
ANSWERING 
QUESTIONS WITH 
DATA - 
INTRODUCTORY 
STATISTICS FOR 
PSYCHOLOGY 
STUDENTS

Matthew J. C. Crump
Brooklyn College of CUNY



Book: Answering Questions with Data -
Introductory Statistics for Psychology

Students (Crump)



This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds
of other texts available within this powerful platform, it is freely available for reading, printing and "consuming." Most, but not all,
pages in the library have licenses that may allow individuals to make changes, save, and print this book. Carefully
consult the applicable license(s) before pursuing such effects.

Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their
students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new
technologies to support learning. 

The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform
for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our
students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-
access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource
environment. The project currently consists of 14 independently operating and interconnected libraries that are constantly being
optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are
organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields)
integrated.

The LibreTexts libraries are Powered by NICE CXOne and are supported by the Department of Education Open Textbook Pilot
Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions
Program, and Merlot. This material is based upon work supported by the National Science Foundation under Grant No. 1246120,
1525057, and 1413739.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation nor the US Department of Education.

Have questions or comments? For information about adoptions or adaptions contact info@LibreTexts.org. More information on our
activities can be found via Facebook (https://facebook.com/Libretexts), Twitter (https://twitter.com/libretexts), or our blog
(http://Blog.Libretexts.org).

This text was compiled on 03/18/2025

https://libretexts.org/
https://www.nice.com/products
mailto:info@LibreTexts.org
https://facebook.com/Libretexts
https://twitter.com/libretexts
http://blog.libretexts.org/


1 https://stats.libretexts.org/@go/page/16855

TABLE OF CONTENTS

Licensing

1: Why Statistics?
1.1: On the Psychology of Statistics
1.2: The cautionary tale of Simpson’s paradox
1.3: Statistics in Psychology
1.4: Statistics in Everyday Life
1.5: There’s More to Research Methods than Statistics
1.6: A brief Introduction to Research Design
1.7: Introduction to Psychological Measurement
1.8: Scales of measurement
1.9: Assessing the Reliability of a Measurement
1.10: The role of variables — predictors and outcomes
1.11: Experimental and non-experimental research
1.12: Assessing the validity of a study
1.13: Confounds, Artifacts and other Threats to Validity
1.14: Summary
1.15: Videos
1.16: References

2: Describing Data
2.1: This is what too many numbers looks like
2.2: Look at the data
2.3: Important Ideas - Distribution, Central Tendency, and Variance
2.4: Measures of Central Tendency (Sameness)
2.5: Measures of Variation (Differentness)
2.6: Using Descriptive Statistics with data
2.7: Rolling your own descriptive statistics
2.8: Remember to look at your data
2.9: Videos
2.10: References

3: Correlation
3.1: If something caused something else to change, what would that look like?
3.2: Pearson’s r
3.3: Turning the numbers into a measure of co-variance
3.4: Examples with Data
3.5: Regression — A mini intro
3.6: Interpreting Correlations
3.7: Summary
3.8: References

4: Probability, Sampling, and Estimation
4.0: Prelude to Probability, Sampling, and Estimation
4.1: How are Probability and Statistics Different?
4.2: What Does Probability Mean?

https://libretexts.org/
https://stats.libretexts.org/@go/page/16855?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/00:_Front_Matter/04:_Licensing
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.01:_On_the_Psychology_of_Statistics
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.02:_The_cautionary_tale_of_Simpsons_paradox
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.03:_Statistics_in_Psychology
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.04:_Statistics_in_Everyday_Life
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.05:_Theres_More_to_Research_Methods_than_Statistics
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.06:_A_brief_Introduction_to_Research_Design
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.07:_Introduction_to_Psychological_Measurement
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.08:_Scales_of_measurement
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.09:_Assessing_the_Reliability_of_a_Measurement
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.10:_The_role_of_variables__predictors_and_outcomes
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.11:_Experimental_and_non-experimental_research
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.12:_Assessing_the_validity_of_a_study
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.13:_Confounds_Artifacts_and_other_Threats_to_Validity
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.14:_Summary
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.15:_Videos
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01:_Why_Statistics/1.16:_References
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02:_Describing_Data
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02:_Describing_Data/2.01:_This_is_what_too_many_numbers_looks_like
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02:_Describing_Data/2.02:_Look_at_the_data
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02:_Describing_Data/2.03:_Important_Ideas_-_Distribution_Central_Tendency_and_Variance
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02:_Describing_Data/2.04:_Measures_of_Central_Tendency_(Sameness)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02:_Describing_Data/2.05:_Measures_of_Variation_(Differentness)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02:_Describing_Data/2.06:_Using_Descriptive_Statistics_with_data
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02:_Describing_Data/2.07:_Rolling_your_own_descriptive_statistics
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02:_Describing_Data/2.08:_Remember_to_look_at_your_data
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02:_Describing_Data/2.09:_Videos
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02:_Describing_Data/2.10:_References
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/03:_Correlation
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/03:_Correlation/3.01:_If_something_caused_something_else_to_change_what_would_that_look_like
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/03:_Correlation/3.02:_Pearsons_r
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/03:_Correlation/3.03:_Turning_the_numbers_into_a_measure_of_co-variance
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/03:_Correlation/3.04:_Examples_with_Data
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/03:_Correlation/3.05:_Regression__A_mini_intro
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/03:_Correlation/3.06:_Interpreting_Correlations
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/03:_Correlation/3.07:_Summary
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/03:_Correlation/New_Page
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.00:_Prelude_to_Probability_Sampling_and_Estimation
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.01:_How_are_Probability_and_Statistics_Different
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.02:_What_Does_Probability_Mean


2 https://stats.libretexts.org/@go/page/16855

4.3: Basic Probability Theory
4.4: The Binomial Distribution
4.5: The normal distribution
4.6: Other useful distributions
4.7: Summary of Probability
4.8: Samples, populations and sampling
4.9: The Law of Large Numbers
4.10: Sampling distributions and the central limit theorem
4.11: The Central Limit Theorem
4.12: z-scores
4.13: Estimating population parameters
4.14: Estimating a confidence interval
4.15: Summary
4.16: Videos
4.17: References

5: Foundations for inference
5.1: Brief review of Experiments
5.2: The data came from a distribution
5.3: Is there a difference?
5.4: Chance makes some differences more likely than others
5.5: The Crump Test
5.6: The randomization test (permutation test)
5.7: Videos

6: t-Tests
6.0: Prelude to t-Tests
6.1: Check your confidence in your mean
6.2: One-sample t-test — A new t-test
6.3: Paired-samples t-test
6.4: The paired samples t-test strikes back
6.5: Independent samples t-test — The return of the t-test?
6.6: Simulating data for t-tests
6.7: Videos
6.8: References

7: ANOVA
7.1: ANOVA is Analysis of Variance
7.2: One-factor ANOVA
7.3: What does F mean?
7.4: ANOVA on Real Data
7.5: ANOVA Summmary
7.6: References

8: Repeated Measures ANOVA
8.1: Repeated Measures Design
8.2: Partioning the Sums of Squares
8.3: Calculating the RM ANOVA
8.4: Things worth knowing
8.5: Real Data

https://libretexts.org/
https://stats.libretexts.org/@go/page/16855?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.03:_Basic_Probability_Theory
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.04:_The_Binomial_Distribution
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.05:_The_normal_distribution
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.06:_Other_useful_distributions
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.07:_Summary_of_Probability
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.08:_Samples_populations_and_sampling
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.09:_The_Law_of_Large_Numbers
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.10:_Sampling_distributions_and_the_central_limit_theorem
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.11:_The_Central_Limit_Theorem
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.12:_z-scores
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.13:_Estimating_population_parameters
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.14:_Estimating_a_confidence_interval
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.15:_Summary
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.16:_Videos
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04:_Probability_Sampling_and_Estimation/4.17:_References
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/05:_Foundations_for_inference
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/05:_Foundations_for_inference/5.01:_Brief_review_of_Experiments
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/05:_Foundations_for_inference/5.02:_The_data_came_from_a_distribution
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/05:_Foundations_for_inference/5.03:_Is_there_a_difference
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/05:_Foundations_for_inference/5.04:_Chance_makes_some_differences_more_likely_than_others
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/05:_Foundations_for_inference/5.05:_The_Crump_Test
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/05:_Foundations_for_inference/5.06:_The_randomization_test_(permutation_test)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/05:_Foundations_for_inference/5.07:_Videos
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06:_t-Tests
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06:_t-Tests/6.00:_Prelude_to_t-Tests
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06:_t-Tests/6.01:_Check_your_confidence_in_your_mean
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06:_t-Tests/6.02:_One-sample_t-test__A_new_t-test
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06:_t-Tests/6.03:_Paired-samples_t-test
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06:_t-Tests/6.04:_The_paired_samples_t-test_strikes_back
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06:_t-Tests/6.05:_Independent_samples_t-test__The_return_of_the_t-test
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06:_t-Tests/6.06:_Simulating_data_for_t-tests
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06:_t-Tests/6.07:_Videos
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06:_t-Tests/6.08:_References
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/07:_ANOVA
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/07:_ANOVA/7.01:_ANOVA_is_Analysis_of_Variance
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/07:_ANOVA/7.02:_One-factor_ANOVA
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/07:_ANOVA/7.03:_What_does_F_mean
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/07:_ANOVA/7.04:_ANOVA_on_Real_Data
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/07:_ANOVA/7.05:_ANOVA_Summmary
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/07:_ANOVA/7.06:_References
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/08:_Repeated_Measures_ANOVA
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/08:_Repeated_Measures_ANOVA/8.01:_Repeated_Measures_Design
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/08:_Repeated_Measures_ANOVA/8.02:_Partioning_the_Sums_of_Squares
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/08:_Repeated_Measures_ANOVA/8.03:_Calculating_the_RM_ANOVA
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/08:_Repeated_Measures_ANOVA/8.04:_Things_worth_knowing
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/08:_Repeated_Measures_ANOVA/8.05:_Real_Data


3 https://stats.libretexts.org/@go/page/16855

8.6: Summary
8.7: References

9: Factorial ANOVA
9.0: Prelude to Factorial ANOVA
9.1: Factorial Basics
9.2: Purpose of Factorial Designs
9.3: Graphing the means
9.4: Knowing what you want to find out
9.5: Simple analysis of 2x2 repeated measures design
9.6: 2x2 Between-subjects ANOVA
9.7: Fireside chat
9.8: Real Data
9.9: Factorial summary
9.10: References

10: More On Factorial Designs
10.1: Looking at main effects and interactions
10.2: Interpreting main effects and interactions
10.3: Mixed Designs
10.4: More complicated designs

11: Simulating Data
11.1: Reasons to simulate
11.2: Simulation Overview
11.3: Simulating t-tests
11.4: Simulating one-factor ANOVAs
11.5: Other resources

12: Thinking about Answering Questions with Data
12.1: Effect-size and power
12.2: Power
12.3: Planning your design
12.4: Some considerations

14: Ancillaries
14.1: Ancillaries

Index

Glossary

Glossary

Detailed Licensing

https://libretexts.org/
https://stats.libretexts.org/@go/page/16855?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/08:_Repeated_Measures_ANOVA/8.06:_Summary
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/08:_Repeated_Measures_ANOVA/8.07:_References
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09:_Factorial_ANOVA
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09:_Factorial_ANOVA/9.00:_Prelude_to_Factorial_ANOVA
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09:_Factorial_ANOVA/9.01:_Factorial_Basics
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09:_Factorial_ANOVA/9.02:_Purpose_of_Factorial_Designs
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09:_Factorial_ANOVA/9.03:_Graphing_the_means
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09:_Factorial_ANOVA/9.04:_Knowing_what_you_want_to_find_out
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09:_Factorial_ANOVA/9.05:_Simple_analysis_of_2x2_repeated_measures_design
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09:_Factorial_ANOVA/9.06:_2x2_Between-subjects_ANOVA
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09:_Factorial_ANOVA/9.07:_Fireside_chat
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09:_Factorial_ANOVA/9.08:_Real_Data
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09:_Factorial_ANOVA/9.09:_Factorial_summary
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09:_Factorial_ANOVA/New_Page
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/10:_More_On_Factorial_Designs
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/10:_More_On_Factorial_Designs/10.01:_Looking_at_main_effects_and_interactions
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/10:_More_On_Factorial_Designs/10.02:_Interpreting_main_effects_and_interactions
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/10:_More_On_Factorial_Designs/10.03:_Mixed_Designs
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/10:_More_On_Factorial_Designs/10.04:_More_complicated_designs
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/11:_Simulating_Data
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/11:_Simulating_Data/11.01:_Reasons_to_simulate
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/11:_Simulating_Data/11.02:_Simulation_overview
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/11:_Simulating_Data/11.03:_Simulating_t-tests
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/11:_Simulating_Data/11.04:_Simulating_one-factor_ANOVAs
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/11:_Simulating_Data/11.05:_Other_resources
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/12:_Thinking_about_Answering_Questions_with_Data
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/12:_Thinking_about_Answering_Questions_with_Data/12.01:_Effect-size_and_power
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/12:_Thinking_about_Answering_Questions_with_Data/12.02:_Power
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/12:_Thinking_about_Answering_Questions_with_Data/12.03:_Planning_your_design
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/12:_Thinking_about_Answering_Questions_with_Data/12.04:_Some_considerations
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/New_Page
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/New_Page/New_Page
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/zz:_Back_Matter/10:_Index
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/zz:_Back_Matter/11:_Glossary
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/zz:_Back_Matter/20:_Glossary
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/zz:_Back_Matter/30:_Detailed_Licensing


1 https://stats.libretexts.org/@go/page/32543

Licensing
A detailed breakdown of this resource's licensing can be found in Back Matter/Detailed Licensing.

https://libretexts.org/
https://stats.libretexts.org/@go/page/32543?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/00%3A_Front_Matter/04%3A_Licensing
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/zz%3A_Back_Matter/30%3A_Detailed_Licensing


1

CHAPTER OVERVIEW

1: Why Statistics?

To call in statisticians after the experiment is done may be no more than asking them to
perform a post-mortem examination: They may be able to say what the experiment died
of.
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1.1: On the Psychology of Statistics

Adapted nearly verbatim from Chapters 1 and 2 in Navarro, D. “Learning Statistics with R.” compcogscisydney.org/learning-
statistics-with-r/

To the surprise of many students, statistics is a fairly significant part of a psychological education. To the surprise of no-one,
statistics is very rarely the favorite part of one’s psychological education. After all, if you really loved the idea of doing statistics,
you’d probably be enrolled in a statistics class right now, not a psychology class. So, not surprisingly, there’s a pretty large
proportion of the student base that isn’t happy about the fact that psychology has so much statistics in it. In view of this, I thought
that the right place to start might be to answer some of the more common questions that people have about stats…

A big part of this issue at hand relates to the very idea of statistics. What is it? What’s it there for? And why are scientists so bloody
obsessed with it? These are all good questions, when you think about it. So let’s start with the last one. As a group, scientists seem
to be bizarrely fixated on running statistical tests on everything. In fact, we use statistics so often that we sometimes forget to
explain to people why we do. It’s a kind of article of faith among scientists – and especially social scientists – that your findings
can’t be trusted until you’ve done some stats. Undergraduate students might be forgiven for thinking that we’re all completely mad,
because no-one takes the time to answer one very simple question:

Why do you do statistics? Why don’t scientists just use common sense?
It’s a naive question in some ways, but most good questions are. There’s a lot of good answers to it, but for my money, the best
answer is a really simple one: we don’t trust ourselves enough. We worry that we’re human, and susceptible to all of the biases,
temptations and frailties that humans suffer from. Much of statistics is basically a safeguard. Using “common sense” to evaluate
evidence means trusting gut instincts, relying on verbal arguments and on using the raw power of human reason to come up with
the right answer. Most scientists don’t think this approach is likely to work.

In fact, come to think of it, this sounds a lot like a psychological question to me, and since I do work in a psychology department, it
seems like a good idea to dig a little deeper here. Is it really plausible to think that this “common sense” approach is very
trustworthy? Verbal arguments have to be constructed in language, and all languages have biases – some things are harder to say
than others, and not necessarily because they’re false (e.g., quantum electrodynamics is a good theory, but hard to explain in
words). The instincts of our “gut” aren’t designed to solve scientific problems, they’re designed to handle day to day inferences –
and given that biological evolution is slower than cultural change, we should say that they’re designed to solve the day to day
problems for a different world than the one we live in. Most fundamentally, reasoning sensibly requires people to engage in
“induction”, making wise guesses and going beyond the immediate evidence of the senses to make generalisations about the world.
If you think that you can do that without being influenced by various distractors, well, I have a bridge in Brooklyn I’d like to sell
you. Heck, as the next section shows, we can’t even solve “deductive” problems (ones where no guessing is required) without
being influenced by our pre-existing biases.

The curse of belief bias
People are mostly pretty smart. We’re certainly smarter than the other species that we share the planet with (though many people
might disagree). Our minds are quite amazing things, and we seem to be capable of the most incredible feats of thought and reason.
That doesn’t make us perfect though. And among the many things that psychologists have shown over the years is that we really do
find it hard to be neutral, to evaluate evidence impartially and without being swayed by pre-existing biases. A good example of this
is the belief bias effect in logical reasoning: if you ask people to decide whether a particular argument is logically valid (i.e.,
conclusion would be true if the premises were true), we tend to be influenced by the believability of the conclusion, even when we
shouldn’t. For instance, here’s a valid argument where the conclusion is believable:

No cigarettes are inexpensive (Premise 1)
Some addictive things are inexpensive (Premise 2)
Therefore, some addictive things are not cigarettes (Conclusion)

And here’s a valid argument where the conclusion is not believable:

No addictive things are inexpensive (Premise 1)

 Note
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Some cigarettes are inexpensive (Premise 2)
Therefore, some cigarettes are not addictive (Conclusion)

The logical structure of argument #2 is identical to the structure of argument #1, and they’re both valid. However, in the second
argument, there are good reasons to think that premise 1 is incorrect, and as a result it’s probably the case that the conclusion is also
incorrect. But that’s entirely irrelevant to the topic at hand: an argument is deductively valid if the conclusion is a logical
consequence of the premises. That is, a valid argument doesn’t have to involve true statements.

On the other hand, here’s an invalid argument that has a believable conclusion:

No addictive things are inexpensive (Premise 1)
Some cigarettes are inexpensive (Premise 2)
Therefore, some addictive things are not cigarettes (Conclusion)

And finally, an invalid argument with an unbelievable conclusion:

No cigarettes are inexpensive (Premise 1)
Some addictive things are inexpensive (Premise 2)
Therefore, some cigarettes are not addictive (Conclusion)

Now, suppose that people really are perfectly able to set aside their pre-existing biases about what is true and what isn’t, and purely
evaluate an argument on its logical merits. We’d expect 100% of people to say that the valid arguments are valid, and 0% of people
to say that the invalid arguments are valid. So if you ran an experiment looking at this, you’d expect to see data like this:

conlusion feels true conclusion feels false

argument is valid 100% say “valid” 100% say “valid”

argument is invalid 0% say “valid” 0% say “valid”

If the psychological data looked like this (or even a good approximation to this), we might feel safe in just trusting our gut instincts.
That is, it’d be perfectly okay just to let scientists evaluate data based on their common sense, and not bother with all this murky
statistics stuff. However, you guys have taken psych classes, and by now you probably know where this is going.

In a classic study, Evans, Barston, and Pollard (1983) ran an experiment looking at exactly this. What they found is that when pre-
existing biases (i.e., beliefs) were in agreement with the structure of the data, everything went the way you’d hope:

conlusion feels true conclusion feels false

argument is valid 92% say “valid” –

argument is invalid – 8% say “valid”

Not perfect, but that’s pretty good. But look what happens when our intuitive feelings about the truth of the conclusion run against
the logical structure of the argument:

conlusion feels true conclusion feels false

argument is valid 92% say “valid” 46% say “valid”

argument is invalid 92% say “valid” 8% say “valid”

Oh dear, that’s not as good. Apparently, when people are presented with a strong argument that contradicts our pre-existing beliefs,
we find it pretty hard to even perceive it to be a strong argument (people only did so 46% of the time). Even worse, when people
are presented with a weak argument that agrees with our pre-existing biases, almost no-one can see that the argument is weak
(people got that one wrong 92% of the time!)

If you think about it, it’s not as if these data are horribly damning. Overall, people did do better than chance at compensating for
their prior biases, since about 60% of people’s judgements were correct (you’d expect 50% by chance). Even so, if you were a
professional “evaluator of evidence”, and someone came along and offered you a magic tool that improves your chances of making
the right decision from 60% to (say) 95%, you’d probably jump at it, right? Of course you would. Thankfully, we actually do have
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a tool that can do this. But it’s not magic, it’s statistics. So that’s reason #1 why scientists love statistics. It’s just too easy for us to
“believe what we want to believe”; so if we want to “believe in the data” instead, we’re going to need a bit of help to keep our
personal biases under control. That’s what statistics does: it helps keep us honest.

This page titled 1.1: On the Psychology of Statistics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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1.2: The cautionary tale of Simpson’s paradox
The following is a true story (I think…). In 1973, the University of California, Berkeley had some worries about the admissions of
students into their postgraduate courses. Specifically, the thing that caused the problem was that the gender breakdown of their
admissions, which looked like this:

Number of applicants Percent admitted

Males 8442 44%

Females 4321 35%

and they were worried about being sued. Given that there were nearly 13,000 applicants, a difference of 9% in admission rates
between males and females is just way too big to be a coincidence. Pretty compelling data, right? And if I were to say to you that
these data actually reflect a weak bias in favour of women (sort of!), you’d probably think that I was either crazy or sexist.

Earlier versions of these notes incorrectly suggested that they actually were sued – apparently that’s not true. There’s a nice
commentary on this here: https://www.refsmmat.com/posts/2016-05-08-simpsons-paradox-berkeley.html. A big thank you to
Wilfried Van Hirtum for pointing this out to me!

When people started looking more carefully at the admissions data (Bickel, Hammel, and O’Connell 1975) they told a rather
different story. Specifically, when they looked at it on a department by department basis, it turned out that most of the departments
actually had a slightly higher success rate for female applicants than for male applicants. The table below shows the admission
figures for the six largest departments (with the names of the departments removed for privacy reasons):

Department Applicants Percent admitted Applicants Percent admitted

A 825 62% 108 82%

B 560 63% 25 68%

C 325 37% 593 34%

D 417 33% 375 35%

E 191 28% 393 24%

F 272 6% 341 7%

Remarkably, most departments had a higher rate of admissions for females than for males! Yet the overall rate of admission across
the university for females was lower than for males. How can this be? How can both of these statements be true at the same time?

Here’s what’s going on. Firstly, notice that the departments are not equal to one another in terms of their admission percentages:
some departments (e.g., engineering, chemistry) tended to admit a high percentage of the qualified applicants, whereas others (e.g.,
English) tended to reject most of the candidates, even if they were high quality. So, among the six departments shown above, notice
that department A is the most generous, followed by B, C, D, E and F in that order. Next, notice that males and females tended to
apply to different departments. If we rank the departments in terms of the total number of male applicants, we get 

 (the “easy” departments are in bold). On the whole, males tended to apply to the departments that
had high admission rates. Now compare this to how the female applicants distributed themselves. Ranking the departments in terms
of the total number of female applicants produces a quite different ordering . In other words, what
these data seem to be suggesting is that the female applicants tended to apply to “harder” departments. And in fact, if we look at all
Figure  we see that this trend is systematic, and quite striking. This effect is known as Simpson’s paradox. It’s not common,
but it does happen in real life, and most people are very surprised by it when they first encounter it, and many people refuse to even
believe that it’s real. It is very real. And while there are lots of very subtle statistical lessons buried in there, I want to use it to make
a much more important point …doing research is hard, and there are lots of subtle, counterintuitive traps lying in wait for the

 Note

A >B >D>C > F >E

C >E >D> F >A >B
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unwary. That’s reason #2 why scientists love statistics, and why we teach research methods. Because science is hard, and the truth
is sometimes cunningly hidden in the nooks and crannies of complicated data.

Figure : The Berkeley 1973 college admissions data. This figure plots the admission rate for the 85 departments that had at
least one female applicant, as a function of the percentage of applicants that were female. The plot is a redrawing of Figure 1 from
Bickel et al. (1975). Circles plot departments with more than 40 applicants; the area of the circle is proportional to the total number
of applicants. The crosses plot department with fewer than 40 applicants.

Before leaving this topic entirely, I want to point out something else really critical that is often overlooked in a research methods
class. Statistics only solves part of the problem. Remember that we started all this with the concern that Berkeley’s admissions
processes might be unfairly biased against female applicants. When we looked at the “aggregated” data, it did seem like the
university was discriminating against women, but when we “disaggregate” and looked at the individual behaviour of all the
departments, it turned out that the actual departments were, if anything, slightly biased in favour of women. The gender bias in total
admissions was caused by the fact that women tended to self-select for harder departments. From a legal perspective, that would
probably put the university in the clear. Postgraduate admissions are determined at the level of the individual department (and there
are good reasons to do that), and at the level of individual departments, the decisions are more or less unbiased (the weak bias in
favour of females at that level is small, and not consistent across departments). Since the university can’t dictate which departments
people choose to apply to, and the decision making takes place at the level of the department it can hardly be held accountable for
any biases that those choices produce.

That was the basis for my somewhat glib remarks earlier, but that’s not exactly the whole story, is it? After all, if we’re interested in
this from a more sociological and psychological perspective, we might want to ask why there are such strong gender differences in
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applications. Why do males tend to apply to engineering more often than females, and why is this reversed for the English
department? And why is it it the case that the departments that tend to have a female-application bias tend to have lower overall
admission rates than those departments that have a male-application bias? Might this not still reflect a gender bias, even though
every single department is itself unbiased? It might. Suppose, hypothetically, that males preferred to apply to “hard sciences” and
females prefer “humanities”. And suppose further that the reason for why the humanities departments have low admission rates is
because the government doesn’t want to fund the humanities (spots in Ph.D. programs, for instance, are often tied to government
funded research projects). Does that constitute a gender bias? Or just an unenlightened view of the value of the humanities? What if
someone at a high level in the government cut the humanities funds because they felt that the humanities are “useless chick stuff”.
That seems pretty blatantly gender biased. None of this falls within the purview of statistics, but it matters to the research project. If
you’re interested in the overall structural effects of subtle gender biases, then you probably want to look at both the aggregated and
disaggregated data. If you’re interested in the decision making process at Berkeley itself then you’re probably only interested in the
disaggregated data.

In short there are a lot of critical questions that you can’t answer with statistics, but the answers to those questions will have a huge
impact on how you analyse and interpret data. And this is the reason why you should always think of statistics as a tool to help you
learn about your data, no more and no less. It’s a powerful tool to that end, but there’s no substitute for careful thought.
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1.3: Statistics in Psychology
I hope that the discussion above helped explain why science in general is so focused on statistics. But I’m guessing that you have a
lot more questions about what role statistics plays in psychology, and specifically why psychology classes always devote so many
lectures to stats. So here’s my attempt to answer a few of them…

Why does psychology have so much statistics?

To be perfectly honest, there’s a few different reasons, some of which are better than others. The most important reason is that
psychology is a statistical science. What I mean by that is that the “things” that we study are people. Real, complicated, gloriously
messy, infuriatingly perverse people. The “things” of physics include objects like electrons, and while there are all sorts of
complexities that arise in physics, electrons don’t have minds of their own. They don’t have opinions, they don’t differ from each
other in weird and arbitrary ways, they don’t get bored in the middle of an experiment, and they don’t get angry at the experimenter
and then deliberately try to sabotage the data set. At a fundamental level psychology is harder than physics.

Basically, we teach statistics to you as psychologists because you need to be better at stats than physicists. There’s actually a saying
used sometimes in physics, to the effect that “if your experiment needs statistics, you should have done a better experiment”. They
have the luxury of being able to say that because their objects of study are pathetically simple in comparison to the vast mess that
confronts social scientists. It’s not just psychology, really: most social sciences are desperately reliant on statistics. Not because
we’re bad experimenters, but because we’ve picked a harder problem to solve. We teach you stats because you really, really need it.

Can’t someone else do the statistics?

To some extent, but not completely. It’s true that you don’t need to become a fully trained statistician just to do psychology, but you
do need to reach a certain level of statistical competence. In my view, there’s three reasons that every psychological researcher
ought to be able to do basic statistics:

1. There’s the fundamental reason: statistics is deeply intertwined with research design. If you want to be good at designing
psychological studies, you need to at least understand the basics of stats.

2. If you want to be good at the psychological side of the research, then you need to be able to understand the psychological
literature, right? But almost every paper in the psychological literature reports the results of statistical analyses. So if you really
want to understand the psychology, you need to be able to understand what other people did with their data. And that means
understanding a certain amount of statistics.

3. There’s a big practical problem with being dependent on other people to do all your statistics: statistical analysis is expensive. In
almost any real life situation where you want to do psychological research, the cruel facts will be that you don’t have enough
money to afford a statistician. So the economics of the situation mean that you have to be pretty self-sufficient.

Note that a lot of these reasons generalize beyond researchers. If you want to be a practicing psychologist and stay on top of the
field, it helps to be able to read the scientific literature, which relies pretty heavily on statistics.

I don’t care about jobs, research, or clinical work. Do I need statistics?

Okay, now you’re just messing with me. Still, I think it should matter to you too. Statistics should matter to you in the same way
that statistics should matter to everyone: we live in the 21st century, and data are everywhere. Frankly, given the world in which we
live these days, a basic knowledge of statistics is pretty damn close to a survival tool! Which is the topic of the next section…
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1.4: Statistics in Everyday Life

“We are drowning in information, but we are starved for knowledge”

– Various authors, original probably John Naisbitt
When I started writing up my lecture notes I took the 20 most recent news articles posted to the ABC news website. Of those 20
articles, it turned out that 8 of them involved a discussion of something that I would call a statistical topic; 6 of those made a
mistake. The most common error, if you’re curious, was failing to report baseline data (e.g., the article mentions that 5% of people
in situation X have some characteristic Y, but doesn’t say how common the characteristic is for everyone else!) The point I’m
trying to make here isn’t that journalists are bad at statistics (though they almost always are), it’s that a basic knowledge of
statistics is very helpful for trying to figure out when someone else is either making a mistake or even lying to you. Perhaps, one of
the biggest things that a knowledge of statistics does to you is cause you to get angry at the newspaper or the internet on a far more
frequent basis :).
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1.5: There’s More to Research Methods than Statistics
So far, most of what I’ve talked about is statistics, and so you’d be forgiven for thinking that statistics is all I care about in life. To
be fair, you wouldn’t be far wrong, but research methodology is a broader concept than statistics. So most research methods
courses will cover a lot of topics that relate much more to the pragmatics of research design, and in particular the issues that you
encounter when trying to do research with humans. However, about 99% of student fears relate to the statistics part of the course,
so I’ve focused on the stats in this discussion, and hopefully I’ve convinced you that statistics matters, and more importantly, that
it’s not to be feared. That being said, it’s pretty typical for introductory research methods classes to be very stats-heavy. This is not
(usually) because the lecturers are evil people. Quite the contrary, in fact. Introductory classes focus a lot on the statistics because
you almost always find yourself needing statistics before you need the other research methods training. Why? Because almost all of
your assignments in other classes will rely on statistical training, to a much greater extent than they rely on other methodological
tools. It’s not common for undergraduate assignments to require you to design your own study from the ground up (in which case
you would need to know a lot about research design), but it is common for assignments to ask you to analyse and interpret data that
were collected in a study that someone else designed (in which case you need statistics). In that sense, from the perspective of
allowing you to do well in all your other classes, the statistics is more urgent.

But note that “urgent” is different from “important” – they both matter. I really do want to stress that research design is just as
important as data analysis, and this book does spend a fair amount of time on it. However, while statistics has a kind of universality,
and provides a set of core tools that are useful for most types of psychological research, the research methods side isn’t quite so
universal. There are some general principles that everyone should think about, but a lot of research design is very idiosyncratic, and
is specific to the area of research that you want to engage in. To the extent that it’s the details that matter, those details don’t usually
show up in an introductory stats and research methods class.
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1.6: A brief Introduction to Research Design
In this chapter, we’re going to start thinking about the basic ideas that go into designing a study, collecting data, checking whether
your data collection works, and so on. It won’t give you enough information to allow you to design studies of your own, but it will
give you a lot of the basic tools that you need to assess the studies done by other people. However, since the focus of this book is
much more on data analysis than on data collection, I’m only giving a very brief overview. Note that this chapter is “special” in two
ways. Firstly, it’s much more psychology-specific than the later chapters. Secondly, it focuses much more heavily on the scientific
problem of research methodology, and much less on the statistical problem of data analysis. Nevertheless, the two problems are
related to one another, so it’s traditional for stats textbooks to discuss the problem in a little detail. This chapter relies heavily on
Campbell and Stanley (1963) for the discussion of study design, and Stevens (1946) for the discussion of scales of measurement.
Later versions will attempt to be more precise in the citations.
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1.7: Introduction to Psychological Measurement
The first thing to understand is data collection can be thought of as a kind of measurement. That is, what we’re trying to do here is
measure something about human behaviour or the human mind. What do I mean by “measurement”?

Some thoughts about psychological measurement
Measurement itself is a subtle concept, but basically it comes down to finding some way of assigning numbers, or labels, or some
other kind of well-defined descriptions to “stuff”. So, any of the following would count as a psychological measurement:

My age is 33 years.
I do not like anchovies.
My chromosomal gender is male.
My self-identified gender is male.

In the short list above, the bolded part is “the thing to be measured”, and the italicized part is “the measurement itself”. In fact, we
can expand on this a little bit, by thinking about the set of possible measurements that could have arisen in each case:

My age (in years) could have been 0, 1, 2, 3 …, etc. The upper bound on what my age could possibly be is a bit fuzzy, but in
practice you’d be safe in saying that the largest possible age is 150, since no human has ever lived that long.
When asked if I like anchovies, I might have said that I do, or I do not, or I have no opinion, or I sometimes do.
My chromosomal gender is almost certainly going to be male (XY) or female (XX), but there are a few other possibilities. I
could also have Klinfelter’s syndrome (XXY), which is more similar to male than to female. And I imagine there are other
possibilities too.
My self-identified gender is also very likely to be male or female, but it doesn’t have to agree with my chromosomal gender. I
may also choose to identify with neither, or to explicitly call myself transgender.

As you can see, for some things (like age) it seems fairly obvious what the set of possible measurements should be, whereas for
other things it gets a bit tricky. But I want to point out that even in the case of someone’s age, it’s much more subtle than this. For
instance, in the example above, I assumed that it was okay to measure age in years. But if you’re a developmental psychologist,
that’s way too crude, and so you often measure age in years and months (if a child is 2 years and 11 months, this is usually written
as “2;11”). If you’re interested in newborns, you might want to measure age in days since birth, maybe even hours since birth. In
other words, the way in which you specify the allowable measurement values is important.

Looking at this a bit more closely, you might also realise that the concept of “age” isn’t actually all that precise. In general, when
we say “age” we implicitly mean “the length of time since birth”. But that’s not always the right way to do it. Suppose you’re
interested in how newborn babies control their eye movements. If you’re interested in kids that young, you might also start to
worry that “birth” is not the only meaningful point in time to care about. If Baby Alice is born 3 weeks premature and Baby Bianca
is born 1 week late, would it really make sense to say that they are the “same age” if we encountered them “2 hours after birth”? In
one sense, yes: by social convention, we use birth as our reference point for talking about age in everyday life, since it defines the
amount of time the person has been operating as an independent entity in the world, but from a scientific perspective that’s not the
only thing we care about. When we think about the biology of human beings, it’s often useful to think of ourselves as organisms
that have been growing and maturing since conception, and from that perspective Alice and Bianca aren’t the same age at all. So
you might want to define the concept of “age” in two different ways: the length of time since conception, and the length of time
since birth. When dealing with adults, it won’t make much difference, but when dealing with newborns it might.

Moving beyond these issues, there’s the question of methodology. What specific “measurement method” are you going to use to
find out someone’s age? As before, there are lots of different possibilities:

You could just ask people “how old are you?” The method of self-report is fast, cheap and easy, but it only works with people
old enough to understand the question, and some people lie about their age.
You could ask an authority (e.g., a parent) “how old is your child?” This method is fast, and when dealing with kids it’s not all
that hard since the parent is almost always around. It doesn’t work as well if you want to know “age since conception”, since a
lot of parents can’t say for sure when conception took place. For that, you might need a different authority (e.g., an
obstetrician).
You could look up official records, like birth certificates. This is time consuming and annoying, but it has its uses (e.g., if the
person is now dead).
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Operationalization: defining your measurement
All of the ideas discussed in the previous section all relate to the concept of operationalization. To be a bit more precise about the
idea, operationalization is the process by which we take a meaningful but somewhat vague concept, and turn it into a precise
measurement. The process of operationalization can involve several different things:

Being precise about what you are trying to measure: For instance, does “age” mean “time since birth” or “time since
conception” in the context of your research?
Determining what method you will use to measure it: Will you use self-report to measure age, ask a parent, or look up an
official record? If you’re using self-report, how will you phrase the question?
Defining the set of the allowable values that the measurement can take: Note that these values don’t always have to be
numerical, though they often are. When measuring age, the values are numerical, but we still need to think carefully about what
numbers are allowed. Do we want age in years, years and months, days, hours? Etc. For other types of measurements (e.g.,
gender), the values aren’t numerical. But, just as before, we need to think about what values are allowed. If we’re asking people
to self-report their gender, what options to we allow them to choose between? Is it enough to allow only “male” or “female”?
Do you need an “other” option? Or should we not give people any specific options, and let them answer in their own words?
And if you open up the set of possible values to include all verbal response, how will you interpret their answers?

Operationalization is a tricky business, and there’s no “one, true way” to do it. The way in which you choose to operationalize the
informal concept of “age” or “gender” into a formal measurement depends on what you need to use the measurement for. Often
you’ll find that the community of scientists who work in your area have some fairly well-established ideas for how to go about it.
In other words, operationalization needs to be thought through on a case by case basis. Nevertheless, while there a lot of issues that
are specific to each individual research project, there are some aspects to it that are pretty general.

Before moving on, I want to take a moment to clear up our terminology, and in the process introduce one more term. Here are four
different things that are closely related to each other:

A theoretical construct. This is the thing that you’re trying to take a measurement of, like “age”, “gender” or an “opinion”. A
theoretical construct can’t be directly observed, and often they’re actually a bit vague.
A measure. The measure refers to the method or the tool that you use to make your observations. A question in a survey, a
behavioural observation or a brain scan could all count as a measure.
An operationalization. The term “operationalization” refers to the logical connection between the measure and the theoretical
construct, or to the process by which we try to derive a measure from a theoretical construct.
A variable. Finally, a new term. A variable is what we end up with when we apply our measure to something in the world. That
is, variables are the actual “data” that we end up with in our data sets.

In practice, even scientists tend to blur the distinction between these things, but it’s very helpful to try to understand the differences.
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1.8: Scales of measurement
As the previous section indicates, the outcome of a psychological measurement is called a variable. But not all variables are of the
same qualitative type, and it’s very useful to understand what types there are. A very useful concept for distinguishing between
different types of variables is what’s known as scales of measurement.

Nominal scale
A nominal scale variable (also referred to as a categorical variable) is one in which there is no particular relationship between the
different possibilities: for these kinds of variables it doesn’t make any sense to say that one of them is "bigger" or “better” than any
other one, and it absolutely doesn’t make any sense to average them. The classic example for this is “eye colour”. Eyes can be blue,
green and brown, among other possibilities, but none of them is any “better” than any other one. As a result, it would feel really
weird to talk about an “average eye colour”. Similarly, gender is nominal too: male isn’t better or worse than female, neither does it
make sense to try to talk about an “average gender”. In short, nominal scale variables are those for which the only thing you can
say about the different possibilities is that they are different. That’s it.

Let’s take a slightly closer look at this. Suppose I was doing research on how people commute to and from work. One variable I
would have to measure would be what kind of transportation people use to get to work. This “transport type” variable could have
quite a few possible values, including: “train”, “bus”, “car”, “bicycle”, etc. For now, let’s suppose that these four are the only
possibilities, and suppose that when I ask 100 people how they got to work today, and I get this:

Transportation Number of people

(1) Train 12

(2) Bus 30

(3) Car 48

(4) Bicycle 10

So, what’s the average transportation type? Obviously, the answer here is that there isn’t one. It’s a silly question to ask. You can
say that travel by car is the most popular method, and travel by train is the least popular method, but that’s about all. Similarly,
notice that the order in which I list the options isn’t very interesting. I could have chosen to display the data like this and nothing
really changes.

Transportation Number of people

(3) Car 48

(1) Train 12

(4) Bicycle 10

(2) Bus 30

Ordinal scale

Ordinal scale variables have a bit more structure than nominal scale variables, but not by a lot. An ordinal scale variable is one in
which there is a natural, meaningful way to order the different possibilities, but you can’t do anything else. The usual example
given of an ordinal variable is “finishing position in a race”. You can say that the person who finished first was faster than the
person who finished second, but you don’t know how much faster. As a consequence we know that 1st  2nd, and we know that
2nd  3rd, but the difference between 1st and 2nd might be much larger than the difference between 2nd and 3rd.

Here’s an more psychologically interesting example. Suppose I’m interested in people’s attitudes to climate change, and I ask them
to pick one of these four statements that most closely matches their beliefs:

1. Temperatures are rising, because of human activity
2. Temperatures are rising, but we don’t know why

>

>
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3. Temperatures are rising, but not because of humans
4. Temperatures are not rising

Notice that these four statements actually do have a natural ordering, in terms of “the extent to which they agree with the current
science”. Statement 1 is a close match, statement 2 is a reasonable match, statement 3 isn’t a very good match, and statement 4 is in
strong opposition to the science. So, in terms of the thing I’m interested in (the extent to which people endorse the science), I can
order the items as . Since this ordering exists, it would be very weird to list the options like this…

3. Temperatures are rising, but not because of humans
4. Temperatures are rising, because of human activity
5. Temperatures are not rising
6. Temperatures are rising, but we don’t know why

…because it seems to violate the natural “structure” to the question.

So, let’s suppose I asked 100 people these questions, and got the following answers:

Number

(1) Temperatures are rising, because of human activity 51

(2) Temperatures are rising, but we don’t know why 20

(3) Temperatures are rising, but not because of humans 10

(4) Temperatures are not rising 19

When analysing these data, it seems quite reasonable to try to group (1), (2) and (3) together, and say that 81 of 100 people were
willing to at least partially endorse the science. And it’s also quite reasonable to group (2), (3) and (4) together and say that 49 of
100 people registered at least some disagreement with the dominant scientific view. However, it would be entirely bizarre to try to
group (1), (2) and (4) together and say that 90 of 100 people said…what? There’s nothing sensible that allows you to group those
responses together at all.

That said, notice that while we can use the natural ordering of these items to construct sensible groupings, what we can’t do is
average them. For instance, in my simple example here, the “average” response to the question is 1.97. If you can tell me what that
means, I’d love to know. Because that sounds like gibberish to me!

Interval scale
In contrast to nominal and ordinal scale variables, interval scale and ratio scale variables are variables for which the numerical
value is genuinely meaningful. In the case of interval scale variables, the differences between the numbers are interpretable, but the
variable doesn’t have a “natural” zero value. A good example of an interval scale variable is measuring temperature in degrees
celsius. For instance, if it was  yesterday and  today, then the  difference between the two is genuinely meaningful.
Moreover, that  difference is exactly the same as the  difference between  and . In short, addition and subtraction are
meaningful for interval scale variables.

However, notice that the  does not mean “no temperature at all”: it actually means “the temperature at which water freezes”,
which is pretty arbitrary. As a consequence, it becomes pointless to try to multiply and divide temperatures. It is wrong to say that 

 is twice as hot as , just as it is weird and meaningless to try to claim that  is negative two times as hot as .

Again, lets look at a more psychological example. Suppose I’m interested in looking at how the attitudes of first-year university
students have changed over time. Obviously, I’m going to want to record the year in which each student started. This is an interval
scale variable. A student who started in 2003 did arrive 5 years before a student who started in 2008. However, it would be
completely insane for me to divide 2008 by 2003 and say that the second student started “1.0024 times later” than the first one.
That doesn’t make any sense at all.
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Ratio scale
The fourth and final type of variable to consider is a ratio scale variable, in which zero really means zero, and it’s okay to multiply
and divide. A good psychological example of a ratio scale variable is response time (RT). In a lot of tasks it’s very common to
record the amount of time somebody takes to solve a problem or answer a question, because it’s an indicator of how difficult the
task is. Suppose that Alan takes 2.3 seconds to respond to a question, whereas Ben takes 3.1 seconds. As with an interval scale
variable, addition and subtraction are both meaningful here. Ben really did take  seconds longer than Alan did.
However, notice that multiplication and division also make sense here too: Ben took  times as long as Alan did to
answer the question. And the reason why you can do this is that, for a ratio scale variable such as RT, “zero seconds” really does
mean “no time at all”.

Continuous versus discrete variables

There’s a second kind of distinction that you need to be aware of, regarding what types of variables you can run into. This is the
distinction between continuous variables and discrete variables. The difference between these is as follows:

A continuous variable is one in which, for any two values that you can think of, it’s always logically possible to have another
value in between.
A discrete variable is, in effect, a variable that isn’t continuous. For a discrete variable, it’s sometimes the case that there’s
nothing in the middle.

These definitions probably seem a bit abstract, but they’re pretty simple once you see some examples. For instance, response time
is continuous. If Alan takes 3.1 seconds and Ben takes 2.3 seconds to respond to a question, then it’s possible for Cameron’s
response time to lie in between, by taking 3.0 seconds. And of course it would also be possible for David to take 3.031 seconds to
respond, meaning that his RT would lie in between Cameron’s and Alan’s. And while in practice it might be impossible to measure
RT that precisely, it’s certainly possible in principle. Because we can always find a new value for RT in between any two other
ones, we say that RT is continuous.

Discrete variables occur when this rule is violated. For example, nominal scale variables are always discrete: there isn’t a type of
transportation that falls “in between” trains and bicycles, not in the strict mathematical way that 2.3 falls in between 2 and 3. So
transportation type is discrete. Similarly, ordinal scale variables are always discrete: although “2nd place” does fall between “1st
place” and “3rd place”, there’s nothing that can logically fall in between “1st place” and “2nd place”. Interval scale and ratio scale
variables can go either way. As we saw above, response time (a ratio scale variable) is continuous. Temperature in degrees celsius
(an interval scale variable) is also continuous. However, the year you went to school (an interval scale variable) is discrete. There’s
no year in between 2002 and 2003. The number of questions you get right on a true-or-false test (a ratio scale variable) is also
discrete: since a true-or-false question doesn’t allow you to be “partially correct”, there’s nothing in between 5/10 and 6/10. The
table summarizes the relationship between the scales of measurement and the discrete/continuity distinction. Cells with a tick mark
correspond to things that are possible. I’m trying to hammer this point home, because (a) some textbooks get this wrong, and (b)
people very often say things like “discrete variable” when they mean “nominal scale variable”. It’s very unfortunate.

The relationship between the scales of measurement and the discrete/continuity distinction. Cells with an x correspond to things that are possible.

continuous discrete

nominal  x

ordinal  x

interval x x

ratio x x

Some complexities
Okay, I know you’re going to be shocked to hear this, but …the real world is much messier than this little classification scheme
suggests. Very few variables in real life actually fall into these nice neat categories, so you need to be kind of careful not to treat the
scales of measurement as if they were hard and fast rules. It doesn’t work like that: they’re guidelines, intended to help you think
about the situations in which you should treat different variables differently. Nothing more.

3.1−2.3 = 0.8

3.1/2.3 = 1.35
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So let’s take a classic example, maybe the classic example, of a psychological measurement tool: the Likert scale. The humble
Likert scale is the bread and butter tool of all survey design. You yourself have filled out hundreds, maybe thousands of them, and
odds are you’ve even used one yourself. Suppose we have a survey question that looks like this:

Which of the following best describes your opinion of the statement that “all pirates are
freaking awesome”

…

and then the options presented to the participant are these:

(1) Strongly disagree 
(2) Disagree 
(3) Neither agree nor disagree 
(4) Agree 
(5) Strongly agree

This set of items is an example of a 5-point Likert scale: people are asked to choose among one of several (in this case 5) clearly
ordered possibilities, generally with a verbal descriptor given in each case. However, it’s not necessary that all items be explicitly
described. This is a perfectly good example of a 5-point Likert scale too:

(1) Strongly disagree 
(2) 
(3) 
(4) 
(5) Strongly agree

Likert scales are very handy, if somewhat limited, tools. The question is, what kind of variable are they? They’re obviously
discrete, since you can’t give a response of 2.5. They’re obviously not nominal scale, since the items are ordered; and they’re not
ratio scale either, since there’s no natural zero.

But are they ordinal scale or interval scale? One argument says that we can’t really prove that the difference between “strongly
agree” and “agree” is of the same size as the difference between “agree” and “neither agree nor disagree”. In fact, in everyday life
it’s pretty obvious that they’re not the same at all. So this suggests that we ought to treat Likert scales as ordinal variables. On the
other hand, in practice most participants do seem to take the whole “on a scale from 1 to 5” part fairly seriously, and they tend to
act as if the differences between the five response options were fairly similar to one another. As a consequence, a lot of researchers
treat Likert scale data as if it were interval scale. It’s not interval scale, but in practice it’s close enough that we usually think of it as
being quasi-interval scale.

This page titled 1.8: Scales of measurement is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.
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1.9: Assessing the Reliability of a Measurement
At this point we’ve thought a little bit about how to operationalize a theoretical construct and thereby create a psychological
measure; and we’ve seen that by applying psychological measures we end up with variables, which can come in many different
types. At this point, we should start discussing the obvious question: is the measurement any good? We’ll do this in terms of two
related ideas: reliability and validity. Put simply, the reliability of a measure tells you how precisely you are measuring something,
whereas the validity of a measure tells you how accurate the measure is.

Reliability is actually a very simple concept: it refers to the repeatability or consistency of your measurement. The measurement of
my weight by means of a “bathroom scale” is very reliable: if I step on and off the scales over and over again, it’ll keep giving me
the same answer. Measuring my intelligence by means of “asking my mom” is very unreliable: some days she tells me I’m a bit
thick, and other days she tells me I’m a complete moron. Notice that this concept of reliability is different to the question of
whether the measurements are correct (the correctness of a measurement relates to it’s validity). If I’m holding a sack of potatos
when I step on and off of the bathroom scales, the measurement will still be reliable: it will always give me the same answer.
However, this highly reliable answer doesn’t match up to my true weight at all, therefore it’s wrong. In technical terms, this is a
reliable but invalid measurement. Similarly, while my mom’s estimate of my intelligence is a bit unreliable, she might be right.
Maybe I’m just not too bright, and so while her estimate of my intelligence fluctuates pretty wildly from day to day, it’s basically
right. So that would be an unreliable but valid measure. Of course, to some extent, notice that if my mum’s estimates are too
unreliable, it’s going to be very hard to figure out which one of her many claims about my intelligence is actually the right one. To
some extent, then, a very unreliable measure tends to end up being invalid for practical purposes; so much so that many people
would say that reliability is necessary (but not sufficient) to ensure validity.

Okay, now that we’re clear on the distinction between reliability and validity, let’s have a think about the different ways in which
we might measure reliability:

Test-retest reliability. This relates to consistency over time: if we repeat the measurement at a later date, do we get a the same
answer?
Inter-rater reliability. This relates to consistency across people: if someone else repeats the measurement (e.g., someone else
rates my intelligence) will they produce the same answer?
Parallel forms reliability. This relates to consistency across theoretically-equivalent measurements: if I use a different set of
bathroom scales to measure my weight, does it give the same answer?
Internal consistency reliability. If a measurement is constructed from lots of different parts that perform similar functions
(e.g., a personality questionnaire result is added up across several questions) do the individual parts tend to give similar
answers.

Not all measurements need to possess all forms of reliability. For instance, educational assessment can be thought of as a form of
measurement. One of the subjects that I teach, Computational Cognitive Science, has an assessment structure that has a research
component and an exam component (plus other things). The exam component is intended to measure something different from the
research component, so the assessment as a whole has low internal consistency. However, within the exam there are several
questions that are intended to (approximately) measure the same things, and those tend to produce similar outcomes; so the exam
on its own has a fairly high internal consistency. Which is as it should be. You should only demand reliability in those situations
where you want to be measure the same thing!

This page titled 1.9: Assessing the Reliability of a Measurement is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
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1.10: The role of variables — predictors and outcomes
Okay, I’ve got one last piece of terminology that I need to explain to you before moving away from variables. Normally, when we
do some research we end up with lots of different variables. Then, when we analyse our data we usually try to explain some of the
variables in terms of some of the other variables. It’s important to keep the two roles “thing doing the explaining” and “thing being
explained” distinct. So let’s be clear about this now. Firstly, we might as well get used to the idea of using mathematical symbols to
describe variables, since it’s going to happen over and over again. Let’s denote the “to be explained” variable , and denote the
variables “doing the explaining” as , , etc.

Now, when we doing an analysis, we have different names for  and , since they play different roles in the analysis. The
classical names for these roles are independent variable (IV) and dependent variable (DV). The IV is the variable that you use to
do the explaining (i.e., ) and the DV is the variable being explained (i.e., ). The logic behind these names goes like this: if there
really is a relationship between  and  then we can say that  depends on , and if we have designed our study “properly” then 

 isn’t dependent on anything else. However, I personally find those names horrible: they’re hard to remember and they’re highly
misleading, because (a) the IV is never actually “independent of everything else” and (b) if there’s no relationship, then the DV
doesn’t actually depend on the IV. And in fact, because I’m not the only person who thinks that IV and DV are just awful names,
there are a number of alternatives that I find more appealing.

For example, in an experiment the IV refers to the manipulation, and the DV refers to the measurement. So, we could use
manipulated variable (independent variable) and measured variable (dependent variable).

The terminology used to distinguish between different roles that a variable can play when analysing a data set.

role of the variable classical name modern name

“to be explained” dependent variable (DV) Measurement

“to do the explaining” independent variable (IV) Manipulation

We could also use predictors and outcomes. The idea here is that what you’re trying to do is use  (the predictors) to make
guesses about  (the outcomes). This is summarized in the table:

The terminology used to distinguish between different roles that a variable can play when analysing a data set.

role of the variable classical name modern name

“to be explained” dependent variable (DV) outcome

“to do the explaining” independent variable (IV) predictor

This page titled 1.10: The role of variables — predictors and outcomes is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

Y

X

1

X

2

X Y

X Y

X Y Y X

X

X

Y

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/16761?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01%3A_Why_Statistics/1.10%3A_The_role_of_variables__predictors_and_outcomes
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/01%3A_Why_Statistics/1.10%3A_The_role_of_variables__predictors_and_outcomes
https://creativecommons.org/licenses/by-sa/4.0
https://crumplab.github.io/
https://www.crumplab.com/statistics/


1.11.1 https://stats.libretexts.org/@go/page/16762

1.11: Experimental and non-experimental research
One of the big distinctions that you should be aware of is the distinction between “experimental research” and “non-experimental
research”. When we make this distinction, what we’re really talking about is the degree of control that the researcher exercises over
the people and events in the study.

Experimental research
The key features of experimental research is that the researcher controls all aspects of the study, especially what participants
experience during the study. In particular, the researcher manipulates or varies something (IVs), and then allows the outcome
variable (DV) to vary naturally. The idea here is to deliberately vary the something in the world (IVs) to see if it has any causal
effects on the outcomes. Moreover, in order to ensure that there’s no chance that something other than the manipulated variable is
causing the outcomes, everything else is kept constant or is in some other way “balanced” to ensure that they have no effect on the
results. In practice, it’s almost impossible to think of everything else that might have an influence on the outcome of an experiment,
much less keep it constant. The standard solution to this is randomization: that is, we randomly assign people to different groups,
and then give each group a different treatment (i.e., assign them different values of the predictor variables). We’ll talk more about
randomization later in this course, but for now, it’s enough to say that what randomization does is minimize (but not eliminate) the
chances that there are any systematic difference between groups.

Let’s consider a very simple, completely unrealistic and grossly unethical example. Suppose you wanted to find out if smoking
causes lung cancer. One way to do this would be to find people who smoke and people who don’t smoke, and look to see if
smokers have a higher rate of lung cancer. This is not a proper experiment, since the researcher doesn’t have a lot of control over
who is and isn’t a smoker. And this really matters: for instance, it might be that people who choose to smoke cigarettes also tend to
have poor diets, or maybe they tend to work in asbestos mines, or whatever. The point here is that the groups (smokers and non-
smokers) actually differ on lots of things, not just smoking. So it might be that the higher incidence of lung cancer among smokers
is caused by something else, not by smoking per se. In technical terms, these other things (e.g. diet) are called “confounds”, and
we’ll talk about those in just a moment.

In the meantime, let’s now consider what a proper experiment might look like. Recall that our concern was that smokers and non-
smokers might differ in lots of ways. The solution, as long as you have no ethics, is to control who smokes and who doesn’t.
Specifically, if we randomly divide participants into two groups, and force half of them to become smokers, then it’s very unlikely
that the groups will differ in any respect other than the fact that half of them smoke. That way, if our smoking group gets cancer at
a higher rate than the non-smoking group, then we can feel pretty confident that (a) smoking does cause cancer and (b) we’re
murderers.

Non-experimental research
Non-experimental research is a broad term that covers “any study in which the researcher doesn’t have quite as much control as
they do in an experiment”. Obviously, control is something that scientists like to have, but as the previous example illustrates, there
are lots of situations in which you can’t or shouldn’t try to obtain that control. Since it’s grossly unethical (and almost certainly
criminal) to force people to smoke in order to find out if they get cancer, this is a good example of a situation in which you really
shouldn’t try to obtain experimental control. But there are other reasons too. Even leaving aside the ethical issues, our “smoking
experiment” does have a few other issues. For instance, when I suggested that we “force” half of the people to become smokers, I
must have been talking about starting with a sample of non-smokers, and then forcing them to become smokers. While this sounds
like the kind of solid, evil experimental design that a mad scientist would love, it might not be a very sound way of investigating
the effect in the real world. For instance, suppose that smoking only causes lung cancer when people have poor diets, and suppose
also that people who normally smoke do tend to have poor diets. However, since the “smokers” in our experiment aren’t “natural”
smokers (i.e., we forced non-smokers to become smokers; they didn’t take on all of the other normal, real life characteristics that
smokers might tend to possess) they probably have better diets. As such, in this silly example they wouldn’t get lung cancer, and
our experiment will fail, because it violates the structure of the “natural” world (the technical name for this is an “artifactual”
result; see later).

One distinction worth making between two types of non-experimental research is the difference between quasi-experimental
research and case studies. The example I discussed earlier – in which we wanted to examine incidence of lung cancer among
smokers and non-smokers, without trying to control who smokes and who doesn’t – is a quasi-experimental design. That is, it’s the
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same as an experiment, but we don’t control the predictors (IVs). We can still use statistics to analyse the results, it’s just that we
have to be a lot more careful.

The alternative approach, case studies, aims to provide a very detailed description of one or a few instances. In general, you can’t
use statistics to analyse the results of case studies, and it’s usually very hard to draw any general conclusions about “people in
general” from a few isolated examples. However, case studies are very useful in some situations. Firstly, there are situations where
you don’t have any alternative: neuropsychology has this issue a lot. Sometimes, you just can’t find a lot of people with brain
damage in a specific area, so the only thing you can do is describe those cases that you do have in as much detail and with as much
care as you can. However, there’s also some genuine advantages to case studies: because you don’t have as many people to study,
you have the ability to invest lots of time and effort trying to understand the specific factors at play in each case. This is a very
valuable thing to do. As a consequence, case studies can complement the more statistically-oriented approaches that you see in
experimental and quasi-experimental designs. We won’t talk much about case studies in these lectures, but they are nevertheless
very valuable tools!

This page titled 1.11: Experimental and non-experimental research is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
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1.12: Assessing the validity of a study
More than any other thing, a scientist wants their research to be “valid”. The conceptual idea behind validity is very simple: can
you trust the results of your study? If not, the study is invalid. However, while it’s easy to state, in practice it’s much harder to
check validity than it is to check reliability. And in all honesty, there’s no precise, clearly agreed upon notion of what validity
actually is. In fact, there’s lots of different kinds of validity, each of which raises it’s own issues, and not all forms of validity are
relevant to all studies. I’m going to talk about five different types:

Internal validity
External validity
Construct validity
Face validity
Ecological validity

To give you a quick guide as to what matters here…(1) Internal and external validity are the most important, since they tie directly
to the fundamental question of whether your study really works. (2) Construct validity asks whether you’re measuring what you
think you are. (3) Face validity isn’t terribly important except insofar as you care about “appearances”. (4) Ecological validity is a
special case of face validity that corresponds to a kind of appearance that you might care about a lot.

Internal validity

Internal validity refers to the extent to which you are able draw the correct conclusions about the causal relationships between
variables. It’s called “internal” because it refers to the relationships between things “inside” the study. Let’s illustrate the concept
with a simple example. Suppose you’re interested in finding out whether a university education makes you write better. To do so,
you get a group of first year students, ask them to write a 1000 word essay, and count the number of spelling and grammatical
errors they make. Then you find some third-year students, who obviously have had more of a university education than the first-
years, and repeat the exercise. And let’s suppose it turns out that the third-year students produce fewer errors. And so you conclude
that a university education improves writing skills. Right? Except… the big problem that you have with this experiment is that the
third-year students are older, and they’ve had more experience with writing things. So it’s hard to know for sure what the causal
relationship is: Do older people write better? Or people who have had more writing experience? Or people who have had more
education? Which of the above is the true cause of the superior performance of the third-years? Age? Experience? Education? You
can’t tell. This is an example of a failure of internal validity, because your study doesn’t properly tease apart the causal
relationships between the different variables.

External validity
External validity relates to the generalizability of your findings. That is, to what extent do you expect to see the same pattern of
results in “real life” as you saw in your study. To put it a bit more precisely, any study that you do in psychology will involve a
fairly specific set of questions or tasks, will occur in a specific environment, and will involve participants that are drawn from a
particular subgroup. So, if it turns out that the results don’t actually generalize to people and situations beyond the ones that you
studied, then what you’ve got is a lack of external validity.

The classic example of this issue is the fact that a very large proportion of studies in psychology will use undergraduate psychology
students as the participants. Obviously, however, the researchers don’t care only about psychology students; they care about people
in general. Given that, a study that uses only psych students as participants always carries a risk of lacking external validity. That is,
if there’s something “special” about psychology students that makes them different to the general populace in some relevant
respect, then we may start worrying about a lack of external validity.

That said, it is absolutely critical to realize that a study that uses only psychology students does not necessarily have a problem with
external validity. I’ll talk about this again later, but it’s such a common mistake that I’m going to mention it here. The external
validity is threatened by the choice of population if (a) the population from which you sample your participants is very narrow
(e.g., psych students), and (b) the narrow population that you sampled from is systematically different from the general population,
in some respect that is relevant to the psychological phenomenon that you intend to study. The italicized part is the bit that lots of
people forget: it is true that psychology undergraduates differ from the general population in lots of ways, and so a study that uses
only psych students may have problems with external validity. However, if those differences aren’t very relevant to the
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phenomenon that you’re studying, then there’s nothing to worry about. To make this a bit more concrete, here’s two extreme
examples:

You want to measure “attitudes of the general public towards psychotherapy”, but all of your participants are psychology
students. This study would almost certainly have a problem with external validity.
You want to measure the effectiveness of a visual illusion, and your participants are all psychology students. This study is very
unlikely to have a problem with external validity

Having just spent the last couple of paragraphs focusing on the choice of participants (since that’s the big issue that everyone tends
to worry most about), it’s worth remembering that external validity is a broader concept. The following are also examples of things
that might pose a threat to external validity, depending on what kind of study you’re doing:

People might answer a “psychology questionnaire” in a manner that doesn’t reflect what they would do in real life.
Your lab experiment on (say) “human learning” has a different structure to the learning problems people face in real life.

Construct validity

Construct validity is basically a question of whether you’re measuring what you want to be measuring. A measurement has good
construct validity if it is actually measuring the correct theoretical construct, and bad construct validity if it doesn’t. To give very
simple (if ridiculous) example, suppose I’m trying to investigate the rates with which university students cheat on their exams. And
the way I attempt to measure it is by asking the cheating students to stand up in the lecture theatre so that I can count them. When I
do this with a class of 300 students, 0 people claim to be cheaters. So I therefore conclude that the proportion of cheaters in my
class is 0%. Clearly this is a bit ridiculous. But the point here is not that this is a very deep methodological example, but rather to
explain what construct validity is. The problem with my measure is that while I’m trying to measure “the proportion of people who
cheat” what I’m actually measuring is “the proportion of people stupid enough to own up to cheating, or bloody minded enough to
pretend that they do”. Obviously, these aren’t the same thing! So my study has gone wrong, because my measurement has very
poor construct validity.

Face validity
Face validity simply refers to whether or not a measure “looks like” it’s doing what it’s supposed to, nothing more. If I design a
test of intelligence, and people look at it and they say “no, that test doesn’t measure intelligence”, then the measure lacks face
validity. It’s as simple as that. Obviously, face validity isn’t very important from a pure scientific perspective. After all, what we
care about is whether or not the measure actually does what it’s supposed to do, not whether it looks like it does what it’s supposed
to do. As a consequence, we generally don’t care very much about face validity. That said, the concept of face validity serves three
useful pragmatic purposes:

Sometimes, an experienced scientist will have a “hunch” that a particular measure won’t work. While these sorts of hunches
have no strict evidentiary value, it’s often worth paying attention to them. Because often times people have knowledge that they
can’t quite verbalize, so there might be something to worry about even if you can’t quite say why. In other words, when
someone you trust criticizes the face validity of your study, it’s worth taking the time to think more carefully about your design
to see if you can think of reasons why it might go awry. Mind you, if you don’t find any reason for concern, then you should
probably not worry: after all, face validity really doesn’t matter much.
Often (very often), completely uninformed people will also have a “hunch” that your research is crap. And they’ll criticize it on
the internet or something. On close inspection, you’ll often notice that these criticisms are actually focused entirely on how the
study “looks”, but not on anything deeper. The concept of face validity is useful for gently explaining to people that they need
to substantiate their arguments further.
Expanding on the last point, if the beliefs of untrained people are critical (e.g., this is often the case for applied research where
you actually want to convince policy makers of something or other) then you have to care about face validity. Simply because –
whether you like it or not – a lot of people will use face validity as a proxy for real validity. If you want the government to
change a law on scientific, psychological grounds, then it won’t matter how good your studies “really” are. If they lack face
validity, you’ll find that politicians ignore you. Of course, it’s somewhat unfair that policy often depends more on appearance
than fact, but that’s how things go.
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Ecological validity
Ecological validity is a different notion of validity, which is similar to external validity, but less important. The idea is that, in
order to be ecologically valid, the entire set up of the study should closely approximate the real world scenario that is being
investigated. In a sense, ecological validity is a kind of face validity – it relates mostly to whether the study “looks” right, but with
a bit more rigour to it. To be ecologically valid, the study has to look right in a fairly specific way. The idea behind it is the intuition
that a study that is ecologically valid is more likely to be externally valid. It’s no guarantee, of course. But the nice thing about
ecological validity is that it’s much easier to check whether a study is ecologically valid than it is to check whether a study is
externally valid. An simple example would be eyewitness identification studies. Most of these studies tend to be done in a
university setting, often with fairly simple array of faces to look at rather than a line up. The length of time between seeing the
“criminal” and being asked to identify the suspect in the “line up” is usually shorter. The “crime” isn’t real, so there’s no chance
that the witness being scared, and there’s no police officers present, so there’s not as much chance of feeling pressured. These
things all mean that the study definitely lacks ecological validity. They might (but might not) mean that it also lacks external
validity.

This page titled 1.12: Assessing the validity of a study is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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1.13: Confounds, Artifacts and other Threats to Validity
If we look at the issue of validity in the most general fashion, the two biggest worries that we have are confounds and artifact.
These two terms are defined in the following way:

Confound: A confound is an additional, often unmeasured variable that turns out to be related to both the predictors and the
outcomes. The existence of confounds threatens the internal validity of the study because you can’t tell whether the predictor
causes the outcome, or if the confounding variable causes it, etc.
Artifact: A result is said to be “artifactual” if it only holds in the special situation that you happened to test in your study. The
possibility that your result is an artifact describes a threat to your external validity, because it raises the possibility that you can’t
generalize your results to the actual population that you care about.

As a general rule confounds are a bigger concern for non-experimental studies, precisely because they’re not proper experiments:
by definition, you’re leaving lots of things uncontrolled, so there’s a lot of scope for confounds working their way into your study.
Experimental research tends to be much less vulnerable to confounds: the more control you have over what happens during the
study, the more you can prevent confounds from appearing.

However, there’s always swings and roundabouts, and when we start thinking about artifacts rather than confounds, the shoe is very
firmly on the other foot. For the most part, artifactual results tend to be a concern for experimental studies than for non-
experimental studies. To see this, it helps to realize that the reason that a lot of studies are non-experimental is precisely because
what the researcher is trying to do is examine human behaviour in a more naturalistic context. By working in a more real-world
context, you lose experimental control (making yourself vulnerable to confounds) but because you tend to be studying human
psychology “in the wild” you reduce the chances of getting an artifactual result. Or, to put it another way, when you take
psychology out of the wild and bring it into the lab (which we usually have to do to gain our experimental control), you always run
the risk of accidentally studying something different than you wanted to study: which is more or less the definition of an artifact.

Be warned though: the above is a rough guide only. It’s absolutely possible to have confounds in an experiment, and to get
artifactual results with non-experimental studies. This can happen for all sorts of reasons, not least of which is researcher error. In
practice, it’s really hard to think everything through ahead of time, and even very good researchers make mistakes. But other times
it’s unavoidable, simply because the researcher has ethics (e.g., see “differential attrition”).

Okay. There’s a sense in which almost any threat to validity can be characterized as a confound or an artifact: they’re pretty vague
concepts. So let’s have a look at some of the most common examples…

History effects
History effects refer to the possibility that specific events may occur during the study itself that might influence the outcomes. For
instance, something might happen in between a pre-test and a post-test. Or, in between testing participant 23 and participant 24.
Alternatively, it might be that you’re looking at an older study, which was perfectly valid for its time, but the world has changed
enough since then that the conclusions are no longer trustworthy. Examples of things that would count as history effects:

You’re interested in how people think about risk and uncertainty. You started your data collection in December 2010. But
finding participants and collecting data takes time, so you’re still finding new people in February 2011. Unfortunately for you
(and even more unfortunately for others), the Queensland floods occurred in January 2011, causing billions of dollars of
damage and killing many people. Not surprisingly, the people tested in February 2011 express quite different beliefs about
handling risk than the people tested in December 2010. Which (if any) of these reflects the “true” beliefs of participants? I think
the answer is probably both: the Queensland floods genuinely changed the beliefs of the Australian public, though possibly only
temporarily. The key thing here is that the “history” of the people tested in February is quite different to people tested in
December.
You’re testing the psychological effects of a new anti-anxiety drug. So what you do is measure anxiety before administering the
drug (e.g., by self-report, and taking physiological measures, let’s say), then you administer the drug, and then you take the
same measures afterwards. In the middle, however, because your labs are in Los Angeles, there’s an earthquake, which
increases the anxiety of the participants.

Maturation effects

As with history effects, maturational effects are fundamentally about change over time. However, maturation effects aren’t in
response to specific events. Rather, they relate to how people change on their own over time: we get older, we get tired, we get
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bored, etc. Some examples of maturation effects:

When doing developmental psychology research, you need to be aware that children grow up quite rapidly. So, suppose that you
want to find out whether some educational trick helps with vocabulary size among 3 year olds. One thing that you need to be
aware of is that the vocabulary size of children that age is growing at an incredible rate (multiple words per day), all on its own.
If you design your study without taking this maturational effect into account, then you won’t be able to tell if your educational
trick works.
When running a very long experiment in the lab (say, something that goes for 3 hours), it’s very likely that people will begin to
get bored and tired, and that this maturational effect will cause performance to decline, regardless of anything else going on in
the experiment

Repeated testing effects

An important type of history effect is the effect of repeated testing. Suppose I want to take two measurements of some
psychological construct (e.g., anxiety). One thing I might be worried about is if the first measurement has an effect on the second
measurement. In other words, this is a history effect in which the “event” that influences the second measurement is the first
measurement itself! This is not at all uncommon. Examples of this include:

Learning and practice: e.g., “intelligence” at time 2 might appear to go up relative to time 1 because participants learned the
general rules of how to solve “intelligence-test-style” questions during the first testing session.
Familiarity with the testing situation: e.g., if people are nervous at time 1, this might make performance go down; after sitting
through the first testing situation, they might calm down a lot precisely because they’ve seen what the testing looks like.
Auxiliary changes caused by testing: e.g., if a questionnaire assessing mood is boring, then mood at measurement at time 2 is
more likely to become “bored”, precisely because of the boring measurement made at time 1.

Selection bias

Selection bias is a pretty broad term. Suppose that you’re running an experiment with two groups of participants, where each group
gets a different “treatment”, and you want to see if the different treatments lead to different outcomes. However, suppose that,
despite your best efforts, you’ve ended up with a gender imbalance across groups (say, group A has 80% females and group B has
50% females). It might sound like this could never happen, but trust me, it can. This is an example of a selection bias, in which the
people “selected into” the two groups have different characteristics. If any of those characteristics turns out to be relevant (say, your
treatment works better on females than males) then you’re in a lot of trouble.

Differential attrition
One quite subtle danger to be aware of is called differential attrition, which is a kind of selection bias that is caused by the study
itself. Suppose that, for the first time ever in the history of psychology, I manage to find the perfectly balanced and representative
sample of people. I start running “Dan’s incredibly long and tedious experiment” on my perfect sample, but then, because my study
is incredibly long and tedious, lots of people start dropping out. I can’t stop this: as we’ll discuss later in the chapter on research
ethics, participants absolutely have the right to stop doing any experiment, any time, for whatever reason they feel like, and as
researchers we are morally (and professionally) obliged to remind people that they do have this right. So, suppose that “Dan’s
incredibly long and tedious experiment” has a very high drop out rate. What do you suppose the odds are that this drop out is
random? Answer: zero. Almost certainly, the people who remain are more conscientious, more tolerant of boredom etc than those
that leave. To the extent that (say) conscientiousness is relevant to the psychological phenomenon that I care about, this attrition
can decrease the validity of my results.

When thinking about the effects of differential attrition, it is sometimes helpful to distinguish between two different types. The first
is homogeneous attrition, in which the attrition effect is the same for all groups, treatments or conditions. In the example I gave
above, the differential attrition would be homogeneous if (and only if) the easily bored participants are dropping out of all of the
conditions in my experiment at about the same rate. In general, the main effect of homogeneous attrition is likely to be that it
makes your sample unrepresentative. As such, the biggest worry that you’ll have is that the generalisability of the results decreases:
in other words, you lose external validity.

The second type of differential attrition is heterogeneous attrition, in which the attrition effect is different for different groups.
This is a much bigger problem: not only do you have to worry about your external validity, you also have to worry about your
internal validity too. To see why this is the case, let’s consider a very dumb study in which I want to see if insulting people makes
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them act in a more obedient way. Why anyone would actually want to study that I don’t know, but let’s suppose I really, deeply
cared about this. So, I design my experiment with two conditions. In the “treatment” condition, the experimenter insults the
participant and then gives them a questionnaire designed to measure obedience. In the “control” condition, the experimenter
engages in a bit of pointless chitchat and then gives them the questionnaire. Leaving aside the questionable scientific merits and
dubious ethics of such a study, let’s have a think about what might go wrong here. As a general rule, when someone insults me to
my face, I tend to get much less co-operative. So, there’s a pretty good chance that a lot more people are going to drop out of the
treatment condition than the control condition. And this drop out isn’t going to be random. The people most likely to drop out
would probably be the people who don’t care all that much about the importance of obediently sitting through the experiment.
Since the most bloody minded and disobedient people all left the treatment group but not the control group, we’ve introduced a
confound: the people who actually took the questionnaire in the treatment group were already more likely to be dutiful and
obedient than the people in the control group. In short, in this study insulting people doesn’t make them more obedient: it makes
the more disobedient people leave the experiment! The internal validity of this experiment is completely shot.

Non-response bias
Non-response bias is closely related to selection bias, and to differential attrition. The simplest version of the problem goes like
this. You mail out a survey to 1000 people, and only 300 of them reply. The 300 people who replied are almost certainly not a
random subsample. People who respond to surveys are systematically different to people who don’t. This introduces a problem
when trying to generalize from those 300 people who replied, to the population at large; since you now have a very non-random
sample. The issue of non-response bias is more general than this, though. Among the (say) 300 people that did respond to the
survey, you might find that not everyone answers every question. If (say) 80 people chose not to answer one of your questions,
does this introduce problems? As always, the answer is maybe. If the question that wasn’t answered was on the last page of the
questionnaire, and those 80 surveys were returned with the last page missing, there’s a good chance that the missing data isn’t a big
deal: probably the pages just fell off. However, if the question that 80 people didn’t answer was the most confrontational or
invasive personal question in the questionnaire, then almost certainly you’ve got a problem. In essence, what you’re dealing with
here is what’s called the problem of missing data. If the data that is missing was “lost” randomly, then it’s not a big problem. If it’s
missing systematically, then it can be a big problem.

Regression to the mean

Regression to the mean is a curious variation on selection bias. It refers to any situation where you select data based on an
extreme value on some measure. Because the measure has natural variation, it almost certainly means that when you take a
subsequent measurement, that later measurement will be less extreme than the first one, purely by chance.

Here’s an example. Suppose I’m interested in whether a psychology education has an adverse effect on very smart kids. To do this,
I find the 20 psych I students with the best high school grades and look at how well they’re doing at university. It turns out that
they’re doing a lot better than average, but they’re not topping the class at university, even though they did top their classes at high
school. What’s going on? The natural first thought is that this must mean that the psychology classes must be having an adverse
effect on those students. However, while that might very well be the explanation, it’s more likely that what you’re seeing is an
example of “regression to the mean”. To see how it works, let’s take a moment to think about what is required to get the best mark
in a class, regardless of whether that class be at high school or at university. When you’ve got a big class, there are going to be lots
of very smart people enrolled. To get the best mark you have to be very smart, work very hard, and be a bit lucky. The exam has to
ask just the right questions for your idiosyncratic skills, and you have to not make any dumb mistakes (we all do that sometimes)
when answering them. And that’s the thing: intelligence and hard work are transferrable from one class to the next. Luck isn’t. The
people who got lucky in high school won’t be the same as the people who get lucky at university. That’s the very definition of
“luck”. The consequence of this is that, when you select people at the very extreme values of one measurement (the top 20
students), you’re selecting for hard work, skill and luck. But because the luck doesn’t transfer to the second measurement (only the
skill and work), these people will all be expected to drop a little bit when you measure them a second time (at university). So their
scores fall back a little bit, back towards everyone else. This is regression to the mean.

Regression to the mean is surprisingly common. For instance, if two very tall people have kids, their children will tend to be taller
than average, but not as tall as the parents. The reverse happens with very short parents: two very short parents will tend to have
short children, but nevertheless those kids will tend to be taller than the parents. It can also be extremely subtle. For instance, there
have been studies done that suggested that people learn better from negative feedback than from positive feedback. However, the
way that people tried to show this was to give people positive reinforcement whenever they did good, and negative reinforcement
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when they did bad. And what you see is that after the positive reinforcement, people tended to do worse; but after the negative
reinforcement they tended to do better. But! Notice that there’s a selection bias here: when people do very well, you’re selecting for
“high” values, and so you should expect (because of regression to the mean) that performance on the next trial should be worse,
regardless of whether reinforcement is given. Similarly, after a bad trial, people will tend to improve all on their own. The apparent
superiority of negative feedback is an artifact caused by regression to the mean (Kahneman and Tversky 1973).

Experimenter bias
Experimenter bias can come in multiple forms. The basic idea is that the experimenter, despite the best of intentions, can
accidentally end up influencing the results of the experiment by subtly communicating the “right answer” or the “desired
behaviour” to the participants. Typically, this occurs because the experimenter has special knowledge that the participant does not –
either the right answer to the questions being asked, or knowledge of the expected pattern of performance for the condition that the
participant is in, and so on. The classic example of this happening is the case study of “Clever Hans”, which dates back to 1907,
Pfungst (1911; Hothersall 2004). Clever Hans was a horse that apparently was able to read and count, and perform other human
like feats of intelligence. After Clever Hans became famous, psychologists started examining his behaviour more closely. It turned
out that – not surprisingly – Hans didn’t know how to do maths. Rather, Hans was responding to the human observers around him.
Because they did know how to count, and the horse had learned to change its behaviour when people changed theirs.

The general solution to the problem of experimenter bias is to engage in double blind studies, where neither the experimenter nor
the participant knows which condition the participant is in, or knows what the desired behaviour is. This provides a very good
solution to the problem, but it’s important to recognize that it’s not quite ideal, and hard to pull off perfectly. For instance, the
obvious way that I could try to construct a double blind study is to have one of my Ph.D. students (one who doesn’t know anything
about the experiment) run the study. That feels like it should be enough. The only person (me) who knows all the details (e.g.,
correct answers to the questions, assignments of participants to conditions) has no interaction with the participants, and the person
who does all the talking to people (the Ph.D. student) doesn’t know anything. Except, that last part is very unlikely to be true. In
order for the Ph.D. student to run the study effectively, they need to have been briefed by me, the researcher. And, as it happens, the
Ph.D. student also knows me, and knows a bit about my general beliefs about people and psychology (e.g., I tend to think humans
are much smarter than psychologists give them credit for). As a result of all this, it’s almost impossible for the experimenter to
avoid knowing a little bit about what expectations I have. And even a little bit of knowledge can have an effect: suppose the
experimenter accidentally conveys the fact that the participants are expected to do well in this task. Well, there’s a thing called the
“Pygmalion effect”: if you expect great things of people, they’ll rise to the occasion; but if you expect them to fail, they’ll do that
too. In other words, the expectations become a self-fulfilling prophesy.

Demand effects and reactivity
When talking about experimenter bias, the worry is that the experimenter’s knowledge or desires for the experiment are
communicated to the participants, and that these effect people’s behaviour Rosenthal (1966). However, even if you manage to stop
this from happening, it’s almost impossible to stop people from knowing that they’re part of a psychological study. And the mere
fact of knowing that someone is watching/studying you can have a pretty big effect on behaviour. This is generally referred to as
reactivity or demand effects. The basic idea is captured by the Hawthorne effect: people alter their performance because of the
attention that the study focuses on them. The effect takes its name from a the “Hawthorne Works” factory outside of Chicago
(Adair 1984). A study done in the 1920s looking at the effects of lighting on worker productivity at the factory turned out to be an
effect of the fact that the workers knew they were being studied, rather than the lighting.

To get a bit more specific about some of the ways in which the mere fact of being in a study can change how people behave, it
helps to think like a social psychologist and look at some of the roles that people might adopt during an experiment, but might not
adopt if the corresponding events were occurring in the real world:

The good participant tries to be too helpful to the researcher: he or she seeks to figure out the experimenter’s hypotheses and
confirm them.
The negative participant does the exact opposite of the good participant: he or she seeks to break or destroy the study or the
hypothesis in some way.
The faithful participant is unnaturally obedient: he or she seeks to follow instructions perfectly, regardless of what might have
happened in a more realistic setting.
The apprehensive participant gets nervous about being tested or studied, so much so that his or her behaviour becomes highly
unnatural, or overly socially desirable.
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Placebo effects
The placebo effect is a specific type of demand effect that we worry a lot about. It refers to the situation where the mere fact of
being treated causes an improvement in outcomes. The classic example comes from clinical trials: if you give people a completely
chemically inert drug and tell them that it’s a cure for a disease, they will tend to get better faster than people who aren’t treated at
all. In other words, it is people’s belief that they are being treated that causes the improved outcomes, not the drug.

Situation, measurement and subpopulation effects

In some respects, these terms are a catch-all term for “all other threats to external validity”. They refer to the fact that the choice of
subpopulation from which you draw your participants, the location, timing and manner in which you run your study (including who
collects the data) and the tools that you use to make your measurements might all be influencing the results. Specifically, the worry
is that these things might be influencing the results in such a way that the results won’t generalize to a wider array of people, places
and measures.

Fraud, deception and self-deception

It is difficult to get a man to understand something, when his salary depends on his not
understanding it.

– Upton Sinclair

One final thing that I feel like I should mention. While reading what the textbooks often have to say about assessing the validity of
the study, I couldn’t help but notice that they seem to make the assumption that the researcher is honest. I find this hilarious. While
the vast majority of scientists are honest, in my experience at least, some are not. Not only that, as I mentioned earlier, scientists are
not immune to belief bias – it’s easy for a researcher to end up deceiving themselves into believing the wrong thing, and this can
lead them to conduct subtly flawed research, and then hide those flaws when they write it up. So you need to consider not only the
(probably unlikely) possibility of outright fraud, but also the (probably quite common) possibility that the research is
unintentionally “slanted”. I opened a few standard textbooks and didn’t find much of a discussion of this problem, so here’s my
own attempt to list a few ways in which these issues can arise are:

Data fabrication. Sometimes, people just make up the data. This is occasionally done with “good” intentions. For instance, the
researcher believes that the fabricated data do reflect the truth, and may actually reflect “slightly cleaned up” versions of actual
data. On other occasions, the fraud is deliberate and malicious. Some high-profile examples where data fabrication has been
alleged or shown include Cyril Burt (a psychologist who is thought to have fabricated some of his data), Andrew Wakefield
(who has been accused of fabricating his data connecting the MMR vaccine to autism) and Hwang Woo-suk (who falsified a lot
of his data on stem cell research).
Hoaxes. Hoaxes share a lot of similarities with data fabrication, but they differ in the intended purpose. A hoax is often a joke,
and many of them are intended to be (eventually) discovered. Often, the point of a hoax is to discredit someone or some field.
There’s quite a few well known scientific hoaxes that have occurred over the years (e.g., Piltdown man) some of were deliberate
attempts to discredit particular fields of research (e.g., the Sokal affair).
Data misrepresentation. While fraud gets most of the headlines, it’s much more common in my experience to see data being
misrepresented. When I say this, I’m not referring to newspapers getting it wrong (which they do, almost always). I’m referring
to the fact that often, the data don’t actually say what the researchers think they say. My guess is that, almost always, this isn’t
the result of deliberate dishonesty, it’s due to a lack of sophistication in the data analyses. For instance, think back to the
example of Simpson’s paradox that I discussed in the beginning of these notes. It’s very common to see people present
“aggregated” data of some kind; and sometimes, when you dig deeper and find the raw data yourself, you find that the
aggregated data tell a different story to the disaggregated data. Alternatively, you might find that some aspect of the data is
being hidden, because it tells an inconvenient story (e.g., the researcher might choose not to refer to a particular variable).
There’s a lot of variants on this; many of which are very hard to detect.
Study “misdesign”. Okay, this one is subtle. Basically, the issue here is that a researcher designs a study that has built-in flaws,
and those flaws are never reported in the paper. The data that are reported are completely real, and are correctly analysed, but
they are produced by a study that is actually quite wrongly put together. The researcher really wants to find a particular effect,
and so the study is set up in such a way as to make it “easy” to (artifactually) observe that effect. One sneaky way to do this – in
case you’re feeling like dabbling in a bit of fraud yourself – is to design an experiment in which it’s obvious to the participants
what they’re “supposed” to be doing, and then let reactivity work its magic for you. If you want, you can add all the trappings
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of double blind experimentation etc. It won’t make a difference, since the study materials themselves are subtly telling people
what you want them to do. When you write up the results, the fraud won’t be obvious to the reader: what’s obvious to the
participant when they’re in the experimental context isn’t always obvious to the person reading the paper. Of course, the way
I’ve described this makes it sound like it’s always fraud: probably there are cases where this is done deliberately, but in my
experience the bigger concern has been with unintentional misdesign. The researcher believes …and so the study just happens
to end up with a built in flaw, and that flaw then magically erases itself when the study is written up for publication.
Data mining & post hoc hypothesising. Another way in which the authors of a study can more or less lie about what they
found is by engaging in what’s referred to as “data mining”. As we’ll discuss later in the class, if you keep trying to analyse
your data in lots of different ways, you’ll eventually find something that “looks” like a real effect but isn’t. This is referred to as
“data mining”. It used to be quite rare because data analysis used to take weeks, but now that everyone has very powerful
statistical software on their computers, it’s becoming very common. Data mining per se isn’t “wrong”, but the more that you do
it, the bigger the risk you’re taking. The thing that is wrong, and I suspect is very common, is unacknowledged data mining.
That is, the researcher run every possible analysis known to humanity, finds the one that works, and then pretends that this was
the only analysis that they ever conducted. Worse yet, they often “invent” a hypothesis after looking at the data, to cover up the
data mining. To be clear: it’s not wrong to change your beliefs after looking at the data, and to reanalyse your data using your
new “post hoc” hypotheses. What is wrong (and, I suspect, common) is failing to acknowledge that you’ve done so. If you
acknowledge that you did it, then other researchers are able to take your behaviour into account. If you don’t, then they can’t.
And that makes your behaviour deceptive. Bad!
Publication bias & self-censoring. Finally, a pervasive bias is “non-reporting” of negative results. This is almost impossible to
prevent. Journals don’t publish every article that is submitted to them: they prefer to publish articles that find “something”. So,
if 20 people run an experiment looking at whether reading Finnegans Wake causes insanity in humans, and 19 of them find that
it doesn’t, which one do you think is going to get published? Obviously, it’s the one study that did find that Finnegans Wake
causes insanity. This is an example of a publication bias: since no-one ever published the 19 studies that didn’t find an effect, a
naive reader would never know that they existed. Worse yet, most researchers “internalize” this bias, and end up self-censoring
their research. Knowing that negative results aren’t going to be accepted for publication, they never even try to report them. As
a friend of mine says “for every experiment that you get published, you also have 10 failures”. And she’s right. The catch is,
while some (maybe most) of those studies are failures for boring reasons (e.g. you stuffed something up) others might be
genuine “null” results that you ought to acknowledge when you write up the “good” experiment. And telling which is which is
often hard to do. A good place to start is a paper by Ioannidis (2005) with the depressing title “Why most published research
findings are false”. I’d also suggest taking a look at work by Kühberger, Fritz, and Scherndl (2014) presenting statistical
evidence that this actually happens in psychology.

There’s probably a lot more issues like this to think about, but that’ll do to start with. What I really want to point out is the
blindingly obvious truth that real world science is conducted by actual humans, and only the most gullible of people automatically
assumes that everyone else is honest and impartial. Actual scientists aren’t usually that naive, but for some reason the world likes
to pretend that we are, and the textbooks we usually write seem to reinforce that stereotype.
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1.14: Summary
This chapter isn’t really meant to provide a comprehensive discussion of psychological research methods: it would require another
volume just as long as this one to do justice to the topic. However, in real life statistics and study design are tightly intertwined, so
it’s very handy to discuss some of the key topics. In this chapter, I’ve briefly discussed the following topics:

Introduction to psychological measurement: What does it mean to operationalize a theoretical construct? What does it mean
to have variables and take measurements?
Scales of measurement and types of variables: Remember that there are two different distinctions here: there’s the difference
between discrete and continuous data, and there’s the difference between the four different scale types (nominal, ordinal,
interval and ratio).
Reliability of a measurement: If I measure the “same” thing twice, should I expect to see the same result? Only if my measure
is reliable. But what does it mean to talk about doing the “same” thing? Well, that’s why we have different types of reliability.
Make sure you remember what they are.
Terminology: predictors and outcomes: What roles do variables play in an analysis? Can you remember the difference
between predictors and outcomes? Dependent and independent variables? Etc.
Experimental and non-experimental research designs: What makes an experiment an experiment? Is it a nice white lab coat,
or does it have something to do with researcher control over variables?
Validity and its threats: Does your study measure what you want it to? How might things go wrong? And is it my imagination,
or was that a very long list of possible ways in which things can go wrong?

All this should make clear to you that study design is a critical part of research methodology. I built this chapter from the classic
little book by Campbell and Stanley (1963), but there are of course a large number of textbooks out there on research design. Spend
a few minutes with your favourite search engine and you’ll find dozens.
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1.15: Videos

Terms of Statistics

(https://www.youtube.com/watch?v=HgtnpOtk350)
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CHAPTER OVERVIEW

2: Describing Data
Chapter by Matthew Crump

Far better an approximate answer to the right question, which is often vague, than an
exact answer to the wrong question, which can always be made precise.

— John W. Tukey

This chapter is about descriptive statistics. These are tools for describing data. Some things to keep in mind as we go along are:

1. There are lots of different ways to describe data
2. There is more than one “correct” way, and you get to choose the most “useful” way for the data that you are describing
3. It is possible to invent new ways of describing data, all of the ways we discuss were previously invented by other people, and

they are commonly used because they are useful.
4. Describing data is necessary because there is usually too much of it, so it doesn’t make any sense by itself.

2.1: This is what too many numbers looks like
2.2: Look at the data
2.3: Important Ideas - Distribution, Central Tendency, and Variance
2.4: Measures of Central Tendency (Sameness)
2.5: Measures of Variation (Differentness)
2.6: Using Descriptive Statistics with data
2.7: Rolling your own descriptive statistics
2.8: Remember to look at your data
2.9: Videos
2.10: References
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2.1: This is what too many numbers looks like
Let’s say you wanted to know how happy people are. So, you ask thousands of people on the street how happy they are. You let
them pick any number they want from negative infinity to positive infinity. Then you record all the numbers. Now what?

Well, how about you look at the numbers and see if that helps you determine anything about how happy people are. What could the
numbers look like. Perhaps something like this:

73 594 -22 -20 -547 162 -90 312 235 -511

-337 85 552 377 241 -382 241 -439 264 -292

-136 -262 432 835 73 -180 -93 218 597 419

-500 -120 588 -96 -412 502 1058 761 549 -320

14 -869 338 935 531 339 83 37 820 544

50 -397 203 -374 -186 518 530 1320 816 1293

580 -741 -102 -56 933 -228 -347 656 162 714

440 569 -431 557 -502 -331 -281 73 311 459

-143 -348 136 -624 55 -790 374 -988 -1102 -408

-666 671 660 452 1299 717 369 158 679 411

-593 -364 115 379 56 -440 505 -370 -102 -1020

610 -86 -181 -143 75 -188 502 606 443 74

181 -355 40 551 -362 414 -307 415 -930 -302

1416 -387 437 -126 -407 28 466 -25 -413 -286

106 257 459 703 3 1592 1042 -124 102 -578

550 -605 -41 167 -581 830 -17 200 98 472

242 -30 94 -619 -885 424 320 241 193 121

-373 -478 -398 1035 425 -199 -350 189 -394 346

-161 -355 108 -685 -668 -667 893 -623 19 879

-430 119 830 -236 -527 61 313 265 453 -565

-523 9 -413 -705 -527 237 -341 80 349 891

181 555 371 -623 -107 859 -673 855 4 117

-1225 317 279 266 24 -387 368 567 -717 717

-110 706 -40 -836 -882 48 307 1150 -917 -236

-669 -401 -274 -465 -178 104 517 635 86 186

-357 356 932 118 -51 62 -111 -154 -409 852

-91 -568 640 -48 -349 -481 511 -544 254 -641

654 -127 -563 -340 30 -293 -100 292 220 41

312 640 -628 335 -808 105 77 -674 108 -1177

-804 -318 608 954 -350 606 -394 -68 -226 161

-580 174 622 -433 -758 -49 949 496 802 -271
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745 184 -41 281 -318 -323 634 -53 -307 446

245 368 163 -489 -124 -258 -463 357 -465 -321

628 1055 -11 -177 -28 139 -531 134 -400 -182

-298 153 -206 946 534 295 543 350 184 -311

1109 -174 1169 -175 88 804 -555 -269 -376 1199

-463 1078 -384 -804 2 -29 219 -467 375 503

1717 264 -177 -222 1125 -738 569 -335 581 364

-36 -523 847 -1189 -379 -704 -654 51 -136 303

609 -200 675 286 353 67 -993 -181 1198 -508

77 58 -53 -510 -343 657 1303 -300 804 -376

421 73 -165 -238 409 470 648 127 347 -296

659 280 1397 -715 979 -793 565 -102 510 333

-848 571 -297 630 286 -512 275 468 -314 -246

-212 603 -152 -474 428 -315 -38 -53 -324 -225

-46 -89 316 341 516 -655 613 249 334 94

-66 -688 101 -128 -422 424 326 -287 417 -605

357 -959 -149 387 -39 -104 -596 55 -25 -26

-533 -667 280 863 215 -182 397 333 -56 36

-118 -329 44 -1 354 -545 630 460 458 30

Now, what are you going to with that big pile of numbers? Look at it all day long? When you deal with data, it will deal so many
numbers to you that you will be overwhelmed by them. That is why we need ways to describe the data in a more manageable
fashion.

The complete description of the data is always the data itself. Descriptive statistics and other tools for describing data go one step
further to summarize aspects of the data. Summaries are a way to compress the important bits of a thing down to a useful and
manageable tidbit. It’s like telling your friends why they should watch a movie: you don’t replay the entire movie for them, instead
you hit the highlights. Summarizing the data is just like a movie preview, only for data.
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2.2: Look at the data
We already tried one way of looking at the numbers, and it wasn’t useful. Let’s look at some other ways of looking at the numbers,
using graphs.

Stop, plotting time (o o oh) U can plot this
Let’s turn all of the numbers into dots, then show them in a graph. Note, when we do this, we have not yet summarized anything
about the data. Instead, we just look at all of the data in a visual format, rather than looking at the numbers.

run restart restart & run all

Figure \(\PageIndex{1}\): Pretend happiness ratings from 500 people.

Figure \(\PageIndex{1}\) shows 500 measurements of happiness. The graph has two axes. The horizontal x-axis, going from left to
right is labeled “Index”. The vertical y-axis, going up and down, is labelled “happiness”. Each dot represents one measurement of
every person’s happiness from our pretend study. Before we talk about what we can and cannot see about the data, it is worth
mentioning that the way you plot the data will make some things easier to see and some things harder to see. So, what can we now
see about the data?
There are lots of dots everywhere. It looks like there are 500 of them because the index goes to 500. It looks like some dots go as
high as 1000-1500 and as low as -1500. It looks like there are more dots in the middle-ish area of the plot, sort of spread about 0.

Take home: we can see all the numbers at once by putting them in a plot, and that is much
easier and more helpful than looking at the raw numbers.

OK, so if these dots represent how happy 500 people are, what can we say about those people? First, the dots are kind of all over
the place, so different people have different levels of happiness. Are there any trends? Are more people happy than unhappy, or
vice-versa? It’s hard to see that in the graph, so let’s make a different one, called a histogram

Histograms
Making a histogram will be our first act of officially summarizing something about the data. We will no longer look at the
individual bits of data, instead we will see how the numbers group together. Let’s look at a histogram of the happiness data, and
then explain it.

happiness<-rnorm(500,100,500)
plot(happiness)
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run restart restart & run all

Figure \(\PageIndex{2}\): A histogram of the happiness ratings.

The dots have disappeared, and now we some bars. Each bar is a summary of the dots, representing the number of dots (frequency
count) inside a particular range of happiness, also called bins. For example, how many people gave a happiness rating between 0
and 500? The fifth bar, the one between 0 and 500 on the x-axis, tells you how many. Look how tall that bar is. How tall is it? The
height is shown on the y-axis, which provides a frequency count (the number of dots or data points). It looks like around 150
people said their happiness was between 0-500.
More generally, we see there are many bins on the x-axis. We have divided the data into bins of 500. Bin #1 goes from -2000 to
-1500, bin #2 goes from -1500 to -1000, and so on until the last bin. To make the histogram, we just count up the number of data
points falling inside each bin, then plot those frequency counts as a function of the bins. Voila, a histogram.
What does the histogram help us see about the data? First, we can see the shape of data. The shape of the histogram refers to how it
goes up and down. The shape tells us where the data is. For example, when the bars are low we know there isn’t much data there.
When the bars are high, we know there is more data there. So, where is most of the data? It looks like it’s mostly in the middle two
bins, between -500 and 500. We can also see the range of the data. This tells us the minimums and the maximums of the data. Most
of the data is between -1500 and +1500, so no infinite sadness or infinite happiness in our data-set.
When you make a histogram you get to choose how wide each bar will be. For example, below are four different histograms of the
very same happiness data. What changes is the width of the bins.

happiness<-rnorm(500,100,500)
hist(happiness)
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Figure \(\PageIndex{3}\): Four histograms of the same data using different bin widths.

All of the histograms have roughly the same overall shape: From left to right, the bars start off small, then go up, then get small
again. In other words, as the numbers get closer to zero, they start to occur more frequently. We see this general trend across all the
histograms. But, some aspects of the trend fall apart when the bars get really narrow. For example, although the bars generally get
taller when moving from -1000 to 0, there are some exceptions and the bars seem to fluctuate a little bit. When the bars are wider,
there are less exceptions to the general trend. How wide or narrow should your histogram be? It’s a Goldilocks question. Make it
just right for your data.
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2.3: Important Ideas - Distribution, Central Tendency, and Variance
Let’s introduce three important terms we will use a lot, distribution, central tendency, and variance. These terms are similar to
their everyday meanings (although I suspect most people don’t say central tendency very often).

Distribution. When you order something from Amazon, where does it come from, and how does it get to your place? That stuff
comes from one of Amazon’s distribution centers. They distribute all sorts of things by spreading them around to your doorstep.
“To Distribute”" is to spread something. Notice, the data in the histogram is distributed, or spread across the bins. We can also talk
about a distribution as a noun. The histogram is a distribution of the frequency counts across the bins. Distributions are very, very,
very, very, very important. They can have many different shapes. They can describe data, like in the histogram above. And as we
will learn in later chapters, they can produce data. Many times we will be asking questions about where our data came from, and
this usually means asking what kind of distribution could have created our data (more on that later.)

Central Tendency is all about sameness: What is common about some numbers? For example, is there anything similar about all
of the numbers in the histogram? Yes, we can say that most of them are near 0. There is a tendency for most of the numbers to be
centered near 0. Notice we are being cautious about our generalization about the numbers. We are not saying they are all 0. We are
saying there is a tendency for many of them to be near zero. There are lots of ways to talk about the central tendency of some
numbers. There can even be more than one kind of tendency. For example, if lots of the numbers were around -1000, and a similar
large amount of numbers were grouped around 1000, we could say there was two tendencies.

Variance is all about differentness: What is different about some numbers?. For example, is there anything different about all of the
numbers in the histogram? YES!!! The numbers are not all the same! When the numbers are not all the same, they must vary. So,
the variance in the numbers refers to how the numbers are different. There are many ways to summarize the amount of variance in
the numbers, and we discuss these very soon.

This page titled 2.3: Important Ideas - Distribution, Central Tendency, and Variance is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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2.4: Measures of Central Tendency (Sameness)
We’ve seen that we can get a sense of data by plotting dots in a graph, and by making a histogram. These tools show us what the
numbers look like, approximately how big and small they are, and how similar and different they are from another. It is good to get
a feeling about the numbers in this way. But, these visual sensitudes are not very precise. In addition to summarizing numbers with
graphs, we can summarize numbers using numbers (NO, please not more numbers, we promise numbers can be your friend).

From many numbers to one
Measures of central have one important summary goal: to reduce a pile of numbers to a single number that we can look at. We
already know that looking at thousands of numbers is hopeless. Wouldn’t it be nice if we could just look at one number instead? We
think so. It turns out there are lots of ways to do this. Then, if your friend ever asks the frightening question, “hey, what are all
these numbers like?”. You can say they are like this one number right here.
But, just like in Indiana Jones and the Last Crusade (highly recommended movie), you must choose your measure of central
tendency wisely.

Mode
The mode is the most frequently occurring number in your measurement. That is it. How do you find it? You have to count the
number of times each number appears in your measure, then whichever one occurs the most, is the mode.

Example: 1 1 1 2 3 4 5 6
The mode of the above set is 1, which occurs three times. Every other number only occurs once.
OK fine. What happens here:

Example: 1 1 1 2 2 2 3 4 5 6
Hmm, now 1 and 2 both occur three times each. What do we do? We say there are two modes, and they are 1 and 2.
Why is the mode a measure of central tendency? Well, when we ask, “what are my numbers like”, we can say, “most of the number
are, like a 1 (or whatever the mode is)”.
Is the mode a good measure of central tendency? That depends on your numbers. For example, consider these numbers

1 1 2 3 4 5 6 7 8 9
Here, the mode is 1 again, because there are two 1s, and all of the other numbers occur once. But, are most of the numbers like, a 1.
No, they are mostly not 1s.
“Argh, so should I or should I not use the mode? I thought this class was supposed to tell me what to do?”. There is no telling you
what to do. Every time you use a tool in statistics you have to think about what you are doing and justify why what you are doing
makes sense. Sorry.

Median
The median is the exact middle of the data. After all, we are asking about central tendency, so why not go to the center of the data
and see where we are. What do you mean middle of the data? Let’s look at these numbers:

1 5 4 3 6 7 9
Umm, OK. So, three is in the middle? Isn’t that kind of arbitrary. Yes. Before we can compute the median, we need to order the
numbers from smallest to largest.

1 3 4 5 6 7 9
Now, 5 is in the middle. And, by middle we mean in the middle. There are three numbers to the left of 5, and three numbers to the
right. So, five is definitely in the middle.
OK fine, but what happens when there aren’t an even number of numbers? Then the middle will be missing right? Let’s see:

1 2 3 4 5 6
There is no number between 3 and 4 in the data, the middle is empty. In this case, we compute the median by figuring out the
number in between 3 and 4. So, the median would be 3.5.
Is the median a good measure of central tendency? Sure, it is often very useful. One property of the median is that it stays in the
middle even when some of the other numbers get really weird. For example, consider these numbers:

1 2 3 4 4 4 5 6 6 6 7 7 1000
Most of these numbers are smallish, but the 1000 is a big old weird number, very different from the rest. The median is still 5,
because it is in the middle of these ordered numbers. We can also see that five is pretty similar to most of the numbers (except for
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1000). So, the median does a pretty good job of representing most of the numbers in the set, and it does so even if one or two of the
numbers are very different from the others.
Finally, outlier is a term will we use to describe numbers that appear in data that are very different from the rest. 1000 is an outlier,
because it lies way out there on the number line compared to the other numbers. What to do with outliers is another topic we
discuss sometimes throughout this course.

Mean
Have you noticed this is a textbook about statistics that hasn’t used a formula yet? That is about to change, but for those of you
with formula anxiety, don’t worry, we will do our best to explain them.
The mean is also called the average. And, we’re guessing you might already now what the average of a bunch of numbers is? It’s
the sum of the numbers, divided by the number of number right? How do we express that idea in a formula? Just like this:
\[ \text{Mean} = \bar{X} = \frac{\sum_{i=1}^{n} x_{i}}{N} \label{mean} \]
“That looks like Greek to me”. Yup. The \(\sum\) symbol is called sigma, and it stands for the operation of summing. The little “\
(i\)” on the bottom, and the little “\(n\)” on the top refers to all of the numbers in the set, from the first number “\(i\)” to the last
number “\(n\)”. The letters are just arbitrary labels, called variables that we use for descriptive purposes. The \(x_{i}\) refers to
individual numbers in the set. We sum up all of the numbers, then divide the sum by \(N\), which is the total number of numbers.
Sometimes you will see \(\bar{X}\) to refer to the mean of all of the numbers.
In plain English, the formula looks like:
\[\text{Mean} = \dfrac{\text{Sum of my numbers}}{\text{Count of my numbers}} \nonumber \]
“Well, why didn’t you just say that?”. We just did in Equation \ref{mean}.
Let’s compute the mean for these five numbers:

3 7 9 2 6
Add em up:

3+7+9+2+6 = 27
Count em up:

\(i_{1}\) = 3, \(i_{2}\) = 7, \(i_{3}\) = 9, \(i_{4}\) = 2, \(i_{5}\) = 6; N=5, because \(i\)
went from 1 to 5

Divide em:

mean = 27 / 5 = 5.4
Or, to put the numbers in the formula, it looks like this:
\[ \text{Mean} = \bar{X} = \frac{\sum_{i=1}^{n} x_{i}}{N} = \frac{3+7+9+2+6}{5} = \frac{27}{5} = 5.4 \nonumber \]
OK fine, that is how to compute the mean. But, like we imagined, you probably already knew that, and if you didn’t that’s OK, now
you do. What’s next?
Is the mean a good measure of central tendency? By now, you should know: it depends.

What does the mean mean?
It is not enough to know the formula for the mean, or to be able to use the formula to compute a mean for a set of numbers. We
believe in your ability to add and divide numbers. What you really need to know is what the mean really “means”. This requires
that you know what the mean does, and not just how to do it. Puzzled? Let’s explain.
Can you answer this question: What happens when you divide a sum of numbers by the number of numbers? What are the
consequences of doing this? What is the formula doing? What kind of properties does the result give us? FYI, the answer is not that
we compute the mean.
OK, so what happens when you divide any number by another number? Of course, the key word here is divide. We literally carve
the number up top in the numerator into pieces. How many times do we split the top number? That depends on the bottom number
in the denominator. Watch:
\[ \frac{12}{3} = 4 \nonumber \]
So, we know the answer is 4. But, what is really going on here is that we are slicing and dicing up 12 aren’t we. Yes, and we slicing
12 into three parts. It turns out the size of those three parts is 4. So, now we are thinking of 12 as three different pieces \(12 = 4 + 4
+ 4\). I know this will be obvious, but what kind of properties do our pieces have? You mean the fours? Yup. Well, obviously they
are all fours. Yes. The pieces are all the same size. They are all equal. So, division equalizes the numerator by the denominator…
“Umm, I think I learned this in elementary school, what does this have to do with the mean?”. The number on top of the formula
for the mean is just another numerator being divided by a denominator isn’t it. In this case, the numerator is a sum of all the values

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7894?pdf


2.4.3 https://stats.libretexts.org/@go/page/7894

in your data. What if it was the sum of all of the 500 happiness ratings? The sum of all of them would just be a single number
adding up all the different ratings. If we split the sum up into equal parts representing one part for each person’s happiness what
would we get? We would get 500 identical and equal numbers for each person. It would be like taking all of the happiness in the
world, then dividing it up equally, then to be fair, giving back the same equal amount of happiness to everyone in the world. This
would make some people more happy than they were before, and some people less happy right. Of course, that’s because it would
be equalizing the distribution of happiness for everybody. This process of equalization by dividing something into equal parts is
what the mean does. See, it’s more than just a formula. It’s an idea. This is just the beginning of thinking about these kinds of ideas.
We will come back to this idea about the mean, and other ideas, in later chapters.

Pro tip: The mean is the one and only number that can take the place of every number in
the data, such that when you add up all the equal parts, you get back the original sum of
the data.

All together now
Just to remind ourselves of the mode, median, and mean, take a look at the next histogram. We have overlaid the location of the
mean (red), median (green), and mode (blue). For this dataset, the three measures of central tendency all give different answers.
The mean is the largest because it is influenced by large numbers, even if they occur rarely. The mode and median are insensitive to
large numbers that occur infrequently, so they have smaller values.

run restart restart & run all

Figure \(\PageIndex{1}\): A histogram with the mean (red), the median (green), and the mode (blue)

This page titled 2.4: Measures of Central Tendency (Sameness) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

library(ggplot2)
my_mode <- function(x) {
  ux <- unique(x)
  ux[which.max(tabulate(match(x, ux)))]
}
exp_num<-round(rexp(1000,.15),digits=1)
qplot(exp_num, col=I("grey"), fill=I("white"), bins=30)+
  geom_vline(xintercept=mean(exp_num), color="red", size=1.5)+
  geom_vline(xintercept=median(exp_num), color="green", size=1.5)+
  geom_vline(xintercept=my_mode(exp_num), color="blue", size=1.5)+
  theme_classic()
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2.5: Measures of Variation (Differentness)
What did you do when you wrote essays in high school about a book you read? Probably compare and contrast something right?
When you summarize data, you do the same thing. Measures of central tendency give us something like comparing does, they tell
us stuff about what is the same. Measures of variation give us something like contrasting does, they tell us stuff about what is
different.

First, we note that whenever you see a bunch of numbers that aren’t the same, you already know there are some differences. This
means the numbers vary, and there is variation in the size of the numbers.

The Range
Consider these 10 numbers, that I already ordered from smallest to largest for you:

1 3 4 5 5 6 7 8 9 24

The numbers have variation, because they are not all the same. We can use the range to describe the width of the variation. The
range refers to the minimum (smallest value) and maximum (largest value) in the set. So, the range would be 1 and 24.

The range is a good way to quickly summarize the boundaries of your data in just two numbers. By computing the range we know
that none of the data is larger or smaller than the range. And, it can alert you to outliers. For example, if you are expecting your
numbers to be between 1 and 7, but you find the range is 1 - 340,500, then you know you have some big numbers that shouldn’t be
there, and then you can try to figure out why those numbers occurred (and potentially remove them if something went wrong).

The Difference Scores
It would be nice to summarize the amount of differentness in the data. Here’s why. If you thought that raw data (lots of numbers) is
too big to look at, then you will be frightened to contemplate how many differences there are to look at. For example, these 10
numbers are easy to look at:

1 3 4 5 5 6 7 8 9 24

But, what about the difference between the numbers, what do those look like? We can compute the difference scores between each
number, then put them in a matrix like the one below:

|   |   1|   3|   4|   5|   5|   6|   7|   8|   9| 24| 

|:--|---:|---:|---:|---:|---:|---:|---:|---:|---:|--:| 

|1  |   0|   2|   3|   4|   4|   5|   6|   7|   8| 23| 

|3  |  -2|   0|   1|   2|   2|   3|   4|   5|   6| 21| 

|4  |  -3|  -1|   0|   1|   1|   2|   3|   4|   5| 20| 

|5  |  -4|  -2|  -1|   0|   0|   1|   2|   3|   4| 19| 

|5  |  -4|  -2|  -1|   0|   0|   1|   2|   3|   4| 19| 

|6  |  -5|  -3|  -2|  -1|  -1|   0|   1|   2|   3| 18| 

|7  |  -6|  -4|  -3|  -2|  -2|  -1|   0|   1|   2| 17| 

|8  |  -7|  -5|  -4|  -3|  -3|  -2|  -1|   0|   1| 16| 

|9  |  -8|  -6|  -5|  -4|  -4|  -3|  -2|  -1|   0| 15| 

|24 | -23| -21| -20| -19| -19| -18| -17| -16| -15|  0|

We are looking at all of the possible differences between each number and every other number. So, in the top left, the difference
between 1 and itself is 0. One column over to the right, the difference between 3 and 1 (3-1) is 2, etc. As you can see, this is a
10x10 matrix, which means there are 100 differences to look at. Not too bad, but if we had 500 numbers, then we would have
500*500 = 250,000 differences to look at (go for it if you like looking at that sort of thing).

Pause for a simple question. What would this matrix look like if all of the 10 numbers in our data were the same number? It should
look like a bunch of 0s right? Good. In that case, we could easily see that the numbers have no variation.
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But, when the numbers are different, we can see that there is a very large matrix of difference scores. How can we summarize that?
How about we apply what we learned from the previous section on measures of central tendency. We have a lot of differences, so
we could ask something like, what is the average difference that we have? So, we could just take all of our differences, and
compute the mean difference right? What do you think would happen if we did that?

Let’s try it out on these three numbers:

1 2 3

1 2 3

1 0 1 2

2 -1 0 1

3 -2 -1 0

You might already guess what is going to happen. Let’s compute the mean:

Uh oh, we get zero for the mean of the difference scores. This will always happen whenever you take the mean of the difference
scores. We can see that there are some differences between the numbers, so using 0 as the summary value for the variation in the
numbers doesn’t make much sense.

Furthermore, you might also notice that the matrices of difference scores are redundant. The diagonal is always zero, and numbers
on one side of the diagonal are the same as the numbers on the other side, except their signs are reversed. So, that’s one reason why
the difference scores add up to zero.

These are little problems that can be solved by computing the variance and the standard deviation. For now, the standard
deviation is a just a trick that we use to avoid getting a zero. But, later we will see it has properties that are important for other
reasons.

The Variance

Variability, variation, variance, vary, variable, varying, variety. Confused yet? Before we describe the variance, we want to you be
OK with how this word is used. First, don’t forget the big picture. We know that variability and variation refers to the big idea of
differences between numbers. We can even use the word variance in the same way. When numbers are different, they have
variance.

The formulas for variance and standard deviation depend on whether you think your data represents an entire population of
numbers, or is sample from the population. We discuss this issue in later on. For now, we divide by N, later we discuss why
you will often divide by N-1 instead.

The word variance also refers to a specific summary statistic, the sum of the squared deviations from the mean. Hold on what?
Plain English please. The variance is the sum of the squared difference scores, where the difference scores are computed between
each score and the mean. What are these scores? The scores are the numbers in the data set. Let’s see the formula in English first:

Deviations from the mean, Difference scores from the mean

We got a little bit complicated before when we computed the difference scores between all of the numbers in the data. Let’s do it
again, but in a more manageable way. This time, we calculate the difference between each score and the mean. The idea here is

1. We can figure out how similar our scores are by computing the mean
2. Then we can figure out how different our scores are from the mean

mean of difference scores = = = 0

0 +1 +2 −1 +0 +1 −2 −1 +0

9

0

9

 Note

variance =

Sum of squared difference scores

Number of Scores
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This could tell us, 1) something about whether our scores are really all very close to the mean (which could help us know if the
mean is good representative number of the data), and 2) something about how much differences there are in the numbers.

Take a look at this table:

scores values mean Difference_from_Mean

1 1 4.5 -3.5

2 6 4.5 1.5

3 4 4.5 -0.5

4 2 4.5 -2.5

5 6 4.5 1.5

6 8 4.5 3.5

Sums 27 27 0

Means 4.5 4.5 0

The first column shows we have 6 scores in the data set, and the value  columns shows each score. The sum of the values, and
the mean is presented on the last two rows. The sum and the mean were obtained by:

The third column mean , appears a bit silly. We are just listing the mean once for every score. If you think back to our discussion
about the meaning of the mean, then you will remember that it equally distributes the total sum across each data point. We can see
that here, if we treat each score as the mean, then every score is a 4.5. We can also see that adding up all of the means for each
score gives us back 27, which is the sum of the original values. Also, we see that if we find the mean of the mean scores, we get
back the mean (4.5 again).

All of the action is occurring in the fourth column, Difference_from_Mean . Here, we are showing the difference scores
from the mean, using . In other words, we subtracted the mean from each score. So, the first score, 1, is -3.5 from the
mean, the second score, 6, is +1.5 from the mean, and so on.

Now, we can look at our original scores and we can look at their differences from the mean. Notice, we don’t have a matrix of raw
difference scores, so it is much easier to look at out. But, we still have a problem:

We can see that there are non-zero values in the difference scores, so we know there are a differences in the data. But, when we add
them all up, we still get zero, which makes it seem like there are a total of zero differences in the data…Why does this happen…
and what to do about it?

The mean is the balancing point in the data

One brief pause here to point out another wonderful property of the mean. It is the balancing point in the data. If you take a pen or
pencil and try to balance it on your figure so it lays flat what are you doing? You need to find the center of mass in the pen, so that
half of it is on one side, and the other half is on the other side. That’s how balancing works. One side = the other side.

We can think of data as having mass or weight to it. If we put our data on our bathroom scale, we could figure out how heavy it was
by summing it up. If we wanted to split the data down the middle so that half of the weight was equal to the other half, then we
could balance the data on top of a pin. The mean of the data tells you where to put the pin. It is the location in the data, where the
numbers on the one side add up to the same sum as the numbers on the other side.

If we think this through, it means that the sum of the difference scores from the mean will always add up to zero. This is because
the numbers on one side of the mean will always add up to -x (whatever the sum of those numbers is), and the numbers of the other
side of the mean will always add up to +x (which will be the same value only positive). And:

, right.

Right.

= = 4.5

1+6+4+2+6+8

6

27

6

−X

i

X

¯

−x+x = 0
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The squared deviations

Some devious someone divined a solution to the fact that differences scores from the mean always add to zero. Can you think of
any solutions? For example, what could you do to the difference scores so that you could add them up, and they would weigh
something useful, that is they would not be zero?

The devious solution is to square the numbers. Squaring numbers converts all the negative numbers to positive numbers. For
example, , and . Remember how squaring works, we multiply the number twice: , and 

. We use the term squared deviations to refer to differences scores that have been squared. Deviations are
things that move away from something. The difference scores move away from the mean, so we also call them deviations.

Let’s look at our table again, but add the squared deviations.

scores values mean Difference_from_Mean Squared_Deviations

1 1 4.5 -3.5 12.25

2 6 4.5 1.5 2.25

3 4 4.5 -0.5 0.25

4 2 4.5 -2.5 6.25

5 6 4.5 1.5 2.25

6 8 4.5 3.5 12.25

Sums 27 27 0 35.5

Means 4.5 4.5 0 5.91666666666667

OK, now we have a new column called squared_deviations . These are just the difference scores squared. So, 
, etc. You can confirm for yourself with your cellphone calculator.

Now that all of the squared deviations are positive, we can add them up. When we do this we create something very special called
the sum of squares (SS), also known as the sum of the squared deviations from the mean. We will talk at length about this SS later
on in the ANOVA chapter. So, when you get there, remember that you already know what it is, just some sums of some squared
deviations, nothing fancy.

Finally, the variance

Guess what, we already computed the variance. It already happened, and maybe you didn’t notice. “Wait, I missed that, what
happened?”.

First, see if you can remember what we are trying to do here. Take a pause, and see if you can tell yourself what problem we are
trying solve.

pause

Without further ado, we are trying to get a summary of the differences in our data. There are just as many difference scores from
the mean as there are data points, which can be a lot, so it would be nice to have a single number to look at, something like a mean,
that would tell us about the average differences in the data.

If you look at the table, you can see we already computed the mean of the squared deviations. First, we found the sum (SS), then
below that we calculated the mean = 5.916 repeating. This is the variance. The variance is the mean of the sum of the squared
deviations:

, where SS is the sum of the squared deviations, and N is the number of observations.

OK, now what. What do I do with the variance? What does this number mean? Good question. The variance is often an unhelpful
number to look at. Why? Because it is not in the same scale as the original data. This is because we squared the difference scores
before taking the mean. Squaring produces large numbers. For example, we see a 12.25 in there. That’s a big difference, bigger
than any difference between any two original values. What to do? How can we bring the numbers back down to their original
unsquared size?

= 42

2

− = 42

2

= 2 ∗ 2 = 42

2

− =−2 ∗−2 = 42

2

− = 12.253.5

2

variance=

SS

N
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If you are thinking about taking the square root, that’s a ding ding ding, correct answer for you. We can always unsquare anything
by taking the square root. So, let’s do that to 5.916. .

The Standard Deviation
Oops, we did it again. We already computed the standard deviation, and we didn’t tell you. The standard deviation is the square
root of the variance…At least, it is right now, until we complicate matters for you in the next chapter.

Here is the formula for the standard deviation:

We could also expand this to say:

Don’t let those big square root signs put you off. Now, you know what they are doing there. Just bringing our measure of the
variance back down to the original size of the data. Let’s look at our table again:

scores values mean Difference_from_Mean Squared_Deviations

1 1 4.5 -3.5 12.25

2 6 4.5 1.5 2.25

3 4 4.5 -0.5 0.25

4 2 4.5 -2.5 6.25

5 6 4.5 1.5 2.25

6 8 4.5 3.5 12.25

Sums 27 27 0 35.5

Means 4.5 4.5 0 5.91666666666667

We measured the standard deviation as . Notice this number fits right in the with differences scores from the mean. All
of the scores are kind of in and around + or - . Whereas, if we looked at the variance, 5.916 is just too big, it doesn’t
summarize the actual differences very well.

What does all this mean? Well, if someone told they had some number with a mean of 4.5 (like the values in our table), and a
standard deviation of , you would get a pretty good summary of the numbers. You would know that many of the
numbers are around 4.5, and you would know that not all of the numbers are 4.5. You would know that the numbers spread around
4.5. You also know that the spread isn’t super huge, it’s only + or -  on average. That’s a good starting point for
describing numbers.

If you had loads of numbers, you could reduce them down to the mean and the standard deviation, and still be pretty well off in
terms of getting a sense of those numbers.

This page titled 2.5: Measures of Variation (Differentness) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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2.6: Using Descriptive Statistics with data
Remember, you will be learning how to compute descriptive statistics using software in the labs. Check out the lab manual
exercises for descriptives to see some examples of working with real data.

This page titled 2.6: Using Descriptive Statistics with data is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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2.7: Rolling your own descriptive statistics
We spent many paragraphs talking about variation in numbers, and how to use calculate the variance and standard deviation to
summarize the average differences between numbers in a data set. The basic process was to 1) calculate some measure of the
differences, then 2) average the differences to create a summary. We found that we couldn’t average the raw difference scores,
because we would always get a zero. So, we squared the differences from the mean, then averaged the squared differences
differences. Finally, we square rooted our measure to bring the summary back down to the scale of the original numbers.

Perhaps you haven’t heard, but there is more than one way to skin a cat, but we prefer to think of this in terms of petting cats,
because some of us love cats. Jokes aside, perhaps you were also thinking that the problem of summing differences scores (so that
they don’t equal zero), can be solved in more than one way. Can you think of a different way, besides squaring?

Absolute deviations
How about just taking the absolute value of the difference scores. Remember, the absolute value converts any number to a positive
value. Check out the following table:

scores values mean Difference_from_Mean Absolute_Deviations

1 1 4.5 -3.5 3.5

2 6 4.5 1.5 1.5

3 4 4.5 -0.5 0.5

4 2 4.5 -2.5 2.5

5 6 4.5 1.5 1.5

6 8 4.5 3.5 3.5

Sums 27 27 0 13

Means 4.5 4.5 0 2.16666666666667

This works pretty well too. By converting the difference scores from the mean to positive values, we can now add them up and get
a non-zero value (if there are differences). Then, we can find the mean of the sum of the absolute deviations. If we were to map the
terms sum of squares (SS), variance and standard deviation onto these new measures based off of the absolute deviation, how
would the mapping go? For example, what value in the table corresponds to the SS? That would be the sum of absolute deviations
in the last column. How about the variance and standard deviation, what do those correspond to? Remember that the variance is
mean ( ), and the standard deviation is a square-rooted mean ( ). In the table above we only have one corresponding
mean, the mean of the sum of the absolute deviations. So, we have a variance measure that does not need to be square rooted. We
might say the mean absolute deviation, is doing double-duty as a variance and a standard-deviation. Neat.

Other sign-inverting operations

In principle, we could create lots of different summary statistics for variance that solve the summing to zero problem. For example,
we could raise every difference score to any even numbered power beyond 2 (which is the square). We could use, 4, 6, 8, 10, etc.
There is an infinity of even numbers, so there is an infinity of possible variance statistics. We could also use odd numbers as
powers, and then take their absolute value. Many things are possible. The important aspect to any of this is to have a reason for
what you are doing, and to choose a method that works for the data-analysis problem you are trying to solve. Note also, we bring
up this general issue because we want you to understand that statistics is a creative exercise. We invent things when we need them,
and we use things that have already been invented when they work for the problem at hand.

This page titled 2.7: Rolling your own descriptive statistics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

SS/N SS/N

− −−−−

√

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/16767?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02%3A_Describing_Data/2.07%3A_Rolling_your_own_descriptive_statistics
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/02%3A_Describing_Data/2.07%3A_Rolling_your_own_descriptive_statistics
https://creativecommons.org/licenses/by-sa/4.0
https://crumplab.github.io/
https://www.crumplab.com/statistics/


2.8.1 https://stats.libretexts.org/@go/page/16768

2.8: Remember to look at your data
Descriptive statistics are great and we will use them a lot in the course to describe data. You may suspect that descriptive statistics
also have some short-comings. This is very true. They are compressed summaries of large piles of numbers. They will almost
always be unable to represent all of the numbers fairly. There are also different kinds of descriptive statistics that you could use,
and it sometimes not clear which one’s you should use.
Perhaps the most important thing you can do when using descriptives is to use them in combination with looking at the data in a
graph form. This can help you see whether or not your descriptives are doing a good job of representing the data.

Anscombe’s Quartet
To hit this point home, and to get you thinking about the issues we discuss in the next chapter, check this out. It’s called
Anscombe’s Quartet, because these interesting graphs and numbers and numbers were produced by Anscombe (1973). You are
looking at pairs of measurements. Each graph has an X and Y axis, and each point represents two measurements. Each of the
graphs looks very different, right?

run restart restart & run all

Well, would you be surprised if I told that the descriptive statistics for the numbers in these graphs are exactly the same? It turns
out they do have the same descriptive statistics. In the table below I present the mean and variance for the x-values in each graph,

library(data.table)
library(ggplot2)
ac <- fread("https://stats.libretexts.org/@api/deki/files/10478/anscombe.txt")
ac<-as.data.frame(ac)
ac_long<-data.frame(x=c(ac[,1],
                        ac[,3],
                        ac[,5],
                        ac[,7]),
                    y=c(ac[,2],
                        ac[,4],
                        ac[,6],
                        ac[,8]),
                    quartet = as.factor(rep(1:4,each=11))
                        )
ggplot(ac_long, aes(x=x, y=y, color=quartet))+
  geom_point()+
  theme_classic()+
  facet_wrap(~quartet)
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and the mean and the variance for the y-values in each graph.

quartet mean_x var_x mean_y var_y

1 9 11 7.500909 4.127269

2 9 11 7.500909 4.127629

3 9 11 7.500000 4.122620

4 9 11 7.500909 4.123249

The descriptives are all the same! Anscombe put these special numbers together to illustrate the point of graphing your numbers. If
you only look at your descriptives, you don’t know what patterns in the data they are hiding. If you look at the graph, then you can
get a better understanding.

Datasaurus Dozen
If you thought that Anscombe’s quartet was neat, you should take a look at the Datasaurus Dozen (Matejka and Fitzmaurice 2017).
Scroll down to see the examples. You will be looking at dot plots. The dot plots show many different patterns, including dinosaurs!
What’s amazing is that all of the dots have very nearly the same descriptive statistics. Just another reminder to look at your data, it
might look like a dinosaur!
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2.9: Videos

Measures of center: Mode

(https://www.youtube.com/watch?v=hQ2p-QQpGso)

Measures of center: Median and Mean
(https://www.youtube.com/watch?v=BopmCXCjq08)

Standard deviation part I
(https://www.youtube.com/watch?v=8Yguf93s5dI)

Measures of Center, Part OneMeasures of Center, Part One

Measures of Center, Part TwoMeasures of Center, Part Two

Measures of VariationMeasures of Variation
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Standard deviation part II
(https://www.youtube.com/watch?v=KodmsOXScBc)

2.9: Videos is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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CHAPTER OVERVIEW

3: Correlation
Chapter by Matthew Crump

Correlation does not equal causation

— Every Statistics and Research Methods Instructor Ever

In the last chapter we had some data. It was too much too look at and it didn’t make sense. So, we talked about how to look at the
data visually using plots and histograms, and we talked about how to summarize lots of numbers so we could determine their
central tendencies (sameness) and variability (differentness). And, all was well with the world.

Let’s not forget the big reason why we learned about descriptive statistics. The big reason is that we are interested in getting
answers to questions using data.

If you are looking for a big theme to think about while you take this course, the theme is: how do we ask and answer questions
using data?

For every section in this book, you should be connecting your inner monologue to this question, and asking yourself: How does
what I am learning about help me answer questions with data? Advance warning: we know it is easy to forget this stuff when we
dive into the details, and we will try to throw you a rope to help you out along the way…remember, we’re trying to answer
questions with data.

We started Chapter two with some fake data on human happiness, remember? We imagined that we asked a bunch of people to tell
us how happy they were, then we looked at the numbers they gave us. Let’s continue with this imaginary thought experiment.

What do you get when you ask people to use a number to describe how happy they are? A bunch of numbers. What kind of
questions can you ask about those numbers? Well, you can look at the numbers and estimate their general properties as we already
did. We would expect those numbers tell us some things we already know. There are different people, and different people are
different amounts of happy. You’ve probably met some of those of really happy people, and really unhappy people, and you
yourself probably have some amount of happiness. “Great, thanks Captain Obvious”.

Before moving on, you should also be skeptical of what the numbers might mean. For example, if you force people to give a
number between 0-100 to rate their happiness, does this number truly reflect how happy that person is? Can a person know how
happy they are? Does the question format bias how they give their answer? Is happiness even a real thing? These are all good
questions about the validity of the construct (happiness itself) and the measure (numbers) you are using to quantify it. For now,
though, we will side-step those very important questions, and assume that, happiness is a thing, and our measure of happiness
measures something about how happy people are.

OK then, after we have measured some happiness, I bet you can think of some more pressing questions. For example, what causes
happiness to go up or down. If you knew the causes of happiness what could you do? How about increase your own happiness; or,
help people who are unhappy; or, better appreciate why Eeyore from Winnie the Pooh is unhappy; or, present valid scientific
arguments that argue against incorrect claims about what causes happiness. A causal theory and understanding of happiness could
be used for all of those things. How can we get there?

Imagine you were an alien observer. You arrived on earth and heard about this thing called happiness that people have. You want to
know what causes happiness. You also discover that planet earth has lots of other things. Which of those things, you wonder, cause
happiness? How would your alien-self get started on this big question.

As a person who has happiness, you might already have some hunches about what causes changes in happiness. For example things
like: weather, friends, music, money, education, drugs, books, movies, beliefs, personality, color of your shoes, eyebrow length,
number of cat’s you see per day, frequency of subway delay, a lifetime supply of chocolate, etcetera etcetera (as Willy Wonka
would say), might all contribute to happiness in someway. There could be many different causes of happiness.

3.1: If something caused something else to change, what would that look like?
3.2: Pearson’s r
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3.3: Turning the numbers into a measure of co-variance
3.4: Examples with Data
3.5: Regression — A mini intro
3.6: Interpreting Correlations
3.7: Summary
3.8: References

This page titled 3: Correlation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via
source content that was edited to the style and standards of the LibreTexts platform.
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3.1: If something caused something else to change, what would that look like?
Before we go around determining the causes of happiness, we should prepare ourselves with some analytical tools so that we could
identify what causation looks like. If we don’t prepare ourselves for what we might find, then we won’t know how to interpret our
own data. Instead, we need to anticipate what the data could look like. Specifically, we need to know what data would look like
when one thing does not cause another thing, and what data would look like when one thing does cause another thing. This chapter
does some of this preparation. Fair warning: we will find out some tricky things. For example, we can find patterns that look like
one thing is causing another, even when that one thing DOES NOT CAUSE the other thing. Hang in there.

Charlie and the Chocolate factory
Let’s imagine that a person’s supply of chocolate has a causal influence on their level of happiness. Let’s further imagine that, like
Charlie, the more chocolate you have the more happy you will be, and the less chocolate you have, the less happy you will be.
Finally, because we suspect happiness is caused by lots of other things in a person’s life, we anticipate that the relationship between
chocolate supply and happiness won’t be perfect. What do these assumptions mean for how the data should look?
Our first step is to collect some imaginary data from 100 people. We walk around and ask the first 100 people we meet to answer
two questions:

1. how much chocolate do you have, and
2. how happy are you.

For convenience, both the scales will go from 0 to 100. For the chocolate scale, 0 means no chocolate, 100 means lifetime supply
of chocolate. Any other number is somewhere in between. For the happiness scale, 0 means no happiness, 100 means all of the
happiness, and in between means some amount in between.
Here is some sample data from the first 10 imaginary subjects.

subject chocolate happiness

1 1 1

2 1 1

3 2 2

4 2 4

5 4 5

6 4 5

7 7 5

8 8 5

9 8 6

10 9 6

We asked each subject two questions so there are two scores for each subject, one for their chocolate supply, and one for their level
of happiness. You might already notice some relationships between amount of chocolate and level of happiness in the table. To
make those relationships even more clear, let’s plot all of the data in a graph.

Scatter plots
When you have two measurements worth of data, you can always turn them into dots and plot them in a scatter plot. A scatter plot
has a horizontal x-axis, and a vertical y-axis. You get to choose which measurement goes on which axis. Let’s put chocolate supply
on the x-axis, and happiness level on the y-axis. The plot below shows 100 dots for each subject.
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run restart restart & run all

Figure \(\PageIndex{1}\): Imaginary data showing a positive correlation between amount of chocolate and amount happiness.
You might be wondering, why are there only 100 dots for the data. Didn’t we collect 100 measures for chocolate, and 100 measures
for happiness, shouldn’t there be 200 dots? Nope. Each dot is for one subject, there are 100 subjects, so there are 100 dots.
What do the dots mean? Each dot has two coordinates, an x-coordinate for chocolate, and a y-coordinate for happiness. The first
dot, all the way on the bottom left is the first subject in the table, who had close to 0 chocolate and close to zero happiness. You can
look at any dot, then draw a straight line down to the x-axis: that will tell you how much chocolate that subject has. You can draw a
straight line left to the y-axis: that will tell you how much happiness the subject has.
Now that we are looking at the scatter plot, we can see many things. The dots are scattered around a bit aren’t they, hence scatter
plot. Even when the dot’s don’t scatter, they’re still called scatter plots, perhaps because those pesky dots in real life have so much
scatter all the time. More important, the dots show a relationship between chocolate supply and happiness. Happiness is lower for
people with smaller supplies of chocolate, and higher for people with larger supplies of chocolate. It looks like the more chocolate
you have the happier you will be, and vice-versa. This kind of relationship is called a positive correlation.

Positive, Negative, and No-Correlation
Seeing as we are in the business of imagining data, let’s imagine some more. We’ve already imagined what data would look like if
larger chocolate supplies increase happiness. We’ll show that again in a bit. What do you imagine the scatter plot would look like if
the relationship was reversed, and larger chocolate supplies decreased happiness. Or, what do you imagine the scatter plot would
look like if there was no relationship, and the amount of chocolate that you have doesn’t do anything to your happiness. We invite
your imagination to look at these graphs:

library(ggplot2)
subject<-1:100
chocolate<-round(1:100*runif(100,.5,1))
happiness<-round(1:100*runif(100,.5,1))
the_df_CC<-data.frame(subject,chocolate,happiness)
ggplot(the_df_CC,aes(x=chocolate,y=happiness))+
  geom_point()+
  theme_classic()
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run restart restart & run all

Figure \(\PageIndex{2}\): Three scatterplots showing negative, positive, and zero correlation.
The first panel shows a negative correlation. Happiness goes down as chocolate supply increases. Negative correlation occurs when
one thing goes up and the other thing goes down; or, when more of X is less of Y, and vice-versa. The second panel shows a
positive correlation. Happiness goes up as chocolate as chocolate supply increases. Positive correlation occurs when both things go
up together, and go down together: more of X is more of Y, and vice-versa. The third panel shows no correlation. Here, there
doesn’t appear to be any obvious relationship between chocolate supply and happiness. The dots are scattered all over the place, the
truest of the scatter plots.

We are wading into the idea that measures of two things can be related, or correlated with one another. It is possible for the
relationships to be more complicated than just going up, or going down. For example, we could have a relationship that where
the dots go up for the first half of X, and then go down for the second half.

 Note

library(ggplot2)
subject_x<-1:100
chocolate_x<-round(1:100*runif(100,.5,1))
happiness_x<-round(1:100*runif(100,.5,1))
df_positive<-data.frame(subject_x,chocolate_x,happiness_x)
subject_x<-1:100
chocolate_x<-round(1:100*runif(100,.5,1))
happiness_x<-round(100:1*runif(100,.5,1))
df_negative<-data.frame(subject_x,chocolate_x,happiness_x)
subject_x<-1:100
chocolate_x<-round(runif(100,0,100))
happiness_x<-round(runif(100,0,100))
df_random<-data.frame(subject_x,chocolate_x,happiness_x)
all_data<-rbind(df_positive,df_negative,df_random)
all_data<-cbind(all_data,correlation=rep(c("positive","negative","random"),each=100))
ggplot(all_data,aes(x=chocolate_x,y=happiness_x))+
  geom_point()+
  theme_classic()+
  facet_wrap(~correlation)+
  xlab("chocolate supply")+
  ylab("happiness")
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Zero correlation occurs when one thing is not related in any way to another things: changes in X do not relate to any changes in Y,
and vice-versa.

This page titled 3.1: If something caused something else to change, what would that look like? is shared under a CC BY-SA 4.0 license and was
authored, remixed, and/or curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts
platform.
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3.2: Pearson’s r
If Beyoncé was a statistician, she might look at these scatter plots and want to “put a number on it”. We think this is a good idea
too. We’ve already learned how to create descriptive statistics for a single measure, like chocolate, or happiness (i.e., means,
variances, etc.). Is it possible to create a descriptive statistic that summarized the relationship between two measures, all in one
number? Can it be done? Karl Pearson to the rescue.

The stories about the invention of various statistics are very interesting, you can read more about them in the book, “The Lady
Tasting Tea” (Salsburg 2001)

There’s a statistic for that, and Karl Pearson invented it. Everyone now calls it, “Pearson’s ”. We will find out later that Karl
Pearson was a big-wig editor at Biometrika in the 1930s. He took a hating to another big-wig statistician, Sir Ronald Fisher (who
we learn about later), and they had some stats fights…why can’t we all just get along in statistics.

How does Pearson’s  work? Let’s look again at the first 10 subjects in our fake experiment:

subject chocolate happiness

1 1 1

2 2 2

3 2 3

4 3 3

5 3 3

6 5 5

7 4 6

8 5 5

9 9 5

10 6 9

Sums 40 42

Means 4 4.2

What could we do to these numbers to produce a single summary value that represents the relationship between the chocolate
supply and happiness?

The idea of co-variance
“Oh please no, don’t use the word variance again”. Yes, we’re doing it, we’re going to use the word variance again, and again, until
it starts making sense. Remember what variance means about some numbers. It means the numbers have some change in them,
they are not all the same, some of them are big, some are small. We can see that there is variance in chocolate supply across the 10
subjects. We can see that there is variance in happiness across the 10 subjects. We also saw in the scatter plot, that happiness
increases as chocolate supply increases; which is a positive relationship, a positive correlation. What does this have to do with
variance? Well, it means there is a relationship between the variance in chocolate supply, and the variance in happiness levels. The
two measures vary together don’t they? When we have two measures that vary together, they are like a happy couple who share
their variance. This is what co-variance refers to, the idea that the pattern of varying numbers in one measure is shared by the
pattern of varying numbers in another measure.

Co-variance is very, very, very ,very important. We suspect that the word co-variance is initially confusing, especially if you are
not yet fully comfortable with the meaning of variance for a single measure. Nevertheless, we must proceed and use the idea of co-

 Note

r

r
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variance over and over again to firmly implant it into your statistical mind (we already said, but redundancy works, it’s a thing).

Pro tip: Three-legged race is a metaphor for co-variance. Two people tie one leg to each
other, then try to walk. It works when they co-vary their legs together (positive
relationship). They can also co-vary in an unhelpful way, when one person tries to move
forward exactly when the other person tries to move backward. This is still co-variance
(negative relationship). Funny random walking happens when there is no co-variance.
This means one person does whatever they want, and so does the other person. There is a
lot of variance, but the variance is shared randomly, so it’s just a bunch of legs moving
around accomplishing nothing.

Pro tip #2: Succesfully playing paddycake occurs when two people coordinate their
actions so they have postively shared co-variance.

This page titled 3.2: Pearson’s r is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via
source content that was edited to the style and standards of the LibreTexts platform.
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3.3: Turning the numbers into a measure of co-variance
“OK, so if you are saying that co-variance is just another word for correlation or relationship between two measures, I’m good with
that. I suppose we would need some way to measure that.” Correct, back to our table…notice anything new?

subject chocolate happiness Chocolate_X_Happiness

1 1 1 1

2 2 2 4

3 2 3 6

4 3 3 9

5 3 3 9

6 5 5 25

7 4 6 24

8 5 5 25

9 9 5 45

10 6 9 54

Sums 40 42 202

Means 4 4.2 20.2

We’ve added a new column called “Chocolate_X_Happiness”, which translates to Chocolate scores multiplied by Happiness
scores. Each row in the new column, is the product, or multiplication of the chocolate and happiness score for that row. Yes, but
why would we do this?
Last chapter we took you back to Elementary school and had you think about division. Now it’s time to do the same thing with
multiplication. We assume you know how that works. One number times another, means taking the first number, and adding it as
many times as the second says to do,
\( 2*2= 2+2=4 \nonumber \)
\(2*6= 2+2+2+2+2+2 = 12\), or \(6+6=12\), same thing.
Yes, you know all that. But, can you bend multiplication to your will, and make it do your bidding when need to solve a problem
like summarizing co-variance? Multiplication is the droid you are looking for.
We know how to multiple numbers, and all we have to next is think about the consequences of multiplying sets of numbers
together. For example, what happens when you multiply two small numbers together, compared to multiplying two big numbers
together? The first product should be smaller than the second product right? How about things like multiplying a small number by a
big number? Those products should be in between right?.
Then next step is to think about how the products of two measures sum together, depending on how they line up. Let’s look at
another table:

scores X Y A B XY AB

1 1 1 1 10 1 10

2 2 2 2 9 4 18

3 3 3 3 8 9 24

4 4 4 4 7 16 28

5 5 5 5 6 25 30

6 6 6 6 5 36 30

7 7 7 7 4 49 28
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scores X Y A B XY AB

8 8 8 8 3 64 24

9 9 9 9 2 81 18

10 10 10 10 1 100 10

Sums 55 55 55 55 385 220

Means 5.5 5.5 5.5 5.5 38.5 22

Look at the X and Y column. The scores for X and Y perfectly co-vary. When X is 1, Y is 1; when X is 2, Y is 2, etc. They are
perfectly aligned. The scores for A and B also perfectly co-vary, just in the opposite manner. When A is 1, B is 10; when A is 2, B
is 9, etc. B is a reversed copy of A.
Now, look at the column \(XY\). These are the products we get when we multiply the values of X across with the values of Y. Also,
look at the column \(AB\). These are the products we get when we multiply the values of A across with the values of B. So far so
good.
Now, look at the Sums  for the XY and AB columns. Not the same. The sum of the XY products is 385, and the sum of the AB
products is 220. For this specific set of data, the numbers 385 and 220 are very important. They represent the biggest possible sum
of products (385), and the smallest possible sum of products (220). There is no way of re-ordering the numbers 1 to 10, say for X,
and the numbers 1 to 10 for Y, that would ever produce larger or smaller numbers. Don’t believe me? Check this out:

run restart restart & run all

library(ggplot2)
simulated_sums<-length(0)
for(sim in 1:1000){
    X<-sample(1:10)
    Y<-sample(1:10)
    simulated_sums[sim]<-sum(X*Y)
}
sim_df<-data.frame(sims=1:1000,simulated_sums)
ggplot(sim_df,aes(x=sims,y=simulated_sums))+
  geom_point()+
  theme_classic()+
  geom_hline(yintercept = 385)+
  geom_hline(yintercept = 220)
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The above graph shows 1000 computer simulations. I convinced my computer to randomly order the numbers 1 to 10 for X, and
randomly order the numbers 1 to 10 for Y. Then, I multiplied X and Y, and added the products together. I did this 1000 times. The
dots show the sum of the products for each simulation. The two black lines show the maximum possible sum (385), and the
minimum possible sum (220), for this set of numbers. Notice, how all of the dots are in between the maximum and minimum
possible values. Told you so.
“OK fine, you told me so…So what, who cares?”. We’ve been looking for a way to summarize the co-variance between two
measures right? Well, for these numbers, we have found one, haven’t we. It’s the sum of the products. We know that when the sum
of the products is 385, we have found a perfect, positive correlation. We know, that when the sum of the products is 220, we have
found a perfect negative correlation. What about the numbers in between. What could we conclude about the correlation if we
found the sum of the products to be 350. Well, it’s going to be positive, because it’s close to 385, and that’s perfectly positive. If the
sum of the products was 240, that’s going to be negative, because it’s close to the perfectly negatively correlating 220. What about
no correlation? Well, that’s going to be in the middle between 220 and 385 right.
We have just come up with a data-specific summary measure for the correlation between the numbers 1 to 10 in X, and the
numbers 1 to 10 in Y, it’s the sum of the products. We know the maximum (385) and minimum values (220), so we can now
interpret any product sum for this kind of data with respect to that scale.

Pro tip: When the correlation between two measures increases in the positive direction,
the sum of their products increases to its maximum possible value. This is because the
bigger numbers in X will tend to line up with the bigger numbers in Y, creating the biggest
possible sum of products. When the correlation between two measures increases in the
negative direction, the sum of their products decreases to its minimum possible value.
This is because the bigger numbers in X will tend to line up with the smaller numbers in Y,
creating the smallest possible sum of products. When there is no correlation, the big
numbers in X will be randomly lined up with the big and small numbers in Y, making the
sum of the products, somewhere in the middle.

Co-variance, the measure
We took some time to see what happens when you multiply sets of numbers together. We found that \( \textit{big} * \textit{big} =
\text{bigger} \) and \( \textit{small} * \textit{small} = \text{still small}\), and \( \textit{big} * \textit{small} = \text{in the
middle}\). The purpose of this was to give you some conceptual idea of how the co-variance between two measures is reflected in
the sum of their products. We did something very straightforward. We just multiplied X with Y, and looked at how the product
sums get big and small, as X and Y co-vary in different ways.
Now, we can get a little bit more formal. In statistics, co-variance is not just the straight multiplication of values in X and Y.
Instead, it’s the multiplication of the deviations in X from the mean of X, and the deviation in Y from the mean of Y. Remember
those difference scores from the mean we talked about last chapter? They’re coming back to haunt you know, but in a good way
like Casper the friendly ghost.
Let’s see what this look like in a table:

subject chocolate happiness C_d H_d Cd_x_Hd

1 1 1 -3 -3.2 9.6

2 2 2 -2 -2.2 4.4

3 2 3 -2 -1.2 2.4

4 3 3 -1 -1.2 1.2

5 3 3 -1 -1.2 1.2

6 5 5 1 0.8 0.8

7 4 6 0 1.8 0

8 5 5 1 0.8 0.8

9 9 5 5 0.8 4
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subject chocolate happiness C_d H_d Cd_x_Hd

10 6 9 2 4.8 9.6

Sums 40 42 0 0 34

Means 4 4.2 0 0 3.4

We have computed the deviations from the mean for the chocolate scores (column C_d ), and the deviations from the mean for
the happiness scores (column H_d ). Then, we multiplied them together (last column). Finally, you can see the mean of the
products listed in the bottom right corner of the table, the official the covariance.
The formula for the co-variance is:
\[ cov(X,Y) = \frac{\sum_{i}^{n}(x_{i}-\bar{X})(y_{i}-\bar{Y})}{N} \nonumber \]
OK, so now we have a formal single number to calculate the relationship between two variables. This is great, it’s what we’ve been
looking for. However, there is a problem. Remember when we learned how to compute just the plain old variance. We looked at
that number, and we didn’t know what to make of it. It was squared, it wasn’t in the same scale as the original data. So, we square
rooted the variance to produce the standard deviation, which gave us a more interpretable number in the range of our data. The co-
variance has a similar problem. When you calculate the co-variance as we just did, we don’t know immediately know its scale. Is a
3 big? is a 6 big? is a 100 big? How big or small is this thing?
From our prelude discussion on the idea of co-variance, we learned the sum of products between two measures ranges between a
maximum and minimum value. The same is true of the co-variance. For a given set of data, there is a maximum possible positive
value for the co-variance (which occurs when there is perfect positive correlation). And, there is a minimum possible negative
value for the co-variance (which occurs when there is a perfect negative correlation). When there is zero co-variation, guess what
happens. Zeroes. So, at the very least, when we look at a co-variation statistic, we can see what direction it points, positive or
negative. But, we don’t know how big or small it is compared to the maximum or minimum possible value, so we don’t know the
relative size, which means we can’t say how strong the correlation is. What to do?

Pearson’s r we there yet
Yes, we are here now. Wouldn’t it be nice if we could force our measure of co-variation to be between -1 and +1?
-1 would be the minimum possible value for a perfect negative correlation. +1 would be the maximum possible value for a perfect
positive correlation. 0 would mean no correlation. Everything in between 0 and -1 would be increasingly large negative
correlations. Everything between 0 and +1 would be increasingly large positive correlations. It would be a fantastic, sensible, easy
to interpret system. If only we could force the co-variation number to be between -1 and 1. Fortunately, for us, this episode is
brought to you by Pearson’s \(r\), which does precisely this wonderful thing.
Let’s take a look at a formula for Pearson’s \(r\):
\[r = \frac{cov(X,Y)}{\sigma_{X}\sigma_{Y}} = \frac{cov(X,Y)}{SD_{X}SD_{Y}} \nonumber \]
We see the symbol \(\sigma\) here, that’s more Greek for you. \(\sigma\) is often used as a symbol for the standard deviation (SD).
If we read out the formula in English, we see that r is the co-variance of X and Y, divided by the product of the standard deviation
of X and the standard deviation of Y. Why are we dividing the co-variance by the product of the standard deviations. This operation
has the effect of normalizing the co-variance into the range -1 to 1.

But, we will fill this part in as soon as we can…promissory note to explain the magic. FYI, it’s not magic. Brief explanation
here is that dividing each measure by its standard deviation ensures that the values in each measure are in the same range as
one another.

For now, we will call this mathematical magic. It works, but we don’t have space to tell you why it works right now.

It’s worth saying that there are loads of different formulas for computing Pearson’s \(r\).
You can find them by Googling them. We will probably include more of them here, when
we get around to it. However, they all give you the same answer. And, they are all not as
pretty as each other. Some of them might even look scary. In other statistics textbook you
will often find formulas that are easier to use for calculation purposes. For example, if

 Note
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you only had a pen and paper, you might use one or another formula because it helps you
compute the answer faster by hand. To be honest, we are not very interested in teaching
you how to plug numbers into formulas. We give one lesson on that here: Put the numbers
into the letters, then compute the answer. Sorry to be snarky. Nowadays you have a
computer that you should use for this kind of stuff. So, we are more interested in teaching
you what the calculations mean, rather than how to do them. Of course, every week we
are showing you how to do the calculations in lab with computers, because that is
important to.

Does Pearson’s \(r\) really stay between -1 and 1 no matter what? It’s true, take a look at the following simulation. Here I randomly
ordered the numbers 1 to 10 for an X measure, and did the same for a Y measure. Then, I computed Pearson’s \(r\), and repeated
this process 1000 times. As you can see all of the dots are between -1 and 1. Neat huh.

run restart restart & run all

Figure \(\PageIndex{1}\): A simulation of of correlations. Each dot represents the r-value for the correlation between an X and Y
variable that each contain the numbers 1 to 10 in random orders. The figure ilustrates that many r-values can be obtained by this
random process.

This page titled 3.3: Turning the numbers into a measure of co-variance is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

library(ggplot2)
simulated_sums <- length(0)
for(sim in 1:1000){
  X <- sample(1:10)
  Y <- sample(1:10)
  simulated_sums[sim] <- cor(X,Y)
}
sim_df <- data.frame(sims=1:1000,simulated_sums)
ggplot(sim_df, aes(x = sims, y = simulated_sums))+
  geom_point()+
  theme_classic()+
  geom_hline(yintercept = -1)+
  geom_hline(yintercept = 1)+
  ggtitle("Simulation of 1000 r values")
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3.4: Examples with Data
In the lab for correlation you will be shown how to compute correlations in real data-sets using software. To give you a brief
preview, let's look at some data from the world happiness report (2018). This report measured various attitudes across people from
different countries. For example, one question asked about how much freedom people thought they had to make life choices.
Another question asked how confident people were in their national government. Here is a scatterplot showing the relationship
between these two measures. Each dot represents means for different countries.

run restart restart & run all

Figure \(\PageIndex{1}\): Relationship between freedom to make life choices and confidence in national government. Data from
the world happiness report for 2018.

We put a blue line on the scatterplot to summarize the positive relationship. It appears that as “freedom to make life choices goes
up”, so to does confidence in national government. It’s a positive correlation.
The actual correlation, as measured by Pearson’s \(r\) is:

library(data.table)
library(ggplot2)
suppressPackageStartupMessages(library(dplyr))
whr_data <- fread("https://stats.libretexts.org/@api/deki/files/10477/WHR2018.csv")
# select DVs and filter for NAs
smaller_df <- whr_data %>%
               dplyr::select(country,
                      `Freedom to make life choices`,
                      `Confidence in national government`) %>%
               dplyr::filter(!is.na(`Freedom to make life choices`),
                      !is.na(`Confidence in national government`))
# plot the data with best fit line
ggplot(smaller_df, aes(x=`Freedom to make life choices`,
                     y=`Confidence in national government`))+
  geom_point(alpha=.5)+
  geom_smooth(method=lm, se=FALSE, formula=y ~ x)+
  theme_classic()

library(data.table)
suppressPackageStartupMessages(library(dplyr))
whr_data <- fread("https://stats.libretexts.org/@api/deki/files/10477/WHR2018.csv")
# select DVs and filter for NAs
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run restart restart & run all

You will do a lot more of this kind of thing in the lab. Looking at the graph you might start to wonder: Does freedom to make life
choices cause changes how confident people are in their national government? Our does it work the other way? Does being
confident in your national government give you a greater sense of freedom to make life choices? Or, is this just a random
relationship that doesn’t mean anything? All good questions. These data do not provide the answers, they just suggest a possible
relationship.

This page titled 3.4: Examples with Data is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.
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smaller_df <- whr_data %>%
               dplyr::select(country,
                      `Freedom to make life choices`,
                      `Confidence in national government`) %>%
               dplyr::filter(!is.na(`Freedom to make life choices`),
                      !is.na(`Confidence in national government`))
# calculate correlation
cor(smaller_df$`Freedom to make life choices`,
    smaller_df$`Confidence in national government`)
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3.5: Regression — A mini intro
We’re going to spend the next little bit adding one more thing to our understanding of correlation. It’s called linear regression. It
sounds scary, and it really is. You’ll find out much later in your Statistics education that everything we will be soon be talking
about can be thought of as a special case of regression. But, we don’t want to scare you off, so right now we just introduce the basic
concepts.
First, let’s look at a linear regression. This way we can see what we’re trying to learn about. Here’s some scatter plots, same one’s
you’ve already seen. But, we’ve added something new! Lines.

run restart restart & run all

Figure \(\PageIndex{1}\): Three scatterplots showing negative, positive, and a random correlation (where the r-value is expected to
be 0), along with the best fit regression line

library(ggplot2)
subject_x<-1:100
chocolate_x<-round(1:100*runif(100,.5,1))
happiness_x<-round(1:100*runif(100,.5,1))
df_positive<-data.frame(subject_x,chocolate_x,happiness_x)
subject_x<-1:100
chocolate_x<-round(1:100*runif(100,.5,1))
happiness_x<-round(100:1*runif(100,.5,1))
df_negative<-data.frame(subject_x,chocolate_x,happiness_x)
subject_x<-1:100
chocolate_x<-round(runif(100,0,100))
happiness_x<-round(runif(100,0,100))
df_random<-data.frame(subject_x,chocolate_x,happiness_x)
all_data<-rbind(df_positive,df_negative,df_random)
all_data<-cbind(all_data,correlation=rep(c("positive","negative","random"),each=100))
ggplot(all_data,aes(x=chocolate_x,y=happiness_x))+
  geom_point()+
  theme_classic()+
  geom_smooth(method="lm",se=F,formula=y ~ x)+
  facet_wrap(~correlation)+
  xlab("chocolate supply")+
  ylab("happiness")
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The best fit line
Notice anything about these blue lines? Hopefully you can see, at least for the first two panels, that they go straight through the
data, just like a kebab skewer. We call these lines best fit lines, because according to our definition (soon we promise) there are no
other lines that you could draw that would do a better job of going straight throw the data.
One big idea here is that we are using the line as a kind of mean to describe the relationship between the two variables. When we
only have one variable, that variable exists on a single dimension, it’s 1D. So, it is appropriate that we only have one number, like
the mean, to describe it’s central tendency. When we have two variables, and plot them together, we now have a two-dimensional
space. So, for two dimensions we could use a bigger thing that is 2d, like a line, to summarize the central tendency of the
relationship between the two variables.
What do we want out of our line? Well, if you had a pencil, and a printout of the data, you could draw all sorts of straight lines any
way you wanted. Your lines wouldn’t even have to go through the data, or they could slant through the data with all sorts of angles.
Would all of those lines be very good a describing the general pattern of the dots? Most of them would not. The best lines would go
through the data following the general shape of the dots. Of the best lines, however, which one is the best? How can we find out,
and what do we mean by that? In short, the best fit line is the one that has the least error.

R code for plotting residuals thanks to Simon Jackson’s blog post: https://drsimonj.svbtle.com/visualising-residuals

Check out this next plot, it shows a line through some dots. But, it also shows some teeny tiny lines. These lines drop down from
each dot, and they land on the line. Each of these little lines is called a residual. They show you how far off the line is for different
dots. It’s measure of error, it shows us just how wrong the line is. After all, it’s pretty obvious that not all of the dots are on the line.
This means the line does not actually represent all of the dots. The line is wrong. But, the best fit line is the least wrong of all the
wrong lines.

 Note
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run restart restart & run all

Figure \(\PageIndex{2}\): Black dots represent data points. The blue line is the best fit regression line. The white dots are repesent
the predicted location of each black dot. The red lines show the error between each black dot and the regression line. The blue line
is the best fit line because it minimizes the error shown by the red lines.

There’s a lot going on in this graph. First, we are looking at a scatter plot of two variables, an X and Y variable. Each of the black
dots are the actual values from these variables. You can see there is a negative correlation here, as X increases, Y tends to decrease.
We drew a regression line through the data, that’s the blue line. There’s these little white dots too. This is where the line thinks the

library(ggplot2)
d <- mtcars
fit <- lm(mpg ~ hp, data = d)
d$predicted <- predict(fit)   # Save the predicted values
d$residuals <- residuals(fit) # Save the residual values
ggplot(d, aes(x = hp, y = mpg)) +
  geom_smooth(method = "lm", se = FALSE,
              color = "lightblue", formula=y ~ x) +  # Plot regression slope
  geom_segment(aes(xend = hp, yend = predicted,
                   color="red"), alpha = .5) +  # alpha to fade lines
  geom_point() +
  geom_point(aes(y = predicted), shape = 1) +
  theme_classic()+
  theme(legend.position="none")+
  xlab("X")+ylab("Y")
# Quick look at the actual, predicted, and residual values
#library(dplyr)
#d %>% select(mpg, predicted, residuals) %>% head()
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black dots should be. The red lines are the important residuals we’ve been talking about. Each black dot has a red line that drops
straight down, or straight up from the location of the black dot, and lands directly on the line. We can already see that many of the
dots are not on the line, so we already know the line is “off” by some amount for each dot. The red line just makes it easier to see
exactly how off the line is.
The important thing that is happening here, is that the the blue line is drawn is such a way, that it minimizes the total length of the
red lines. For example, if we wanted to know how wrong this line was, we could simply gather up all the red lines, measure how
long they are, and then add all the wrongness together. This would give us the total amount of wrongness. We usually call this the
error. In fact, we’ve already talked about this idea before when we discussed standard deviation. What we will actually be doing
with the red lines, is computing the sum of the squared deviations from the line. That sum is the total amount of error. Now, this
blue line here minimizes the sum of the squared deviations. Any other line would produce a larger total error.
Here’s an animation to see this in action. The animations compares the best fit line in blue, to some other possible lines in black.
The black line moves up and down. The red lines show the error between the black line and the data points. As the black line
moves toward the best fit line, the total error, depicted visually by the grey area shrinks to it’s minimum value. The total error
expands as the black line moves away from the best fit line.

Figure \(\PageIndex{3}\): The blue line is the best fit regression line explaining the co-variation among the black dots. The black
line moves up and down showing alternative lines that could be drawn. The red lines show the amount of error between each data
point and the black line. The total amount of error is depicted by the shaded grey area. The size of the grey area expands as the
black line moves away from the best fit line, and shrinks to a minimum as the black line moves toward the best fit line.

Whenever the black line does not overlap with the blue line, it is worse than the best fit line. The blue regression line is like
Goldilocks, it’s just right, and it’s in the middle.
This next graph shows a little simulation of how the sum of squared deviations (the sum of the squared lengths of the red lines)
behaves as we move the line up and down. What’s going on here is that we are computing a measure of the total error as the black
line moves through the best fit line. This represents the sum of the squared deviations. In other words, we square the length of each
red line from the above animation, then we add up all of the squared red lines, and get the total error (the total sum of the squared
deviations). The graph below shows what the total error looks like as the black line approaches then moves away from the best fit
line. Notice, the dots in this graph start high on the left side, then they swoop down to a minimum at the bottom middle of the
graph. When they reach their minimum point, we have found a line that minimizes the total error. This is the best fit regression line.
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run restart restart & run all

Figure \(\PageIndex{4}\): A plot of the sum of the squared deviations for different lines moving up and down, through the best fit
line. The best fit line occurs at the position that minimizes the sum of the sqaured deviations.

OK, so we haven’t talked about the y-intercept yet. But, what this graph shows us is how the total error behaves as we move the
line up and down. The y-intercept here is the thing we change that makes our line move up and down. As you can see the dots go
up when we move the line down from 0 to -5, and the dots go up when we move the line up from 0 to +5. The best line, that
minimizes the error occurs right in the middle, when we don’t move the blue regression line at all.

library(ggplot2)
d <- mtcars
fit <- lm(mpg ~ hp, data = d)
d$predicted <- predict(fit)   # Save the predicted values
d$residuals <- residuals(fit) # Save the residual values
coefs<-coef(lm(mpg ~ hp, data = mtcars))
#coefs[1]
#coefs[2]
x<-d$hp
move_line<-seq(-5,5,.5)
total_error<-c(length(move_line))
cnt<-0
for(i in move_line){
  cnt<-cnt+1
  predicted_y <- coefs[2]*x + coefs[1]+i
  error_y <- (predicted_y-d$mpg)^2
  total_error[cnt]<-sum(error_y)
}
df<-data.frame(move_line,total_error)
ggplot(df,aes(x=move_line,y=total_error))+
  geom_point()+
  theme_classic()+
  ylab("sum of squared deviations")+
  xlab("change to y-intercept")
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Lines
OK, fine you say. So, there is one magic line that will go through the middle of the scatter plot and minimize the sum of the
squared deviations. How do I find this magic line? We’ll show you. But, to be completely honest, you’ll almost never do it the way
we’ll show you here. Instead, it’s much easier to use software and make your computer do it for. You’ll learn how to that in the
labs.
Before we show you how to find the regression line, it’s worth refreshing your memory about how lines work, especially in 2
dimensions. Remember this?
\(y = ax + b\), or also \(y = mx + b\) (sometimes a or m is used for the slope)
This is the formula for a line. Another way of writing it is:
\[y = slope * x + \text{y-intercept} \nonumber \]
The slope is the slant of the line, and the y-intercept is where the line crosses the y-axis. Let’s look at some lines:

run restart restart & run all

Figure \(\PageIndex{5}\): Two different lines with different y-intercepts (where the line crosses the y-axis), and different slopes. A
positive slope makes the line go up from left to right. A negative slope makes the line go down from left to right.

So there is two lines. The formula for the blue line is \(y = 1*x + 5\). Let’s talk about that. When x = 0, where is the blue line on the
y-axis? It’s at five. That happens because 1 times 0 is 0, and then we just have the five left over. How about when x = 5? In that
case y =10. You just need the plug in the numbers to the formula, like this:
\[y = 1*x + 5 \nonumber \]
\[y = 1*5 + 5 = 5+5 =10 \nonumber \]
The point of the formula is to tell you where y will be, for any number of x. The slope of the line tells you whether the line is going
to go up or down, as you move from the left to the right. The blue line has a positive slope of one, so it goes up as x goes up. How
much does it go up? It goes up by one for everyone one of x! If we made the slope a 2, it would be much steeper, and go up faster.
The red line has a negative slope, so it slants down. This means \(y\) goes down, as \(x\) goes up. When there is no slant, and we
want to make a perfectly flat line, we set the slope to 0. This means that y doesn’t go anywhere as x gets bigger and smaller.
That’s lines.

library(ggplot2)
ggplot()+
  geom_abline(slope=1,intercept=5,color="blue")+
  geom_abline(slope=-1, intercept=15, color="red")+
  lims(x = c(1,20), y = c(0,20))+
  theme_classic()

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7902?pdf


3.5.7 https://stats.libretexts.org/@go/page/7902

Computing the best fit line
If you have a scatter plot showing the locations of scores from two variables, the real question is how can you find the slope and the
y-intercept for the best fit line? What are you going to do? Draw millions of lines, add up the residuals, and then see which one was
best? That would take forever. Fortunately, there are computers, and when you don’t have one around, there’s also some handy
formulas.

It’s worth pointing out just how much computers have changed everything. Before computers everyone had to do these
calculations by hand, such a chore! Aside from the deeper mathematical ideas in the formulas, many of them were made for
convenience, to speed up hand calculations, because there were no computers. Now that we have computers, the hand
calculations are often just an exercise in algebra. Perhaps they build character. You decide.

We’ll show you the formulas. And, work through one example by hand. It’s the worst, we know. By the way, you should feel sorry
for me as I do this entire thing by hand for you.
Here are two formulas we can use to calculate the slope and the intercept, straight from the data. We won’t go into why these
formulas do what they do. These ones are for “easy” calculation.
\[intercept = b = \frac{\sum{y}\sum{x^2}-\sum{x}\sum{xy}}{n\sum{x^2}-(\sum{x})^2} \nonumber \]
\[slope = m = \frac{n\sum{xy}-\sum{x}\sum{y}}{n\sum{x^2}-(\sum{x})^2} \nonumber \]
In these formulas, the \(x\) and the \(y\) refer to the individual scores. Here’s a table showing you how everything fits together.

run restart restart & run all

scores x y x_squared y_squared xy

1 1 2 1 4 2

2 4 5 16 25 20

3 3 1 9 1 3

4 6 8 36 64 48

5 5 6 25 36 30

6 7 8 49 64 56

7 8 9 64 81 72

Sums 34 39 200 275 231

We see 7 sets of scores for the x and y variable. We calculated \(x^2\) by squaring each value of x, and putting it in a column. We
calculated \(y^2\) by squaring each value of y, and putting it in a column. Then we calculated \(xy\), by multiplying each \(x\) score

 Note

suppressPackageStartupMessages(library(dplyr))
scores<-c(1,2,3,4,5,6,7)
x<-c(1,4,3,6,5,7,8)
y<-c(2,5,1,8,6,8,9)
x_squared<-x^2
y_squared<-y^2
xy<-x*y
all_df<-data.frame(scores,x,y,x_squared,y_squared,xy)
all_df <- all_df %>%
  rbind(c("Sums",colSums(all_df[1:7,2:6]))) 
slope=((sum(y)*sum(x_squared))-(sum(x)*sum(xy)))/((7*sum(x_squared))-sum(x)^2)
intercept=(7*sum(xy)-sum(x)*sum(y))/(7*sum(x_squared)-sum(x)^2)
knitr::kable(all_df)
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with each \(y\) score, and put that in a column. Then we added all the columns up, and put the sums at the bottom. These are all the
number we need for the formulas to find the best fit line. Here’s what the formulas look like when we put numbers in them:
\[intercept = b = \frac{\sum{y}\sum{x^2}-\sum{x}\sum{xy}}{n\sum{x^2}-(\sum{x})^2} = \frac{39 * 200 - 34*231}{7*200-
34^2} = -.221 \nonumber \]
\[slope = m = \frac{n\sum{xy}-\sum{x}\sum{y}}{n\sum{x^2}-(\sum{x})^2} = \frac{7*231-34*39}{7*275-34^2} = 1.19
\nonumber \]
Great, now we can check our work, let’s plot the scores in a scatter plot and draw a line through it with slope = 1.19, and a y-
intercept of -.221. It should go through the middle of the dots.

run restart restart & run all

Figure \(\PageIndex{6}\): An example regression line with confidence bands going through a few data points in a scatterplot.

run restart restart & run all

This page titled 3.5: Regression — A mini intro is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J.
C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

(Intercept):  -0.221311475409834 x:  1.19262295081967

library(ggplot2)
x<-c(1,4,3,6,5,7,8)
y<-c(2,5,1,8,6,8,9)
plot_df<-data.frame(x,y)
ggplot(plot_df,aes(x=x,y=y))+
  geom_point()+
  geom_smooth(method="lm",se=FALSE, formula=y ~ x)+
  theme_classic()

x<-c(1,4,3,6,5,7,8)
y<-c(2,5,1,8,6,8,9)
plot_df<-data.frame(x,y)
coef(lm(y~x,plot_df))
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3.6: Interpreting Correlations
What does the presence or the absence of a correlation between two measures mean? How should correlations be interpreted? What
kind of inferences can be drawn from correlations? These are all very good questions. A first piece of advice is to use caution when
interpreting correlations. Here’s why.

Correlation does not equal causation
Perhaps you have heard that correlation does not equal causation. Why not? There are lots of reasons why not. However, before
listing some of the reasons let’s start with a case where we would expect a causal connection between two measurements. Consider,
buying a snake plant for your home. Snake plants are supposed to be easy to take care of because you can mostly ignore them.
Like most plants, snake plants need some water to stay alive. However, they also need just the right amount of water. Imagine an
experiment where 1000 snake plants were grown in a house. Each snake plant is given a different amount of water per day, from
zero teaspoons of water per day to 1000 teaspoons of water per day. We will assume that water is part of the causal process that
allows snake plants to grow. The amount of water given to each snake plant per day can also be one of our measures. Imagine
further that every week the experimenter measures snake plant growth, which will be the second measurement. Now, can you
imagine for yourself what a scatter plot of weekly snake plant growth by tablespoons of water would look like?

Even when there is causation, there might not be obvious correlation
The first plant given no water at all would have a very hard time and eventually die. It should have the least amount of weekly
growth. How about the plants given only a few teaspoons of water per day. This could be just enough water to keep the plants alive,
so they will grow a little bit but not a lot. If you are imagining a scatter plot, with each dot being a snake plant, then you should
imagine some dots starting in the bottom left hand corner (no water & no plant growth), moving up and to the right (a bit of water,
and a bit of growth). As we look at snake plants getting more and more water, we should see more and more plant growth, right?
“Sure, but only up to a point”. Correct, there should be a trend for a positive correlation with increasing plant growth as amount of
water per day increases. But, what happens when you give snake plants too much water? From personal experience, they die. So, at
some point, the dots in the scatter plot will start moving back down again. Snake plants that get way too much water will not grow
very well.
The imaginary scatter plot you should be envisioning could have an upside U shape. Going from left to right, the dot’s go up, they
reach a maximum, then they go down again reaching a minimum. Computing Pearson’s \(r\) for data like this can give you \(r\)
values close to zero. The scatter plot could look something like this:
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run restart restart & run all

Figure \(\PageIndex{1}\): Illustration of a possible relationship between amount of water and snake plant growth. Growth goes up
with water, but eventually goes back down as too much water makes snake plants die.

Granted this looks more like an inverted V, than an inverted U, but you get the picture right? There is clearly a relationship between
watering and snake plant growth. But, the correlation isn’t in one direction. As a result, when we compute the correlation in terms
of Pearson’s r, we get a value suggesting no relationship.

library(ggplot2)
water<-seq(0,999,1)
growth<-c(seq(0,10,(10/499)),seq(10,0,-(10/499)))
noise<-runif(1000,-2,2)
growth<-growth+noise
snake_df<-data.frame(growth,water)
ggplot(snake_df, aes(x=water,y=growth))+
  geom_point()+
  theme_classic()+
  xlab("Water (teaspoons)")+
  ggtitle("Imaginary snake plant growth \n as a function of water")

water<-seq(0,999,1)
growth<-c(seq(0,10,(10/499)),seq(10,0,-(10/499)))
noise<-runif(1000,-2,2)
growth<-growth+noise
cor(growth,water)
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run restart restart & run all

What this really means is there is no linear relationship that can be described by a single straight line. When we need lines or
curves going in more than one direction, we have a nonlinear relationship.
This example illustrates some conundrums in interpreting correlations. We already know that water is needed for plants to grow, so
we are rightly expecting there to be a relationship between our measure of amount of water and plant growth. If we look at the first
half of the data we see a positive correlation, if we look at the last half of the data we see a negative correlation, and if we look at
all of the data we see no correlation. Yikes. So, even when there is a causal connection between two measures, we won’t
necessarily obtain clear evidence of the connection just by computing a correlation coefficient.

Pro Tip: This is one reason why plotting your data is so important. If you see an upside U
shape pattern, then a correlation analysis is probably not the best analysis for your data.

Confounding variable, or Third variable problem
Anybody can correlate any two things that can be quantified and measured. For example, we could find a hundred people, ask them
all sorts of questions like:

1. how happy are you
2. how old are you
3. how tall are you
4. how much money do you make per year
5. how long are your eyelashes
6. how many books have you read in your life
7. how loud is your inner voice

Let’s say we found a positive correlation between yearly salary and happiness. Note, we could have just as easily computed the
same correlation between happiness and yearly salary. If we found a correlation, would you be willing to infer that yearly salary
causes happiness? Perhaps it does play a small part. But, something like happiness probably has a lot of contributing causes.
Money could directly cause some people to be happy. But, more likely, money buys people access to all sorts of things, and some
of those things might contribute happiness. These “other” things are called third variables. For example, perhaps people living in
nicer places in more expensive houses are more happy than people in worse places in cheaper houses. In this scenario, money isn’t
causing happiness, it’s the places and houses that money buys. But, even is this were true, people can still be more or less happy in
lots of different situations.
The lesson here is that a correlation can occur between two measures because of a third variable that is not directly measured. So,
just because we find a correlation, does not mean we can conclude anything about a causal connection between two measurements.

Correlation and Random chance
Another very important aspect of correlations is the fact that they can be produced by random chance. This means that you can find
a positive or negative correlation between two measures, even when they have absolutely nothing to do with one another. You
might have hoped to find zero correlation when two measures are totally unrelated to each other. Although this certainly happens,
unrelated measures can accidentally produce spurious correlations, just by chance alone.
Let’s demonstrate how correlations can occur by chance when there is no causal connection between two measures. Imagine two
participants. One is at the North pole with a lottery machine full of balls with numbers from 1 to 10. The other is at the south pole
with a different lottery machine full of balls with numbers from 1 to 10. There are an endless supply of balls in the machine, so
every number could be picked for any ball. Each participant randomly chooses 10 balls, then records the number on the ball. In this
situation we will assume that there is no possible way that balls chosen by the first participant could causally influence the balls
chosen by the second participant. They are on the other side of the world. We should assume that the balls will be chosen by chance
alone.
Here is what the numbers on each ball could look like for each participant:

-0.0051489425461363

Ball<-1:10
North_pole<-round(round(runif(10,1,10)))
South_pole<-round(round(runif(10,1,10)))
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Ball North_pole South_pole

1 3 1

2 7 7

3 8 8

4 6 9

5 4 6

6 10 10

7 2 2

8 5 8

9 2 5

10 2 3

In this one case, if we computed Pearson's \(r\), we would find that \(r = \)

run restart restart & run all

But, we already know that this value does not tell us anything about the relationship between the balls chosen in the north and south
pole. We know that relationship should be completely random, because that is how we set up the game.
The better question here is to ask what can random chance do? For example, if we ran our game over and over again thousands of
times, each time choosing new balls, and each time computing the correlation, what would we find? First, we will find fluctuation.
The r value will sometimes be positive, sometimes be negative, sometimes be big and sometimes be small. Second, we will see
what the fluctuation looks like. This will give us a window into the kinds of correlations that chance alone can produce. Let's see
what happens.

Monte-carlo simulation of random correlations
It is possible to use a computer to simulate our game as many times as we want. This process is often termed monte-carlo
simulation.
Below is a script written for the programming language R. We won't go into the details of the code here. However, let's briefly
explain what is going on. Notice, the part that says for(sim in 1:1000) . This creates a loop that repeats our game 1000
times. Inside the loop there are variables named North_pole  and South_pole . During each simulation, we sample 10
random numbers (between 1 to 10) into each variable. These random numbers stand for the numbers that would have been on the
balls from the lottery machine. Once we have 10 random numbers for each, we then compute the correlation using
cor(North_pole,South_pole) . Then, we save the correlation value and move on to the next simulation. At the end, we

will have 1000 individual Pearson \( r \) values.

0.0803444730711034

the_df_balls<-data.frame(Ball,North_pole,South_pole)
#the_df_balls <- the_df_balls %>%
#  rbind(c("Sums",colSums(the_df_balls[1:10,2:3]))) %>%
#  rbind(c("Means",colMeans(the_df_balls[1:10,2:3])))
knitr::kable(the_df_balls)

North_pole<-round(round(runif(10,1,10)))
South_pole<-round(round(runif(10,1,10)))
cor(North_pole,South_pole)
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Figure \(\PageIndex{2}\): Another figure showing a range of r-values that can be obtained by chance.
Let’s take a look at all of the 1000 Pearson \(r\) values. Does the figure below look familiar to you? It should, we have already
conducted a similar kind of simulation before. Each dot in the scatter plot shows the Pearson \(r\) for each simulation from 1 to
1000. As you can see the dots are all over of the place, in between the range -1 to 1. The important lesson here is that random
chance produced all of these correlations. This means we can find “correlations” in the data that are completely meaningless, and
do not reflect any causal relationship between one measure and another.
Let’s illustrate the idea of finding “random” correlations one more time, with a little movie. This time, we will show you a scatter
plot of the random values sampled for the balls chosen from the North and South pole. If there is no relationship we should see dots
going everywhere. If there happens to be a positive relationship (purely by chance), we should see the dots going from the bottom
left to the top right. If there happens to be a negative relationship (purely by chance), we should see the dots going from the top left
down to the bottom right.
On more thing to prepare you for the movie. There are three scatter plots below, showing negative, positive, and zero correlations
between two variables. You’ve already seen this graph before. We are just reminding you that the blue lines are helpful for seeing
the correlation.Negative correlations occur when a line goes down from the top left to bottom right. Positive correlations occur
when a line goes up from the bottom left to the top right. Zero correlations occur when the line is flat (doesn’t go up or down).

library(ggplot2)
simulated_correlations <- length(0)
for(sim in 1:1000){
  North_pole <- runif(10,1,10)
  South_pole <- runif(10,1,10)
  simulated_correlations[sim] <- cor(North_pole,South_pole)
}
sim_df <- data.frame(sims=1:1000,simulated_correlations)
ggplot(sim_df, aes(x = sims, y = simulated_correlations))+
  geom_point()+
  theme_classic()+
  geom_hline(yintercept = -1)+
  geom_hline(yintercept = 1)+
  ggtitle("Simulation of 1000 r values")
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Figure \(\PageIndex{3}\): A reminder of what positive, negative, and zero correlation looks like.
OK, now we are ready for the movie. You are looking at the process of sampling two sets of numbers randomly, one for the X
variable, and one for the Y variable. Each time we sample 10 numbers for each, plot them, then draw a line through them.
Remember, these numbers are all completely random, so we should expect, on average that there should be no correlation between
the numbers. However, this is not what happens. You can the line going all over the place. Sometimes we find a negative
correlation (line goes down), sometimes we see a positive correlation (line goes up), and sometimes it looks like zero correlation
(line is more flat).

Figure \(\PageIndex{4}\): Completely random data points drawn from a uniform distribution with a small sampl-size of 10. The
blue line twirls around sometimes showing large correlations that are produced by chance.

You might be thinking this is kind of disturbing. If we know that there should be no correlation between two random variables, how
come we are finding correlations? This is a big problem right? I mean, if someone showed me a correlation between two things,

library(ggplot2)
subject_x<-1:100
chocolate_x<-round(1:100*runif(100,.5,1))
happiness_x<-round(1:100*runif(100,.5,1))
df_positive<-data.frame(subject_x,chocolate_x,happiness_x)
subject_x<-1:100
chocolate_x<-round(1:100*runif(100,.5,1))
happiness_x<-round(100:1*runif(100,.5,1))
df_negative<-data.frame(subject_x,chocolate_x,happiness_x)
subject_x<-1:100
chocolate_x<-round(runif(100,0,100))
happiness_x<-round(runif(100,0,100))
df_random<-data.frame(subject_x,chocolate_x,happiness_x)
all_data<-rbind(df_positive,df_negative,df_random)
all_data<-cbind(all_data,correlation=rep(c("positive","negative","random"),each=100))
ggplot(all_data,aes(x=chocolate_x,y=happiness_x))+
  geom_point()+
  geom_smooth(method=lm,se=FALSE, formula=y ~ x)+
  theme_classic()+
  facet_wrap(~correlation)+
  xlab("chocolate supply")+
  ylab("happiness")
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and then claimed one thing was related to another, how could know I if it was true. After all, it could be chance! Chance can do that
too.
Fortunately, all is not lost. We can look at our simulated data in another way, using a histogram. Remember, just before the movie,
we simulated 1000 different correlations using random numbers. By, putting all of those \( r \) values into a histogram, we can get a
better sense of how chance behaves. We can see what kind of correlations chance is likely or unlikely to produce. Here is a
histogram of the simulated \( r \) values.
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Figure \(\PageIndex{5}\): A histogram showing the frequency distribution of \(r\)-values for completely random values between an
X and Y variable (sample-size=10). A rull range of \(r\)-values can be obtained by chance alone. Larger \(r\)-values are less
common than smaller \(r\)-values.

Notice that this histogram is not flat. Most of the simulated \(r\) values are close to zero. Notice, also that the bars get smaller as
you move away from zero in the positive or negative direction. The general take home here is that chance can produce a wide range
of correlations. However, not all correlations happen very often. For example, the bars for -1 and 1 are very small. Chance does not
produce nearly perfect correlations very often. The bars around -.5 and .5 are smaller than the bars around zero, as medium
correlations do not occur as often as small correlations by chance alone.
You can think of this histogram as the window of chance. It shows what chance often does, and what it often does not do. If you
found a correlation under these very same circumstances (e.g., measured the correlation between two sets of 10 random numbers),
then you could consult this window. What should you ask the window? How about, could my observed correlation (the one that
you found in your data) have come from this window. Let’s say you found a correlation of \(r = .1\). Could a .1 have come from the
histogram? Well, look at the histogram around where the .1 mark on the x-axis is. Is there a big bar there? If so, this means that
chance produces this value fairly often. You might be comfortable with the inference: Yes, this .1 could have been produced by
chance, because it is well inside the window of chance. How about \(r = .5\)? The bar is much smaller here, you might think, “well,
I can see that chance does produce .5 some times, so chance could have produced my .5. Did it? Maybe, maybe not, not sure”.
Here, your confidence in a strong inference about the role of chance might start getting a bit shakier.
How about an \(r = .95\)?. You might see that the bar for .95 is very very small, perhaps too small to see. What does this tell you? It
tells you that chance does not produce .95 very often, hardly if at all, pretty much never. So, if you found a .95 in your data, what
would you infer? Perhaps you would be comfortable inferring that chance did not produce your .95, after .95 is mostly outside the
window of chance.

simulated_correlations <- length(0)
for(sim in 1:1000){
  North_pole <- runif(10,1,10)
  South_pole <- runif(10,1,10)
  simulated_correlations[sim] <- cor(North_pole,South_pole)
}
hist(simulated_correlations,breaks=seq(-1,1,.1))
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Increasing sample-size decreases opportunity for spurious correlation
Before moving on, let’s do one more thing with correlations. In our pretend lottery game, each participant only sampled 10 balls
each. We found that this could lead to a range of correlations between the numbers randomly drawn from either sides of the pole.
Indeed, we even found some correlations that were medium to large in size. If you were a researcher who found such correlations,
you might be tempted to believe there was a relationship between your measurements. However, we know in our little game, that
those correlations would be spurious, just a product of random sampling.
The good news is that, as a researcher, you get to make the rules of the game. You get to determine how chance can play. This is all
a little bit metaphorical, so let’s make it concrete.
We will see what happens in four different scenarios. First, we will repeat what we already did. Each participant will draw 10 balls,
then we compute the correlation, and do this over 1000 times and look at a histogram. Second, we will change the game so each
participant draws 50 balls each, and then repeat our simulation. Third, and fourth, we will change the game so each participant
draws 100 balls each, and then 1000 balls each, and repeat etc.
The graph below shows four different histograms of the Pearson \(r\) values in each of the different scenarios. Each scenario
involves a different sample-size, from, 10, 50, 100 to 1000.
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Figure \(\PageIndex{6}\): Four histograms showing the frequency distributions of \(r\)-values between completely random X and Y
variables as a function of sample-size. The width of the distributions shrink as sample-size increases. Smaller sample-sizes are
more likely to produce a wider range of \(r\)-values by chance. Larger sample-sizes always produce a narrow range of small \(r\)-
values.

library(ggplot2)
all_df<-data.frame()
for(s_size in  c(10,50,100,1000)){
  simulated_correlations <- length(0)
  for(sim in 1:1000){
    North_pole <- runif(s_size,1,10)
    South_pole <- runif(s_size,1,10)
    simulated_correlations[sim] <- cor(North_pole,South_pole)
  }
sim_df <- data.frame(sample_size=rep(s_size,1000),sims=1:1000,simulated_correlations)
all_df<-rbind(all_df,sim_df)
}
ggplot(all_df,aes(x=simulated_correlations))+
  geom_histogram(bins=30)+
  facet_wrap(~sample_size)+
  theme_classic()
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By inspecting the four histograms you should notice a clear pattern. The width or range of each histogram shrinks as the sample-
size increases. What is going on here? Well, we already know that we can think of these histograms as windows of chance. They
tell us which \(r\) values occur fairly often, which do not. When our sample-size is 10, lots of different \(r\) values happen. That
histogram is very flat and spread out. However, as the sample-size increases, we see that the window of chance gets pulled in. For
example, by the time we get to 1000 balls each, almost all of the Pearson \(r\) values are very close to 0.
One take home here, is that increasing sample-size narrows the window of chance. So, for example, if you ran a study involving
1000 samples of two measures, and you found a correlation of .5, then you can clearly see in the bottom right histogram that .5
does not occur very often by chance alone. In fact, there is no bar, because it didn't happen even once in the simulation. As a result,
when you have a large sample size like n = 1000, you might be more confident that your observed correlation (say of .5) was not a
spurious correlation. If chance is not producing your result, then something else is.
Finally, notice how your confidence about whether or not chance is mucking about with your results depends on your sample size.
If you only obtained 10 samples per measurement, and found \( r = .5 \), you should not be as confident that your correlation
reflects a real relationship. Instead, you can see that \( r \)'s of .5 happen fairly often by chance alone.

Pro tip: when you run an experiment you get to decide how many samples you will
collect, which means you can choose to narrow the window of chance. Then, if you find a
relationship in the data you can be more confident that your finding is real, and not just
something that happened by chance.

Some more movies
Let's ingrain these idea with some more movies. When our sample-size is small (N is small), sampling error can cause all sort
"patterns" in the data. This makes it possible, and indeed common, for "correlations" to occur between two sets of numbers. When
we increase the sample-size, sampling error is reduced, making it less possible for "correlations" to occur just by chance alone.
When N is large, chance has less of an opportunity to operate.

Watching how correlation behaves when there is no correlation
Below we randomly sample numbers for two variables, plot them, and show the correlation using a line. There are four panels,
each showing the number of observations in the samples, from 10, 50, 100, to 1000 in each sample.
Remember, because we are randomly sampling numbers, there should be no relationship between the X and Y variables. But, as we
have been discussing, because of chance, we can sometimes observe a correlation (due to chance). The important thing to watch is
how the line behaves across the four panels. The line twirls around in all directions when the sample size is 10. It is also moves
around quite a bit when the sample size is 50 or 100. It still moves a bit when the sample size is 1000, but much less. In all cases
we expect that the line should be flat, but every time we take new samples, sometimes the line shows us pseudo patterns.

Figure \(\PageIndex{7}\): Animation of how correlation behaves for completely random X and Y variables as a function of sample
size. The best fit line is not very stable for small sample-sizes, but becomes more reliably flat as sample-size increases.
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Which line should you trust? Well, hopefully you can see that the line for 1000 samples is the most stable. It tends to be very flat
every time, and it does not depend so much on the particular sample. The line with 10 observations per sample goes all over the
place. The take home here, is that if someone told you that they found a correlation, you should want to know how many
observations they hand in their sample. If they only had 10 observations, how could you trust the claim that there was a correlation?
You can’t!!! Not now that you know samples that are that small can do all sorts of things by chance alone. If instead, you found out
the sample was very large, then you might trust that finding a little bit more. For example, in the above movie you can see that
when there are 1000 samples, we never see a strong or weak correlation; the line is always flat. This is because chance almost
never produces strong correlations when the sample size is very large.
In the above example, we sampled numbers random numbers from a uniform distribution. Many examples of real-world data will
come from a normal or approximately normal distribution. We can repeat the above, but sample random numbers from the same
normal distribution. There will still be zero actual correlation between the X and Y variables, because everything is sampled
randomly. But, we still see the same behavior as above. The computed correlation for small sample-sizes fluctuate wildly, and large
sample sizes do not.

Figure \(\PageIndex{8}\): Animation of correlation for random values sampled from a normal distribution, rather than a uniform
distribution.

OK, so what do things look like when there actually is a correlation between variables?

Watching correlations behave when there really is a correlation
Sometimes there really are correlations between two variables that are not caused by chance. Below, we get to watch a movie of
four scatter plots. Each shows the correlation between two variables. Again, we change the sample-size in steps of 10, 50 100, and
1000. The data have been programmed to contain a real positive correlation. So, we should expect that the line will be going up
from the bottom left to the top right. However, there is still variability in the data. So this time, sampling error due to chance will
fuzz the correlation. We know it is there, but sometimes chance will cause the correlation to be eliminated.
Notice that in the top left panel (sample-size 10), the line is twirling around much more than the other panels. Every new set of
samples produces different correlations. Sometimes, the line even goes flat or downward. However, as we increase sample-size, we
can see that the line doesn’t change very much, it is always going up showing a positive correlation.

Figure \(\PageIndex{9}\): How correlation behaves as a function of sample-size when there is a true correlation between X and Y
variables.

The main takeaway here is that even when there is a positive correlation between two things, you might not be able to see it if your
sample size is small. For example, you might get unlucky with the one sample that you measured. Your sample could show a
negative correlation, even when the actual correlation is positive! Unfortunately, in the real world we usually only have the sample
that we collected, so we always have to wonder if we got lucky or unlucky. Fortunately, if you want to remove luck, all you need to
do is collect larger samples. Then you will be much more likely to observe the real pattern, rather the pattern that can be introduced
by chance.
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3.7: Summary
In this section we have talked about correlation, and started to build some intuitions about inferential statistics, which is the major
topic of the remaining chapters. For now, the main ideas are:

1. We can measure relationships in data using things like correlation
2. The correlations we measure can be produced by numerous things, so they are hard to to interpret
3. Correlations can be produced by chance, so have the potential to be completely meaningless.
4. However, we can create a model of exactly what chance can do. The model tells us whether chance is more or less likely to

produce correlations of different sizes
5. We can use the chance model to help us make decisions about our own data. We can compare the correlation we found in our

data to the model, then ask whether or not chance could have or was likely to have produced our results.

This page titled 3.7: Summary is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via
source content that was edited to the style and standards of the LibreTexts platform.
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4.0: Prelude to Probability, Sampling, and Estimation

I have studied many languages-French, Spanish and a little Italian, but no one told me
that Statistics was a foreign language.

—Charmaine J. Forde

Sections 4.1 & 4.9 - Adapted text by Danielle Navarro.

Section 4.10 - 4.11 & 4.13 - Mix of Matthew Crump & Danielle Navarro.

Section 4.12-4.13 - Adapted text by Danielle Navarro.

Up to this point in the book, we’ve discussed some of the key ideas in experimental design, and we’ve talked a little about how you
can summarize a data set. To a lot of people, this is all there is to statistics: it’s about calculating averages, collecting all the
numbers, drawing pictures, and putting them all in a report somewhere. Kind of like stamp collecting, but with numbers. However,
statistics covers much more than that. In fact, descriptive statistics is one of the smallest parts of statistics, and one of the least
powerful. The bigger and more useful part of statistics is that it provides tools that let you make inferences about data.

Once you start thinking about statistics in these terms – that statistics is there to help us draw inferences from data – you start
seeing examples of it everywhere. For instance, here’s a tiny extract from a newspaper article in the Sydney Morning Herald (30
Oct 2010):

“I have a tough job,” the Premier said in response to a poll which found her government
is now the most unpopular Labor administration in polling history, with a primary vote of
just 23 per cent.

This kind of remark is entirely unremarkable in the papers or in everyday life, but let’s have a think about what it entails. A polling
company has conducted a survey, usually a pretty big one because they can afford it. I’m too lazy to track down the original survey,
so let’s just imagine that they called 1000 voters at random, and 230 (23%) of those claimed that they intended to vote for the party.
For the 2010 Federal election, the Australian Electoral Commission reported 4,610,795 enrolled voters in New South Whales; so
the opinions of the remaining 4,609,795 voters (about 99.98% of voters) remain unknown to us. Even assuming that no-one lied to
the polling company the only thing we can say with 100% confidence is that the true primary vote is somewhere between
230/4610795 (about 0.005%) and 4610025/4610795 (about 99.83%). So, on what basis is it legitimate for the polling company, the
newspaper, and the readership to conclude that the ALP primary vote is only about 23%?

The answer to the question is pretty obvious: if I call 1000 people at random, and 230 of them say they intend to vote for the ALP,
then it seems very unlikely that these are the only 230 people out of the entire voting public who actually intend to do so. In other
words, we assume that the data collected by the polling company is pretty representative of the population at large. But how
representative? Would we be surprised to discover that the true ALP primary vote is actually 24%? 29%? 37%? At this point
everyday intuition starts to break down a bit. No-one would be surprised by 24%, and everybody would be surprised by 37%, but
it’s a bit hard to say whether 29% is plausible. We need some more powerful tools than just looking at the numbers and guessing.

Inferential statistics provides the tools that we need to answer these sorts of questions, and since these kinds of questions lie at the
heart of the scientific enterprise, they take up the lions share of every introductory course on statistics and research methods.
However, our tools for making statistical inferences are 1) built on top of probability theory, and 2) require an understanding of
how samples behave when you take them from distributions (defined by probability theory…). So, this chapter has two main parts.
A brief introduction to probability theory, and an introduction to sampling from distributions.

4.0: Prelude to Probability, Sampling, and Estimation is shared under a not declared license and was authored, remixed, and/or curated by
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4.1: How are Probability and Statistics Different?
Before we start talking about probability theory, it’s helpful to spend a moment thinking about the relationship between probability
and statistics. The two disciplines are closely related but they’re not identical. Probability theory is “the doctrine of chances”. It’s a
branch of mathematics that tells you how often different kinds of events will happen. For example, all of these questions are things
you can answer using probability theory:

What are the chances of a fair coin coming up heads 10 times in a row?
If I roll two six sided dice, how likely is it that I’ll roll two sixes?
How likely is it that five cards drawn from a perfectly shuffled deck will all be hearts?
What are the chances that I’ll win the lottery?

Notice that all of these questions have something in common. In each case the “truth of the world” is known, and my question
relates to the “what kind of events” will happen. In the first question I know that the coin is fair, so there’s a 50% chance that any
individual coin flip will come up heads. In the second question, I know that the chance of rolling a 6 on a single die is 1 in 6. In the
third question I know that the deck is shuffled properly. And in the fourth question, I know that the lottery follows specific rules.
You get the idea. The critical point is that probabilistic questions start with a known model of the world, and we use that model to
do some calculations.

The underlying model can be quite simple. For instance, in the coin flipping example, we can write down the model like this: 
 which you can read as “the probability of heads is 0.5”.

As we’ll see later, in the same way that percentages are numbers that range from 0% to 100%, probabilities are just numbers that
range from 0 to 1. When using this probability model to answer the first question, I don’t actually know exactly what’s going to
happen. Maybe I’ll get 10 heads, like the question says. But maybe I’ll get three heads. That’s the key thing: in probability theory,
the model is known, but the data are not.

So that’s probability. What about statistics? Statistical questions work the other way around. In statistics, we know the truth about
the world. All we have is the data, and it is from the data that we want to learn the truth about the world. Statistical questions tend
to look more like these:

If my friend flips a coin 10 times and gets 10 heads, are they playing a trick on me?
If five cards off the top of the deck are all hearts, how likely is it that the deck was shuffled?
If the lottery commissioner’s spouse wins the lottery, how likely is it that the lottery was rigged?

This time around, the only thing we have are data. What I know is that I saw my friend flip the coin 10 times and it came up heads
every time. And what I want to infer is whether or not I should conclude that what I just saw was actually a fair coin being flipped
10 times in a row, or whether I should suspect that my friend is playing a trick on me. The data I have look like this:

H H H H H H H H H H H

and what I’m trying to do is work out which “model of the world” I should put my trust in. If the coin is fair, then the model I
should adopt is one that says that the probability of heads is 0.5; that is, . If the coin is not fair, then I should
conclude that the probability of heads is not 0.5, which we would write as . In other words, the statistical inference
problem is to figure out which of these probability models is right. Clearly, the statistical question isn’t the same as the probability
question, but they’re deeply connected to one another. Because of this, a good introduction to statistical theory will start with a
discussion of what probability is and how it works.

This page titled 4.1: How are Probability and Statistics Different? is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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4.2: What Does Probability Mean?
Let’s start with the first of these questions. What is “probability”? It might seem surprising to you, but while statisticians and
mathematicians (mostly) agree on what the rules of probability are, there’s much less of a consensus on what the word really
means. It seems weird because we’re all very comfortable using words like “chance”, “likely”, “possible” and “probable”, and it
doesn’t seem like it should be a very difficult question to answer. If you had to explain “probability” to a five year old, you could
do a pretty good job. But if you’ve ever had that experience in real life, you might walk away from the conversation feeling like
you didn’t quite get it right, and that (like many everyday concepts) it turns out that you don’t really know what it’s all about.

So I’ll have a go at it. Let’s suppose I want to bet on a soccer game between two teams of robots, Arduino Arsenal and C Milan.
After thinking about it, I decide that there is an 80% probability that Arduino Arsenal winning. What do I mean by that? Here are
three possibilities…

They’re robot teams, so I can make them play over and over again, and if I did that, Arduino Arsenal would win 8 out of every
10 games on average.
For any given game, I would only agree that betting on this game is only “fair” if a $1 bet on C Milan gives a $5 payoff (i.e. I
get my $1 back plus a $4 reward for being correct), as would a $4 bet on Arduino Arsenal (i.e., my $4 bet plus a $1 reward).
My subjective “belief” or “confidence” in an Arduino Arsenal victory is four times as strong as my belief in a C Milan
victory.

Each of these seems sensible. However they’re not identical, and not every statistician would endorse all of them. The reason is that
there are different statistical ideologies (yes, really!) and depending on which one you subscribe to, you might say that some of
those statements are meaningless or irrelevant. In this section, I give a brief introduction the two main approaches that exist in the
literature. These are by no means the only approaches, but they’re the two big ones.

The Frequentist View
The first of the two major approaches to probability, and the more dominant one in statistics, is referred to as the frequentist view,
and it defines probability as a long-run frequency. Suppose we were to try flipping a fair coin, over and over again. By definition,
this is a coin that has . What might we observe? One possibility is that the first 20 flips might look like this:

T,H,H,H,H,T,T,H,H,H,H,T,H,H,T,T,T,T,T,H

In this case 11 of these 20 coin flips (55%) came up heads. Now suppose that I’d been keeping a running tally of the number of
heads (which I’ll call ) that I’ve seen, across the first  flips, and calculate the proportion of heads  every time. Here’s
what I’d get (I did literally flip coins to produce this!):

number of
flips

1 2 3 4 5 6 7 8 9 10

number of
heads

0 1 2 3 4 4 4 5 6 7

proportio
n

.00 .50 .67 .75 .80 .67 .57 .63 .67 .70

number of
flips

11 12 13 14 15 16 17 18 19 20

number of
heads

8 8 9 10 10 10 10 10 10 11

proportio
n

.73 .67 .69 .71 .67 .63 .59 .56 .53 .55

Notice that at the start of the sequence, the proportion of heads fluctuates wildly, starting at .00 and rising as high as .80. Later on,
one gets the impression that it dampens out a bit, with more and more of the values actually being pretty close to the “right” answer

P (H) = 0.5

N

H

N /NN

H
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of .50. This is the frequentist definition of probability in a nutshell: flip a fair coin over and over again, and as  grows large
(approaches infinity, denoted ), the proportion of heads will converge to 50%. There are some subtle technicalities that the
mathematicians care about, but qualitatively speaking, that’s how the frequentists define probability. Unfortunately, I don’t have an
infinite number of coins, or the infinite patience required to flip a coin an infinite number of times. However, I do have a computer,
and computers excel at mindless repetitive tasks. So I asked my computer to simulate flipping a coin 1000 times, and then drew a
picture of what happens to the proportion  as  increases. Actually, I did it four times, just to make sure it wasn’t a fluke.
The results are shown in Figure . As you can see, the proportion of observed heads eventually stops fluctuating, and settles
down; when it does, the number at which it finally settles is the true probability of heads.

N

N →∞

/NN

H

N
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Figure : An illustration of how frequentist probability works. If you flip a fair coin over and over again, the proportion of
heads that you’ve seen eventually settles down, and converges to the true probability of 0.5. Each panel shows four different
simulated experiments: in each case, we pretend we flipped a coin 1000 times, and kept track of the proportion of flips that were
heads as we went along. Although none of these sequences actually ended up with an exact value of .5, if we’d extended the
experiment for an infinite number of coin flips they would have.

The frequentist definition of probability has some desirable characteristics. First, it is objective: the probability of an event is
necessarily grounded in the world. The only way that probability statements can make sense is if they refer to (a sequence of)
events that occur in the physical universe. Second, it is unambiguous: any two people watching the same sequence of events
unfold, trying to calculate the probability of an event, must inevitably come up with the same answer.

However, it also has undesirable characteristics. Infinite sequences don’t exist in the physical world. Suppose you picked up a coin
from your pocket and started to flip it. Every time it lands, it impacts on the ground. Each impact wears the coin down a bit;
eventually, the coin will be destroyed. So, one might ask whether it really makes sense to pretend that an “infinite” sequence of
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coin flips is even a meaningful concept, or an objective one. We can’t say that an “infinite sequence” of events is a real thing in the
physical universe, because the physical universe doesn’t allow infinite anything.

More seriously, the frequentist definition has a narrow scope. There are lots of things out there that human beings are happy to
assign probability to in everyday language, but cannot (even in theory) be mapped onto a hypothetical sequence of events. For
instance, if a meteorologist comes on TV and says, “the probability of rain in Adelaide on 2 November 2048 is 60%” we humans
are happy to accept this. But it’s not clear how to define this in frequentist terms. There’s only one city of Adelaide, and only 2
November 2048. There’s no infinite sequence of events here, just a once-off thing. Frequentist probability genuinely forbids us
from making probability statements about a single event. From the frequentist perspective, it will either rain tomorrow or it will
not; there is no “probability” that attaches to a single non-repeatable event. Now, it should be said that there are some very clever
tricks that frequentists can use to get around this. One possibility is that what the meteorologist means is something like this:
“There is a category of days for which I predict a 60% chance of rain; if we look only across those days for which I make this
prediction, then on 60% of those days it will actually rain”. It’s very weird and counterintuitive to think of it this way, but you do
see frequentists do this sometimes.

The Bayesian View

The Bayesian view of probability is often called the subjectivist view, and it is a minority view among statisticians, but one that has
been steadily gaining traction for the last several decades. There are many flavours of Bayesianism, making hard to say exactly
what “the” Bayesian view is. The most common way of thinking about subjective probability is to define the probability of an
event as the degree of belief that an intelligent and rational agent assigns to that truth of that event. From that perspective,
probabilities don’t exist in the world, but rather in the thoughts and assumptions of people and other intelligent beings. However, in
order for this approach to work, we need some way of operationalising “degree of belief”. One way that you can do this is to
formalise it in terms of “rational gambling”, though there are many other ways. Suppose that I believe that there’s a 60%
probability of rain tomorrow. If someone offers me a bet: if it rains tomorrow, then I win $5, but if it doesn’t rain then I lose $5.
Clearly, from my perspective, this is a pretty good bet. On the other hand, if I think that the probability of rain is only 40%, then it’s
a bad bet to take. Thus, we can operationalise the notion of a “subjective probability” in terms of what bets I’m willing to accept.

What are the advantages and disadvantages to the Bayesian approach? The main advantage is that it allows you to assign
probabilities to any event you want to. You don’t need to be limited to those events that are repeatable. The main disadvantage (to
many people) is that we can’t be purely objective – specifying a probability requires us to specify an entity that has the relevant
degree of belief. This entity might be a human, an alien, a robot, or even a statistician, but there has to be an intelligent agent out
there that believes in things. To many people this is uncomfortable: it seems to make probability arbitrary. While the Bayesian
approach does require that the agent in question be rational (i.e., obey the rules of probability), it does allow everyone to have their
own beliefs; I can believe the coin is fair and you don’t have to, even though we’re both rational. The frequentist view doesn’t
allow any two observers to attribute different probabilities to the same event: when that happens, then at least one of them must be
wrong. The Bayesian view does not prevent this from occurring. Two observers with different background knowledge can
legitimately hold different beliefs about the same event. In short, where the frequentist view is sometimes considered to be too
narrow (forbids lots of things that that we want to assign probabilities to), the Bayesian view is sometimes thought to be too broad
(allows too many differences between observers).

What’s the difference? And who is right?

Now that you’ve seen each of these two views independently, it’s useful to make sure you can compare the two. Go back to the
hypothetical robot soccer game at the start of the section. What do you think a frequentist and a Bayesian would say about these
three statements? Which statement would a frequentist say is the correct definition of probability? Which one would a Bayesian
do? Would some of these statements be meaningless to a frequentist or a Bayesian? If you’ve understood the two perspectives, you
should have some sense of how to answer those questions.

Okay, assuming you understand the different, you might be wondering which of them is right? Honestly, I don’t know that there is
a right answer. As far as I can tell there’s nothing mathematically incorrect about the way frequentists think about sequences of
events, and there’s nothing mathematically incorrect about the way that Bayesians define the beliefs of a rational agent. In fact,
when you dig down into the details, Bayesians and frequentists actually agree about a lot of things. Many frequentist methods lead
to decisions that Bayesians agree a rational agent would make. Many Bayesian methods have very good frequentist properties.

For the most part, I’m a pragmatist so I’ll use any statistical method that I trust. As it turns out, that makes me prefer Bayesian
methods, for reasons I’ll explain towards the end of the book, but I’m not fundamentally opposed to frequentist methods. Not
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everyone is quite so relaxed. For instance, consider Sir Ronald Fisher, one of the towering figures of 20th century statistics and a
vehement opponent to all things Bayesian, whose paper on the mathematical foundations of statistics referred to Bayesian
probability as “an impenetrable jungle [that] arrests progress towards precision of statistical concepts” Fisher (1922, 311). Or the
psychologist Paul Meehl, who suggests that relying on frequentist methods could turn you into “a potent but sterile intellectual rake
who leaves in his merry path a long train of ravished maidens but no viable scientific offspring” Meehl (1967, 114). The history of
statistics, as you might gather, is not devoid of entertainment.

This page titled 4.2: What Does Probability Mean? is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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4.3: Basic Probability Theory
Ideological arguments between Bayesians and frequentists notwithstanding, it turns out that people mostly agree on the rules that
probabilities should obey. There are lots of different ways of arriving at these rules. The most commonly used approach is based on
the work of Andrey Kolmogorov, one of the great Soviet mathematicians of the 20th century. I won’t go into a lot of detail, but I’ll
try to give you a bit of a sense of how it works. And in order to do so, I’m going to have to talk about my pants.

Introducing Probability Distributions
One of the disturbing truths about my life is that I only own 5 pairs of pants: three pairs of jeans, the bottom half of a suit, and a
pair of tracksuit pants. Even sadder, I’ve given them names: I call them , , ,  and . I really do: that’s why they call
me Mister Imaginative. Now, on any given day, I pick out exactly one of pair of pants to wear. Not even I’m so stupid as to try to
wear two pairs of pants, and thanks to years of training I never go outside without wearing pants anymore. If I were to describe this
situation using the language of probability theory, I would refer to each pair of pants (i.e., each ) as an elementary event. The key
characteristic of elementary events is that every time we make an observation (e.g., every time I put on a pair of pants), then the
outcome will be one and only one of these events. Like I said, these days I always wear exactly one pair of pants, so my pants
satisfy this constraint. Similarly, the set of all possible events is called a sample space. Granted, some people would call it a
“wardrobe”, but that’s because they’re refusing to think about my pants in probabilistic terms. Sad.

Okay, now that we have a sample space (a wardrobe), which is built from lots of possible elementary events (pants), what we want
to do is assign a probability of one of these elementary events. For an event , the probability of that event  is a number that
lies between 0 and 1. The bigger the value of , the more likely the event is to occur. So, for example, if , it means
the event  is impossible (i.e., I never wear those pants). On the other hand, if  it means that event  is certain to occur
(i.e., I always wear those pants). For probability values in the middle, it means that I sometimes wear those pants. For instance, if 

 it means that I wear those pants half of the time.

At this point, we’re almost done. The last thing we need to recognise is that “something always happens”. Every time I put on
pants, I really do end up wearing pants (crazy, right?). What this somewhat trite statement means, in probabilistic terms, is that the
probabilities of the elementary events need to add up to 1. This is known as the law of total probability, not that any of us really
care. More importantly, if these requirements are satisfied, then what we have is a probability distribution. For example, this is an
example of a probability distribution

Which pants? Label Probability

Blue jeans

Grey jeans

Black jeans

Black suit

Blue tracksuit

Each of the events has a probability that lies between 0 and 1, and if we add up the probability of all events, they sum to 1.
Awesome. We can even draw a nice bar graph to visualise this distribution, as shown in Figure . And at this point, we’ve all
achieved something. You’ve learned what a probability distribution is, and I’ve finally managed to find a way to create a graph that
focuses entirely on my pants. Everyone wins!
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Figure : A visual depiction of the pants probability distribution. There are five elementary events, corresponding to the five
pairs of pants that I own. Each event has some probability of occurring: this probability is a number between 0 to 1. The sum of
these probabilities is 1.

The only other thing that I need to point out is that probability theory allows you to talk about non elementary events as well as
elementary ones. The easiest way to illustrate the concept is with an example. In the pants example, it’s perfectly legitimate to refer
to the probability that I wear jeans. In this scenario, the “Dan wears jeans” event said to have happened as long as the elementary
event that actually did occur is one of the appropriate ones; in this case “blue jeans”, “black jeans” or “grey jeans”. In mathematical
terms, we defined the “jeans” event  to correspond to the set of elementary events . If any of these elementary
events occurs, then  is also said to have occurred. Having decided to write down the definition of the  this way, it’s pretty
straightforward to state what the probability  is: we just add everything up. In this particular case

and, since the probabilities of blue, grey and black jeans respectively are .5, .3 and .1, the probability that I wear jeans is equal to .9.

At this point you might be thinking that this is all terribly obvious and simple and you’d be right. All we’ve really done is wrap
some basic mathematics around a few common sense intuitions. However, from these simple beginnings it’s possible to construct
some extremely powerful mathematical tools. I’m definitely not going to go into the details in this book, but what I will do is list
some of the other rules that probabilities satisfy. These rules can be derived from the simple assumptions that I’ve outlined above,
but since we don’t actually use these rules for anything in this book, I won’t do so here.

Table : Some basic rules that probabilities must satisfy. You don’t really need to know these rules in order to understand the analyses that
we’ll talk about later in the book, but they are important if you want to understand probability theory a bit more deeply.

English Notation Formula

not 

 or 

 and 

Now that we have the ability to “define” non-elementary events in terms of elementary ones, we can actually use this to construct
(or, if you want to be all mathematicallish, “derive”) some of the other rules of probability. These rules are listed above, and while
I’m pretty confident that very few of my readers actually care about how these rules are constructed, I’m going to show you
anyway: even though it’s boring and you’ll probably never have a lot of use for these derivations, if you read through it once or
twice and try to see how it works, you’ll find that probability starts to feel a bit less mysterious, and with any luck a lot less
daunting. So here goes. Firstly, in order to construct the rules I’m going to need a sample space  that consists of a bunch of
elementary events , and two non-elementary events, which I’ll call  and . Let’s say:

4.3.1
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To make this a bit more concrete, let’s suppose that we’re still talking about the pants distribution. If so,  corresponds to the event
“jeans”, and  corresponds to the event “black”:

So now let’s start checking the rules that I’ve listed in the table.

In the first line, the table says that

and what it means is that the probability of “not ” is equal to 1 minus the probability of . A moment’s thought (and a tedious
example) make it obvious why this must be true. If  coresponds to the even that I wear jeans (i.e., one of  or  or  happens),
then the only meaningful definition of “not ” (which is mathematically denoted as ) is to say that  consists of all
elementary events that don’t belong to . In the case of the pants distribution it means that , or, to say it in English:
“not jeans” consists of all pairs of pants that aren’t jeans (i.e., the black suit and the blue tracksuit). Consequently, every single
elementary event belongs to either  or , but not both. Okay, so now let’s rearrange our statement above:

which is a trite way of saying either I do wear jeans or I don’t wear jeans: the probability of “not jeans” plus the probability of
“jeans” is 1. Mathematically:

so therefore

Excellent. It all seems to work.

Wow, I can hear you saying. That’s a lot of s to tell me the freaking obvious. And you’re right: this is freaking obvious. The whole
point of probability theory to to formalise and mathematise a few very basic common sense intuitions. So let’s carry this line of
thought forward a bit further. In the last section I defined an event corresponding to not A, which I denoted . Let’s now define
two new events that correspond to important everyday concepts:  and , and  or . To be precise:

English statement: Mathematical notation:

“  and ” both happen

at least one of “  or ” happens

Since  and  are both defined in terms of our elementary events (the s) we’re going to need to try to describe  and 
in terms of our elementary events too. Can we do this? Yes we can The only way that both  and  can occur is if the elementary
event that we observe turns out to belong to both  and . Thus “ ” includes only those elementary events that belong to
both  and …
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So, um, the only way that I can wear “jeans”  and “black pants”  is if I wear “black jeans” . Another
victory for the bloody obvious.

At this point, you’re not going to be at all shocked by the definition of , though you’re probably going to be extremely bored
by it. The only way that I can wear “jeans” or “black pants” is if the elementary pants that I actually do wear belongs to  or to ,
or to both. So…

Oh yeah baby. Mathematics at its finest.

So, we’ve defined what we mean by  and . Now let’s assign probabilities to these events. More specifically, let’s start
by verifying the rule that claims that:

Using our definitions earlier, we know that , so

and making similar use of the fact that we know what elementary events belong to ,  and ….

and therefore

Done.

The next concept we need to define is the notion of “  given ”, which is typically written . Here’s what I mean: suppose that
I get up one morning, and put on a pair of pants. An elementary event  has occurred. Suppose further I yell out to my wife (who is
in the other room, and so cannot see my pants) “I’m wearing jeans today!”. Assuming that she believes that I’m telling the truth,
she knows that  is true. Given that she knows that  has happened, what is the conditional probability that  is also true? Well,
let’s think about what she knows. Here are the facts:

The non-jeans events are impossible. If  is true, then we know that the only possible elementary events that could have
occurred are ,  and  (i.e.,the jeans). The non-jeans events  and  are now impossible, and must be assigned
probability zero. In other words, our sample space has been restricted to the jeans events. But it’s still the case that the
probabilities of these these events must sum to 1: we know for sure that I’m wearing jeans.
She’s learned nothing about which jeans I’m wearing. Before I made my announcement that I was wearing jeans, she
already knew that I was five times as likely to be wearing blue jeans ( ) than to be wearing black jeans (

). My announcement doesn’t change this… I said nothing about what colour my jeans were, so it must remain the
case that  stays the same, at a value of 5.

There’s only one way to satisfy these constraints: set the impossible events to have zero probability (i.e.,  if  is not in 
), and then divide the probabilities of all the others by . In this case, since , we divide by 0.9. This gives:

which pants? elementary event old prob, new prob, 

blue jeans 0.5 0.556

grey jeans 0.3 0.333

black jeans 0.1 0.111
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which pants? elementary event old prob, new prob, 

black suit 0 0

blue tracksuit 0.1 0

In mathematical terms, we say that

if , and  otherwise. And therefore…

Now, recalling that , we can write this as

and if we multiply both sides by  we obtain:

which is the third rule that we had listed in the table.

This page titled 4.3: Basic Probability Theory is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J.
C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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4.4: The Binomial Distribution
As you might imagine, probability distributions vary enormously, and there’s an enormous range of distributions out there.
However, they aren’t all equally important. In fact, the vast majority of the content in this book relies on one of five distributions:
the binomial distribution, the normal distribution, the \(t\) distribution, the \(\chi^2\) (“chi-square”) distribution and the \(F\)
distribution. Given this, what I’ll do over the next few sections is provide a brief introduction to all five of these, paying special
attention to the binomial and the normal. I’ll start with the binomial distribution, since it’s the simplest of the five.

Introducing the Binomial
The theory of probability originated in the attempt to describe how games of chance work, so it seems fitting that our discussion of
the binomial distribution should involve a discussion of rolling dice and flipping coins. Let’s imagine a simple “experiment”: in my
hot little hand I’m holding 20 identical six-sided dice. On one face of each die there’s a picture of a skull; the other five faces are all
blank. If I proceed to roll all 20 dice, what’s the probability that I’ll get exactly 4 skulls? Assuming that the dice are fair, we know
that the chance of any one die coming up skulls is 1 in 6; to say this another way, the skull probability for a single die is
approximately \(.167\). This is enough information to answer our question, so let’s have a look at how it’s done.
As usual, we’ll want to introduce some names and some notation. We’ll let \(N\) denote the number of dice rolls in our experiment;
which is often referred to as the size parameter of our binomial distribution. We’ll also use \(\theta\) to refer to the the probability
that a single die comes up skulls, a quantity that is usually called the success probability of the binomial. Finally, we’ll use \(X\) to
refer to the results of our experiment, namely the number of skulls I get when I roll the dice. Since the actual value of \(X\) is due
to chance, we refer to it as a random variable. In any case, now that we have all this terminology and notation, we can use it to
state the problem a little more precisely. The quantity that we want to calculate is the probability that \(X = 4\) given that we know
that \(\theta = 0.167\) and \(N=20\). The general “form” of the thing I’m interested in calculating could be written as
\[P(X \ | \ \theta, N) \nonumber \]
and we’re interested in the special case where \(X=4\), \(\theta = .167\) and \(N=20\). There’s only one more piece of notation I
want to refer to before moving on to discuss the solution to the problem. If I want to say that \(X\) is generated randomly from a
binomial distribution with parameters \(\theta\) and \(N\), the notation I would use is as follows:
\[X \sim \mbox{Binomial}(\theta, N) \nonumber \]
Yeah, yeah. I know what you’re thinking: notation, notation, notation. Really, who cares? Very few readers of this book are here for
the notation, so I should probably move on and talk about how to use the binomial distribution. I’ve included the formula for the
binomial distribution in Table 4.3.1, since some readers may want to play with it themselves, but since most people probably don’t
care that much and because we don’t need the formula in this book, I won’t talk about it in any detail. Instead, I just want to show
you what the binomial distribution looks like. To that end, Figure \(\PageIndex{1}\) plots the binomial probabilities for all possible
values of \(X\) for our dice rolling experiment, from \(X=0\) (no skulls) all the way up to \(X=20\) (all skulls). Note that this is
basically a bar chart, and is no different to the “pants probability” plot I drew in Figure 4.3.1. On the horizontal axis we have all the
possible events, and on the vertical axis we can read off the probability of each of those events. So, the probability of rolling 4
skulls out of 20 times is about 0.20 (the actual answer is 0.2022036, as we’ll see in a moment). In other words, you’d expect that to
happen about 20% of the times you repeated this experiment.
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Figure \(\PageIndex{1}\): The binomial distribution with size parameter of N =20 and an underlying success probability of 1/6.
Each vertical bar depicts the probability of one specific outcome (i.e., one possible value of X). Because this is a probability
distribution, each of the probabilities must be a number between 0 and 1, and the heights of the bars must sum to 1 as well.

Working with the binomial distribution in R
R has a function called dbinom  that calculates binomial probabilities for us. The main arguments to the function are

x  This is a number, or vector of numbers, specifying the outcomes whose probability you’re trying to calculate.
size  This is a number telling R the size of the experiment.
prob  This is the success probability for any one trial in the experiment.

So, in order to calculate the probability of getting skulls, from an experiment of trials, in which the probability of getting a skull on
any one trial is … well, the command I would use is simply this:

run restart restart & run all

To give you a feel for how the binomial distribution changes when we alter the values of \(\theta\) and \(N\), let’s suppose that
instead of rolling dice, I’m actually flipping coins. This time around, my experiment involves flipping a fair coin repeatedly, and
the outcome that I’m interested in is the number of heads that I observe. In this scenario, the success probability is now \(\theta =

0.202203581217173

dbinom( x = 4, size = 20, prob = 1/6 )
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1/2\). Suppose I were to flip the coin \(N=20\) times. In this example, I’ve changed the success probability, but kept the size of the
experiment the same. What does this do to our binomial distribution?
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Figure \(\PageIndex{2}\): Two binomial distributions, involving a scenario in which I’m flipping a fair coin, so the underlying
success probability is 1/2. In panel (a), we assume I’m flipping the coin N = 20 times. In panel (b) we assume that the coin is
flipped N = 100 times.
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Well, as Figure \(\PageIndex{2} (a)\) shows, the main effect of this is to shift the whole distribution, as you’d expect. Okay, what if
we flipped a coin \(N=100\) times? Well, in that case, we get Figure \(\PageIndex{2} (b)\). The distribution stays roughly in the
middle, but there’s a bit more variability in the possible outcomes.
At this point, I should probably explain the name of the dbinom  function. Obviously, the “binom” part comes from the fact that
we’re working with the binomial distribution, but the “d” prefix is probably a bit of a mystery. In this section I’ll give a partial
explanation: specifically, I’ll explain why there is a prefix. As for why it’s a “d” specifically, you’ll have to wait until the next
section. What’s going on here is that R actually provides four functions in relation to the binomial distribution. These four
functions are dbinom , pbinom , rbinom  and qbinom , and each one calculates a different quantity of interest. Not
only that, R does the same thing for every probability distribution that it implements. No matter what distribution you’re talking
about, there’s a d  function, a p  function, r  a function and a q  function.
Let’s have a look at what all four functions do. Firstly, all four versions of the function require you to specify the size  and 
prob  arguments: no matter what you’re trying to get R to calculate, it needs to know what the parameters are. However, they

differ in terms of what the other argument is, and what the output is. So let’s look at them one at a time.

The d  form we’ve already seen: you specify a particular outcome x , and the output is the probability of obtaining exactly
that outcome. (the “d” is short for density, but ignore that for now).
The p  form calculates the cumulative probability. You specify a particular quantile q  , and it tells you the probability of
obtaining an outcome smaller than or equal to q .
The q  form calculates the quantiles of the distribution. You specify a probability value p , and it gives you the
corresponding percentile. That is, the value of the variable for which there’s a probability p  of obtaining an outcome lower
than that value.
The r  form is a random number generator: specifically, it generates n  random outcomes from the distribution.

This is a little abstract, so let’s look at some concrete examples. Again, we’ve already covered dbinom  so let’s focus on the
other three versions. We’ll start with pbinom , and we’ll go back to the skull-dice example. Again, I’m rolling 20 dice, and each
die has a 1 in 6 chance of coming up skulls. Suppose, however, that I want to know the probability of rolling 4 or fewer skulls. If I
wanted to, I could use the dbinom  function to calculate the exact probability of rolling 0 skulls, 1 skull, 2 skulls, 3 skulls and 4
skulls and then add these up, but there’s a faster way. Instead, I can calculate this using the pbinom  function. Here’s the
command:

run restart restart & run all

In other words, there is a 76.9% chance that I will roll 4 or fewer skulls. Or, to put it another way, R is telling us that a value of 4 is
actually the 76.9th percentile of this binomial distribution.
Next, let’s consider the qbinom  function. Let’s say I want to calculate the 75th percentile of the binomial distribution. If we’re
sticking with our skulls example, I would use the following command to do this:

run restart restart & run all

Hm. There’s something odd going on here. Let’s think this through. What the qbinom  function appears to be telling us is that
the 75th percentile of the binomial distribution is 4, even though we saw from the function that 4 is actually the 76.9th percentile.
And it’s definitely the pbinom  function that is correct. I promise. The weirdness here comes from the fact that our binomial
distribution doesn’t really have a 75th percentile. Not really. Why not? Well, there’s a 56.7% chance of rolling 3 or fewer skulls
(you can type pbinom(3, 20, 1/6)  to confirm this if you want), and a 76.9% chance of rolling 4 or fewer skulls. So
there’s a sense in which the 75th percentile should lie “in between” 3 and 4 skulls. But that makes no sense at all! You can’t roll 20

0.768749218992842

4

pbinom( q= 4, size = 20, prob = 1/6)

qbinom( p = 0.75, size = 20, prob = 1/6 )
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dice and get 3.9 of them come up skulls. This issue can be handled in different ways: you could report an in between value (or
interpolated value, to use the technical name) like 3.9, you could round down (to 3) or you could round up (to 4).
The qbinom  function rounds upwards: if you ask for a percentile that doesn’t actually exist (like the 75th in this example), R
finds the smallest value for which the the percentile rank is at least what you asked for. In this case, since the “true” 75th percentile
(whatever that would mean) lies somewhere between 3 and 4 skulls, R rounds up and gives you an answer of 4. This subtlety is
tedious, I admit, but thankfully it’s only an issue for discrete distributions like the binomial. The other distributions that I’ll talk
about (normal, \(t\), \(\chi^2\) and \(F\)) are all continuous, and so R can always return an exact quantile whenever you ask for it.
Finally, we have the random number generator. To use the rbinom  function, you specify how many times R should “simulate”
the experiment using the n  argument, and it will generate random outcomes from the binomial distribution. So, for instance,
suppose I were to repeat my die rolling experiment 100 times. I could get R to simulate the results of these experiments by using
the following command:

run restart restart & run all

As you can see, these numbers are pretty much what you’d expect given the distribution shown in Figure \(\PageIndex{1}\). Most
of the time I roll somewhere between 1 to 5 skulls. There are a lot of subtleties associated with random number generation using a
computer, but for the purposes of this book we don’t need to worry too much about them.

This page titled 4.4: The Binomial Distribution is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J.
C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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4.5: The normal distribution
While the binomial distribution is conceptually the simplest distribution to understand, it’s not the most important one. That
particular honour goes to the normal distribution, which is also referred to as “the bell curve” or a “Gaussian distribution”.

Figure \(\PageIndex{1}\): The normal distribution with mean = 0 and standard deviation = 1. The x-axis corresponds to the value of
some variable, and the y-axis tells us something about how likely we are to observe that value. However, notice that the y-axis is
labelled Probability Density and not Probability. There is a subtle and somewhat frustrating characteristic of continuous
distributions that makes the y axis behave a bit oddly: the height of the curve here isn’t actually the probability of observing a
particular x value. On the other hand, it is true that the heights of the curve tells you which x values are more likely (the higher
ones!).

A normal distribution is described using two parameters, the mean of the distribution \(\mu\) and the standard deviation of the
distribution \(\sigma\). The notation that we sometimes use to say that a variable \(X\) is normally distributed is as follows: \[X \sim
\mbox{Normal}(\mu,\sigma)\] Of course, that’s just notation. It doesn’t tell us anything interesting about the normal distribution
itself. The mathematical formula for the normal distribution is:

Figure \(\PageIndex{2}\): Formula for the normal distribution.

The formula is important enough that everyone who learns statistics should at least look at it, but since this is an introductory text I
don’t want to focus on it to much. Instead, we look at how R can be used to work with normal distributions. The R functions for the

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7909?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/04%3A_Probability_Sampling_and_Estimation/4.05%3A_The_normal_distribution


4.5.2 https://stats.libretexts.org/@go/page/7909

normal distribution are dnorm(), pnorm(), qnorm() and rnorm(). However, they behave in pretty much exactly the same way as the
corresponding functions for the binomial distribution, so there’s not a lot that you need to know. The only thing that I should point
out is that the argument names for the parameters are mean and sd. In pretty much every other respect, there’s nothing else to add.
Instead of focusing on the maths, let’s try to get a sense for what it means for a variable to be normally distributed. To that end,
have a look at Figure \(\PageIndex{1}\), which plots a normal distribution with mean \(\mu = 0\) and standard deviation \(\sigma =
1\). You can see where the name “bell curve” comes from: it looks a bit like a bell. Notice that, unlike the plots that I drew to
illustrate the binomial distribution, the picture of the normal distribution in Figure \(\PageIndex{1}\) shows a smooth curve instead
of “histogram-like” bars. This isn’t an arbitrary choice: the normal distribution is continuous, whereas the binomial is discrete. For
instance, in the die rolling example from the last section, it was possible to get 3 skulls or 4 skulls, but impossible to get 3.9 skulls.
With this in mind, let’s see if we can’t get an intuition for how the normal distribution works. Firstly, let’s have a look at what
happens when we play around with the parameters of the distribution. One parameter we can change is the mean. This will shift the
distribution to the right or left. The animation below shows a normal distribution with mean = 0, moving up and down from mean =
0 to mean = 5. Note, when you change the mean the whole shape of the distribution does not change, it just shifts from left to right.
In the animation the normal distribution bounces up and down a little, but that’s just a quirk of the animation (plus it looks fund that
way).

Figure \(\PageIndex{3}\): A normal distribution with a moving mean.

In contrast, if we increase the standard deviation while keeping the mean constant, the peak of the distribution stays in the same
place, but the distribution gets wider. The next animation shows what happens when you start with a small standard deviation
(sd=0.5), and move to larger and larger standard deviation (up to sd =5). As you can see, the distribution spreads out and becomes
wider as the standard deviation increases.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7909?pdf


4.5.3 https://stats.libretexts.org/@go/page/7909

Figure \(\PageIndex{4}\): A normal distribution with a shifting sd.

Notice, though, that when we widen the distribution, the height of the peak shrinks. This has to happen: in the same way that the
heights of the bars that we used to draw a discrete binomial distribution have to sum to 1, the total area under the curve for the
normal distribution must equal 1. Before moving on, I want to point out one important characteristic of the normal distribution.
Irrespective of what the actual mean and standard deviation are, 68.3% of the area falls within 1 standard deviation of the mean.
Similarly, 95.4% of the distribution falls within 2 standard deviations of the mean, and 99.7% of the distribution is within 3
standard deviations.

Probability density
There’s something I’ve been trying to hide throughout my discussion of the normal distribution, something that some introductory
textbooks omit completely. They might be right to do so: this “thing” that I’m hiding is weird and counterintuitive even by the
admittedly distorted standards that apply in statistics. Fortunately, it’s not something that you need to understand at a deep level in
order to do basic statistics: rather, it’s something that starts to become important later on when you move beyond the basics. So, if it
doesn’t make complete sense, don’t worry: try to make sure that you follow the gist of it.
Throughout my discussion of the normal distribution, there’s been one or two things that don’t quite make sense. Perhaps you
noticed that the \(y\)-axis in these figures is labelled “Probability Density” rather than density. Maybe you noticed that I used \
(p(X)\) instead of \(P(X)\) when giving the formula for the normal distribution. Maybe you’re wondering why R uses the “d” prefix
for functions like dnorm(). And maybe, just maybe, you’ve been playing around with the dnorm() function, and you accidentally
typed in a command like this:

run restart restart & run all

And if you’ve done the last part, you’re probably very confused. I’ve asked R to calculate the probability that x = 1, for a normally
distributed variable with mean = 1 and standard deviation sd = 0.1; and it tells me that the probability is 3.99. But, as we discussed
earlier, probabilities can’t be larger than 1. So either I’ve made a mistake, or that’s not a probability.
As it turns out, the second answer is correct. What we’ve calculated here isn’t actually a probability: it’s something else. To
understand what that something is, you have to spend a little time thinking about what it really means to say that \(X\) is a
continuous variable. Let’s say we’re talking about the temperature outside. The thermometer tells me it’s 23 degrees, but I know
that’s not really true. It’s not exactly 23 degrees. Maybe it’s 23.1 degrees, I think to myself. But I know that that’s not really true
either, because it might actually be 23.09 degrees. But, I know that… well, you get the idea. The tricky thing with genuinely
continuous quantities is that you never really know exactly what they are.

3.98942280401433

dnorm( x = 1, mean = 1, sd = 0.1 )
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Now think about what this implies when we talk about probabilities. Suppose that tomorrow’s maximum temperature is sampled
from a normal distribution with mean 23 and standard deviation 1. What’s the probability that the temperature will be exactly 23
degrees? The answer is “zero”, or possibly, “a number so close to zero that it might as well be zero”. Why is this?
It’s like trying to throw a dart at an infinitely small dart board: no matter how good your aim, you’ll never hit it. In real life you’ll
never get a value of exactly 23. It’ll always be something like 23.1 or 22.99998 or something. In other words, it’s completely
meaningless to talk about the probability that the temperature is exactly 23 degrees. However, in everyday language, if I told you
that it was 23 degrees outside and it turned out to be 22.9998 degrees, you probably wouldn’t call me a liar. Because in everyday
language, “23 degrees” usually means something like “somewhere between 22.5 and 23.5 degrees”. And while it doesn’t feel very
meaningful to ask about the probability that the temperature is exactly 23 degrees, it does seem sensible to ask about the probability
that the temperature lies between 22.5 and 23.5, or between 20 and 30, or any other range of temperatures.
The point of this discussion is to make clear that, when we’re talking about continuous distributions, it’s not meaningful to talk
about the probability of a specific value. However, what we can talk about is the probability that the value lies within a particular
range of values. To find out the probability associated with a particular range, what you need to do is calculate the “area under the
curve”.
Okay, so that explains part of the story. I’ve explained a little bit about how continuous probability distributions should be
interpreted (i.e., area under the curve is the key thing), but I haven’t actually explained what the dnorm() function actually
calculates. Equivalently, what does the formula for \(p(x)\) that I described earlier actually mean? Obviously, \(p(x)\) doesn’t
describe a probability, but what is it? The name for this quantity \(p(x)\) is a probability density, and in terms of the plots we’ve
been drawing, it corresponds to the height of the curve. The densities themselves aren’t meaningful in and of themselves: but
they’re “rigged” to ensure that the area under the curve is always interpretable as genuine probabilities. To be honest, that’s about
as much as you really need to know for now.

This page titled 4.5: The normal distribution is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.
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4.6: Other useful distributions
There are many other useful distributions, these include the t  distribution, the F  distribution, and the chi squared distribution.
We will soon discover more about the t  and F  distributions when we discuss t-tests and ANOVAs in later chapters.
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4.7: Summary of Probability
We’ve talked what probability means, and why statisticians can’t agree on what it means. We talked about the rules that
probabilities have to obey. And we introduced the idea of a probability distribution, and spent a good chunk talking about some of
the more important probability distributions that statisticians work with. We talked about things like this:

Probability theory versus statistics
Frequentist versus Bayesian views of probability
Basics of probability theory
Binomial distribution, normal distribution

As you’d expect, this coverage is by no means exhaustive. Probability theory is a large branch of mathematics in its own right,
entirely separate from its application to statistics and data analysis. As such, there are thousands of books written on the subject and
universities generally offer multiple classes devoted entirely to probability theory. Even the “simpler” task of documenting standard
probability distributions is a big topic.Fortunately for you, very little of this is necessary. You’re unlikely to need to know dozens of
statistical distributions when you go out and do real world data analysis, and you definitely won’t need them for this book, but it
never hurts to know that there’s other possibilities out there.

Picking up on that last point, there’s a sense in which this whole chapter is something of a digression. Many undergraduate
psychology classes on statistics skim over this content very quickly (I know mine did), and even the more advanced classes will
often “forget” to revisit the basic foundations of the field. Most academic psychologists would not know the difference between
probability and density, and until recently very few would have been aware of the difference between Bayesian and frequentist
probability. However, I think it’s important to understand these things before moving onto the applications. For example, there are a
lot of rules about what you’re “allowed” to say when doing statistical inference, and many of these can seem arbitrary and weird.
However, they start to make sense if you understand that there is this Bayesian/frequentist distinction.

This page titled 4.7: Summary of Probability is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.
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4.8: Samples, populations and sampling
Remember, the role of descriptive statistics is to concisely summarize what we do know. In contrast, the purpose of inferential
statistics is to “learn what we do not know from what we do”. What kinds of things would we like to learn about? And how do we
learn them? These are the questions that lie at the heart of inferential statistics, and they are traditionally divided into two “big
ideas”: estimation and hypothesis testing. The goal in this chapter is to introduce the first of these big ideas, estimation theory, but
we’ll talk about sampling theory first because estimation theory doesn’t make sense until you understand sampling. So, this chapter
divides into sampling theory, and how to make use of sampling theory to discuss how statisticians think about estimation. We have
already done lots of sampling, so you are already familiar with some of the big ideas.

Sampling theory plays a huge role in specifying the assumptions upon which your statistical inferences rely. And in order to talk
about “making inferences” the way statisticians think about it, we need to be a bit more explicit about what it is that we’re drawing
inferences from (the sample) and what it is that we’re drawing inferences about (the population).

In almost every situation of interest, what we have available to us as researchers is a sample of data. We might have run experiment
with some number of participants; a polling company might have phoned some number of people to ask questions about voting
intentions; etc. Regardless: the data set available to us is finite, and incomplete. We can’t possibly get every person in the world to
do our experiment; a polling company doesn’t have the time or the money to ring up every voter in the country etc. In our earlier
discussion of descriptive statistics, this sample was the only thing we were interested in. Our only goal was to find ways of
describing, summarizing and graphing that sample. This is about to change.

Defining a population

A sample is a concrete thing. You can open up a data file, and there’s the data from your sample. A population, on the other hand,
is a more abstract idea. It refers to the set of all possible people, or all possible observations, that you want to draw conclusions
about, and is generally much bigger than the sample. In an ideal world, the researcher would begin the study with a clear idea of
what the population of interest is, since the process of designing a study and testing hypotheses about the data that it produces does
depend on the population about which you want to make statements. However, that doesn’t always happen in practice: usually the
researcher has a fairly vague idea of what the population is and designs the study as best he/she can on that basis.

Sometimes it’s easy to state the population of interest. For instance, in the “polling company” example, the population consisted of
all voters enrolled at the a time of the study – millions of people. The sample was a set of 1000 people who all belong to that
population. In most situations the situation is much less simple. In a typical a psychological experiment, determining the population
of interest is a bit more complicated. Suppose I run an experiment using 100 undergraduate students as my participants. My goal, as
a cognitive scientist, is to try to learn something about how the mind works. So, which of the following would count as “the
population”:

All of the undergraduate psychology students at the University of Adelaide?
Undergraduate psychology students in general, anywhere in the world?
Australians currently living?
Australians of similar ages to my sample?
Anyone currently alive?
Any human being, past, present or future?
Any biological organism with a sufficient degree of intelligence operating in a terrestrial environment?
Any intelligent being?

Each of these defines a real group of mind-possessing entities, all of which might be of interest to me as a cognitive scientist, and
it’s not at all clear which one ought to be the true population of interest.

Simple random samples
Irrespective of how we define the population, the critical point is that the sample is a subset of the population, and our goal is to use
our knowledge of the sample to draw inferences about the properties of the population. The relationship between the two depends
on the procedure by which the sample was selected. This procedure is referred to as a sampling method, and it is important to
understand why it matters.

To keep things simple, imagine we have a bag containing 10 chips. Each chip has a unique letter printed on it, so we can
distinguish between the 10 chips. The chips come in two colors, black and white.
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Figure : Simple random sampling without replacement from a finite population.

This set of chips is the population of interest, and it is depicted graphically on the left of Figure .

As you can see from looking at the picture, there are 4 black chips and 6 white chips, but of course in real life we wouldn’t know
that unless we looked in the bag. Now imagine you run the following “experiment”: you shake up the bag, close your eyes, and pull
out 4 chips without putting any of them back into the bag. First out comes the  chip (black), then the  chip (white), then  (white)
and then finally  (black). If you wanted, you could then put all the chips back in the bag and repeat the experiment, as depicted on
the right hand side of Figure . Each time you get different results, but the procedure is identical in each case. The fact that the
same procedure can lead to different results each time, we refer to it as a random process. However, because we shook the bag
before pulling any chips out, it seems reasonable to think that every chip has the same chance of being selected. A procedure in
which every member of the population has the same chance of being selected is called a simple random sample. The fact that we
did not put the chips back in the bag after pulling them out means that you can’t observe the same thing twice, and in such cases
the observations are said to have been sampled without replacement.

To help make sure you understand the importance of the sampling procedure, consider an alternative way in which the experiment
could have been run. Suppose that my 5-year old son had opened the bag, and decided to pull out four black chips without putting
any of them back in the bag. This biased sampling scheme is depicted in Figure .
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Figure : Biased sampling without replacement from a finite population.

Now consider the evidentiary value of seeing 4 black chips and 0 white chips. Clearly, it depends on the sampling scheme, does it
not? If you know that the sampling scheme is biased to select only black chips, then a sample that consists of only black chips
doesn’t tell you very much about the population! For this reason, statisticians really like it when a data set can be considered a
simple random sample, because it makes the data analysis much easier.

A third procedure is worth mentioning. This time around we close our eyes, shake the bag, and pull out a chip. This time, however,
we record the observation and then put the chip back in the bag. Again we close our eyes, shake the bag, and pull out a chip. We
then repeat this procedure until we have 4 chips. Data sets generated in this way are still simple random samples, but because we
put the chips back in the bag immediately after drawing them it is referred to as a sample with replacement. The difference
between this situation and the first one is that it is possible to observe the same population member multiple times, as illustrated in
Figure .
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Figure : Simple random sampling with replacement from a finite population.

Most psychology experiments tend to be sampling without replacement, because the same person is not allowed to participate in
the experiment twice. However, most statistical theory is based on the assumption that the data arise from a simple random sample
with replacement. In real life, this very rarely matters. If the population of interest is large (e.g., has more than 10 entities!) the
difference between sampling with- and without- replacement is too small to be concerned with. The difference between simple
random samples and biased samples, on the other hand, is not such an easy thing to dismiss.

Most samples are not simple random samples
As you can see from looking at the list of possible populations that I showed above, it is almost impossible to obtain a simple
random sample from most populations of interest. When I run experiments, I’d consider it a minor miracle if my participants turned
out to be a random sampling of the undergraduate psychology students at Adelaide university, even though this is by far the
narrowest population that I might want to generalize to. A thorough discussion of other types of sampling schemes is beyond the
scope of this book, but to give you a sense of what’s out there I’ll list a few of the more important ones:

Stratified sampling. Suppose your population is (or can be) divided into several different sub-populations, or strata. Perhaps
you’re running a study at several different sites, for example. Instead of trying to sample randomly from the population as a
whole, you instead try to collect a separate random sample from each of the strata. Stratified sampling is sometimes easier to do
than simple random sampling, especially when the population is already divided into the distinct strata. It can also be more
efficient that simple random sampling, especially when some of the sub-populations are rare. For instance, when studying
schizophrenia it would be much better to divide the population into two strata (schizophrenic and not-schizophrenic), and then
sample an equal number of people from each group. If you selected people randomly, you would get so few schizophrenic
people in the sample that your study would be useless. This specific kind of of stratified sampling is referred to as
oversampling because it makes a deliberate attempt to over-represent rare groups.
Snowball sampling is a technique that is especially useful when sampling from a “hidden” or hard to access population, and is
especially common in social sciences. For instance, suppose the researchers want to conduct an opinion poll among transgender
people. The research team might only have contact details for a few trans folks, so the survey starts by asking them to
participate (stage 1). At the end of the survey, the participants are asked to provide contact details for other people who might
want to participate. In stage 2, those new contacts are surveyed. The process continues until the researchers have sufficient data.
The big advantage to snowball sampling is that it gets you data in situations that might otherwise be impossible to get any. On
the statistical side, the main disadvantage is that the sample is highly non-random, and non-random in ways that are difficult to
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address. On the real life side, the disadvantage is that the procedure can be unethical if not handled well, because hidden
populations are often hidden for a reason. I chose transgender people as an example here to highlight this: if you weren’t careful
you might end up outing people who don’t want to be outed (very, very bad form), and even if you don’t make that mistake it
can still be intrusive to use people’s social networks to study them. It’s certainly very hard to get people’s informed consent
before contacting them, yet in many cases the simple act of contacting them and saying “hey we want to study you” can be
hurtful. Social networks are complex things, and just because you can use them to get data doesn’t always mean you should.
Convenience sampling is more or less what it sounds like. The samples are chosen in a way that is convenient to the
researcher, and not selected at random from the population of interest. Snowball sampling is one type of convenience sampling,
but there are many others. A common example in psychology are studies that rely on undergraduate psychology students. These
samples are generally non-random in two respects: firstly, reliance on undergraduate psychology students automatically means
that your data are restricted to a single sub-population. Secondly, the students usually get to pick which studies they participate
in, so the sample is a self selected subset of psychology students not a randomly selected subset. In real life, most studies are
convenience samples of one form or another. This is sometimes a severe limitation, but not always.

How much does it matter if you don’t have a simple random sample?
Okay, so real world data collection tends not to involve nice simple random samples. Does that matter? A little thought should
make it clear to you that it can matter if your data are not a simple random sample: just think about the difference between Figures 

 and . However, it’s not quite as bad as it sounds. Some types of biased samples are entirely unproblematic. For instance,
when using a stratified sampling technique you actually know what the bias is because you created it deliberately, often to increase
the effectiveness of your study, and there are statistical techniques that you can use to adjust for the biases you’ve introduced (not
covered in this book!). So in those situations it’s not a problem.

More generally though, it’s important to remember that random sampling is a means to an end, not the end in itself. Let’s assume
you’ve relied on a convenience sample, and as such you can assume it’s biased. A bias in your sampling method is only a problem
if it causes you to draw the wrong conclusions. When viewed from that perspective, I’d argue that we don’t need the sample to be
randomly generated in every respect: we only need it to be random with respect to the psychologically-relevant phenomenon of
interest. Suppose I’m doing a study looking at working memory capacity. In study 1, I actually have the ability to sample randomly
from all human beings currently alive, with one exception: I can only sample people born on a Monday. In study 2, I am able to
sample randomly from the Australian population. I want to generalize my results to the population of all living humans. Which
study is better? The answer, obviously, is study 1. Why? Because we have no reason to think that being “born on a Monday” has
any interesting relationship to working memory capacity. In contrast, I can think of several reasons why “being Australian” might
matter. Australia is a wealthy, industrialized country with a very well-developed education system. People growing up in that
system will have had life experiences much more similar to the experiences of the people who designed the tests for working
memory capacity. This shared experience might easily translate into similar beliefs about how to “take a test”, a shared assumption
about how psychological experimentation works, and so on. These things might actually matter. For instance, “test taking” style
might have taught the Australian participants how to direct their attention exclusively on fairly abstract test materials relative to
people that haven’t grown up in a similar environment; leading to a misleading picture of what working memory capacity is.

There are two points hidden in this discussion. Firstly, when designing your own studies, it’s important to think about what
population you care about, and try hard to sample in a way that is appropriate to that population. In practice, you’re usually forced
to put up with a “sample of convenience” (e.g., psychology lecturers sample psychology students because that’s the least expensive
way to collect data, and our coffers aren’t exactly overflowing with gold), but if so you should at least spend some time thinking
about what the dangers of this practice might be.

Secondly, if you’re going to criticize someone else’s study because they’ve used a sample of convenience rather than laboriously
sampling randomly from the entire human population, at least have the courtesy to offer a specific theory as to how this might have
distorted the results. Remember, everyone in science is aware of this issue, and does what they can to alleviate it. Merely pointing
out that “the study only included people from group BLAH” is entirely unhelpful, and borders on being insulting to the researchers,
who are aware of the issue. They just don’t happen to be in possession of the infinite supply of time and money required to
construct the perfect sample. In short, if you want to offer a responsible critique of the sampling process, then be helpful.
Rehashing the blindingly obvious truisms that I’ve been rambling on about in this section isn’t helpful.
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Population parameters and sample statistics
Okay. Setting aside the thorny methodological issues associated with obtaining a random sample, let’s consider a slightly different
issue. Up to this point we have been talking about populations the way a scientist might. To a psychologist, a population might be a
group of people. To an ecologist, a population might be a group of bears. In most cases the populations that scientists care about are
concrete things that actually exist in the real world.

Statisticians, however, are a funny lot. On the one hand, they are interested in real world data and real science in the same way that
scientists are. On the other hand, they also operate in the realm of pure abstraction in the way that mathematicians do. As a
consequence, statistical theory tends to be a bit abstract in how a population is defined. In much the same way that psychological
researchers operationalize our abstract theoretical ideas in terms of concrete measurements, statisticians operationalize the concept
of a “population” in terms of mathematical objects that they know how to work with. You’ve already come across these objects
they’re called probability distributions (remember, the place where data comes from).

The idea is quite simple. Let’s say we’re talking about IQ scores. To a psychologist, the population of interest is a group of actual
humans who have IQ scores. A statistician “simplifies” this by operationally defining the population as the probability distribution
depicted in Figure .

Figure : The population distribution of IQ scores (panel a) and two samples drawn randomly from it. In panel b we have a
sample of 100 observations, and panel c we have a sample of 10,000 observations.

IQ tests are designed so that the average IQ is 100, the standard deviation of IQ scores is 15, and the distribution of IQ scores is
normal. These values are referred to as the population parameters because they are characteristics of the entire population. That
is, we say that the population mean  is 100, and the population standard deviation  is 15.

Now suppose we collect some data. We select 100 people at random and administer an IQ test, giving a simple random sample
from the population. The sample would consist of a collection of numbers like this:

106 101 98 80 74 ... 107 72 100

Each of these IQ scores is sampled from a normal distribution with mean 100 and standard deviation 15. So if I plot a histogram of
the sample, I get something like the one shown in Figure . As you can see, the histogram is roughly the right shape, but it’s a
very crude approximation to the true population distribution shown in Figure . The mean of the sample is fairly close to the
population mean 100 but not identical. In this case, it turns out that the people in the sample have a mean IQ of 98.5, and the
standard deviation of their IQ scores is 15.9. These sample statistics are properties of the data set, and although they are fairly
similar to the true population values, they are not the same. In general, sample statistics are the things you can calculate from
your data set, and the population parameters are the things you want to learn about. Later on in this chapter we’ll talk about
how you can estimate population parameters using your sample statistics and how to work out how confident you are in your
estimates but before we get to that there’s a few more ideas in sampling theory that you need to know about.

This page titled 4.8: Samples, populations and sampling is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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4.9: The Law of Large Numbers
We just looked at the results of one fictitious IQ experiment with a sample size of \(N=100\). The results were somewhat
encouraging: the true population mean is 100, and the sample mean of 98.5 is a pretty reasonable approximation to it. In many
scientific studies that level of precision is perfectly acceptable, but in other situations you need to be a lot more precise. If we want
our sample statistics to be much closer to the population parameters, what can we do about it?
The obvious answer is to collect more data. Suppose that we ran a much larger experiment, this time measuring the IQ’s of 10,000
people. We can simulate the results of this experiment using R, using the rnorm() function, which generates random numbers
sampled from a normal distribution. For an experiment with a sample size of n = 10000, and a population with mean = 100 and sd
= 15, R produces our fake IQ data using these commands:

IQ <- rnorm(n=10000, mean=100, sd=15) #generate IQ scores
IQ <- round(IQ) # make round numbers 

Cool, we just generated 10,000 fake IQ scores. Where did they go? Well, they went into the variable IQ on my computer. You can
do the same on your computer too by copying the above code. 10,000 numbers is too many numbers to look at. We can look at the
first 100 like this:

run restart restart & run all

We can compute the mean IQ using the command mean(IQ) and the standard deviation using the command sd(IQ), and draw a
histogram using hist(). The histogram of this much larger sample is shown in Figure 4.8.4c. Even a moment’s inspections makes
clear that the larger sample is a much better approximation to the true population distribution than the smaller one. This is reflected
in the sample statistics: the mean IQ for the larger sample turns out to be 99.9, and the standard deviation is 15.1. These values are
now very close to the true population.s
I feel a bit silly saying this, but the thing I want you to take away from this is that large samples generally give you better
information. I feel silly saying it because it’s so bloody obvious that it shouldn’t need to be said. In fact, it’s such an obvious point
that when Jacob Bernoulli – one of the founders of probability theory – formalized this idea back in 1713, he was kind of a jerk
about it. Here’s how he described the fact that we all share this intuition:

For even the most stupid of men, by some instinct of nature, by himself and without any
instruction (which is a remarkable thing), is convinced that the more observations have
been made, the less danger there is of wandering from one’s goal (see Stigler, 1986, p65).

Okay, so the passage comes across as a bit condescending (not to mention sexist), but his main point is correct: it really does feel
obvious that more data will give you better answers. The question is, why is this so? Not surprisingly, this intuition that we all share
turns out to be correct, and statisticians refer to it as the law of large numbers. The law of large numbers is a mathematical law that

  [1]  97  98 101 114 110 105  84  95  96 103  86 118  99  93  64 101 
117 104 
 [19] 106  73  81  98 100 111 103 100  91 115 107  98 107  76  70 107 
104  86 
 [37] 120  91 103 129  92  98 105 108  96  87  94  97 102  80  98  76 
131 107 
 [55] 104 114  90 109 104  86 124  73 131 114 104  83  99  91  83 105 
107 107 
 [73] 125  74 112  87  76 103 105  88  97  86  99  90 117 121  86 109 
132  89 
 [91]  97 132  76 131  98 111 118  98  94  98 

IQ <- rnorm(n=10000, mean=100, sd=15)
IQ <- round(IQ)
print(IQ[1:100])
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applies to many different sample statistics, but the simplest way to think about it is as a law about averages. The sample mean is the
most obvious example of a statistic that relies on averaging (because that’s what the mean is… an average), so let’s look at that.
When applied to the sample mean, what the law of large numbers states is that as the sample gets larger, the sample mean tends to
get closer to the true population mean. Or, to say it a little bit more precisely, as the sample size “approaches” infinity (written as \
(N \rightarrow \infty\)) the sample mean approaches the population mean (\(\bar{X} \rightarrow \mu\)).
I don’t intend to subject you to a proof that the law of large numbers is true, but it’s one of the most important tools for statistical
theory. The law of large numbers is the thing we can use to justify our belief that collecting more and more data will eventually
lead us to the truth. For any particular data set, the sample statistics that we calculate from it will be wrong, but the law of large
numbers tells us that if we keep collecting more data those sample statistics will tend to get closer and closer to the true population
parameters.

This page titled 4.9: The Law of Large Numbers is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew
J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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4.10: Sampling distributions and the central limit theorem
The law of large numbers is a very powerful tool, but it’s not going to be good enough to answer all our questions. Among other
things, all it gives us is a “long run guarantee”. In the long run, if we were somehow able to collect an infinite amount of data, then
the law of large numbers guarantees that our sample statistics will be correct. But as John Maynard Keynes famously argued in
economics, a long run guarantee is of little use in real life:

[The] long run is a misleading guide to current affairs. In the long run we are all dead.
Economists set themselves too easy, too useless a task, if in tempestuous seasons they can
only tell us, that when the storm is long past, the ocean is flat again. Keynes (1923, 80)

As in economics, so too in psychology and statistics. It is not enough to know that we will eventually arrive at the right answer
when calculating the sample mean. Knowing that an infinitely large data set will tell me the exact value of the population mean is
cold comfort when my actual data set has a sample size of \(N=100\). In real life, then, we must know something about the
behavior of the sample mean when it is calculated from a more modest data set!

Sampling distribution of the sample means
“Oh no, what is the sample distribution of the sample means? Is that even allowed in English?”. Yes, unfortunately, this is allowed.
The sampling distribution of the sample means is the next most important thing you will need to understand. IT IS SO
IMPORTANT THAT IT IS NECESSARY TO USE ALL CAPS. It is only confusing at first because it’s long and uses sampling
and sample in the same phrase.
Don’t worry, we’ve been prepping you for this. You know what a distribution is right? It’s where numbers comes from. It makes
some numbers occur more or less frequently, or the same as other numbers. You know what a sample is right? It’s the numbers we
take from a distribution. So, what could the sampling distribution of the sample means refer to?
First, what do you think the sample means refers to? Well, if you took a sample of numbers, you would have a bunch of numbers…
then, you could compute the mean of those numbers. The sample mean is the mean of the numbers in the sample. That is all. So,
what is this distribution you speak of? Well, what if you took a bunch of samples, put one here, put one there, put some other ones
other places. You have a lot of different samples of numbers. You could compute the mean for each them. Then you would have a
bunch of means. What do those means look like? Well, if you put them in a histogram, you could find out. If you did that, you
would be looking at (roughly) a distribution, AKA the sampling distribution of the sample means.
“I’m following along sort of, why would I want to do this instead of watching Netflix…”. Because, the sampling distribution of the
sample means gives you another window into chance. A very useful one that you can control, just like your remote control, by
pressing the right design buttons.

Seeing the pieces
To make a sampling distribution of the sample means, we just need the following:

1. A distribution to take numbers from
2. A bunch of different samples from the distribution
3. The means of each of the samples
4. Get all of the sample means, and plot them in a histogram

Question for yourself: What do you think the sampling distribution of the sample means will look like? Will it tend to look the
shape of the distribution that the samples came from? Or not? Good question, think about it.

Let’s do those four things. We will sample numbers from the uniform distribution, it looks like this if we are sampling from the set
of integers from 1 to 10:

 Question
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run restart restart & run all

Figure \(\PageIndex{1}\): A uniform distribution illustrating the probabilites of sampling the numbers 1 to 10. In a uniform
distribution, all numbers have an equal probability of being sampled, so the line is flat indicating all numbers have the same
probability.

OK, now let’s take a bunch of samples from that distribution. We will set our sample-size to 20. It’s easier to see how the sample
mean behaves in a movie. Each histogram shows a new sample. The red line shows where the mean of the sample is. The samples
are all very different from each other, but the red line doesn’t move around very much, it always stays near the middle. However,
the red line does move around a little bit, and this variance is what we call the sampling distribution of the sample mean.

library(ggplot2)
df<-data.frame(a=1:10,b=seq(.1,1,.1))
df$a<-as.factor(df$a)
ggplot(df,aes(x=a,y=b))+
  geom_point(color="white")+
  geom_hline(yintercept=.1)+
  theme_classic()+
  ylab("Probability")+
  xlab("Number")+
  ggtitle("Uniform distribution for numbers 1 to 10")
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Figure \(\PageIndex{2}\): Animiation showing histograms for different samples of size 20 from the uniform distribution. The red
line shows the mean of each sample.

OK, what have we got here? We have an animiation of 10 different samples. Each sample has 20 observations and these are
summarized in each of histograms that show up in the animiation. Each histogram has a red line. The red line shows you where the
mean of each sample is located. So, we have found the sample means for the 10 different samples from a uniform distribution.
First question. Are the sample means all the same? The answer is no. They are all kind of similar to each other though, they are all
around five plus or minus a few numbers. This is interesting. Although all of our samples look pretty different from one another,
the means of our samples look more similar than different.
Second question. What should we do with the means of our samples? Well, how about we collect them them all, and then plot a
histogram of them. This would allow us to see what the distribution of the sample means looks like. The next histogram is just this.
Except, rather than taking 10 samples, we will take 10,000 samples. For each of them we will compute the means. So, we will have
10,000 means. This is the histogram of the sample means:
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run restart restart & run all

Figure \(\PageIndex{3}\): A histogram showing the sample means for 10,000 samples, each size 20, from the uniform distribution
of numbers from 1 to 10. The expected mean is 5.5, and the histogram is centered on 5.5. The mean of each sample is not always
5.5 because of sampling error or chance.

“Wait what? This doesn’t look right. I thought we were taking samples from a uniform distribution. Uniform distributions are flat.
THIS DOES NOT LOOK LIKE A FLAT DISTRIBTUION, WHAT IS GOING ON, AAAAAGGGHH.” We feel your pain.
Remember, we are looking at the distribution of sample means. It is indeed true that the distribution of sample means does not look
the same as the distribution we took the samples from. Our distribution of sample means goes up and down. In fact, this will almost
always be the case for distributions of sample means. This fact is called the central limit theorem, which we talk about later.
For now, let’s talk about about what’s happening. Remember, we have been sampling numbers between the range 1 to 10. We are
supposed to get each number with roughly equal frequency, because we are sampling from a uniform distribution. So, let’s say we
took a sample of 10 numbers, and happened to get one of each from 1 to 10.
1 2 3 4 5 6 7 8 9 10

library(ggplot2)
a<-round(runif(20*10000,1,10))
df<-data.frame(a,sample=rep(1:10000,each=20))
df2<-aggregate(a~sample,df,mean)
ggplot(df2, aes(x=a))+
  geom_histogram(color="white", bins=30)+
  theme_classic()+
  ggtitle("Histogram of 10,000 sample means")+
  xlab("value")
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What is the mean of those numbers? Well, its 1+2+3+4+5+6+7+8+9+10 = 55 / 10 = 5.5. Imagine if we took a bigger sample, say of
20 numbers, and again we got exactly 2 of each number. What would the mean be? It would be (1+2+3+4+5+6+7+8+9+10)*2 =
110 / 20 = 5.5. Still 5.5. You can see here, that the mean value of our uniform distribution is 5.5. Now that we know this, we might
expect that most of our samples will have a mean near this number. We already know that every sample won’t be perfect, and it
won’t have exactly an equal amount of every number. So, we will expect the mean of our samples to vary a little bit. The histogram
that we made shows the variation. Not surprisingly, the numbers vary around the value 5.5.

Sampling distributions exist for any sample statistic!
One thing to keep in mind when thinking about sampling distributions is that any sample statistic you might care to calculate has a
sampling distribution. For example, suppose that each time you sampled some numbers from an experiment you wrote down the
largest number in the experiment. Doing this over and over again would give you a very different sampling distribution, namely the
sampling distribution of the maximum. You could calculate the smallest number, or the mode, or the median, of the variance, or the
standard deviation, or anything else from your sample. Then, you could repeat many times, and produce the sampling distribution
of those statistics. Neat!
Just for fun here are some different sampling distributions for different statistics. We will take a normal distribution with mean =
100, and standard deviation =20. Then, we’ll take lots of samples with n = 50 (50 observations per sample). We’ll save all of the
sample statistics, then plot their histograms. Let’s do it:

Figure \(\PageIndex{4}\): Each panel shows a histogram of a different sampling statistic.

We just computed 4 different sampling distributions, for the mean, standard deviation, maximum value, and the median. If you just
look quickly at these histograms you might think they all basically look the same. Hold up now. It’s very important to look at the x-
axes. They are different. For example, the sample mean goes from about 90 to 110, whereas the standard deviation goes from 15 to
25.
These sampling distributions are super important, and worth thinking about. What should you think about? Well, here’s a clue.
These distributions are telling you what to expect from your sample. Critically, they are telling you what you should expect from a
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sample, when you take one from the specific distribution that we used (normal distribution with mean =100 and SD = 20). What
have we learned. We’ve learned a tonne. We’ve learned that we can expect our sample to have a mean somewhere between 90 and
108ish. Notice, the sample means are never more extreme. We’ve learned that our sample will usually have some variance, and that
the the standard deviation will be somewhere between 15 and 25 (never much more extreme than that). We can see that sometime
we get some big numbers, say between 120 and 180, but not much bigger than that. And, we can see that the median is pretty
similar to the mean. If you ever took a sample of 50 numbers, and your descriptive statistics were inside these windows, then
perhaps they came from this kind of normal distribution. If your sample statistics are very different, then your sample probably did
not come this distribution. By using simulation, we can find out what samples look like when they come from distributions, and we
can use this information to make inferences about whether our sample came from particular distributions.

This page titled 4.10: Sampling distributions and the central limit theorem is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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4.11: The Central Limit Theorem
OK, so now you’ve seen lots of sampling distributions, and you know what the sampling distribution of the mean is. Here, we’ll focus on how the sampling
distribution of the mean changes as a function of sample size.
Intuitively, you already know part of the answer: if you only have a few observations, the sample mean is likely to be quite inaccurate (you’ve already seen it bounce
around): if you replicate a small experiment and recalculate the mean you’ll get a very different answer. In other words, the sampling distribution is quite wide. If you
replicate a large experiment and recalculate the sample mean you’ll probably get the same answer you got last time, so the sampling distribution will be very narrow.
Let’s give ourselves a nice movie to see everything in action. We’re going to sample numbers from a normal distribution. You will see four panels, each panel
represents a different sample size (n), including sample-sizes of 10, 50, 100, and 1000. The red line shows the shape of the normal distribution. The grey bars show a
histogram of each of the samples that we take. The red line shows the mean of an individual sample (the middle of the grey bars). As you can see, the red line moves
around a lot, especially when the sample size is small (10).
The new bits are the blue bars and the blue lines. The blue bars represent the sampling distribution of the sample mean. For example, in the panel for sample-size 10,
we see a bunch of blue bars. This is a histogram of 10 sample means, taken from 10 samples of size 10. In the 50 panel, we see a histogram of 50 sample means,
taken from 50 samples of size 50, and so on. The blue line in each panel is the mean of the sample means (“aaagh, it’s a mean of means”, yes it is).

Figure : Animation of samples (grey histogram shows frequency counts of data in each sample), and the sampling distribution of the mean (histogram of the
sampling means for many samples). Each sample is taken from the normal distribution shown in red. The moving red line is the mean of an individual sample. The
blue line is the mean of the blue histogram, which represents the sampling distribution of the mean for many samples.

What should you notice? Notice that the range of the blue bars shrinks as sample size increases. The sampling distribution of the mean is quite wide when the
sample-size is 10, it narrows as sample-size increases to 50 and 100, and it’s just one bar, right in the middle when sample-size goes to 1000. What we are seeing is
that the mean of the sampling distribution approaches the mean of the population as sample-size increases.
So, the sampling distribution of the mean is another distribution, and it has some variance. It varies more when sample-size is small, and varies less when sample-size
is large. We can quantify this effect by calculating the standard deviation of the sampling distribution, which is referred to as the standard error. The standard error of
a statistic is often denoted SE, and since we’re usually interested in the standard error of the sample mean, we often use the acronym SEM. As you can see just by
looking at the movie, as the sample size  increases, the SEM decreases.
Okay, so that’s one part of the story. However, there’s something we’ve been glossing over a little bit. We’ve seen it already, but it’s worth looking at it one more
time. Here’s the thing: no matter what shape your population distribution is, as  increases the sampling distribution of the mean starts to look more like a normal
distribution. This is the central limit theorem.
To see the central limit theorem in action, we are going to look at some histograms of sample means different kinds of distributions. It is very important to recognize
that you are looking at distributions of sample means, not distributions of individual samples! Here we go, starting with sampling from a normal distribution. The red
line is the distribution, the blue bars are the histogram for the sample means. They both look normal!

4.11.1
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run restart restart & run all

Figure : Comparison of two normal distributions, and histograms for the sampling distribution of the mean for different samples-sizes. The range of sampling
distribution of the mean shrinks as sample-size increases.

Let’s do it again. This time we sample from a flat uniform distribution. Again, we see that the distribution of the sample means is not flat, it looks like a normal
distribution.

4.11.2

ibrary(ggplot2)
ptions(warn=-1)
et_sampling_means<-function(m,sd,s_size,iter){
save_means<-length(iter)
for(i in 1:iter){
  save_means[i]<-mean(rnorm(s_size,m,sd))
}
return(save_means)

ll_df<-data.frame()
ims<-1
<-50
or(n in c(10,50)){
  sample<-rnorm(n,0,1)
  sample_means<-get_sampling_means(0,1,n,1000)
  t_df<-data.frame(sims=rep(sims,1000),
                   sample,
                   sample_means,
                   sample_size=rep(n,1000),
                   sample_mean=rep(mean(sample),1000),
                   sampling_mean=rep(mean(sample_means),1000)
                   )
  all_df<-rbind(all_df,t_df)

gplot(all_df, aes(x=sample))+
geom_histogram(aes(x=sample_means,y=(..density..)/max(..density..)),fill="blue",color="white",alpha=.5,bins=75)
stat_function(fun = dnorm, 
              args = list(mean = 0, sd = 1), 
              lwd = .75, 
              col = 'red')+
#geom_vline(aes(xintercept=sampling_mean,frame=sims),color="blue")+
facet_wrap(~sample_size)+xlim(-3,3)+
theme_classic()+ggtitle("Sampling distribution of mean \n for Normal Distribution")+ylab("Rough likelihoods")+
xlab("value")
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t restart & run all

Figure : Illustration that the shape of the sampling distribution of the mean is normal, even when the samples come from a non-normal (uniform in this case)
distribution.

One more time with an exponential distribution. Even though way more of the numbers should be smaller than bigger, then sampling distribution of the mean again
does not look the red line. Instead, it looks more normal-ish. That’s the central limit theorem. It just works like that.

4.11.3

plot2)
rn=-1)
ng_means<-function(mn,mx,s_size,iter){
ns<-length(iter)
1:iter){
eans[i]<-mean(runif(s_size,mn,mx))

ave_means)

ta.frame()

(10,50)){
<-rnorm(n,0,1)
_means<-get_sampling_means(0,1,n,1000)
data.frame(sims=rep(sims,1000),
          sample,
          sample_means,
          sample_size=rep(n,1000),
          sample_mean=rep(mean(sample),1000),
          sampling_mean=rep(mean(sample_means),1000)
          )

<-rbind(all_df,t_df)

_df, aes(x=sample))+
togram(aes(x=sample_means,y=(..density..)/max(..density..)),fill="blue",color="white",alpha=.5,bins=75)+
ne(yintercept=.1,color="red")+
ap(~sample_size)+xlim(0,1)+
assic()+ggtitle("Sampling distribution of mean \n for samples taken from Uniform Distribution")+ylab("Rough like
lue")
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art restart & run all

Figure : Illustration that the shape of the sampling distribution of the mean is normal, even when the samples come from a non-normal (exponential in this
case) distribution.

On the basis of these figures, it seems like we have evidence for all of the following claims about the sampling distribution of the mean:

The mean of the sampling distribution is the same as the mean of the population
The standard deviation of the sampling distribution (i.e., the standard error) gets smaller as the sample size increases
The shape of the sampling distribution becomes normal as the sample size increases

As it happens, not only are all of these statements true, there is a very famous theorem in statistics that proves all three of them, known as the central limit theorem.
Among other things, the central limit theorem tells us that if the population distribution has mean  and standard deviation , then the sampling distribution of the
mean also has mean , and the standard error of the mean is

4.11.4

𝜇 𝜎

𝜇

SEM =

𝜎

𝑁

⎯ ⎯⎯⎯

√

gplot2)
arn=-1)
ing_means<-function(s_size,r,iter){
ans<-length(iter)
n 1:iter){
means[i]<-mean(rexp(s_size,r))

save_means)

ata.frame()

c(10,50)){
e<-rnorm(n,0,1)
e_means<-get_sampling_means(n,2,1000)
-data.frame(sims=rep(sims,1000),
           sample,
           sample_means,
           sample_size=rep(n,1000),
           sample_mean=rep(mean(sample),1000),
           sampling_mean=rep(mean(sample_means),1000)
           )

f<-rbind(all_df,t_df)

l_df, aes(x=sample))+
stogram(aes(x=sample_means,y=(..density..)/max(..density..)),fill="blue",color="white",alpha=.5,bins=75)+
nction(fun = dexp, 
      args = list(rate=2), 
      lwd = .75, 
      col = 'red')+

line(aes(xintercept=sampling_mean,frame=sims),color="blue")+
rap(~sample_size)+xlim(0,1)+
lassic()+ggtitle("Sampling distribution of mean \n for samples from exponential Distribution")+ylab("Rough likel
alue")
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Because we divide the population standard deviation  by the square root of the sample size , the SEM gets smaller as the sample size increases. It also tells us that
the shape of the sampling distribution becomes normal.
This result is useful for all sorts of things. It tells us why large experiments are more reliable than small ones, and because it gives us an explicit formula for the
standard error it tells us how much more reliable a large experiment is. It tells us why the normal distribution is, well, normal. In real experiments, many of the things
that we want to measure are actually averages of lots of different quantities (e.g., arguably, “general” intelligence as measured by IQ is an average of a large number
of “specific” skills and abilities), and when that happens, the averaged quantity should follow a normal distribution. Because of this mathematical law, the normal
distribution pops up over and over again in real data.

This page titled 4.11: The Central Limit Theorem is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via source content that
was edited to the style and standards of the LibreTexts platform.
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4.12: z-scores
We are now in a position to combine some of things we’ve been talking about in this chapter, and introduce you to a new tool, z-
scores. It turns out we won’t use z-scores very much in this textbook. However, you can’t take a class on statistics and not learn
about z-scores.
The first thing we show you seems to be something that many students remember from their statistics class. This thing is probably
remembered because instructors may test this knowledge many times, so students have to learn it for the test. Let’s look at this
thing. We are going to look at a normal distribution, and we are going to draw lines through the distribution at 0, +/- 1, +/-2, and +/-
3 standard deviations from the mean:
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run restart restart & run all

library(ggplot2)
dnorm_vec <- dnorm(seq(-5,5,.1),mean=0,sd=1)
x_range   <- seq(-5,5,.1)
t_df<-data.frame(x_range,dnorm_vec)
ggplot(t_df, aes(x=x_range,y=dnorm_vec))+
  geom_line()+
  geom_vline(xintercept = 0)+
  geom_vline(xintercept = c(-3,-2,-1,1,2,3))+
  theme_classic()+
  ylab("Density")+
  xlab("score") +
  scale_x_continuous(breaks=seq(-5,5,1))+
  geom_label(data = data.frame(x=-.5, y=.3,
            label=round(pnorm(c(0,1),0,1)[2]-pnorm(c(0,1),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x=.5, y=.3,
            label=round(pnorm(c(0,1),0,1)[2]-pnorm(c(0,1),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))+
    geom_label(data = data.frame(x=-1.5, y=.3,
            label=round(pnorm(c(1,2),0,1)[2]-pnorm(c(1,2),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x=1.5, y=.3,
            label=round(pnorm(c(1,2),0,1)[2]-pnorm(c(1,2),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label)) + 
  geom_label(data = data.frame(x=-2.5, y=.3,
            label=round(pnorm(c(2,3),0,1)[2]-pnorm(c(2,3),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x=2.5, y=.3,
            label=round(pnorm(c(2,3),0,1)[2]-pnorm(c(2,3),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))+ 
  geom_label(data = data.frame(x=-3.5, y=.3,
            label=round(pnorm(c(3,4),0,1)[2]-pnorm(c(3,4),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x=3.5, y=.3,
            label=round(pnorm(c(3,4),0,1)[2]-pnorm(c(3,4),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))
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Figure \(\PageIndex{1}\): A normal distribution. Each line represents a standard deviation from the mean. The labels show the
proportions of scores that fall between each bar.

The figure shows a normal distribution with mean = 0, and standard deviation = 1. We’ve drawn lines at each of the standard
deviations: -3, -2, -1, 0, 1, 2, and 3. We also show some numbers in the labels, in between each line. These numbers are
proportions. For example, we see the proportion is .341 for scores that fall between the range 0 and 1. Scores between 0 and 1
occur 34.1% of the time. Scores in between -1 and 1, occur 68.2% of the time, that’s more than half of the scores. Scores between 1
and occur about 13.6% of the time, and scores between 2 and 3 occur even less, only 2.1% of the time.
Normal distributions always have these properties, even when they have different means and standard deviations. For example,
take a look at this normal distribution, it has a mean =100, and standard deviation =25.
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run restart restart & run all

library(ggplot2)
dnorm_vec <- dnorm(seq(0,200,.1),mean=100,sd=25)
x_range   <- seq(0,200,.1)
t_df<-data.frame(x_range,dnorm_vec)
ggplot(t_df, aes(x=x_range,y=dnorm_vec))+
  geom_line()+
  geom_vline(xintercept = 100)+
  geom_vline(xintercept = c(25,50,75,125,150,175))+
  theme_classic()+
  ylab("Density")+
  xlab("score") +
  scale_x_continuous(breaks=seq(0,200,25))+
  geom_label(data = data.frame(x=87.5, y=0.01,
            label=round(pnorm(c(0,1),0,1)[2]-pnorm(c(0,1),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x=112.5, y=0.01,
            label=round(pnorm(c(0,1),0,1)[2]-pnorm(c(0,1),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))+
    geom_label(data = data.frame(x=62.5, y=0.01,
            label=round(pnorm(c(1,2),0,1)[2]-pnorm(c(1,2),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x=137.5, y=0.01,
            label=round(pnorm(c(1,2),0,1)[2]-pnorm(c(1,2),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label)) + 
  geom_label(data = data.frame(x=37.5, y=0.01,
            label=round(pnorm(c(2,3),0,1)[2]-pnorm(c(2,3),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x=162.5, y=0.01,
            label=round(pnorm(c(2,3),0,1)[2]-pnorm(c(2,3),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))+ 
  geom_label(data = data.frame(x=12.5, y=0.01,
            label=round(pnorm(c(3,4),0,1)[2]-pnorm(c(3,4),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x=187.5, y=0.01,
            label=round(pnorm(c(3,4),0,1)[2]-pnorm(c(3,4),0,1)[1], digits=3)), 
            aes(x = x, y = y, label = label))
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Figure \(\PageIndex{2}\): A normal distribution. Each line represents a standard deviation from the mean. The labels show the
proportions of scores that fall between each bar.

Now we are looking at a normal distribution with mean = 100 and standard deviation = 25. Notice that the region between 100 and
125 contains 34.1% of the scores. This region is 1 standard deviation away from the mean (the standard deviation is 25, the mean is
100, so 25 is one whole standard deviation away from 100). As you can see, the very same proportions occur between each of the
standard deviations, as they did when our standard deviation was set to 1 (with a mean of 0).

Idea behind z-scores
Sometimes it can be convenient to transform your original scores into different scores that are easier to work with. For example, if
you have a bunch of proportions, like .3, .5, .6, .7, you might want to turn them into percentages like 30%, 50%, 60%, and 70%. To
do that you multiply the proportions by a constant of 100. If you want to turn percentages back into proportions, you divide by a
constant of 100. This kind of transformation just changes the scale of the numbers from between 0-1, and between 0-100.
Otherwise, the pattern in the numbers stays the same.
The idea behind z-scores is a similar kind of transformation. The idea is to express each raw score in terms of it’s standard
deviation. For example, if I told you I got a 75% on test, you wouldn’t know how well I did compared to the rest of the class. But,
if I told you that I scored 2 standard deviations above the mean, you’d know I did quite well compared to the rest of the class,
because you know that most scores (if they are distributed normally) fall below 2 standard deviations of the mean.
We also know, now thanks to the central limit theorem, that many of our measures, such as sample means, will be distributed
normally. So, it can often be desirable to express the raw scores in terms of their standard deviations.
Let’s see how this looks in a table without showing you any formulas. We will look at some scores that come from a normal
distirbution with mean =100, and standard deviation = 25. We will list some raw scores, along with the z-scores

raw z

25 -3

50 -2

75 -1

100 0

125 1

150 2

175 3

Remember, the mean is 100, and the standard deviation is 25. How many standard deviations away from the mean is a score of
100? The answer is 0, it’s right on the mean. You can see the z-score for 100, is 0. How many standard deviations is 125 away from
the mean? Well the standard deviation is 25, 125 is one whole 25 away from 100, that’s a total of 1 standard deviation, so the z-
score for 125 is 1. The z-score for 150 is 2, because 150 is two 25s away from 100. The z-score for 50 is -2, because 50 is two 25s
away from 100 in the opposite direction. All we are doing here is re-expressing the raw scores in terms of how many standard
deviations they are from the mean. Remember, the mean is always right on target, so the center of the z-score distribution is always
0.

Calculating z-scores
To calculate z-scores all you have to do is figure out how many standard deviations from the mean each number is. Let’s say the
mean is 100, and the standard deviation is 25. You have a score of 97. How many standard deviations from the mean is 97?
First compute the difference between the score and the mean:
\[97-100 = -3 \nonumber \]
Alright, we have a total difference of -3. How many standard deviations does -3 represent if 1 standard deviation is 25? Clearly -3
is much smaller than 25, so it’s going to be much less than 1. To figure it out, just divide -3 by the standard deviation.
\[\frac{-3}{25} = -.12 \nonumber \]
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Our z-score for 97 is -.12.
Here’s the general formula:
\[z = \frac{\text{raw score} - \text{mean}}{\text{standard deviation}} \nonumber\]
So, for example if we had these 10 scores from a normal distribution with mean = 100, and standard deviation =25

72.23  73.48  96.25  91.60  56.84 105.56 128.96  91.33  70.96 120.23 

The z-scores would be:

-1.1108 -1.0608 -0.1500 -0.3360 -1.7264  0.2224  1.1584 -0.3468 
-1.1616  0.8092 

Once you have the z-scores, you could use them as another way to describe your data. For example, now just by looking at a score
you know if it is likely or unlikely to occur, because you know how the area under the normal curve works. z-scores between -1
and 1 happen pretty often, scores greater than 1 or -1 still happen fairly often, but not as often. And, scores bigger than 2 or -2 don’t
happen very often. This is a convenient thing to do if you want to look at your numbers and get a general sense of how often they
happen.
Usually you do not know the mean or the standard deviation of the population that you are drawing your sample scores from. So,
you could use the mean and standard deviation of your sample as an estimate, and then use those to calculate z-scores.
Finally, z-scores are also called standardized scores, because each raw score is described in terms of it’s standard deviation. This
may well be the last time we talk about z-scores in this book. You might wonder why we even bothered telling you about them.
First, it’s worth knowing they are a thing. Second, they become important as your statistical prowess becomes more advanced.
Third, some statistical concepts, like correlation, can be re-written in terms of z-scores, and this illuminates aspects of those
statistics. Finally, they are super useful when you are dealing with a normal distribution that has a known mean and standard
deviation.

This page titled 4.12: z-scores is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via
source content that was edited to the style and standards of the LibreTexts platform.
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4.13: Estimating population parameters
Let’s pause for a moment to get our bearings. We’re about to go into the topic of estimation. What is that, and why should you
care? First, population parameters are things about a distribution. For example, distributions have means. The mean is a parameter
of the distribution. The standard deviation of a distribution is a parameter. Anything that can describe a distribution is a potential
parameter.

OK fine, who cares? This I think, is a really good question. There are some good concrete reasons to care. And there are some great
abstract reasons to care. Unfortunately, most of the time in research, it’s the abstract reasons that matter most, and these can be the
most difficult to get your head around.

Concrete population parameters
First some concrete reasons. There are real populations out there, and sometimes you want to know the parameters of them. For
example, if you are a shoe company, you would want to know about the population parameters of feet size. As a first pass, you
would want to know the mean and standard deviation of the population. If your company knew this, and other companies did not,
your company would do better (assuming all shoes are made equal). Why would your company do better, and how could it use the
parameters? Here’s one good reason. As a shoe company you want to meet demand with the right amount of supply. If you make
too many big or small shoes, and there aren’t enough people to buy them, then you’re making extra shoes that don’t sell. If you
don’t make enough of the most popular sizes, you’ll be leaving money on the table. Right? Yes. So, what would be an optimal thing
to do? Perhaps, you would make different amounts of shoes in each size, corresponding to how the demand for each shoe size. You
would know something about the demand by figuring out the frequency of each size in the population. You would need to know the
population parameters to do this.

Fortunately, it’s pretty easy to get the population parameters without measuring the entire population. Who has time to measure
every-bodies feet? Nobody, that’s who. Instead, you would just need to randomly pick a bunch of people, measure their feet, and
then measure the parameters of the sample. If you take a big enough sample, we have learned that the sample mean gives a very
good estimate of the population mean. We will learn shortly that a version of the standard deviation of the sample also gives a good
estimate of the standard deviation of the population. Perhaps shoe-sizes have a slightly different shape than a normal distribution.
Here too, if you collect a big enough sample, the shape of the distribution of the sample will be a good estimate of the shape of the
populations. All of these are good reasons to care about estimating population parameters. But, do you run a shoe company?
Probably not.

Abstract population parameters
Even when we think we are talking about something concrete in Psychology, it often gets abstract right away. Instead of measuring
the population of feet-sizes, how about the population of human happiness. We all think we know what happiness is, everyone has
more or less of it, there are a bunch of people, so there must be a population of happiness right? Perhaps, but it’s not very concrete.
The first problem is figuring out how to measure happiness. Let’s use a questionnaire. Consider these questions:

How happy are you right now on a scale from 1 to 7? How happy are you in general on a
scale from 1 to 7? How happy are you in the mornings on a scale from 1 to 7? How happy
are you in the afternoons on a scale from 1 to 7?

1. = very unhappy
2. = unhappy
3. = sort of unhappy
4. = in the middle
5. = sort of happy
6. = happy
7. = very happy

Forget about asking these questions to everybody in the world. Let’s just ask them to lots of people (our sample). What do you
think would happen? Well, obviously people would give all sorts of answers right. We could tally up the answers and plot them in a
histogram. This would show us a distribution of happiness scores from our sample. “Great, fantastic!”, you say. Yes, fine and
dandy.
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So, on the one hand we could say lots of things about the people in our sample. We could say exactly who says they are happy and
who says they aren’t, after all they just told us!

But, what can we say about the larger population? Can we use the parameters of our sample (e.g., mean, standard deviation, shape
etc.) to estimate something about a larger population. Can we infer how happy everybody else is, just from our sample? HOLD
THE PHONE.

Complications with inference

Before listing a bunch of complications, let me tell you what I think we can do with our sample. Provided it is big enough, our
sample parameters will be a pretty good estimate of what another sample would look like. Because of the following discussion, this
is often all we can say. But, that’s OK, as you see throughout this book, we can work with that!

Problem 1: Multiple populations: If you looked at a large sample of questionnaire data you will find evidence of multiple
distributions inside your sample. People answer questions differently. Some people are very cautious and not very extreme. Their
answers will tend to be distributed about the middle of the scale, mostly 3s, 4s, and 5s. Some people are very bi-modal, they are
very happy and very unhappy, depending on time of day. These people’s answers will be mostly 1s and 2s, and 6s and 7s, and those
numbers look like they come from a completely different distribution. Some people are entirely happy or entirely unhappy. Again,
these two “populations” of people’s numbers look like two different distributions, one with mostly 6s and 7s, and one with mostly
1s and 2s. Other people will be more random, and their scores will look like a uniform distribution. So, is there a single population
with parameters that we can estimate from our sample? Probably not. Could be a mixture of lots of populations with different
distributions.

Problem 2: What do these questions measure?: If the whole point of doing the questionnaire is to estimate the population’s
happiness, we really need wonder if the sample measurements actually tell us anything about happiness in the first place. Some
questions: Are people accurate in saying how happy they are? Does the measure of happiness depend on the scale, for example,
would the results be different if we used 0-100, or -100 to +100, or no numbers? Does the measure of happiness depend on the
wording in the question? Does a measure like this one tell us everything we want to know about happiness (probably not), what is
it missing (who knows? probably lots). In short, nobody knows if these kinds of questions measure what we want them to measure.
We just hope that they do. Instead, we have a very good idea of the kinds of things that they actually measure. It’s really quite
obvious, and staring you in the face. Questionnaire measurements measure how people answer questionnaires. In other words, how
people behave and answer questions when they are given a questionnaire. This might also measure something about happiness,
when the question has to do about happiness. But, it turns out people are remarkably consistent in how they answer questions, even
when the questions are total nonsense, or have no questions at all (just numbers to choose!) Maul (2017).

The take home complications here are that we can collect samples, but in Psychology, we often don’t have a good idea of the
populations that might be linked to these samples. There might be lots of populations, or the populations could be different
depending on who you ask. Finally, the “population” might not be the one you want it to be.

Experiments and Population parameters

OK, so we don’t own a shoe company, and we can’t really identify the population of interest in Psychology, can’t we just skip this
section on estimation? After all, the “population” is just too weird and abstract and useless and contentious. HOLD THE PHONE
AGAIN!

It turns out we can apply the things we have been learning to solve lots of important problems in research. These allow us to
answer questions with the data that we collect. Parameter estimation is one of these tools. We just need to be a little bit more
creative, and a little bit more abstract to use the tools.

Here is what we know already. The numbers that we measure come from somewhere, we have called this place “distributions”.
Distributions control how the numbers arrive. Some numbers happen more than others depending on the distribution. We assume,
even if we don’t know what the distribution is, or what it means, that the numbers came from one. Second, when get some
numbers, we call it a sample. This entire chapter so far has taught you one thing. When your sample is big, it resembles the
distribution it came from. And, when your sample is big, it will resemble very closely what another big sample of the same thing
will look like. We can use this knowledge!

Very often as Psychologists what we want to know is what causes what. We want to know if X causes something to change in Y.
Does eating chocolate make you happier? Does studying improve your grades? There a bazillions of these kinds of questions. And,
we want answers to them.
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I’ve been trying to be mostly concrete so far in this textbook, that’s why we talk about silly things like chocolate and happiness, at
least they are concrete. Let’s give a go at being abstract. We can do it.

So, we want to know if X causes Y to change. What is X? What is Y? X is something you change, something you manipulate, the
independent variable. Y is something you measure. So, we will be taking samples from Y. “Oh I get it, we’ll take samples from Y,
then we can use the sample parameters to estimate the population parameters of Y!” NO, not really, but yes sort of. We will take
sample from Y, that is something we absolutely do. In fact, that is really all we ever do, which is why talking about the population
of Y is kind of meaningless. We’re more interested in our samples of Y, and how they behave.

So, what would happen if we removed X from the universe altogether, and then took a big sample of Y. We’ll pretend Y measures
something in a Psychology experiment. So, we know right away that Y is variable. When we take a big sample, it will have a
distribution (because Y is variable). So, we can do things like measure the mean of Y, and measure the standard deviation of Y, and
anything else we want to know about Y. Fine. What would happen if we replicated this measurement. That is, we just take another
random sample of Y, just as big as the first. What should happen is that our first sample should look a lot like our second example.
After all, we didn’t do anything to Y, we just took two big samples twice. Both of our samples will be a little bit different (due to
sampling error), but they’ll be mostly the same. The bigger our samples, the more they will look the same, especially when we
don’t do anything to cause them to be different. In other words, we can use the parameters of one sample to estimate the parameters
of a second sample, because they will tend to be the same, especially when they are large.

We are now ready for step two. You want to know if X changes Y. What do you do? You make X go up and take a big sample of Y
then look at it. You make X go down, then take a second big sample of Y and look at it. Next, you compare the two samples of Y. If
X does nothing then what should you find? We already discussed that in the previous paragraph. If X does nothing, then both of
your big samples of Y should be pretty similar. However, if X does something to Y, then one of your big samples of Y will be
different from the other. You will have changed something about Y. Maybe X makes the mean of Y change. Or maybe X makes the
variation in Y change. Or, maybe X makes the whole shape of the distribution change. If we find any big changes that can’t be
explained by sampling error, then we can conclude that something about X caused a change in Y! We could use this approach to
learn about what causes what!

The very important idea is still about estimation, just not population parameter estimation exactly. We know that when we take
samples they naturally vary. So, when we estimate a parameter of a sample, like the mean, we know we are off by some amount.
When we find that two samples are different, we need to find out if the size of the difference is consistent with what sampling error
can produce, or if the difference is bigger than that. If the difference is bigger, then we can be confident that sampling error didn’t
produce the difference. So, we can confidently infer that something else (like an X) did cause the difference. This bit of abstract
thinking is what most of the rest of the textbook is about. Determining whether there is a difference caused by your manipulation.
There’s more to the story, there always is. We can get more specific than just, is there a difference, but for introductory purposes,
we will focus on the finding of differences as a foundational concept.

Interim summary
We’ve talked about estimation without doing any estimation, so in the next section we will do some estimating of the mean and of
the standard deviation. Formally, we talk about this as using a sample to estimate a parameter of the population. Feel free to think
of the “population” in different ways. It could be concrete population, like the distribution of feet-sizes. Or, it could be something
more abstract, like the parameter estimate of what samples usually look like when they come from a distribution.

Estimating the population mean
Suppose we go to Brooklyn and 100 of the locals are kind enough to sit through an IQ test. The average IQ score among these
people turns out to be . So what is the true mean IQ for the entire population of Brooklyn? Obviously, we don’t know the
answer to that question. It could be , but if could also be . Our sampling isn’t exhaustive so we cannot give a definitive
answer. Nevertheless if forced to give a “best guess” I’d have to say . That’s the essence of statistical estimation: giving a best
guess. We’re using the sample mean as the best guess of the population mean.

In this example, estimating the unknown population parameter is straightforward. I calculate the sample mean, and I use that as my
estimate of the population mean. It’s pretty simple, and in the next section we’ll explain the statistical justification for this
intuitive answer. However, for the moment let’s make sure you recognize that the sample statistic and the estimate of the population
parameter are conceptually different things. A sample statistic is a description of your data, whereas the estimate is a guess about
the population. With that in mind, statisticians often use different notation to refer to them. For instance, if true population mean is
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denoted , then we would use  to refer to our estimate of the population mean. In contrast, the sample mean is denoted  or
sometimes . However, in simple random samples, the estimate of the population mean is identical to the sample mean: if I
observe a sample mean of , then my estimate of the population mean is also . To help keep the notation clear,
here’s a handy table:

Symbol What is it? Do we know what it is?

Sample mean Yes, calculated from the raw data

True population mean Almost never known for sure

Estimate of the population mean Yes, identical to the sample mean

Estimating the population standard deviation
So far, estimation seems pretty simple, and you might be wondering why I forced you to read through all that stuff about sampling
theory. In the case of the mean, our estimate of the population parameter (i.e. ) turned out to identical to the corresponding sample
statistic (i.e. ). However, that’s not always true. To see this, let’s have a think about how to construct an estimate of the
population standard deviation, which we’ll denote . What shall we use as our estimate in this case? Your first thought might be
that we could do the same thing we did when estimating the mean, and just use the sample statistic as our estimate. That’s almost
the right thing to do, but not quite.

Here’s why. Suppose I have a sample that contains a single observation. For this example, it helps to consider a sample where you
have no intuitions at all about what the true population values might be, so let’s use something completely fictitious. Suppose the
observation in question measures the cromulence of my shoes. It turns out that my shoes have a cromulence of 20. So here’s my
sample:

20

This is a perfectly legitimate sample, even if it does have a sample size of . It has a sample mean of 20, and because every
observation in this sample is equal to the sample mean (obviously!) it has a sample standard deviation of 0. As a description of the
sample this seems quite right: the sample contains a single observation and therefore there is no variation observed within the
sample. A sample standard deviation of  is the right answer here. But as an estimate of the population standard deviation, it
feels completely insane, right? Admittedly, you and I don’t know anything at all about what “cromulence” is, but we know
something about data: the only reason that we don’t see any variability in the sample is that the sample is too small to display any
variation! So, if you have a sample size of , it feels like the right answer is just to say “no idea at all”.

Notice that you don’t have the same intuition when it comes to the sample mean and the population mean. If forced to make a best
guess about the population mean, it doesn’t feel completely insane to guess that the population mean is 20. Sure, you probably
wouldn’t feel very confident in that guess, because you have only the one observation to work with, but it’s still the best guess you
can make.

Let’s extend this example a little. Suppose I now make a second observation. My data set now has  observations of the
cromulence of shoes, and the complete sample now looks like this:

20, 22

This time around, our sample is just large enough for us to be able to observe some variability: two observations is the bare
minimum number needed for any variability to be observed! For our new data set, the sample mean is , and the sample
standard deviation is . What intuitions do we have about the population? Again, as far as the population mean goes, the best
guess we can possibly make is the sample mean: if forced to guess, we’d probably guess that the population mean cromulence is
21. What about the standard deviation? This is a little more complicated. The sample standard deviation is only based on two
observations, and if you’re at all like me you probably have the intuition that, with only two observations, we haven’t given the
population “enough of a chance” to reveal its true variability to us. It’s not just that we suspect that the estimate is wrong: after all,
with only two observations we expect it to be wrong to some degree. The worry is that the error is systematic.

If the error is systematic, that means it is biased. For example, imagine if the sample mean was always smaller than the population
mean. If this was true (it’s not), then we couldn’t use the sample mean as an estimator. It would be biased, we’d be using the wrong
number.
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It turns out the sample standard deviation is a biased estimator of the population standard deviation. We can sort of anticipate this
by what we’ve been discussing. When the sample size is 1, the standard deviation is 0, which is obviously to small. When the
sample size is 2, the standard deviation becomes a number bigger than 0, but because we only have two sample, we suspect it might
still be too small. Turns out this intuition is correct.

It would be nice to demonstrate this somehow. There are in fact mathematical proofs that confirm this intuition, but unless you
have the right mathematical background they don’t help very much. Instead, what I’ll do is use R to simulate the results of some
experiments. With that in mind, let’s return to our IQ studies. Suppose the true population mean IQ is 100 and the standard
deviation is 15. I can use the rnorm() function to generate the the results of an experiment in which I measure  IQ scores,
and calculate the sample standard deviation. If I do this over and over again, and plot a histogram of these sample standard
deviations, what I have is the sampling distribution of the standard deviation. I’ve plotted this distribution in Figure .

Figure : The sampling distribution of the sample standard deviation for a two IQ scores experiment. The true population
standard deviation is 15 (dashed line), but as you can see from the histogram, the vast majority of experiments will produce a much
smaller sample standard deviation than this. On average, this experiment would produce a sample standard deviation of only 8.5,
well below the true value! In other words, the sample standard deviation is a biased estimate of the population standard deviation.

Even though the true population standard deviation is 15, the average of the sample standard deviations is only 8.5. Notice that this
is a very different from when we were plotting sampling distributions of the sample mean, those were always centered around the
mean of the population.
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Now let’s extend the simulation. Instead of restricting ourselves to the situation where we have a sample size of , let’s repeat
the exercise for sample sizes from 1 to 10. If we plot the average sample mean and average sample standard deviation as a function
of sample size, you get the following results.

Figure  shows the sample mean as a function of sample size. Notice it’s a flat line. The sample mean doesn’t underestimate
or overestimate the population mean. It is an unbiased estimate!

Figure : An illustration of the fact that the sample mean is an unbiased estimator of the population mean.

Figure  shows the sample standard deviation as a function of sample size. Notice it is not a flat line. The sample standard
deviation systematically underestimates the population standard deviation!

N = 2
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Figure : An illustration of the fact that the the sample standard deviation is a biased estimator of the population standard
deviation.

In other words, if we want to make a “best guess” ( , our estimate of the population standard deviation) about the value of the
population standard deviation , we should make sure our guess is a little bit larger than the sample standard deviation .

The fix to this systematic bias turns out to be very simple. Here’s how it works. Before tackling the standard deviation, let’s look at
the variance. If you recall from the second chapter, the sample variance is defined to be the average of the squared deviations from
the sample mean. That is:

The sample variance  is a biased estimator of the population variance . But as it turns out, we only need to make a tiny tweak
to transform this into an unbiased estimator. All we have to do is divide by  rather than by . If we do that, we obtain the
following formula:

This is an unbiased estimator of the population variance .

A similar story applies for the standard deviation. If we divide by  rather than , our estimate of the population standard
deviation becomes:
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It is worth pointing out that software programs make assumptions for you, about which variance and standard deviation you are
computing. Some programs automatically divide by , some do not. You need to check to figure out what they are doing.
Don’t let the software tell you what to do. Software is for you telling it what to do.

One final point: in practice, a lot of people tend to refer to  (i.e., the formula where we divide by ) as the sample standard
deviation. Technically, this is incorrect: the sample standard deviation should be equal to  (i.e., the formula where we divide by 

). These aren’t the same thing, either conceptually or numerically. One is a property of the sample, the other is an estimated
characteristic of the population. However, in almost every real life application, what we actually care about is the estimate of the
population parameter, and so people always report  rather than .

Note, whether you should divide by N or N-1 also depends on your philosophy about what you are doing. For example, if you
don’t think that what you are doing is estimating a population parameter, then why would you divide by N-1? Also, when N is
large, it doesn’t matter too much. The difference between a big N, and a big N-1, is just -1.

This is the right number to report, of course, it’s that people tend to get a little bit imprecise about terminology when they write it
up, because “sample standard deviation” is shorter than “estimated population standard deviation”. It’s no big deal, and in practice I
do the same thing everyone else does. Nevertheless, I think it’s important to keep the two concepts separate: it’s never a good idea
to confuse “known properties of your sample” with “guesses about the population from which it came”. The moment you start
thinking that  and  are the same thing, you start doing exactly that.

To finish this section off, here’s another couple of tables to help keep things clear:

Symbol What is it? Do we know what it is?

Sample variance Yes, calculated from the raw data

Population variance Almost never known for sure

Estimate of the population variance Yes, but not the same as the sample variance

This page titled 4.13: Estimating population parameters is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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4.14: Estimating a confidence interval

Statistics means never having to say you’re certain – Unknown origin

Up to this point in this chapter, we’ve outlined the basics of sampling theory which statisticians rely on to make guesses about
population parameters on the basis of a sample of data. As this discussion illustrates, one of the reasons we need all this sampling
theory is that every data set leaves us with some of uncertainty, so our estimates are never going to be perfectly accurate. The thing
that has been missing from this discussion is an attempt to quantify the amount of uncertainty in our estimate. It’s not enough to be
able guess that the mean IQ of undergraduate psychology students is 115 (yes, I just made that number up). We also want to be able
to say something that expresses the degree of certainty that we have in our guess. For example, it would be nice to be able to say
that there is a 95% chance that the true mean lies between 109 and 121. The name for this is a confidence interval for the mean.

Armed with an understanding of sampling distributions, constructing a confidence interval for the mean is actually pretty easy.
Here’s how it works. Suppose the true population mean is  and the standard deviation is . I’ve just finished running my study
that has  participants, and the mean IQ among those participants is . We know from our discussion of the central limit theorem
that the sampling distribution of the mean is approximately normal. We also know from our discussion of the normal distribution
that there is a 95% chance that a normally-distributed quantity will fall within two standard deviations of the true mean. To be more
precise, we can use the qnorm() function to compute the 2.5th and 97.5th percentiles of the normal distribution

qnorm( p = c(.025, .975) ) [1] -1.959964 1.959964 

Okay, so I lied earlier on. The more correct answer is that a 95% chance that a normally-distributed quantity will fall within 1.96
standard deviations of the true mean.

Next, recall that the standard deviation of the sampling distribution is referred to as the standard error, and the standard error of the
mean is written as SEM. When we put all these pieces together, we learn that there is a 95% probability that the sample mean 
that we have actually observed lies within 1.96 standard errors of the population mean. Oof, that is a lot of mathy talk there. We’ll
clear it up, don’t worry.

Mathematically, we write this as:

where the SEM is equal to , and we can be 95% confident that this is true.

However, that’s not answering the question that we’re actually interested in. The equation above tells us what we should expect
about the sample mean, given that we know what the population parameters are. What we want is to have this work the other way
around: we want to know what we should believe about the population parameters, given that we have observed a particular
sample. However, it’s not too difficult to do this. Using a little high school algebra, a sneaky way to rewrite our equation is like
this:

What this is telling is is that the range of values has a 95% probability of containing the population mean . We refer to this range
as a 95% confidence interval, denoted . In short, as long as  is sufficiently large – large enough for us to believe that the
sampling distribution of the mean is normal – then we can write this as our formula for the 95% confidence interval:

Of course, there’s nothing special about the number 1.96: it just happens to be the multiplier you need to use if you want a 95%
confidence interval. If I’d wanted a 70% confidence interval, I could have used the qnorm() function to calculate the 15th and 85th
quantiles:

qnorm( p = c(.15, .85) ) [1] -1.036433 1.036433 
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and so the formula for  would be the same as the formula for  except that we’d use 1.04 as our magic number rather than
1.96.

A slight mistake in the formula
As usual, I lied. The formula that I’ve given above for the 95% confidence interval is approximately correct, but I glossed over an
important detail in the discussion. Notice my formula requires you to use the standard error of the mean, SEM, which in turn
requires you to use the true population standard deviation .

Yet, before we stressed the fact that we don’t actually know the true population parameters. Because we don’t know the true value
of , we have to use an estimate of the population standard deviation  instead. This is pretty straightforward to do, but this has the
consequence that we need to use the quantiles of the -distribution rather than the normal distribution to calculate our magic
number; and the answer depends on the sample size. Plus, we haven’t really talked about the  distribution yet.

When we use the  distribution instead of the normal distribution, we get bigger numbers, indicating that we have more uncertainty.
And why do we have that extra uncertainty? Well, because our estimate of the population standard deviation  might be wrong! If
it’s wrong, it implies that we’re a bit less sure about what our sampling distribution of the mean actually looks like… and this
uncertainty ends up getting reflected in a wider confidence interval.

This page titled 4.14: Estimating a confidence interval is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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4.15: Summary
In this chapter I’ve covered two main topics. The first half of the chapter talks about sampling theory, and the second half talks
about how we can use sampling theory to construct estimates of the population parameters. The section breakdown looks like this:

Basic ideas about samples, sampling and populations
Statistical theory of sampling: the law of large numbers, sampling distributions and the central limit theorem.
Estimating means and standard deviations
confidence intervals

As always, there’s a lot of topics related to sampling and estimation that aren’t covered in this chapter, but for an introductory
psychology class this is fairly comprehensive I think. For most applied researchers you won’t need much more theory than this.
One big question that I haven’t touched on in this chapter is what you do when you don’t have a simple random sample. There is a
lot of statistical theory you can draw on to handle this situation, but it’s well beyond the scope of this book.

This page titled 4.15: Summary is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via
source content that was edited to the style and standards of the LibreTexts platform.
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4.16: Videos

Introduction to Probability

Jeff has several more videos on probability that you can view on his statistics playlist.

(https://www.youtube.com/watch?v=RoalMn9VHZg)

Chebychev’s Theorem

(https://www.youtube.com/watch?v=4RtwqCFt1IU)

Z-scores
(https://www.youtube.com/watch?v=dQVO0KAxFaU)

Introduction to Probability (old version)Introduction to Probability (old version)

Chebychev's TheoremChebychev's Theorem
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Normal Distribution I
(https://www.youtube.com/watch?v=FPJDF9fGwwE)

Normal Distribution II
(https://www.youtube.com/watch?v=mPdnF-GVuCo)

4.16: Videos is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

The z ScoreThe z Score

Introducing the Normal DistributionIntroducing the Normal Distribution

The Normal Distribution, ContinuedThe Normal Distribution, Continued
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CHAPTER OVERVIEW

5: Foundations for inference
Chapter by Matthew Crump

Data and data sets are not objective; they are creations of human design. We give
numbers their voice, draw inferences from them, and define their meaning through our
interpretations.

—Katie Crawford

So far we have been talking about describing data and looking possible relationships between things we measure. We began by
talking about the problem of having too many numbers. So, we discussed how we could summarize big piles of numbers with
descriptive statistics, and by looking at the data with graphs. We also looked at the idea of relationships between things. If one
thing causes another thing, then if we measure how one thing goes up and down, we should find that other thing goes up and down,
or does something at least systematically following the first thing. At the end of the chapter on correlation, we showed how
correlations, which imply a relationship between two things, are very difficult to interpret. Why? because an observed correlation
can be caused by a hidden third variable, or simply be a spurious findings “caused” by random chance. In the last chapter, we
talked about sampling from distributions, and we saw how samples can be different because of random error introduced by the
sampling process.

Now we begin our journey into inferential statistics. The tools we use to make inferences about where our data came from, and
more importantly make inferences about what causes what. In this chapter we provide some foundational ideas. We will stay
mostly at a conceptual level, and use lots of simulations like we did in the last chapters. In the remaining chapters we formalize the
intuitions built here to explain how some common inferential statistics work.

5.1: Brief review of Experiments
5.2: The data came from a distribution
5.3: Is there a difference?
5.4: Chance makes some differences more likely than others
5.5: The Crump Test
5.6: The randomization test (permutation test)
5.7: Videos
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5.1: Brief review of Experiments
In chapter one we talked a little bit about research methods and experiments. Experiments are a structured way of collecting data
that can permit inferences about causality. If we wanted to know whether something like watching cats on YouTube increases
happiness we would need an experiment. We already found out that just finding a bunch of people and measuring number of hours
watching cats, and level of happiness, and correlating the two will not permit inferences about causation. For one, the causal flow
could be reversed. Maybe being happy causes people to watch more cat videos. We need an experiment.

An experiment has two parts. A manipulation and a measurement. The manipulation is under the control of the experimenter.
Manipulations are also called independent variables. For example, we could manipulate how many cat videos people will watch,
1 hour versus 2 hours of cat videos. The measurement is the data that is collected. We could measure how happy people are after
watching cat videos on a scale from 1 to 100. Measurements are also called dependent variables. So, in a basic experiment like
the one above, we take measurements of happiness from people in one of two experimental conditions defined by the independent
variable. Let’s say we ran 50 subjects. 25 subjects would be randomly assigned to watch 1 hour of cat videos, and the other 25
subjects would be randomly assigned to watch 2 hours of cat videos. We would measure happiness for each subject at the end of
the videos. Then we could look at the data. What would we want to look at? Well, if watching cat videos cause change in
happiness, then we would expect the measures of happiness for people watching 1 hour of cat videos to be different from the
measures of happiness for people watching 2 hours of cat videos. If watching cat videos does not change happiness, then we would
expect no differences in measures of happiness between conditions. Causal forces cause change, and the experiment is set up to
detect the change.

Now we can state one overarching question, how do we know if the data changed between conditions? If we can be confident that
there was a change between conditions, we can infer that our manipulation caused a changed in the measurement. If we cannot be
confident there was a change, then we cannot infer that our manipulation caused a change in the measurement. We need to build
some change detection tools so we can know a change when we find one.

“Hold on, if we are just looking for a change, wouldn’t that be easy to see by looking at the numbers and seeing if they are
different, what’s so hard about that?”. Good question. Now we must take a detour. The short answer is that there will always be
change in the data (remember variance).
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5.2: The data came from a distribution
In the last chapter we discussed samples and distributions, and the idea that you can take samples from distributions. So, from now
on when you see a bunch of numbers, you should wonder, “where did these numbers come from?”. What caused some kinds of
numbers to happen more than other kinds of numbers. The answer to this question requires us to again veer off into the abstract
world of distributions. A distribution a place where numbers can come from. The distribution sets the constraints. It determines
what numbers are likely to occur, and what numbers are not likely to occur. Distributions are abstract ideas. But, they can be made
concrete, and we can draw them with pictures that you have seen already, called histograms.
The next bit might seem slightly repetitive from the previous chapter. We again look at sampling numbers from a uniform
distribution. We show that individual samples can look quite different from each other. Much of the beginning part of this chapter
will already be familiar to you, but we take the concepts in a slightly different direction. The direction is how to make inferences
about the role of chance in your experiment.

Uniform distribution
A uniform distribution is completely flat, it looks like this:

run restart restart & run all

Figure \(\PageIndex{1}\): Uniform distribution showing that the numbers from 1 to 10 have an equal probability of being sampled.

OK, so that doesn’t look like much. What is going on here? The y-axis is labelled probability , and it goes from 0 to 1. The
x-axis is labelled Number , and it goes from one to 10. There is a horizontal line drawn straight through. This line tells you the
probability of each number from 1 to 10. Notice the line is flat. This means all of the numbers have the same probability of
occurring. More specifically, there are 10 numbers from 1 to 10 (1,2,3,4,5,6,7,8,9,10), and they all have an equal chance of
occurring. 1/10 = .1, which is the probability indicated by the horizontal line.
“So what?”. Imagine that this uniform distribution is a number generating machine. It spits out numbers, but it spits out each
number with the probability indicated by the line. If this distribution was going to start spitting out numbers, it would spit out 10%

library(ggplot2)
suppressPackageStartupMessages(library(dplyr))
df<-data.frame(a=1:10,b=seq(.1,1,.1))
df$a<-as.factor(df$a)
ggplot(df,aes(x=a,y=b))+
  geom_point(color="white")+
  geom_hline(yintercept=.1)+
  theme_classic()+
  ylab("Probability")+
  xlab("Number")+
  ggtitle("Uniform distribution for numbers 1 to 10")
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1s, 10% 2s, 10% 3s, and so on, up to 10% 10s. Wanna see what that would look like? Let’s make it spit out 100 numbers

run restart restart & run all

We used the uniform distribution to generate these numbers. Officially, we call this sampling from a distribution. Sampling is what
you do at a grocery store when there is free food. You can keep taking more. However, if you take all of the samples, then what you
have is called the population. We’ll talk more about samples and populations as we go along.
Because we used the uniform distribution to create numbers, we already know where our numbers came from. However, we can
still pretend for the moment that someone showed up at your door, showed you these numbers, and then you wondered where they
came from. Can you tell just by looking at these numbers that they came from a uniform distribution? What would need to look at?
Perhaps you would want to know if all of the numbers occur with roughly equal frequency, after all they should have right? That is,
if each number had the same chance of occurring, we should see that each number occurs roughly the same number of times.
We already know what a histogram is, so we can put our numbers into a histogram and see what the counts look like. If all of the
numbers occur with equal frequency, then each number should occur 10 times, because we sampled a total of 100 numbers. The
histogram looks like this:

|   |   |   |   |   |   |   |   |   |   | 
|--:|--:|--:|--:|--:|--:|--:|--:|--:|--:| 
|  2|  4|  9|  3|  5|  9|  7|  8|  8|  5| 
|  2|  6|  4|  2|  3|  5|  2|  1|  7|  3| 
|  7|  8|  5| 10|  4|  4|  4|  5|  2|  3| 
| 10|  2|  9|  4| 10|  2|  9|  6|  6|  4| 
|  3|  6|  2|  7|  9| 10| 10|  5|  2|  3| 
|  5|  7|  5|  4|  2|  2|  7|  6|  3|  9| 
|  7|  2|  4|  7|  2|  5|  9|  4|  6|  2| 
|  8|  9|  5|  9| 10| 10|  4|  4|  1|  1| 
|  3|  8|  6|  8|  9|  8|  6|  2|  8|  6| 
|  2|  7|  4|  3|  8|  4|  4|  4|  2|  6|

options(warn=-1)
a<-matrix(round(runif(100,1,10)),ncol=10)
knitr::kable(a)
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Figure \(\PageIndex{2}\): Histogram of a sampl of 100 numbers from the uniform distribution containing the integers from 1 to 10.
Uh oh, as you can see, not all of the number occurred 10 times each. All of the bars are not the same height. This shows that
randomly sampling numbers from this distribution does not guarantee that our numbers will be exactly like the distribution they
came from. We can call this sampling error, or sampling variability.

Not all samples are the same, they are usually quite different
Let’s take a look at sampling error more closely. We will sample 20 numbers from the uniform. Here we should expect that each
number between 1 and 10 occurs two times each. Let’s take 20 sample and make a histogram. And then, let’s do that 10 times. So
we will be looking at 10 histograms, each showing us what the 10 different samples of twenty numbers looks like:

a<-matrix(round(runif(100,1,10)),ncol=10)
hist(a)
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Figure \(\PageIndex{3}\): Histograms for 10 different samples from the uniform distribution. They all look quite different. The
differences between the samples are due to sampling error.

You might notice right away that none of the histograms are the same. Even though we are randomly taking 20 numbers from the
very same uniform distribution, each sample of 20 numbers comes out different. This is sampling variability, or sampling error.
Here is movie version. You are watching a new histogram for each sample of 20 observations. The horizontal line shows the shape
of the uniform distribution. It crosses the y-axis at 2, because we expect that each number (from 1 to 10) should occur about 2 times
each in a sample of 20. However, as you can see, this does not happen. Instead, each sample bounces around quite a bit, due to
random chance.

library(ggplot2)
a<-round(runif(20*10,1,10))
df<-data.frame(a,sample=rep(1:10,each=20))
ggplot(df,aes(x=a))+
  geom_histogram(bins=10, color="white")+
  facet_wrap(~sample)+
  theme_classic()+
  scale_x_continuous(breaks=seq(1,10,1))
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Figure \(\PageIndex{4}\): Animation of histograms for different samples of 20 from Uniform distribution (numbers 1 to 10). The
black lines shows the expected number of times each number from 1 to 10 should occur. The fact that each number does not occur
2 times each illustrates the error associated with sampling.

Looking at the above histograms shows us that figuring out where our numbers came from can be difficult. In the real world, our
measurements are samples. We usually only have the luxury of getting one sample of measurements, rather than repeating our own
measurements 10 times or more. If you look at the histograms, you will see that some of them look like they could have come from
the uniform distribution: most of the bars are near two, and they all fall kind of on a flat line. But, if you happen to look at a
different sample, you might see something that is very bumpy, with some numbers happening way more than others. This could
suggest to you that those numbers did not come from a uniform distribution (they’re just too bumpy). But let me remind you, all of
these samples came from a uniform distribution, this is what samples from that distribution look like. This is what chance does to
samples, it makes the individual data points noisy.

Large samples are more like the distribution they came from
Let’s refresh the question. Which of these two samples do you think came from a uniform distribution?
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Figure \(\PageIndex{5}\): Which of these two samples came from a Uniformat distribution?

The answer is that they both did. But, neither of them look like they did.
Can we improve things, and make it easier to see if a sample came from a uniform distribution? Yes, we can. All we need to do is
increase the sample-size. We will often use the letter n  to refer to sample-size. N is the number of observations in the sample.
So let’s increase the number of observations in each sample from 20 to 100. We will again create 10 samples (each with 100
observations), and make histograms for each of them. All of these samples will be drawn from the very same uniform distribution.
This, means we should expect each number from 1 to 10 to occur about 10 times in each sample. Here are the histograms:

library(ggplot2)
a<-round(runif(20*2,1,10))
df<-data.frame(a,sample=rep(1:2,each=20))
ggplot(df,aes(x=a))+
  geom_histogram(bins=10, color="white")+
  facet_wrap(~sample)+
  theme_classic()+
  scale_x_continuous(breaks=seq(1,10,1))
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Figure \(\PageIndex{6}\): Histograms for different samples from a uniform distribution. Sample-size = 100 for each sample.

Again, most of these histograms don’t look very flat, and all of the bars seem to be going up or down, and they are not exactly at 10
each. So, we are still dealing with sampling error. It’s a pain. It’s always there.
Let’s bump it up to 1000 observations per sample. Now we should expect every number to appear about 100 times each. What
happens?

library(ggplot2)
a<-sample(1:10,100*10,replace=T)
df<-data.frame(a,sample=rep(1:10,each=100))
ggplot(df,aes(x=a))+
  geom_histogram(bins=10, color="white")+
  facet_wrap(~sample)+
  theme_classic()+
  ylim(0,20)+
  scale_x_continuous(breaks=seq(1,10,1))
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Figure \(\PageIndex{7}\): Histograms for different samples from a uniform distribution. Sample-size = 1000 for each sample.

Each of these histograms are starting to flatten out. The bars are still not perfectly at 100, because there is still sampling error (there
always will be). But, if you found a histogram that looked flat and knew that the sample contained many observations, you might
be more confident that those numbers came from a uniform distribution.
Just for fun let’s make the samples really big. Say 100,000 observations per sample. Here, we should expect that each number
occurs about 10,000 times each. What happens?

library(ggplot2)
a<-sample(1:10,1000*10,replace=T)
df<-data.frame(a,sample=rep(1:10,each=1000))
ggplot(df,aes(x=a))+
 geom_histogram(bins=10, color="white")+
  facet_wrap(~sample)+
  theme_classic()+
  ylim(0,200)+
  scale_x_continuous(breaks=seq(1,10,1))
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Figure \(\PageIndex{8}\): Histograms for different samples from a uniform distribution. Sample-size = 100,000 for each sample.

Now we see that all of our samples start to look the same. They all have 100,000 observations, and this gives chance enough
opportunity to equally distribute the numbers, roughly making sure that they all occur very close to the same amount of times. As
you can see, the bars are all very close to 10,000, where they should be if the sample came from a uniform distribution.

Pro tip: The pattern behind a sample will tend to stabilize as sample-size increases. Small
samples will have all sorts of patterns because of sampling error (chance).

Before getting back to experiments, let’s ask two more questions. First, which of these two samples do you think came from a
uniform distribution? I will tell you that each of these samples had 20 observations each.

library(ggplot2)
a<-sample(1:10,100000*10,replace=T)
df<-data.frame(a,sample=rep(1:10,each=100000))
ggplot(df,aes(x=a))+
  geom_histogram(bins=10, color="white")+
  facet_wrap(~sample)+
  theme_classic()+
  ylim(0,20000)+
  scale_x_continuous(breaks=seq(1,10,1))
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Figure \(\PageIndex{9}\): Which of these samples came from a uniform distribution?

If you are not confident in the answer, this is because sampling error (randomness) is fuzzing with the histograms.
Here is the very same question, only this time we will take 1,000 observations for each sample. Which one do you think came from
a uniform distribution, which one did not?

library(ggplot2)
a<-c(sample(1:10,20,replace=T),round(rnorm(20,5,2.5)))
df<-data.frame(a,sample=rep(1:2,each=20))
ggplot(df,aes(x=a))+
  geom_histogram(bins=10, color="white")+
  facet_wrap(~sample)+
  theme_classic()+
  scale_x_continuous(breaks=seq(1,10,1))
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Figure \(\PageIndex{10}\): Which of these samples came from a uniform distribution?

Now that we have increased N, we can see the pattern in each sample becomes more obvious. The histogram for sample 1 has bars
near 100, not perfectly flat, but it resembles a uniform distribution. The histogram for sample 2 does not look flat at all. Instead,
there the number five appears most of the time, and numbers on either side of five happen less and less.
Congratulations to Us! We have just made some statistical inferences without using formulas!
“We did?”. Yes, by looking at our two samples we have inferred that sample 2 did not come from a uniform distribution. We have
also inferred that sample 1 could have come form a uniform distribution. Fantastic. This is really all we will be doing for the rest of
the course. We will be looking at some numbers, wondering where they came from, then we will arrange the numbers in such a
way so that we can make an inference about where they came from. That’s it.

This page titled 5.2: The data came from a distribution is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

library(ggplot2)
a<-c(sample(1:10,1000,replace=T),round(rnorm(1000,5,1.25)))
df<-data.frame(a,sample=rep(1:2,each=1000))
ggplot(df,aes(x=a))+
  geom_histogram(bins=10, color="white")+
  facet_wrap(~sample)+
  theme_classic()+
  scale_x_continuous(breaks=seq(0,10,1))
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5.3: Is there a difference?
Let’s get back to experiments. In an experiment we want to know if our independent variable (our manipulation) causes a change in
our dependent variable (measurement). If this occurs, then we will expect to see some differences in our measurement as a function
of manipulation.
Consider the light switch example:

Light Switch Experiment: You manipulate the switch up (condition 1 of independent variable), light goes on (measurement). You
manipulate the switch down (condition 2 of independent variable), light goes off (another measurement). The measurement (light)
changes (goes off and on) as a function of the manipulation (moving switch up or down).
You can see the change in measurement between the conditions, it is as obvious as night and day. So, when you conduct a
manipulation, and can see the difference (change) in your measure, you can be pretty confident that your manipulation is causing
the change.

To be cautious we can say “something” about your manipulation is causing the change, it might not be what you think it is if
your manipulation is very complicated and involves lots of moving parts

Chance can produce differences
Do you think random chance can produce the appearance of differences, even when there really aren’t any? I hope so. We have
already shown that the process of sampling numbers from a distribution is a chancy process that produces different samples.
Different samples are different, so yes, chance can produce differences. This can muck up our interpretation of experiments.
Let’s conduct a fictitious experiment where we expect to find no differences, because we will manipulate something that shouldn’t
do anything. Here’s the set-up:
You are the experimenter standing in front of a gumball machine. It is very big, has thousands of gumballs. 50% of the gumballs
are green, and 50% are red. You want to find out if picking gumballs with your right hand vs. your left hand will cause you to pick
more green gumballs. Plus, you will be blindfolded the entire time. The independent variable is Hand: right hand vs. left hand. The
dependent variable is the measurement of the color of each gumball.
You run the experiment as follows. 1) put on blind fold. 2) pick 10 gumballs randomly with left hand, set them aside. 3) pick 10
gumballs randomly with right hand, set them aside. 4) count the number of green and red gumballs chosen by your left hand, and
count the number of green and red gumballs chosen by your right hand. Hopefully you will agree that your hands will not be able
to tell the difference between the gumballs. If you don’t agree, we will further stipulate the gumballs are completely identical in
every way except their color, so it would be impossible to tell them apart using your hands. So, what should happen in this
experiment?
“Umm, maybe you get 5 red gum balls and 5 green balls from your left hand, and also from your right hand?”. Sort of yes, this is
what you would usually get. But, it is not all that you can get. Here is some data showing what happened from one pretend
experiment:

run restart restart & run all

 Note

|hand  | gumball| 
|:-----|-------:| 
|left  |       1| 
|left  |       1| 
|left  |       1| 
|left  |       1| 

hand<-rep(c("left","right"),each=10)
gumball<-rbinom(20,1,.5)
df<-data.frame(hand,gumball)
knitr::kable(df)
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“What am I looking at here”. This is a long-format table. Each row is one gumball. The first column tells you what hand was used.
The second column tells you what kind of gumball. We will say 1s stand for green gum balls, and 0s stand for red gumballs. So, did
your left hand cause you to pick more green gumballs than your right hand?
It would be easier to look at the data using a bar graph. To keep things simple, we will only count green gumballs (the other
gumballs must be red). So, all we need to do is sum up the 1s. The 0s won’t add anything.

run restart restart & run all

Figure \(\PageIndex{1}\): Counts of gumballs picked.

|left  |       0| 
|left  |       0| 
|left  |       0| 
|left  |       0| 
|left  |       0| 
|left  |       0| 
|right |       0| 
|right |       0| 
|right |       0| 
|right |       0| 
|right |       1| 
|right |       0| 
|right |       0| 
|right |       0| 
|right |       1| 
|right |       1|

library(ggplot2)
hand<-rep(c("left","right"),each=10)
gumball<-rbinom(20,1,.5)
df<-data.frame(hand,gumball)
sum_df<-aggregate(gumball~hand,df,sum)
ggplot(sum_df,aes(x=hand,y=gumball))+
  geom_bar(stat="identity")+
  theme_classic()
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Oh look, the bars are not the same. One hand picked more green gum balls than the other. Does this mean that one of your hands
secretly knows how to find green gumballs? No, it’s just another case of sampling error, that thing we call luck or chance. The
difference here is caused by chance, not by the manipulation (which hand you use). Major problem for inference alert. We run
experiments to look for differences so we can make inferences about whether our manipulations cause change in our measures.
Now we know that we can find differences by chance. How can we know if a difference is real, or just caused by chance?

Differences due to chance can be simulated
Remember when we showed that chance can produce correlations. We also showed that chance is restricted in its ability to produce
correlations. For example, chance more often produces weak correlations than strong correlations. Remember the window of
chance? We found out before that correlations falling outside the window of chance were very unlikely. We can do the same thing
for differences. Let’s find out just what chance can do in our experiment. Once we know what chance is capable of we will be in a
better position to judge whether our manipulation caused a difference, or whether it could have been chance.
The first thing to do is pretend you conduct the gumball experiment 10 times in a row. This will produce 10 different sets of results.
For each of them we can make a bar graph, and look at whether the left hand chose more green gumballs than red gumballs. It
looks like this:

run restart restart & run all

Figure \(\PageIndex{2}\): 10 simulated replications of picking gumballs. Each replication gives a slightly different answer. Any
difference are all due to chance, or sampling error. This shows that chance alone can produce differences, just by the act of
sampling.

These 10 experiments give us a better look at what chance can do. It should also mesh well with your expectations. If everything is
left up to chance (as we have made it so), then sometimes your left hand will choose more green balls, sometimes your right hand
will choose more green gumballs, and sometimes they will choose the same amount of gumballs. Right? Right.

This page titled 5.3: Is there a difference? is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.

library(ggplot2)
hand<-rep(rep(c("left","right"),each=10),10)
experiment<-rep(1:10,each=20)
gumball<-rbinom(20*10,1,.5)
df<-data.frame(experiment,hand,gumball)
sum_df<-aggregate(gumball~experiment*hand,df,sum)
ggplot(sum_df,aes(x=hand,y=gumball))+
  geom_bar(stat="identity")+
  theme_classic()+
  facet_wrap(~experiment)
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5.4: Chance makes some differences more likely than others
OK, we have seen that chance can produce differences here. But, we still don’t have a good idea about what chance usually does
and doesn’t do. For example, if we could find the window of opportunity here, we would be able find out that chance usually does
not produce differences of a certain large size. If we knew what the size was, then if we ran experiment and our difference was
bigger than what chance can do, we could be confident that chance did not produce our difference.
Let’s use the word difference some more, because it will be helpful. In fact, let’s think about our measure of green balls in terms of
a difference. For example, in each experiment we counted the green balls for the left and right hand. What we really want to know
is if there is a difference between them. So, we can calculate the difference score. Let’s decide that difference score = # of green
gumballs in left hand - # of green gumballs in right hand. Now, we can redraw the 10 bar graphs from above. But this time we will
only see one bar for each experiment. This bar will show the difference in number of green gumballs.

run restart restart & run all

Figure \(\PageIndex{1}\): A look at the differences between number of each kind of gumball for the different replications. The
difference should be zero, but sampling error produces non-zero differences.

Missing bars mean that there were an equal number of green gumballs chosen by the left and right hands (difference score is 0). A
positive value means that more green gumballs were chosen by the left than right hand. A negative value means that more green
gumballs were chosen by the right than left hand. Note that if we decided (and we get to decide) to calculate the difference in
reverse (right hand - left hand), the signs of the differences scores would flip around.
We are starting to see more of the differences that chance can produce. The difference scores are mostly between -2 to +2. We
could get an even better impression by running this pretend experiment 100 times instead of only 10 times. How about we do that.

library(ggplot2)
hand<-rep(rep(c("left","right"),each=10),10)
experiment<-rep(1:10,each=20)
gumball<-rbinom(20*10,1,.5)
df<-data.frame(experiment,hand,gumball)
sum_df<-aggregate(gumball~experiment*hand,df,sum)
differences<-sum_df[sum_df$hand =="left",]$gumball-
  sum_df[sum_df$hand =="right",]$gumball
dif_df<-data.frame(experiment=c(1:10),differences)
dif_df$experiment<-as.factor(dif_df$experiment)
ggplot(dif_df,aes(y=differences,x=experiment))+
  geom_bar(stat="identity")+
  theme_classic()+
  ylab("differences")
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run restart restart & run all

Figure \(\PageIndex{2}\): Replicating the sampling 100 times, and looking at the differences each time. There are mnay kinds of
differences that chance alone can produce.

Ooph, we just ran so many simulated experiments that the x-axis is unreadable, but it goes from 1 to 100. Each bar represents the
difference of number of green balls chosen randomly by the left or right hand. Beginning to notice anything? Look at the y-axis,
this shows the size of the difference. Yes, there are lots of bars of different sizes, this shows us that many kinds of differences do
occur by chance. However, the y-axis is also restricted. It does not go from -10 to +10. Big differences greater than 5 or -5 don’t
happen very often.
Now that we have a method for simulating differences due to chance, let’s run 10,000 simulated experiments. But, instead of
plotting the differences in a bar graph for each experiment, how about we look at the histogram of difference scores. This will give
us a clearer picture about which differences happen most often, and which ones do not. This will be another window into chance.
The chance window of differences.

library(ggplot2)
hand<-rep(rep(c("left","right"),each=10),100)
experiment<-rep(1:100,each=20)
gumball<-rbinom(20*100,1,.5)
df<-data.frame(experiment,hand,gumball)
sum_df<-aggregate(gumball~experiment*hand,df,sum)
differences<-sum_df[sum_df$hand =="left",]$gumball-
  sum_df[sum_df$hand =="right",]$gumball
dif_df<-data.frame(experiment=c(1:100),differences)
dif_df$experiment<-as.factor(dif_df$experiment)
ggplot(dif_df,aes(y=differences,x=experiment))+
  geom_bar(stat="identity")+
  theme_classic()+
  ylab("differences")
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run restart restart & run all

Figure \(\PageIndex{3}\): A histogram of the differences obtained by chance over 10,000 replications. The most frequency
difference is 0, which is what we expect by chance. But the differences can be as large as -10 or +10. Larger differences occur less
often by chance. Chance can’t do everything.

Our computer simulation allows us to force chance to operate hundreds of times, each time it produces a difference. We record the
difference, then at the end of the simulation we plot the histogram of the differences. The histogram begins to show us the where
the differences came from. Remember the idea that numbers come from a distribution, and the distribution says how often each
number occurs. We are looking at one of these distributions. It is showing us that chance produces some differences more often
than others. First, chance usually produces 0 differences, that’s the biggest bar in the middle. Chance also produces larger
differences, but as the differences get larger (positive or negative), they occur less frequently. The shape of this histogram is your
chance window, it tells you what chance can do, it tells you what chance usually does, and what it usually does not do.
You can use this chance window to help you make inferences. If you ran yourself in the gumball experiment and found that your
left hand chose 2 more green gumballs than red gumballs, would you conclude that you left hand was special, and caused you to
choose more green gumballs? Hopefully not. You could look at the chance window and see that differences of size +2 do happen
fairly often by chance alone. You should not be surprised if you got a +2 difference. However, what if your left chose 5 more green
gumballs than red gumballs. Well, chance doesn’t do this very often, you might think something is up with your left hand. If you
got a whopping 9 more green gumballs than red gumballs, you might really start to wonder. This is the kind of thing that could
happen (it’s possible), but virtually never happens by chance. When you get things that almost never happen by chance, you can be
more confident that the difference reflects a causal force that is not chance.

This page titled 5.4: Chance makes some differences more likely than others is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

library(ggplot2)
hand<-rep(rep(c("left","right"),each=10),10000)
experiment<-rep(1:10000,each=20)
gumball<-rbinom(20*10000,1,.5)
df<-data.frame(experiment,hand,gumball)
sum_df<-aggregate(gumball~experiment*hand,df,sum)
differences<-sum_df[sum_df$hand =="left",]$gumball-
  sum_df[sum_df$hand =="right",]$gumball
hist(differences,breaks=seq(-10,10,1))
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5.5: The Crump Test
We are going to be doing a lot of inference throughout the rest of this course. Pretty much all of it will come down to one question.
Did chance produce the differences in my data? We will be talking about experiments mostly, and in experiments we want to know
if our manipulation caused a difference in our measurement. But, we measure things that have natural variability, so every time we
measure things we will always find a difference. We want to know if the difference we found (between our experimental
conditions) could have been produced by chance. If chance is a very unlikely explanation of our observed difference, we will make
the inference that chance did not produce the difference, and that something about our experimental manipulation did produce the
difference. This is it (for this textbook).

Statistics is not only about determining whether chance could have produced a pattern in the observed data. The same tools we
are talking about here can be generalized to ask whether any kind of distribution could have produced the differences. This
allows comparisons between different models of the data, to see which one was the most likely, rather than just rejecting the
unlikely ones (e.g., chance). But, we’ll leave those advanced topics for another textbook.

This chapter is about building intuitions for making these kinds of inferences about the role of chance in your data. It’s not clear to
me what are the best things to say, to build up your intuitions for how to do statistical inference. So, this chapter tries different
things, some of them standard, and some of them made up. What you are about to read, is a made up way of doing statistical
inference, without using the jargon that we normally use to talk about it. The goal is to do things without formulas, and without
probabilities, and just work with some ideas using simulations to see what happens. We will look at what chance can do, then we
will talk about what needs to happen in your data in order for you to be confident that chance didn’t do it.

Intuitive methods
Warning, this is an unofficial statistical test made up by Matt Crump. It makes sense to him (me), and if it turns out someone else
already made this up, then Crump didn’t do his homework, and we will change the name of this test to it’s original author. The
point of this test is to show how simple operations that you already understand can be used to create a tool for inference. This test is
not complicated, it uses

1. Sampling numbers randomly from a distribution
2. Adding, subtracting
3. Division, to find the mean
4. Counting
5. Graphing and drawing lines
6. NO FORMULAS

Part 1: Frequency based intuition about occurence
Question: How many times does something need to happen, for it to happen a lot? Or, how many times does something need to
happen for it to happen not very much, or even really not at all? Small enough for you to not worry about it at all happening to you?
Would you go outside everyday if you thought that you would get hit by lightning 1 out of 10 times? I wouldn’t. You’d probably be
hit by lightning more than once per month, you’d be dead pretty quickly. 1 out of 10 is a lot (to me, maybe not to you, there’s no
right answer here).
Would you go outside everyday if you thought that you would get hit by lightning 1 out of every 100 days? Jeez, that’s a tough one.
What would I even do? If I went out everyday, I’d probably be dead in a year! Maybe I would go out 2 or 3 times per year, I’m
risky like that, but I’d probably live longer. It would massively suck.
Would you go outside everyday if you thought you would get hit by lightning 1 out of every 1000 days? Well, you’d probably be
dead in 3-6 years if you did that. Are you a gambler? Maybe go out once per month, still sucks.
Would you go outside everyday if you thought lightning would get you 1 out every 10,000 days? 10,000 is a bigger number, harder
to think about. It’s about once every 27 years. Ya, I’d probably go out 150 days per year, and live a bit longer if I can.
Would you go outside everyday if you thought lightning would get you 1 out every 100,000 days? 100,000 is a bigger number,
harder to think about. How many years is that? It’s about 273 years. With those odds, I’d probably go out all the time and forget
about being hit by lightning. It doesn’t happen very often, and if it does, c’est la vie.
The point of considering these questions is to get a sense for yourself of what happens a lot, and what doesn’t happen a lot, and
how you would make important decisions based on what happens a lot and what doesn’t.

 Note
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Part 2: Simulating chance
This next part could happen a bunch of ways, I’ll make loads of assumptions that I won’t defend, and I won’t claim the Crump test
has problems. I will claim it helps us make an inference about whether chance could have produced some differences in data.
We’ve already been introduced to simulating things, so we’ll do that again. Here is what we will do. I am a cognitive psychologist
who happens to be measuring X. Because of prior research in the field, I know that when I measure X, my samples will tend to
have a particular mean and standard deviation. Let’s say the mean is usually 100, and the standard deviation is usually 15. In this
case, I don’t care about using these numbers as estimates of the population parameters, I’m just thinking about what my samples
usually look like. What I want to know is how they behave when I sample them. I want to see what kind of samples happen a lot,
and what kind of samples don’t happen a lot. Now, I also live in the real world, and in the real world when I run experiments to see
what changes X, I usually only have access to some number of participants, who I am very grateful too, because they participate in
my experiments. Let’s say I usually can run 20 subjects in each condition in my experiments. Let’s keep the experiment simple,
with two conditions, so I will need 40 total subjects.
I would like to learn something to help me with inference. One thing I would like to learn is what the sampling distribution of the
sample mean looks like. This distribution tells me what kinds of mean values happen a lot, and what kinds don’t happen very often.
But, I’m actually going to skip that bit. Because what I’m really interested in is what the sampling distribution of the difference
between my sample means looks like. After all, I am going to run an experiment with 20 people in one condition, and 20 people in
the other. Then I am going to calculate the mean for group A, and the mean for group B, and I’m going to look a the difference. I
will probably find a difference, but my question is, did my manipulation cause this difference, or is this the kind of thing that
happens a lot by chance. If I knew what chance can do, and how often it produces differences of particular sizes, I could look at the
difference I observed, then look at what chance can do, and then I can make a decision! If my difference doesn’t happen a lot (we’ll
get to how much not a lot is in a bit), then I might be willing to believe that my manipulation caused a difference. If my difference
happens all the time by chance alone, then I wouldn’t be inclined to think my manipulation caused the difference, because it could
have been chance.
So, here’s what we’ll do, even before running the experiment. We’ll do a simulation. We will sample numbers for group A and
Group B, then compute the means for group A and group B, then we will find the difference in the means between group A and
group B. But, we will do one very important thing. We will pretend that we haven’t actually done a manipulation. If we do this (do
nothing, no manipulation that could cause a difference), then we know that only sampling error could cause any differences
between the mean of group A and group B. We’ve eliminated all other causes, only chance is left. By doing this, we will be able to
see exactly what chance can do. More importantly, we will see the kinds of differences that occur a lot, and the kinds that don’t
occur a lot.
Before we do the simulation, we need to answer one question. How much is a lot? We could pick any number for a lot. I’m going
to pick 10,000. That is a lot. If something happens only 1 times out 10,000, I am willing to say that is not a lot.
OK, now we have our number, we are going to simulate the possible mean differences between group A and group B that could
arise by chance. We do this 10,000 times. This gives chance a lot of opportunity to show us what it does do, and what it does not
do.
This is what I did: I sampled 20 numbers into group A, and 20 into group B. The numbers both came from the same normal
distribution, with mean = 100, and standard deviation = 15. Because the samples are coming from the same distribution, we expect
that on average they will be similar (but we already know that samples differ from one another). Then, I compute the mean for each
sample, and compute the difference between the means. I save the mean difference score, and end up with 10,000 of them. Then I
draw a histogram. It looks like this:
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run restart restart & run all

Figure \(\PageIndex{1}\): Histogram of mean differences arising by chance.

Sidenote: Of course, we might recognize that chance could do a difference greater than 15. We just didn’t give it the
opportunity. We only ran the simulation 10,000 times. If we ran it on million times, maybe a difference greater than 20 would
happen a couple times. If we ran it a bazillion gazillion times, maybe a difference greater than 30 would happen a couple times.
If we go out to infinity, then chance might produce all sorts of bigger differences once in a while. But, we’ve already decided
that 1/10,000 is not a lot. So things that happen 0/10,000 times, like differences greater than 15, just don’t happen very much.

Now we can see what chance can do to the size of our mean difference. The x-axis shows the size of the mean difference. We took
our samples from the sample distribution, so the difference between them should usually be 0, and that’s what we see in the
histogram.
Pause for a second. Why should the mean differences usually be zero, wasn’t the population mean = 100, shouldn’t they be around
100? No. The mean of group A will tend to be around 100, and the mean of group B will tend be around 100. So, the difference
score will tend to be 100-100 = 0. That is why we expect a mean difference of zero when the samples are drawn from the same
population.
So, differences near zero happen the most, that’s good, that’s what we expect. Bigger or smaller differences happen increasingly
less often. Differences greater than 15 or -15 never happen at all. For our purposes, it looks like chance only produces differences
between -15 to 15.
OK, let’s ask a couple simple questions. What was the biggest negative number that occurred in the simulation? We’ll use R for
this. All of the 10,000 difference scores are stored in a variable I made called difference . If we want to find the minimum

 Note

library(ggplot2)
difference<-length(10000)
for(i in 1:10000){
  difference[i]<-mean(rnorm(20,100,15)-rnorm(20,100,15))
}
plot_df<-data.frame(sim=1:10000,difference)
ggplot(plot_df,aes(x=difference))+
  geom_histogram(bins=100, color="white")+
  theme_classic()+
  ggtitle("Histogram of mean differences between two samples (n=10) \n
          both drawn from the same normal distribution (u=100, sd=20")+
  xlab("mean difference")
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value, we use the min  function. Here’s the result.

run restart restart & run all

OK, so what was the biggest positive number that occurred? Let’s use the max  function to find out. It finds the biggest
(maximum) value in the variable. FYI, we’ve just computed the range, the minimum and maximum numbers in the data.
Remember we learned that before. Anyway, here’s the max.

run restart restart & run all

Both of these extreme values only occurred once. Those values were so rare we couldn’t even see them on the histogram, the bar
was so small. Also, these biggest negative and positive numbers are pretty much the same size if you ignore their sign, which
makes sense because the distribution looks roughly symmetrical.
So, what can we say about these two numbers for the min and max? We can say the min happens 1 times out of 10,000. We can say
the max happens 1 times out of 10,000. Is that a lot of times? Not to me. It’s not a lot.
So, how often does a difference of 30 (much larger larger than the max) occur out of 10,000. We really can’t say, 30s didn’t occur
in the simulation. Going with what we got, we say 0 out of 10,000. That’s never.
We’re about to move into part three, which involves drawing decision lines and talking about them. The really important part about
part 3 is this. What would you say if you ran this experiment once, and found a mean difference of 30? I would say it happens 0
times of out 10,000 by chance. I would say chance did not produce my difference of 30. That’s what I would say. We’re going to
expand upon this right now.

Part 3: Judgment and Decision-making
Remember, we haven’t even conducted an experiment. We’re just simulating what could happen if we did conduct an experiment.
We made a histogram. We can see that chance produces some differences more than others, and that chance never produced really
big differences. What should we do with this information?
What we are going to do is talk about judgment and decision making. What kind of judgment and decision making? Well, when
you finally do run an experiment, you will get two means for group A and B, and then you will need to make some judgments, and
perhaps even a decision, if you are so inclined. You will need to judge whether chance (sampling error) could have produced the
difference you observed. If you judge that it did it not, you might make the decision to tell people that your experimental
manipulation actually works. If you judge that it could have been chance, you might make a different decision. These are important
decisions for researchers. Their careers can depend on them. Also, their decisions matter for the public. Nobody wants to hear fake
news from the media about scientific findings.
So, what we are doing is preparing to make those judgments. We are going to draw up a plan, before we even see the data, for how
we will make judgments and decisions about what we find. This kind of planning is extremely important, because we discuss in
part 4, that your planning can help you design an even better experiment than the one you might have been intending to run. This
kind of planning can also be used to interpret other people’s results, as a way of double-checking checking whether you believe
those results are plausible.

-17.0773846332609

21.5695238598948

difference<-length(10000)
for(i in 1:10000){
  difference[i]<-mean(rnorm(20,100,15)-rnorm(20,100,15))
}
min(difference)

difference<-length(10000)
for(i in 1:10000){
  difference[i]<-mean(rnorm(20,100,15)-rnorm(20,100,15))
}
max(difference)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7916?pdf


5.5.5 https://stats.libretexts.org/@go/page/7916

The thing about judgement and decision making is that reasonable people disagree about how to do it, unreasonable people really
disagree about it, and statisticians and researchers disagree about how to do it. I will propose some things that people will disagree
with. That’s OK, these things still make sense. And, the disagreeable things point to important problems that are very real for any
“real” statistical inference test.
Let’s talk about some objective facts from our simulation of 10,000 things that we definitely know to be true. For example, we can
draw some lines on the graph, and label some different regions. We’ll talk about two kinds of regions.

1. Region of chance. Chance did it. Chance could have done it
2. Region of not chance. Chance didn’t do it. Chance couldn’t have done it.

The regions are defined by the minimum value and the maximum value. Chance never produced a smaller or bigger number. The
region inside the range is what chance did do, and the the region outside the range on both sides is what chance never did. It looks
like this:
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run restart restart & run all

library(ggplot2)
difference<-length(10000)
for(i in 1:10000){
  difference[i]<-mean(rnorm(20,100,15)-rnorm(20,100,15))
}
plot_df<-data.frame(sim=1:10000,difference)
ggplot(plot_df,aes(x=difference))+
  annotate("rect", xmin=min(difference), xmax=max(difference), ymin=0,
           ymax=Inf, alpha=0.5, fill="red") +
  geom_rect(aes(xmin=-Inf, xmax=min(difference), ymin=0, ymax=Inf), alpha=.5,
            fill="lightgreen")+
  geom_rect(aes(xmin=max(difference), xmax=Inf, ymin=0, ymax=Inf), alpha=.5,
            fill="lightgreen")+
  geom_histogram(bins=50, color="white")+
  theme_classic()+
  geom_vline(xintercept = min(difference))+
  geom_vline(xintercept = max(difference))+
  ggtitle("Histogram of mean differences between two samples (n=10) \n
          both drawn from the same normal distribution (u=100, sd=20)")+
  xlim(-30,30)+
  geom_label(data = data.frame(x = 0, y = 250, label = "CHANCE"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = -25, y = 250, label = "NOT \n CHANCE"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = 25, y = 250, label = "NOT \n CHANCE"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = min(difference), y = 750, 
                               label = paste0("min \n",round(min(difference)))), 
                               aes(x = x, y = y, label = label))+
   geom_label(data = data.frame(x = max(difference), y = 750, 
                               label = paste0("max \n",round(max(difference)))), 
                               aes(x = x, y = y, label = label))+
  xlab("mean difference")
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Figure \(\PageIndex{2}\): Applying decision boundaries to the histogrm of mean differences. The boundaries identify what
differences chance did or did not produce in the simulation.

We have just drawn some lines, and shaded some regions, and made one plan we could use to make decisions. How would the
decisions work. Let’s say you ran the experiment and found a mean difference between groups A and B of 25. Where is 25 in the
figure? It’s in the green part. What does the green part say? NOT CHANCE. What does this mean. It means chance never made a
difference of 25. It did that 0 out of 10,000 times. If we found a difference of 25, perhaps we could confidently conclude that
chance did not cause the difference. If I found a difference of 25 with this kind of data, I’d be pretty confident that my experimental
manipulation caused the difference, because obviously chance never does.
What about a difference of +10? That’s in the red part, where chance lives. Chance could have done a difference of +10 because we
can see that it did do that. The red part is the window of what chance did in our simulation. Anything inside the window could have
been a difference caused by chance. If I found a difference of +10, I’d say, coulda been chance. I would not be very confident that
my experimental manipulation caused the difference.
Statistical inference could be this easy. The number you get from your experiment could be in the chance window (then you can’t
rule out chance as a cause), or it could be outside the chance window (then you can rule out chance). Case closed. Let’s all go
home.

Grey areas
So what’s the problem? Depending on who you are, and what kinds of risks you’re willing to take, there might not be a problem.
But, if you are just even a little bit risky then there is a problem that makes clear judgments about the role of chance difficult. We
would like to say chance did or did not cause our difference. But, we’re really always in the position of admitting that it could have
sometimes, or wouldn’t have most times. These are wishy washy statements, they are in between yes or no. That’s OK. Grey is a
color too, let’s give grey some respect.
“What grey areas are you talking about?, I only see red or green, am I grey blind?”. Let’s look at where some grey areas might be. I
say might be, because people disagree about where the grey is. People have different comfort levels with grey. Here’s my opinion
on some clear grey areas.
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run restart restart & run all

library(ggplot2)
difference<-length(10000)
for(i in 1:10000){
  difference[i]<-mean(rnorm(20,100,15)-rnorm(20,100,15))
}
plot_df<-data.frame(sim=1:10000,difference)
ggplot(plot_df,aes(x=difference))+
  annotate("rect", xmin=min(difference), xmax=max(difference), ymin=0,
           ymax=Inf, alpha=0.5, fill="red") +
  annotate("rect", xmin=min(difference), xmax=min(difference)+10, ymin=0,
           ymax=Inf, alpha=0.7, fill="light grey") +
  annotate("rect", xmin=max(difference)-10, xmax=max(difference), ymin=0,
           ymax=Inf, alpha=0.7, fill="light grey") +
  geom_rect(aes(xmin=-Inf, xmax=min(difference), ymin=0, ymax=Inf), alpha=.5,
            fill="lightgreen")+
  geom_rect(aes(xmin=max(difference), xmax=Inf, ymin=0, ymax=Inf), alpha=.5,
            fill="lightgreen")+
  geom_histogram(bins=50, color="white")+
  theme_classic()+
  geom_vline(xintercept = min(difference))+
  geom_vline(xintercept = max(difference))+
   geom_vline(xintercept = min(difference)+10)+
  geom_vline(xintercept = max(difference)-10)+
  ggtitle("Histogram of mean differences between two samples (n=10) \n
          both drawn from the same normal distribution (u=100, sd=20)")+
  xlim(-30,30)+
  geom_label(data = data.frame(x = 0, y = 250, label = "CHANCE"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = -25, y = 250, label = "NOT \n CHANCE"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = 25, y = 250, label = "NOT \n CHANCE"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = min(difference), y = 750, 
                               label = paste0("min \n",round(min(difference)))), 
                               aes(x = x, y = y, label = label))+
   geom_label(data = data.frame(x = max(difference), y = 750, 
                               label = paste0("max \n",round(max(difference)))), 
                               aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = -15, y = 250, 
                               label = "?"), 
                               aes(x = x, y = y, label = label))+
   geom_label(data = data.frame(x = 15, y = 250, 
                               label = "?"), 
                               aes(x = x, y = y, label = label))+
  xlab("mean difference")
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Figure \(\PageIndex{3}\): The question marks refer to an area where you have some uncertainty. Differences inside the question
mark region do not happen very often by chance. When you find differences of these sizes, should you reject the idea that chance
caused your difference? You will always have some uncertainty associated with this decision because it is clear that chance could
have caused the difference. But, chance usually does not produce differences of these sizes.

I made two grey areas, and they are reddish grey, because we are still in the chance window. There are question marks (?) in the
grey areas. Why? The question marks reflect some uncertainty that we have about those particular differences. For example, if you
found a difference that was in a grey area, say a 15. 15 is less than the maximum, which means chance did create differences of
around 15. But, differences of 15 don’t happen very often.
What can you conclude or say about this 15 you found? Can you say without a doubt that chance did not produce the difference?
Of course not, you know that chance could have. Still, it’s one of those things that doesn’t happen a lot. That makes chance an
unlikely explanation. Instead of thinking that chance did it, you might be willing to take a risk and say that your experimental
manipulation caused the difference. You’d be making a bet that it wasn’t chance…but, could be a safe bet, since you know the odds
are in your favor.
You might be thinking that your grey areas aren’t the same as the ones I’ve drawn. Maybe you want to be more conservative, and
make them smaller. Or, maybe you’re more risky, and would make them bigger. Or, maybe you’d add some grey area going in a
little bit to the green area (after all, chance could probably produce some bigger differences sometimes, and to avoid those you
would have to make the grey area go a bit into the green area).
Another thing to think about is your decision policy. What will you do, when your observed difference is in your grey area? Will
you always make the same decision about the role of chance? Or, will you sometimes flip-flop depending on how you feel.
Perhaps, you think that there shouldn’t be a strict policy, and that you should accept some level of uncertainty. The difference you
found could be a real one, or it might not. There’s uncertainty, hard to avoid that.
So let’s illustrate one more kind of strategy for making decisions. We just talked about one that had some lines, and some regions.
This makes it seem like we can either rule out, or not rule out the role of chance. Another way of looking at things is that
everything is a different shade of grey. It looks like this:
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run restart restart & run all

library(ggplot2)
difference<-length(10000)
for(i in 1:10000){
  difference[i]<-mean(rnorm(20,100,15)-rnorm(20,100,15))
}
plot_df<-data.frame(sim=1:10000,difference)
ggplot(plot_df,aes(x=difference))+
 # annotate("rect", xmin=min(difference), xmax=max(difference),
 # ymin=0, ymax=Inf, alpha=0.5, fill="red") +
  annotate("rect", xmin=min(difference), xmax=min(difference)+10, ymin=0,
           ymax=Inf, alpha=0.7, fill="light grey") +
  annotate("rect", xmin=max(difference)-10, xmax=max(difference), ymin=0,
           ymax=Inf, alpha=0.7, fill="light grey") +
  geom_rect(aes(xmin=-Inf, xmax=min(difference), ymin=0, ymax=Inf), alpha=.5,
            fill="lightgreen")+
  geom_rect(aes(xmin=max(difference), xmax=Inf, ymin=0, ymax=Inf), alpha=.5,
            fill="lightgreen")+
  geom_histogram(bins=50, color="white", aes(fill=..count..))+
  theme_classic()+
  geom_vline(xintercept = min(difference))+
  geom_vline(xintercept = max(difference))+
   geom_vline(xintercept = min(difference)+10)+
  geom_vline(xintercept = max(difference)-10)+
  ggtitle("Histogram of mean differences between two samples (n=10) \n
          both drawn from the same normal distribution (u=100, sd=20)")+
  xlim(-30,30)+
  geom_label(data = data.frame(x = 0, y = 250, label = "CHANCE"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = -25, y = 250, label = "NOT \n CHANCE"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = 25, y = 250, label = "NOT \n CHANCE"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = min(difference), y = 750, 
                               label = paste0("min \n",round(min(difference)))), 
                               aes(x = x, y = y, label = label))+
   geom_label(data = data.frame(x = max(difference), y = 750, 
                               label = paste0("max \n",round(max(difference)))), 
                               aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = -15, y = 250, 
                               label = "?"), 
                               aes(x = x, y = y, label = label))+
   geom_label(data = data.frame(x = 15, y = 250, 
                               label = "?"), 
                               aes(x = x, y = y, label = label))+
  xlab("mean difference")
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Figure \(\PageIndex{4}\): The shading of the blue bars indicates levels of confidence in whether a difference could have been
produced by chance. Darker bars represent increased confidence that the difference was not produced by chance. Bars get darker as
the mean difference increases in absolute value.

OK, so I made it shades of blue (because it was easier in R). Now we can see two decision plans at the same time. Notice that as
the bars get shorter, they also get become a darker stronger blue. The color can be used as a guide for your confidence. That is, your
confidence in the belief that your manipulation caused the difference rather than chance. If you found a difference near a really
dark bar, those don’t happen often by chance, so you might be really confident that chance didn’t do it. If you find a difference near
a slightly lighter blue bar, you might be slightly less confident. That is all. You run your experiment, you get your data, then you
have some amount of confidence that it wasn’t produced by chance. This way of thinking is elaborated to very interesting degrees
in the Bayesian world of statistics. We don’t wade too much into that, but mention it a little bit here and there. It’s worth knowing
it’s out there.

Making Bad Decisions
No matter how you plan to make decisions about your data, you will always be prone to making some mistakes. You might call one
finding real, when in fact it was caused by chance. This is called a type I error, or a false positive. You might ignore one finding,
calling it chance, when in fact it wasn’t chance (even though it was in the window). This is called a ** type II**, or a false
negative.
How you make decisions can influence how often you make errors over time. If you are a researcher, you will run lots of
experiments, and you will make some amount of mistakes over time. If you do something like the very strict method of only
accepting results as real when they are in the “no chance” zone, then you won’t make many type I errors. Pretty much all of your
result will be real. But, you’ll also make type II errors, because you will miss things real things that your decision criteria says are
due to chance. The opposite also holds. If you are willing to be more liberal, and accept results in the grey as real, then you will
make more type I errors, but you won’t make as many type II errors. Under the decision strategy of using these cutoff regions for
decision-making there is a necessary trade-off. The Bayesian view get’s around this a little bit. Bayesians talk about updating their
beliefs and confidence over time. In that view, all you ever have is some level of confidence about whether something is real, and
by running more experiments you can increase or decrease your level of confidence. This, in some fashion, avoids some trade-off
between type I and type II errors.
Regardless, there is another way to avoid type I and type II errors, and to increase your confidence in your results, even before you
do the experiment. It’s called “knowing how to design a good experiment”.

Part 4: Experiment Design
We’ve seen what chance can do. Now we run an experiment. We manipulate something between groups A and B, get the data,
calculate the group means, then look at the difference. Then we cross all of our finger and toes, and hope beyond hope that the
difference is big enough to not be caused by chance. That’s a lot of hope.
Here’s the thing, we don’t often know how strong our manipulation is in the first place. So, even if it can cause a change, we don’t
necessarily know how much change it can cause. That’s why we’re running the experiment. Many manipulations in Psychology are
not strong enough to cause big changes. This is a problem for detecting these smallish causal forces. In our fake example, you
could easily manipulate something that has a tiny influence, and will never push the mean difference past say 5 or 10. In our
simulation, we need something more like a 15 or 17 or a 21, or hey, a 30 would be great, chance never does that. Let’s say your
manipulation is listening to music or not listening to music. Music listening might change something about X, but if it only changes
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X by +5, you’ll never be able to confidently say it wasn’t chance. And, it’s not that easy to completely change music and make
music super strong in the music condition so it really causes a change in X compared to the no music condition.
EXPERIMENT DESIGN TO THE RESCUE! Newsflash, it is often possible to change how you run your experiment so that it is
more sensitive to smaller effects. How do you think we can do this? Here is a hint. It’s the stuff you learned about the sampling
distribution of the sample mean, and the role of sample-size. What happens to the sampling distribution of the sample mean when
N (sample size)? The distribution gets narrower and narrower, and starts to look the a single number (the hypothetical mean of the
hypothetical population). That’s great. If you switch to thinking about mean difference scores, like the distribution we created in
this test, what do you think will happen to that distribution as we increase N? It will will also shrink. As we increase N to infinity, it
will shrink to 0. Which means that, when N is infinity, chance never produces any differences at all. We can use this.
For example, we could run our experiment with 20 subjects in each group. Or, we could decide to invest more time and run 40
subjects in each group, or 80, or 150. When you are the experimenter, you get to decide the design. These decisions matter big
time. Basically, the more subjects you have, the more sensitive your experiment. With bigger N, you will be able to reliably detect
smaller mean differences, and be able to confidently conclude that chance did not produce those small effects.
Check out this next set of histograms. All we are doing is the very same simulation as before, but this time we do it for different
sample-sizes: 20, 40, 80, 160. We are doubling our sample-size across each simulation just to see what happens to the width of the
chance window.

Figure \(\PageIndex{5}\): The range or width of the differences produced by chance shrinks as sample-size increases.

There you have it. The sampling distribution of the mean differences shrinks toward 0 as sample-size increases. This means if you
run an experiment with a larger sample-size, you will be able to detect smaller mean differences, and be confident they aren’t due
to chance. Let’s look at a table of the minimum and maximum values that chance produced across these four sample-sizes:

sample_size smallest biggest

20 -25.858660 26.266110
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sample_size smallest biggest

40 -17.098721 16.177815

80 -12.000585 11.919035

160 -9.251625 8.357951

The table is telling… The range of chance’s behavior is very wide for sample-size = 20, but about half as wide for sample-size =
160.
If it turns out your manipulation will cause a difference of +11, then what should you do? Run an experiment with 20 people? I
hope not. If you did that, you could get +11s fairly often by chance. If you ran the experiment with 160 people, then you would
definitely be able to say that +11 was not due to chance, it would be outside the range of what chance can do. You could even
consider running the experiment with 80 subjects. A +11 there wouldn’t happen often by chance, and you’d be cost-effective,
spending less time on the experiment.
The point is: the design of the experiment determines the sizes of the effects it can detect. If you want to detect a small effect. Make
your sample size bigger. It’s really important to say this is not the only thing you can do. You can also make your cell-sizes bigger.
For example, often times we take several measurements from a single subject. The more measurements you take (cell-size), the
more stable your estimate of the subject’s mean. We discuss these issues more later. You can also make a stronger manipulation,
when possible.

Part 5: I have the power
By the power of greyskull, I HAVE THE POWER - He-man

The last thing we’ll talk about here is something called power. In fact, we are going to talk about the concept of power, not actual
power. It’s confusing now, but later we will define power in terms of some particular ideas about statistical inference. Here, we will
just talk about the idea. And, we’ll show how to make sure your design has 100% power. Because, why not. Why run a design that
doesn’t have the power?
The big idea behind power is the concept of sensitivity. The concept of sensitivity assumes that there is something to be sensitive
to. That is, there is some real difference that can be measured. So, the question is, how sensitive is your experiment? We’ve already
seen that the number of subjects (sample-size), changes the sensitivity of the design. More subjects = more sensitivity to smaller
effects.
Let’s take a look at one more plot. What we will do is simulate a measure of sensitivity across a whole bunch of sample sizes, from
10 to 300. We’ll do this in steps of 10. For each simulation, we’ll compute the mean differences as we have done. But, rather than
showing the histogram, we’ll just compute the smallest value and the largest value. This is a pretty good measure of the outer reach
of chance. Then we’ll plot those values as a function of sample size and see what we’ve got.
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Figure \(\PageIndex{6}\): A graph of the maximum and minimum mean differences produced by chance as a function of sample-
size. The range narrows as sample-size increases showing that chance alone produces a smaller range of mean differences as
sample-size increases.

What we have here is a reasonably precise window of sensitivity as a function of sample size. For each sample size, we can see the
maximum difference that chance produced and the minimum difference. In those simulations, chance never produced bigger or
smaller differences. So, each design is sensitive to any difference that is underneath the bottom line, or above the top line. It’s really
that simple.
Here’s another way of putting it. Which of the sample sizes will be sensitive to a difference of +10 or -10. That is, if a difference of
+10 or -10 was observed, then we could very confidently say that the difference was not due to chance, because according to these
simulations, chance never produced differences that big. To help us see which ones are sensitive, let’s draw some horizontal lines at
-10 and +10.
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Figure \(\PageIndex{7}\): The red line represents the size of a mean difference that a researcher may be interested in detecting. All
of the dots outside (above or below) the red line represent designs with small sample-sizes. When a difference of 10 occurs for
these designs, we can rule out chance with confidence. The dots between the red lines represent designs with larger sample-sizes.
These designs never produce differences as large as 10, so when those differences occur, we can be confident chance did not
produce them.

I would say all of the designs with sample size = 100 or greater are all perfectly sensitive to real differences of 10 (if they exist).
We can see that all of the dots after sample size 100 are underneath the red line. So effects that are as big as the red line, or bigger
will almost never occur due to chance. But, if they do occur in nature, those experiments will detect them straight away. That is
sensitivity. And, designing your experiment so that you know it is sensitive to the thing you are looking for is the big idea behind
power. It’s worth knowing this kind of thing before you run your experiment. Why waste your own time and run an experiment that
doesn’t have a chance of detecting the thing you are looking for.

Summary of Crump Test
What did we learn from this so-called fake Crump test that nobody uses? Well, we learned the basics of what we’ll be doing
moving forward. And, we did it all without any hard math or formulas. We sampled numbers, we computed means, we subtracted
means, then we did that a lot and counted up the means and put them in a histogram. This showed us what chance do in an
experiment. Then, we discussed how to make decisions around these facts. And, we showed how we can manipulate the role of
chance just by changing things like sample size.
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5.6: The randomization test (permutation test)
Welcome to the first official inferential statistic in this textbook. Up till now we have been building some intuitions for you. Next,
we will get slightly more formal and show you how we can use random chance to tell us whether our experimental finding was
likely due to chance or not. We do this with something called a randomization test. The ideas behind the randomization test are the
very same ideas behind the rest of the inferential statistics that we will talk about in later chapters. And, surprise, we have already
talked about all of the major ideas already. Now, we will just put the ideas together, and give them the name randomization test.
Here’s the big idea. When you run an experiment and collect some data you get to find out what happened that one time. But,
because you ran the experiment only once, you don’t get to find out what could have happened. The randomization test is a way of
finding out what could have happened. And, once you know that, you can compare what did happen in your experiment, with what
could have happened.

Pretend example does chewing gum improve your grades?
Let’s say you run an experiment to find out if chewing gum causes students to get better grades on statistics exams. You randomly
assign 20 students to the chewing gum condition, and 20 different students to the no-chewing gum condition. Then, you give
everybody statistics tests and measure their grades. If chewing gum causes better grades, then the chewing gum group should have
higher grades on average than the group who did not chew gum.
Let’s say the data looked like this:

run restart restart & run all

|student |gum   |no_gum | 
|:-------|:-----|:------| 
|1       |96    |69     | 
|2       |78    |56     | 
|3       |86    |42     | 
|4       |92    |89     | 
|5       |84    |55     | 
|6       |94    |75     | 
|7       |96    |44     | 
|8       |82    |59     | 
|9       |83    |85     | 
|10      |74    |78     | 
|11      |99    |63     | 
|12      |70    |85     | 
|13      |83    |44     | 
|14      |89    |71     | 
|15      |83    |72     | 
|16      |76    |52     | 
|17      |79    |61     | 
|18      |90    |44     | 
|19      |99    |80     | 

suppressPackageStartupMessages(library(dplyr))
gum<-round(runif(20,70,100))
no_gum<-round(runif(20,40,90))
gum_df<-data.frame(student=seq(1:20),gum,no_gum)
gum_df <- gum_df %>%
  rbind(c("Sums",colSums(gum_df[,2:3]))) %>%
  rbind(c("Means",colMeans(gum_df[,2:3])))
knitr::kable(gum_df)
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So, did the students chewing gum do better than the students who didn’t chew gum? Look at the mean test performance at the
bottom of the table. The mean for students chewing gum was 86.55, and the mean for students who did not chew gum was 65.4.
Just looking at the means, it looks like chewing gum worked!
“STOP THE PRESSES, this is silly”. We already know this is silly because we are making pretend data. But, even if this was real
data, you might think, “Chewing gum won’t do anything, this difference could have been caused by chance, I mean, maybe the
better students just happened to be put into the chewing group, so because of that their grades were higher, chewing gum didn’t do
anything…”. We agree. But, let’s take a closer look. We already know how the data come out. What we want to know is how they
could have come out, what are all the possibilities?
For example, the data would have come out a bit different if we happened to have put some of the students from the gum group into
the no gum group, and vice versa. Think of all the ways you could have assigned the 40 students into two groups, there are lots of
ways. And, the means for each group would turn out differently depending on how the students are assigned to each group.
Practically speaking, it’s not possible to run the experiment every possible way, that would take too long. But, we can nevertheless
estimate how all of those experiments might have turned out using simulation.
Here’s the idea. We will take the 40 measurements (exam scores) that we found for all the students. Then we will randomly take 20
of them and pretend they were in the gum group, and we’ll take the remaining 20 and pretend they were in the no gum group. Then
we can compute the means again to find out what would have happened. We can keep doing this over and over again. Every time
computing what happened in that version of the experiment.

Doing the randomization
Before we do that, let’s show how the randomization part works. We’ll use fewer numbers to make the process easier to look at.
Here are the first 5 exam scores for students in both groups.

run restart restart & run all

|20      |98    |84     | 
|Sums    |1731  |1308   | 
|Means   |86.55 |65.4   |

|student |gum  |no_gum | 
|:-------|:----|:------| 
|1       |87   |61     | 
|2       |74   |57     | 
|3       |84   |85     | 
|4       |96   |79     | 
|5       |83   |50     | 
|Sums    |424  |332    | 
|Means   |84.8 |66.4   |

suppressPackageStartupMessages(library(dplyr))
gum<-round(runif(20,70,100))
no_gum<-round(runif(20,40,90))
gum_df<-data.frame(student=seq(1:20),gum,no_gum)
gum_df <- gum_df %>%
  rbind(c("Sums",colSums(gum_df[,2:3]))) %>%
  rbind(c("Means",colMeans(gum_df[,2:3])))
gum_df_small<-gum_df[1:5,]
gum_df_small$gum<-as.numeric(gum_df_small$gum)
gum_df_small$no_gum<-as.numeric(gum_df_small$no_gum)
gum_df_small <- gum_df_small %>%
  rbind(c("Sums",colSums(gum_df_small[,2:3]))) %>%
  rbind(c("Means",colMeans(gum_df_small[,2:3])))
knitr::kable(gum_df_small)
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Things could have turned out differently if some of the subjects in the gum group were switched with the subjects in the no gum
group. Here’s how we can do some random switching. We will do this using R.

run restart restart & run all

We have taken the first 5 numbers from the original data, and put them all into a variable called all_scores . Then we use the
sample  function in R to shuffle the scores. Finally, we take the first 5 scores from the shuffled numbers and put them into a

new variable called new_gum . Then, we put the last five scores into the variable new_no_gum . Then we printed them, so
we can see them.
If we do this a couple of times and put them in a table, we can indeed see that the means for gum and no gum would be different if
the subjects were shuffled around. Check it out:

run restart restart & run all

[1] 83 84 42 92 60 
[1] 82 67 58 83 43 

gum<-round(runif(20,70,100))
no_gum<-round(runif(20,40,90))
all_scores       <- c(gum[1:5],no_gum[1:5])
randomize_scores <- sample(all_scores)
new_gum          <- randomize_scores[1:5]
new_no_gum       <- randomize_scores[6:10]
print(new_gum)
print(new_no_gum)

suppressPackageStartupMessages(library(dplyr))
gum<-round(runif(20,70,100))
no_gum<-round(runif(20,40,90))
gum_df<-data.frame(student=seq(1:20),gum,no_gum)
gum_df <- gum_df %>%
  rbind(c("Sums",colSums(gum_df[,2:3]))) %>%
  rbind(c("Means",colMeans(gum_df[,2:3])))
gum_df_small<-gum_df[1:5,]
gum_df_small$gum<-as.numeric(gum_df_small$gum)
gum_df_small$no_gum<-as.numeric(gum_df_small$no_gum)
all_scores       <- c(gum[1:5],no_gum[1:5])
randomize_scores <- sample(all_scores)
gum2          <- randomize_scores[1:5]
no_gum2       <- randomize_scores[6:10]
gum_df_small <-cbind(gum_df_small,gum2,no_gum2)
all_scores       <- c(gum[1:5],no_gum[1:5])
randomize_scores <- sample(all_scores)
gum3          <- randomize_scores[1:5]
no_gum3       <- randomize_scores[6:10]
gum_df_small <-cbind(gum_df_small,gum3,no_gum3)
gum_df_small <- gum_df_small %>%
  rbind(c("Sums",colSums(gum_df_small[,2:7]))) %>%
  rbind(c("Means",colMeans(gum_df_small[,2:7])))
knitr::kable(gum_df_small)
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Simulating the mean differences across the different randomizations
In our pretend experiment we found that the mean for students chewing gum was

run restart restart & run all

, and the mean for students who did not chew gum was

run restart restart & run all

. The mean difference (gum - no gum) was

run restart restart & run all

. This is a pretty big difference. This is what did happen. But, what could have happened? If we tried out all of the experiments
where different subjects were switched around, what does the distribution of the possible mean differences look like? Let’s find out.
This is what the randomization test is all about.
When we do our randomization test we will measure the mean difference in exam scores between the gum group and the no gum
group. Every time we randomize we will save the mean difference.
Let’s look at a short animation of what is happening in the randomization test. Note, what you are about to see is data from a
different fake experiment, but the principles are the same. We’ll return to the gum no gum experiment after the animation. The
animation is showing you three important things. First, the purple dots show you the mean scores in two groups (didn’t study vs
study). It looks like there is a difference, as 1 dot is lower than the other. We want to know if chance could produce a difference this
big. At the beginning of the animation, the light green and red dots show the individual scores from each of 10 subjects in the
design (the purple dots are the means of these original scores). Now, during the randomizations, we randomly shuffle the original
scores between the groups. You can see this happening throughout the animation, as the green and red dots appear in different
random combinations. The moving yellow dots show you the new means for each group after the randomization. The differences
between the yellow dots show you the range of differences that chance could produce.

|student |gum |no_gum |gum2 |no_gum2 |gum3 |no_gum3 | 
|:-------|:---|:------|:----|:-------|:----|:-------| 
|1       |75  |90     |41   |74      |41   |75      | 
|2       |89  |41     |60   |89      |89   |65      | 
|3       |74  |51     |89   |90      |60   |90      | 
|4       |93  |60     |93   |65      |89   |51      | 
|5       |89  |65     |51   |75      |74   |93      | 
|Sums    |420 |307    |334  |393     |353  |374     | 
|Means   |84  |61.4   |66.8 |78.6    |70.6 |74.8    |

89.55

61.7

16.05

gum<-round(runif(20,70,100))
mean(gum)

no_gum<-round(runif(20,40,90))
mean(no_gum)

gum<-round(runif(20,70,100))
no_gum<-round(runif(20,40,90))
mean(gum) - mean(no_gum)
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Figure \(\PageIndex{1}\): Animation of a randomization test. The purple dots represent the location of the original sample means in
each condition. The yellow dots represent the means of each randomized sample. The blue and red dots show how the original
scores are shuffled across each randomization.

We are engaging in some visual statistical inference. By looking at the range of motion of the yellow dots, we are watching what
kind of differences chance can produce. In this animation, the purple dots, representing the original difference, are generally
outside of the range of chance. The yellow dots don’t move past the purple dots, as a result chance is an unlikely explanation of the
difference.
If the purple dots were inside the range of the yellow dots, then when would know that chance is capable of producing the
difference we observed, and that it does so fairly often. As a result, we should not conclude the manipulation caused the difference,
because it could have easily occurred by chance.
Let’s return to the gum example. After we randomize our scores many times, and computed the new means, and the mean
differences, we will have loads of mean differences to look at, which we can plot in a histogram. The histogram gives a picture of
what could have happened. Then, we can compare what did happen with what could have happened.
Here’s the histogram of the mean differences from the randomization test. For this simulation, we randomized the results from the
original experiment 1000 times. This is what could have happened. The blue line in the figure shows us where our observed
difference lies on the x-axis.
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run restart restart & run all

Figure \(\PageIndex{2}\): A histogram of simulated mean differences for a randomization test.

What do you think? Could the difference represented by the blue line have been caused by chance? My answer is probably not. The
histogram shows us the window of chance. The blue line is not inside the window. This means we can be pretty confident that the
difference we observed was not due to chance.
We are looking at another window of chance. We are seeing a histogram of the kinds of mean differences that could have occurred
in our experiment, if we had assigned our subjects to the gum and no gum groups differently. As you can see, the mean differences
range from negative to positive. The most frequent difference is 0. Also, the distribution appears to be symmetrical about zero,
which shows we had roughly same the chances of getting a positive or negative difference. Also, notice that as the differences get
larger (in the positive or negative direction, they become less frequent). The blue line shows us the observed difference, this is the
one we found in our fake experiment. Where is it? It’s way out to the right. It is is well outside the histogram. In other words, when
we look at what could have happened, we see that what did happen doesn’t occur very often.
IMPORTANT: In this case, when we speak of what could have happened. We are talking about what could have happened by
chance. When we compare what did happen to what chance could have done, we can get a better idea of whether our result was
caused by chance.

OK, let’s pretend we got a much smaller mean difference when we first ran the experiment. We can draw new lines (blue and red)
to represent a smaller mean we might have found.

library(ggplot2)
gum<-round(runif(20,70,100))
no_gum<-round(runif(20,40,90))
mean_differences<-length(10000)
for(i in 1:10000){
  all<-sample(c(gum,no_gum))
  mean_differences[i]<-mean(all[1:20])-mean(all[21:40])
}
rand_df <- data.frame(sims=1:10000,mean_differences)
ggplot(rand_df,aes(x=mean_differences))+
  geom_histogram(color="white", bins=30)+
  theme_classic()+
  geom_vline(color="blue",xintercept=(mean(gum)-mean(no_gum)))
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run restart restart & run all

Figure \(\PageIndex{3}\): Would you expect a mean difference represented by the blue line to occur more or less often by chance
compared to the mean difference represented by the red line?

Look at the blue line. If you found a mean difference of 10, would you be convinced that your difference was not caused by
chance? As you can see, the blue line is inside the chance window. Notably, differences of +10 don’t very often. You might infer
that your difference was not likely to be due to chance (but you might be a little bit skeptical, because it could have been). How
about the red line? The red line represents a difference of +5. If you found a difference of +5 here, would you be confident that
your difference was not caused by chance? I wouldn’t be. The red line is totally inside the chance window, this kind of difference
happens fairly often. I’d need some more evidence to consider the claim the some independent variable actually caused the
difference. I’d be much more comfortable assuming that sampling error probably caused the difference.

Take homes so far
Have you noticed that we haven’t used any formulas yet, but we have been able to accomplish inferential statistics. We will see
some formulas as we progress, but these aren’t as the idea behind the formulas.
Inferential statistics is an attempt to solve the problem: where did my data from?. In the randomization test example, our question
was: where did the differences between the means in my data come from?. We know that the differences could be produced by
chance alone. We simulated what chance can due using randomization. Then we plotted what chance can do using a histogram.
Then, we used to picture to help us make an inference. Did our observed difference come from the distribution, or not? When the
observed difference is clearly inside the chance distribution, then we can infer that our difference could have been produced by
chance. When the observed difference is not clearly inside the chance distribution, then we can infer that our difference was
probably not produced by chance.

library(ggplot2)
gum<-round(runif(20,70,100))
no_gum<-round(runif(20,40,90))
mean_differences<-length(10000)
for(i in 1:10000){
  all<-sample(c(gum,no_gum))
  mean_differences[i]<-mean(all[1:20])-mean(all[21:40])
}
rand_df <- data.frame(sims=1:10000,mean_differences)
ggplot(rand_df,aes(x=mean_differences))+
  geom_histogram(color="white",bins=30)+
  theme_classic()+
  geom_vline(color="blue",xintercept=10)+
  geom_vline(color="red",xintercept=5)
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In my opinion, these pictures are very, very helpful. If one of our goals is to help ourselves summarize a bunch of complicated
numbers to arrive at an inference, then the pictures do a great job. We don’t even need a summary number, we just need to look at
the picture and see if the observed difference is inside or outside of the window. This is what it is all about. Creating intuitive and
meaningful ways to make inferences from our data. As we move forward, the main thing that we will do is formalize our process,
and talk more about “standard” inferential statistics. For example, rather than looking at a picture (which is a good thing to do), we
will create some helpful numbers. For example, what if you wanted to the probability that your difference could have been
produced by chance? That could be a single number, like 95%. If there was a 95% probability that chance can produce the
difference you observed, you might not be very confident that something like your experimental manipulation was causing the
difference. If there was only 1% probability that chance could produce your difference, then you might be more confident that
chance did not produce the difference; and, you might instead be comfortable with the possibility that your experimental
manipulation actually caused the difference. So, how can we arrive at those numbers? In order to get there we will introduce you to
some more foundational tools for statistical inference.
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6.0: Prelude to t-Tests
One day, many moons ago, William Sealy Gosset got a job working for Guinness Breweries. They make the famous Irish stout
called Guinness. What happens next went something like this (total fabrication, but mostly on point).

Guinness wanted all of their beers to be the best beers. No mistakes, no bad beers. They wanted to improve their quality
control so that when Guinness was poured anywhere in the world, it would always comes out fantastic: 5 stars out of 5 every
time, the best.

Guinness had some beer tasters, who were super-experts. Every time they tasted a Guinness from the factory that wasn’t 5
out of 5, they knew right away.

But, Guinness had a big problem. They would make a keg of beer, and they would want to know if every single pint that
would come out would be a 5 out of 5. So, the beer tasters drank pint after pint out of the keg, until it was gone. Some kegs
were all 5 out of 5s. Some weren’t, Guinness needed to fix that. But, the biggest problem was that, after the testing, there was
no beer left to sell, the testers drank it all (remember I’m making this part up to illustrate a point, they probably still had beer
left to sell).

Guinness had a sampling and population problem. They wanted to know that the entire population of the beers they made
were all 5 out of 5 stars. But, if they sampled the entire population, they would drink all of their beer, and wouldn’t have any
left to sell.

Enter William Sealy Gosset. Gosset figured out the solution to the problem. He asked questions like this:

1. How many samples do I need to take to know the whole population is 5 out of 5?
2. What’s the fewest amount of samples I need to take to know the above, that would mean Guinness could test fewer beers

for quality, sell more beers for profit, and make the product testing time shorter.

Gosset solved those questions, and he invented something called the Student’s t-test. Gosset was working for Guinness, and
could be fired for releasing trade-secrets that he invented (the t-test). But, Gosset published the work anyways, under a
pseudonym (Student 1908). He called himself Student, hence Student’s t-test. Now you know the rest of the story.

It turns out this was a very nice thing for Gosset to have done. t-tests are used all the time, and they are useful, that’s why they are
used. In this chapter we learn how they work.

You’ll be surprised to learn that what we’ve already talked about, (the Crump Test, and the Randomization Test), are both very very
similar to the t-test. So, in general, you have already been thinking about the things you need to think about to understand t-tests.
You’re probably wondering what is this , what does  mean? We will tell you. Before we tell what it means, we first tell you about
one more idea.

6.0: Prelude to t-Tests is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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6.1: Check your confidence in your mean
We’ve talked about getting a sample of data. We know we can find the mean, we know we can find the standard deviation. We
know we can look at the data in a histogram. These are all useful things to do for us to learn something about the properties of our
data.

You might be thinking of the mean and standard deviation as very different things that we would not put together. The mean is
about central tendency (where most of the data is), and the standard deviation is about variance (where most of the data isn’t). Yes,
they are different things, but we can use them together to create useful new things.

What if I told you my sample mean was 50, and I told you nothing else about my sample. Would you be confident that most of the
numbers were near 50? Would you wonder if there was a lot of variability in the sample, and many of the numbers were very
different from 50. You should wonder all of those things. The mean alone, just by itself, doesn’t tell you anything about well the
mean represents all of the numbers in the sample.

It could be a representative number, when the standard deviation is very small, and all the numbers are close to 50. It could be a
non-representative number, when the standard deviation is large, and many of the numbers are not near 50. You need to know the
standard deviation in order to be confident in how well the mean represents the data.

How can we put the mean and the standard deviation together, to give us a new number that tells us about confidence in the mean?

We can do this using a ratio:

Think about what happens here. We are dividing a number by a number. Look at what happens:

compared to:

Imagine we have a mean of 50, and a truly small standard deviation of 1. What do we get with our formula?

Imagine we have a mean of 50, and a big standard deviation of 100. What do we get with our formula?

Notice, when we have a mean paired with a small standard deviation, our formula gives us a big number, like 50. When we have a
mean paired with a large standard deviation, our formula gives us a small number, like 0.5. These numbers can tell us something
about confidence in our mean, in a general way. We can be 50 confident in our mean in the first case, and only 0.5 (not at a lot)
confident in the second case.

What did we do here? We created a descriptive statistic by dividing the mean by the standard deviation. And, we have a sense of
how to interpret this number, when it’s big we’re more confident that the mean represents all of the numbers, when it’s small we are
less confident. This is a useful kind of number, a ratio between what we think about our sample (the mean), and the variability in
our sample (the standard deviation). Get used to this idea. Almost everything that follows in this textbook is based on this kind of
ratio. We will see that our ratio turns into different kinds of “statistics”, and the ratios will look like this in general:

or, to say it using different words:

mean

standard deviation

= 1

number

same number

= big number

number

smaller number

= smaller number

number

bigger number

= 50

50

1

= 0.5

50

100

name of statistic =

measure of what we know

measure of what we don't know
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In fact, this is the general formula for the t-test. Big surprise!

This page titled 6.1: Check your confidence in your mean is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

name of statistic =

measure of effect

measure of error
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6.2: One-sample t-test — A new t-test
Now we are ready to talk about t-test. We will talk about three of them. We start with the one-sample t-test.
Commonly, the one-sample t-test is used to estimate the chances that your sample came from a particular population. Specifically,
you might want to know whether the mean that you found from your sample, could have come from a particular population having
a particular mean.
Straight away, the one-sample t-test becomes a little confusing (and I haven’t even described it yet). Officially, it uses known
parameters from the population, like the mean of the population and the standard deviation of the population. However, most times
you don’t know those parameters of the population! So, you have to estimate them from your sample. Remember from the chapters
on descriptive statistics and sampling, our sample mean is an unbiased estimate of the population mean. And, our sample standard
deviation (the one where we divide by n-1) is an unbiased estimate of the population standard deviation. When Gosset developed
the t-test, he recognized that he could use these estimates from his samples, to make the t-test. Here is the formula for the one
sample t-test, we first use words, and then become more specific:

Formulas for one-sample t-test
\[\text{name of statistic} = \frac{\text{measure of effect}}{\text{measure of error}} \nonumber \]
\[\text{t} = \frac{\text{measure of effect}}{\text{measure of error}} \nonumber \]
\[\text{t} = \frac{\text{Mean difference}}{\text{standard error}} \nonumber \]
\[\text{t} = \frac{\bar{X}-u}{S_{\bar{X}}} \nonumber \]
\[\text{t} = \frac{\text{Sample Mean - Population Mean}}{\text{Sample Standard Error}} \nonumber \]
\[\text{Estimated Standard Error} = \text{Standard Error of Sample} = \frac{s}{\sqrt{N}} \nonumber \]
Where, \(s\) is the sample standard deviation.
Some of you may have gone cross-eyed looking at all of this. Remember, we’ve seen it before when we divided our mean by the
standard deviation in the first bit. The t-test is just a measure of a sample mean, divided by the standard error of the sample mean.
That is it.

What does t represent?
\(t\) gives us a measure of confidence, just like our previous ratio for dividing the mean by a standard deviations. The only
difference with \(t\), is that we divide by the standard error of mean (remember, this is also a standard deviation, it is the standard
deviation of the sampling distribution of the mean)

What does the t in t-test stand for? Apparently nothing. Gosset originally labelled it z. And, Fisher later called it t, perhaps
because t comes after s, which is often used for the sample standard deviation.

\(t\) is a property of the data that you collect. You compute it with a sample mean, and a sample standard error (there’s one more
thing in the one-sample formula, the population mean, which we get to in a moment). This is why we call \(t\), a sample-statistic.
It’s a statistic we compute from the sample.
What kinds of numbers should we expect to find for these \(ts\)? How could we figure that out?
Let’s start small and work through some examples. Imagine your sample mean is 5. You want to know if it came from a population
that also has a mean of 5. In this case, what would \(t\) be? It would be zero: we first subtract the sample mean from the population
mean, \(5-5=0\). Because the numerator is 0, \(t\) will be zero. So, \(t\) = 0, occurs, when there is no difference.
Let’s say you take another sample, do you think the mean will be 5 every time, probably not. Let’s say the mean is 6. So, what can \
(t\) be here? It will be a positive number, because \(6-5= +1\). But, will \(t\) be +1? That depends on the standard error of the
sample. If the standard error of the sample is 1, then \(t\) could be 1, because \(1/1 = 1\).
If the sample standard error is smaller than 1, what happens to \(t\)? It get’s bigger right? For example, 1 divided by \(0.5 = 2\). If
the sample standard error was 0.5, \(t\) would be 2. And, what could we do with this information? Well, it be like a measure of
confidence. As \(t\) get’s bigger we could be more confident in the mean difference we are measuring.
Can \(t\) be smaller than 1? Sure, it can. If the sample standard error is big, say like 2, then \(t\) will be smaller than one (in our
case), e.g., \(1/2 = .5\). The direction of the difference between the sample mean and population mean, can also make the \(t\)
become negative. What if our sample mean was 4. Well, then \(t\) will be negative, because the mean difference in the numerator
will be negative, and the number in the bottom (denominator) will always be positive (remember why, it’s the standard error,
computed from the sample standard deviation, which is always positive because of the squaring that we did.).

 Note
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So, that is some intuitions about what the kinds of values t can take. \(t\) can be positive or negative, and big or small.
Let’s do one more thing to build our intuitions about what \(t\) can look like. How about we sample some numbers and then
measure the sample mean and the standard error of the mean, and then plot those two things against each each. This will show us
how a sample mean typically varies with respect to the standard error of the mean.
In the following figure, I pulled 1,000 samples of N=10 from a normal distribution (mean = 0, sd = 1). Each time I measured the
mean and standard error of the sample. That gave two descriptive statistics for each sample, letting us plot each sample as dot in a
scatterplot

run restart restart & run all

Figure \(\PageIndex{1}\): A scatterplot with sample mean on the x-axis, and standard error of the mean on the y-axis.

What we get is a cloud of dots. You might notice the cloud has a circular quality. There’s more dots in the middle, and fewer dots as
they radiate out from the middle. The dot cloud shows us the general range of the sample mean, for example most of the dots are in
between -1 and 1. Similarly, the range for the sample standard error is roughly between .2 and .5. Remember, each dot represents
one sample.
We can look at the same data a different way. For example, rather than using a scatterplot, we can divide the mean for each dot, by
the standard error for each dot. Below is a histogram showing what this looks like:

library(ggplot2)
sample_mean<-length(1000)
sample_se<-length(1000)
for(i in 1:1000){
  s<-rnorm(10,0,1)
  sample_mean[i]<-mean(s)
  sample_se[i]<-sd(s)/sqrt(length(s))
}
plot(sample_mean,sample_se)
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run restart restart & run all

Figure \(\PageIndex{2}\): A histogram of the sample means divided by the sample standard errors, this is a t-distribution.

Interesting, we can see the histogram is shaped like a normal curve. It is centered on 0, which is the most common value. As values
become more extreme, they become less common. If you remember, our formula for \(t\), was the mean divided by the standard
error of the mean. That’s what we did here. This histogram is showing you a \(t\)-distribution.

Calculating t from data
Let’s briefly calculate a t-value from a small sample. Let’s say we had 10 students do a true/false quiz with 5 questions on it.
There’s a 50% chance of getting each answer correct.
Every student completes the 5 questions, we grade them, and then we find their performance (mean percent correct). What we want
to know is whether the students were guessing. If they were all guessing, then the sample mean should be about 50%, it shouldn’t
be different from chance, which is 50%. Let’s look at the table:

sample_mean<-length(1000)
sample_se<-length(1000)
for(i in 1:1000){
  s<-rnorm(10,0,1)
  sample_mean[i]<-mean(s)
  sample_se[i]<-sd(s)/sqrt(length(s))
}
hist(sample_mean/sample_se, breaks=30)

suppressPackageStartupMessages(library(dplyr))
students <- 1:10
scores <- c(50,70,60,40,80,30,90,60,70,60)
mean_scores <- mean(scores)
Difference_from_Mean <- scores-mean_scores
Squared_Deviations <- Difference_from_Mean^2
the_df<-data.frame(students,
                   scores,
                   mean=rep(mean_scores,10),
                   Difference_from_Mean,
                   Squared_Deviations)
the_df <- the_df %>%
  rbind(c("Sums",colSums(the_df[1:10,2:5]))) %>%
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run restart restart & run all

You can see the scores  column has all of the test scores for each of the 10 students. We did the things we need to do to
compute the standard deviation.
Remember the sample standard deviation is the square root of the sample variance, or:
\[\text{sample standard deviation} = \sqrt{\frac{\sum_{i}^{n}({x_{i}-\bar{x})^2}}{N-1}} \nonumber \]
\[\text{sd} = \sqrt{\frac{2890}{10-1}} = 17.92 \nonumber \]
The standard error of the mean, is the standard deviation divided by the square root of N
\[\text{SEM} = \frac{s}{\sqrt{N}} = \frac{17.92}{10} = 5.67 \nonumber \]
\(t\) is the difference between our sample mean (61), and our population mean (50, assuming chance), divided by the standard error
of the mean.
\[\text{t} = \frac{\bar{X}-u}{S_{\bar{X}}} = \frac{\bar{X}-u}{SEM} = \frac{61-50}{5.67} = 1.94 \nonumber \]
And, that is you how calculate \(t\), by hand. It’s a pain. I was annoyed doing it this way. In the lab, you learn how to calculate \(t\)
using software, so it will just spit out \(t\). For example in R, all you have to do is this:

run restart restart & run all

|students |scores |mean |Difference_from_Mean |Squared_Deviations | 
|:--------|:------|:----|:--------------------|:------------------| 
|1        |50     |61   |-11                  |121                | 
|2        |70     |61   |9                    |81                 | 
|3        |60     |61   |-1                   |1                  | 
|4        |40     |61   |-21                  |441                | 
|5        |80     |61   |19                   |361                | 
|6        |30     |61   |-31                  |961                | 
|7        |90     |61   |29                   |841                | 
|8        |60     |61   |-1                   |1                  | 
|9        |70     |61   |9                    |81                 | 
|10       |60     |61   |-1                   |1                  | 
|Sums     |610    |610  |0                    |2890               | 
|Means    |61     |61   |0                    |289                | 
|         |       |     |sd                   |17.92              | 
|         |       |     |SEM                  |5.67               | 
|         |       |     |t                    |1.94003527336861   |

 One Sample t-test 
 
data:  scores 
t = 1.9412, df = 9, p-value = 0.08415 
alternative hypothesis: true mean is not equal to 50 
95 percent confidence interval: 

  rbind(c("Means",colMeans(the_df[1:10,2:5]))) %>%
  rbind(c(" "," "," ","sd ",round(sd(the_df[1:10,2]),digits=2))) %>%
  rbind(c(" "," "," ","SEM ",round(sd(the_df[1:10,2])/sqrt(10), digits=2))) %>%
  rbind(c(" "," "," ","t",(61-50)/round(sd(the_df[1:10,2])/sqrt(10), digits=2)))
knitr::kable(the_df)

scores <- c(50,70,60,40,80,30,90,60,70,60)
t.test(scores, mu=50)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7920?pdf


6.2.5 https://stats.libretexts.org/@go/page/7920

How does t behave?
If \(t\) is just a number that we can compute from our sample (it is), what can we do with it? How can we use \(t\) for statistical
inference?
Remember back to the chapter on sampling and distributions, that’s where we discussed the sampling distribution of the sample
mean. Remember, we made a lot of samples, then computed the mean for each sample, then we plotted a histogram of the sample
means. Later, in that same section, we mentioned that we could generate sampling distributions for any statistic. For each sample,
we could compute the mean, the standard deviation, the standard error, and now even \(t\), if we wanted to. We could generate
10,000 samples, and draw four histograms, one for each sampling distribution for each statistic.
This is exactly what I did, and the results are shown in the four figures below. I used a sample size of 20, and drew random
observations for each sample from a normal distribution, with mean = 0, and standard deviation = 1. Let’s look at the sampling
distributions for each of the statistics. \(t\) was computed assuming with the population mean assumed to be 0.

Figure \(\PageIndex{3}\): Sampling distributions for the mean, standard deviation, standard error of the mean, and t.

We see four sampling distributions. This is how statistical summaries of these summaries behave. We have used the word chance
windows before. These are four chance windows, measuring different aspects of the sample. In this case, all of the samples came
from the same normal distribution. Because of sampling error, each sample is not identical. The means are not identical, the
standard deviations are not identical, sample standard error of the means are not identical, and the \(t\)s of the samples are not
identical. They all have some variation, as shown by the histograms. This is how samples of size 20 behave.

 48.18111 73.81889 
sample estimates: 
mean of x  
       61  
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We can see straight away, that in this case, we are unlikely to get a sample mean of 2. That’s way outside the window. The range
for the sampling distribution of the mean is around -.5 to +.5, and is centered on 0 (the population mean, would you believe!).
We are unlikely to get sample standard deviations of between .6 and 1.5, that is a different range, specific to the sample standard
deviation.
Same thing with the sample standard error of the mean, the range here is even smaller, mostly between .1, and .3. You would rarely
find a sample with a standard error of the mean greater than .3. Virtually never would you find one of say 1 (for this situation).
Now, look at \(t\). It’s range is basically between -3 and +3 here. 3s barely happen at all. You pretty much never see a 5 or -5 in this
situation.
All of these sampling windows are chance windows, and they can all be used in the same way as we have used similar sampling
distributions before (e.g., Crump Test, and Randomization Test) for statistical inference. For all of them we would follow the same
process:

1. Generate these distributions
2. Look at your sample statistics for the data you have (mean, SD, SEM, and \(t\))
3. Find the likelihood of obtaining that value or greater
4. Obtain that probability
5. See if you think your sample statistics were probable or improbable.

We’ll formalize this in a second. I just want you to know that what you will be doing is something that you have already done
before. For example, in the Crump test and the Randomization test we focused on the distribution of mean differences. We could do
that again here, but instead, we will focus on the distribution of \(t\) values. We then apply the same kinds of decision rules to the \
(t\) distribution, as we did for the other distributions. Below you will see a graph you have already seen, except this time it is a
distribution of \(t\)s, not mean differences:
Remember, if we obtained a single \(t\) from one sample we collected, we could consult this chance window below to find out the \
(t\) we obtained from the sample was likely or unlikely to occur by chance.
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library(ggplot2)
options(warn=-1)
all_df<-data.frame()
for(i in 1:10000){
  sample<-rnorm(20,0,1)
  sample_mean<-mean(sample)
  sample_sd<-sd(sample)
  sample_se<-sd(sample)/sqrt(length(sample))
  sample_t<-as.numeric(t.test(sample, mu=0)$statistic)
  t_df<-data.frame(i,sample_mean,sample_sd,sample_se,sample_t)
  all_df<-rbind(all_df,t_df)
}
sample_t<-all_df$sample_t
ggplot(all_df,aes(x=sample_t))+
  annotate("rect", xmin=min(sample_t), xmax=max(sample_t), ymin=0,
           ymax=Inf, alpha=0.5, fill="red") +
  annotate("rect", xmin=min(sample_t), xmax=-1.94, ymin=0,
           ymax=Inf, alpha=0.7, fill="light grey") +
  annotate("rect", xmin=1.94, xmax=max(sample_t), ymin=0,
           ymax=Inf, alpha=0.7, fill="light grey") +
  geom_rect(aes(xmin=-Inf, xmax=min(sample_t), ymin=0,
                ymax=Inf), alpha=.5, fill="lightgreen")+
  geom_rect(aes(xmin=max(sample_t), xmax=Inf, ymin=0,
                ymax=Inf), alpha=.5, fill="lightgreen")+
  geom_histogram(bins=50, color="white")+
  theme_classic()+
  geom_vline(xintercept = min(sample_t))+
  geom_vline(xintercept = max(sample_t))+
   geom_vline(xintercept = -1.94)+
  geom_vline(xintercept = 1.94)+
  ggtitle("Histogram of mean sample_ts between two samples (n=20) \n
          both drawn from the same normal distribution (u=0, sd=1)")+
   xlim(-8,8)+
  geom_label(data = data.frame(x = 0, y = 250, label = "CHANCE"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = -7, y = 250, label = "NOT \n CHANCE"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = 7, y = 250, label = "NOT \n CHANCE"),
             aes(x = x, y = y, label = label))+
#  geom_label(data = data.frame(x = min(sample_t), y = 600,
 #                              label = paste0("min \n",round(min(sample_t)))),
  #                             aes(x = x, y = y, label = label))+
   #geom_label(data = data.frame(x = max(sample_t), y = 600,
   #                            label = paste0("max \n",round(max(sample_t)))),
    #                           aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = -4, y = 250,
                               label = "?"),
                               aes(x = x, y = y, label = label))+
   geom_label(data = data.frame(x = 4, y = 250,
                               label = "?"),
                               aes(x = x, y = y, label = label))+
  xlab("mean sample_t")
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run restart restart & run all

Figure \(\PageIndex{4}\): Applying decision criteria to the t-distribution.

Making a decision
From our early example involving the TRUE/FALSE quizzes, we are now ready to make some kind of decision about what
happened there. We found a mean difference of

run restart restart & run all

. We found a \(t\) =

run restart restart & run all

. The probability of this \(t\) or larger occurring is \(p\) =

run restart restart & run all

. We were testing the idea that our sample mean of

run restart restart & run all

11

t: 1.94117647058824

0.0841503080536893

scores <- c(50,70,60,40,80,30,90,60,70,60)
mean(scores)-50

scores <- c(50,70,60,40,80,30,90,60,70,60)
t.test(scores, mu=50)$statistic

scores <- c(50,70,60,40,80,30,90,60,70,60)
t.test(scores, mu=50)$p.value

scores <- c(50,70,60,40,80,30,90,60,70,60)
mean(scores)
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could have come from a normal distribution with mean = 50. The \(t\) test tells us that the \(t\) for our sample, or a larger one,
would happen with p = 0.0841503. In other words, chance can do it a kind of small amount of time, but not often. In English, this
means that all of the students could have been guessing, but it wasn’t that likely that were just guessing.
We’re guessing that you are still a little bit confused about \(t\) values, and what we are doing here. We are going to skip ahead to
the next \(t\)-test, called a paired samples t-test. We will also fill in some more things about \(t\)-tests that are more obvious when
discussing paired samples t-test. In fact, spoiler alert, we will find out that a paired samples t-test is actually a one-sample t-test in
disguise (WHAT!), yes it is. If the one-sample \(t\)-test didn’t make sense to you, read the next section.

This page titled 6.2: One-sample t-test — A new t-test is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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6.3: Paired-samples t-test
For me (Crump), many analyses often boil down to a paired samples t-test. It just happens that many things I do reduce down to a
test like this. I am a cognitive psychologist, I conduct research about how people do things like remember, pay attention, and learn
skills. There are lots of Psychologists like me, who do very similar things.
We all often conduct the same kinds of experiments. They go like this, and they are called repeated measures designs. They are
called repeated measures designs, because we measure how one person does something more than once, we repeat the measure. So,
I might measure somebody doing something in condition A, and measure the same person doing something in Condition B, and
then I see that same person does different things in the two conditions. I repeatedly measure the same person in both conditions. I
am interested in whether the experimental manipulation changes something about how people perform the task in question.

Mehr, Song, and Spelke (2016)
We will introduce the paired-samples t-test with an example using real data, from a real study. Mehr, Song, and Spelke (2016) were
interested in whether singing songs to infants helps infants become more sensitive to social cues. For example, infants might need
to learn to direct their attention toward people as a part of learning how to interact socially with people. Perhaps singing songs to
infants aids this process of directing attention. When an infant hears a familiar song, they might start to pay more attention to the
person singing that song, even after they are done singing the song. The person who sang the song might become more socially
important to the infant. You will learn more about this study in the lab for this week. This example, prepares you for the lab
activities. Here is a brief summary of what they did.
First, parents were trained to sing a song to their infants. After many days of singing this song to the infants, a parent came into the
lab with their infant. In the first session, parents sat with their infants on their knees, so the infant could watch two video
presentations. There were two videos. Each video involved two unfamiliar new people the infant had never seen before. Each new
person in the video (the singers) sang one song to the infant. One singer sang the “familiar” song the infant had learned from their
parents. The other singer sang an “unfamiliar” song the infant had not hear before.
There were two really important measurement phases: the baseline phase, and the test phase.
The baseline phase occurred before the infants saw and heard each singer sing a song. During the baseline phase, the infants
watched a video of both singers at the same time. The researchers recorded the proportion of time that the infant looked at each
singer. The baseline phase was conducted to determine whether infants had a preference to look at either person (who would later
sing them a song).
The test phase occurred after infants saw and heard each song, sung by each singer. During the test phase, each infant had an
opportunity to watch silent videos of both singers. The researchers measured the proportion of time the infants spent looking at
each person. The question of interest, was whether the infants would spend a greater proportion of time looking at the singer who
sang the familiar song, compared to the singer who sang the unfamiliar song.
There is more than one way to describe the design of this study. We will describe it like this. It was a repeated measures design,
with one independent (manipulation) variable called Viewing phase: Baseline versus Test. There was one dependent variable (the
measurement), which was proportion looking time (to singer who sung familiar song). This was a repeated measures design
because the researchers measured proportion looking time twice (they repeated the measure), once during baseline (before infants
heard each singer sing a song), and again during test (after infants head each singer sing a song).
The important question was whether infants would change their looking time, and look more at the singer who sang the familiar
song during the test phase, than they did during the baseline phase. This is a question about a change within individual infants. In
general, the possible outcomes for the study are:

1. No change: The difference between looking time toward the singer of the familiar song during baseline and test is zero, no
difference.

2. Positive change: Infants will look longer toward the singer of the familiar song during the test phase (after they saw and heard
the singers), compared to the baseline phase (before they saw and heard the singers). This is a positive difference if we use the
formula: Test Phase Looking time - Baseline phase looking time (to familiar song singer).

3. Negative change: Infants will look longer toward the singer of the unfamiliar song during the test phase (after they saw and
heard the singers), compared to the baseline phase (before they saw and heard the singers). This is a negative difference if we
use the same formula: Test Phase Looking time - Baseline phase looking time (to familiar song singer).
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The Data
Let’s take a look at the data for the first 5 infants in the study. This will help us better understand some properties of the data before
we analyze it. We will see that the data is structured in a particular way that we can take advantage of with a paired samples t-test.
Note, we look at the first 5 infants to show how the computations work. The results of the paired-samples t-test change when we
use all of the data from the study.
Here is a table of the data:

run restart restart & run all

infant Baseline Test

1 0.44 0.60

2 0.41 0.68

3 0.75 0.72

4 0.44 0.28

5 0.47 0.50

The table shows proportion looking times toward the singer of the familiar song during the Baseline and Test phases. Notice there
are five different infants, (1 to 5). Each infant is measured twice, once during the Baseline phase, and once during the Test phase.
To repeat from before, this is a repeated-measures design, because the infants are measured repeatedly (twice in this case). Or, this
kind of design is also called a paired-samples design. Why? because each participant comes with a pair of samples (two samples),
one for each level of the design.
Great, so what are we really interested in here? We want to know if the mean looking time toward the singer of the familiar song
for the Test phase is higher than the Baseline phase. We are comparing the two sample means against each other and looking for a
difference. We already know that differences could be obtained by chance alone, simply because we took two sets of samples, and
we know that samples can be different. So, we are interested in knowing whether chance was likely or unlikely to have produced
any difference we might observe.
In other words, we are interested in looking at the difference scores between the baseline and test phase for each infant. The
question here is, for each infant, did their proportion looking time to the singer of the familiar song, increase during the test phase
as compared to the baseline phase.

The difference scores
Let’s add the difference scores to the table of data so it is easier to see what we are talking about. The first step in creating
difference scores is to decide how you will take the difference, there are two options:

1. Test phase score - Baseline Phase Score
2. Baseline phase score - Test Phase score

Let’s use the first formula. Why? Because it will give us positive differences when the test phase score is higher than the baseline
phase score. This makes a positive score meaningful with respect to the study design, we know (because we defined it to be this

library(data.table)
suppressPackageStartupMessages(library(dplyr))
all_data <- fread(
  "https://stats.libretexts.org/@api/deki/files/10603/MehrSongSpelke2016.csv")
experiment_one <- all_data %>% filter(exp1==1)
paired_sample_df <-  data.frame(infant=1:5, 
    Baseline = round(experiment_one$Baseline_Proportion_Gaze_to_Singer[1:5],
                digits=2), 
    Test = round(experiment_one$Test_Proportion_Gaze_to_Singer[1:5], 
                digits=2))
knitr::kable(paired_sample_df)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7921?pdf


6.3.3 https://stats.libretexts.org/@go/page/7921

way), that positive scores will refer to longer proportion looking times (to singer of familiar song) during the test phase compared
to the baseline phase.

run restart restart & run all

infant Baseline Test differences

1 0.44 0.60 0.16

2 0.41 0.68 0.27

3 0.75 0.72 -0.03

4 0.44 0.28 -0.16

5 0.47 0.50 0.03

There we have it, the difference scores. The first thing we can do here is look at the difference scores, and ask how many infants
showed the effect of interest. Specifically, how many infants showed a positive difference score. We can see that three of five
infants showed a positive difference (they looked more at the singer of the familiar song during the test than baseline phase), and
two the infants showed the opposite effect (negative difference, they looked more at the singer of the familiar song during baseline
than test).

The Mean Difference
As we have been discussing, the effect of interest in this study is the mean difference between the baseline and test phase
proportion looking times. We can calculate the mean difference, by finding the mean of the difference scores. Let’s do that, in fact,
for fun let’s calculate the mean of the baseline scores, the test scores, and the difference scores.

library(data.table)
suppressPackageStartupMessages(library(dplyr))
all_data <- fread(
  "https://stats.libretexts.org/@api/deki/files/10603/MehrSongSpelke2016.csv")
experiment_one <- all_data %>% filter(exp1==1)
paired_sample_df <-  data.frame(infant=1:5, 
    Baseline = round(experiment_one$Baseline_Proportion_Gaze_to_Singer[1:5],
                digits=2), 
    Test = round(experiment_one$Test_Proportion_Gaze_to_Singer[1:5],
                digits=2))
 
paired_sample_df <- cbind(paired_sample_df,
    differences = (paired_sample_df$Test-
    paired_sample_df$Baseline))
knitr::kable(paired_sample_df)

library(data.table)
suppressPackageStartupMessages(library(dplyr))
all_data <- fread(
  "https://stats.libretexts.org/@api/deki/files/10603/MehrSongSpelke2016.csv")
experiment_one <- all_data %>% filter(exp1==1)
paired_sample_df <-  data.frame(infant=1:5, 
    Baseline = round(experiment_one$Baseline_Proportion_Gaze_to_Singer[1:5],
                digits=2), 
    Test = round(experiment_one$Test_Proportion_Gaze_to_Singer[1:5],
                digits=2))
paired_sample_df <- cbind(paired_sample_df,
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run restart restart & run all

infant Baseline Test differences

1 0.44 0.6 0.16

2 0.41 0.68 0.27

3 0.75 0.72 -0.03

4 0.44 0.28 -0.16

5 0.47 0.5 0.03

Sums 2.51 2.78 0.27

Means 0.502 0.556 0.054

We can see there was a positive mean difference of 0.054, between the test and baseline phases.
Can we rush to judgment and conclude that infants are more socially attracted to individuals who have sung them a familiar song? I
would hope not based on this very small sample. First, the difference in proportion looking isn’t very large, and of course we
recognize that this difference could have been produced by chance.
We will more formally evaluate whether this difference could have been caused by chance with the paired-samples t-test. But,
before we do that, let’s again calculate \(t\) and discuss what \(t\) tells us over and above what our measure of the mean of the
difference scores tells us.

Calculate t
OK, so how do we calculate \(t\) for a paired-samples \(t\)-test? Surprise, we use the one-sample t-test formula that you already
learned about! Specifically, we use the one-sample \(t\)-test formula on the difference scores. We have one sample of difference
scores (you can see they are in one column), so we can use the one-sample \(t\)-test on the difference scores. Specifically, we are
interested in comparing whether the mean of our difference scores came from a distribution with mean difference = 0. This is a
special distribution we refer to as the null distribution. It is the distribution no differences. Of course, this null distribution can
produce differences due to to sampling error, but those differences are not caused by any experimental manipulation, they caused
by the random sampling process.
We calculate \(t\) in a moment. Let’s now consider again why we want to calculate \(t\)? Why don’t we just stick with the mean
difference we already have?
Remember, the whole concept behind \(t\), is that it gives an indication of how confident we should be in our mean. Remember, \
(t\) involves a measure of the mean in the numerator, divided by a measure of variation (standard error of the sample mean) in the
denominator. The resulting \(t\) value is small when the mean difference is small, or when the variation is large. So small \(t\)-
values tell us that we shouldn’t be that confident in the estimate of our mean difference. Large \(t\)-values occur when the mean
difference is large and/or when the measure of variation is small. So, large \(t\)-values tell us that we can be more confident in the
estimate of our mean difference. Let’s find \(t\) for the mean difference scores. We use the same formulas as we did last time:

    differences = (paired_sample_df$Test-
    paired_sample_df$Baseline))
 
paired_sample_df <- paired_sample_df %>%
   rbind(c("Sums",colSums(paired_sample_df[1:5,2:4]))) %>%
   rbind(c("Means",colMeans(paired_sample_df[1:5,2:4])))
knitr::kable(paired_sample_df)

library(data.table)
suppressPackageStartupMessages(library(dplyr))
all_data <- fread(
  "https://stats.libretexts.org/@api/deki/files/10603/MehrSongSpelke2016.csv")
experiment_one <- all_data %>% filter(exp1==1)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7921?pdf


6.3.5 https://stats.libretexts.org/@go/page/7921

run restart restart & run all

infant Baseline Test differences diff_from_mean Squared_differences

1 0.44 0.6 0.16 0.106 0.011236

2 0.41 0.68 0.27 0.216 0.046656

3 0.75 0.72 -0.03 -0.084
0.007056000000000
01

4 0.44 0.28 -0.16 -0.214 0.045796

5 0.47 0.5 0.03 -0.024
0.000575999999999
999

Sums 2.51 2.78 0.27 0 0.11132

Means 0.502 0.556 0.054 0 0.022264

    sd 0.167

paired_sample_df <-  data.frame(infant=1:5, 
    Baseline = round(experiment_one$Baseline_Proportion_Gaze_to_Singer[1:5],
                digits=2), 
    Test = round(experiment_one$Test_Proportion_Gaze_to_Singer[1:5],
                digits=2))
paired_sample_df <- cbind(paired_sample_df,
    differences = (paired_sample_df$Test-
    paired_sample_df$Baseline))
paired_sample_df <- paired_sample_df %>%
   rbind(c("Sums",colSums(paired_sample_df[1:5,2:4]))) %>%
   rbind(c("Means",colMeans(paired_sample_df[1:5,2:4])))
 
paired_sample_df <-  data.frame(infant=1:5, 
    Baseline = round(experiment_one$Baseline_Proportion_Gaze_to_Singer[1:5],
                     digits=2), 
    Test = round(experiment_one$Test_Proportion_Gaze_to_Singer[1:5],
                 digits=2))
differences <-  paired_sample_df$Test-paired_sample_df$Baseline
diff_from_mean <- differences-mean(differences)
Squared_differences <- diff_from_mean^2
paired_sample_df <- cbind(paired_sample_df, 
    differences, diff_from_mean, Squared_differences)
paired_sample_df <- paired_sample_df %>%
    rbind(c("Sums",colSums(paired_sample_df[1:5,2:6]))) %>%
    rbind(c("Means",colMeans(paired_sample_df[1:5,2:6]))) %>%
    rbind(c(" "," "," "," ","sd ",round(sd(paired_sample_df[1:5,4]),
                                        digits=3))) %>%
    rbind(c(" "," "," "," ","SEM ",round(sd(paired_sample_df[1:5,4])/sqrt(5),
                                         digits=3))) %>%
    rbind(c(" "," "," "," ","t",mean(differences)/round(
      sd(paired_sample_df[1:5,4])/sqrt(5), digits=3))
    )
paired_sample_df[6,5]<-0
paired_sample_df[7,5]<-0
knitr::kable(paired_sample_df)
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infant Baseline Test differences diff_from_mean Squared_differences

    SEM 0.075

    t 0.72

If we did this test using R, we would obtain almost the same numbers (there is a little bit of rounding in the table).

run restart restart & run all

library(data.table)
suppressPackageStartupMessages(library(dplyr))
all_data <- fread(
  "https://stats.libretexts.org/@api/deki/files/10603/MehrSongSpelke2016.csv")
experiment_one <- all_data %>% filter(exp1==1)
paired_sample_df <-  data.frame(infant=1:5, 
    Baseline = round(experiment_one$Baseline_Proportion_Gaze_to_Singer[1:5],
                digits=2), 
    Test = round(experiment_one$Test_Proportion_Gaze_to_Singer[1:5],
                digits=2))
paired_sample_df <- cbind(paired_sample_df,
    differences = (paired_sample_df$Test-
    paired_sample_df$Baseline))
paired_sample_df <- paired_sample_df %>%
   rbind(c("Sums",colSums(paired_sample_df[1:5,2:4]))) %>%
   rbind(c("Means",colMeans(paired_sample_df[1:5,2:4])))
 
paired_sample_df <-  data.frame(infant=1:5, 
    Baseline = round(experiment_one$Baseline_Proportion_Gaze_to_Singer[1:5],
                     digits=2), 
    Test = round(experiment_one$Test_Proportion_Gaze_to_Singer[1:5],
                 digits=2))
differences <-  paired_sample_df$Test-paired_sample_df$Baseline
diff_from_mean <- differences-mean(differences)
Squared_differences <- diff_from_mean^2
paired_sample_df <- cbind(paired_sample_df, 
    differences, diff_from_mean, Squared_differences)
paired_sample_df <- paired_sample_df %>%
    rbind(c("Sums",colSums(paired_sample_df[1:5,2:6]))) %>%
    rbind(c("Means",colMeans(paired_sample_df[1:5,2:6]))) %>%
    rbind(c(" "," "," "," ","sd ",round(sd(paired_sample_df[1:5,4]),
                                        digits=3))) %>%
    rbind(c(" "," "," "," ","SEM ",round(sd(paired_sample_df[1:5,4])/sqrt(5),
                                         digits=3))) %>%
    rbind(c(" "," "," "," ","t",mean(differences)/round(
      sd(paired_sample_df[1:5,4])/sqrt(5), digits=3))
    )
paired_sample_df[6,5]<-0
paired_sample_df[7,5]<-0
 
t.test(differences,mu=0)
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Here is a quick write up of our t-test results, t(4) = .72, p = .509.
What does all of that tell us? There’s a few things we haven’t gotten into much yet. For example, the 4 represents degrees of
freedom, which we discuss later. The important part, the \(t\) value should start to be a little bit more meaningful. We got a kind of
small t-value didn’t we. It’s .72. What can we tell from this value? First, it is positive, so we know the mean difference is positive.
The sign of the \(t\)-value is always the same as the sign of the mean difference (ours was +0.054). We can also see that the p-value
was .509. We’ve seen p-values before. This tells us that our \(t\) value or larger, occurs about 50.9% of the time… Actually it
means more than this. And, to understand it, we need to talk about the concept of two-tailed and one-tailed tests.

Interpreting ts
Remember what it is we are doing here. We are evaluating whether our sample data could have come from a particular kind of
distribution. The null distribution of no differences. This is the distribution of \(t\)-values that would occur for samples of size 5,
with a mean difference of 0, and a standard error of the sample mean of .075 (this is the SEM that we calculated from our sample).
We can see what this particular null-distribution looks like by plotting it like this:

 One Sample t-test 
 
data:  differences 
t = 0.72381, df = 4, p-value = 0.5092 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 -0.1531384  0.2611384 
sample estimates: 
mean of x  
    0.054  
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run restart restart & run all

Figure \(\PageIndex{1}\): A distribution of t-values that can occur by chance alone, when there is no difference between the sample
and a population.

The \(t\)-distribution above shows us the kinds of values \(t\) will will take by chance alone, when we measure the mean differences
for pairs of 5 samples (like our current). \(t\) is most likely to be zero, which is good, because we are looking at the distribution of
no-differences, which should most often be 0! But, sometimes, due to sampling error, we can get \(t\)s that are bigger than 0, either
in the positive or negative direction. Notice the distribution is symmetrical, a \(t\) from the null-distribution will be positive half of
the time, and negative half of the time, that is what we would expect by chance.
So, what kind of information do we want know when we find a particular \(t\) value from our sample? We want to know how likely
the \(t\) value like the one we found occurs just by chance. This is actually a subtly nuanced kind of question. For example, any

library(ggplot2)
range <- seq(-3,3, .1)
null_distribution <- dt(range, 4, log = FALSE)
plot_df <- data.frame(range,null_distribution)
ggplot(plot_df,aes(x=range, y=null_distribution))+
  geom_line()+
  xlab("t-values")+
  ylab("Probability")+
  theme(axis.text.y=element_blank(),axis.ticks=element_blank())+
  scale_x_continuous(breaks=(seq(-3,3,.5)))+
  ggtitle("Null-distribution of t-values for our data")+
    geom_label(data = data.frame(x = -.7, y = .1, label = "50% \n (-)"),
               aes(x = x, y = y, label = label))+
   geom_label(data = data.frame(x = .7, y = .1, label = "50% \n (+)"),
              aes(x = x, y = y, label = label))+
  geom_vline(xintercept=0)
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particular \(t\) value doesn’t have a specific probability of occurring. When we talk about probabilities, we are talking about ranges
of probabilities. Let’s consider some probabilities. We will use the letter \(p\), to talk about the probabilities of particular \(t\)
values.

1. What is the probability that \(t\) is zero or positive or negative? The answer is p=1, or 100%. We will always have a \(t\) value
that is zero or non-zero…Actually, if we can’t compute the t-value, for example when the standard deviation is undefined, I
guess then we would have a non-number. But, assuming we can calculate \(t\), then it will always be 0 or positive or negative.

2. What is the probability of \(t\) = 0 or greater than 0? The answer is p=.5, or 50%. 50% of \(t\)-values are 0 or greater.
3. What is the of \(t\) = 0 or smaller than 0? The answer is p=.5, or 50%. 50% of \(t\)-values are 0 or smaller.

We can answer all of those questions just by looking at our t-distribution, and dividing it into two equal regions, the left side
(containing 50% of the \(t\) values), and the right side containing 50% of the \(t\)-values).
What if we wanted to take a more fine-grained approach, let’s say we were interested in regions of 10%. What kinds of \(t\)s occur
10% of the time. We would apply lines like the following. Notice, the likelihood of bigger numbers (positive or negative) gets
smaller, so we have to increase the width of the bars for each of the intervals between the bars to contain 10% of the \(t\)-values, it
looks like this:
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library(ggplot2)
range <- seq(-3,3, .1)
null_distribution <- dt(range, 4, log = FALSE)
plot_df <- data.frame(range,null_distribution)
t_ps <- qt(seq(.1,.9,.1),4)
ggplot(plot_df,aes(x=range, y=null_distribution))+
  geom_line()+
  xlab("t-values")+
  ylab("Probability")+
  geom_vline(xintercept=t_ps)+
  ggtitle("10% of ts occur between each bar")+
  theme_classic(base_size = 10)+
  theme(axis.text.y=element_blank(),axis.ticks=element_blank())+
  scale_x_continuous(breaks=round(t_ps, digits=1))+
  geom_label(data = data.frame(x = -2.5, y = .2, label = "10%"),
             aes(x = x, y = y, label = label))+
   geom_label(data = data.frame(x = -1.3, y = .2, label = "10%"),
              aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = 2.5, y = .2, label = "10%"),
             aes(x = x, y = y, label = label))+
   geom_label(data = data.frame(x = 1.3, y = .2, label = "10%"),
              aes(x = x, y = y, label = label))
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Figure \(\PageIndex{2}\): Splitting the t distribution up into regions each containing 5% of the t-values. The width between the
bars narrows as they approach the center of the distribution, where there are more t-values.

Consider the probabilities (\(p\)) of \(t\) for the different ranges.
1. \(t\) <= -1.5 (\(t\) is less than or equal to -1.5), \(p\) = 10%
2. -1.5 >= \(t\) <= -0.9 (\(t\) is equal to or between -1.5 and -.9), \(p\) = 10%
3. -.9 >= \(t\) <= -0.6 (\(t\) is equal to or between -.9 and -.6), \(p\) = 10%
4. \(t\) >= 1.5 (\(t\) is greater than or equal to 1.5), \(p\) = 10%

Notice, that the \(p\)s are always 10%. \(t\)s occur in these ranges with 10% probability.

Getting the p-values for t-values
You might be wondering where I am getting some of these values from. For example, how do I know that 10% of \(t\) values (for
this null distribution) have a value of approximately 1.5 or greater than 1.5? The answer is I used R to tell me.
In most statistics textbooks the answer would be: there is a table at the back of the book where you can look these things up…This
textbook has no such table. We could make one for you. And, we might do that. But, we didn’t do that yet…
So, where do these values come from, how can you figure out what they are? The complicated answer is that we are not going to
explain the math behind finding these values because, 1) the authors (some of us) admittedly don’t know the math well enough to
explain it, and 2) it would sidetrack us to much, 3) you will learn how to get these numbers in the lab with software, 4) you will
learn how to get these numbers in lab without the math, just by doing a simulation, and 5) you can do it in R, or excel, or you can
use an online calculator.
This is all to say that you can find the \(t\)s and their associated \(p\)s using software. But, the software won’t tell you what these
values mean. That’s we are doing here. You will also see that software wants to know a few more things from you, such as the
degrees of freedom for the test, and whether the test is one-tailed or two tailed. We haven’t explained any of these things yet. That’s
what we are going to do now. Note, we explain degrees of freedom last. First, we start with a one-tailed test.

One-tailed tests
A one-tailed test is sometimes also called a directional test. It is called a directional test, because a researcher might have a
hypothesis in mind suggesting that the difference they observe in their means is going to have a particular direction, either a
positive difference, or a negative difference.
Typically, a researcher would set an alpha criterion. The alpha criterion describes a line in the sand for the researcher. Often, the
alpha criterion is set at p=.05. What does this mean? Let’s look at again at the graph of the \(t\)-distribution, and show the alpha
criterion.
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Figure \(\PageIndex{3}\): The critical value of t for an alpha criterion of 0.05. 5% of all ts are at this value or larger.

The figure shows that \(t\) values of +2.13 or greater occur 5% of the time. Because the t-distribution is symmetrical, we also know
that \(t\) values of -2.13 or smaller also occur 5% of the time. Both of these properties are true under the null distribution of no
differences. This means, that when there really are no differences, a researcher can expect to find \(t\) values of 2.13 or larger 5% of
the time.
Let’s review and connect some of the terms:

1. alpha criterion: the criterion set by the researcher to make decisions about whether they believe chance did or did not cause the
difference. The alpha criterion here is set to p=.05

library(ggplot2)
range <- seq(-3,3, .1)
null_distribution <- dt(range, 4, log = FALSE)
plot_df <- data.frame(range,null_distribution)
t_ps <- qt(seq(.1,.9,.1),4)
ggplot(plot_df,aes(x=range, y=null_distribution))+
  geom_line()+
  xlab("t-values")+
  ylab("Probability")+
  geom_vline(xintercept=qt(.95,4, lower.tail=TRUE))+
  ggtitle("Critical t for one-tailed test")+
  theme_classic(base_size = 10)+
  theme(axis.text.y=element_blank(),axis.ticks=element_blank())+
  annotate("rect", xmin=qt(.95,4, lower.tail=TRUE),xmax=3, ymin=0,
           ymax=Inf, alpha=0.5, fill="green")+
  geom_label(data = data.frame(x = 2.5, y = .2, label = "5%"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = qt(.95,4, lower.tail=TRUE), y = .3, 
                               label = "Critical t"), 
                               aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = qt(.95,4, lower.tail=TRUE), y = .25, 
                               label = round(qt(.95,4, lower.tail=TRUE),
                                digits=2)), 
                               aes(x = x, y = y, label = label))

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7921?pdf


6.3.13 https://stats.libretexts.org/@go/page/7921

2. Critical \(t\). The critical \(t\) is the \(t\)-value associated with the alpha-criterion. In this case for a one-tailed test, it is the \(t\)
value where 5% of all \(t\)s are this number or greater. In our example, the critical \(t\) is 2.13. 5% of all \(t\) values (with
degrees of freedom = 4) are +2.13, or greater than +2.13.

3. Observed \(t\). The observed \(t\) is the one that you calculated from your sample. In our example about the infants, the
observed \(t\) was \(t\) (4) = 0.72.

4. p-value. The \(p\)-value is the probability of obtaining the observed \(t\) value or larger. Now, you could look back at our
previous example, and find that the \(p\)-value for \(t\) (4) = .72, was p=.509. HOWEVER, this p-value was not calculated for a
one-directional test…(we talk about what .509 means in the next section).

Let’s see what the \(p\)-value for \(t\) (4) = .72 using a one-directional test would be, and what it would look like:
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library(ggplot2)
range <- seq(-3,3, .1)
null_distribution <- dt(range, 4, log = FALSE)
plot_df <- data.frame(range,null_distribution)
t_ps <- qt(seq(.1,.9,.1),4)
ggplot(plot_df,aes(x=range, y=null_distribution))+
  geom_line()+
  xlab("t-values")+
  ylab("Probability")+
  geom_vline(xintercept=.72)+
  geom_vline(xintercept=qt(.95,4, lower.tail=TRUE))+
  ggtitle("t value and p-range for one-directional test")+
  theme_classic(base_size = 10)+
  theme(axis.text.y=element_blank(),axis.ticks=element_blank())+
  annotate("rect", xmin=.72,xmax=3, ymin=0, ymax=Inf, alpha=0.5, fill="grey")+
  annotate("rect", xmin=qt(.95,4, lower.tail=TRUE),xmax=3, ymin=0,
           ymax=.25, alpha=0.5, fill="green")+
  geom_label(data = data.frame(x = 2.5, y = .2, label = "5%"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = qt(.95,4, lower.tail=TRUE), y = .3, 
                               label = "Critical t"), 
                               aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = qt(.95,4, lower.tail=TRUE), y = .25, 
                               label = round(qt(.95,4, lower.tail=TRUE),
                                digits=2)), 
                               aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = .72, y = .1, 
                               label = "Observed t"), 
                               aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = .72, y = .05, 
                               label = ".72, p="), 
                               aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = 1.5, y = .05, 
                               label = round(pt(.72, 4, lower.tail=FALSE),
                                digits=3)), 
                               aes(x = x, y = y, label = label))

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7921?pdf


6.3.15 https://stats.libretexts.org/@go/page/7921

Figure \(\PageIndex{4}\): Critical value for a one-directional t-test.
Let’s take this one step at a time. We have located the observed \(t\) of .72 on the graph. We shaded the right region all grey. What
we see is that the grey region represents .256 or 25.6% of all \(t\) values. In other words, 25.6% of \(t\) values are 0.72 or larger
than 0.72. You could expect, by chance alone, to a find a \(t\) value of .72 or larger, 25.6% of the time. That’s fairly often. We did
find a \(t\) value of 0.72. Now that you know this kind of \(t\) value or larger occurs 25.6% of the time, would you be confident that
the mean difference was not due to chance? Probably not, given that chance can produce this difference fairly often.
Following the “standard” decision making procedure, we would claim that our \(t\) value was not statistically significant, because it
was not large enough. If our observed value was larger than the critical \(t\) (larger than 2.13), defined by our alpha criterion, then
we would claim that our \(t\) value was statistically signicant. This would be equivalent to saying that we believe it is unlikely that
the difference we observed was due to chance. In general, for any observed \(t\) value, the associated \(p\)-value tells you how
likely a \(t\) of the observed size or larger would be observed. The \(p\)-value always refers to a range of \(t\)-values, never to a
single \(t\)-value. Researchers use the alpha criterion of .05, as a matter of convenience and convention. There are other ways to
interpret these values that do not rely on a strict (significant versus not) dichotomy.

Two-tailed tests
OK, so that was one-tailed tests… What are two tailed tests, what is that? The \(p\)-value that we originally calculated from our
paired-samples \(t\)-test was for a 2-tailed test. Often, the default is that the \(p\)-value is for a two-tailed test.
The two-tailed test, is asking a more general question about whether a difference is likely to have been produced by chance. The
question is: what is probability of any difference. It is also called a non-directional test, because here we don’t care about the
direction or sign of the difference (positive or negative), we just care if there is any kind of difference.
The same basic things as before are involved. We define an alpha criterion (\(\alpha = 0.05\)). And, we say that any observed \(t\)
value that has a probability of \(p\) <.05 (\(p\) is less than .05) will be called statistically signficant, and ones that are more likely (\
(p\) >.05, \(p\) is greater than .05) will be called null-results, or not statistically significant. The only difference is how we draw the
alpha range. Before it was on the right side of the \(t\) distribution (we were conducting a one-sided test remember, so we were only
interested in one side).
Let’s just take a look at what the most extreme 5% of the t-values are, when we ignore if they are positive or negative:
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library(ggplot2)
range <- seq(-4,4, .1)
null_distribution <- dt(range, 4, log = FALSE)
plot_df <- data.frame(range,null_distribution)
t_ps <- qt(seq(.1,.9,.1),4)
ggplot(plot_df,aes(x=range, y=null_distribution))+
  geom_line()+
  xlab("t-values")+
  ylab("Probability")+
  geom_vline(xintercept=qt(.975,4, lower.tail=TRUE))+
  geom_vline(xintercept=qt(.025,4, lower.tail=TRUE))+
  ggtitle("Critical ts for two-tailed test")+
  theme_classic(base_size = 10)+
  theme(axis.text.y=element_blank(),axis.ticks=element_blank())+
  annotate("rect", xmin=qt(.975,4, lower.tail=TRUE),xmax=4, ymin=0,
           ymax=Inf, alpha=0.5, fill="green")+
  geom_label(data = data.frame(x = 3.5, y = .2, label = "2.5%"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = qt(.975,4, lower.tail=TRUE), y = .3, 
                               label = "Critical t"), 
                               aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = qt(.975,4, lower.tail=TRUE), y = .25, 
                               label = round(qt(.975,4, lower.tail=TRUE),
                                digits=2)), 
                               aes(x = x, y = y, label = label))+
  annotate("rect", xmin=-4,xmax=qt(.025,4, lower.tail=TRUE), ymin=0,
           ymax=Inf, alpha=0.5, fill="green")+
  geom_label(data = data.frame(x = -3.5, y = .2, label = "2.5%"),
             aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = qt(.025,4, lower.tail=TRUE), y = .3, 
                               label = "Critical t"), 
                               aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = qt(.025,4, lower.tail=TRUE), y = .25, 
                               label = round(qt(.025,4, lower.tail=TRUE),
                                digits=2)), 
                               aes(x = x, y = y, label = label))

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7921?pdf


6.3.17 https://stats.libretexts.org/@go/page/7921

Figure \(\PageIndex{5}\): Critical values for a two-tailed test. Each line represents the location where 2.5% of all ts are larger or
smaller than critical value. The total for both tails is 5%.

Here is what we are seeing. A distribution of no differences (the null, which is what we are looking at), will produce \(t\)s that are
2.78 or greater 2.5% of the time, and \(t\)s that are -2.78 or smaller 2.5% of the time. 2.5% + 2.5% is a total of 5% of the time. We
could also say that \(t\)s larger than +/- 2.78 occur 5% of the time.
As a result, the critical \(t\) value is (+/-) 2.78 for a two-tailed test. As you can see, the two-tailed test is blind to the direction or
sign of the difference. Because of this, the critical \(t\) value is also higher for a two-tailed test, than for the one-tailed test that we
did earlier. Hopefully, now you can see why it is called a two-tailed test. There are two tails of the distribution, one on the left and
right, both shaded in green.

One or two tailed, which one?
Now that you know there are two kinds of tests, one-tailed, and two-tailed, which one should you use? There is some conventional
wisdom on this, but also some debate. In the end, it is up to you to be able to justify your choice and why it is appropriate for you
data. That is the real answer.
The conventional answer is that you use a one-tailed test when you have a theory or hypothesis that is making a directional
prediction (the theory predicts that the difference will be positive, or negative). Similarly, use a two-tailed test when you are
looking for any difference, and you don’t have a theory that makes a directional prediction (it just makes the prediction that there
will be a difference, either positive or negative).
Also, people appear to choose one or two-tailed tests based on how risky they are as researchers. If you always ran one-tailed tests,
your critical \(t\) values for your set alpha criterion would always be smaller than the critical \(t\)s for a two-tailed test. Over the
long run, you would make more type I errors, because the criterion to detect an effect is a lower bar for one than two tailed tests.

Remember type 1 errors occur when you reject the idea that chance could have caused
your difference. You often never know when you make this error. It happens anytime that
sampling error was the actual cause of the difference, but a researcher dismisses that
possibility and concludes that their manipulation caused the difference.

Similarly, if you always ran two-tailed tests, even when you had a directional prediction, you would make fewer type I errors over
the long run, because the \(t\) for a two-tailed test is higher than the \(t\) for a one-tailed test. It seems quite common for researchers
to use a more conservative two-tailed test, even when they are making a directional prediction based on theory. In practice,
researchers tend to adopt a standard for reporting that is common in their field. Whether or not the practice is justifiable can
sometimes be an open question. The important task for any researcher, or student learning statistics, is to be able to justify their
choice of test.

Degrees of freedom
Before we finish up with paired-samples \(t\)-tests, we should talk about degrees of freedom. Our sense is that students don’t really
understand degrees of freedom very well. If you are reading this textbook, you are probably still wondering what is degrees of
freedom, seeing as we haven’t really talked about it all.
For the \(t\)-test, there is a formula for degrees of freedom. For the one-sample and paired sample \(t\)-tests, the formula is:
\(\text{Degrees of Freedom} = \text{df} = n-1\). Where n is the number of samples in the test.
In our paired \(t\)-test example, there were 5 infants. Therefore, degrees of freedom = 5-1 = 4.
OK, that’s a formula. Who cares about degrees of freedom, what does the number mean? And why do we report it when we report
a \(t\)-test… you’ve probably noticed the number in parentheses e.g., \(t\)(4)=.72, the 4 is the \(df\), or degrees of freedom.
Degrees of freedom is both a concept, and a correction. The concept is that if you estimate a property of the numbers, and you use
this estimate, you will be forcing some constraints on your numbers.
Consider the numbers: 1, 2, 3. The mean of these numbers is 2. Now, let’s say I told you that the mean of three numbers is 2. Then,
how many of these three numbers have freedom? Funny question right. What we mean is, how many of the three numbers could be
any number, or have the freedom to be any number.
The first two numbers could be any number. But, once those two numbers are set, the final number (the third number), MUST be a
particular number that makes the mean 2. The first two numbers have freedom. The third number has no freedom.
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To illustrate. Let’s freely pick two numbers: 51 and -3. I used my personal freedom to pick those two numbers. Now, if our three
numbers are 51, -3, and x, and the mean of these three numbers is 2. There is only one solution, x has to be -42, otherwise the mean
won’t be 2. This is one way to think about degrees of freedom. The degrees of freedom for these three numbers is n-1 = 3-1= 2,
because 2 of the numbers can be free, but the last number has no freedom, it becomes fixed after the first two are decided.
Now, statisticians often apply degrees of freedom to their calculations, especially when a second calculation relies on an estimated
value. For example, when we calculate the standard deviation of a sample, we first calculate the mean of the sample right! By
estimating the mean, we are fixing an aspect of our sample, and so, our sample now has n-1 degrees of freedom when we calculate
the standard deviation (remember for the sample standard deviation, we divide by n-1…there’s that n-1 again.)

Simulating how degrees of freedom affects the t distribution
There are at least two ways to think the degrees of freedom for a \(t\)-test. For example, if you want to use math to compute aspects
of the \(t\) distribution, then you need the degrees of freedom to plug in to the formula… If you want to see the formulas I’m
talking about, scroll down on the t-test Wikipedia page and look for the probability density or cumulative distribution functions…
We think that is quite scary for most people, and one reason why degrees of freedom are not well-understood.
If we wanted to simulate the \(t\) distribution we could more easily see what influence degrees of freedom has on the shape of the
distribution. Remember, \(t\) is a sample statistic, it is something we measure from the sample. So, we could simulate the process of
measuring \(t\) from many different samples, then plot the histogram of \(t\) to show us the simulated \(t\) distribution.

run restart restart & run all

Figure \(\PageIndex{6}\): The width of the t distribution shrinks as sample size increases.

Notice that the red distribution for \(df\) =4, is a little bit shorter, and a little bit wider than the bluey-green distribution for \(df\) =
100. As degrees of freedom increase, the \(t\)-distribution gets taller (in the middle), and narrower in the range. It get’s more peaky.
Can you guess the reason for this? Remember, we are estimating a sample statistic, and degrees of freedom is really just a number
that refers to the number of subjects (well minus one). And, we already know that as we increase \(n\), our sample statistics become
better estimates (less variance) of the distributional parameters they are estimating. So, \(t\) becomes a better estimate of it’s “true”
value as sample size increase, resulting in a more narrow distribution of \(t\)s.

library(ggplot2)
ts<-c(rt(1000,4), rt(1000,100))
dfs<-as.factor(rep(c(4,100), each=1000))
t_df<-data.frame(dfs,ts)
t_df<-t_df[abs(t_df$ts)<5,]
ggplot(t_df,aes(x=ts, group=dfs, color=dfs))+
  geom_histogram(bins=30)+
  theme_classic()+
  facet_wrap(~dfs)+
  ggtitle("t distributions for df = 4 and 100")
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There is a slightly different \(t\) distribution for every degrees of freedom, and the critical regions associated with 5% of the
extreme values are thus slightly different every time. This is why we report the degrees of freedom for each t-test, they define the
distribution of \(t\) values for the sample-size in question. Why do we use n-1 and not n? Well, we calculate \(t\) using the sample
standard deviation to estimate the standard error or the mean, that estimate uses n-1 in the denominator, so our \(t\) distribution is
built assuming n-1. That’s enough for degrees of freedom…

This page titled 6.3: Paired-samples t-test is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.
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6.4: The paired samples t-test strikes back
You must be wondering if we will ever be finished talking about paired samples t-tests… why are we doing round 2, oh no! Don’t
worry, we’re just going to 1) remind you about what we were doing with the infant study, and 2) do a paired samples t-test on the
entire data set and discuss.
Remember, we were wondering if the infants would look longer toward the singer who sang the familiar song during the test phase
compared to the baseline phase. We showed you data from 5 infants, and walked through the computations for the \(t\)-test. As a
reminder, it looked like this:

infant Baseline Test differences diff_from_mean Squared_differences

1 0.44 0.6 0.16 0.106 0.011236

2 0.41 0.68 0.27 0.216 0.046656

3 0.75 0.72 -0.03 -0.084
0.007056000000000
01

4 0.44 0.28 -0.16 -0.214 0.045796

5 0.47 0.5 0.03 -0.024
0.000575999999999
999

Sums 2.51 2.78 0.27 0 0.11132

Means 0.502 0.556 0.054 0 0.022264

    sd 0.167

    SEM 0.075

    t 0.72

 One Sample t-test 
 
data:  round(differences, digits = 2) 
t = 0.72381, df = 4, p-value = 0.5092 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 -0.1531384  0.2611384 
sample estimates: 
mean of x  
    0.054  

Let’s write down the finding one more time: The mean difference was 0.054, \(t\)(4) = .72, \(p\) =.509. We can also now confirm,
that the \(p\)-value was from a two-tailed test. So, what does this all really mean.
We can say that a \(t\) value with an absolute of .72 or larger occurs 50.9% of the time. More precisely, the distribution of no
differences (the null), will produce a \(t\) value this large or larger 50.9% of the time. In other words, chance alone good have easily
produced the \(t\) value from our sample, and the mean difference we observed or .054, could easily have been a result of chance.
Let’s quickly put all of the data in the \(t\)-test, and re-run the test using all of the infant subjects.

library(data.table)
suppressPackageStartupMessages(library(dplyr))
all_data <- fread(
  "https://stats.libretexts.org/@api/deki/files/10603/MehrSongSpelke2016.csv")
experiment_one <- all_data %>% filter(exp1==1)
paired_sample_df <-  data.frame(infant=1:5, 
    Baseline = round(experiment_one$Baseline_Proportion_Gaze_to_Singer[1:5],
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 One Sample t-test 
 
data:  differences 
t = 2.4388, df = 31, p-value = 0.02066 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 0.01192088 0.13370412 
sample estimates: 

                digits=2), 
    Test = round(experiment_one$Test_Proportion_Gaze_to_Singer[1:5],
                digits=2))
paired_sample_df <- cbind(paired_sample_df,
    differences = (paired_sample_df$Test-
    paired_sample_df$Baseline))
paired_sample_df <- paired_sample_df %>%
   rbind(c("Sums",colSums(paired_sample_df[1:5,2:4]))) %>%
   rbind(c("Means",colMeans(paired_sample_df[1:5,2:4])))
paired_sample_df <-  data.frame(infant=1:5, 
    Baseline = round(experiment_one$Baseline_Proportion_Gaze_to_Singer[1:5],
                     digits=2), 
    Test = round(experiment_one$Test_Proportion_Gaze_to_Singer[1:5],
                 digits=2))
differences <-  paired_sample_df$Test-paired_sample_df$Baseline
diff_from_mean <- differences-mean(differences)
Squared_differences <- diff_from_mean^2
paired_sample_df <- cbind(paired_sample_df, 
    differences, diff_from_mean, Squared_differences)
paired_sample_df <- paired_sample_df %>%
    rbind(c("Sums",colSums(paired_sample_df[1:5,2:6]))) %>%
    rbind(c("Means",colMeans(paired_sample_df[1:5,2:6]))) %>%
    rbind(c(" "," "," "," ","sd ",round(sd(paired_sample_df[1:5,4]),
                                        digits=3))) %>%
    rbind(c(" "," "," "," ","SEM ",round(sd(paired_sample_df[1:5,4])/sqrt(5),
                                         digits=3))) %>%
    rbind(c(" "," "," "," ","t",mean(differences)/round(
      sd(paired_sample_df[1:5,4])/sqrt(5), digits=3))
    )
paired_sample_df[6,5]<-0
paired_sample_df[7,5]<-0
 
paired_sample_df <-  data.frame(infant=1:32, 
    Baseline = round(experiment_one$Baseline_Proportion_Gaze_to_Singer[1:32],
                     digits=2), 
    Test = round(experiment_one$Test_Proportion_Gaze_to_Singer[1:32],
                 digits=2))
differences <-  paired_sample_df$Test-paired_sample_df$Baseline
t.test(differences,mu=0)
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Now we get a very different answer. We would summarize the results saying the mean difference was .073, t(31) = 2.44, p = 0.020.
How many total infants were their? Well the degrees of freedom was 31, so there must have been 32 infants in the study. Now we
see a much smaller \(p\)-value. This was also a two-tailed test, so we that observing a \(t\) value of 2.4 or greater (absolute value)
only occurs 2% of the time. In other words, the distribution of no differences will produce the observed t-value very rarely. So, it is
unlikely that the observed mean difference of .073 was due to chance (it could have been due to chance, but that is very unlikely).
As a result, we can be somewhat confident in concluding that something about seeing and hearing a unfamiliar person sing a
familiar song, causes an infant to draw their attention toward the singer, and this potentially benefits social learning on the part of
the infant.

This page titled 6.4: The paired samples t-test strikes back is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

mean of x  
0.0728125  
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6.5: Independent samples t-test — The return of the t-test?
If you’ve been following the Star Wars references, we are on last movie (of the original trilogy)… the independent t-test. This is
were basically the same story plays out as before, only slightly different.
Remember there are different \(t\)-tests for different kinds of research designs. When your design is a between-subjects design, you
use an independent samples t-test. Between-subjects design involve different people or subjects in each experimental condition. If
there are two conditions, and 10 people in each, then there are 20 total people. And, there are no paired scores, because every single
person is measured once, not twice, no repeated measures. Because there are no repeated measures we can’t look at the difference
scores between conditions one and two. The scores are not paired in any meaningful way, to it doesn’t make sense to subtract them.
So what do we do?
The logic of the independent samples t-test is the very same as the other \(t\)-tests. We calculated the means for each group, then we
find the difference. That goes into the numerator of the t formula. Then we get an estimate of the variation for the denominator. We
divide the mean difference by the estimate of the variation, and we get \(t\). It’s the same as before.
The only wrinkle here is what goes into the denominator? How should we calculate the estimate of the variance? It would be nice if
we could do something very straightforward like this, say for an experiment with two groups A and B:
\[t = \frac{\bar{A}-\bar{B}}{(\frac{SEM_A+SEM_B}{2})} \nonumber \]
In plain language, this is just:

1. Find the mean difference for the top part
2. Compute the SEM (standard error of the mean) for each group, and average them together to make a single estimate, pooling

over both samples.

This would be nice, but unfortunately, it turns out that finding the average of two standard errors of the mean is not the best way to
do it. This would create a biased estimator of the variation for the hypothesized distribution of no differences. We won’t go into the
math here, but instead of the above formula, we an use a different one that gives as an unbiased estimate of the pooled standard
error of the sample mean. Our new and improved \(t\) formula would look like this:
\[t = \frac{\bar{X_A}-\bar{X_B}}{s_p * \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}} \nonumber \]
and, \(s_p\), which is the pooled sample standard deviation is defined as, note the s’s in the formula are variances:
\[s_p = \sqrt{\frac{(n_A-1)s_A^2 + (n_B-1)s^2_B}{n_A +n_B -2}} \nonumber \]
Believe you me, that is so much more formula than I wanted to type out. Shall we do one independent \(t\)-test example by hand,
just to see the computations? Let’s do it…but in a slightly different way than you expect. I show the steps using R. I made some
fake scores for groups A and B. Then, I followed all of the steps from the formula, but made R do each of the calculations. This
shows you the needed steps by following the code. At the end, I print the \(t\)-test values I computed “by hand”, and then the \(t\)-
test value that the R software outputs using the \(t\)-test function. You should be able to get the same values for \(t\), if you were
brave enough to compute \(t\) by hand.

## By "hand" using R r code
a <- c(1,2,3,4,5)
b <- c(3,5,4,7,9)
 
mean_difference <- mean(a)-mean(b) # compute mean difference
 
variance_a <- var(a) # compute variance for A
variance_b <- var(b) # compute variance for B
 
# Compute top part and bottom part of sp formula
 
sp_numerator <- (4*variance_a + 4* variance_b) 
sp_denominator <- 5+5-2
sp <- sqrt(sp_numerator/sp_denominator) # compute sp
 
# compute t following formulat
 
t <- mean_difference / ( sp * sqrt( (1/5) +(1/5) ) )
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This page titled 6.5: Independent samples t-test — The return of the t-test? is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

-2.01799136683647

 Two Sample t-test 
 
data:  a and b 
t = -2.018, df = 8, p-value = 0.0783 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -5.5710785  0.3710785 
sample estimates: 
mean of x mean of y  
      3.0       5.6  

 
t # print results

a <- c(1,2,3,4,5)
b <- c(3,5,4,7,9)
 
# using the R function t.test
t.test(a,b, paired=FALSE, var.equal = TRUE)
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6.6: Simulating data for t-tests
An “advanced” topic for \(t\)-tests is the idea of using R to simulations for \(t\)-tests.
If you recall, \(t\) is a property of a sample. We calculate \(t\) from our sample. The \(t\) distribution is the hypothetical behavior of
our sample. That is, if we had taken thousands upon thousands of samples, and calculated \(t\) for each one, and then looked at the
distribution of those \(t\)’s, we would have the sampling distribution of \(t\)!
It can be very useful to get in the habit of using R to simulate data under certain conditions, to see how your sample data, and
things like \(t\) behave. Why is this useful? It mainly prepares you with some intuitions about how sampling error (random chance)
can influence your results, given specific parameters of your design, such as sample-size, the size of the mean difference you
expect to find in your data, and the amount of variation you might find. These methods can be used formally to conduct power-
analyses. Or more informally for data sense.

Simulating a one-sample t-test
Here are the steps you might follow to simulate data for a one sample \(t\)-test.

1. Make some assumptions about what your sample (that you might be planning to collect) might look like. For example, you
might be planning to collect 30 subjects worth of data. The scores of those data points might come from a normal distribution
(mean = 50, SD = 10).

2. sample simulated numbers from the distribution, then conduct a \(t\)-test on the simulated numbers. Save the statistics you want
(such as \(t\)s and \(p\)s), and then see how things behave.

Let’s do this a couple different times. First, let’s simulate samples with N = 30, taken from a normal (mean= 50, SD =25). We’ll do
a simulation with 1000 simulations. For each simulation, we will compare the sample mean with a population mean of 50. There
should be no difference on average here, this is the null distribution that we are simulating. The distribution of no differences
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Figure \(\PageIndex{1}\): The distribution of p-values is flat under the null.

# steps to create fake data from a distribution 
# and conduct t-tests on the simulated data
save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  my_sample <- rnorm(n=30, mean =50, sd =25)
  t_test <- t.test (my_sample, mu = 50)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
#plot histograms of t and p values for 1000 simulations
hist(save_ts)
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Figure \(\PageIndex{2}\): The distribution of p-values is flat under the null.

Neat. We see both a \(t\) distribution, that looks like \(t\) distribution as it should. And we see the \(p\) distribution. This shows us
how often we get \(t\) values of particular sizes. You may find it interesting that the \(p\)-distribution is flat under the null, which
we are simulating here. This means that you have the same chances of a getting a \(t\) with a p-value between 0 and 0.05, as you
would for getting a \(t\) with a p-value between .90 and .95. Those ranges are both ranges of 5%, so there are an equal amount of \
(t\) values in them by definition.
Here’s another way to do the same simulation in R, using the replicate function, instead a for loop:

# steps to create fake data from a distribution 
# and conduct t-tests on the simulated data
save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  my_sample <- rnorm(n=30, mean =50, sd =25)
  t_test <- t.test (my_sample, mu = 50)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
#plot histograms of t and p values for 1000 simulations
hist(save_ps)
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Figure \(\PageIndex{3}\): Simulating ts in R.
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Figure \(\PageIndex{4}\): Simulating ps in R.

simulated_ts <- replicate(1000,
                          t.test(rnorm(30,50,25))$statistic)
hist(simulated_ts)

simulated_ps <- replicate(1000,
                          t.test(rnorm(30,50,25))$p.value)
hist(simulated_ps)
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Simulating a paired samples t-test
The code below is set up to sample 10 scores for condition A and B from the same normal distribution. The simulation is
conducted 1000 times, and the \(t\)s and \(p\)s are saved and plotted for each.

run restart restart & run all

Figure \(\PageIndex{5}\): 1000 simulated ts from the null distribution.

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  condition_A <- rnorm(10,10,5)
  condition_B <- rnorm(10,10,5)
  differences <- condition_A - condition_B
  t_test <- t.test(differences, mu=0)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
hist(save_ts)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7924?pdf


6.6.6 https://stats.libretexts.org/@go/page/7924

run restart restart & run all

Figure \(\PageIndex{6}\): 1000 simulated ps from the null distribution.

According to the simulation. When there are no differences between the conditions, and the samples are being pulled from the very
same distribution, you get these two distributions for \(t\) and \(p\). These again show how the null distribution of no differences
behaves.
For any of these simulations, if you rejected the null-hypothesis (that your difference was only due to chance), you would be
making a type I error. If you set your alpha criteria to \(\alpha = .05\), we can ask how many type I errors were made in these 1000
simulations. The answer is:

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  condition_A <- rnorm(10,10,5)
  condition_B <- rnorm(10,10,5)
  differences <- condition_A - condition_B
  t_test <- t.test(differences, mu=0)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
hist(save_ps)

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  condition_A <- rnorm(10,10,5)
  condition_B <- rnorm(10,10,5)
  differences <- condition_A - condition_B
  t_test <- t.test(differences, mu=0)
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We happened to make 55. The expectation over the long run is 5% type I error rates (if your alpha is .05).
What happens if there actually is a difference in the simulated data, let’s set one condition to have a larger mean than the other:

58

0.054

  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
length(save_ps[save_ps<.05])

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  condition_A <- rnorm(10,10,5)
  condition_B <- rnorm(10,10,5)
  differences <- condition_A - condition_B
  t_test <- t.test(differences, mu=0)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
length(save_ps[save_ps<.05])/1000
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Figure \(\PageIndex{7}\): 1000 ts when there is a true difference.

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  condition_A <- rnorm(10,10,5)
  condition_B <- rnorm(10,13,5)
  differences <- condition_A - condition_B
  t_test <- t.test(differences, mu=0)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
hist(save_ts)
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Figure \(\PageIndex{8}\): 1000 ps when there is a true difference.

Now you can see that the \(p\)-value distribution is skewed to the left. This is because when there is a true effect, you will get p-
values that are less than .05 more often. Or, rather, you get larger \(t\) values than you normally would if there were no differences.
In this case, we wouldn’t be making a type I error if we rejected the null when p was smaller than .05. How many times would we
do that out of our 1000 experiments?

run restart restart & run all

210

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  condition_A <- rnorm(10,10,5)
  condition_B <- rnorm(10,13,5)
  differences <- condition_A - condition_B
  t_test <- t.test(differences, mu=0)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
hist(save_ps)

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  condition_A <- rnorm(10,10,5)
  condition_B <- rnorm(10,13,5)
  differences <- condition_A - condition_B
  t_test <- t.test(differences, mu=0)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
length(save_ps[save_ps<.05])

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7924?pdf


6.6.10 https://stats.libretexts.org/@go/page/7924

run restart restart & run all

We happened to get 210 simulations where p was less than .05, that’s only 0.21 experiments. If you were the researcher, would you
want to run an experiment that would be successful only 0.21 of the time? I wouldn’t. I would run a better experiment.
How would you run a better simulated experiment? Well, you could increase \(n\), the number of subjects in the experiment. Let’s
increase \(n\) from 10 to 100, and see what happens to the number of “significant” simulated experiments.
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Figure \(\PageIndex{9}\): 1000 ts for n =100, when there is a true effect.

0.21

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  condition_A <- rnorm(10,10,5)
  condition_B <- rnorm(10,13,5)
  differences <- condition_A - condition_B
  t_test <- t.test(differences, mu=0)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
length(save_ps[save_ps<.05])/1000

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  condition_A <- rnorm(100,10,5)
  condition_B <- rnorm(100,13,5)
  differences <- condition_A - condition_B
  t_test <- t.test(differences, mu=0)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
hist(save_ts)
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Figure \(\PageIndex{10}\): 1000 ps for n =100, when there is a true effect.
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985

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  condition_A <- rnorm(100,10,5)
  condition_B <- rnorm(100,13,5)
  differences <- condition_A - condition_B
  t_test <- t.test(differences, mu=0)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
hist(save_ps)

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  condition_A <- rnorm(100,10,5)
  condition_B <- rnorm(100,13,5)
  differences <- condition_A - condition_B
  t_test <- t.test(differences, mu=0)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
length(save_ps[save_ps<.05])

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  condition_A <- rnorm(100,10,5)
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Cool, now almost all of the experiments show a \(p\)-value of less than .05 (using a two-tailed test, that’s the default in R). See, you
could use this simulation process to determine how many subjects you need to reliably find your effect.

Simulating an independent samples t.test
Just change the t.test function like so… this is for the null, assuming no difference between groups.
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Figure \(\PageIndex{11}\): 1000 ts for n =100, when there is a true effect.

0.985

  condition_B <- rnorm(100,13,5)
  differences <- condition_A - condition_B
  t_test <- t.test(differences, mu=0)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
length(save_ps[save_ps<.05])/1000

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  group_A <- rnorm(10,10,5)
  group_B <- rnorm(10,10,5)
  t_test <- t.test(group_A, group_B, paired=FALSE, var.equal=TRUE)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
hist(save_ts)
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run restart restart & run all

Figure \(\PageIndex{12}\): 1000 ps for n =100, when there is a true effect.

run restart restart & run all
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save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  group_A <- rnorm(10,10,5)
  group_B <- rnorm(10,10,5)
  t_test <- t.test(group_A, group_B, paired=FALSE, var.equal=TRUE)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
hist(save_ps)

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  group_A <- rnorm(10,10,5)
  group_B <- rnorm(10,10,5)
  t_test <- t.test(group_A, group_B, paired=FALSE, var.equal=TRUE)
  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
length(save_ps[save_ps<.05])

save_ps <- length(1000)
save_ts <- length(1000)
for ( i in 1:1000 ){
  group_A <- rnorm(10,10,5)
  group_B <- rnorm(10,10,5)
  t_test <- t.test(group_A, group_B, paired=FALSE, var.equal=TRUE)
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run restart restart & run all
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  save_ps[i] <- t_test$p.value
  save_ts[i] <- t_test$statistic
}
length(save_ps[save_ps<.05])/1000
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6.7: Videos

One or Two tailed tests

(https://www.youtube.com/watch?v=PuoGsguuY30)

6.7: Videos is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

One or Two Tailed testsOne or Two Tailed tests

https://libretexts.org/
https://stats.libretexts.org/@go/page/17557?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06%3A_t-Tests/6.07%3A_Videos
https://www.youtube.com/watch?v=PuoGsguuY30
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06%3A_t-Tests/6.07%3A_Videos
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06%3A_t-Tests/6.07%3A_Videos?no-cache
https://www.youtube.com/watch?v=PuoGsguuY30
https://www.youtube.com/watch?v=PuoGsguuY30


6.8.1 https://stats.libretexts.org/@go/page/16877

6.8: References
Mehr, Samuel A, Lee Ann Song, and Elizabeth S Spelke. 2016. “For 5-Month-Old Infants, Melodies Are Social.” Psychological
Science 27 (4): 486–501.

Student, A. 1908. “The Probable Error of a Mean.” Biometrika 6: 1–2.

6.8: References is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

https://libretexts.org/
https://stats.libretexts.org/@go/page/16877?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06%3A_t-Tests/6.08%3A_References
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06%3A_t-Tests/6.08%3A_References
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/06%3A_t-Tests/6.08%3A_References?no-cache


1

CHAPTER OVERVIEW

7: ANOVA
A fun bit of stats history (Salsburg 2001). Sir Ronald Fisher invented the ANOVA, which we learn about in this section. He wanted
to publish his new test in the journal Biometrika. The editor at the time was Karl Pearson (remember Pearson’s  for correlation?).
Pearson and Fisher were apparently not on good terms, they didn’t like each other. Pearson refused to publish Fisher’s new test. So,
Fisher eventually published his work in the Journal of Agricultural Science. Funnily enough, the feud continued onto the next
generation. Years after Fisher published his ANOVA, Karl Pearson’s son Egon Pearson, and Jersey Neyman revamped Fisher’s
ideas, and re-cast them into what is commonly known as null vs. alternative hypothesis testing. Fisher didn’t like this very much.

We present the ANOVA in the Fisherian sense, and at the end describe the Neyman-Pearson approach that invokes the concept of
null vs. alternative hypotheses.

7.1: ANOVA is Analysis of Variance
7.2: One-factor ANOVA
7.3: What does F mean?
7.4: ANOVA on Real Data
7.5: ANOVA Summmary
7.6: References

This page titled 7: ANOVA is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via
source content that was edited to the style and standards of the LibreTexts platform.
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7.1: ANOVA is Analysis of Variance
ANOVA stands for Analysis Of Variance. It is a widely used technique for assessing the likelihood that differences found between
means in sample data could be produced by chance. You might be thinking, well don’t we have -tests for that? Why do we need
the ANOVA, what do we get that’s new that we didn’t have before?

What’s new with the ANOVA, is the ability to test a wider range of means beyond just two. In all of the -test examples we were
always comparing two things. For example, we might ask whether the difference between two sample means could have been
produced by chance. What if our experiment had more than two conditions or groups? We would have more than 2 means. We
would have one mean for each group or condition. That could be a lot depending on the experiment. How would we compare all of
those means? What should we do, run a lot of -tests, comparing every possible combination of means? Actually, you could do
that. Or, you could do an ANOVA.

In practice, we will combine both the ANOVA test and -tests when analyzing data with many sample means (from more than two
groups or conditions). Just like the -test, there are different kinds of ANOVAs for different research designs. There is one for
between-subjects designs, and a slightly different one for repeated measures designs. We talk about both, beginning with the
ANOVA for between-subjects designs.

This page titled 7.1: ANOVA is Analysis of Variance is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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7.2: One-factor ANOVA
The one-factor ANOVA is sometimes also called a between-subjects ANOVA, an independent factor ANOVA, or a one-way
ANOVA (which is a bit of a misnomer as we discuss later). The critical ingredient for a one-factor, between-subjects ANOVA, is
that you have one independent variable, with at least two-levels. When you have one IV with two levels, you can run a -test. You
can also run an ANOVA. Interestingly, they give you almost the exact same results. You will get a -value from both tests that is
identical (they are really doing the same thing under the hood). The -test gives a -value as the important sample statistic. The
ANOVA gives you the -value (for Fisher, the inventor of the test) as the important sample statistic. It turns out that  equals ,
when there are only two groups in the design. They are the same test. Side-note, it turns out they are all related to Pearson’s r too
(but we haven’t written about this relationship yet in this textbook).
Remember that  is computed directly from the data. It’s like a mean and standard error that we measure from the sample. In fact
it’s the mean difference divided by the standard error of the sample. It’s just another descriptive statistic isn’t it.
The same thing is true about .  is computed directly from the data. In fact, the idea behind  is the same basic idea that goes
into making . Here is the general idea behind the formula, it is again a ratio of the effect we are measuring (in the numerator), and
the variation associated with the effect (in the denominator).

The difference with , is that we use variances to describe both the measure of the effect and the measure of error. So,  is a ratio
of two variances.
Remember what we said about how these ratios work. When the variance associated with the effect is the same size as the variance
associated with sampling error, we will get two of the same numbers, this will result in an -value of 1. When the variance due to
the effect is larger than the variance associated with sampling error, then  will be greater than 1. When the variance associated
with the effect is smaller than the variance associated with sampling error,  will be less than one.
Let’s rewrite in plainer English. We are talking about two concepts that we would like to measure from our data. 1) A measure of
what we can explain, and 2) a measure of error, or stuff about our data we can’t explain. So, the  formula looks like this:

When we can explain as much as we can’t explain,  = 1. This isn’t that great of a situation for us to be in. It means we have a lot
of uncertainty. When we can explain much more than we can’t we are doing a good job,  will be greater than 1. When we can
explain less than what we can’t, we really can’t explain very much,  will be less than 1. That’s the concept behind making .
If you saw an  in the wild, and it was .6. Then you would automatically know the researchers couldn’t explain much of their data.
If you saw an  of 5, then you would know the researchers could explain 5 times more than the couldn’t, that’s pretty good. And
the point of this is to give you an intuition about the meaning of an -value, even before you know how to compute it.

Computing the -value
Fisher’s ANOVA is very elegant in my opinion. It starts us off with a big problem we always have with data. We have a lot of
numbers, and there is a lot of variation in the numbers, what to do? Wouldn’t it be nice to split up the variation into to kinds, or
sources. If we could know what parts of the variation were being caused by our experimental manipulation, and what parts were
being caused by sampling error, we would be making really good progress. We would be able to know if our experimental
manipulation was causing more change in the data than sampling error, or chance alone. If we could measure those two parts of the
total variation, we could make a ratio, and then we would have an  value. This is what the ANOVA does. It splits the total
variation in the data into two parts. The formula is:
Total Variation = Variation due to Manipulation + Variation due to sampling error
This is a nice idea, but it is also vague. We haven’t specified our measure of variation. What should we use?
Remember the sums of squares that we used to make the variance and the standard deviation? That’s what we’ll use. Let’s take
another look at the formula, using sums of squares for the measure of variation:
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SS Total
The total sums of squares, or  is a way of thinking about all of the variation in a set of data. It’s pretty straightforward to
measure. No tricky business. All we do is find the difference between each score and the grand mean, then we square the
differences and add them all up.
Let’s imagine we had some data in three groups, A, B, and C. For example, we might have 3 scores in each group. The data could
look like this:

run restart restart & run all

groups scores diff diff_squared

A 20 13 169

A 11 4 16

A 2 -5 25

B 6 -1 1

B 2 -5 25

B 7 0 0

C 2 -5 25

C 11 4 16

C 2 -5 25

Sums 63 0 302

Means 7 0 33.5555555555556

The data is organized in long format, so that each row is a single score. There are three scores for the A, B, and C groups. The
mean of all of the scores is called the Grand Mean. It’s calculated in the table, the Grand Mean = 7.
We also calculated all of the difference scores from the Grand Mean. The difference scores are in the column titled diff . Next,
we squared the difference scores, and those are in the next column called diff_squared .
Remember, the difference scores are a way of measuring variation. They represent how far each number is from the Grand Mean. If
the Grand Mean represents our best guess at summarizing the data, the difference scores represent the error between the guess and
each actual data point. The only problem with the difference scores is that they sum to zero (because the mean is the balancing
point in the data). So, it is convenient to square the difference scores, this turns all of them into positive numbers. The size of the
squared difference scores still represents error between the mean and each score. And, the squaring operation exacerbates the
differences as the error grows larger (squaring a big number makes a really big number, squaring a small number still makes a
smallish number).
OK fine! We have the squared deviations from the grand mean, we know that they represent the error between the grand mean and
each score. What next? SUM THEM UP!

SSTotal

suppressPackageStartupMessages(library(dplyr))
scores <- c(20,11,2,6,2,7,2,11,2)
groups <- as.character(rep(c("A","B","C"), each=3))
diff <-scores-mean(scores)
diff_squared <-diff^2
df<-data.frame(groups,scores,diff, diff_squared)
df$groups<-as.character(df$groups)
df <- df %>%
  rbind(c("Sums",colSums(df[1:9,2:4]))) %>%
  rbind(c("Means",colMeans(df[1:9,2:4])))
knitr::kable(df)
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When you add up all of the individual squared deviations (difference scores) you get the sums of squares. That’s why it’s called the
sums of squares (SS).
Now, we have the first part of our answer:

and

What next? If you think back to what you learned about algebra, and solving for X, you might notice that we don’t really need to
find the answers to both missing parts of the equation. We only need one, and we can solve for the other. For example, if we found 

, then we could solve for .

SS Effect
 gave us a number representing all of the change in our data, how all the scores are different from the grand mean.

What we want to do next is estimate how much of the total change in the data might be due to the experimental manipulation. For
example, if we ran an experiment that causes causes change in the measurement, then the means for each group will be different
from other. As a result, the manipulation forces change onto the numbers, and this will naturally mean that some part of the total
variation in the numbers is caused by the manipulation.
The way to isolate the variation due to the manipulation (also called effect) is to look at the means in each group, and calculate the
difference scores between each group mean and the grand mean, and then sum the squared deviations to find .
Consider this table, showing the calculations for .

run restart restart & run all

groups scores means diff diff_squared

A 20 11 4 16

A 11 11 4 16

A 2 11 4 16

B 6 5 -2 4

B 2 5 -2 4

B 7 5 -2 4

C 2 5 -2 4

C 11 5 -2 4

C 2 5 -2 4

S = S +SS

total

S

Effect

S

Error

S = 302S

total

302 = S +SS

Effect

S

Error

SS

Effect

SS

Error

SS

Total

SS

Effect

SS

Effect

suppressPackageStartupMessages(library(dplyr))
scores <- c(20,11,2,6,2,7,2,11,2)
means <-c(11,11,11,5,5,5,5,5,5)
groups <- as.character(rep(c("A","B","C"), each=3))
diff <-means-mean(scores)
diff_squared <-diff^2
df<-data.frame(groups,scores,means,diff, diff_squared)
df$groups<-as.character(df$groups)
df <- df %>%
  rbind(c("Sums",colSums(df[1:9,2:5]))) %>%
  rbind(c("Means",colMeans(df[1:9,2:5])))
knitr::kable(df)
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groups scores means diff diff_squared

Sums 63 63 0 72

Means 7 7 0 8

Notice we created a new column called means . For example, the mean for group A was 11. You can see there are three 11s, one
for each observation in row A. The means for group B and C happen to both be 5. So, the rest of the numbers in the means column
are 5s.
What we are doing here is thinking of each score in the data from the viewpoint of the group means. The group means are our best
attempt to summarize the data in those groups. From the point of view of the mean, all of the numbers are treated as the same. The
mean doesn’t know how far off it is from each score, it just knows that all of the scores are centered on the mean.

Let’s pretend you are the mean for group A. That means you are an 11. Someone asks you
“hey, what’s the score for the first data point in group A?”. Because you are the mean,
you say, I know that, it’s 11. “What about the second score?”…it’s 11… they’re all 11, so
far as I can tell…“Am I missing something…”, asked the mean.

Now that we have converted each score to it’s mean value we can find the differences between each mean score and the grand
mean, then square them, then sum them up. We did that, and found that the .

 represents the amount of variation that is caused by differences between the means. I also refer to this as the amount of
variation that the researcher can explain (by the means, which represent differences between groups or conditions that were
manipulated by the researcher).
Notice also that , and that 72 is smaller than . That is very important.  by definition can never
be larger than .

SS Error
Great, we made it to SS Error. We already found SS Total, and SS Effect, so now we can solve for SS Error just like this:

switching around:

We could stop here and show you the rest of the ANOVA, we’re almost there. But, the next step might not make sense unless we
show you how to calculate  directly from the data, rather than just solving for it. We should do this just to double-check our
work anyway.

run restart restart & run all

groups scores means diff diff_squared

S = 72S

Effect

SS

Effect

S = 72S

Effect

S = 302S

total

SS

Effect

SS

total

S = S +SS

total

S

Effect

S

Error

S = S −SS

Error

S

total

S

Effect

S = 302−72 = 230S

Error

SS

Error

suppressPackageStartupMessages(library(dplyr))
scores <- c(20,11,2,6,2,7,2,11,2)
means <-c(11,11,11,5,5,5,5,5,5)
groups <- as.character(rep(c("A","B","C"), each=3))
diff <-means-scores
diff_squared <-diff^2
df<-data.frame(groups,scores,means,diff, diff_squared)
df$groups<-as.character(df$groups)
df <- df %>%
  rbind(c("Sums",colSums(df[1:9,2:5]))) %>%
  rbind(c("Means",colMeans(df[1:9,2:5])))
knitr::kable(df)
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groups scores means diff diff_squared

A 20 11 -9 81

A 11 11 0 0

A 2 11 9 81

B 6 5 -1 1

B 2 5 3 9

B 7 5 -2 4

C 2 5 3 9

C 11 5 -6 36

C 2 5 3 9

Sums 63 63 0 230

Means 7 7 0 25.5555555555556

Alright, we did almost the same thing as we did to find . Can you spot the difference? This time for each score we first
found the group mean, then we found the error in the group mean estimate for each score. In other words, the values in the 
column are the differences between each score and it’s group mean. The values in the diff_squared  column are the
squared deviations. When we sum up the squared deviations, we get another Sums of Squares, this time it’s the . This is an
appropriate name, because these deviations are the ones that the group means can’t explain!

Degrees of freedom
Degrees of freedom come into play again with ANOVA. This time, their purpose is a little bit more clear. s can be fairly simple
when we are doing a relatively simple ANOVA like this one, but they can become complicated when designs get more
complicated.
Let’s talk about the degrees of freedom for the  and .
The formula for the degrees of freedom for  is

, where Groups is the number of groups in the design.
In our example, there are 3 groups, so the df is 3-1 = 2. You can think of the df for the effect this way. When we estimate the grand
mean (the overall mean), we are taking away a degree of freedom for the group means. Two of the group means can be anything
they want (they have complete freedom), but in order for all three to be consistent with the Grand Mean, the last group mean has to
be fixed.
The formula for the degrees of freedom for  is

, or the number of scores minus the number of groups. We have 9 scores and 3 groups, so our  for the
error term is 9-3 = 6. Remember, when we computed the difference score between each score and its group mean, we had to
compute three means (one for each group) to do that. So, that reduces the degrees of freedom by 3. 6 of the difference scores could
be anything they want, but the last 3 have to be fixed to match the means from the groups.

Mean Squared Error
OK, so we have the degrees of freedom. What’s next? There are two steps left. First we divide the es by their respective degrees
of freedom to create something new called Mean Squared Error. Let’s talk about why we do this.
First of all, remember we are trying to accomplish this goal:

We want to build a ratio that divides a measure of an effect by a measure of error. Perhaps you noticed that we already have a
measure of an effect and error! How about the  and . They both represent the variation due to the effect, and the
leftover variation that is unexplained. Why don’t we just do this?

SS

Effect

diff

SS

Error

Df

SS

Effect

SS

Error

SS

Effect

d = Groups −1f

Effect

SS

Error

d = scores −groupsf

Error
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SS
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Well, of course you could do that. What would happen is you can get some really big and small numbers for your inferential
statistic. And, the kind of number you would get wouldn’t be readily interpretable like a  value or a  score.
The solution is to normalize the  terms. Don’t worry, normalize is just a fancy word for taking the average, or finding the mean.
Remember, the SS terms are all sums. And, each sum represents a different number of underlying properties.
For example, the SS_ represents the sum of variation for three means in our study. We might ask the question, well, what is the
average amount of variation for each mean…You might think to divide SS_ by 3, because there are three means, but because we
are estimating this property, we divide by the degrees of freedom instead (# groups - 1 = 3-1 = 2). Now we have created something
new, it’s called the .

This might look alien and seem a bit complicated. But, it’s just another mean. It’s the mean of the sums of squares for the effect. If
this reminds you of the formula for the variance, good memory. The  is a measure variance for the change in the data
due to changes in the means (which are tied to the experimental conditions).
The  represents the sum of variation for nine scores in our study. That’s a lot more scores, so the  is often way
bigger than than . If we left our SSes this way and divided them, we would almost always get numbers less than one,
because the  is so big. What we need to do is bring it down to the average size. So, we might want to divide our  by
9, after all there were nine scores. However, because we are estimating this property, we divide by the degrees of freedom instead
(scores-groups) = 9-3 = 6). Now we have created something new, it’s called the .

Calculate F
Now that we have done all of the hard work, calculating  is easy:

Done!

The ANOVA TABLE
You might suspect we aren’t totally done here. We’ve walked through the steps of computing . Remember,  is a sample statistic,
we computed  directly from the data. There were a whole bunch of pieces we needed, the dfs, the SSes, the MSEs, and then
finally the F.
All of these little pieces are conveniently organized by ANOVA tables. ANOVA tables look like this:

SS

Effect

SS

Error

t z

SS

MSE

Effect

MS =E

Effect

SS

Effect

df

Effect

MS = = 36E

Effect

72

2

SME

Effect

SS

Error

SS

Error

SS

Effect

SS

Error

SS

Error

MSE

Error

MS =E

Error

SS

Error

df

Error

MS = = 38.33E

Error

230

6

F

F =

measure of effect

measure of error

F =

MSE

Effect

MSE

Error

F = = .939

36

38.33

F F

F

library(xtable)
suppressPackageStartupMessages(library(dplyr))
scores <- c(20,11,2,6,2,7,2,11,2)
means <-c(11,11,11,5,5,5,5,5,5)
groups <- as.character(rep(c("A","B","C"), each=3))
diff <-means-scores
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Df Sum Sq Mean Sq F value Pr(>F)

groups 2 72 36.00000 0.9391304

F)" style="vertical-
align:middle;"
class="lt-stats-
7927">0.4417359

Residuals 6 230 38.33333 NA

F)" style="vertical-
align:middle;"
class="lt-stats-
7927">NA

You are looking at the print-out of an ANOVA summary table from R. Notice, it had columns for ,  (Sum Sq),  (Mean
Sq), , and a -value. There are two rows. The groups  row is for the Effect (what our means can explain). The 
Residuals  row is for the Error (what our means can’t explain). Different programs give slightly different labels, but they

are all attempting to present the same information in the ANOVA table. There isn’t anything special about the ANOVA table, it’s
just a way of organizing all the pieces. Notice, the MSE for the effect (36) is placed above the MSE for the error (38.333), and this
seems natural because we divide 36/38.33 in or to get the -value!

This page titled 7.2: One-factor ANOVA is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.

Df SS MSE

F p

F

diff_squared <-diff^2
df<-data.frame(groups,scores,means,diff, diff_squared)
df$groups<-as.character(df$groups)
df <- df %>%
  rbind(c("Sums",colSums(df[1:9,2:5]))) %>%
  rbind(c("Means",colMeans(df[1:9,2:5])))
 
aov_out<-aov(scores~ groups, df[1:9,])
summary_out<-summary(aov_out)
knitr::kable(xtable(summary_out))
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7.3: What does F mean?
We’ve just noted that the ANOVA has a bunch of numbers that we calculated straight from the data. All except one, the \(p\)-value.
We did not calculate the \(p\)-value from the data. Where did it come from, what does it mean? How do we use this for statistical
inference. Just so you don’t get too worried, the \(p\)-value for the ANOVA has the very same general meaning as the \(p\)-value
for the \(t\)-test, or the \(p\)-value for any sample statistic. It tells us that the probability that we would observe our test statistic or
larger, under the distribution of no differences (the null).
As we keep saying, \(F\) is a sample statistic. Can you guess what we do with sample statistics in this textbook? We did it for the
Crump Test, the Randomization Test, and the \(t\)-test… We make fake data, we simulate it, we compute the sample statistic we are
interested in, then we see how it behaves over many replications or simulations.
Let’s do that for \(F\). This will help you understand what \(F\) really is, and how it behaves. We are going to created the sampling
distribution of \(F\). Once we have that you will be able to see where the \(p\)-values come from. It’s the same basic process that we
followed for the \(t\) tests, except we are measuring \(F\) instead of \(t\).
Here is the set-up, we are going to run an experiment with three levels. In our imaginary experiment we are going to test whether a
new magic pill can make you smarter. The independent variable is the number of magic pills you take: 1, 2, or 3. We will measure
your smartness using a smartness test. We will assume the smartness test has some known properties, the mean score on the test is
100, with a standard deviation of 10 (and the distribution is normal).
The only catch is that our magic pill does NOTHING AT ALL. The fake people in our fake experiment will all take sugar pills that
do absolutely nothing to their smartness. Why would we want to simulate such a bunch of nonsense? The answer is that this kind of
simulation is critical for making inferences about chance if you were to conduct a real experiment.
Here are some more details for the experiment. Each group will have 10 different subjects, so there will be a total of 30 subjects.
We are going to run this experiment 10,000 times. Each time drawing numbers randomly from the very same normal distribution.
We are going to calculate \(F\) from our sample data every time, and then we are going to draw the histogram of \(F\)-values. This
will show us the sampling distribution of \(F\) for our situation. Let’s do that and see what it looks like:
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Figure \(\PageIndex{1}\): A simulation of 10,000 experiments from a null distribution where there is no differences. The histogram
shows 10,000 \(F\)-values, one for each simulation. These are values that F can take in this situation. All of these \(F\)-values were
produced by random sampling error.

Let’s note a couple things about the \(F\) distribution. 1) The smallest value is 0, and there are no negative values. Does this make
sense? \(F\) can never be negative because it is the ratio of two variances, and variances are always positive because of the squaring
operation. So, yes, it makes sense that the sampling distribution of \(F\) is always 0 or greater. 2) it does not look normal. No it
does not. \(F\) can have many different looking shapes, depending on the degrees of freedom in the numerator and denominator.
However, these aspects are too important for now.

library(ggplot2)
save_F<-length(10000)
for(i in 1:10000){
  smartness   <- rnorm(30, 100,10)
  pill_group  <- as.factor(rep(1:3, each=10))
  simulations <- rep(i, each=30)
  sample_df   <- data.frame(simulations,pill_group,smartness)
  aov.out<-summary(aov(smartness~pill_group,sample_df))
  save_F[i]<-aov.out[[1]]$`F value`[1]
}
plot_df <- data.frame(sims=1:10000,save_F)
plot_df <- plot_df[plot_df$save_F<10,]
ggplot(plot_df, aes(x=save_F))+
  geom_histogram(color="white", bins=100)+
  theme_classic()+
  ggtitle("Simulated F-Distribution for Null")
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Remember, before we talked about some intuitive ideas for understanding \(F\), based on the idea that \(F\) is a ratio of what we
can explain (variance due to mean differences), divided by what we can’t explain (the error variance). When the error variance is
higher than the effect variance, then we will always get an \(F\)-value less than one. You can see that we often got \(F\)-values less
than one in the simulation. This is sensible, after all we were simulating samples coming from the very same distribution. On
average there should be no differences between the means. So, on average the part of the total variance that is explained by the
means should be less than one, or around one, because it should be roughly the same as the amount of error variance (remember,
we are simulating no differences).
At the same time, we do see that some \(F\)-values are larger than 1. There are little bars that we can see going all the way up to
about 5. If you were to get an \(F\)-value of 5, you might automatically think, that’s a pretty big \(F\)-value. Indeed it kind of is, it
means that you can explain 5 times more of variance than you can’t explain. That seems like a lot. You can also see that larger \
(F\)-values don’t occur very often. As a final reminder, what you are looking at is how the \(F\)-statistic (measured from each of
10,000 simulated experiments) behaves when the only thing that can cause differences in the means is random sampling error. Just
by chance sometimes the means will be different. You are looking at another chance window. These are the \(F\)s that chance can
produce.

Making Decisions
We can use the sampling distribution of \(F\) (for the null) to make decisions about the role of chance in a real experiment. For
example, we could do the following.

1. Set an alpha criterion of \(p\) = 0.05
2. Find out the critical value for \(F\), for our particular situation (with our \(df\)s for the numerator and denominator).

Let’s do that. I’ve drawn the line for the critical value onto the histogram:
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Figure \(\PageIndex{2}\): The critical value for F where 5% of all \(F\)-values lie beyond this point.

Alright, now we can see that only 5% of all \(F\)-values from from this sampling distribution will be 3.35 or larger. We can use this
information.

library(ggplot2)
save_F<-length(10000)
for(i in 1:10000){
  smartness   <- rnorm(30, 100,10)
  pill_group  <- as.factor(rep(1:3, each=10))
  simulations <- rep(i, each=30)
  sample_df   <- data.frame(simulations,pill_group,smartness)
  aov.out<-summary(aov(smartness~pill_group,sample_df))
  save_F[i]<-aov.out[[1]]$`F value`[1]
}
plot_df <- data.frame(sims=1:10000,save_F)
plot_df <- plot_df[plot_df$save_F<10,]
ggplot(plot_df, aes(x=save_F))+
  geom_histogram(color="white", bins=100)+
  theme_classic()+
  geom_vline(xintercept=qf(.95, 2, 27))+
  ggtitle("Location of Critical F")+
  annotate("rect", xmin=qf(.95,2,27),xmax=Inf, ymin=0,
           ymax=Inf, alpha=0.5, fill="green")+
  geom_label(data = data.frame(x = qf(.95,2,27), y = 500,
            label = round(qf(.95,2,27),digits=2)), aes(x = x, y = y, label = label))+
  geom_label(data = data.frame(x = 7.5, y = 500,
            label ="5% of $F$-values"), aes(x = x, y = y, label = label))
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How would we use it? Imagine we ran a real version of this experiment. And, we really used some pills that just might change
smartness. If we ran the exact same design, with 30 people in total (10 in each group), we could set an \(F\) criterion of 3.35 for
determining whether any of our results reflected a causal change in smartness due to the pills, and not due to random chance. For
example, if we found an \(F\)-value of 3.34, which happens, just less than 5% of the time, we might conclude that random sampling
error did not produce the differences between our means. Instead, we might be more confident that the pills actually did something,
after all an \(F\)-value of 3.34 doesn’t happen very often, it is unlikely (only 5 times out of 100) to occur by chance.

Fs and means
Up to here we have been building your intuition for understanding \(F\). We went through the calculation of \(F\) from sample data.
We went through the process of simulating thousands of \(F\)s to show you the null distribution. We have not talked so much about
what researchers really care about…The MEANS! The actual results from the experiment. Were the means different? that’s often
what people want to know. So, now we will talk about the means, and \(F\), together.
Notice, if I told you I ran an experiment with three groups, testing whether some manipulation changes the behavior of the groups,
and I told you that I found a big \(F\)!, say an \(F\) of 6!. And, that the \(F\) of 6 had a \(p\)-value of .001. What would you know
based on that information alone? You would only know that Fs of 6 don’t happen very often by chance. In fact they only happen
0.1% of the time, that’s hardly at all. If someone told me those values, I would believe that the results they found in their
experiment were not likely due to chance. However, I still would not know what the results of the experiment were! Nobody told us
what the means were in the different groups, we don’t know what happened!
IMPORTANT: even though we don’t know what the means were, we do know something about them, whenever we get \(F\)-values
and \(p\)-values like that (big \(F\)s, and very small associated \(p\)s)… Can you guess what we know? I’ll tell you. We
automatically know that there must have been some differences between the means. If there was no differences between the means,
then the variance explained by the means (the numerator for \(F\)) would not be very large. So, we know that there must be some
differences, we just don’t know what they are. Of course, if we had the data, all we would need to do is look at the means for the
groups (the ANOVA table doesn’t report this, we need to do it as a separate step).

ANOVA is an omnibus test
This property of the ANOVA is why the ANOVA is sometimes called the omnibus test. Omnibus is a fun word, it sounds like a bus
I’d like to ride. The meaning of omnibus, according to the dictionary, is “comprising several items”. The ANOVA is, in a way, one
omnibus test, comprising several little tests.
For example, if you had three groups, A, B, and C. You get could differences between

1. A and B
2. B and C
3. A and C

That’s three possible differences you could get. You could run separate \(t\)-tests, to test whether each of those differences you
might have found could have been produced by chance. Or, you could run an ANOVA, like what we have been doing, to ask one
more general question about the differences. Here is one way to think about what the omnibus test is testing:
Hypothesis of no differences anywhere: \( A = B = C \)
Any differences anywhere:
a. \( A \neq B = C \)
b. \( A = B \neq C \)
c. \( A \neq C = B \)

The \(\neq\) symbol means “does not equal”, it’s an equal sign with a cross through it (no equals allowed!).
How do we put all of this together. Generally, when we get a small \(F\)-value, with a large \(p\)-value, we will not reject the
hypothesis of no differences. We will say that we do not have evidence that the means of the three groups are in any way different,
and the differences that are there could easily have been produced by chance. When we get a large F with a small \(p\)-value (one
that is below our alpha criterion), we will generally reject the hypothesis of no differences. We would then assume that at least one
group mean is not equal to one of the others. That is the omnibus test. Rejecting the null in this way is rejecting the idea there are
no differences. But, the \(F\) test still does not tell you which of the possible group differences are the ones that are different.

Looking at a bunch of group means
We ran 10,000 experiments just before, and we didn’t even once look at the group means for any of the experiments. Let’s quickly
do that, so we get a better sense of what is going on.
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Figure \(\PageIndex{3}\): Different patterns of group means under the null (all scores for each group sampled from the same
distribution).

Whoa, that’s a lot to look at. What is going on here? Each little box represents the outcome of a simulated experiment. The dots are
the means for each group (whether subjects took 1 , 2, or 3 magic pills). The y-axis shows the mean smartness for each group. The
error bars are standard errors of the mean.
You can see that each of the 10 experiments turn out different. Remember, we sampled 10 numbers for each group from the same
normal distribution with mean = 100, and sd = 10. So, we know that the correct means for each sample should actually be 100

library(ggplot2)
suppressPackageStartupMessages(library(dplyr))
all_df<-data.frame()
for(i in 1:10) {
  smartness   <- rnorm(30, 100,10)
  pill_group  <- as.factor(rep(1:3, each=10))
  simulations <- rep(i, each=30)
  sample_df   <- data.frame(simulations,pill_group,smartness)
  all_df      <- rbind(all_df,sample_df)
}
#print(all_df[1:50,])
all_df$simulations  <- as.factor(all_df$simulations)
plot_df2 <- all_df %>%
              dplyr::group_by(simulations,pill_group) %>%
              dplyr::summarise(group_means = mean(smartness),
                        group_SE= sd(smartness)/sqrt(length(smartness)),
                        .groups='drop_last')
#print(plot_df2[1:10,])
ggplot(data=plot_df2, aes(x=pill_group,y=group_means, color=simulations))+
  geom_point()+
  geom_errorbar(aes(ymin=group_means-group_SE, ymax=group_means+group_SE))+
  theme_classic()+
  ggtitle("Sample means for each pill group 10 simulated experiments")+
  ylab("Mean Smartness")+
  facet_wrap(~simulations)
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every single time. However, they are not 100 every single time because of?…sampling error (Our good friend that we talk about all
the time).
For most of the simulations the error bars are all overlapping, this suggests visually that the means are not different. However, some
of them look like they are not overlapping so much, and this would suggest that they are different. This is the siren song of chance
(sirens lured sailors to their deaths at sea…beware of the siren call of chance). If we concluded that any of these sets of means had
a true difference, we would be committing a type I error. Because we made the simulation, we know that none of these means are
actually different. But, when you are running a real experiment, you don’t get to know this for sure.

Looking at bar graphs
Let’s look at the exact same graph as above, but this time use bars to visually illustrate the means, instead of dots. We’ll re-do our
simulation of 10 experiments, so the pattern will be a little bit different:
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Figure \(\PageIndex{4}\): Different patterns of group means under the null (all scores for each group sampled from the same
distribution).

Now the heights of the bars display the means for each pill group. In general we see the same thing. Some of the fake experiments
look like there might be differences, and some of them don’t.

What mean differences look like when F is < 1
We are now giving you some visual experience looking at what means look like from a particular experiment. This is for your stats
intuition. We’re trying to improve your data senses.
What we are going to do now is similar to what we did before. Except this time we are going to look at 10 simulated experiments,
where all of the \(F\)-values were less than 1. All of these \(F\)-values would also be associated with fairly large \(p\)-values. When

library(ggplot2)
suppressPackageStartupMessages(library(dplyr))
all_df <- data.frame()
for(i in 1:10) {
  smartness   <- rnorm(30, 100,10)
  pill_group  <- as.factor(rep(1:3, each=10))
  simulations <- rep(i, each=30)
  sample_df   <- data.frame(simulations,pill_group,smartness)
  all_df      <- rbind(all_df,sample_df)
}
all_df$simulations  <- as.factor(all_df$simulations)
plot_df2 <- all_df %>%
            dplyr::group_by(simulations,pill_group) %>%
            dplyr::summarize(group_means = mean(smartness),
                      group_SE= sd(smartness)/sqrt(length(smartness)),
                      .groups='drop_last')
ggplot(plot_df2, aes(x=pill_group,y=group_means, fill=simulations))+
  geom_bar(stat="identity", position="dodge")+
  geom_errorbar(aes(ymin=group_means-group_SE, ymax=group_means+group_SE))+
  theme_classic()+
  ggtitle("Sample means for each pill group 10 simulated experiments")+
  ylab("Mean Smartness")+
  facet_wrap(~simulations)+
  coord_cartesian(ylim=c(90,110))
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F is less than one, we would not reject the hypothesis of no differences. So, when we look at patterns of means when F is less than
1, we should see mostly the same means, and no big differences.
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library(ggplot2)
suppressPackageStartupMessages(library(dplyr))
all_df<-data.frame()
counter<-0
for(i in 1:100){
  smartness   <- rnorm(30, 100,10)
  pill_group  <- as.factor(rep(1:3, each=10))
  simulations <- rep(i, each=30)
  sample_df   <- data.frame(simulations,pill_group,smartness)
  aov.out<-summary(aov(smartness~pill_group,sample_df))
  the_f<-aov.out[[1]]$`F value`[1]
  if(the_f < 1){
    all_df<-rbind(all_df,sample_df)
    counter<-counter+1
  }
  if (counter ==10){
    break
  }
}
all_df$simulations  <- as.factor(all_df$simulations)
plot_df <- all_df %>%
            dplyr::group_by(simulations,pill_group) %>%
            dplyr::summarise(means=mean(smartness),
                      SEs=sd(smartness)/sqrt(length(smartness)),
                      .groups='drop_last')
ggplot(plot_df,aes(x=pill_group,y=means, fill=simulations))+
  geom_bar(stat="identity", position="dodge")+
  geom_errorbar(aes(ymin=means-SEs, ymax=means+SEs))+
  theme_classic()+
  facet_wrap(~simulations)+
  ggtitle("Sample means for each pill group, F < 1 for all")+
  ylab("Mean Smartness")+
  coord_cartesian(ylim=c(85,115))
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Figure \(\PageIndex{5}\): Different patterns of group means under the null (sampled from same distribution) when F is less than 1.

The numbers in the panels now tell us which simulations actually produced Fs of less than 1.
We see here that all the bars aren’t perfectly flat, that’s OK. What’s more important is that for each panel, the error bars for each
mean are totally overlapping with all the other error bars. We can see visually that our estimate of the mean for each sample is
about the same for all of the bars. That’s good, we wouldn’t make any type I errors here.

What mean differences look like when F > 3.35
Earlier we found that the critical value for \(F\) in our situation was 3.35, this was the location on the \(F\) distribution where only
5% of \(F\)s were 3.35 or greater. We would reject the hypothesis of no differences whenever \(F\) was greater than 3.35. In this
case, whenever we did that, we would be making a type I error. That is because we are simulating the distribution of no differences
(remember all of our sample means are coming from the exact same distribution). So, now we can take a look at what type I errors
look like. In other words, we can run some simulations and look at the pattern in the means, only when F happens to be 3.35 or
greater (this only happens 5% of the time, so we might have to let the computer simulate for a while). Let’s see what that looks
like:
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library(ggplot2)
suppressPackageStartupMessages(library(dplyr))
all_df<-data.frame()
counter<-0
for(i in 1:1000){
  smartness   <- rnorm(30, 100,10)
  pill_group  <- as.factor(rep(1:3, each=10))
  simulations <- rep(i, each=30)
  sample_df   <- data.frame(simulations,pill_group,smartness)
  aov.out<-summary(aov(smartness~pill_group,sample_df))
  the_f<-aov.out[[1]]$`F value`[1]
  if(the_f > 3.35){
    all_df<-rbind(all_df,sample_df)
    counter<-counter+1
  }
  if (counter ==10){
    break
  }
}
all_df$simulations  <- as.factor(all_df$simulations)
plot_df <- all_df %>%
            dplyr::group_by(simulations,pill_group) %>%
            dplyr::summarise(means=mean(smartness),
                      SEs=sd(smartness)/sqrt(length(smartness)),
                      .groups='drop_last')
ggplot(plot_df,aes(x=pill_group,y=means, fill=simulations))+
  geom_bar(stat="identity", position="dodge")+
  geom_errorbar(aes(ymin=means-SEs, ymax=means+SEs))+
  theme_classic()+
  facet_wrap(~simulations)+
  ggtitle("Sample means for each pill group, F > 3.35 (crit) for all")+
  ylab("Mean Smartness")+
  coord_cartesian(ylim=c(85,115))

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7928?pdf


7.3.13 https://stats.libretexts.org/@go/page/7928

Figure \(\PageIndex{6}\): Different patterns of group means under the null when F is above critical value (these are all type I
Errors).

The numbers in the panels now tell us which simulations actually produced \(F\)s that were greater than 3.35
What do you notice about the pattern of means inside each panel? Now, every single panel shows at least one mean that is different
from the others. Specifically, the error bars for one mean do not overlap with the error bars for one or another mean. This is what
mistakes looks like. These are all type I errors. They are insidious. When they happen to you by chance, the data really does appear
to show a strong pattern, and your \(F\)-value is large, and your \(p\)-value is small! It is easy to be convinced by a type I error (it’s
the siren song of chance).

This page titled 7.3: What does F mean? is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.
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7.4: ANOVA on Real Data
We’ve covered many fundamentals about the ANOVA, how to calculate the necessary values to obtain an \(F\)-statistic, and how to interpret the \(F\)-statistic along
with it’s associate \(p\)-value once we have one. In general, you will be conducting ANOVAs and playing with \(F\)s and \(p\)s using software that will automatically
spit out the numbers for you. It’s important that you understand what the numbers mean, that’s why we’ve spent time on the concepts. We also recommend that you
try to compute an ANOVA by hand at least once. It builds character, and let’s you know that you know what you are doing with the numbers.
But, we’ve probably also lost the real thread of all this. The core thread is that when we run an experiment we use our inferential statistics, like ANOVA, to help us
determine whether the differences we found are likely due to chance or not. In general, we like to find out that the differences that we find are not due to chance, but
instead to due to our manipulation.
So, we return to the application of the ANOVA to a real data set with a real question. This is the same one that you will be learning about in the lab. We give you a
brief overview here so you know what to expect.

Tetris and bad memories
Yup, you read that right. The research you will learn about tests whether playing Tetris after watching a scary movie can help prevent you from having bad memories
from the movie (James et al. 2015). Sometimes in life people have intrusive memories, and they think about things they’d rather not have to think about. This
research looks at one method that could reduce the frequency of intrusive memories.
Here’s what they did. Subjects watched a scary movie, then at the end of the week they reported how many intrusive memories about the movie they had. The mean
number of intrusive memories was the measurement (the dependent variable). This was a between-subjects experiment with four groups. Each group of subjects
received a different treatment following the scary movie. The question was whether any of these treatments would reduce the number of intrusive memories. All of
these treatments occurred after watching the scary movie:

1. No-task control: These participants completed a 10-minute music filler task after watching the scary movie.
2. Reactivation + Tetris: These participants were shown a series of images from the trauma film to reactivate the traumatic memories (i.e., reactivation task). Then,

participants played the video game Tetris for 12 minutes.
3. Tetris Only: These participants played Tetris for 12 minutes, but did not complete the reactivation task.
4. Reactivation Only: These participants completed the reactivation task, but did not play Tetris.

For reasons we elaborate on in the lab, the researchers hypothesized that the Reactivation+Tetris  group would have fewer intrusive memories over the
week than the other groups.
Let’s look at the findings. Note you will learn how to do all of these steps in the lab. For now, we just show the findings and the ANOVA table. Then we walk
through how to interpret it.
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t restart & run all

Figure \(\PageIndex{1}\): Mean number of intrusive memories per week as a function of experimental treatments.

OOooh, look at that. We did something fancy. You are looking at the the data from the four groups. The height of each bar shows the mean intrusive memories for the
week. The dots show the individual scores for each subject in each group (useful to to the spread of the data). The error bars show the standard errors of the mean.
What can we see here? Right away it looks like there is some support for the research hypothesis. The green bar, for the Reactivation + Tetris group had the lowest
mean number of intrusive memories. Also, the error bar is not overlapping with any of the other error bars. This implies that the mean for the Reactivation + Tetris
group is different from the means for the other groups. And, this difference is probably not very likely by chance.
We can now conduct the ANOVA on the data to ask the omnibus question. If we get a an \(F\)-value with an associated \(p\)-value of less than .05 (the alpha criterion
set by the authors), then we can reject the hypothesis of no differences. Let’s see what happens:

run restart restart & run all

ta.table)
plot2)
ckageStartupMessages(library(dplyr))
- fread(
/stats.libretexts.org/@api/deki/files/10605/Jamesetal2015Experiment2.csv")
ondition <- as.factor(all_data$Condition)
_data$Condition) <- c("Control",
                     "Reactivation+Tetris", 
                     "Tetris_only",
                     "Reactivation_only")

s and SEs
e_df <- all_data %>% 
         dplyr::group_by(Condition) %>% 
         dplyr::summarise(means= mean(Days_One_to_Seven_Number_of_Intrusions),
                   SEs = sd(Days_One_to_Seven_Number_of_Intrusions)/sqrt(length(Days_One_to_Seven_Number_of_Int
plot

criptive_df, aes(x=Condition, y=means))+ 
(stat="identity", aes(fill=Condition))+ # add means
orbar(aes(ymin=means-SEs,               # add error bars
         ymax=means+SEs), width=.1) +

nt(data=all_data, aes(x=Condition, y=Days_One_to_Seven_Number_of_Intrusions), alpha=.5)+
nt(alpha=.25)+
trusive Memories (Mean for Week)")

library(data.table)
library(xtable)
all_data <- fread(
  "https://stats.libretexts.org/@api/deki/files/10605/Jamesetal2015Experiment2.csv")
all_data$Condition <- as.factor(all_data$Condition)
levels(all_data$Condition) <- c("Control",
                                "Reactivation+Tetris", 
                                "Tetris_only",
                                "Reactivation_only")
 
aov_out<-aov(Days_One_to_Seven_Number_of_Intrusions ~ Condition, all_data)
summary_out<-summary(aov_out)
knitr::kable(xtable(summary_out))
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Df Sum Sq Mean Sq F value Pr(>F)Df Sum Sq Mean Sq F value Pr(>F)

Condition 3 114.8194 38.27315 3.794762
F)" style="vertical-

align:middle;">0.0140858

Residuals 68 685.8333 10.08578 NA
F)" style="vertical-
align:middle;">NA

We see the ANOVA table, it’s up there. We could report the results from the ANOVA table like this:

There was a significant main effect of treatment condition, F(3, 68) = 3.79, MSE = 10.08, p=0.014.
We called this a significant effect because the \(p\)-value was less than 0.05. In other words, the \(F\)-value of 3.79 only happens 1.4% of the time when the null is
true. Or, the differences we observed in the means only occur by random chance (sampling error) 1.4% of the time. Because chance rarely produces this kind of
result, the researchers made the inference that chance DID NOT produce their differences, instead, they were inclined to conclude that the Reactivation + Tetris
treatment really did cause a reduction in intrusive memories. That’s pretty neat.

Comparing means after the ANOVA
Remember that the ANOVA is an omnibus test, it just tells us whether we can reject the idea that all of the means are the same. The F-test (synonym for ANOVA)
that we just conducted suggested we could reject the hypothesis of no differences. As we discussed before, that must mean that there are some differences in the
pattern of means.
Generally after conducting an ANOVA, researchers will conduct follow-up tests to compare differences between specific means. We will talk more about this
practice throughout the textbook. There are many recommended practices for follow-up tests, and there is a lot of debate about what you should do. We are not going
to wade into this debate right now. Instead we are going to point out that you need to do something to compare the means of interest after you conduct the ANOVA,
because the ANOVA is just the beginning…It usually doesn’t tell you want you want to know. You might wonder why bother conducting the ANOVA in the first
place…Not a terrible question at all. A good question. You will see as we talk about more complicated designs, why ANOVAs are so useful. In the present example,
they are just a common first step. There are required next steps, such as what we do next.
How can you compare the difference between two means, from a between-subjects design, to determine whether or not the difference you observed is likely or
unlikely to be produced by chance? We covered this one already, it’s the independent \(t\)-test. We’ll do a couple \(t\)-tests, showing the process.

Control vs. Reactivation+Tetris
What we really want to know is if Reactivation+Tetris caused fewer intrusive memories…but compared to what? Well, if it did something, the Reactivation+Tetris
group should have a smaller mean than the Control group. So, let’s do that comparison:

run restart restart & run all

We found that there was a significant difference between the control group (M=5.11) and Reactivation + Tetris group (M=1.89), t(34) = 2.99, p=0.005.
Above you just saw an example of reporting another \(t\)-test. This sentences does an OK job of telling the reader everything they want to know. It has the means for
each group, and the important bits from the \(t\)-test.
More important, as we suspected the difference between the control and Reactivation + Tetris group was likely not due to chance.

 Two Sample t-test 
 
data:  Days_One_to_Seven_Number_of_Intrusions by Condition 
t = 2.9893, df = 34, p-value = 0.005167 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 1.031592 5.412852 
sample estimates: 
            mean in group Control mean in group Reactivation+Tetris  
                         5.111111                          1.888889  

library(data.table)
library(ggplot2)
suppressPackageStartupMessages(library(dplyr))
all_data <- fread(
  "https://stats.libretexts.org/@api/deki/files/10605/Jamesetal2015Experiment2.csv")
all_data$Condition <- as.factor(all_data$Condition)
levels(all_data$Condition) <- c("Control",
                                "Reactivation+Tetris", 
                                "Tetris_only",
                                "Reactivation_only")
 
comparison_df <- all_data %>% 
                  filter(Condition %in% c('Control','Reactivation+Tetris')==TRUE)                        
t.test(Days_One_to_Seven_Number_of_Intrusions ~ Condition, 
       comparison_df,
       var.equal=TRUE)
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Control vs. Tetris_only
Now we can really start wondering what caused the difference. Was it just playing Tetris? Does just playing Tetris reduce the number of intrusive memories during
the week? Let’s compare that to control:

run restart restart & run all

Here we did not find a significant difference. We found that no significant difference between the control group (M=5.11) and Tetris Only group (M=3.89), t(34) =
2.99, p=0.318.
So, it seems that not all of the differences between our means are large enough to be called statistically significant. In particular, the difference here, or larger,
happens by chance 31.8% of the time.
You could go on doing more comparisons, between all of the different pairs of means. Each time conducting a \(t\)-test, and each time saying something more
specific about the patterns across the means than you get to say with the omnibus test provided by the ANOVA.
Usually, it is the pattern of differences across the means that you as a researcher are primarily interested in understanding. Your theories will make predictions about
how the pattern turns out (e.g., which specific means should be higher or lower and by how much). So, the practice of doing comparisons after an ANOVA is really
important for establishing the patterns in the means.

This page titled 7.4: ANOVA on Real Data is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via source content that was
edited to the style and standards of the LibreTexts platform.

 Two Sample t-test 
 
data:  Days_One_to_Seven_Number_of_Intrusions by Condition 
t = 1.0129, df = 34, p-value = 0.3183 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -1.230036  3.674480 
sample estimates: 
    mean in group Control mean in group Tetris_only  
                 5.111111                  3.888889  

library(data.table)
suppressPackageStartupMessages(library(dplyr))
all_data <- fread(
  "https://stats.libretexts.org/@api/deki/files/10605/Jamesetal2015Experiment2.csv")
all_data$Condition <- as.factor(all_data$Condition)
levels(all_data$Condition) <- c("Control",
                                "Reactivation+Tetris", 
                                "Tetris_only",
                                "Reactivation_only")
 
comparison_df <- all_data %>% 
                  filter(Condition %in% c('Control','Tetris_only')==TRUE)     
t.test(Days_One_to_Seven_Number_of_Intrusions ~ Condition, 
       comparison_df,
       var.equal=TRUE)
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7.5: ANOVA Summmary
We have just finished a rather long introduction to the ANOVA, and the -test. The next couple of chapters continue to explore
properties of the ANOVA for different kinds of experimental designs. In general, the process to follow for all of the more
complicated designs is very similar to what we did here, which boils down to two steps:

1. conduct the ANOVA on the data
2. conduct follow-up tests, looking at differences between particular means

So what’s next…the ANOVA for repeated measures designs. See you in the next chapter.

This page titled 7.5: ANOVA Summmary is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

8: Repeated Measures ANOVA
This chapter introduces you to repeated measures ANOVA. Repeated measures ANOVAs are very common in Psychology,
because psychologists often use repeated measures designs, and repeated measures ANOVAs are the appropriate test for making
inferences about repeated measures designs.

Remember the paired sample -test? We used that test to compare two means from a repeated measures design. Remember what a
repeated measures design is? It’s also called a within-subjects design. These designs involve measuring the same subject more than
once. Specifically, at least once for every experimental condition. In the paired -test example, we discussed a simple experiment
with only two experimental conditions. There, each subject would contribute a measurement to level one and level two of the
design.

However, paired-samples -tests are limited to comparing two means. What if you had a design that had more than two
experimental conditions? For example, perhaps your experiment had 3 levels for the independent variable, and each subject
contributed data to each of the three levels?

This is starting to sounds like an ANOVA problem. ANOVAs are capable of evaluating whether there is a difference between any
number of means, two or greater. So, we can use an ANOVA for our repeated measures design with three levels for the independent
variable.

Great! So, what makes a repeated measures ANOVA different from the ANOVA we just talked about?

8.1: Repeated Measures Design
8.2: Partioning the Sums of Squares
8.3: Calculating the RM ANOVA
8.4: Things worth knowing
8.5: Real Data
8.6: Summary
8.7: References

This page titled 8: Repeated Measures ANOVA is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J.
C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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8.1: Repeated Measures Design
Let’s use the exact same toy example from the previous chapter, but let’s convert it to a repeated measures design.
Last time, we imagined we had some data in three groups, A, B, and C. The data looked like this:

run restart restart & run all

groups scores

A 20

A 11

A 2

B 6

B 2

B 7

C 2

C 11

C 2

The above table represents a between-subject design where each score involves a unique subject.
Let’s change things up a tiny bit, and imagine we only had 3 subjects in total in the experiment. And, that each subject contributed
data to the three levels of the independent variable, A, B, and C. Before we called the IV groups , because there were different
groups of subjects. Let’s change that to conditions , because now the same group of subjects participates in all three
conditions. Here’s the new table for a within-subjects (repeated measures) version of this experiment:

run restart restart & run all

subjects conditions scores

1 A 20

2 A 11

3 A 2

1 B 6

2 B 2

3 B 7

1 C 2

scores <- c(20,11,2,6,2,7,2,11,2)
groups <- as.character(rep(c("A","B","C"), each=3))
df<-data.frame(groups,scores)
knitr::kable(df)

scores <- c(20,11,2,6,2,7,2,11,2)
conditions <- as.character(rep(c("A","B","C"), each=3))
subjects <-rep(1:3,3)
df<-data.frame(subjects,conditions,scores)
knitr::kable(df)
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subjects conditions scores

2 C 11

3 C 2

This page titled 8.1: Repeated Measures Design is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J.
C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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8.2: Partioning the Sums of Squares
Time to introduce a new name for an idea you learned about last chapter, it’s called partitioning the sums of squares. Sometimes
an obscure new name can be helpful for your understanding of what is going on. ANOVAs are all about partitioning the sums of
squares. We already did some partitioning in the last chapter. What do we mean by partitioning?

Imagine you had a big empty house with no rooms in it. What would happen if you partitioned the house? What would you be
doing? One way to partition the house is to split it up into different rooms. You can do this by adding new walls and making little
rooms everywhere. That’s what partitioning means, to split up.

The act of partitioning, or splitting up, is the core idea of ANOVA. To use the house analogy. Our total sums of squares (SS Total)
is our big empty house. We want to split it up into little rooms. Before we partitioned SS Total using this formula:

Remember, the  was the variance we could attribute to the means of the different groups, and  was the leftover
variance that we couldn’t explain.  and  are the partitions of , they are the little rooms.

In the between-subjects case above, we got to split  into two parts. What is most interesting about the repeated-measures
design, is that we get to split  into three parts, there’s one more partition. Can you guess what the new partition is? Hint:
whenever we have a new way to calculate means in our design, we can always create a partition for those new means. What are the
new means in the repeated measures design?

Here is the new idea for partitioning  in a repeated-measures design:

We’ve added  as the new idea in the formula. What’s the idea here? Well, because each subject was measured in each
condition, we have a new set of means. These are the means for each subject, collapsed across the conditions. For example, subject
1 has a mean (mean of their scores in conditions A, B, and C); subject 2 has a mean (mean of their scores in conditions A, B, and
C); and subject 3 has a mean (mean of their scores in conditions A, B, and C). There are three subject means, one for each subject,
collapsed across the conditions. And, we can now estimate the portion of the total variance that is explained by these subject
means.

We just showed you a “formula” to split up  into three parts, but we called the formula an idea. We did that because the
way we wrote the formula is a little bit misleading, and we need to clear something up. Before we clear the thing up, we will
confuse you just a little bit. Be prepared to be confused a little bit.

First, we need to introduce you to some more terms. It turns out that different authors use different words to describe parts of the
ANOVA. This can be really confusing. For example, we described the SS formula for a between subjects design like this:

However, the very same formula is often written differently, using the words between and within in place of effect and error, it
looks like this:

Whoa, hold on a minute. Haven’t we switched back to talking about a between-subjects ANOVA. YES! Then why are we using
the word within, what does that mean? YES! We think this is very confusing for people. Here the word within has a special
meaning. It does not refer to a within-subjects design. Let’s explain. First,  (which we have been calling ) refers
to variation between the group means, that’s why it is called . Second, and most important,  (which we have
been calling ), refers to the leftover variation within each group mean. Specifically, it is the variation between each group
mean and each score in the group. “AAGGH, you’ve just used the word between to describe within group variation!”. Yes! We feel
your pain. Remember, for each group mean, every score is probably off a little bit from the mean. So, the scores within each group
have some variation. This is the within group variation, and it is why the leftover error that we can’t explain is often called 

.

OK. So why did we introduce this new confusing way of talking about things? Why can’t we just use  to talk about this
instead of , which you might (we do) find confusing. We’re getting there, but perhaps a picture will help to clear things up.

S = S +SS
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S
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SS
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TOTAL
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SS

Within

SS

Error

SS

Within

SS

Error

SS

Within

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7934?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/08%3A_Repeated_Measures_ANOVA/8.02%3A_Partioning_the_Sums_of_Squares


8.2.2 https://stats.libretexts.org/@go/page/7934

Figure : Illustration showing how the total sums of squares are partitioned differently for a between versus repeated-measures
design.

The figure lines up the partitioning of the Sums of Squares for both between-subjects and repeated-measures designs. In both
designs,  is first split up into two pieces  and . At this point, both ANOVAs are
the same. In the repeated measures case we split the  into two more littler parts, which we call 

 and .

So, when we earlier wrote the formula to split up SS in the repeated-measures design, we were kind of careless in defining what we
actually meant by , this was a little too vague:

The critical feature of the repeated-measures ANOVA, is that the  that we will later use to compute the MSE in the
denominator for the -value, is smaller in a repeated-measures design, compared to a between subjects design. This is because the 

 is split into two parts,  and .

To make this more clear, we made another figure:

8.2.1

SS

Total

SS

Effect (between-groups)

SS

Error (within-groups)

SS

Error (within-groups)

SS

Subjects (error variation about the subject mean)

SS

Error (left-over variation we can't explain)

SS

Error

S = S +S +SS

TOTAL

S

Effect

S

Subjects

S

Error

SS

Error

F

SS

Error (within-groups)

SS

Subjects (error variation about the subject mean)

SS

Error (left-over variation we can't explain)
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Figure : Close-up showing that the Error term is split into two parts in the repeated measures design.

As we point out, the  in the green circle will be a smaller number than the . That’s because we
are able to subtract out the  part of the . As we will see shortly, this can have the effect of producing
larger F-values when using a repeated-measures design compared to a between-subjects design.

This page titled 8.2: Partioning the Sums of Squares is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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8.3: Calculating the RM ANOVA
Now that you are familiar with the concept of an ANOVA table (remember the table from last chapter where we reported all of the
parts to calculate the -value?), we can take a look at the things we need to find out to make the ANOVA table. The figure below
presents an abstract for the repeated-measures ANOVA table. It shows us all the thing we need to calculate to get the -value for
our data.

Figure : Equations for computing the ANOVA table for a repeated measures design.

So, what we need to do is calculate all the es that we did before for the between-subjects ANOVA. That means the next three
steps are identical to the ones you did before. In fact, I will just basically copy the next three steps to find , , and 

. After that we will talk about splitting up  into two parts, this is the new thing for
this chapter. Here we go!

SS Total
The total sums of squares, or  measures the total variation in a set of data. All we do is find the difference between each
score and the grand mean, then we square the differences and add them all up.

F

F

8.3.1

SS

SS

TOTAL

SS

Effect

SS

Error (within-conditions)

SS

Error (within-conditions)

SSTotal

suppressPackageStartupMessages(library(dplyr))
scores <- c(20,11,2,6,2,7,2,11,2)
conditions <- as.character(rep(c("A","B","C"), each=3))
subjects <-rep(1:3,3)
diff <-scores-mean(scores)
diff_squared <-diff^2
df<-data.frame(subjects,conditions,scores,diff, diff_squared)
df$conditions<-as.character(df$conditions)
df$subjects<-as.character(df$subjects)
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run restart restart & run all

subjects conditions scores diff diff_squared

1 A 20 13 169

2 A 11 4 16

3 A 2 -5 25

1 B 6 -1 1

2 B 2 -5 25

3 B 7 0 0

1 C 2 -5 25

2 C 11 4 16

3 C 2 -5 25

Sums  63 0 302

Means  7 0 33.5555555555556

The mean of all of the scores is called the Grand Mean. It’s calculated in the table, the Grand Mean = 7.
We also calculated all of the difference scores from the Grand Mean. The difference scores are in the column titled diff . Next,
we squared the difference scores, and those are in the next column called diff_squared .
When you add up all of the individual squared deviations (difference sscores) you get the sums of squares. That’s why it’s called
the sums of squares (SS).
Now, we have the first part of our answer:

and

SS Effect
 gave us a number representing all of the change in our data, how they all are different from the grand mean.

What we want to do next is estimate how much of the total change in the data might be due to the experimental manipulation. For
example, if we ran an experiment that causes causes change in the measurement, then the means for each group will be different
from other, and the scores in each group will be different from each. As a result, the manipulation forces change onto the numbers,
and this will naturally mean that some part of the total variation in the numbers is caused by the manipulation.
The way to isolate the variation due to the manipulation (also called effect) is to look at the means in each group, and the calculate
the difference scores between each group mean and the grand mean, and then the squared deviations to find the sum for .
Consider this table, showing the calculations for .

S = S +SS

total

S

Effect

S

Error

S = 302S

total

302 = S +SS

Effect

S

Error

SS

Total

SS

Effect

SS

Effect

df <- df %>%
  rbind(c("Sums","", colSums(df[1:9,3:5]))) %>%
  rbind(c("Means","",colMeans(df[1:9,3:5])))
knitr::kable(df)

suppressPackageStartupMessages(library(dplyr))
scores <- c(20,11,2,6,2,7,2,11,2)
conditions <- as.character(rep(c("A","B","C"), each=3))
subjects <-rep(1:3,3)
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run restart restart & run all

subjects conditions scores means diff diff_squared

1 A 20 11 4 16

2 A 11 11 4 16

3 A 2 11 4 16

1 B 6 5 -2 4

2 B 2 5 -2 4

3 B 7 5 -2 4

1 C 2 5 -2 4

2 C 11 5 -2 4

3 C 2 5 -2 4

Sums  63 63 0 72

Means  7 7 0 8

Notice we created a new column called means , these are the means for each condition, A, B, and C.
 represents the amount of variation that is caused by differences between the means. The diff  column is the difference

between each condition mean and the grand mean, so for the first row, we have 11-7 = 4, and so on.
We found that , this is the same as the ANOVA from the previous chapter

SS Error (within-conditions)
Great, we made it to SS Error. We already found SS Total, and SS Effect, so now we can solve for SS Error just like this:

switching around:

Or, we could compute  directly from the data as we did last time:

SS

Effect

S = 72S

Effect

S = S +SS

total

S

Effect

S

Error (within-conditions)

S = S −SS

Error

S

total

S

Effect

S = 302 −72 = 230S

Error (within conditions)

SS

Error (within conditions)

means <-c(11,11,11,5,5,5,5,5,5)
diff <-means-mean(scores)
diff_squared <-diff^2
df<-data.frame(subjects,conditions,scores,means,diff, diff_squared)
df$conditions<-as.character(df$conditions)
df$subjects<-as.character(df$subjects)
df <- df %>%
  rbind(c("Sums","", colSums(df[1:9,3:6]))) %>%
  rbind(c("Means","",colMeans(df[1:9,3:6])))
knitr::kable(df)

suppressPackageStartupMessages(library(dplyr))
scores <- c(20,11,2,6,2,7,2,11,2)
conditions <- as.character(rep(c("A","B","C"), each=3))
subjects <-rep(1:3,3)
means <-c(11,11,11,5,5,5,5,5,5)
diff <-means-scores
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run restart restart & run all

subjects conditions scores means diff diff_squared

1 A 20 11 -9 81

2 A 11 11 0 0

3 A 2 11 9 81

1 B 6 5 -1 1

2 B 2 5 3 9

3 B 7 5 -2 4

1 C 2 5 3 9

2 C 11 5 -6 36

3 C 2 5 3 9

Sums  63 63 0 230

Means  7 7 0 25.5555555555556

When we compute  directly, we find the difference between each score and the condition mean for that
score. This gives us the remaining error variation around the condition mean, that the condition mean does not explain.

SS Subjects
Now we are ready to calculate new partition, called . We first find the means for each subject. For subject 1, this is the
mean of their scores across Conditions A, B, and C. The mean for subject 1 is 9.33 (repeating). Notice there is going to be some
rounding error here, that’s OK for now.
The means  column now shows all of the subject means. We then find the difference between each subject mean and the grand
mean. These deviations are shown in the diff  column. Then we square the deviations, and sum them up.

SS

Error (within conditions)

SS

Subjects

diff_squared <-diff^2
df<-data.frame(subjects,conditions,scores,means,diff, diff_squared)
df$conditions<-as.character(df$conditions)
df$subjects<-as.character(df$subjects)
df <- df %>%
  rbind(c("Sums","", colSums(df[1:9,3:6]))) %>%
  rbind(c("Means","",colMeans(df[1:9,3:6])))
knitr::kable(df)

suppressPackageStartupMessages(library(dplyr))
scores <- c(20,11,2,6,2,7,2,11,2)
conditions <- as.character(rep(c("A","B","C"), each=3))
subjects <-rep(1:3,3)
means <-c(9.33,8,3.66,9.33,8,3.66,9.33,8,3.66)
diff <-means-mean(scores)
diff_squared <-diff^2
df<-data.frame(subjects,conditions,scores,means,diff, diff_squared)
df$conditions<-as.character(df$conditions)
df$subjects<-as.character(df$subjects)
df <- df %>%
  rbind(c("Sums","", colSums(df[1:9,3:6]))) %>%
  rbind(c("Means","",colMeans(df[1:9,3:6])))
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run restart restart & run all

subjects conditions scores means diff diff_squared

1 A 20 9.33 2.33 5.4289

2 A 11 8 1 1

3 A 2 3.66 -3.34 11.1556

1 B 6 9.33 2.33 5.4289

2 B 2 8 1 1

3 B 7 3.66 -3.34 11.1556

1 C 2 9.33 2.33 5.4289

2 C 11 8 1 1

3 C 2 3.66 -3.34 11.1556

Sums  63 62.97
-0.02999999999999
94

52.7535

Means  7 6.99666666666667
-0.00333333333333
326

5.8615

We found that the sum of the squared deviations  = 52.75. Note again, this has some small rounding error because some
of the subject means had repeating decimal places, and did not divide evenly.
We can see the effect of the rounding error if we look at the sum and mean in the diff  column. We know these should be both
zero, because the Grand mean is the balancing point in the data. The sum and mean are both very close to zero, but they are not
zero because of rounding error.

SS Error (left-over)
Now we can do the last thing. Remember we wanted to split up the  into two parts,  and 

. Because we have already calculate  and , we can solve for :

Check our work
Before we continue to compute the MSEs and F-value for our data, let’s quickly check our work. For example, we could have R
compute the repeated measures ANOVA for us, and then we could look at the ANOVA table and see if we are on the right track so
far.

SS

Subjects

SS

Error (within conditions)

SS

Subjects

SS

Error (left-over)

SS

Error (within conditions)

SS

Subjects

SS

Error (left-over)

S = S −SS

Error (left-over)

S

Error (within conditions)

S

Subjects

S = S −S = 230 −52.75 = 177.25S

Error (left-over)

S

Error (within conditions)

S

Subjects

knitr::kable(df)

suppressPackageStartupMessages(library(dplyr))
library(xtable)
scores <- c(20,11,2,6,2,7,2,11,2)
conditions <- as.character(rep(c("A","B","C"), each=3))
subjects <-rep(1:3,3)
means <-c(9.33,8,3.66,9.33,8,3.66,9.33,8,3.66)
diff <-means-mean(scores)
diff_squared <-diff^2
df<-data.frame(subjects,conditions,scores,means,diff, diff_squared)
df$conditions<-as.character(df$conditions)
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run restart restart & run all

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 2 52.66667 26.33333 NA

F)" style="vertical-
align:middle;"
class="lt-stats-
7935">NA

conditions 2 72.00000 36.00000 0.8120301

F)" style="vertical-
align:middle;"
class="lt-stats-
7935">0.505848

Residuals 4 177.33333 44.33333 NA

F)" style="vertical-
align:middle;"
class="lt-stats-
7935">NA

OK, looks good. We found the  to be 72, and the SS for the conditions (same thing) in the table is also 72. We found the 
 to be 52.75, and the SS for the first residual (same thing) in the table is also 53.66 repeating. That’s close, and our

number is off because of rounding error. Finally, we found the  to be 177.25, and the SS for the bottom residuals in
the table (same thing) in the table is 177.33 repeating, again close but slightly off due to rounding error.
We have finished our job of computing the sums of squares that we need in order to do the next steps, which include computing the
MSEs for the effect and the error term. Once we do that, we can find the F-value, which is the ratio of the two MSEs.
Before we do that, you may have noticed that we solved for , rather than directly computing it from the data. In this
chapter we are not going to show you the steps for doing this. We are not trying to hide anything from, instead it turns out these
steps are related to another important idea in ANOVA. We discuss this idea, which is called an interaction in the next chapter, when
we discuss factorial designs (designs with more than one independent variable).

Compute the MSEs
Calculating the MSEs (mean squared error) that we need for the -value involves the same general steps as last time. We divide
each SS by the degrees of freedom for the SS.
The degrees of freedom for  are the same as before, the number of conditions - 1. We have three conditions, so the df is 2.
Now we can compute the .

The degrees of freedom for  are different than before, they are the (number of subjects - 1) multiplied by the
(number of conditions -1). We have 3 subjects and three conditions, so . You might be wondering
why we are multiplying these numbers. Hold that thought for now and wait until the next chapter. Regardless, now we can compute
the .

Compute F
We just found the two MSEs that we need to compute . We went through all of this to compute  for our data, so let’s do it:

SS

Effect

SS

Subjects

SS

Error (left-over)

SS

Error (left-over)

F

SS

Effect

MSE

Effect

MS = = = 36E

Effect

SS

Effect

df

72

2

SS

Error (left-over)

(3 −1) ∗ (3 −1) = 2 ∗ 2 = 4

MSE

Error (left-over)

MS = = = 44.33E

Error (left-over)

SS

Error (left-over)

df

177.33

4

F F

F = = = 0.812

MSE

Effect

MSE

Error (left-over)

36

44.33

df$subjects<-as.character(df$subjects)
 
summary_out <- summary(aov(scores~conditions + Error(subjects/conditions),df[1:9,]))
knitr::kable(xtable(summary_out))
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And, there we have it!

p-value
We already conducted the repeated-measures ANOVA using R and reported the ANOVA. Here it is again. The table shows the -
value associated with our -value.

run restart restart & run all

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 2 52.66667 26.33333 NA

F)" style="vertical-
align:middle;"
class="lt-stats-
7935">NA

conditions 2 72.00000 36.00000 0.8120301

F)" style="vertical-
align:middle;"
class="lt-stats-
7935">0.505848

Residuals 4 177.33333 44.33333 NA

F)" style="vertical-
align:middle;"
class="lt-stats-
7935">NA

We might write up the results of our experiment and say that the main effect condition was not significant, F(2,4) = 0.812, MSE =
44.33, p = 0.505.
What does this statement mean? Remember, that the -value represents the probability of getting the  value we observed or larger
under the null (assuming that the samples come from the same distribution, the assumption of no differences). So, we know that an 

-value of 0.812 or larger happens fairly often by chance (when there are no real differences), in fact it happens 50.5% of the time.
As a result, we do not reject the idea that any differences in the means we have observed could have been produced by chance.

This page titled 8.3: Calculating the RM ANOVA is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew
J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

p

F

p F

F

suppressPackageStartupMessages(library(dplyr))
library(xtable)
scores <- c(20,11,2,6,2,7,2,11,2)
conditions <- as.character(rep(c("A","B","C"), each=3))
subjects <-rep(1:3,3)
means <-c(9.33,8,3.66,9.33,8,3.66,9.33,8,3.66)
diff <-means-mean(scores)
diff_squared <-diff^2
df<-data.frame(subjects,conditions,scores,means,diff, diff_squared)
df$conditions<-as.character(df$conditions)
df$subjects<-as.character(df$subjects)
 
summary_out <- summary(aov(scores~conditions + Error(subjects/conditions),df[1:9,]))
knitr::kable(xtable(summary_out))
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8.4: Things worth knowing
Repeated Measures ANOVAs have some special properties that are worth knowing about. The main special property is that the
error term used to for the \(F\)-value (the MSE in the denominator) will always be smaller than the error term used for the \(F\)-
value the ANOVA for a between-subjects design. We discussed this earlier. It is smaller, because we subtract out the error
associated with the subject means.
This can have the consequence of generally making \(F\)-values in repeated measures designs larger than \(F\)-values in between-
subjects designs. When the number in the bottom of the \(F\) formula is generally smaller, it will generally make the resulting ratio
a larger number. That’s what happens when you make the number in the bottom smaller.
Because big \(F\) values usually let us reject the idea that differences in our means are due to chance, the repeated-measures
ANOVA becomes a more sensitive test of the differences (its \(F\)-values are usually larger).
At the same time, there is a trade-off here. The repeated measures ANOVA uses different degrees of freedom for the error term, and
these are typically a smaller number of degrees of freedom. So, the \(F\)-distributions for the repeated measures and between-
subjects designs are actually different \(F\)-distributions, because they have different degrees of freedom.

Repeated vs between-subjects ANOVA
Let’s do a couple simulations to see some the differences between the ANOVA for a repeated measures design, and the ANOVA for
a between-subjects design.
We will do the following.

1. Simulate a design with three conditions, A, B, and C
2. sample 10 scores into each condition from the same normal distribution (mean = 100, SD = 10)
3. We will include a subject factor for the repeated-measures version. Here there are 10 subjects, each contributing three scores,

one each condition
4. For the between-subjects design there are 30 different subjects, each contributing one score in the condition they were assigned

to (really the group).

We run 1000 simulated experiments for each design. We calculate the \(F\) for each experiment, for both the between and repeated
measures designs. Here are the two sampling distributions of \(F\) for both designs.
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run restart restart & run all

Figure \(\PageIndex{1}\): Comparing critical F values for a between and repeated measures design.
These two \(F\) sampling distributions look pretty similar. However, they are subtly different. The between \(F\) distribution has
degrees of freedom 2, and 27, for the numerator and denominator. There are 3 conditions, so \(\textit{df}_{1}\) = 3-1 = 2. There
are 30 subjects, so \(\textit{df}_{2}\) = 30-3 =27. The critical value, assuming an alpha of 0.05 is 3.35. This means \(F\) is 3.35 or
larger 5% of the time under the null.
The repeated-measures \(F\) distribution has degrees of freedom 2, and 18, for the numerator and denominator. There are 3
conditions, so \(\textit{df}_{1}\) = 3-1 = 2. There are 10 subjects, so \(\textit{df}_{2}\) = (10-1)(3-1) = 92 = 18. The critical value,
assuming an alpha of 0.05 is 3.55. This means \(F\) is 3.55 or larger 5% of the time under the null.
The critical value for the repeated measures version is slightly higher. This is because when \(\textit{df}_{2}\) (the denominator) is
smaller, the \(F\)-distribution spreads out to the right a little bit. When it is skewed like this, we get some bigger \(F\)s a greater

library(ggplot2)
b_f<-length(1000)
w_f<-length(1000)
for(i in 1:1000){
scores <- rnorm(30,100,10)
conditions <- as.factor(rep(c("A","B","C"), each=10))
subjects <-as.factor(rep(1:10,3))
df<-data.frame(scores,conditions,subjects)
between_out<-summary(aov(scores~conditions,df))
b_f[i] <- between_out[[1]]$`F value`[1]
within_out<-summary(aov(scores~conditions + Error(subjects/conditions),df))
w_f[i] <- within_out[[2]][[1]]$`F value`[1]
}
plot_df<-data.frame(fs=c(b_f,w_f), type=rep(c("between","repeated"),each=1000))
crit_df<-data.frame(type=c("between","repeated"),
           crit=c(qf(.95, 2, 27),
                  qf(.95, 2, 18)))
ggplot(plot_df, aes(x=fs))+
  geom_histogram(color="white", bins=30)+
  geom_vline(data=crit_df,aes(xintercept=crit))+
  geom_label(data = crit_df, aes(x = crit, y = 150, label = round(crit,digits=2)))+
  theme_classic()+
  facet_wrap(~type)
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proportion of the time.
So, in order to detect a real difference, you need an \(F\) of 3.35 or greater in a between-subjects design, or an \(F\) of 3.55 or
greater for a repeated-measures design. The catch here is that when there is a real difference between the means, you will detect it
more often with the repeated-measures design, even though you need a larger \(F\) (to pass the higher critical \(F\)-value for the
repeated measures design).

repeated measures designs are more sensitive
To illustrate why repeated-measures designs are more sensitive, we will conduct another set of simulations.
We will do something slightly different this time. We will make sure that the scores for condition A, are always a little bit higher
than the other scores. In other words, we will program in a real true difference. Specifically, the scores for condition will be
sampled from a normal distribution with mean = 105, and SD = 10. This mean is 5 larger than the means for the other two
conditions (still set to 100).
With a real difference in the means, we should now reject the hypothesis of no differences more often. We should find \(F\) values
larger than the critical value more often. And, we should find \(p\)-values for each experiment that are smaller than .05 more often,
those should occur more than 5% of the time.
To look at this we conduct 1000 experiments for each design, we conduct the ANOVA, then we save the \(p\)-value we obtained for
each experiment. This is like asking how many times will we find a \(p\)-value less than 0.05, when there is a real difference (in
this case an average of 5) between some of the means. We will plot histograms of the \(p\)-values:
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library(ggplot2)
b_p<-length(1000)
w_p<-length(1000)
for(i in 1:1000){
scores <- c(rnorm(10,110,10),rnorm(20,100,10))
conditions <- as.factor(rep(c("A","B","C"), each=10))
subjects <-as.factor(rep(1:10,3))
df<-data.frame(scores,conditions,subjects)
between_out<-summary(aov(scores~conditions,df))
b_p[i] <- between_out[[1]]$`Pr(>F)`[1]
within_out<-summary(aov(scores~conditions + Error(subjects/conditions),df))
w_p[i] <- within_out[[2]][[1]]$`Pr(>F)`[1]
}
plot_df<-data.frame(ps=c(b_p,w_p), type=rep(c("between","repeated"),each=1000))
crit_df<-data.frame(type=c("between","repeated"),
           crit=c(qf(.95, 2, 27),
                  qf(.95, 2, 18)))
ggplot(plot_df, aes(x=ps))+
  geom_histogram(color="white", bins=30)+
  geom_vline(xintercept=0.05, color="red")+
  theme_classic()+
  facet_wrap(~type)
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Figure \(\PageIndex{2}\): p-value distributions for a between and within-subjects ANOVA.Here we have two distributions of observed p-values for the simulations. The red line shows the location of 0.05. Overall, we can
see that for both designs, we got a full range of \(p\)-values from 0 to 1. This means that many times we would not have rejected
the hypothesis of no differences (even though we know there is a small difference). We would have rejected the null every time the
\(p\)-value was less than 0.05.
For the between subject design, there were 599 experiments with a \(p\) less than 0.05, or 0.599 of experiments were “significant”,
with alpha=.05.
For the within subject design, there were 570 experiments with a \(p\) less than 0.05, or 0.57 of experiments were “significant”,
with alpha=.05.
OK, well, you still might not be impressed. In this case, the between-subjects design detected the true effect slightly more often
than the repeated measures design. Both them were right around 55% of the time. Based on this, we could say the two designs are
pretty comparable in their sensitivity, or ability to detect a true difference when there is one.
However, remember that the between-subjects design uses 30 subjects, and the repeated measures design only uses 10. We had to
make a big investment to get our 30 subjects. And, we’re kind of unfairly comparing the between design (which is more sensitive
because it has more subjects) with the repeated measures design that has fewer subjects.
What do you think would happen if we ran 30 subjects in the repeated measures design? Let’s find out. Here we redo the above, but
this time only for the repeated measures design. We increase \(N\) from 10 to 30.

run restart restart & run all

Figure \(\PageIndex{3}\): p-value distribution for within-subjects design with n= 30.

library(ggplot2)
b_p<-length(1000)
w_p<-length(1000)
for(i in 1:1000){
scores <- c(rnorm(30,110,10),rnorm(60,100,10))
conditions <- as.factor(rep(c("A","B","C"), each=30))
subjects <-as.factor(rep(1:30,3))
df<-data.frame(scores,conditions,subjects)
within_out<-summary(aov(scores~conditions + Error(subjects/conditions),df))
w_p[i] <- within_out[[2]][[1]]$`Pr(>F)`[1]
}
plot_df<-data.frame(ps=w_p, type=rep("repeated",1000))
ggplot(plot_df, aes(x=ps))+
  geom_histogram(color="white", bins=30)+
  geom_vline(xintercept=0.05, color="red")+
  theme_classic()
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Wowsers! Look at that. When we ran 30 subjects in the repeated measures design almost all of the \(p\)-values were less than .05.
There were 982 experiments with a \(p\) less than 0.05, or 0.982 of experiments were “significant”, with alpha=.05. That’s huge! If
we ran the repeated measures design, we would almost always detect the true difference when it is there. This is why the repeated
measures design can be more sensitive than the between-subjects design.

This page titled 8.4: Things worth knowing is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.
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8.5: Real Data
Let’s look at some real data from a published experiment that uses a repeated measures design. This is the same example that you will
be using in the lab for repeated measures ANOVA. The data happen to be taken from a recent study conducted by Lawrence Behmer
and myself, at Brooklyn College (Behmer and Crump 2017).
We were interested in how people perform sequences of actions. One question is whether people learn individual parts of actions, or
the whole larger pattern of a sequence of actions. We looked at these issues in a computer keyboard typing task. One of our questions
was whether we would replicate some well known findings about how people type words and letters.
From prior work we knew that people type words way faster than than random letters, but if you made the random letters a little bit
more English-like, then people type those letter strings a little bit faster, but not as slow as random string.
In the study, 38 participants sat in front of a computer and typed 5 letter strings one at a time. Sometimes the 5 letter made a word
(Normal condition, TRUCK), sometimes they were completely random (Random Condition, JWYFG), and sometimes they followed
patterns like you find in English (Bigram Condition, QUEND), but were not actual words. So, the independent variable for the typing
material had three levels. We measured every single keystroke that participants made. This gave us a few different dependent
measures. Let’s take a look a the reaction times. This is how long it took for participants to start typing the first letter in the string.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7937?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/08%3A_Repeated_Measures_ANOVA/8.05%3A_Real_Data
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/08%3A_Repeated_Measures_ANOVA/8.07%3A_References#behmer


8.5.2 https://stats.libretexts.org/@go/page/7937

run restart restart & run all

Figure \(\PageIndex{1}\): Results from Behmer & Crump (2017).

OK, I made a figure showing the mean reaction times for the different typing material conditions. You will notice that there are two
sets of lines. That’s because there was another manipulation I didn’t tell you about. In one block of trials participants got to look at the

library(data.table)
library(ggplot2)
suppressPackageStartupMessages(library(dplyr))
exp1_data <- fread(
"https://raw.githubusercontent.com/CrumpLab/statistics/master/data/exp1_BehmerCrumpAPP.csv")
exp1_data$Block<-as.factor(exp1_data$Block)
levels(exp1_data$Block) <- c("Visible keyboard","Covered Keyboard")
## get subject mean RTs
subject_means <- exp1_data %>%
                filter(Order==1, Correct==1, PureRTs<5000) %>%
                dplyr::group_by(Subject, Block, Stimulus) %>%
                dplyr::summarise(mean_rt = mean(PureRTs), .groups='drop_last')
subject_means$Subject<-as.factor(subject_means$Subject)
subject_means$Block<-as.factor(subject_means$Block)
subject_means$Stimulus<-as.factor(subject_means$Stimulus)
## get condition mean RTs
plot_means <- subject_means %>%
             arrange(match(Stimulus,c("Normal","Bigrams","Random"))) %>%
             dplyr::group_by(Block, Stimulus) %>%
             dplyr::summarise(means = mean(mean_rt),
                       SEs = sd(mean_rt)/sqrt(length(mean_rt)), .groups='drop_last')

## plot the condition means
# re-order stimulus factor for plotting
plot_means$Stimulus <- factor(plot_means$Stimulus,
                             levels = c("Normal", "Bigrams", "Random"))

ggplot(plot_means, aes(x=Stimulus, y=means, group=Block, color=Block))+
 geom_point()+
 geom_line()+
 geom_errorbar(aes(ymin=means-SEs, ymax=means+SEs), width=.2)+
 theme_classic()+
 ylab("Mean Reaction Time (ms)")+
 xlab("Typing Material")
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keyboard while they typed, but in the other condition we covered up the keyboard so people had to type without looking. Finally, the
error bars are standard error of the means.

Note, the use of error bars for repeated-measures designs is not very straightforward. In fact the standard error of the means that
we have added here are not very meaningful for judging whether the differences between the means are likely not due to chance.
They would be if this was a between-subjects design. We will update this textbook with a longer discussion of this issue, for now
we will just live with these error bars.

For the purpose of this example, we will say, it sure looks like the previous finding replicated. For example, people started typing
Normal words faster than Bigram strings (English-like), and they started typing random letters the most slowly of all. Just like prior
research had found.
Let’s focus only on the block of trials where participants were allowed to look at the keyboard while they typed, that’s the red line, for
the “visible keyboard” block. We can see the means look different. Let’s next ask, what is the likelihood that chance (random sampling
error) could have produced these mean differences. To do that we run a repeated-measures ANOVA in R. Here is the ANOVA table.

run restart restart & run all

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 37 2452611.9 66286.808 NA

F)" style="vertical-
align:middle;"
class="lt-stats-
7937">NA

Stimulus 2 1424914.0 712457.010 235.7342

F)" style="vertical-
align:middle;"
class="lt-stats-
7937">0

 Note

library(data.table)
library(ggplot2)
library(xtable)
suppressPackageStartupMessages(library(dplyr))
exp1_data <- fread(
"https://raw.githubusercontent.com/CrumpLab/statistics/master/data/exp1_BehmerCrumpAPP.c
exp1_data$Block<-as.factor(exp1_data$Block)
levels(exp1_data$Block) <- c("Visible keyboard","Covered Keyboard")
## get subject mean RTs
subject_means <- exp1_data %>%
                 filter(Order==1, Correct==1, PureRTs<5000) %>%
                 dplyr::group_by(Subject, Block, Stimulus) %>%
                 dplyr::summarise(mean_rt = mean(PureRTs), .groups='drop_last')
subject_means$Subject<-as.factor(subject_means$Subject)
subject_means$Block<-as.factor(subject_means$Block)
subject_means$Stimulus<-as.factor(subject_means$Stimulus)
 
visible_means<- subject_means %>%
                 filter(Block=="Visible keyboard")
s_out <- summary(aov(mean_rt~Stimulus + Error (Subject/Stimulus),
                     visible_means))
knitr::kable(xtable(s_out))
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Df Sum Sq Mean Sq F value Pr(>F)

Residuals1 74 223649.4 3022.289 NA

F)" style="vertical-
align:middle;"
class="lt-stats-
7937">NA

Alright, we might report the results like this. There was a significant main effect of Stimulus type, F(2, 74) = 235.73, MSE = 3022.289,
p < 0.001.
Notice a couple things. First, this is a huge \(F\)-value. It’s 253! Notice also that the p-value is listed as 0. That doesn’t mean there is
zero chance of getting an F-value this big under the null. This is a rounding error. The true p-value is 0.00000000000000… The zeros
keep going for a while. This means there is only a vanishingly small probability that these differences could have been produced by
sampling error. So, we reject the idea that the differences between our means could be explained by chance. Instead, we are pretty
confident, based on this evidence and and previous work showing the same thing, that our experimental manipulation caused the
difference. In other words, people really do type normal words faster than random letters, and they type English-like strings
somewhere in the middle in terms of speed.

This page titled 8.5: Real Data is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via
source content that was edited to the style and standards of the LibreTexts platform.
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8.6: Summary
In this chapter you were introduced to the repeated-measures ANOVA. This analyis is appropriate for within-subjects or repeated
measures designs. The main difference between the independent factor ANOVA and the repeated measures ANOVA, is the ability
to partial out variance due to the individual subject means. This can often result in the repeated-measures ANOVA being more
sensitive to true effects than the between-subjects ANOVA.

This page titled 8.6: Summary is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via
source content that was edited to the style and standards of the LibreTexts platform.
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9.0: Prelude to Factorial ANOVA
We have arrived to the most complicated thing we are going to discuss in this class. Unfortunately, we have to warn you that you
might find this next stuff a bit complicated. You might not, and that would be great! We will try our best to present the issues in a
few different ways, so you have a few different tools to help you understand the issue.

What’s this so very complicated issue? Well, the first part it isn’t that complicated. For example, up until now we have been talking
about experiments. Most every experiment has had two important bits, the independent variable (the manipulation), and the
dependent variable (what we measure). In most cases, our independent variable has had two levels, or three or four; but, there has
only been one independent variable.

What if you wanted to manipulate more than one independent variable? If you did that you would at least two independent
variables, each with their own levels. The rest of the book is about designs with more than one independent variable, and the
statistical tests we use to analyze those designs.

Let’s go through some examples of designs so can see what we are talking about. We will be imagining experiments that are trying
to improve students grades. So, the dependent variable will always be grade on a test.

1. 1 IV (two levels)

We would use a t-test for these designs, because they only have two levels.

a. Time of day (Morning versus Afternoon): Do students do better on tests when they take them in the morning versus the
afternoon? There is one IV (time of day), with two levels (Morning vs. Afternoon)

b. Caffeine (some caffeine vs no caffeine): Do students do better on tests when they drink caffeine versus not drinking caffeine?
There is one IV (caffeine), with two levels (some caffeine vs no caffeine)

2. 1 IV (three levels):

We would use an ANOVA for these designs because they have more than two levels

a. Time of day (Morning, Afternoon, Night): Do students do better on tests when they take them in the morning, the afternoon, or
at night? There is one IV (time of day), with three levels (Morning, Afternoon, and Night)

b. Caffeine (1 coffee, 2 coffees, 3 coffees): Do students do better on tests when they drink 1 coffee, 2 coffees, or three coffees?
There is one IV (caffeine), with three levels (1 coffee, 2 coffees, and 3 coffees)

3. 2 IVs, IV1 (two levels), IV2 (two levels)

We haven’t talked about what kind of test to run for this design (hint it is called a factorial ANOVA)

a. IV1 (Time of Day: Morning vs. Afternoon); IV2 (Caffeine: some caffeine vs. no caffeine): How does time of day and caffeine
consumption influence student grades? We had students take tests in the morning or in the afternoon, with or without caffeine.
There are two IVs (time of day & caffeine). IV1 (Time of day) has two levels (morning vs afternoon). IV2 (caffeine) has two
levels (some caffeine vs. no caffeine)

OK, let’s stop here for the moment. The first two designs both had one IV. The third design shows an example of a design with 2
IVs (time of day and caffeine), each with two levels. This is called a 2x2 Factorial Design. It is called a factorial design, because
the levels of each independent variable are fully crossed. This means that first each level of one IV, the levels of the other IV are
also manipulated. “HOLD ON STOP PLEASE!” Yes, it seems as if we are starting to talk in the foreign language of statistics and
research designs. We apologize for that. We’ll keep mixing it up with some plain language, and some pictures.

9.0: Prelude to Factorial ANOVA is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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9.1: Factorial Basics

2x2 Designs

We’ve just started talking about a 2x2 Factorial design. We said this means the IVs are crossed. To illustrate this, take a look at the
following tables. We show an abstract version and a concrete version using time of day and caffeine as the two IVs, each with two
levels in the design:

Figure : Structure of 2x2 factorial designs.

Let’s talk about this crossing business. Here’s what it means for the design. For the first level of Time of Day (morning), we
measure test performance when some people drank caffeine and some did not. So, in the morning we manipulate whether or not
caffeine is taken. Also, in the second level of the Time of Day (afternoon), we also manipulate caffeine. Some people drink or don’t
drink caffeine in the afternoon as well, and we collect measures of test performance in both conditions.

We could say the same thing, but talk from the point of view of the second IV. For example, when people drink caffeine, we test
those people in the morning, and in the afternoon. So, time of day is manipulated for the people who drank caffeine. Also, when
people do not drink caffeine, we test those people in the morning, and in the afternoon, So, time of day is manipulated for the
people who did not drink caffeine.

Finally, each of the four squares representing a DV, is called a condition. So, we have 2 IVs, each with 2 levels, for a total of 4
conditions. This is why we call it a 2x2 design. 2x2 = 4. The notation tells us how to calculate the total number of conditions.

Factorial Notation
Anytime all of the levels of each IV in a design are fully crossed, so that they all occur for each level of every other IV, we can say
the design is a fully factorial design.

We use a notation system to refer to these designs. The rules for notation are as follows. Each IV get’s it’s own number. The
number of levels in the IV is the number we use for the IV. Let’s look at some examples:

2x2 = There are two IVS, the first IV has two levels, the second IV has 2 levels. There are a total of 4 conditions, 2x2 = 4.

2x3 = There are two IVs, the first IV has two levels, the second IV has three levels. There are a total of 6 conditions, 2x3 = 6

3x2 = There are two IVs, the first IV has three levels, the second IV has two levels. There are a total of 6 conditions, 3x2=6.

4x4 = There are two IVs, the first IV has 4 levels, the second IV has 4 levels. There are a total of 16 condition, 4x4=16

2x3x2 = There are a total of three IVs. The first IV has 2 levels. The second IV has 3 levels. The third IV has 2 levels. There are a
total of 12 condition. 2x3x2 = 12.

2 x 3 designs

Just for fun, let’s illustrate a 2x3 design using the same kinds of tables we looked at before for the 2x2 design.

9.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7940?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/09%3A_Factorial_ANOVA/9.01%3A_Factorial_Basics


9.1.2 https://stats.libretexts.org/@go/page/7940

Figure : Structure of 2x3 factorial design.

All we did was add another row for the second IV. It’s a 2x3 design, so it should have 6 conditions. As you can see there are now 6
cells to measure the DV.

This page titled 9.1: Factorial Basics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump
via source content that was edited to the style and standards of the LibreTexts platform.
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9.2: Purpose of Factorial Designs
Factorial designs let researchers manipulate more than one thing at once. This immediately makes things more complicated,
because as you will see, there are many more details to keep track of. Why would researchers want to make things more
complicated? Why would they want to manipulate more than one IV at a time.
Before we go on, let’s clarify what we mean by manipulating more than one thing at once. When you have one IV in your design,
by definition, you are manipulating only one thing. This might seem confusing at first, because the IV has more than one level, so it
seems to have more than one manipulation. Consider manipulating the number of coffees that people drink before they do a test.
We could have one IV (coffee), with three levels (1, 2, or 3 coffees). You might want to say we have three manipulations here,
drinking 1, 2, or 3 coffees. But, the way we define manipulation is terms of the IV. There is only one coffee IV. It does have three
levels. Nevertheless, we say you are only doing one coffee manipulation. The only thing you are manipulating is the amount of
coffee. That’s just one thing, so it’s called one manipulation. To do another, second manipulation, you need to additionally
manipulate something that is not coffee (like time of day in our previous example).
Returning to our question: why would researchers want to manipulate more than one thing in their experiment. The answer might
be kind of obvious. They want to know if more than one thing causes change in the thing they are measuring! For example, if you
are measuring people’s happiness, you might assume that more than one thing causes happiness to change. If you wanted to track
down how two things caused changes in happiness, then you might want to have two manipulations of two different IVs. This is
not a wrong way to think about the reasons why researchers use factorial designs. They are often interested in questions like this.
However, we think this is an unhelpful way to first learn about factorial designs.
We present a slightly different way of thinking about the usefulness of factorial designs, and we think it is so important, it get’s its
own section.

Factorials manipulate an effect of interest
Here is how researchers often use factorial designs to understand the causal influences behind the effects they are interested in
measuring. Notice we didn’t say the dependent variables they are measuring, we are now talking about something called effects.
Effects are the change in a measure caused by a manipulation. You get an effect, any time one IV causes a change in a DV.
Here is an example. We will stick with this one example for a while, so pay attention… In fact, the example is about paying
attention. Let’s say you wanted to measure something like paying attention. You could something like this:

1. Pick a task for people to do that you can measure. For example, you can measure how well they perform the task. That will be
the dependent measure

2. Pick a manipulation that you think will cause differences in paying attention. For example, we know that people can get
distracted easily when there are distracting things around. You could have two levels for your manipulation: No distraction
versus distraction.

3. Measure performance in the task under the two conditions
4. If your distraction manipulation changes how people perform the task, you may have successfully manipulated how well people

can pay attention in your task.

Spot the difference
Let’s elaborate this with another fake example. First, we pick a task. It’s called spot the difference. You may have played this game
before. You look at two pictures side-by-side, and then you locate as many differences as you can find. here is an example:
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Figure \(\PageIndex{1}\): Spot the differences between the two images.

How many differences can you spot? When you look for the differences, it feels like you are doing something we would call
“paying attention”. If you pay attention to the clock tower, you will see that the hands on the clock are different. Ya! One difference
spotted.
We could give people 30 seconds to find as many differences as they can. Then we give them another set of pictures and do it
again. Every time we will measure how many differences they can spot. So, our measure of performance, our dependent variable,
could be the mean number of differences spotted.

Distraction manipulation
Now, let’s think about a manipulation that might cause differences in how people pay attention. If people need to pay attention to
spot differences, then presumably if we made it difficult to pay attention, people would spot less differences. What is a good way to
distract people? I’m sure there are lots of ways to do this. How about we do the following:

1. No distraction condition: Here people do the task with no added distractions. They sit in front of a computer, in a quiet,
distraction-free room, and find as many differences as they can for each pair of pictures

2. Distraction condition: Here we blast super loud ambulance sounds and fire alarms and heavy metal music while people attempt
to spot differences. We also randomly turn the sounds on and off, and make them super-duper annoying and distracting. We
make sure that the sounds aren’t loud enough to do any physical damage to anybody’s ear-drums. But, we want to make them
loud enough to be super distracting. If you don’t like this, we could also tickle people with a feather, or whisper silly things into
their ears, or surround them by clowns, or whatever we want, it just has to be super distracting.

Distraction effect
If our distraction manipulation is super-distracting, then what should we expect to find when we compare spot-the-difference
performance between the no-distraction and distraction conditions? We should find a difference!
If our manipulation works, then we should find that people find more differences when they are not distracted, and less differences
when they are distracted. For example, the data might look something like this:

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7941?pdf


9.2.3 https://stats.libretexts.org/@go/page/7941

run restart restart & run all

Figure \(\PageIndex{2}\): Example data from pretend experiment showing number of differences spotted in a distraction versus no
distraction condition.

The figure shows a big difference in the mean number of difference spotted. People found 5 differences on average when they were
distracted, and 10 differences when they were not distracted. We labelled the figure, “The distraction effect”, because it shows a big
effect of distraction. The effect of distraction is a mean of 5 spot the differences. It’s the difference between performance in the
Distraction and No-Distraction conditions. In general, it is very common to use the word effect to refer to the differences caused by
the manipulation. We manipulated distraction, it caused a difference, so we call this the “distraction effect”.

Manipulating the Distraction effect
This is where factorial designs come in to play. We have done the hard work of finding an effect of interest, in this case the
distraction effect. We think this distraction effect actually measures something about your ability to pay attention. For example, if
you were the kind of person who had a small distraction effect (maybe you find 10 differences when you are not distracted, and 9
differences when you are distracted), that could mean you are very good at ignoring distracting things while you are paying
attention. On the other hand, you could be the kind of person who had a big distraction effect (maybe you found 10 differences
under no distraction, and only 1 difference when you were distracted); this could mean you are not very good at ignoring
distracting things while you are paying attention.
Overall now, we are thinking of our distraction effect (the difference in performance between the two conditions) as the important
thing we want to measure. We then might want to know how to make people better at ignoring distracting things. Or, we might
want to know what makes people worse at ignoring things. In other words we want to find out what manipulations control the size
of the distraction effect (make it bigger or smaller, or even flip around!).
Maybe there is a special drug that helps you ignore distracting things. People taking this drug should be less distracted, and if they
took this drug while completing our task, they should have a smaller distraction effect compared to people not taking the drug.
Maybe rewarding people with money can help you pay attention and ignore distracting things better. People receiving 5 dollars
every time they spot a difference might be able to focus more because of the reward, and they would show a smaller distraction

library(ggplot2)
df <- data.frame(Distraction = c("No distraction","Distraction"),
                 Mean_diffs = c(10,5))
ggplot(df, aes(x=Distraction, y=Mean_diffs))+
  geom_bar(stat="identity")+
  theme_classic()+
  ylab("Mean differences spotted")+
  xlab("Distraction Condition")+
  ggtitle("The distraction effect")
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effect in our task, compared to people who got no money for finding differences. Let’s see what this would look like.
We are going to add a second IV to our task. The second IV will manipulate reward. In one condition, people will get 5 dollars for
every difference they find (so they could leave the study with lots of money if they find lots of differences). In the other condition,
people will get no money, but they will still have find differences. Remember, this will be a factorial design, so everybody will
have to find differences when they are distracted and when they are not distracted.
The question we are now asking is: Will manipulating reward cause a change in the size of the distraction effect. We could predict
that people receiving rewards will have a smaller distraction effect than people not receiving rewards. If that happened, the data
would look something like this:

run restart restart & run all

Figure \(\PageIndex{3}\): Example data showing how the distraction effect could be modulated by a reward manipulation.
Distraction condition plotted on the x-axis, makes it more difficult to compare the changes in the distraction effect between reward
conditions.

I’ve just shown you a new kind of graph. I apologize right now for showing this to you first. It’s more unhelpful than the next
graph. What I did was keep the x-axis the same as before (to be consistent). So, we have distraction vs. no distraction on the x-axis.
In the distraction condition, there are means for spot-the-difference performance in the no-reward (red), and reward (aqua)
conditions. The same goes for the no-distraction condition, a red and an aqua bar for the no-reward and reward conditions. We can
try to interpret this graph, but the next graph plots the same data in a different way, which makes it easier to see what we are talking
about.

library(ggplot2)
df <- data.frame(Distraction = c("No distraction","Distraction",
                                 "No distraction","Distraction"),
                 Mean_diffs = c(10,5,11,9),
                 Reward = rep(c("No Reward","Reward"),each=2))
ggplot(df, aes(x=Distraction, y=Mean_diffs, group=Reward, fill=Reward))+
  geom_bar(stat="identity", position="dodge")+
  theme_classic()+
  ylab("Mean differences spotted")+
  xlab("Distraction Condition")+
  ggtitle("The distraction effect as a function of reward")
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Figure \(\PageIndex{4}\): Example data showing how the distraction effect could be modulated by a reward manipulation. Reward
condition plotted on the x-axis, makes it easier to compare the changes in the distraction effect between reward conditions.

All we did was change the x-axis. Now the left side of the x-axis is for the no-reward condition, and the right side is for the reward
condition. The red bar is for the distraction condition, and the aqua bar is for the no distraction condition. It is easier to see the
distraction effect in this graph. The distraction effect is the difference in size between the red and aqua bars. For each reward
condition, the red and aqua bars are right beside each other, so can see if there is a difference between them more easily, compared
to the first graph.
No-Reward condition: In the no-reward condition people played spot the difference when they were distracted and when they were
not distracted. This is a replication of our first fake study. We should expect to find the same pattern of results, and that’s what the
graph shows. There was a difference of 5. People found 5 differences when they were distracted and 10 when they were not
distracted. So, there was a distraction effect of 5, same as we had last time.
Reward condition: In the reward condition people played spot the difference when they were distracted and when they were not
distracted. Except, they got 5 dollars every time they spotted a difference. We predicted this would cause people to pay more
attention and do a better job of ignoring distracting things. The graph shows this is what happened. People found 9 differences
when they were distracted and 11 when they were not distracted. So, there was a distraction effect of 2.
If we had conducted this study, we might have concluded that reward can manipulate the distraction effect. When there was no
reward, the size of the distraction effect was 5. When there was reward, the size of the distraction effect was 2. So, the reward
manipulation changed the size of the distraction effect by 3 (5-2 =3).
This is our description of why factorial designs are so useful. They allow researchers to find out what kinds of manipulations can
cause changes in the effects they measure. We measured the distraction effect, then we found that reward causes changes in the
distraction effect. If we were trying to understand how paying attention works, we would then need to explain how it is that reward
levels could causally change how people pay attention. We would have some evidence that reward does cause change in paying

library(ggplot2)
df <- data.frame(Distraction = c("No distraction","Distraction",
                                 "No distraction","Distraction"),
                 Mean_diffs = c(10,5,11,9),
                 Reward = rep(c("No Reward","Reward"),each=2))
ggplot(df, aes(x=Reward, y=Mean_diffs, group=Distraction, fill=Distraction))+
  geom_bar(stat="identity", position="dodge")+
  theme_classic()+
  ylab("Mean differences spotted")+
  xlab("Reward Condition")+
  ggtitle("The distraction effect as a function of reward")
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attention, and we would have to come up with some explanations, and then run more experiments to test whether those
explanations hold water.

This page titled 9.2: Purpose of Factorial Designs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew
J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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9.3: Graphing the means
In our example above we showed you two bar graphs of the very same means for our 2x2 design. Even though the graphs plot
identical means, they look different, so they are more or less easy to interpret by looking at them. Results from 2x2 designs are also
often plotted with line graphs. Those look different too. Here are four different graphs, using bars and lines to plot the very same
means from before. We are showing you this so that you realize how you graph your data matters, and it makes it more or less
easy for people to understand the results. Also, how the data is plotted matters for what you need to look at to interpret the results.

Figure : The same example means plotted using bar graphs or line graphs, and with Distraction or Reward on the x-axis.

This page titled 9.3: Graphing the means is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
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9.4: Knowing what you want to find out
When you conduct a design with more than one IV, you get more means to look at. As a result, there are more kinds of questions
that you can ask of the data. Sometimes it turns out that the questions that you can ask, are not the ones that you want to ask, or
have an interest in asking. Because you ran the design with more than one IV, you have the opportunity to ask these kinds of extra
questions.

What kinds of new things are we talking about? Let’s keep going with our distraction effect experiment. We have the first IV where
we manipulated distraction. So, we could find the overall means in spot-the difference for the distraction vs. no-distraction
conditions (that’s two means). The second IV was reward. We could find the overall means in spot-the-difference performance for
the reward vs. no-reward conditions (that’s two more means). We could do what we already did, and look at the means for each
combination, that is the mean for distraction/reward, distraction/no-reward, no-distraction/reward, and no-distraction/no-reward
(that’s four more means, if you’re counting). There’s even more. We could look at the mean distraction effect (the difference
between distraction and no-distraction) for the reward condition, and the mean distraction effect for the no-reward condition (that’s
two more). I hope you see here that there are a lot of means to look. And they are all different means. Let’s look at all of them
together in one graph with four panels.

Figure : Each panel shows the mean for different effects in the design.

The purpose of showing all of these means is to orient you to your problem. If you conduct a 2x2 design (and this is the most
simple factorial that you can conduct), you will get all of these means. You need to know what you want to know from the means.
That is, you need to be able to connect the research question to the specific means you are interested in analyzing.

For example, in our example, the research question was whether reward would change the size of the distraction effect. The top left
panel gives us some info about this question. We can see all of the condition means, and we can visually see that the distraction
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effect was larger in the No-reward compared to the reward condition. But, to “see” this, we need to do some visual subtraction. You
need to look at the difference between the red and aqua bars for each of the reward and no-reward conditions.

Does the top right panel tell us about whether reward changed the size of the distraction effect? NO, it just shows that there was an
overall distraction effect (this is called the main effect of distraction). Main effects are any differences between the levels of one
independent variable.

Does the bottom left panel tell us about whether reward changed the size of the distraction effect? NO! it just shows that there was
an overall reward effect, called the main effect of reward. People who were rewarded spotted a few more differences than the
people who weren’t, but this doesn’t tell us if they were any less distracted.

Finally, how about the bottom left panel. Does this tell us about whether the reward changed the size of the distraction effect? YES!
Notice, the y-axis is different for this panel. The y-axis here is labelled “Distraction Effect”. You are looking at two difference
scores. The distraction effect in the no-reward condition (10-5 = 5), and the distraction effect in the Reward condition (11-9 = 2).
These two bars are different as a function of reward. So, it looks like reward did produce a difference between the distraction
effects! This was the whole point of the fake study. It is these means that were most important for answering the question of the
study. As a very last point, this panel contains what we call an interaction. We explain this in the next section.

Pro tip: Make sure you know what you want to know from your means before you run the
study, otherwise you will just have way too many means, and you won’t know what they
mean.

This page titled 9.4: Knowing what you want to find out is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
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9.5: Simple analysis of 2x2 repeated measures design
Normally in a chapter about factorial designs we would introduce you to Factorial ANOVAs, which are totally a thing. We will
introduce you to them soon. But, before we do that, we are going to show you how to analyze a 2x2 repeated measures ANOVA
design with paired-samples t-tests. This is probably something you won’t do very often. However, it turns out the answers you get
from this method are the same ones you would get from an ANOVA.
Admittedly, if you found the explanation of ANOVA complicated, it will just appear even more complicated for factorial designs.
So, our purpose here is to delay the complication, and show you with t-tests what it is that the Factorial ANOVA is doing. More
important, when you do the analysis with t-tests, you have to be very careful to make all of the comparisons in the right way. As a
result, you will get some experience learning how to know what it is you want to know from factorial designs. Once you know
what you want to know, you can use the ANOVA to find out the answers, and then you will also know what answers to look for
after you run the ANOVA. Isn’t new knowledge fun!
The first thing we need to do is define main effects and interactions. Whenever you conduct a Factorial design, you will also have
the opportunity to analyze main effects and interactions. However, the number of main effects and interactions you get to analyse
depends on the number of IVs in the design.

Main effects
Formally, main effects are the mean differences for a single Independent variable. There is always one main effect for each IV. A
2x2 design has 2 IVs, so there are two main effects. In our example, there is one main effect for distraction, and one main effect for
reward. We will often ask if the main effect of some IV is significant. This refers to a statistical question: Were the differences
between the means for that IV likely or unlikely to be caused by chance (sampling error).
If you had a 2x2x2 design, you would measure three main effects, one for each IV. If you had a 3x3x3 design, you would still only
have 3 IVs, so you would have three main effects.

Interaction
We find that the interaction concept is one of the most confusing concepts for factorial designs. Formally, we might say an
interaction occurs whenever the effect of one IV has an influence on the size of the effect for another IV. That’s probably not very
helpful. In more concrete terms, using our example, we found that the reward IV had an effect on the size of the distraction effect.
The distraction effect was larger when there was no-reward, and it was smaller when there was a reward. So, there was an
interaction.
We might also say an interaction occurs when the difference between the differences are different! Yikes. Let’s explain. There was
a difference in spot-the-difference performance between the distraction and no-distraction condition, this is called the distraction
effect (it is a difference measure). The reward manipulation changed the size of the distraction effect, that means there was
difference in the size of the distraction effect. The distraction effect is itself a measure of differences. So, we did find that the
difference (in the distraction effect) between the differences (the two measures of the distraction effect between the reward
conditions) were different. When you start to write down explanations of what interactions are, you find out why they come across
as complicated. We’ll leave our definition of interaction like this for now. Don’t worry, we’ll go through lots of examples to help
firm up this concept for you.
The number of interactions in the design also depend on the number of IVs. For a 2x2 design there is only 1 interaction. The
interaction between IV1 and IV2. This occurs when the effect of say IV2 (whether there is a difference between the levels of IV2)
changes across the levels of IV1. We could write this in reverse, and ask if the effect of IV1 (whether there is a difference between
the levels of IV1) changes across the levels of IV2. However, just because we can write this two ways, does not mean there are two
interactions. We’ll see in a bit, that no matter how do the calculation to see if the difference scores–measure of effect for one IV–
change across the levels of the other IV, we always get the same answer. That is why there is only one interaction for a 2x2.
Similarly, there is only one interaction for a 3x3, because there again we only have two IVs (each with three levels). Only when we
get up to designs with more than 2 IVs, do we find more possible interactions. A design with three IVS, has four interactions. If the
IVs are labelled A, B, and C, then we have three 2-way interactions (AB, AC, and BC), and one three-way interaction (ABC). We
hold off on this stuff for much later.

Looking at the data
It is most helpful to see some data in order to understand how we will analyze it. Let’s imagine we ran our fake attention study. We
will have five people in the study, and they will participate in all conditions, so it will be a fully repeated-measures design. The data
could look like this:
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No Reward Reward

No Distraction Distraction No Distraction Distraction

subject A B C D

No Reward Reward

No Distraction Distraction No Distraction Distraction

subject A B C D

1 10 5 12 9

2 8 4 13 8

3 11 3 14 10

4 9 4 11 11

5 10 2 13 12

Note: Number of differences spotted for each subject in each condition.

Main effect of Distraction
The main effect of distraction compares the overall means for all scores in the no-distraction and distraction conditions, collapsing
over the reward conditions.
The yellow columns show the no-distraction scores for each subject. The blue columns show the distraction scores for each subject.
The overall means for for each subject, for the two distraction conditions are shown to the right. For example, subject 1 had a 10
and 12 in the no-distraction condition, so their mean is 11.
We are interested in the main effect of distraction. This is the difference between the AC column (average of subject scores in the
no-distraction condition) and the BD column (average of the subject scores in the distraction condition). These differences for each
subjecct are shown in the last green column. The overall means, averaging over subjects are in the bottom green row.

Just looking at the means, we can see there was a main effect of Distraction, the mean for the no-distraction condition was 11.1,
and the mean for the distraction condition was 6.8. The size of the main effect was 4.3 (the difference between 11.1 and 6.8).
Now, what if we wanted to know if this main effect of distraction (the difference of 4.3) could have been caused by chance, or
sampling error. You could do two things. You could run a paired samples \(t\)-test between the mean no-distraction scores for each
subject (column AC) and the mean distraction scores for each subject (column BD). Or, you could run a one-sample \(t\)-test on the
difference scores column, testing against a mean difference of 0. Either way you will get the same answer.
Here’s the paired samples version:

A <- c(10,8,11,9,10)  #nD_nR
B  <- c(5,4,3,4,2)  #D_nR
C <- c(12,13,14,11,13)  #nD_R
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run restart restart & run all

Here’s the one sample version:

run restart restart & run all

If we were to write-up our results for the main effect of distraction we could say something like this:
The main effect of distraction was significant, \(t\)(4) = 7.66, \(p\) = 0.001. The mean number of differences spotted was higher in
the no-distraction condition (M = 11.1) than the distraction condition (M = 6.8).

Main effect of Reward
The main effect of reward compares the overall means for all scores in the no-reward and reward conditions, collapsing over the
reward conditions.
The yellow columns show the no-reward scores for each subject. The blue columns show the reward scores for each subject.

 Paired t-test 
 
data:  AC and BD 
t = 7.6615, df = 4, p-value = 0.00156 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 2.741724 5.858276 
sample estimates: 
mean of the differences  
                    4.3  

 One Sample t-test 
 
data:  AC - BD 
t = 7.6615, df = 4, p-value = 0.00156 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 2.741724 5.858276 
sample estimates: 
mean of x  
      4.3  

D  <- c(9,8,10,11,12)  #D_R
AC<- (A+C)/2 
BD<- (B+D)/2
t.test(AC,BD, paired=TRUE,var.equal=TRUE)

A <- c(10,8,11,9,10)  #nD_nR
B  <- c(5,4,3,4,2)  #D_nR
C <- c(12,13,14,11,13)  #nD_R
D  <- c(9,8,10,11,12)  #D_R
AC<- (A+C)/2 
BD<- (B+D)/2
t.test(AC-BD, mu=0)
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The overall means for for each subject, for the two reward conditions are shown to the right. For example, subject 1 had a 10 and 5
in the no-reward condition, so their mean is 7.5.
We are interested in the main effect of reward. This is the difference between the AB column (average of subject scores in the no-
reward condition) and the CD column (average of the subject scores in the reward condition). These differences for each subjecct
are shown in the last green column. The overall means, averaging over subjects are in the bottom green row.

Just looking at the means, we can see there was a main effect of reward. The mean number of differences spotted was 11.3 in the
reward condition, and 6.6 in the no-reward condition. So, the size of the main effectd of reward was 4.7.
Is a difference of this size likely o unlikey due to chance? We could conduct a paired-samples \(t\)-test on the AB vs. CD means, or
a one-sample \(t\)-test on the difference scores. They both give the same answer:
Here’s the paired samples version:

run restart restart & run all

Here’s the one sample version:

 Paired t-test 
 
data:  CD and AB 
t = 8.3742, df = 4, p-value = 0.001112 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 3.141724 6.258276 
sample estimates: 
mean of the differences  
                    4.7  

A <- c(10,8,11,9,10)  #nD_nR
B  <- c(5,4,3,4,2)  #D_nR
C <- c(12,13,14,11,13)  #nD_R
D  <- c(9,8,10,11,12)  #D_R
AB<- (A+B)/2 
CD<- (C+D)/2
t.test(CD,AB, paired=TRUE,var.equal=TRUE)
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run restart restart & run all

If we were to write-up our results for the main effect of reward we could say something like this:
The main effect of reward was significant, t(4) = 8.37, p = 0.001. The mean number of differences spotted was higher in the reward
condition (M = 11.3) than the no-reward condition (M = 6.6).

Interaction between Distraction and Reward
Now we are ready to look at the interaction. Remember, the whole point of this fake study was what? Can you remember?
Here’s a reminder. We wanted to know if giving rewards versus not would change the size of the distraction effect.
Notice, neither the main effect of distraction, or the main effect of reward, which we just went through the process of computing,
answers this question.
In order to answer the question we need to do two things. First, compute distraction effect for each subject when they were in the
no-reward condition. Second, compute the distraction effect for each subject when they were in the reward condition.
Then, we can compare the two distraction effects and see if they are different. The comparison between the two distraction effects
is what we call the interaction effect. Remember, this is a difference between two difference scores. We first get the difference
scores for the distraction effects in the no-reward and reward conditions. Then we find the difference scores between the two
distraction effects. This difference of differences is the interaction effect (green column in the table)

 One Sample t-test 
 
data:  CD - AB 
t = 8.3742, df = 4, p-value = 0.001112 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 3.141724 6.258276 
sample estimates: 
mean of x  
      4.7  

A <- c(10,8,11,9,10)  #nD_nR
B  <- c(5,4,3,4,2)  #D_nR
C <- c(12,13,14,11,13)  #nD_R
D  <- c(9,8,10,11,12)  #D_R
AB<- (A+B)/2 
CD<- (C+D)/2
t.test(CD-AB, mu=0)
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The mean distraction effects in the no-reward (6) and reward (2.6) conditions were different. This difference is the interaction
effect. The size of the interaction effect was 3.4.
How can we test whether the interaction effect was likely or unlikely due to chance? We could run another paired-sample \(t\)-test
between the two distraction effect measures for each subject, or a one sample \(t\)-test on the green column (representing the
difference between the differences). Both of these \(t\)-tests will give the same results:
Here’s the paired samples version:

run restart restart & run all

Here’s the one sample version:

 Paired t-test 
 
data:  A_B and C_D 
t = 2.493, df = 4, p-value = 0.06727 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -0.3865663  7.1865663 
sample estimates: 
mean of the differences  
                    3.4  

A <- c(10,8,11,9,10)  #nD_nR
B  <- c(5,4,3,4,2)  #D_nR
C <- c(12,13,14,11,13)  #nD_R
D  <- c(9,8,10,11,12)  #D_R
A_B <- A-B
C_D <- C-D
t.test(A_B,C_D, paired=TRUE,var.equal=TRUE)

A <- c(10,8,11,9,10)  #nD_nR
B  <- c(5,4,3,4,2)  #D_nR
C <- c(12,13,14,11,13)  #nD_R
D  <- c(9,8,10,11,12)  #D_R
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run restart restart & run all

Oh look, the interaction was not significant. At least, if we had set our alpha criterion to 0.05, it would not have met that criteria.
We could write up the results like this. The two-way interaction between between distraction and reward was not significant, \(t\)(4)
= 2.493, \(p\) = 0.067.
Often times when a result is “not significant” according to the alpha criteria, the pattern among the means is not described further.
One reason for this practice is that the researcher is treating the means as if they are not different (because there was an above alpha
probability that the observed idfferences were due to chance). If they are not different, then there is no pattern to report.
There are differences in opinion among reasonable and expert statisticians on what should or should not be reported. Let’s say we
wanted to report the observed mean differences, we would write something like this:
The two-way interaction between between distraction and reward was not significant, t(4) = 2.493, p = 0.067. The mean distraction
effect in the no-reward condition was 6 and the mean distraction effect in the reward condition was 2.6.

Writing it all up
We have completed an analysis of a 2x2 repeated measures design using paired-samples \(t\)-tests. Here is what a full write-up of
the results could look like.
The main effect of distraction was significant, \(t\)(4) = 7.66, \(p\) = 0.001. The mean number of differences spotted was higher in
the no-distraction condition (M = 11.1) than the distraction condition (M = 6.8).
The main effect of reward was significant, \(t\)(4) = 8.37, \(p\) = 0.001. The mean number of differences spotted was higher in the
reward condition (M = 11.3) than the no-reward condition (M = 6.6).
The two-way interaction between between distraction and reward was not significant, \(t\)(4) = 2.493, \(p\) = 0.067. The mean
distraction effect in the no-reward condition was 6 and the mean distraction effect in the reward condition was 2.6.
Interim Summary. We went through this exercise to show you how to break up the data into individual comparisons of interest.
Generally speaking, a 2x2 repeated measures design would not be anlayzed with three paired-samples \(t\)-test. This is because it is
more convenient to use the repeated measures ANOVA for this task. We will do this in a moment to show you that they give the
same results. And, by the same results, what we will show is that the \(p\)-values for each main effect, and the interaction, are the
same. The ANOVA will give us \(F\)-values rather than \(t\) values. It turns out that in this situation, the \(F\)-values are related to
the \(t\) values. In fact, \(t^2 = F\).

2x2 Repeated Measures ANOVA
We just showed how a 2x2 repeated measures design can be analyzed using paired-sampled \(t\)-tests. We broke up the analysis
into three parts. The main effect for distraction, the main effect for reward, and the 2-way interaction between distraction and
reward. We claimed the results of the paired-samples \(t\)-test analysis would mirror what we would find if we conducted the
analysis using an ANOVA. Let’s show that the results are the same. Here are the results from the 2x2 repeated-measures ANOVA,
using the aov  function in R.

 One Sample t-test 
 
data:  A_B - C_D 
t = 2.493, df = 4, p-value = 0.06727 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 -0.3865663  7.1865663 
sample estimates: 
mean of x  
      3.4  

A_B <- A-B
C_D <- C-D
t.test(A_B-C_D, mu=0)

library(xtable)
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run restart restart & run all

Df Sum Sq Mean Sq F value Pr(>F)

Distraction 1 92.45 92.450 58.698413
F)" style="vertical-

align:middle;">0.00
15600

Distraction:Reward 1 14.45 14.450 6.215054
F)" style="vertical-

align:middle;">0.06
72681

Residuals 4 3.70 0.925 NA
F)" style="vertical-
align:middle;">NA

Residuals 4 6.30 1.575 NA
F)" style="vertical-
align:middle;">NA

Residuals 4 9.30 2.325 NA
F)" style="vertical-
align:middle;">NA

Residuals1 4 6.30 1.575 NA
F)" style="vertical-
align:middle;">NA

Reward 1 110.45 110.450 70.126984
F)" style="vertical-

align:middle;">0.00
11122

Let’s compare these results with the paired-samples \(t\)-tests.
Main effect of Distraction: Using the paired samples \(t\)-test, we found \(t\)(4) =7.6615, \(p\)=0.00156. Using the ANOVA we
found, \(F\)(1,4) = 58.69, \(p\)=0.00156. See, the \(p\)-values are the same, and \(t^2 = 7.6615^2 = 58.69 = F\).
Main effect of Reward: Using the paired samples \(t\)-test, we found \(t\)(4) =8.3742, \(p\)=0.001112. Using the ANOVA we found,
\(F\)(1,4) = 70.126, \(p\)=0.001112. See, the \(p\)-values are the same, and \(t^2 = 8.3742^2 = 70.12 = F\).
Interaction effect: Using the paired samples \(t\)-test, we found \(t\)(4) =2.493, \(p\)=0.06727. Using the ANOVA we found, \(F\)
(1,4) = 6.215, \(p\)=0.06727. See, the \(p\)-values are the same, and \(t^2 = 2.493^2 = 6.215 = F\).
There you have it. The results from a 2x2 repeated measures ANOVA are the same as you would get if you used paired-samples \
(t\)-tests for the main effects and interactions.

This page titled 9.5: Simple analysis of 2x2 repeated measures design is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

A <- c(10,8,11,9,10)  #nD_nR
B  <- c(5,4,3,4,2)  #D_nR
C <- c(12,13,14,11,13)  #nD_R
D  <- c(9,8,10,11,12)  #D_R
Number_spotted <- c(A, B, C, D)
Distraction    <- rep(rep(c("No Distraction", "Distraction"), each=5),2)
Reward         <- rep(c("No Reward","Reward"),each=10)
Subjects       <- rep(1:5,4)
Distraction <- as.factor(Distraction)
Reward      <- as.factor(Reward)
Subjects    <- as.factor(Subjects)
rm_df <- data.frame(Subjects, Distraction, Reward, Number_spotted)
aov_summary <- summary(aov(Number_spotted~Distraction*Reward +
                             Error(Subjects/(Distraction*Reward)), 
                           rm_df))
knitr::kable(xtable(aov_summary))
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9.6: 2x2 Between-subjects ANOVA
You must be wondering how to calculate a 2x2 ANOVA. We haven’t discussed this yet. We’ve only shown you that you don’t have
to do it when the design is a 2x2 repeated measures design (note this is a special case).
We are now going to work through some examples of calculating the ANOVA table for 2x2 designs. We will start with the
between-subjects ANOVA for 2x2 designs. We do essentially the same thing that we did before (in the other ANOVAs), and the
only new thing is to show how to compute the interaction effect.
Remember the logic of the ANOVA is to partition the variance into different parts. The SS formula for the between-subjects 2x2
ANOVA looks like this:

In the following sections we use tables to show the calculation of each SS. We use the same example as before with the exception
that we are turning this into a between-subjects design. There are now 5 different subjects in each condition, for a total of 20
subjects. As a result, we remove the subjects column.

SS Total
We calculate the grand mean (mean of all of the score). Then, we calculate the differences between each score and the grand mean.
We square the difference scores, and sum them up. That is , reported in the bottom yellow row.

SS Distraction
We need to compute the SS for the main effect for distraction. We calculate the grand mean (mean of all of the scores). Then, we
calculate the means for the two distraction conditions. Then we treat each score as if it was the mean for it’s respective distraction
condition. We find the differences between each distraction condition mean and the grand mean. Then we square the differences
and sum them up. That is , reported in the bottom yellow row.

S = S +S +S +SS

Total

S

Effect IV1

S

Effect IV2

S

Effect IV1xIV2

S

Error

SS

Total

SS

Distraction
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These tables are a lot to look at! Notice here, that we first found the grand mean (8.95). Then we found the mean for all the scores
in the no-distraction condition (columns A and C), that was 11.1. All of the difference scores for the no-distraction condition are
11.1-8.95 = 2.15. We also found the mean for the scores in the distraction condition (columns B and D), that was 6.8. So, all of the
difference scores are 6.8-8.95 = -2.15. Remember, means are the balancing point in the data, this is why the difference scores are
+2.15 and -2.15. The grand mean 8.95 is in between the two condition means (11.1 and 6.8), by a difference of 2.15.

SS Reward
We need to compute the SS for the main effect for reward. We calculate the grand mean (mean of all of the scores). Then, we
calculate the means for the two reward conditions. Then we treat each score as if it was the mean for it’s respective reward
condition. We find the differences between each reward condition mean and the grand mean. Then we square the differences and
sum them up. That is , reported in the bottom yellow row.SS

Reward
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Now we treat each no-reward score as the mean for the no-reward condition (6.6), and subtract it from the grand mean (8.95), to
get -2.35. Then, we treat each reward score as the mean for the reward condition (11.3), and subtract it from the grand mean (8.95),
to get +2.35. Then we square the differences and sum them up.

SS Distraction by Reward
We need to compute the SS for the interaction effect between distraction and reward. This is the new thing that we do in an
ANOVA with more than one IV. How do we calculate the variation explained by the interaction?
The heart of the question is something like this. Do the individual means for each of the four conditions do something a little bit
different than the group means for both of the independent variables.
For example, consider the overall mean for all of the scores in the no reward group, we found that to be 6.6 Now, was the mean for
each no-reward group in the whole design a 6.6? For example, in the no-distraction group, was the mean for column A (the no-
reward condition in that group) also 6.6? The answer is no, it was 9.6. How about the distraction group? Was the mean for the
reward condition in the distraction group (column B) 6.6? No, it was 3.6. The mean of 9.6 and 3.6 is 6.6. If there was no hint of an
interaction, we would expect that the means for the reward condition in both levels of the distraction group would be the same, they
would both be 6.6. However, when there is an interaction, the means for the reward group will depend on the levels of the group
from another IV. In this case, it looks like there is an interaction because the means are different from 6.6, they are 9.6 and 3.6 for
the no-distraction and distraction conditions. This is extra-variance that is not explained by the mean for the reward condition. We
want to capture this extra variance and sum it up. Then we will have measure of the portion of the variance that is due to the
interaction between the reward and distraction conditions.
What we will do is this. We will find the four condition means. Then we will see how much additional variation they explain
beyond the group means for reward and distraction. To do this we treat each score as the condition mean for that score. Then we
subtract the mean for the distraction group, and the mean for the reward group, and then we add the grand mean. This gives us the
unique variation that is due to the interaction. We could also say that we are subtracting each condition mean from the grand mean,
and then adding back in the distraction mean and the reward mean, that would amount to the same thing, and perhaps make more
sense.
Here is a formula to describe the process for each score:

Or we could write it this way:

− − +X

¯

condition

X

¯

IV1

X

¯

IV2

X

¯

Grand Mean
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When you look at the following table, we apply this formula to the calculation of each of the differences scores. We then square the
difference scores, and sum them up to get , which is reported in the bottom yellow row.

SS Error
The last thing we need to find is the SS Error. We can solve for that because we found everything else in this formula:

Even though this textbook meant to explain things in a step by step way, we guess you are tired from watching us work out the 2x2
ANOVA by hand. You and me both, making these tables was a lot of work. We have already shown you how to compute the SS for
error before, so we will not do the full example here. Instead, we solve for SS Error using the numbers we have already obtained.

Check your work
We are going to skip the part where we divide the SSes by their dfs to find the MSEs so that we can compute the three -values.
Instead, if we have done the calculations of the es correctly, they should be same as what we would get if we used R to calculate
the es. Let’s make R do the work, and then compare to check our work.

− + +X

¯

condition

X

¯

Grand Mean

X

¯

IV1

X

¯

IV2

SS

Interaction

S = S +S +S +SS

Total

S

Effect IV1

S

Effect IV2

S

Effect IV1xIV2

S

Error

SS

Error

= S −S −S −SS

Total

S

Effect IV1

S

Effect IV2

S

Effect IV1xIV2

= 242.95 −92.45 −110.45 −14.45

= 25.6

F

SS

SS

library(xtable)
A <- c(10,8,11,9,10)  #nD_nR
B  <- c(5,4,3,4,2)  #D_nR
C <- c(12,13,14,11,13)  #nD_R
D  <- c(9,8,10,11,12)  #D_R
Number_spotted <- c(A, B, C, D)
Distraction    <- rep(rep(c("No Distraction", "Distraction"), each=5),2)
Reward         <- rep(c("No Reward","Reward"),each=10)
Distraction <- as.factor(Distraction)
Reward      <- as.factor(Reward)
all_df <- data.frame(Distraction, Reward, Number_spotted)
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run restart restart & run all

Df Sum Sq Mean Sq F value Pr(>F)

Distraction 1 92.45 92.45 57.78125
F)" style="vertical-

align:middle;">0.00
00011

Reward 1 110.45 110.45 69.03125
F)" style="vertical-

align:middle;">0.00
00003

Distraction:Reward 1 14.45 14.45 9.03125
F)" style="vertical-

align:middle;">0.00
83879

Residuals 16 25.60 1.60 NA
F)" style="vertical-
align:middle;">NA

A quick look through the column Sum Sq  shows that we did our work by hand correctly. Congratulations to us! Note, this is not
the same results as we had before with the repeated measures ANOVA. We conducted a between-subjects design, so we did not get
to further partition the SS error into a part due to subject variation and a left-over part. We also gained degrees of freedom in the
error term. It turns out with this specific set of data, we find p-values of less than 0.05 for all effects (main effects and the
interaction, which was not less than 0.05 using the same data, but treating it as a repeated-measures design)

This page titled 9.6: 2x2 Between-subjects ANOVA is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

aov_summary <- summary(aov(Number_spotted~Distraction*Reward, all_df))
knitr::kable(xtable(aov_summary))
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9.7: Fireside chat
Sometimes it’s good to get together around a fire and have a chat. Let’s pretend we’re sitting around a fire.

It’s been a long day. A long couple of weeks and months since we started this course on statistics. We just went through the most
complicated things we have done so far. This is a long chapter. What should we do next?

Here’s a couple of options. We could work through, by hand, more and more ANOVAs. Do you want to do that? I don’t, making
these tables isn’t too bad, but it takes a lot of time. It’s really good to see everything that we do laid bare in the table form a few
times. We’ve done that already. It’s really good for you to attempt to calculate an ANOVA by hand at least once in your life. It
builds character. It helps you know that you know what you are doing, and what the ANOVA is doing. We can’t make you do this,
we can only make the suggestion. If we keep doing these by hand, it is not good for us, and it is not you doing them by hand. So,
what are the other options.

The other options are to work at a slightly higher level. We will discuss some research designs, and the ANOVAs that are
appropriate for their analysis. We will conduct the ANOVAs using R, and print out the ANOVA tables. This is what you do in the
lab, and what most researchers do. They use software most of the time to make the computer do the work. Because of this, it is
most important that you know what the software is doing. You can make mistakes when telling software what to do, so you need to
be able to check the software’s work so you know when the software is giving you wrong answers. All of these skills are built up
over time through the process of analyzing different data sets. So, for the remainder of our discussion on ANOVAs we stick to that
higher level. No more monster tables of SSes. You are welcome.

This page titled 9.7: Fireside chat is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via
source content that was edited to the style and standards of the LibreTexts platform.
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9.8: Real Data
Let’s go through the process of looking at a 2x2 factorial design in the wild. This will be the very same data that you will analyze in
the lab for factorial designs.

Stand at attention
Do you pay more attention when you are sitting or standing? This was the kind of research question the researchers were asking in
the study we will look at. In fact, the general question and design is very similar to our fake study idea that we used to explain
factorial designs in this chapter.
The paper we look at is called “Stand by your Stroop: Standing up enhances selective attention and cognitive control” (Rosenbaum,
Mama, and Algom 2017). This paper asked whether sitting versus standing would influence a measure of selective attention, the
ability to ignore distracting information.
They used a classic test of selective attention, called the Stroop effect. You may already know what the Stroop effect is. In a typical
Stroop experiment, subjects name the color of words as fast as they can. The trick is that sometimes the color of the word is the
same as the name of the word, and sometimes it is not. Here are some examples:

Figure \(\PageIndex{1}\): Examples of congruent and incongruent Stroop stimuli. The task is to name the color, not the word.

Congruent trials occur when the color and word match. So, the correct answers for each of the congruent stimuli shown would be to
say, red, green, blue and yellow. Incongruent trials occur when the color and word mismatch. The correct answers for each of the
incongruent stimuli would be: blue, yellow, red, green.
The Stroop effect is an example of a well-known phenomena. What happens is that people are faster to name the color of the
congruent items compared to the color of the incongruent items. This difference (incongruent reaction time - congruent reaction
time) is called the Stroop effect.
Many researchers argue that the Stroop effect measures something about selective attention, the ability to ignore distracting
information. In this case, the target information that you need to pay attention to is the color, not the word. For each item, the word
is potentially distracting, it is not information that you are supposed to respond to. However, it seems that most people can’t help
but notice the word, and their performance in the color-naming task is subsequently influenced by the presence of the distracting
word.
People who are good at ignoring the distracting words should have small Stroop effects. They will ignore the word, and it won’t
influence them very much for either congruent or incongruent trials. As a result, the difference in performance (the Stroop effect)
should be fairly small (if you have “good” selective attention in this task). People who are bad at ignoring the distracting words
should have big Stroop effects. They will not ignore the words, causing them to be relatively fast when the word helps, and
relatively slow when the word mismatches. As a result, they will show a difference in performance between the incongruent and
congruent conditions.
If we take the size of the Stroop effect as a measure of selective attention, we can then start wondering what sorts of things improve
selective attention (e.g., that make the Stroop effect smaller), and what kinds of things impair selective attention (e.g., make the
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Stroop effect bigger).
The research question of this study was to ask whether standing up improves selective attention compared to sitting down. They
predicted smaller Stroop effects when people were standing up and doing the task, compared to when they were sitting down and
doing the task.
The design of the study was a 2x2 repeated-measures design. The first IV was congruency (congruent vs incongruent). The second
IV was posture (sitting vs. standing). The DV was reaction time to name the word.

Plot the data
They had subjects perform many individual trials responding to single Stroop stimuli, both congruent and incongruent. And they
had subjects stand up sometimes and do it, and sit-down sometimes and do it. Here is a graph of what they found:
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run restart restart & run all

Figure \(\PageIndex{2}\): Means from Rosenbaum et al (2017).

The figure shows the means. We can see that Stroop effects were observed in both the sitting position and the standing position. In
the sitting position, mean congruent RTs were shorter than mean incongruent RTs (the red bar is lower than the aqua bar). The same
general pattern is observed for the standing position. However, it does look as if the Stroop effect is slightly smaller in the stand
condition: the difference between the red and aqua bars is slightly smaller compared to the difference when people were sitting.

Conduct the ANOVA
Let’s conduct a 2x2 repeated measures ANOVA on the data to evaluate whether the differences in the means are likely or unlikely
to be due to chance. The ANOVA will give us main effects for congruency and posture (the two IVs), as well as one interaction

library(data.table)
library(ggplot2)
suppressPackageStartupMessages(library(dplyr))
stroop_data<-fread(
  "https://stats.libretexts.org/@api/deki/files/11081/stroop_stand.csv")
RTs <- c(as.numeric(unlist(stroop_data[,1])),
         as.numeric(unlist(stroop_data[,2])),
         as.numeric(unlist(stroop_data[,3])),
         as.numeric(unlist(stroop_data[,4]))
         )
Congruency <- rep(rep(c("Congruent","Incongruent"),each=50),2)
Posture <- rep(c("Stand","Sit"),each=100)
Subject <- rep(1:50,4)
stroop_df <- data.frame(Subject,Congruency,Posture,RTs)
plot_df <- stroop_df %>%
            dplyr::group_by(Congruency,Posture) %>%
            dplyr::summarise(mean_RT = mean(RTs),
                      SEM = sd(RTs)/sqrt(length(RTs)),
                      .groups='drop_last')
ggplot(plot_df, aes(x=Posture, y=mean_RT, group=Congruency,
                    fill=Congruency))+
  geom_bar(stat="identity", position="dodge")+
  theme_classic()+
  coord_cartesian(ylim=c(700,1000))

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/16822?pdf


9.8.4 https://stats.libretexts.org/@go/page/16822

effect to evaluate (congruency X posture). Remember, the interaction effect tells us whether the congruency effect changes across
the levels of the posture manipulation.

run restart restart & run all

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 49 2250738.636 45933.4416 NA
F)" style="vertical-
align:middle;">NA

Congruency 1 576821.635 576821.6349 342.452244
F)" style="vertical-

align:middle;">0.00
00000

Residuals 49 82534.895 1684.3856 NA
F)" style="vertical-
align:middle;">NA

Posture 1 32303.453 32303.4534 7.329876
F)" style="vertical-

align:middle;">0.00
93104

Residuals1 49 215947.614 4407.0942 NA
F)" style="vertical-
align:middle;">NA

Congruency:Posture 1 6560.339 6560.3389 8.964444
F)" style="vertical-

align:middle;">0.00
43060

Residuals 49 35859.069 731.8177 NA
F)" style="vertical-
align:middle;">NA

Main effect of Congruency
Let’s talk about each aspect of the ANOVA table, one step at a time. First, we see that there was a significant main effect of
congruency, \(F\)(1, 49) = 342.45, \(p\) < 0.001. The \(F\) value is extremely large, and the \(p\)-value is so small it reads as a zero.
This \(F\)-value basically never happens by sampling error. We can be very confident that the overall mean difference between
congruent and incongruent RTs was not caused by sampling error.

library(data.table)
library(xtable)
suppressPackageStartupMessages(library(dplyr))
stroop_data<-fread(
  "https://stats.libretexts.org/@api/deki/files/11081/stroop_stand.csv")
RTs <- c(as.numeric(unlist(stroop_data[,1])),
         as.numeric(unlist(stroop_data[,2])),
         as.numeric(unlist(stroop_data[,3])),
         as.numeric(unlist(stroop_data[,4]))
         )
Congruency <- rep(rep(c("Congruent","Incongruent"),each=50),2)
Posture <- rep(c("Stand","Sit"),each=100)
Subject <- rep(1:50,4)
stroop_df <- data.frame(Subject,Congruency,Posture,RTs)
 
stroop_df$Subject <- as.factor(stroop_df$Subject)
aov_summary <- summary(aov(RTs~Congruency*Posture +
                             Error(Subject/(Congruency*Posture)), 
                           stroop_df))
knitr::kable(xtable(aov_summary))
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What were the overall mean differences between mean RTs in the congruent and incongruent conditions? We would have to look at
thos means to find out. Here’s a table:

run restart restart & run all

Congruency mean_rt sd SEM

Congruent 814.9415 111.3193 11.13193

Incongruent 922.3493 118.7960 11.87960

The table shows the mean RTs, standard deviation (sd), and standard error of the mean for each condition. These means show that
there was a Stroop effect. Mean incongruent RTs were slower (larger number in milliseconds) than mean congruent RTs. The main
effect of congruency is important for establishing that the researchers were able to measure the Stroop effect. However, the main
effect of congruency does not say whether the size of the Stroop effect changed between the levels of the posture variable. So, this
main effect was not particularly important for answering the specific question posed by the study.

Main effect of Posture
There was also a main effect of posture, \(F\)(1,49) = 7.329, \(p\) =0.009.
Let’s look at the overall means for the sitting and standing conditions and see what this is all about:

library(data.table)
library(xtable)
suppressPackageStartupMessages(library(dplyr))
stroop_data<-fread(
  "https://stats.libretexts.org/@api/deki/files/11081/stroop_stand.csv")
RTs <- c(as.numeric(unlist(stroop_data[,1])),
         as.numeric(unlist(stroop_data[,2])),
         as.numeric(unlist(stroop_data[,3])),
         as.numeric(unlist(stroop_data[,4]))
         )
Congruency <- rep(rep(c("Congruent","Incongruent"),each=50),2)
Posture <- rep(c("Stand","Sit"),each=100)
Subject <- rep(1:50,4)
stroop_df <- data.frame(Subject,Congruency,Posture,RTs)
 
congruency_means <- stroop_df %>%
                      group_by(Congruency) %>%
                      summarise(mean_rt = mean(RTs),
                                sd = sd(RTs),
                                SEM = sd(RTs)/sqrt(length(RTs)))
knitr::kable(congruency_means)

library(data.table)
library(xtable)
suppressPackageStartupMessages(library(dplyr))
stroop_data<-fread(
  "https://stats.libretexts.org/@api/deki/files/11081/stroop_stand.csv")
RTs <- c(as.numeric(unlist(stroop_data[,1])),
         as.numeric(unlist(stroop_data[,2])),
         as.numeric(unlist(stroop_data[,3])),
         as.numeric(unlist(stroop_data[,4]))
         )
Congruency <- rep(rep(c("Congruent","Incongruent"),each=50),2)
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run restart restart & run all

Posture mean_rt sd SEM

Sit 881.3544 135.3842 13.53842

Stand 855.9365 116.9436 11.69436

Remember, the posture main effect collapses over the means in the congruency condition. We are not measuring a Stroop effect
here. We are measuring a general effect of sitting vs standing on overall reaction time. The table shows that people were a little
faster overall when they were standing, compared to when they were sitting.
Again, the main effect of posture was not the primary effect of interest. The authors weren’t interested if people are in general
faster when they stand. They wanted to know if their selective attention would improve when they stand vs when they sit. They
were most interested in whether the size of the Stroop effect (difference between incongruent and congruent performance) would
be smaller when people stand, compared to when they sit. To answer this question, we need to look at the interaction effect.

Congruency X Posture Interaction
Last, there was a significant congruency X posture interaction, \(F\)(1,49) = 8.96, \(p\) = 0.004.
With this information, and by looking at the figure, we can get a pretty good idea of what this means. We know the size of the
Stroop effect must have been different between the standing and sitting conditions, otherwise we would have gotten a smaller \(F\)-
value and a much larger \(p\)-value.
We can see from the figure the direction of this difference, but let’s look at the table to see the numbers more clearly.

Posture <- rep(c("Stand","Sit"),each=100)
Subject <- rep(1:50,4)
stroop_df <- data.frame(Subject,Congruency,Posture,RTs)
 
posture_means <- stroop_df %>%
                      group_by(Posture) %>%
                      summarise(mean_rt = mean(RTs),
                                sd = sd(RTs),
                                SEM = sd(RTs)/sqrt(length(RTs)))
knitr::kable(posture_means)

library(data.table)
library(xtable)
suppressPackageStartupMessages(library(dplyr))
stroop_data<-fread(
  "https://stats.libretexts.org/@api/deki/files/11081/stroop_stand.csv")
RTs <- c(as.numeric(unlist(stroop_data[,1])),
         as.numeric(unlist(stroop_data[,2])),
         as.numeric(unlist(stroop_data[,3])),
         as.numeric(unlist(stroop_data[,4]))
         )
Congruency <- rep(rep(c("Congruent","Incongruent"),each=50),2)
Posture <- rep(c("Stand","Sit"),each=100)
Subject <- rep(1:50,4)
stroop_df <- data.frame(Subject,Congruency,Posture,RTs)
 
int_means <- stroop_df %>%
                      group_by(Posture, Congruency) %>%
                      summarise(mean_rt = mean(RTs),
                                sd = sd(RTs),
                                SEM = sd(RTs)/sqrt(length(RTs)),
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run restart restart & run all

Posture Congruency mean_rt sd SEM

Sit Congruent 821.9232 117.4069 16.60384

Sit Incongruent 940.7855 126.6457 17.91041

Stand Congruent 807.9599 105.6079 14.93521

Stand Incongruent 903.9131 108.5366 15.34939

In the sitting condition the Stroop effect was roughly 941-822 = 119 ms.
In the standing condition the Stroop effect was roughly 904-808 = 96 ms.
So, the Stroop effect was 119-96 = 23 ms smaller when people were standing. This is a pretty small effect in terms of the amount of
time reduced, but even though it is small, a difference even this big was not very likely to be due to chance.

What does it all mean?
Based on this research there appears to be some support for the following logic chain. First, the researchers can say that standing up
reduces the size of a person’s Stroop effect. Fine, what could that mean? Well, if the Stroop effect is an index of selective attention,
then it could mean that standing up is one way to improve your ability to selectively focus and ignore distracting information. The
actual size of the benefit is fairly small, so the real-world implications are not that clear. Nevertheless, maybe the next time you
lose your keys, you should stand up and look for them, rather than sitting down and not look for them.

This page titled 9.8: Real Data is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via
source content that was edited to the style and standards of the LibreTexts platform.

                                .groups='drop_last')
knitr::kable(int_means)
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9.9: Factorial summary
We have introduced you to factorial designs, which are simply designs with more than one IV. The special property of factorial
designs is that all of the levels of each IV need to be crossed with the other IVs.

We showed you how to analyse a repeated measures 2x2 design with paired samples-tests, and what an ANOVA table would look
like if you did this in R. We also went through, by hand, the task of calculating an ANOVA table for a 2x2 between subjects design.

The main point we want you take away is that factorial designs are extremely useful for determining things that cause effects to
change. Generally a researcher measures an effect of interest (their IV 1). Then, they want to know what makes that effect get
bigger or smaller. They want to exert experimental control over their effect. For example, they might have a theory that says doing
X should make the effect bigger, but doing Y should make it smaller. They can test these theories using factorial designs, and
manipulating X or Y as a second independent variable.

In a factorial design each IV will have it’s own main effect. Sometimes the main effect themselves are what the researcher is
interested in measures. But more often, it is the interaction effect that is most relevant. The interaction can test whether the effect of
IV1 changes between the levels of IV2. When it does, researchers can infer that their second manipulation (IV2) causes change in
their effet of interest. These changes are then documented and used to test underlying causal theories about the effects of interest.

This page titled 9.9: Factorial summary is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

10: More On Factorial Designs
We are going to do a couple things in this chapter. The most important thing we do is give you more exposure to factorial designs.
The second thing we do is show that you can mix it up with ANOVA. You already know that you can have more than one IV. And,
you know that research designs can be between-subjects or within-subjects (repeated-measures). When you have more than one IV,
they can all be between-subjects variables, they can all be within-subject repeated measures, or they can be a mix: say one
between-subject variable and one within-subject variable. You can use ANOVA to anlayze all of these kinds of designs. You always
get one main effect for each IV, and a number of interactions, or just one, depending on the number of IVs.

10.1: Looking at main effects and interactions
10.2: Interpreting main effects and interactions
10.3: Mixed Designs
10.4: More complicated designs
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10.1: Looking at main effects and interactions
Designs with multiple factors are very common. When you read a research article you will often see graphs that show the results
from designs with multiple factors. It would be good for you if you were comfortable interpreting the meaning of those results. The
skill here is to be able to look at a graph and see the pattern of main effects and interactions. This skill is important, because the
patterns in the data can quickly become very complicated looking, especially when there are more than two independent variables,
with more than two levels.

2x2 designs
Let’s take the case of 2x2 designs. There will always be the possibility of two main effects and one interaction. You will always be
able to compare the means for each main effect and interaction. If the appropriate means are different then there is a main effect or
interaction. Here’s the thing, there a bunch of ways all of this can turn out. Check out the ways, there are 8 of them:

1. no IV1 main effect, no IV2 main effect, no interaction
2. IV1 main effect, no IV2 main effect, no interaction
3. IV1 main effect, no IV2 main effect, interaction
4. IV1 main effect, IV2 main effect, no interaction
5. IV1 main effect, IV2 main effect, interaction
6. no IV1 main effect, IV2 main effect, no interaction
7. no IV1 main effect, IV2 main effect, interaction
8. no IV1 main effect, no IV2 main effect, interaction

OK, so if you run a 2x2, any of these 8 general patterns could occur in your data. That’s a lot to keep track of isn’t. As you develop
your skills in examining graphs that plot means, you should be able to look at the graph and visually guesstimate if there is, or is
not, a main effect or interaction. You will need you inferential statistics to tell you for sure, but it is worth knowing how to know
see the patterns.
In this section we show you some example patterns so that you can get some practice looking at the patterns. First, in bar graph
form. Note, we used the following labels for the graph:

1 = there was a main effect for IV1.
~1 = there was not a main effect for IV1
2 = there was a main effect for IV2
~2 = there was not a main effect of IV2
1x2 = there was an interaction ` ~1x2 = there was not an interaction
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run restart restart & run all

library(ggplot2)
p1<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(5,5,5,5))
p2<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(10,10,5,5))
p3<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(10,13,5,2))
p4<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(5,10,10,15))
p5<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(10,18,5,7))
p6<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(5,10,5,10))
p7<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(2,12,5,9))
p8<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(5,10,10,5))
all_22s <- rbind(p1,p2,p3,p4,p5,p6,p7,p8)
type <- c(rep("~1, ~2, ~1x2",4),
          rep("1, ~2, ~1x2",4),
          rep("1, ~2, 1x2",4),
          rep("1, 2, ~1x2",4),
          rep("1, 2, 1x2",4),
          rep("~1, 2, ~1x2",4),
          rep("~1, 2, 1x2",4),
          rep("~1, ~2, 1x2",4))
type<-as.factor(type)
all_22s <- cbind(all_22s,type)
ggplot(all_22s, aes(x=IV1, y=means, group=IV2, fill=IV2))+
  geom_bar(stat="identity", position="dodge")+
  theme_classic()+
  facet_wrap(~type, nrow=2)+
  theme(legend.position = "top")
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Figure \(\PageIndex{1}\): 8 Example patterns for means for each of the possible kinds of general outcomes in a 2x2 design.

Next, we show you the same thing in line graph form:
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library(ggplot2)
p1<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(5,5,5,5))
p2<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(10,10,5,5))
p3<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(10,13,5,2))
p4<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(5,10,10,15))
p5<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(10,18,5,7))
p6<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(5,10,5,10))
p7<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(2,12,5,9))
p8<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(5,10,10,5))
all_22s <- rbind(p1,p2,p3,p4,p5,p6,p7,p8)
type <- c(rep("~1, ~2, ~1x2",4),
          rep("1, ~2, ~1x2",4),
          rep("1, ~2, 1x2",4),
          rep("1, 2, ~1x2",4),
          rep("1, 2, 1x2",4),
          rep("~1, 2, ~1x2",4),
          rep("~1, 2, 1x2",4),
          rep("~1, ~2, 1x2",4))
type<-as.factor(type)
all_22s <- cbind(all_22s,type)
ggplot(all_22s, aes(x=IV1, y=means, group=IV2, color=IV2))+
  geom_point()+
  geom_line()+
  theme_classic()+
  facet_wrap(~type, nrow=2)+
  theme(legend.position = "top")
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Figure \(\PageIndex{2}\): Line graphs showing 8 possible general outcomes for a 2x2 design.

You might find the line graphs easier to interpret. Whenever the lines cross, or would cross if they kept going, you have a
possibility of an interaction. Whenever the lines are parallel, there can’t be an interaction. When both of the points on the A side are
higher or lower than both of the points on the B side, then you have a main effect for IV1 (A vs B). Whenever the green line is
above or below the red line, then you have a main effect for IV2 (1 vs. 2). We know this is complicated. You should see what all the
possibilities look like when we start adding more levels or more IVs. It gets nuts. Because of this nuttiness, it is often good practice
to make your research designs simple (as few IVs and levels as possible to test your question). That way it will be easier to
interpret your data. Whenever you see that someone ran a 4x3x7x2 design, your head should spin. It’s just too complicated.

This page titled 10.1: Looking at main effects and interactions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.
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10.2: Interpreting main effects and interactions
The interpretation of main effects and interactions can get tricky. Consider the concept of a main effect. This is the idea that a
particular IV has a consistent effect. For example, drinking 5 cups of coffee makes you more awake compared to not drinking 5
cups of coffee. The main effect of drinking 5 cups of coffee vs not drinking coffee will generally be true across the levels of other
IVs in our life. For example, let’s say you conducted an experiment testing whether the effect of drinking 5 cups of coffee vs not,
changes depending on whether you are in your house or in a car. Perhaps the situation matters? No, probably not so much. You will
probably still be more awake in your house, or your car, after having 5 cups of coffee, compared to if you hadn’t.
The coffee example is a reasonably good example of a consistent main effect. Another silly kind of example might be the main
effect of shoes on your height. For example, if your IV was wearing shoes or not, and your DV was height, then we could expect to
find a main effect of wearing shoes on your measurement of height. When you wear shoes, you will become taller compared to
when you don’t wear shoes. Wearing shoes adds to your total height. In fact, it’s hard to imagine how the effect of wearing shoes
on your total height would ever interact with other kinds of variables. You will be always be that extra bit taller wearing shoes.
Indeed, if there was another manipulation that could cause an interaction that would truly be strange. For example, imagine if the
effect of being inside a bodega or outside a bodega interacted with the effect of wearing shoes on your height. That could mean that
shoes make you taller when you are outside a bodega, but when you step inside, your shoes make you shorter…but, obviously this
is just totally ridiculous. That’s correct, it is often ridiculous to expect that one IV will have an influence on the effect of another,
especially when there is no good reason.
The summary here is that it is convenient to think of main effects as a consistent influence of one manipulation. However, when an
interaction is observed, this messes up the consistency of the main effect. That is the very definition of an interaction. It means that
some main effect is not behaving consistently across different situations. Indeed, whenever we find an interaction, sometimes we
can question whether or not there really is a general consistent effect of some manipulation, or instead whether that effect only
happens in specific situations.
For this reason, you will often see that researchers report their findings this way:
“We found a main effect of X, BUT, this main effect was qualified by an interaction between X and Y”.
Notice the big BUT. Why is it there? The sentence points out that before they talk about the main effect, they need to first talk
about the interaction, which is making the main effect behave inconsistently. In other words, the interpretation of the main effect
depends on the interaction, the two things have to be thought of together to make sense of them.
Here are two examples to help you make sense of these issues:

A consistent main effect and an interaction
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run restart restart & run all

Figure \(\PageIndex{1}\): Example means showing a generally consistent main effect along with an interaction.

There is a main effect of IV2: the level 1 means (red points and bar) are both lower than the level 2 means (aqua points and bar).
There is also an interaction. The size of the difference between the red and aqua points in the A condition (left) is bigger than the
size of the difference in the B condition.
How would we interpret this? We could say there WAS a main effect of IV2, BUT it was qualified by an IV1 x IV2 interaction.
What’s the qualification? The size of the IV2 effect changed as a function of the levels of IV1. It was big for level A, and small for
level B of IV1.
What does the qualification mean for the main effect? Well, first it means the main effect can be changed by the other IV. That’s
important to know. Does it also mean that the main effect is not a real main effect because there was an interaction? Not really,
there is a generally consistent effect of IV2. The green points are above the red points in all cases. Whatever IV2 is doing, it seems
to work in at least a couple situations, even if the other IV also causes some change to the influence.

library(ggplot2)
p7<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(2,12,5,9))
ggplot(p7, aes(x=IV1, y=means, group=IV2, color=IV2))+
  geom_point()+
  geom_line()+
  theme_classic()+
  theme(legend.position = "top")
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An inconsistent main effect and an interaction

run restart restart & run all

Figure \(\PageIndex{2}\): Example data showing how an interaction exists, and a main effect does not, even though the means for
the main effect may show a difference.

This figure shows another 2x2 design. You should see an interaction here straight away. The difference between the aqua and red
points in condition A (left two dots) is huge, and there is 0 difference between them in condition B. Is there an interaction? Yes!
Are there any main effects here? With data like this, sometimes an ANOVA will suggest that you do have significant main effects.
For example, what is the mean difference between level 1 and 2 of IV2? That is the average of the green points ( (10+5)/2 = 15/2=
7.5 ) compared to the average of the red points (5). There will be a difference of 2.5 for the main effect (7.5 vs. 5).
Starting to see the issue here? From the perspective of the main effect (which collapses over everything and ignores the
interaction), there is an overall effect of 2.5. In other words, level 2 adds 2.5 in general compared to level 1. However, we can see
from the graph that IV2 does not do anything in general. It does not add 2.5s everywhere. It adds 5 in condition A, and nothing in
condition B. It only does one thing in one condition.
What is happening here is that a “main effect” is produced by the process of averaging over a clear interaction.
How would we interpret this? We might have to say there was a main effect of IV2, BUT we would definetely say it was qualified
by an IV1 x IV2 interaction.
What’s the qualification? The size of the IV2 effect completely changes as a function of the levels of IV1. It was big for level A,
and nonexistent for level B of IV1.
What does the qualification mean for the main effect? In this case, we might doubt whether there is a main effect of IV2 at all. It
could turn out that IV2 does not have a general influence over the DV all of the time, it may only do something in very specific
circumstances, in combination with the presence of other factors.

This page titled 10.2: Interpreting main effects and interactions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

library(ggplot2)
p7<- data.frame(IV1 = c("A","A","B","B"),
                IV2 = c("1","2","1","2"),
                means = c(5,10,5,5))
ggplot(p7, aes(x=IV1, y=means, group=IV2, color=IV2))+
  geom_point()+
  geom_line()+
  theme_classic()+
  theme(legend.position = "top")
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10.3: Mixed Designs
Throughout this book we keep reminding you that research designs can take different forms. The manipulations can be between-
subjects (different subjects in each group), or within-subjects (everybody contributes data in all conditions). If you have more than
one manipulation, you can have a mixed design when one of your IVs is between-subjects and one of the other ones is within-
subjects.

The only “trick” to these designs is to use the appropriate error terms to construct the F-values for each effect. Effects that have a
within-subjects repeated measure (IV) use different error terms than effects that only have a between-subject IV. In principle, you
could run an ANOVA with any number of IVs, and any of them good be between or within-subjects variables.

Because this is an introductory textbook, we leave out a full discussion on mixed designs. What we are leaving out are the formulas
to construct ANOVA tables that show how to use the correct error terms for each effect. There are many good more advanced
textbooks that discuss these issues in much more depth. And, these things can all be Googled. This is a bit of a cop-out on our part,
and we may return to fill in this section at some point in the future (or perhaps someone else will add a chapter about this).

In the lab manual, you will learn how to conduct a mixed design ANOVA using software. Generally speaking, the software takes
care of the problem of using the correct error terms to construct the ANOVA table.

This page titled 10.3: Mixed Designs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump
via source content that was edited to the style and standards of the LibreTexts platform.
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10.4: More complicated designs
Up until now we have focused on the simplest case for factorial designs, the 2x2 design, with two IVs, each with 2 levels. It is
worth spending some time looking at a few more complicated designs and how to interpret them.

2x3 design
In a 2x3 design there are two IVs. IV1 has two levels, and IV2 has three levels. Typically, there would be one DV. Let’s talk about
the main effects and interaction for this design.
First, let’s make the design concrete. Let’s imagine we are running a memory experiment. We give people some words to
remember, and then test them to see how many they can correctly remember. Our DV is proportion correct. We know that people
forget things over time. Our first IV will be time of test, immediate vs. 1 week. The time of test IV will produce a forgetting effect.
Generally, people will have a higher proportion correct on an immediate test of their memory for things they just saw, compared to
testing a week later.
We might be interested in manipulations that reduce the amount of forgetting that happens over the week. The second IV could be
many things. Let’s make it the number of time people got to study the items before the memory test, once, twice or three times. We
call IV2 the repetition manipulation.
We might expect data that looks like this:

run restart restart & run all

Figure \(\PageIndex{1}\): Example means for a 2x3 factorial design.

The figure shows some pretend means in all conditions. Let’s talk about the main effects and interaction.
First, the main effect of delay (time of test) is very obvious, the red line is way above the aqua line. Proportion correct on the
memory test is always higher when the memory test is taken immediately compared to after one week.
Second, the main effect of repetition seems to be clearly present. The more times people saw the items in the memory test (once,
twice, or three times), the more they remembered, as measured by increasingly higher proportion correct as a function of number of
repetitions.

library(ggplot2)
proportion_correct<- c(.9,.6,.95,.7,.99,.8)
delay<-rep(c("Immediate","One week"),3)
repetition<-as.factor(rep(c(1,2,3),each=2))
df<-data.frame(proportion_correct,delay,repetition)
ggplot(df,aes(x=repetition,y=proportion_correct, color=delay, group=delay))+
  geom_point()+
  geom_line()+
  theme_classic()
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Is there an interaction? Yes, there is. Remember, an interaction occurs when the effect of one IV depends on the levels of an
another. The delay IV measures the forgetting effect. Does the size of the forgetting effet change across the levels of the repetition
variable? Yes it does. With one repetition the forgetting effect is .9-.6 =.4. With two repetitions, the forgetting effect is a little bit
smaller, and with three, the repetition is even smaller still. So, the size of the forgetting effect changes as a function of the levels of
the repetition IV. There is evidence in the means for an interaction. You would have to conduct an inferential test on the interaction
term to see if these differences were likely or unlikely to be due to sampling error.
If there was no interaction, and say, no main effect of repetition, we would see something like this:
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Figure \(\PageIndex{2}\): Example means for a 2x3 design when there is only one main effect.

What would you say about the interaction if you saw something like this:

library(ggplot2)
proportion_correct<- c(.9,.6,.9,.6,.9,.6)
delay<-rep(c("Immediate","One week"),3)
repetition<-as.factor(rep(c(1,2,3),each=2))
df<-data.frame(proportion_correct,delay,repetition)
ggplot(df,aes(x=repetition,y=proportion_correct, color=delay, group=delay))+
  geom_point()+
  geom_line()+
  theme_classic()
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Figure \(\PageIndex{3}\): Example means for a 2x3 design showing another pattern that produces an interaction.

The correct answer is that there is evidence in the means for an interaction. Remember, we are measuring the forgetting effect
(effect of delay) three times. The forgetting effect is the same for repetition condition 1 and 2, but it is much smaller for repetition
condition 3. The size of the forgetting effect depends on the levels of the repetition IV, so here again there is an interaction.

2x2x2 designs
Let’s take it up a notch and look at a 2x2x2 design. Here, there are three IVs with 2 levels each. There are three main effects, three
two-way (2x2) interactions, and one 3-way (2x2x2) interaction.
We will use the same example as before but add an additional manipualtion of the kind of material that is to be remembered. For
example, we could present words during an encoding phase either visually or spoken (auditory) over headphones.

library(ggplot2)
proportion_correct<- c(.9,.6,.9,.6,.9,.8)
delay<-rep(c("Immediate","One week"),3)
repetition<-as.factor(rep(c(1,2,3),each=2))
df<-data.frame(proportion_correct,delay,repetition)
ggplot(df,aes(x=repetition,y=proportion_correct, color=delay, group=delay))+
  geom_point()+
  geom_line()+
  theme_classic()
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run restart restart & run all

Figure \(\PageIndex{4}\): Example means from a 2x2x2 design with no three-way interaction.

Now we have two panels one for auditory and one for visual. You can think of the 2x2x2, as two 2x2s, one for auditory and one for
visual. What’s the take home from this example data? We can see that the graphs for auditory and visual are the same. They both
show a 2x2 interaction between delay and repetition. People forgot more things across the week when they studied the material
once, compared to when they studied the material twice. There is a main effect of delay, there is a main effect of repetition, there is
no main effect of modality, and there is no three-way interaction.
What is a three-way interaction anyway? That would occur if there was a difference between the 2x2 interactions. For example,
consider the next pattern of results.

library(ggplot2)
proportion_correct<- c(.9,.6,.9,.8,
                       .9,.6,.9,.8)
delay<-as.factor(rep(c("Immediate","One week"),4))
repetition<-as.factor(rep(rep(c(1,2),each=2),2))
modality<-as.factor(rep(c("visual","auditory"),each=4))
df<-data.frame(proportion_correct,delay,repetition, modality)
ggplot(df,aes(x=repetition,y=proportion_correct, color=delay, group=delay))+
  geom_point()+
  geom_line()+
  theme_classic()+
  facet_wrap(~modality)
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run restart restart & run all

Figure \(\PageIndex{5}\): Example means from a 2x2x2 design with a three-way interaction.

We are looking at a 3-way interaction between modality, repetition and delay. What is going on here? These results would be very
strange, here is an interpetation.
For auditory stimuli, we see that there is a small forgetting effect when people studied things once, but the forgetting effect gets
bigger if they studies things twice. A pattern like this would generally be very strange, usually people would do better if they got to
review the material twice.
The visual stimuli show a different pattern. Here, the forgetting effect is large when studying visual things once, and it get’s smaller
when studying visual things twice.
We see that there is an interaction between delay (the forgetting effect) and repetition for the auditory stimuli; BUT, this interaction
effect is different from the interaction effect we see for the visual stimuli. The 2x2 interaction for the auditory stimuli is different
from the 2x2 interaction for the visual stimuli. In other words, there is an interaction between the two interactions, as a result there
is a three-way interaction, called a 2x2x2 interaction.
We will note a general pattern here. Imagine you had a 2x2x2x2 design. That would have a 4-way interaction. What would that
mean? It would mean that the pattern of the 2x2x2 interaction changes across the levels of the 4th IV. If two three-way interactions
are different, then there is a four-way interaction.

This page titled 10.4: More complicated designs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew
J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

library(ggplot2)
proportion_correct<- c(.9,.6,.9,.8,
                       .9,.8,.9,.5)
delay<-as.factor(rep(c("Immediate","One week"),4))
repetition<-as.factor(rep(rep(c(1,2),each=2),2))
modality<-as.factor(rep(c("visual","auditory"),each=4))
df<-data.frame(proportion_correct,delay,repetition, modality)
ggplot(df,aes(x=repetition,y=proportion_correct, color=delay, group=delay))+
  geom_point()+
  geom_line()+
  theme_classic()+
  facet_wrap(~modality)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7950?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/10%3A_More_On_Factorial_Designs/10.04%3A_More_complicated_designs
https://creativecommons.org/licenses/by-sa/4.0
https://crumplab.github.io/
https://www.crumplab.com/statistics/


1

CHAPTER OVERVIEW

11: Simulating Data
You may have noticed that throughout this book so far we have analyzed a lot of fake data. We used R to simulate pretend numbers,
and then we analyzed those numbers. We also, from time to time, loaded in some “real” data, and analyzed that. In your labs each
week, you have been analyzing a lot of real data. You might be thinking that the simulations we ran were just for educational
purposes, to show you how things work. That’s partly true, that’s one reason we ran so many simulations. At the same time,
conducting simulations to understand how data behaves is a legitimate branch of statistics. There are some problems out there
where we don’t have really good analytic math formulas to tell us the correct answer, so we create and run simulations to
approximate the answer.

I’m going to say something mildy controversial right now: If you can’t simulate your data, then you probably don’t really
understand your data or how to analyze it. Perhaps, this is too bold of a statement. There are many researchers out there who have
never simulated their data, and it might be too much too claim that they don’t really understand their data because they didn’t
simulate. Perhaps. There are also many students who have taken statistics classes, and learned how to press some buttons, or copy
some code, to analyze some real data; but, who never learned how to run simulations. Perhaps my statement applies more to those
students, who I believe would benefit greatly from learning some simulation tricks.

11.1: Reasons to simulate
11.2: Simulation Overview
11.3: Simulating t-tests
11.4: Simulating one-factor ANOVAs
11.5: Other resources

This page titled 11: Simulating Data is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump
via source content that was edited to the style and standards of the LibreTexts platform.
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11.1: Reasons to simulate
There are many good reasons to learn simulation techniques, here are some:

1. You force yourself to consider the details of your design, how many subjects, how many conditions, how many observations per
condition per subject, and how you will store and represent the data to describe all of these details when you run the experiment

2. You force yourself to consider the kinds of numbers you will be collecting. Specifically, the distributional properties of those
numbers. You will have to make decisions about the distributions that you sample from in your simulation, and thinking about
this issue helps you better understand your own data when you get it.

3. You learn a bit of computer programming, and this is a very useful general skill that you can build upon to do many things.
4. You can make reasonable and informed assumptions about how your experiment might turn out, and then use the results of your

simulation to choose parameters for your design (such as number of subjects, number of observations per condition and subject)
that will improve the sensitivity of your design to detect the effects you are interested in measuring.

5. You can even run simulations on the data that you collect to learn more about how it behaves, and to do other kinds of advanced
statistics that we don’t discuss in this book.

6. You get to improve your intuitions about how data behaves when you measure it. You can test your intuitions by running
simulations, and you can learn things you didn’t know to begin with. Simulations can be highly informative.

7. When you simulate data in advance of collecting real data, you can work out exactly what kinds of tests you are planning to
perform, and you will have already written your analysis code, so it will be ready and waiting for you as soon as you collect the
data

OK, so that’s just a few reasons why simulations are useful.
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11.2: Simulation Overview
The basic idea here is actually pretty simple. You make some assumptions about how many subjects will be in your design (set N),
you make some assumptions about the distributions that you will be sampling your scores from, then you use R to fabricate fake
data according to the parameters you set. Once you build some simulated data, you can conduct a statistical analysis that you would
be planning to run on the real data. Then you can see what happens. More importantly, you can repeat the above process many
times. This is similar to conducting a replication of your experiment to see if you find the same thing, only you make the computer
replicate your simulation 1000s of times. This way you can see how your simulated experiment would turn out over the long run.
For example, you might find that the experiment you are planning to run will only produce a “signficant” result 25% of the time,
that’s not very good. Your simulation might also tell you that if you increase your N by say 25, that could really help, and your new
experiment with N=25 might succeed 90% of the time. That’s information worth knowing.
Before we go into more simulation details, let’s just run a quick one. We’ll do an independent samples \(t\)-test. Imagine we have a
study with N=10 in each group. There are two groups. We are measuring heart rate. Let’s say we know that heart rate is on average
100 beats per minute with a standard deviation of 7. We are going to measure heart rate in condition A where nothing happens, and
we are going to measure heart rate in condition B while they watch a scary movie. We think the scary movie might increase heart
rate by 5 beats per minute. Let’s run a simulation of this:

run restart restart & run all

We sampled 10 scores from a normal distribution for each group. We changed the mean for group_b to 105, because we were
thinking their heart rate would be 5 more than group A. We ran one \(t\)-test, and we got a result. This result tells us what happens
for this one simulation.
We could learn more by repeating the simulation 1000 times, saving the \(p\)-values from each replication, and then finding out
how many of our 1000 simulated experiments give us a significant result:

run restart restart & run all

 Two Sample t-test 
 
data:  group_A and group_B 
t = -1.7061, df = 18, p-value = 0.1052 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -11.434802   1.185828 
sample estimates: 
mean of x mean of y  
 98.20342 103.32791  

group_A <- rnorm(10,100,7)
group_B <- rnorm(10,105, 7)
t.test(group_A,group_B,var.equal = TRUE)

save_ps<-length(1000)
for(i in 1:1000){
  group_A <- rnorm(10,100,7)
  group_B <- rnorm(10,105, 7)
  t_results <- t.test(group_A,group_B,var.equal = TRUE)
  save_ps[i] <- t_results$p.value
}
prop_p<-length(save_ps[save_ps<0.05])/1000
print(prop_p)
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Now this is more interesting. We found that 34.4% of simulated experiments had a \(p\)-value less than 0.05. That’s not very good.
If you were going to collect data in this kind of experiment, and you made the correct assumptions about the mean and standard
deviation of the distribution, and you made the correct assumption about the size of difference between the groups, you would be
planning to run an experiment that would not work-out most of the time.
What happens if we increase the number of subject to 50 in each group?

run restart restart & run all

Ooh, look, almost all of the experiments are significant now. So, it would be better to use 50 subjects per group than 10 per group
according to this simulation.
Of course, you might already be wondering so many different kinds of things. How can we plausibly know the parameters for the
distribution we are sampling from? Isn’t this all just guess work? We’ll discuss some of these issues as we move forward in this
chapter.

This page titled 11.2: Simulation Overview is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.

[1] 0.344 

[1] 0.957 

save_ps<-length(1000)
for(i in 1:1000){
  group_A <- rnorm(50,100,7)
  group_B <- rnorm(50,105, 7)
  t_results <- t.test(group_A,group_B,var.equal = TRUE)
  save_ps[i] <- t_results$p.value
}
prop_p<-length(save_ps[save_ps<0.05])/1000
print(prop_p)
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11.3: Simulating t-tests
We’ve already seen some code for simulating a \(t\)-test 1000 times, saving the \(p\)-values, and then calculating the proportion of
simulations that are significant (p<0.05). It looked like this:

run restart restart & run all

You could play around with that, and it would be very useful I think. Is there anything else that we can do that would be more
useful? Sure there is. With the above simulation, you have to change N or the mean difference each time to see how proportion of
significant experiments turns out. It would be nice to look at a graph where we could vary the number of subjects, and the size of
the mean difference. That’s what the next simulation does. This kind of simulation can make your computer do some hard work
depening on how many simulations you run. To make my computer do less work, we will only run 100 simulations for each
parameter. But, what we will do is vary the number of subjects from 10 to 50 (steps of 10), and vary the size of the effect from 0 to
20 in steps of 4.

[1] 0.953 

save_ps<-length(1000)
for(i in 1:1000){
  group_A <- rnorm(50,100,7)
  group_B <- rnorm(50,105, 7)
  t_results <- t.test(group_A,group_B,var.equal = TRUE)
  save_ps[i] <- t_results$p.value
}
prop_p<-length(save_ps[save_ps<0.05])/1000
print(prop_p)
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run restart restart & run all

library(ggplot2)
suppressPackageStartupMessages(library(dplyr))
num_sims        <-500
N               <-c(10,20,30,40,50)
mean_difference <-c(0,4,8,12,16,20)
save_ps<-length(num_sims)
all_df<-data.frame()
for(diff in mean_difference){
  for (j in N){
    for(i in 1:num_sims){
      group_A <- rnorm(j,100,7)
      group_B <- rnorm(j,100+diff, 7)
      t_results <- t.test(group_A,group_B,var.equal = TRUE)
      save_ps[i] <- t_results$p.value
    }
    sim_df <-data.frame(save_ps,
                        num_subjects=as.factor(rep(j,num_sims)),
                        mean_diff =rep(diff,num_sims))
    all_df <- rbind(all_df,sim_df)
  }
}  
plot_df <- all_df %>%
            dplyr::group_by(num_subjects,mean_diff) %>%
            dplyr::summarise(
              proportion_sig = length(save_ps[save_ps<0.05])/num_sims,
              .groups='drop_last'
            )
ggplot(plot_df, aes(x=mean_diff, 
                    y=proportion_sig, 
                    group=num_subjects, 
                    color=num_subjects))+
  geom_point()+
  geom_line()+
  theme_classic()
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A graph like this is very helpful to look at. Generally, before we run an experiment, we might not have a very good idea of the size
of the effect that our manipulation might cause. Will it be a mean difference of 0 (no effect), or 5, or 10, or 20? If you are doing
something new, you just might not have a good idea about this. You would know in general that bigger effects are easier to detect.
You would be able to detect smaller and smaller effects if you ran more and more subjects. When you run this kind of simulation,
you can vary the possible mean differences and the number of the subjects at the same time, and then see what happens.
When the mean diference is 0, we should get an average of 5%, or (0.05 proportion) experiments being significant. This is what we
expect by chance, and it doesn’t matter how many subjects we run. When there is no difference, we will reject the null 5% of the
time (these would all be type 1 errors).
How about when there is a difference of 4? This a pretty small effect. If we only run 10 subjects in each group, we can see that less
than 25% of simulated experiments would show significant results. If we wanted a higher chance of success to measure an effect of
this size, then we should go up to 40-50 subjects, that would get us around 75% success rates. If that’s not good enough for you
(25% failures remember, that’s still alot), then re-run the simulation with even more subjects.
Another thing worth pointing out is that if the mean difference is bigger than about 12.5, you can see that all of the designs produce
significant outcomes nearly 100% of the time. If you knew this, perhaps you would simply run 10-20 subjects in your experiment,
rather than 50. After all, 10-20 is just fine for detecting the effect, and 50 subjects might be a waste of resources (both yours and
your participants).
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11.4: Simulating one-factor ANOVAs
The following builds simulated data for a one-factor ANOVA, appropriate for a between subjects design. We build the data frame
containg a column for the group factor levels, and a column for the DV. Then, we run the ANOVA an print it out.

run restart restart & run all

Df Sum Sq Mean Sq F value Pr(>F)

groups 2 1187.127 593.5635 2.683555
F)" style="vertical-

align:middle;">0.06
99765

Residuals 297 65692.093 221.1855 NA
F)" style="vertical-
align:middle;">NA

In this next example, we simulate the same design 100 times, save the \(p\)-values, and the determine the proportion of significant
simulations.

run restart restart & run all

This page titled 11.4: Simulating one-factor ANOVAs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
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0.07

library(xtable)
N <- 10
groups <- rep(c("A","B","C"), each=10)
DV <- c(rnorm(100,10,15),   # means for group A
        rnorm(100,10,15),   # means for group B
        rnorm(100,20,15)    # means for group C
        )
sim_df<-data.frame(groups,DV)
aov_results <- summary(aov(DV~groups, sim_df))
knitr::kable(xtable(aov_results))

N <- 10
save_p<-length(100)
for(i in 1:100){
  groups <- rep(c("A","B","C"), each=10)
  DV <- c(rnorm(100,10,15),   # means for group A
          rnorm(100,10,15),   # means for group B
          rnorm(100,20,15)    # means for group C
          )
  sim_df<-data.frame(groups,DV)
  
  aov_results <- summary(aov(DV~groups, sim_df))
  save_p[i]<-aov_results[[1]]$`Pr(>F)`[1]
}
length(save_p[save_p<0.05])/100

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7957?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/11%3A_Simulating_Data/11.04%3A_Simulating_one-factor_ANOVAs
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/11%3A_Simulating_Data/11.04%3A_Simulating_one-factor_ANOVAs
https://creativecommons.org/licenses/by-sa/4.0
https://crumplab.github.io/
https://www.crumplab.com/statistics/


11.5.1 https://stats.libretexts.org/@go/page/7958

11.5: Other resources
OK, It’s a Tuesday, the summer is almost over. I’ve spent most of this summer (2018) writing this textbook, because we are using it
this Fall 2018. Because I am running out of time, I need to finish this and make sure everything is in place for the course to work.
As a result, I am not going to finish this chapter right now. The nice thing about this book, is that I (and other people) can fill things
in over time. We have shown a few examples of data-simulation, so that’s at least something.

If you want to see more examples, I suggest you check out this chapter:

https://crumplab.github.io/programmingforpsych/simulating-and-analyzing-data-in-r.html#simulating-data-for-multi-factor-designs

This section will get longer as I find more resources to add, and hopefully the entire chapter will get longer as I add in more
examples over time.
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CHAPTER OVERVIEW

12: Thinking about Answering Questions with Data
You might be happy that this is the last chapter (so far) of this textbook. At this point we are in the last weeks of our introductory
statistics course. It’s called “introductory” for a reason. We have covered far less about statistics than we have covered. There’s just
too much out there to cover in one short semester. In this chapter we acknowledge some of the things we haven’t yet covered, and
treat them as things that you should think about. If there is one take home message that we want to get across to you, it’s that when
you ask questions with data, you should be able to justify how you answer those questions.

12.1: Effect-size and power
12.2: Power
12.3: Planning your design
12.4: Some considerations
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12.1: Effect-size and power
If you already know something about statistics while you were reading this book, you might have noticed that we neglected to
discuss the topic of effect-size, and we barely talked about statistical power. We will talk a little bit about these things here.
First, it is worth pointing out that over the years, at least in Psychology, many societies and journals have made recommendations
about how researchers should report their statistical analyses. Among the recommendations is that measures of “effect size” should
be reported. Similarly, many journals now require that researchers report an “a priori” power-analysis (the recommendation is this
should be done before the data is collected). Because these recommendations are so prevalent, it is worth discussing what these
ideas refer to. At the same time, the meaning of effect-size and power somewhat depend on your “philosophical” bent, and these
two ideas can become completely meaningless depending on how you think of statistics. For these complicating reasons we have
suspended our discussion of the topic until now.
The question or practice of using measures of effect size and conducting power-analyses are also good examples of the more
general need to think about about what you are doing. If you are going to report effect size, and conduct power analyses, these
activities should not be done blindly because someone else recommends that you do them, these activities and other suitable ones
should be done as a part of justifying what you are doing. It is a part of thinking about how to make your data answer questions for
you.

Chance vs. real effects
Let’s rehash something we’ve said over and over again. First, researchers are interested in whether their manipulation causes a
change in their measurement. If it does, they can become confident that they have uncovered a causal force (the manipulation).
However, we know that differences in the measure between experimental conditions can arise by chance alone, just by sampling
error. In fact, we can create pictures that show us the window of chance for a given statistic, these tells us roughly the range and
likelihoods of getting various differences just by chance. With these windows in hand, we can then determine whether the
differences we found in some data that we collected were likely or unlikely to be due to chance. We also learned that sample-size
plays a big role in the shape of the chance window. Small samples give chance a large opportunity make big differences. Large
samples give chance a small opportunity to make big differences. The general lesson up to this point has been, design an
experiment with a large enough sample to detect the effect of interest. If your design isn’t well formed, you could easily be
measuring noise, and your differences could be caused by sampling error. Generally speaking, this is still a very good lesson: better
designs produce better data; and you can’t fix a broken design with statistics.
There is clearly another thing that can determine whether or not your differences are due to chance. That is the effect itself. If the
manipulation does cause a change, then there is an effect, and that effect is a real one. Effects refer to differences in the
measurement between experimental conditions. The thing about effects is that they can be big or small, they have a size.
For example, you can think of a manipulation in terms of the size of its hammer. A strong manipulation is like a jack-hammer: it is
loud, it produces a big effect, it creates huge differences. A medium manipulation is like regular hammer: it works, you can hear it,
it drives a nail into wood, but it doesn’t destroy concrete like a jack-hammer, it produces a reliable effect. A small manipulation is
like tapping something with a pencil: it does something, you can barely hear it, and only in a quiet room, it doesn’t do a good job of
driving a nail into wood, and it does nothing to concrete, it produces tiny, unreliable effects. Finally, a really small effect would be
hammering something with a feather, it leaves almost no mark and does nothing that is obviously perceptiple to nails or pavement.
The lesson is, if you want to break up concrete, use a jack-hammer; or, if you want to measure your effect, make your manipulation
stronger (like a jack-hammer) so it produces a bigger difference.

Effect size: concrete vs. abstract notions
Generally speaking, the big concept of effect size, is simply how big the differences are, that’s it. However, the biggness or
smallness of effects quickly becomes a little bit complicated. On the one hand, the raw difference in the means can be very
meaningful. Let’s saw we are measuring performance on a final exam, and we are testing whether or not a miracle drug can make
you do better on the test. Let’s say taking the drug makes you do 5% better on the test, compared to not taking the drug. You know
what 5% means, that’s basically a whole letter grade. Pretty good. An effect-size of 25% would be even better right! Lot’s of
measures have a concrete quality to them, and we often want to the size of the effect expressed in terms of the original measure.
Let’s talk about concrete measures some more. How about learning a musical instrument. Let’s say it takes 10,000 hours to become
an expert piano, violin, or guitar player. And, let’s say you found something online that says that using their method, you will learn
the instrument in less time than normal. That is a claim about the effect size of their method. You would want to know how big the
effect is right? For example, the effect-size could be 10 hours. That would mean it would take you 9,980 hours to become an expert
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(that’s a whole 10 hours less). If I knew the effect-size was so tiny, I wouldn’t bother with their new method. But, if the effect size
was say 1,000 hours, that’s a pretty big deal, that’s 10% less (still doesn’t seem like much, but saving 1,000 hours seems like a lot).
Just as often as we have concrete measures that are readily interpretable, Psychology often produces measures that are extremely
difficult to interpret. For example, questionnaire measures often have no concrete meaning, and only an abstract statistical
meaning. If you wanted to know whether a manipulation caused people to more or less happy, and you used to questionnaire to
measure happiness, you might find that people were 50 happy in condition 1, and 60 happy in condition 2, that’s a difference of 10
happy units. But how much is 10? Is that a big or small difference? It’s not immediately obvious. What is the solution here? A
common solution is to provide a standardized measure of the difference, like a z-score. For example, if a difference of 10 reflected
a shift of one standard deviation that would be useful to know, and that would be a sizeable shift. If the difference was only a .1
shift in terms of standard deviation, then the difference of 10 wouldn’t be very large. We elaborate on this idea next in describing
cohen’s d.

Cohen’s d
Let’s look a few distributions to firm up some ideas about effect-size. In the graph below you will see four panels. The first panel
(0) represents the null distribution of no differences. This is the idea that your manipulation (A vs. B) doesn’t do anything at all, as
a result when you measure scores in conditions A and B, you are effectively sampling scores from the very same overall
distribution. The panel shows the distribution as green for condition B, but the red one for condition A is identical and drawn
underneath (it’s invisible). There is 0 difference between these distributions, so it represent a null effect.
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run restart restart & run all

library(ggplot2)
X<-c(seq(-5,5,.1),seq(-5,5,.1),
     seq(-5,5,.1),seq(-5,5,.1),
     seq(-5,5,.1),seq(-5,5,.1),
     seq(-5,5,.1),seq(-5,5,.1))
Y<-c(dnorm(seq(-5,5,.1),0,1),dnorm(seq(-5,5,.1),0,1),
     dnorm(seq(-5,5,.1),0,1),dnorm(seq(-5,5,.1),.5,1),
     dnorm(seq(-5,5,.1),0,1),dnorm(seq(-5,5,.1),1,1),
     dnorm(seq(-5,5,.1),0,1),dnorm(seq(-5,5,.1),2,1))
effect_size<-rep(c(0,.5,1,2),each=101*2)
condition<-rep(rep(c("A","B"),each=101),2)
df<-data.frame(effect_size,
               condition,
               X,Y)
ggplot(df, aes(x=X,y=Y, group=condition, color=condition))+
  geom_line()+
  theme_classic(base_size = 15)+
  facet_wrap(~effect_size)+
  xlab("values")+
  ylab("density")
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Figure \(\PageIndex{1}\): Each panel shows hypothetical distributions for two conditions. As the effect-size increases, the
difference between the distributions become larger.The remaining panels are hypothetical examples of what a true effect could look like, when your manipulation actually causes a

difference. For example, if condition A is a control group, and condition B is a treatment group, we are looking at three cases
where the treatment manipulation causes a positive shift in the mean of distribution. We are using normal curves with mean =0 and
sd =1 for this demonstration, so a shift of .5 is a shift of half of a standard deviation. A shift of 1 is a shift of 1 standard deviation,
and a shift of 2 is a shift of 2 standard deviations. We could draw many more examples showing even bigger shifts, or shifts that go
in the other direction.
Let’s look at another example, but this time we’ll use some concrete measurements. Let’s say we are looking at final exam
performance, so our numbers are grade percentages. Let’s also say that we know the mean on the test is 65%, with a standard
deviation of 5%. Group A could be a control that just takes the test, Group B could receive some “educational” manipulation
designed to improve the test score. These graphs then show us some hypotheses about what the manipulation may or may not be
doing.

run restart restart & run all

Figure \(\PageIndex{2}\): Each panel shows hypothetical distributions for two conditions. As the effect-size increases, the
difference between the distributions become larger.

library(ggplot2)
X<-c(seq(25,100,1),seq(25,100,1),
     seq(25,100,1),seq(25,100,1),
     seq(25,100,1),seq(25,100,1),
     seq(25,100,1),seq(25,100,1))
Y<-c(dnorm(seq(25,100,1),65,5),dnorm(seq(25,100,1),65,5),
     dnorm(seq(25,100,1),65,5),dnorm(seq(25,100,1),67.5,5),
     dnorm(seq(25,100,1),65,5),dnorm(seq(25,100,1),70,5),
     dnorm(seq(25,100,1),65,5),dnorm(seq(25,100,1),75,5))
effect_size<-rep(c("65, d=0","67.5,d=.5","70, d=1","75, d=2"),each=76*2)
condition<-rep(rep(c("A","B"),each=76),2)
df<-data.frame(effect_size,
               condition,
               X,Y)
ggplot(df, aes(x=X,y=Y, group=condition, color=condition))+
  geom_line()+
  theme_classic(base_size = 15)+
  facet_wrap(~effect_size)+
  xlab("values")+
  ylab("density")
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The first panel shows that both condition A and B will sample test scores from the same distribution (mean =65, with 0 effect). The
other panels show shifted mean for condition B (the treatment that is supposed to increase test performance). So, the treatment
could increase the test performance by 2.5% (mean 67.5, .5 sd shift), or by 5% (mean 70, 1 sd shift), or by 10% (mean 75%, 2 sd
shift), or by any other amount. In terms of our previous metaphor, a shift of 2 standard deviations is more like jack-hammer in
terms of size, and a shift of .5 standard deviations is more like using a pencil. The thing about research, is we often have no clue
about whether our manipulation will produce a big or small effect, that’s why we are conducting the research.
You might have noticed that the letter \(d\) appears in the above figure. Why is that? Jacob Cohen used the letter \(d\) in defining
the effect-size for this situation, and now everyone calls it Cohen’s \(d\). The formula for Cohen’s \(d\) is:
\[d = \frac{\text{mean for condition 1} - \text{mean for condition 2}}{\text{population standard deviation}} \nonumber \]
If you notice, this is just a kind of z-score. It is a way to standardize the mean difference in terms of the population standard
deviation.
It is also worth noting again that this measure of effect-size is entirely hypothetical for most purposes. In general, researchers do
not know the population standard deviation, they can only guess at it, or estimate it from the sample. The same goes for means, in
the formula these are hypothetical mean differences in two population distributions. In practice, researchers do not know these
values, they guess at them from their samples.
Before discussing why the concept of effect-size can be useful, we note that Cohen’s \(d\) is useful for understanding abstract
measures. For example, when you don’t know what a difference of 10 or 20 means as a raw score, you can standardize the
difference by the sample standard deviation, then you know roughly how big the effect is in terms of standard units. If you thought
a 20 was big, but it turned out to be only 1/10th of a standard deviation, then you would know the effect is actually quite small with
respect to the overall variability in the data.

This page titled 12.1: Effect-size and power is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.
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12.2: Power
When there is a true effect out there to measure, you want to make sure your design is sensitive enough to detect the effect,
otherwise what’s the point. We’ve already talked about the idea that an effect can have different sizes. The next idea is that your
design can be more less sensitive in its ability to reliabily measure the effect. We have discussed this general idea many times
already in the textbook, for example we know that we will be more likely to detect “significant” effects (when there are real
differences) when we increase our sample-size. Here, we will talk about the idea of design sensitivity in terms of the concept of
power. Interestingly, the concept of power is a somewhat limited concept, in that it only exists as a concept within some
philosophies of statistics.

A digresssion about hypothesis testing
In particular, the concept of power falls out of the Neyman-Pearson concept of null vs. alternative hypothesis testing. Up to this
point, we have largely avoided this terminology. This is perhaps a disservice in that the Neyman-Pearson ideas are by now the most
common and widespread, and in the opinion of some of us, they are also the most widely misunderstood and abused idea, which is
why we have avoided these ideas until now.
What we have been mainly doing is talking about hypothesis testing from the Fisherian (Sir Ronald Fisher, the ANOVA guy)
perspective. This is a basic perspective that we think can’t be easily ignored. It is also quite limited. The basic idea is this:

1. We know that chance can cause some differences when we measure something between experimental conditions.
2. We want to rule out the possibility that the difference that we observed can not be due to chance
3. We construct large N designs that permit us to do this when a real effect is observed, such that we can confidently say that big

differences that we find are so big (well outside the chance window) that it is highly implausible that chance alone could have
produced.

4. The final conclusion is that chance was extremely unlikely to have produced the differences. We then infer that something else,
like the manipulation, must have caused the difference.

5. We don’t say anything else about the something else.
6. We either reject the null distribution as an explanation (that chance couldn’t have done it), or retain the null (admit that chance

could have done it, and if it did we couldn’t tell the difference between what we found and what chance could do)

Neyman and Pearson introduced one more idea to this mix, the idea of an alternative hypothesis. The alternative hypothesis is the
idea that if there is a true effect, then the data sampled into each condition of the experiment must have come from two different
distributions. Remember, when there is no effect we assume all of the data cam from the same distribution (which by definition
can’t produce true differences in the long run, because all of the numbers are coming from the same distribution). The graphs of
effect-sizes from before show examples of these alternative distributions, with samples for condition A coming from one
distribution, and samples from condition B coming from a shifted distribution with a different mean.
So, under the Neyman-Pearson tradition, when a researcher find a signifcant effect they do more than one things. First, they reject
the null-hypothesis of no differences, and they accept the alternative hypothesis that there was differences. This seems like a
sensible thing to do. And, because the researcher is actually interested in the properties of the real effect, they might be interested in
learning more about the actual alternative hypothesis, that is they might want to know if their data come from two different
distributions that were separated by some amount…in other words, they would want to know the size of the effect that they were
measuring.

Back to power
We have now discussed enough ideas to formalize the concept of statistical power. For this concept to exist we need to do a couple
things.

1. Agree to set an alpha criterion. When the p-value for our test-statistic is below this value we will call our finding statistically
significant, and agree to reject the null hypothesis and accept the “alternative” hypothesis (sidenote, usually it isn’t very clear
which specific alternative hypothesis was accepted)

2. In advance of conducting the study, figure out what kinds of effect-sizes our design is capable of detecting with particular
probabilites.

The power of a study is determined by the relationship between
1. The sample-size of the study
2. The effect-size of the manipulation
3. The alpha value set by the researcher.
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To see this in practice let’s do a simulation. We will do a t-test on a between-groups design 10 subjects in each group. Group A will
be a control group with scores sampled from a normal distribution with mean of 10, and standard deviation of 5. Group B will be a
treatment group, we will say the treatment has an effect-size of Cohen’s \(d\) = .5, that’s a standard deviation shift of .5, so the
scores with come from a normal distribution with mean =12.5 and standard deivation of 5. Remember 1 standard deviation here is
5, so half of a standard deviation is 2.5.
The following R script runs this simulated experiment 1000 times. We set the alpha criterion to .05, this means we will reject the
null whenever the \(p\)-value is less than .05. With this specific design, how many times out of of 1000 do we reject the null, and
accept the alternative hypothesis?

run restart restart & run all

The answer is that we reject the null, and accept the alternative 179 times out of 1000. In other words our experiment succesfully
accepts the alternative hypothesis 17.9 percent of the time, this is known as the power of the study. Power is the probability that a
design will succesfully detect an effect of a specific size.
Importantly, power is completely abstract idea that is completely determined by many assumptions including N, effect-size, and
alpha. As a result, it is best not to think of power as a single number, but instead as a family of numbers.
For example, power is different when we change N. If we increase N, our samples will more precisely estimate the true
distributions that they came from. Increasing N reduces sampling error, and shrinks the range of differences that can be produced
by chance. Lets’ increase our N in this simulation from 10 to 20 in each group and see what happens.

run restart restart & run all

Now the number of significant experiments is 360 out of 1000, or a power of 36 percent. That’s roughly doubled from before. We
have made the design more sensitive to the effect by increasing N.
We can change the power of the design by changing the alpha-value, which tells us how much evidence we need to reject the null.
For example, if we set the alpha criterion to 0.01, then we will be more conservative, only rejecting the null when chance can
produce the observed difference 1% of the time. In our example, this will have the effect of reducing power. Let’s keep N at 20, but
reduce the alpha to 0.01 and see what happens:

179

360

p<-length(1000)
for(i in 1:1000){
  A<-rnorm(10,10,5)
  B<-rnorm(10,12.5,5)
  p[i]<-t.test(A,B,var.equal = TRUE)$p.value
}
length(p[p<.05])

p<-length(1000)
for(i in 1:1000){
  A<-rnorm(20,10,5)
  B<-rnorm(20,12.5,5)
  p[i]<-t.test(A,B,var.equal = TRUE)$p.value
}
length(p[p<.05])

p<-length(1000)
for(i in 1:1000){
  A<-rnorm(20,10,5)
  B<-rnorm(20,12.5,5)
  p[i]<-t.test(A,B,var.equal = TRUE)$p.value
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run restart restart & run all

Now only 138 out of 1000 experiments are significant, that’s 13.8 power.
Finally, the power of the design depends on the actual size of the effect caused by the manipulation. In our example, we
hypothesized that the effect caused a shift of .5 standard deviations. What if the effect causes a bigger shift? Say, a shift of 2
standard deviations. Let’s keep N= 20, and alpha < .01, but change the effect-size to two standard deviations. When the effect in the
real-world is bigger, it should be easier to measure, so our power will increase.

run restart restart & run all

Neat, if the effect-size is actually huge (2 standard deviation shift), then we have power 100 percent to detect the true effect.

Power curves
We mentioned that it is best to think of power as a family of numbers, rather than as a single number. To elaborate on this consider
the power curve below. This is the power curve for a specific design: a between groups experiments with two levels, that uses an
independent samples t-test to test whether an observed difference is due to chance. Critically, N is set to 10 in each group, and
alpha is set to .05
Power (as a proportion, not a percentage) is plotted on the y-axis, and effect-size (Cohen’s d) in standard deviation units is plotted
on the x-axis.

138

1000

}
length(p[p<.01])

p<-length(1000)
for(i in 1:1000){
  A<-rnorm(20,10,5)
  B<-rnorm(20,30,5)
  p[i]<-t.test(A,B,var.equal = TRUE)$p.value
}
length(p[p<.01])
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run restart restart & run all

Figure \(\PageIndex{1}\): This figure shows power as a function of effect-size (Cohen’s d) for a between-subjects independent
samples t-test, with N=10, and alpha criterion 0.05.

A power curve like this one is very helpful to understand the sensitivity of a particular design. For example, we can see that a
between subjects design with N=10 in both groups, will detect an effect of d=.5 (half a standard deviation shift) about 20% of the
time, will detect an effect of d=.8 about 50% of the time, and will detect an effect of d=2 about 100% of the time. All of the
percentages reflect the power of the design, which is the percentage of times the design would be expected to find a \(p\) < 0.05.
Let’s imagine that based on prior research, the effect you are interested in measuring is fairly small, d=0.2. If you want to run an
experiment that will detect an effect of this size a large percentage of the time, how many subjects do you need to have in each
group? We know from the above graph that with N=10, power is very low to detect an effect of d=0.2. Let’s make another graph,
but vary the number of subjects rather than the size of the effect.

library(ggplot2)
power<-c()
for(i in seq(0,2,.1)){
sd_AB <- 1
n<-10
C <- qnorm(0.975)
se <- sqrt( sd_AB/n + sd_AB/n )
delta<-i
power <- c(power,1-pnorm(C-delta/se) + pnorm(-C-delta/se))
}
plot_df<-data.frame(power,
                    effect_size = seq(0,2,.1))
ggplot(plot_df, aes(x=effect_size, y=power))+
  geom_line()+
  theme_classic()+
  ggtitle("Power curve for N=10, \n
          Independent samples t-test")
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run restart restart & run all

Figure \(\PageIndex{2}\): This figure shows power as a function of N for a between-subjects independent samples t-test, with
d=0.2, and alpha criterion 0.05.

The figure plots power to detect an effect of d=0.2, as a function of N. The green line shows where power = .8, or 80%. It looks
like we would nee about 380 subjects in each group to measure an effect of d=0.2, with power = .8. This means that 80% of our
experiments would succesfully show p < 0.05. Often times power of 80% is recommended as a reasonable level of power, however
even when your design has power = 80%, your experiment will still fail to find an effect (associated with that level of power) 20%
of the time!

This page titled 12.2: Power is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C. Crump via
source content that was edited to the style and standards of the LibreTexts platform.

library(ggplot2)
power<-c()
for(i in seq(10,800,10)){
sd_AB <- 1
n<-i
C <- qnorm(0.975)
se <- sqrt( sd_AB/n + sd_AB/n )
delta<-0.2
power <- c(power,1-pnorm(C-delta/se) + pnorm(-C-delta/se))
}
plot_df<-data.frame(power,
                    N = seq(10,800,10))
ggplot(plot_df, aes(x=N, y=power))+
  geom_line()+
  theme_classic()+
  geom_hline(yintercept=.8, color="green")+
  ggtitle("Power curve for d=0.2, \n
          Independent samples t-test")
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12.3: Planning your design
Our discussion of effect size and power highlight the importance of the understanding the statistical limitations of an experimental
design. In particular, we have seen the relationship between:

1. Sample-size
2. Effect-size
3. Alpha criterion
4. Power

As a general rule of thumb, small N designs can only reliably detect very large effects, whereas large N designs can reliably detect
much smaller effects. As a researcher, it is your responsibility to plan your design accordingly so that it is capable of reliably
detecting the kinds of effects it is intended to measure.

This page titled 12.3: Planning your design is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7963?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/12%3A_Thinking_about_Answering_Questions_with_Data/12.03%3A_Planning_your_design
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/12%3A_Thinking_about_Answering_Questions_with_Data/12.03%3A_Planning_your_design
https://creativecommons.org/licenses/by-sa/4.0
https://crumplab.github.io/
https://www.crumplab.com/statistics/


12.4.1 https://stats.libretexts.org/@go/page/7964

12.4: Some considerations

Low powered studies
Consider the following case. A researcher runs a study to detect an effect of interest. There is good reason, from prior research, to
believe the effect-size is d=0.5. The researcher uses a design that has 30% power to detect the effect. They run the experiment and
find a significant p-value, (p<.05). They conclude their manipulation worked, because it was unlikely that their result could have
been caused by chance. How would you interpret the results of a study like this? Would you agree with thte researchers that the
manipulation likely caused the difference? Would you be skeptical of the result?
The situation above requires thinking about two kinds of probabilities. On the one hand we know that the result observed by the
researchers does not occur often by chance (p is less than 0.05). At the same time, we know that the design was underpowered, it
only detects results of the expected size 30% of the time. We are face with wondering what kind of luck was driving the difference.
The researchers could have gotten unlucky, and the difference really could be due to chance. In this case, they would be making a
type I error (saying the result is real when it isn’t). If the result was not due to chance, then they would also be lucky, as their design
only detects this effect 30% of the time.
Perhaps another way to look at this situation is in terms of the replicability of the result. Replicability refers to whether or not the
findings of the study would be the same if the experiment was repeated. Because we know that power is low here (only 30%), we
would expect that most replications of this experiment would not find a significant effect. Instead, the experiment would be
expected to replicate only 30% of the time.

Large N and small effects
Perhaps you have noticed that there is an intriguiing relationship between N (sample-size) and power and effect-size. As N
increases, so does power to detect an effect of a particular size. Additionally, as N increases, a design is capable of detecting smaller
and smaller effects with greater and greater power. For example, if N was large enough, we would have high power to detect very
small effects, say d= 0.01, or even d=0.001. Let’s think about what this means.
Imagine a drug company told you that they ran an experiment with 1 billion people to test whether their drug causes a significant
change in headache pain. Let’s say they found a significant effect (with power =100%), but the effect was very small, it turns out
the drug reduces headache pain by less than 1%, let’s say 0.01%. For our imaginary study we will also assume that this effect is
very real, and not caused by chance.
Clearly the design had enough power to detect the effect, and the effect was there, so the design did detect the effect. However, the
issue is that there is little practical value to this effect. Nobody is going to by a drug to reduce their headache pain by 0.01%, even if
it was “scientifcally proven” to work. This example brings up two issues. First, increasing N to very large levels will allow designs
to detect almost any effect (even very tiny ones) with very high power. Second, sometimes effects are meaningless when they are
very small, especially in applied research such as drug studies.
These two issues can lead to interesting suggestions. For example, someone might claim that large N studies aren’t very useful,
because they can always detect really tiny effects that are practically meaningless. On the other hand, large N studies will also
detect larger effects too, and they will give a better estimate of the “true” effect in the population (because we know that larger
samples do a better job of estimating population parameters). Additionally, although really small effects are often not interesting in
the context of applied research, they can be very important in theoretical research. For example, one theory might predict that
manipulating X should have no effect, but another theory might predict that X does have an effect, even if it is a small one. So,
detecting a small effect can have theoretical implication that can help rule out false theories. Generally speaking, researchers asking
both theoretical and applied questions should think about and establish guidelines for “meaningful” effect-sizes so that they can run
designs of appropriate size to detect effects of “meaningful size”.

Small N and Large effects
All other things being equal would you trust the results from a study with small N or large N? This isn’t a trick question, but
sometimes people tie themselves into a knot trying to answer it. We already know that large sample-sizes provide better estimates of
the distributions the samples come from. As a result, we can safely conclude that we should trust the data from large N studies more
than small N studies.
At the same time, you might try to convince yourself otherwise. For example, you know that large N studies can detect very small
effects that are practically and possibly even theoretically meaningless. You also know that that small N studies are only capable of
reliably detecting very large effects. So, you might reason that a small N study is better than a large N study because if a small N
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study detects an effect, that effect must be big and meaningful; whereas, a large N study could easily detect an effect that is tiny and
meaningless.
This line of thinking needs some improvement. First, just because a large N study can detect small effects, doesn’t mean that it only
detects small effects. If the effect is large, a large N study will easily detect it. Large N studies have the power to detect a much
wider range of effects, from small to large. Second, just because a small N study detected an effect, does not mean that the effect is
real, or that the effect is large. For example, small N studies have more variability, so the estimate of the effect size will have more
error. Also, there is 5% (or alpha rate) chance that the effect was spurious. Interestingly, there is a pernicious relationship between
effect-size and type I error rate.

Type I errors are convincing when N is small
So what is this pernicious relationship between Type I errors and effect-size? Mainly, this relationship is pernicious for small N
studies. For example, the following figure illustrates the results of 1000s of simulated experiments, all assuming the null
distribution. In other words, for all of these simulations there is no true effect, as the numbers are all sampled from an identical
distribution (normal distribution with mean =0, and standard deviation =1). The true effect-size is 0 in all cases.
We know that under the null, researchers will find p values that are less 5% about 5% of the time, remember that is the definition.
So, if a researcher happened to be in this situation (where there manipulation did absolutely nothing), they would make a type I
error 5% of the time, or if they conducted 100 experiments, they would expect to find a significant result for 5 of them.
The following graph reports the findings from only the type I errors, where the simulated study did produce p < 0.05. For each type
I error, we calculated the exact p-value, as well as the effect-size (cohen’s D) (mean difference divided by standard deviation). We
already know that the true effect-size is zero, however take a look at this graph, and pay close attention to the smaller sample-sizes.
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run restart restart & run all

Figure \(\PageIndex{1}\): Effect size as a function of p-values for type 1 Errors under the null, for a paired samples t-test.

For example, look at the red dots, when sample size is 10. Here we see that the effect-sizes are quite large. When p is near 0.05 the
effect-size is around .8, and it goes up and up as when p gets smaller and smaller. What does this mean? It means that when you get
unlucky with a small N design, and your manipulation does not work, but you by chance find a “significant” effect, the effect-size
measurement will show you a “big effect”. This is the pernicious aspect. When you make a type I error for small N, your data will
make you think there is no way it could be a type I error because the effect is just so big!. Notice that when N is very large, like
1000, the measure of effect-size approaches 0 (which is the true effect-size in the simulation).

This page titled 12.4: Some considerations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J. C.
Crump via source content that was edited to the style and standards of the LibreTexts platform.

library(ggplot2)
all_df<-data.frame()
for(i in 1:1000){
  for(n in c(10,20,50,100,1000)){
    some_data<-rnorm(n,0,1)
    p_value<-t.test(some_data)$p.value
    effect_size<-mean(some_data)/sd(some_data)
    mean_scores<-mean(some_data)
    standard_error<-sd(some_data)/sqrt(length(some_data))
    t_df<-data.frame(sim=i,sample_size=n,p_value,effect_size,mean_scores,standard_error)
    all_df<-rbind(all_df,t_df)
  }
}
type_I_error <-all_df[all_df$p_value<.05,]
type_I_error$sample_size<-as.factor(type_I_error$sample_size)
ggplot(type_I_error,aes(x=p_value,y=effect_size, group=sample_size,color=sample_size))+
  geom_point()+
  theme_classic()+
  ggtitle("Effect sizes for type I errors")
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