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1.5: Numerical Descriptions of Data, II: Measures of Spread

Range

The simplest — and least useful — measure of the spread of some data is literally how much space on the z-axis the histogram takes
up. To define this, first a bit of convenient notation:

DEFINITION 1.5.1. Suppose 1, . . . , *, is some quantitative dataset. We shall write &,,;, for the smallest and x4, for the largest
values in the dataset.

With this, we can define our first measure of spread
DEFINITION 1.5.2. Suppose 1, . . . , *, is some quantitative dataset. The range of this data is the number 4 — Zmin -

EXAMPLE 1.5.3. Using again the statistics test scores data from Example 1.3.1, we can read off from the stem-and-leaf plot that
ZTmin = 25 and g, = 100, so the range is 75(= 100 — 25).

EXAMPLE 1.5.4. Working now with the made-up data in Example 1.4.2, which was put into increasing order in Example 1.4.9, we
can see that T, = —3.1415 and &g, = 17, so the range is 20.1415(=17 — (—3.1415))

The thing to notice here is that since the idea of outliers is that they are outside of the normal behavior of the dataset, if there are
any outliers they will definitely be what value gets called i, OF T4, (or both). So the range is supremely sensitive to outliers:
if there are any outliers, the range will be determined exactly by them, and not by what the typical data is doing.

Quartiles and the IQR

Let’s try to find a substitute for the range which is not so sensitive to outliers. We want to see how far apart not the maximum and
minimum of the whole dataset are, but instead how far apart are the typical larger values in the dataset and the typical smaller
values. How can we measure these typical larger and smaller? One way is to define these in terms of the typical — central — value of
the upper half of the data and the typical value of the lower half of the data. Here is the definition we shall use for that concept:

DEFINITION 1.5.5. Imagine that we have put the values of a dataset {z1, ..., z,} of n numbers in increasing (or at least non-
decreasing) order, so that ; <zy <--- <z, . If n is odd, call the lower half data all the values {z1,...,Z(n_1)/2} and the
upper half data all the values {z(,3)/5---,Zs}; if n is even, the lower half data will be the values {z1,...,z,/,} and the
upper half data all the values {®(5,/2)+1, - - -, Zn }.

Then the first quartile, written ()1, is the median of the lower half data, and the third quartile, written @3, is the median of the
upper half data.

Note that the first quartile is halfway through the lower half of the data. In other words, it is a value such that one quarter of the
data is smaller. Similarly, the third quartile is halfway through the upper half of the data, so it is a value such that three quarters of
the data is small. Hence the names “first” and “third quartiles.”

We can build a outlier-insensitive measure of spread out of the quartiles.
DEFINITION 1.5.6. Given a quantitative dataset, its inter-quartile range or IQ R is defined by IQR = Q3 — Q1 .

EXAMPLE 1.5.7. Yet again working with the statistics test scores data from Example 1.3.1, we can count off the lower and upper
half datasets from the stem-and-leaf plot, being respectively

Lower = {25, 25, 40, 58, 68, 69, 69, 70,70, 71, 73,73, 73, 74, 76} (1.5.1)
and

Upper = {77, 78, 80, 83, 83, 86, 87, 88,90, 90, 90, 92, 93,95, 100} . (1.5.2)
It follows that, for these data, @1 =70 and Q3 =88, so IQR =18(=88 —70).

EXAMPLE 1.5.8. Working again with the made-up data in Example 1.4.2, which was put into increasing order in Example 1.4.9,
we can see that the lower half data is {—3.1415,.75} the upper half is {2,17} Q1= —1.19575(= W),
Qs =9.5(= 20) and IQR = 10.69575(=9.5 — (—1.19575))
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Variance and Standard Deviation

We’ve seen a crude measure of spread, like the crude measure “mode” of central tendency. We’ve also seen a better measure of
spread, the IQ R, which is insensitive to outliers like the median (and built out of medians). It seems that, to fill out the parallel
triple of measures, there should be a measure of spread which is similar to the mean. Let’s try to build one.

Suppose the data is sample data. Then how far a particular data value x; is from the sample mean z is just ; — . So the mean
displacement from the mean, the mean of ; — z, should be a good measure of variability, shouldn’t it?

Unfortunately, it turns out that the mean of ; —x is always 0. This is because when z; >, ©; — = is positive, while when
z; <, r; —x is negative, and it turns out that the positives always exactly cancel the negatives (see if you can prove this
algebraically, it’s not hard).

We therefore need to make the numbers x; — x positive before taking their mean. One way to do this is to square them all. Then we
take something which is almost the mean of these squared numbers to get another measure of spread or variability:

DEFINITION 1.5.9. Given sample data z, . . . , ,, from a sample of size n, the sample variance is defined as
=2
z; —T)
S2 — L 1.5.3
’ n—1 ( )

Out of this, we then define the sample standard deviation

SI:\/ST%:\/%. (1.5.4)

Why do we take the square root in that sample standard deviation? The answer is that the measure we build should have the
property that if all the numbers are made twice as big, then the measure of spread should also be twice as big. Or, for example, if
we first started working with data measured in feet and then at some point decided to work in inches, the numbers would all be 12
times as big, and it would make sense if the measure of spread were also 12 times as big.

The variance does not have this property: if the data are all doubled, the variance increases by a factor of 4. Or if the data are all
multiplied by 12, the variance is multiplied by a factor of 144.

If we take the square root of the variance, though, we get back to the nice property of doubling data doubles the measure of spread,
etc. For this reason, while we have defined the variance on its own and some calculators, computers, and on-line tools will tell the
variance whenever you ask them to computer 1-variable statistics, we will in this class only consider the variance a stepping stone
on the way to the real measure of spread of data, the standard deviation.

One last thing we should define in this section. For technical reasons that we shall not go into now, the definition of standard
deviation is slightly different if we are working with population data and not sample data:

DEFINITION 1.5.10. Given data 1, . . . , £, from an entire population of size n, the population variance is defined as
2
x; —puX
U)ﬁ;M' (1.5.5)
n

Out of this, we then define the population standard deviation

oX =+/oX? = Z(@—pX)" (1.5.6)

n

[This letter o is the lower-case Greek letter sigma, whose upper case X you’ve seen elsewhere.]

Now for some examples. Notice that to calculate these values, we shall always use an electronic tool like a calculator or a
spreadsheet that has a built-in variance and standard deviation program — experience shows that it is nearly impossible to get all the
calculations entered correctly into a non-statistical calculator, so we shall not even try.

EXAMPLE 1.5.11. For the statistics test scores data from Example 1.3.1, entering them into a spreadsheet and using VAR.S and
STDEV.S for the sample variance and standard deviation and VAR.P and STDEV.P for population variance and population
standard deviation, we get
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S2 =331.98
S, =18.22
oX? =330.92
cX =17.91

EXAMPLE 1.5.12. Similarly, for the data in Example 1.4.2, we find in the same way that

S2 =60.60
S, =7.78
ocX? =48.48
oX =6.96

Strengths and Weaknesses of These Measures of Spread

We have already said that the range is extremely sensitive to outliers.
The IQ R, however, is built up out of medians, used in different ways, so the IQ R is insensitive to outliers.

The variance, both sample and population, is built using a process quite like a mean, and in fact also has the mean itself in the
defining formula. Since the standard deviation in both cases is simply the square root of the variance, it follows that the sample
and population variances and standard deviations are all sensitive to outliers.

This differing sensitivity and insensitivity to outliers is the main difference between the different measures of spread that we have
discussed in this section.

One other weakness, in a certain sense, of the IQ R is that there are several different definitions in use of the quartiles, based upon
whether the median value is included or not when dividing up the data. These are called, for example, QUARTILE.INC and
QUARTILE.EXC on some spreadsheets. It can then be confusing which one to use.

A Formal Definition of Outliers — the 1.5 IQ R Rule

So far, we have said that outliers are simply data that are atypical. We need a precise definition that can be carefully checked. What
we will use is a formula (well, actually two formule) that describe that idea of an outlier being far away from the rest of data.

Actually, since outliers should be far away either in being significantly bigger than the rest of the data or in being significantly
smaller, we should take a value on the upper side of the rest of the data, and another on the lower side, as the starting points for this
far away. We can’t pick the x,,, and x,,;, as those starting points, since they will be the outliers themselves, as we have noticed.
So we will use our earlier idea of a value which is typical for the larger part of the data, the quartile @J3, and @, for the
corresponding lower part of the data.

Now we need to decide how far is far enough away from those quartiles to count as an outlier. If the data already has a lot of
variation, then a new data value would have to be quite far in order for us to be sure that it is not out there just because of the
variation already in the data. So our measure of far enough should be in terms of a measure of spread of the data.

Looking at the last section, we see that only the IQ R is a measure of spread which is insensitive to outliers — and we definitely
don’t want to use a measure which is sensitive to the outliers, one which would have been affected by the very outliers we are
trying to define.

All this goes together in the following

DEFINITION 1.5.13. [The 1.5 IQ R Rule for Outliers] Starting with a quantitative dataset whose first and third quartiles are Q1
and @3 and whose inter-quartile range is @ R, a data value z is [officially, from now on] called an outlier if z < Q1 — 1.5 IQR
orx >Q3+1.5IQR.

Notice this means that x is not an outlier if it satisfies Q1 — 1.5 IQR <z < Q3+ 1.5IQR.

EXAMPLE 1.5.14. Let’s see if there were any outliers in the test score dataset from Example 1.3.1. We found the quartiles and IQR
in Example 1.5.7, so from the 1.5 IQ) RRule, a data value = will be an outlier if

£<Q—15IQR=T70—1.5-18 =43 (1.5.7)

or if
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Looking at the stemplot in Table 1.3.1, we conclude that the data values 25, 25, and 40 are the outliers in this dataset.

£>Q3+1.5IQR=88+1.5-18 =115. (1.5.8)

EXAMPLE 1.5.15. Applying the same method to the data in Example 1.4.2, using the quartiles and IQR from Example 1.5.8, the
condition for an outlier z is

<@ —15IQR=-1.19575—-1.5-10.69575 = —17.239375 (1.5.9)
or
x>Q3+1.5IQR=9.54+1.5-10.69575 = 25.543625 . (1.5.10)

Since none of the data values satisfy either of these conditions, there are no outliers in this dataset.

The Five-Number Summary and Boxplots

We have seen that numerical summaries of quantitative data can be very useful for quickly understanding (some things about) the
data. It is therefore convenient for a nice package of several of these

DEFINITION 1.5.16. Given a quantitative dataset {x1, ..., z, }, the five-number summary® of this data is the set of values

{xmina Q1, median, Q3, $maac} (1511)

EXAMPLE 1.5.17. Why not write down the five-number summary for the same test score data we saw in Example 1.3.1? We’ve
already done most of the work, such as calcu- lating the min and max in Example 1.5.3, the quartiles in Example 1.5.7, and the
median in Example 1.4.10, so the five-number summary is

Lmin — 25

Q1 =70
median = 76.5

Q3 =88
Tmaz = 100

EXAMPLE 1.5.18. And, for completeness, the five number summary for the made-up data in Example 1.4.2 is
Tomin = —3.1415

Q, =-1.9575
median =1
Q3 =9.5
Tonaz = 17

where we got the min and max from Example 1.5.4, the median from Example 1.4.9, and the quartiles from Example 1.5.8.

As we have seen already several times, it is nice to have a both a numeric and a graphical/visual version of everything. The
graphical equivalent of the five-number summary is

DEFINITION 1.5.19. Given some quantitative data, a boxplot [sometimes box-and-whisker plot] is a graphical depiction of the
five-number summary, as follows:

e an axis is drawn, labelled with the variable of the study

o tick marks and numbers are put on the axis, enough to allow the following visual features to be located numerically

o arectangle (the box) is drawn parallel to the axis, stretching from values @1 to Q3 on the axis

e an addition line is drawn, parallel to the sides of the box at locations @, and 4, at the axis coordinate of the median of the
data

o lines are drawn parallel to the axis from the middle of sides of the box at the locations x,,;, and x;,,, out to the axis
coordinates &, and x,,.., where these whiskers terminate in “T”’s.

EXAMPLE 1.5.20. A boxplot for the test score data we started using in Example 1.3.1 is easy to make after we found the
corresponding five-number summary in Example 1.5.17:

https://stats.libretexts.org/@go/page/8884


https://libretexts.org/
https://stats.libretexts.org/@go/page/8884?pdf

LibreTextsw

Boxplot for Test Score Data

100 - T -

80 -

60 - B

test score

Sometimes it is nice to make a version of the boxplot which is less sensitive to outliers. Since the endpoints of the whiskers are the
only parts of the boxplot which are sensitive in this way, they are all we have to change:

DEFINITION 1.5.21. Given some quantitative data, a boxplot showing outliers [sometimes box-and-whisker plot showing
outliers] is minor modification of the regular boxplot, as follows

o the whiskers only extend as far as the largest and smallest non-outlier data values
o dots are put along the lines of the whiskers at the axis coordinates of any outliers in the dataset

EXAMPLE 1.5.22. A boxplot showing outliers for the test score data we started using in Example 1.3.1 is only a small
modification of the one we just made in Example 1.5.20

Boxplot Showing Outliers for Test Score Data
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