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3.3: Turning the numbers into a measure of co-variance
“OK, so if you are saying that co-variance is just another word for correlation or relationship between two measures, I’m good with
that. I suppose we would need some way to measure that.” Correct, back to our table…notice anything new?

subject chocolate happiness Chocolate_X_Happiness

1 1 1 1

2 2 2 4

3 2 3 6

4 3 3 9

5 3 3 9

6 5 5 25

7 4 6 24

8 5 5 25

9 9 5 45

10 6 9 54

Sums 40 42 202

Means 4 4.2 20.2

We’ve added a new column called “Chocolate_X_Happiness”, which translates to Chocolate scores multiplied by Happiness
scores. Each row in the new column, is the product, or multiplication of the chocolate and happiness score for that row. Yes, but
why would we do this?
Last chapter we took you back to Elementary school and had you think about division. Now it’s time to do the same thing with
multiplication. We assume you know how that works. One number times another, means taking the first number, and adding it as
many times as the second says to do,
\( 2*2= 2+2=4 \nonumber \)
\(2*6= 2+2+2+2+2+2 = 12\), or \(6+6=12\), same thing.
Yes, you know all that. But, can you bend multiplication to your will, and make it do your bidding when need to solve a problem
like summarizing co-variance? Multiplication is the droid you are looking for.
We know how to multiple numbers, and all we have to next is think about the consequences of multiplying sets of numbers
together. For example, what happens when you multiply two small numbers together, compared to multiplying two big numbers
together? The first product should be smaller than the second product right? How about things like multiplying a small number by a
big number? Those products should be in between right?.
Then next step is to think about how the products of two measures sum together, depending on how they line up. Let’s look at
another table:

scores X Y A B XY AB

1 1 1 1 10 1 10

2 2 2 2 9 4 18

3 3 3 3 8 9 24

4 4 4 4 7 16 28

5 5 5 5 6 25 30

6 6 6 6 5 36 30

7 7 7 7 4 49 28
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scores X Y A B XY AB

8 8 8 8 3 64 24

9 9 9 9 2 81 18

10 10 10 10 1 100 10

Sums 55 55 55 55 385 220

Means 5.5 5.5 5.5 5.5 38.5 22

Look at the X and Y column. The scores for X and Y perfectly co-vary. When X is 1, Y is 1; when X is 2, Y is 2, etc. They are
perfectly aligned. The scores for A and B also perfectly co-vary, just in the opposite manner. When A is 1, B is 10; when A is 2, B
is 9, etc. B is a reversed copy of A.
Now, look at the column \(XY\). These are the products we get when we multiply the values of X across with the values of Y. Also,
look at the column \(AB\). These are the products we get when we multiply the values of A across with the values of B. So far so
good.
Now, look at the Sums  for the XY and AB columns. Not the same. The sum of the XY products is 385, and the sum of the AB
products is 220. For this specific set of data, the numbers 385 and 220 are very important. They represent the biggest possible sum
of products (385), and the smallest possible sum of products (220). There is no way of re-ordering the numbers 1 to 10, say for X,
and the numbers 1 to 10 for Y, that would ever produce larger or smaller numbers. Don’t believe me? Check this out:

run restart restart & run all

library(ggplot2)

simulated_sums<-length(0)

for(sim in 1:1000){

    X<-sample(1:10)

    Y<-sample(1:10)

    simulated_sums[sim]<-sum(X*Y)

}

sim_df<-data.frame(sims=1:1000,simulated_sums)

ggplot(sim_df,aes(x=sims,y=simulated_sums))+

  geom_point()+

  theme_classic()+

  geom_hline(yintercept = 385)+

  geom_hline(yintercept = 220)
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The above graph shows 1000 computer simulations. I convinced my computer to randomly order the numbers 1 to 10 for X, and
randomly order the numbers 1 to 10 for Y. Then, I multiplied X and Y, and added the products together. I did this 1000 times. The
dots show the sum of the products for each simulation. The two black lines show the maximum possible sum (385), and the
minimum possible sum (220), for this set of numbers. Notice, how all of the dots are in between the maximum and minimum
possible values. Told you so.
“OK fine, you told me so…So what, who cares?”. We’ve been looking for a way to summarize the co-variance between two
measures right? Well, for these numbers, we have found one, haven’t we. It’s the sum of the products. We know that when the sum
of the products is 385, we have found a perfect, positive correlation. We know, that when the sum of the products is 220, we have
found a perfect negative correlation. What about the numbers in between. What could we conclude about the correlation if we
found the sum of the products to be 350. Well, it’s going to be positive, because it’s close to 385, and that’s perfectly positive. If the
sum of the products was 240, that’s going to be negative, because it’s close to the perfectly negatively correlating 220. What about
no correlation? Well, that’s going to be in the middle between 220 and 385 right.
We have just come up with a data-specific summary measure for the correlation between the numbers 1 to 10 in X, and the
numbers 1 to 10 in Y, it’s the sum of the products. We know the maximum (385) and minimum values (220), so we can now
interpret any product sum for this kind of data with respect to that scale.

Pro tip: When the correlation between two measures increases in the positive direction,
the sum of their products increases to its maximum possible value. This is because the
bigger numbers in X will tend to line up with the bigger numbers in Y, creating the biggest
possible sum of products. When the correlation between two measures increases in the
negative direction, the sum of their products decreases to its minimum possible value.
This is because the bigger numbers in X will tend to line up with the smaller numbers in Y,
creating the smallest possible sum of products. When there is no correlation, the big
numbers in X will be randomly lined up with the big and small numbers in Y, making the
sum of the products, somewhere in the middle.

Co-variance, the measure
We took some time to see what happens when you multiply sets of numbers together. We found that \( \textit{big} * \textit{big} =
\text{bigger} \) and \( \textit{small} * \textit{small} = \text{still small}\), and \( \textit{big} * \textit{small} = \text{in the
middle}\). The purpose of this was to give you some conceptual idea of how the co-variance between two measures is reflected in
the sum of their products. We did something very straightforward. We just multiplied X with Y, and looked at how the product
sums get big and small, as X and Y co-vary in different ways.
Now, we can get a little bit more formal. In statistics, co-variance is not just the straight multiplication of values in X and Y.
Instead, it’s the multiplication of the deviations in X from the mean of X, and the deviation in Y from the mean of Y. Remember
those difference scores from the mean we talked about last chapter? They’re coming back to haunt you know, but in a good way
like Casper the friendly ghost.
Let’s see what this look like in a table:

subject chocolate happiness C_d H_d Cd_x_Hd

1 1 1 -3 -3.2 9.6

2 2 2 -2 -2.2 4.4

3 2 3 -2 -1.2 2.4

4 3 3 -1 -1.2 1.2

5 3 3 -1 -1.2 1.2

6 5 5 1 0.8 0.8

7 4 6 0 1.8 0

8 5 5 1 0.8 0.8

9 9 5 5 0.8 4
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subject chocolate happiness C_d H_d Cd_x_Hd

10 6 9 2 4.8 9.6

Sums 40 42 0 0 34

Means 4 4.2 0 0 3.4

We have computed the deviations from the mean for the chocolate scores (column C_d ), and the deviations from the mean for
the happiness scores (column H_d ). Then, we multiplied them together (last column). Finally, you can see the mean of the
products listed in the bottom right corner of the table, the official the covariance.
The formula for the co-variance is:
\[ cov(X,Y) = \frac{\sum_{i}^{n}(x_{i}-\bar{X})(y_{i}-\bar{Y})}{N} \nonumber \]
OK, so now we have a formal single number to calculate the relationship between two variables. This is great, it’s what we’ve been
looking for. However, there is a problem. Remember when we learned how to compute just the plain old variance. We looked at
that number, and we didn’t know what to make of it. It was squared, it wasn’t in the same scale as the original data. So, we square
rooted the variance to produce the standard deviation, which gave us a more interpretable number in the range of our data. The co-
variance has a similar problem. When you calculate the co-variance as we just did, we don’t know immediately know its scale. Is a
3 big? is a 6 big? is a 100 big? How big or small is this thing?
From our prelude discussion on the idea of co-variance, we learned the sum of products between two measures ranges between a
maximum and minimum value. The same is true of the co-variance. For a given set of data, there is a maximum possible positive
value for the co-variance (which occurs when there is perfect positive correlation). And, there is a minimum possible negative
value for the co-variance (which occurs when there is a perfect negative correlation). When there is zero co-variation, guess what
happens. Zeroes. So, at the very least, when we look at a co-variation statistic, we can see what direction it points, positive or
negative. But, we don’t know how big or small it is compared to the maximum or minimum possible value, so we don’t know the
relative size, which means we can’t say how strong the correlation is. What to do?

Pearson’s r we there yet
Yes, we are here now. Wouldn’t it be nice if we could force our measure of co-variation to be between -1 and +1?
-1 would be the minimum possible value for a perfect negative correlation. +1 would be the maximum possible value for a perfect
positive correlation. 0 would mean no correlation. Everything in between 0 and -1 would be increasingly large negative
correlations. Everything between 0 and +1 would be increasingly large positive correlations. It would be a fantastic, sensible, easy
to interpret system. If only we could force the co-variation number to be between -1 and 1. Fortunately, for us, this episode is
brought to you by Pearson’s \(r\), which does precisely this wonderful thing.
Let’s take a look at a formula for Pearson’s \(r\):
\[r = \frac{cov(X,Y)}{\sigma_{X}\sigma_{Y}} = \frac{cov(X,Y)}{SD_{X}SD_{Y}} \nonumber \]
We see the symbol \(\sigma\) here, that’s more Greek for you. \(\sigma\) is often used as a symbol for the standard deviation (SD).
If we read out the formula in English, we see that r is the co-variance of X and Y, divided by the product of the standard deviation
of X and the standard deviation of Y. Why are we dividing the co-variance by the product of the standard deviations. This operation
has the effect of normalizing the co-variance into the range -1 to 1.

But, we will fill this part in as soon as we can…promissory note to explain the magic. FYI, it’s not magic. Brief explanation
here is that dividing each measure by its standard deviation ensures that the values in each measure are in the same range as
one another.

For now, we will call this mathematical magic. It works, but we don’t have space to tell you why it works right now.

It’s worth saying that there are loads of different formulas for computing Pearson’s \(r\).
You can find them by Googling them. We will probably include more of them here, when
we get around to it. However, they all give you the same answer. And, they are all not as
pretty as each other. Some of them might even look scary. In other statistics textbook you
will often find formulas that are easier to use for calculation purposes. For example, if

 Note
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you only had a pen and paper, you might use one or another formula because it helps you
compute the answer faster by hand. To be honest, we are not very interested in teaching
you how to plug numbers into formulas. We give one lesson on that here: Put the numbers
into the letters, then compute the answer. Sorry to be snarky. Nowadays you have a
computer that you should use for this kind of stuff. So, we are more interested in teaching
you what the calculations mean, rather than how to do them. Of course, every week we
are showing you how to do the calculations in lab with computers, because that is
important to.

Does Pearson’s \(r\) really stay between -1 and 1 no matter what? It’s true, take a look at the following simulation. Here I randomly
ordered the numbers 1 to 10 for an X measure, and did the same for a Y measure. Then, I computed Pearson’s \(r\), and repeated
this process 1000 times. As you can see all of the dots are between -1 and 1. Neat huh.

run restart restart & run all

Figure \(\PageIndex{1}\): A simulation of of correlations. Each dot represents the r-value for the correlation between an X and Y
variable that each contain the numbers 1 to 10 in random orders. The figure ilustrates that many r-values can be obtained by this
random process.

This page titled 3.3: Turning the numbers into a measure of co-variance is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

library(ggplot2)

simulated_sums <- length(0)

for(sim in 1:1000){

  X <- sample(1:10)

  Y <- sample(1:10)

  simulated_sums[sim] <- cor(X,Y)

}

sim_df <- data.frame(sims=1:1000,simulated_sums)

ggplot(sim_df, aes(x = sims, y = simulated_sums))+

  geom_point()+

  theme_classic()+

  geom_hline(yintercept = -1)+

  geom_hline(yintercept = 1)+

  ggtitle("Simulation of 1000 r values")
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