit the model to the data

Let’s run an ANOVA on BMI change to compare it across the four diets. It turns out that we don’t actually need to generate the
dummy-coded variables ourselves; if we pass lm()  a categorical variable, it will automatically generate them for us.

## 
## Call: 
## lm(formula = BMIChange12Months ~ diet, data = dietDf)
## 
## Residuals: 
##    Min     1Q Median     3Q    Max  
##  -8.14  -1.37   0.07   1.50   6.33  
## 
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   -1.622      0.251   -6.47  3.8e-10 *** 
## dietLEARN      0.772      0.352    2.19   0.0292 *   
## dietOrnish     0.932      0.356    2.62   0.0092 **  
## dietZone       1.050      0.352    2.98   0.0031 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 2.2 on 307 degrees of freedom 
## Multiple R-squared:  0.0338, Adjusted R-squared:  0.0243  
## F-statistic: 3.58 on 3 and 307 DF,  p-value: 0.0143

Note that lm automatically generated dummy variables that correspond to three of the four diets, leaving the Atkins diet without a
dummy variable. This means that the intercept models the Atkins diet, and the other three variables model the difference between
each of those diets and the Atkins diet. By default, lm()  treats the first value (in alphabetical order) as the baseline.

30.1.6 6. Criticize the model to make sure it fits properly
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The first thing we want to do is to critique the model to make sure that it is appropriate. One thing we can do is to look at the
residuals from the model. In the left panel of Figure ??, we plot the residuals for each individual grouped by diet, which are
positioned by the mean for each diet. There are no obvious differences in the residuals across conditions, although there are a
couple of datapoints (#34 and #304) that seem to be slight outliers.

Another important assumption of the statistical tests that we apply to linear models is that the residuals from the model are
normally distributed. The right panel of Figure ?? shows a Q-Q (quantile-quantile) plot, which plots the residuals against their
expected values based on their quantiles in the normal distribution. If the residuals are normally distributed then the data points
should fall along the dashed line — in this case it looks pretty good, except for those two outliers that are once again apparent here.

30.1.7 7. Test hypothesis and quantify effect size

First let’s look back at the summary of results from the ANOVA, shown in Step 5 above. The significant F test shows us that there
is a significant difference between diets, but we should also note that the model doesn’t actually account for much variance in the
data; the R-squared value is only 0.03, showing that the model is only accounting for a few percent of the variance in weight loss.
Thus, we would not want to overinterpret this result.

The significant result also doesn’t tell us which diets differ from which others. We can find out more by comparing means across
conditions using the emmeans()  (“estimated marginal means”) function:

##  diet   emmean    SE  df lower.CL upper.CL .group 
##  Atkins  -1.62 0.251 307    -2.11    -1.13  a     
##  LEARN   -0.85 0.247 307    -1.34    -0.36  ab    
##  Ornish  -0.69 0.252 307    -1.19    -0.19   b    
##  Zone    -0.57 0.247 307    -1.06    -0.08   b    
## 
## Confidence level used: 0.95  
## P value adjustment: tukey method for comparing a family of 4 estimates  
## significance level used: alpha = 0.05

The letters in the rightmost column show us which of the groups differ from one another, using a method that adjusts for the
number of comparisons being performed. This shows that Atkins and LEARN diets don’t differ from one another (since they share
the letter a), and the LEARN, Ornish, and Zone diets don’t differ from one another (since they share the letter b), but the Atkins
diet differs from the Ornish and Zone diets (since they share no letters).

30.1.7.1 Bayes factor

Let’s say that we want to have a better way to describe the amount of evidence provided by the data. One way we can do this is to
compute a Bayes factor, which we can do by fitting the full model (including diet) and the reduced model (without diet) and then
comparing their fit. For the reduced model, we just include a 1, which tells the fitting program to only fit an intercept. Note that this
will take a few minutes to run.
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This shows us that there is very strong evidence (Bayes factor of nearly 100) for differences between the diets.

30.1.8 What about possible confounds?
If we look more closely at the Garder paper, we will see that they also report statistics on how many individuals in each group had
been diagnosed with metabolic syndrome, which is a syndrome characterized by high blood pressure, high blood glucose, excess
body fat around the waist, and abnormal cholesterol levels and is associated with increased risk for cardiovascular problems. Let’s
first add those data into the summary data frame:

Table 30.1: Presence of metabolic syndrome in each group in the AtoZ study.

Diet N P(metabolic syndrome)

Atkins 77 0.29

LEARN 79 0.25

Ornish 76 0.38

Zone 79 0.34

Looking at the data it seems that the rates are slightly different across groups, with more metabolic syndrome cases in the Ornish
and Zone diets – which were exactly the diets with poorer outcomes. Let’s say that we are interested in testing whether the rate of
metabolic syndrome was significantly different between the groups, since this might make us concerned that these differences
could have affected the results of the diet outcomes.

30.1.8.1 Determine the appropriate model
What kind of dependent variable?

proportions

What are we comparing?
proportion with metabolic syndrome across four diet groups
chi-squared test for goodness of fit is appropriate against null hypothesis of no difference

Let’s compute that statistic using the chisq.test()  function. Here we will use the simulate.p.value  option, which
will help deal with the relatively small

## 
##  Pearson's Chi-squared test 
## 
## data:  contTable 
## X-squared = 4, df = 3, p-value = 0.3

This test shows that there is not a significant difference between means. However, it doesn’t tell us how certain we are that there is
no difference; remember that under NHST, we are always working under the assumption that the null is true unless the data show
us enough evidence to cause us to reject this null hypothesis.

What if we want to quantify the evidence for or against the null? We can do this using the Bayes factor.

## Bayes factor analysis 
## -------------- 
## [1] Non-indep. (a=1) : 0.058 ±0% 
## 
## Against denominator: 
##   Null, independence, a = 1  
## --- 
## Bayes factor type: BFcontingencyTable, independent multinomial
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This shows us that the alternative hypothesis is 0.058 times more likely than the null hypothesis, which means that the null
hypothesis is 1/0.058 ~ 17 times more likely than the alternative hypothesis given these data. This is fairly strong, if not completely
overwhelming, evidence.
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31: Practical Statistical Modeling in R

31 Practical statistical modeling in R
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CHAPTER OVERVIEW

32: Doing Reproducible Research

Describe the concept of P-hacking and its effects on scientific practice
Describe the concept of positive predictive value and its relation to statstical power
Describe the concept of pre-registration and how it can help protect against questionable research practices

Most people think that science is a reliable way to answer questions about the world. When our physician prescribes a treatment we
trust that it has been shown to be effective through research, and we have similar faith that the airplanes that we fly in aren’t going
to fall from the sky. However, since 2005 there has been an increasing concern that science may not always work as well as we
have long thought that it does. In this chapter we will discuss these concerns about reproducibility of scientific research, and outline
the steps that one can take to make sure that our statistical results are as reproducible as possible.
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32.1: How We Think Science Should Work
Let’s say that we are interested in a research project on how children choose what to eat. This is a question that was asked in a
study by the well-known eating researcher Brian Wansink and his colleagues in 2012. The standard (and, as we will see, somewhat
naive) view goes something like this:

You start with a hypothesis
Branding with popular characters should cause children to choose “healthy” food more often

You collect some data

Offer children the choice between a cookie and an apple with either an Elmo-branded sticker or a control sticker, and record
what they choose

You do statistics to test the null hypothesis
“The preplanned comparison shows Elmo-branded apples were associated with an increase in a child’s selection of an apple
over a cookie, from 20.7% to 33.8% (

You make a conclusion based on the data
“This study suggests that the use of branding or appealing branded characters may benefit healthier foods more than they
benefit indulgent, more highly processed foods. Just as attractive names have been shown to increase the selection of
healthier foods in school lunchrooms, brands and cartoon characters could do the same with young children.”(Wansink, Just,
and Payne 2012)
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32.2: How Science (Sometimes) Actually Works
Brian Wansink is well known for his books on “Mindless Eating”, and his fee for corporate speaking engagements is in the tens of
thousands of dollars. In 2017, a set of researchers began to scrutinize some of his published research, starting with a set of papers
about how much pizza people ate at a buffet. The researchers asked Wansink to share the data from the studies but he refused, so
they dug into his published papers and found a large number of inconsistencies and statistical problems in the papers. The publicity
around this analysis led a number of others to dig into Wansink’s past, including obtaining emails between Wansink and his
collaborators. As reported by Stephanie Lee at Buzzfeed, these emails showed just how far Wansink’s actual research practices
were from the naive model:

…back in September 2008, when Payne was looking over the data soon after it had been
collected, he found no strong apples-and-Elmo link — at least not yet. … “I have attached
some initial results of the kid study to this message for your report,” Payne wrote to his
collaborators. “Do not despair. It looks like stickers on fruit may work (with a bit more
wizardry).” … Wansink also acknowledged the paper was weak as he was preparing to
submit it to journals. The p-value was 0.06, just shy of the gold standard cutoff of 0.05. It
was a “sticking point,” as he put it in a Jan. 7, 2012, email. … “It seems to me it should
be lower,” he wrote, attaching a draft. “Do you want to take a look at it and see what you
think. If you can get the data, and it needs some tweeking, it would be good to get that one
value below .05.” … Later in 2012, the study appeared in the prestigious JAMA
Pediatrics, the 0.06 p-value intact. But in September 2017, it was retracted and replaced
with a version that listed a p-value of 0.02. And a month later, it was retracted yet again
for an entirely different reason: Wansink admitted that the experiment had not been done
on 8- to 11-year-olds, as he’d originally claimed, but on preschoolers.

This kind of behavior finally caught up with Wansink; fifteen of his research studies have been retracted and in 2018 he resigned
from his faculty position at Cornell University.
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32.3: The Reproducibility Crisis in Science
While we think that the kind of frauduent behavior seen in Wansink’s case is relatively rare, it has become increasingly clear that
problems with reproducibility are much more widespread in science than previously thought. This became clear in 2015, when a
large group of researchers published a study in the journal Science titled “Estimating the reproducibility of psychological
science”(Open Science Collaboration 2015). In this study, the researchers took 100 published studies in psychology and attempted
to reproduce the results originally reported in the papers. Their findings were shocking: Whereas 97% of the original papers had
reported statistically significant findings, only 37% of these effects were statistically significant in the replication study. Although
these problems in psychology have received a great deal of attention, they seem to be present in nearly every area of science, from
cancer biology (Errington et al. 2014) and chemistry (Baker 2017) to economics (Christensen and Miguel 2016) and the social
sciences (Camerer et al. 2018).

The reproducibility crisis that emerged after 2010 was actually predicted by John Ioannidis, a physician from Stanford who wrote a
paper in 2005 titled “Why most published research findings are false”(Ioannidis 2005). In this article, Ioannidis argued that the use
of null hypothesis statistical testing in the context of modern science will necessarily lead to high levels of false results.

32.3.1 Positive predictive value and statistical significance
Ioannidis’ analysis focused on a concept known as the positive predictive value, which is defined as the proportion of positive
results (which generally translates to “statistically significant findings”) that are true:

Assuming that we know the probability that our hypothesis is true ( ), then the probability of a true positive result is
simply  multiplied by the statistical power of the study:

were  is the false negative rate. The probability of a false positive result is determined by  and the false positive rate 
:

PPV is then defined as:

Let’s first take an example where the probability of our hypothesis being true is high, say 0.8 - though note that in general we
cannot actually know this probability. Let’s say that we perform a study with the standard values of  and . We can
compute the PPV as:

This means that if we find a positive result in a study where the hypothesis is likely to be true and power is high, then its likelihood
of being true is high. Note, however, that a research field where the hypotheses have such a high likelihood of being true is
probably not a very interesting field of research; research is most important when it tells us something new!

Let’s do the same analysis for a field where  – that is, most of the hypotheses being tested are false. In this case,
PPV is:

This means that in a field where most of the hypotheses are likely to be wrong (that is, an interesting scientific field where
researchers are testing risky hypotheses), even when we find a positive result it is more likely to be false than true! In fact, this is
just another example of the base rate effect that we discussed in the context of hypothesis testing – when an outcome is unlikely,
then it’s almost certain that most positive outcomes will be false positives.

PPV =

p(true positive result)

p(true positive result)+p(false positive result)

p(hIsTrue)

p(hIsTrue)

p(true positive result)= p(hIsTrue)*(1−β)

β p(hIsTrue)

α

p(false positive result)=(1−p(hIsTrue))*α

PPV =

p(hIsTrue)*(1−β)

p(hIsTrue)*(1−β)+(1−p(hIsTrue))*α

α = 0.05 β = 0.2

PPV = = 0.98

0.8 *(1−0.2)

0.8 *(1−0.2)+(1−0.8)*0.05

p(hIsTrue)= 0.1

PPV = = 0.307

0.1 *(1−0.2)

0.1 *(1−0.2)+(1−0.1)*0.05
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We can simulate this to show how PPV relates to statistical power, as a function of the prior probability of the hypothesis being true
(see Figure 32.1)

Figure 32.1: A simulation of posterior predictive value as a function of statistical power (plotted on the x axis) and prior probability
of the hypothesis being true (plotted as separate lines).

Unfortunately, statistical power remains low in many areas of science (Smaldino and McElreath 2016), suggesting that many
published research findings are false.

An amusing example of this was seen in a paper by Jonathan Schoenfeld and John Ioannidis, titled “Is everything we eat associated
with cancer? A systematic cookbook review”[scho:ioan:2013]. They examined a large number of papers that had assessed the
relation between different foods and cancer risk, and found that 80% of ingredients had been associated with either increased or
decreased cancer risk. In most of these cases, the statistical evidence was weak, and when the results were combined across studies,
the result was null.

32.3.2 The winner’s curse
Another kind of error can also occur when statistical power is low: Our estimates of the effect size will be inflated. This
phenomenon often goes by the term “winner’s curse”, which comes from economics, where it refers to the fact that for certain
types of auctions (where the value is the same for everyone, like a jar of quarters, and the bids are private), the winner is guaranteed
to pay more than the good is worth. In science, the winner’s curse refers to the fact that the effect size estimated from a significant
result (i.e. a winner) is almost always an overestimate of the true effect size.

We can simulate this in order to see how the estimated effect size for significant results is related to the actual underlying effect
size. Let’s generate data for which there is a true effect size of 0.2, and estimate the effect size for those results where there is a
significant effect detected. The left panel of Figure 32.2 shows that when power is low, the estimated effect size for significant
results can be highly inflated compared to the actual effect size.
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Figure 32.2: Left: A simulation of the winner’s curse as a function of statistical power (x axis). The solid line shows the estimated
effect size, and the dotted line shows the actual effect size. Right: A histogram showing sample sizes for a number of samples from
a dataset, with significant results shown in blue and non-significant results in red.

We can look at a single simulation to see why this is the case. In the right panel of Figure 32.2, you can see a histogram of the
estimated effect sizes for 1000 samples, separated by whether the test was statistically significant. It should be clear from the figure
that if we estimate the effect size only based on significant results, then our estimate will be inflated; only when most results are
significant (i.e. power is high and the effect is relatively large) will our estimate come near the actual effect size.
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32.4: Questionable Research Practices
A popular book entitled “The Compleat Academic: A Career Guide”, published by the American Psychological Association
(Darley, Zanna, and Roediger 2004), aims to provide aspiring researchers with guidance on how to build a career. In a chapter by
well-known social psychologist Daryl Bem titled “Writing the Empirical Journal Article”, Bem provides some suggestions about
how to write a research paper. Unfortunately, the practices that he suggests are deeply problematic, and have come to be known as
questionable research practices (QRPs).

Which article should you write? There are two possible articles you can write: (1) the
article you planned to write when you designed your study or (2) the article that makes
the most sense now that you have seen the results. They are rarely the same, and the
correct answer is (2).

What Bem suggests here is known as HARKing (Hypothesizing After the Results are Known)(Kerr 1998). This might seem
innocuous, but is problematic because it allows the research to re-frame a post-hoc conclusion (which we should take with a grain
of salt) as an a priori prediction (in which we would have stronger faith). In essence, it allows the researcher to rewrite their theory
based on the facts, rather that using the theory to make predictions and then test them – akin to moving the goalpost so that it ends
up wherever the ball goes. It thus becomes very difficult to disconfirm incorrect ideas, since the goalpost can always be moved to
match the data. Bem continues:

Analyzing data Examine them from every angle. Analyze the sexes separately. Make up
new composite indices. If a datum suggests a new hypothesis, try to find further evidence
for it elsewhere in the data. If you see dim traces of interesting patterns, try to reorganize
the data to bring them into bolder relief. If there are participants you don’t like, or trials,
observers, or interviewers who gave you anomalous results,drop them (temporarily). Go
on a fishing expedition for something — anything — interesting. No, this is not immoral.

What Bem suggests here is known as p-hacking, which refers to trying many different analyses until one finds a significant result.
Bem is correct that if one were to report every analysis done on the data then this approach would not be “immoral”. However, it is
rare to see a paper discuss all of the analyses that were performed on a dataset; rather, papers often only present the analyses that
worked - which usually means that they found a statistically significant result. There are many different ways that one might p-
hack:

Analyze data after every subject, and stop collecting data once p<.05
Analyze many different variables, but only report those with p<.05
Collect many different experimental conditions, but only report those with p<.05
Exclude participants to get p<.05
Transform the data to get p<.05

A well-known paper by Simmons, Nelson, and Simonsohn (2011) showed that the use of these kinds of p-hacking strategies could
greatly increase the actual false positive rate, resulting in a high number of false positive results.

32.4.1 ESP or QRP?
In 2011, Daryl Bem published an article (Bem 2011) that claimed to have found scientific evidence for extrasensory perception.
The article states:

This article reports 9 experiments, involving more than 1,000 participants, that test for
retroactive influence by “time-reversing” well-established psychological effects so that
the individual’s responses are obtained before the putatively causal stimulus events occur.
…The mean effect size (d) in psi performance across all 9 experiments was 0.22, and all
but one of the experiments yielded statistically significant results.
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As researchers began to examine Bem’s article, it became clear that he had engaged in all of the QRPs that he had recommended in
the chapter discussed above. As Tal Yarkoni pointed out in a blog post that examined the article:

Sample sizes varied across studies
Different studies appear to have been lumped together or split apart
The studies allow many different hypotheses, and it’s not clear which were planned in advance
Bem used one-tailed tests even when it’s not clear that there was a directional prediction (so alpha is really 0.1)
Most of the p-values are very close to 0.05
It’s not clear how many other studies were run but not reported
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32.5: Doing Reproducible Research
In the years since the reproducibility crisis arose, there has been a robust movement to develop tools to help protect the
reproducibility of scientific research.

32.5.1 Pre-registration
One of the ideas that has gained the greatest traction is pre-registration, in which one submits a detailed description of a study
(including all data analyses) to a trusted repository (such as the Open Science Framework or AsPredicted.org). By specifying one’s
plans in detail prior to analyzing the data, pre-registration provides greater faith that the analyses do not suffer from p-hacking or
other questionable research practices.

The effects of pre-registration have been seen in clinical trials in medicine. In 2000, the National Heart, Lung, and Blood Institute
(NHLBI) began requiring all clinical trials to be pre-registered using the system at ClinicalTrials.gov. This provides a natural
experiment to observe the effects of study pre-registration. When Kaplan and Irvin (2015) examined clinical trial outcomes over
time, they found that the number of positive outcomes in clinical trials was reduced after 2000 compared to before. While there are
many possible causes, it seems likely that prior to study registration researchers were able to change their methods in order to find a
positive result, which became more difficult after registration was required.

32.5.2 Reproducible practices

The paper by Simmons, Nelson, and Simonsohn (2011) laid out a set of suggested practices for making research more reproducible,
all of which should become standard for researchers:

Authors must decide the rule for terminating data collection before data collection
begins and report this rule in the article.
Authors must collect at least 20 observations per cell or else provide a compelling
cost-of-data-collection justification.
Authors must list all variables collected in a study.
Authors must report all experimental conditions, including failed manipulations.
If observations are eliminated, authors must also report what the statistical results are
if those observations are included.
If an analysis includes a covariate, authors must report the statistical results of the
analysis without the covariate.

32.5.3 Replication

One of the hallmarks of science is the idea of replication – that is, other researchers should be able to perform the same study and
obtain the same result. Unfortunately, as we saw in the outcome of the Replication Project discussed earlier, many findings are not
replicable. The best way to ensure replicability of one’s research is to first replicate it on your own; for some studies this just won’t
be possible, but whenever it is possible one should make sure that one’s finding holds up in a new sample. That new sample should
be sufficiently powered to find the effect size of interest; in many cases, this will actually require a larger sample than the original.

It’s important to keep a couple of things in mind with regard to replication. First, the fact that a replication attempt fails does not
necessarily mean that the original finding was false; remember that with the standard level of 80% power, there is still a one in five
chance that the result will be nonsignificant, even if there is a true effect. For this reason, we generally want to see multiple
replications of any important finding before we decide whether or not to believe it. Unfortunately, many fields including
psychology have failed to follow this advice in the past, leading to “textbook” findings that turn out to be likely false. With regard
to Daryl Bem’s studies of ESP, a large replication attempt involving 7 studies failed to replicate his findings (Galak et al. 2012).

Second, remember that the p-value doesn’t provide us with a measure of the likelihood of a finding to replicate. As we discussed
previously, the p-value is a statement about the likelihood of one’s data under a specific null hypothesis; it doesn’t tell us anything
about the probability that the finding is actually true (as we learned in the chapter on Bayesian analysis). In order to know the
likelihood of replication we need to know the probability that the finding is true, which we generally don’t know.
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32.6: Doing Reproducible Data Analysis
So far we have focused on the ability to replicate other researchers’ findings in new experiments, but another important aspect of
reproducibility is to be able to reproduce someone’s analyses on their own data, which we refer to a computational reproducibility.
This requires that researchers share both their data and their analysis code, so that other researchers can both try to reproduce the
result as well as potentially test different analysis methods on the same data. There is an increasing move in psychology towards
open sharing of code and data; for example, the journal Psychological Science now provides “badges” to papers that share research
materials, data, and code, as well as for pre-registration.

The ability to reproduce analyses is one reason that we strongly advocate for the use of scripted analyses (such as those using R)
rather than using a “point-and-click” software package. It’s also a reason that we advocate the use of free and open-source software
(like R) as opposed to commercial software packages, which will require others to buy the software in order to reproduce any
analyses.

There are many ways to share both code and data. A common way to share code is via web sites that support version control for
software, such as Github. Small datasets can also be shared via these same sites; larger datasets can be shared through data sharing
portals such as Zenodo, or through specialized portals for specific types of data (such as OpenNeuro for neuroimaging data).
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32.7: Conclusion- Doing Better Science
It is every scientist’s responsibility to improve their research practices in order to increase the reproducibility of their research. It is
essential to remember that the goal of research is not to find a significant result; rather, it is to ask and answer questions about
nature in the most truthful way possible. Most of our hypotheses will be wrong, and we should be comfortable with that, so that
when we find one that’s right, we will be even more confident in its truth.
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32.8: Suggested Readings
Rigor Mortis: How Sloppy Science Creates Worthless Cures, Crushes Hope, and Wastes Billions, by Richard Harris
Improving your statistical inferences - an online course on how to do better statistical analysis, including many of the points
raised in this chapter.
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