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9.5: Simple analysis of 2x2 repeated measures design
Normally in a chapter about factorial designs we would introduce you to Factorial ANOVAs, which are totally a thing. We will
introduce you to them soon. But, before we do that, we are going to show you how to analyze a 2x2 repeated measures ANOVA
design with paired-samples t-tests. This is probably something you won’t do very often. However, it turns out the answers you get
from this method are the same ones you would get from an ANOVA.
Admittedly, if you found the explanation of ANOVA complicated, it will just appear even more complicated for factorial designs.
So, our purpose here is to delay the complication, and show you with t-tests what it is that the Factorial ANOVA is doing. More
important, when you do the analysis with t-tests, you have to be very careful to make all of the comparisons in the right way. As a
result, you will get some experience learning how to know what it is you want to know from factorial designs. Once you know
what you want to know, you can use the ANOVA to find out the answers, and then you will also know what answers to look for
after you run the ANOVA. Isn’t new knowledge fun!
The first thing we need to do is define main effects and interactions. Whenever you conduct a Factorial design, you will also have
the opportunity to analyze main effects and interactions. However, the number of main effects and interactions you get to analyse
depends on the number of IVs in the design.

Main effects
Formally, main effects are the mean differences for a single Independent variable. There is always one main effect for each IV. A
2x2 design has 2 IVs, so there are two main effects. In our example, there is one main effect for distraction, and one main effect for
reward. We will often ask if the main effect of some IV is significant. This refers to a statistical question: Were the differences
between the means for that IV likely or unlikely to be caused by chance (sampling error).
If you had a 2x2x2 design, you would measure three main effects, one for each IV. If you had a 3x3x3 design, you would still only
have 3 IVs, so you would have three main effects.

Interaction
We find that the interaction concept is one of the most confusing concepts for factorial designs. Formally, we might say an
interaction occurs whenever the effect of one IV has an influence on the size of the effect for another IV. That’s probably not very
helpful. In more concrete terms, using our example, we found that the reward IV had an effect on the size of the distraction effect.
The distraction effect was larger when there was no-reward, and it was smaller when there was a reward. So, there was an
interaction.
We might also say an interaction occurs when the difference between the differences are different! Yikes. Let’s explain. There was
a difference in spot-the-difference performance between the distraction and no-distraction condition, this is called the distraction
effect (it is a difference measure). The reward manipulation changed the size of the distraction effect, that means there was
difference in the size of the distraction effect. The distraction effect is itself a measure of differences. So, we did find that the
difference (in the distraction effect) between the differences (the two measures of the distraction effect between the reward
conditions) were different. When you start to write down explanations of what interactions are, you find out why they come across
as complicated. We’ll leave our definition of interaction like this for now. Don’t worry, we’ll go through lots of examples to help
firm up this concept for you.
The number of interactions in the design also depend on the number of IVs. For a 2x2 design there is only 1 interaction. The
interaction between IV1 and IV2. This occurs when the effect of say IV2 (whether there is a difference between the levels of IV2)
changes across the levels of IV1. We could write this in reverse, and ask if the effect of IV1 (whether there is a difference between
the levels of IV1) changes across the levels of IV2. However, just because we can write this two ways, does not mean there are two
interactions. We’ll see in a bit, that no matter how do the calculation to see if the difference scores–measure of effect for one IV–
change across the levels of the other IV, we always get the same answer. That is why there is only one interaction for a 2x2.
Similarly, there is only one interaction for a 3x3, because there again we only have two IVs (each with three levels). Only when we
get up to designs with more than 2 IVs, do we find more possible interactions. A design with three IVS, has four interactions. If the
IVs are labelled A, B, and C, then we have three 2-way interactions (AB, AC, and BC), and one three-way interaction (ABC). We
hold off on this stuff for much later.

Looking at the data
It is most helpful to see some data in order to understand how we will analyze it. Let’s imagine we ran our fake attention study. We
will have five people in the study, and they will participate in all conditions, so it will be a fully repeated-measures design. The data
could look like this:
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No Reward Reward

No Distraction Distraction No Distraction Distraction

subject A B C D

No Reward Reward

No Distraction Distraction No Distraction Distraction

subject A B C D

1 10 5 12 9

2 8 4 13 8

3 11 3 14 10

4 9 4 11 11

5 10 2 13 12

Note: Number of differences spotted for each subject in each condition.

Main effect of Distraction
The main effect of distraction compares the overall means for all scores in the no-distraction and distraction conditions, collapsing
over the reward conditions.
The yellow columns show the no-distraction scores for each subject. The blue columns show the distraction scores for each subject.
The overall means for for each subject, for the two distraction conditions are shown to the right. For example, subject 1 had a 10
and 12 in the no-distraction condition, so their mean is 11.
We are interested in the main effect of distraction. This is the difference between the AC column (average of subject scores in the
no-distraction condition) and the BD column (average of the subject scores in the distraction condition). These differences for each
subjecct are shown in the last green column. The overall means, averaging over subjects are in the bottom green row.

Just looking at the means, we can see there was a main effect of Distraction, the mean for the no-distraction condition was 11.1,
and the mean for the distraction condition was 6.8. The size of the main effect was 4.3 (the difference between 11.1 and 6.8).
Now, what if we wanted to know if this main effect of distraction (the difference of 4.3) could have been caused by chance, or
sampling error. You could do two things. You could run a paired samples \(t\)-test between the mean no-distraction scores for each
subject (column AC) and the mean distraction scores for each subject (column BD). Or, you could run a one-sample \(t\)-test on the
difference scores column, testing against a mean difference of 0. Either way you will get the same answer.
Here’s the paired samples version:

A <- c(10,8,11,9,10)  #nD_nR

B  <- c(5,4,3,4,2)  #D_nR

C <- c(12,13,14,11,13)  #nD_R
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run restart restart & run all

Here’s the one sample version:

run restart restart & run all

If we were to write-up our results for the main effect of distraction we could say something like this:
The main effect of distraction was significant, \(t\)(4) = 7.66, \(p\) = 0.001. The mean number of differences spotted was higher in
the no-distraction condition (M = 11.1) than the distraction condition (M = 6.8).

Main effect of Reward
The main effect of reward compares the overall means for all scores in the no-reward and reward conditions, collapsing over the
reward conditions.
The yellow columns show the no-reward scores for each subject. The blue columns show the reward scores for each subject.

 Paired t-test 

 

data:  AC and BD 

t = 7.6615, df = 4, p-value = 0.00156 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 2.741724 5.858276 

sample estimates: 

mean of the differences  

                    4.3  

 One Sample t-test 

 

data:  AC - BD 

t = 7.6615, df = 4, p-value = 0.00156 

alternative hypothesis: true mean is not equal to 0 

95 percent confidence interval: 

 2.741724 5.858276 

sample estimates: 

mean of x  

      4.3  

D  <- c(9,8,10,11,12)  #D_R

AC<- (A+C)/2 

BD<- (B+D)/2

t.test(AC,BD, paired=TRUE,var.equal=TRUE)

A <- c(10,8,11,9,10)  #nD_nR

B  <- c(5,4,3,4,2)  #D_nR

C <- c(12,13,14,11,13)  #nD_R

D  <- c(9,8,10,11,12)  #D_R

AC<- (A+C)/2 

BD<- (B+D)/2

t.test(AC-BD, mu=0)
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The overall means for for each subject, for the two reward conditions are shown to the right. For example, subject 1 had a 10 and 5
in the no-reward condition, so their mean is 7.5.
We are interested in the main effect of reward. This is the difference between the AB column (average of subject scores in the no-
reward condition) and the CD column (average of the subject scores in the reward condition). These differences for each subjecct
are shown in the last green column. The overall means, averaging over subjects are in the bottom green row.

Just looking at the means, we can see there was a main effect of reward. The mean number of differences spotted was 11.3 in the
reward condition, and 6.6 in the no-reward condition. So, the size of the main effectd of reward was 4.7.
Is a difference of this size likely o unlikey due to chance? We could conduct a paired-samples \(t\)-test on the AB vs. CD means, or
a one-sample \(t\)-test on the difference scores. They both give the same answer:
Here’s the paired samples version:

run restart restart & run all

Here’s the one sample version:

 Paired t-test 

 

data:  CD and AB 

t = 8.3742, df = 4, p-value = 0.001112 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 3.141724 6.258276 

sample estimates: 

mean of the differences  

                    4.7  

A <- c(10,8,11,9,10)  #nD_nR

B  <- c(5,4,3,4,2)  #D_nR

C <- c(12,13,14,11,13)  #nD_R

D  <- c(9,8,10,11,12)  #D_R

AB<- (A+B)/2 

CD<- (C+D)/2

t.test(CD,AB, paired=TRUE,var.equal=TRUE)
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run restart restart & run all

If we were to write-up our results for the main effect of reward we could say something like this:
The main effect of reward was significant, t(4) = 8.37, p = 0.001. The mean number of differences spotted was higher in the reward
condition (M = 11.3) than the no-reward condition (M = 6.6).

Interaction between Distraction and Reward
Now we are ready to look at the interaction. Remember, the whole point of this fake study was what? Can you remember?
Here’s a reminder. We wanted to know if giving rewards versus not would change the size of the distraction effect.
Notice, neither the main effect of distraction, or the main effect of reward, which we just went through the process of computing,
answers this question.
In order to answer the question we need to do two things. First, compute distraction effect for each subject when they were in the
no-reward condition. Second, compute the distraction effect for each subject when they were in the reward condition.
Then, we can compare the two distraction effects and see if they are different. The comparison between the two distraction effects
is what we call the interaction effect. Remember, this is a difference between two difference scores. We first get the difference
scores for the distraction effects in the no-reward and reward conditions. Then we find the difference scores between the two
distraction effects. This difference of differences is the interaction effect (green column in the table)

 One Sample t-test 

 

data:  CD - AB 

t = 8.3742, df = 4, p-value = 0.001112 

alternative hypothesis: true mean is not equal to 0 

95 percent confidence interval: 

 3.141724 6.258276 

sample estimates: 

mean of x  

      4.7  

A <- c(10,8,11,9,10)  #nD_nR

B  <- c(5,4,3,4,2)  #D_nR

C <- c(12,13,14,11,13)  #nD_R

D  <- c(9,8,10,11,12)  #D_R

AB<- (A+B)/2 

CD<- (C+D)/2

t.test(CD-AB, mu=0)
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The mean distraction effects in the no-reward (6) and reward (2.6) conditions were different. This difference is the interaction
effect. The size of the interaction effect was 3.4.
How can we test whether the interaction effect was likely or unlikely due to chance? We could run another paired-sample \(t\)-test
between the two distraction effect measures for each subject, or a one sample \(t\)-test on the green column (representing the
difference between the differences). Both of these \(t\)-tests will give the same results:
Here’s the paired samples version:

run restart restart & run all

Here’s the one sample version:

 Paired t-test 

 

data:  A_B and C_D 

t = 2.493, df = 4, p-value = 0.06727 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -0.3865663  7.1865663 

sample estimates: 

mean of the differences  

                    3.4  

A <- c(10,8,11,9,10)  #nD_nR

B  <- c(5,4,3,4,2)  #D_nR

C <- c(12,13,14,11,13)  #nD_R

D  <- c(9,8,10,11,12)  #D_R

A_B <- A-B

C_D <- C-D

t.test(A_B,C_D, paired=TRUE,var.equal=TRUE)

A <- c(10,8,11,9,10)  #nD_nR

B  <- c(5,4,3,4,2)  #D_nR

C <- c(12,13,14,11,13)  #nD_R

D  <- c(9,8,10,11,12)  #D_R
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run restart restart & run all

Oh look, the interaction was not significant. At least, if we had set our alpha criterion to 0.05, it would not have met that criteria.
We could write up the results like this. The two-way interaction between between distraction and reward was not significant, \(t\)(4)
= 2.493, \(p\) = 0.067.
Often times when a result is “not significant” according to the alpha criteria, the pattern among the means is not described further.
One reason for this practice is that the researcher is treating the means as if they are not different (because there was an above alpha
probability that the observed idfferences were due to chance). If they are not different, then there is no pattern to report.
There are differences in opinion among reasonable and expert statisticians on what should or should not be reported. Let’s say we
wanted to report the observed mean differences, we would write something like this:
The two-way interaction between between distraction and reward was not significant, t(4) = 2.493, p = 0.067. The mean distraction
effect in the no-reward condition was 6 and the mean distraction effect in the reward condition was 2.6.

Writing it all up
We have completed an analysis of a 2x2 repeated measures design using paired-samples \(t\)-tests. Here is what a full write-up of
the results could look like.
The main effect of distraction was significant, \(t\)(4) = 7.66, \(p\) = 0.001. The mean number of differences spotted was higher in
the no-distraction condition (M = 11.1) than the distraction condition (M = 6.8).
The main effect of reward was significant, \(t\)(4) = 8.37, \(p\) = 0.001. The mean number of differences spotted was higher in the
reward condition (M = 11.3) than the no-reward condition (M = 6.6).
The two-way interaction between between distraction and reward was not significant, \(t\)(4) = 2.493, \(p\) = 0.067. The mean
distraction effect in the no-reward condition was 6 and the mean distraction effect in the reward condition was 2.6.
Interim Summary. We went through this exercise to show you how to break up the data into individual comparisons of interest.
Generally speaking, a 2x2 repeated measures design would not be anlayzed with three paired-samples \(t\)-test. This is because it is
more convenient to use the repeated measures ANOVA for this task. We will do this in a moment to show you that they give the
same results. And, by the same results, what we will show is that the \(p\)-values for each main effect, and the interaction, are the
same. The ANOVA will give us \(F\)-values rather than \(t\) values. It turns out that in this situation, the \(F\)-values are related to
the \(t\) values. In fact, \(t^2 = F\).

2x2 Repeated Measures ANOVA
We just showed how a 2x2 repeated measures design can be analyzed using paired-sampled \(t\)-tests. We broke up the analysis
into three parts. The main effect for distraction, the main effect for reward, and the 2-way interaction between distraction and
reward. We claimed the results of the paired-samples \(t\)-test analysis would mirror what we would find if we conducted the
analysis using an ANOVA. Let’s show that the results are the same. Here are the results from the 2x2 repeated-measures ANOVA,
using the aov  function in R.

 One Sample t-test 

 

data:  A_B - C_D 

t = 2.493, df = 4, p-value = 0.06727 

alternative hypothesis: true mean is not equal to 0 

95 percent confidence interval: 

 -0.3865663  7.1865663 

sample estimates: 

mean of x  

      3.4  

A_B <- A-B

C_D <- C-D

t.test(A_B-C_D, mu=0)

library(xtable)
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run restart restart & run all

Df Sum Sq Mean Sq F value Pr(>F)

Distraction 1 92.45 92.450 58.698413
F)" style="vertical-

align:middle;">0.00
15600

Distraction:Reward 1 14.45 14.450 6.215054
F)" style="vertical-

align:middle;">0.06
72681

Residuals 4 3.70 0.925 NA
F)" style="vertical-
align:middle;">NA

Residuals 4 6.30 1.575 NA
F)" style="vertical-
align:middle;">NA

Residuals 4 9.30 2.325 NA
F)" style="vertical-
align:middle;">NA

Residuals1 4 6.30 1.575 NA
F)" style="vertical-
align:middle;">NA

Reward 1 110.45 110.450 70.126984
F)" style="vertical-

align:middle;">0.00
11122

Let’s compare these results with the paired-samples \(t\)-tests.
Main effect of Distraction: Using the paired samples \(t\)-test, we found \(t\)(4) =7.6615, \(p\)=0.00156. Using the ANOVA we
found, \(F\)(1,4) = 58.69, \(p\)=0.00156. See, the \(p\)-values are the same, and \(t^2 = 7.6615^2 = 58.69 = F\).
Main effect of Reward: Using the paired samples \(t\)-test, we found \(t\)(4) =8.3742, \(p\)=0.001112. Using the ANOVA we found,
\(F\)(1,4) = 70.126, \(p\)=0.001112. See, the \(p\)-values are the same, and \(t^2 = 8.3742^2 = 70.12 = F\).
Interaction effect: Using the paired samples \(t\)-test, we found \(t\)(4) =2.493, \(p\)=0.06727. Using the ANOVA we found, \(F\)
(1,4) = 6.215, \(p\)=0.06727. See, the \(p\)-values are the same, and \(t^2 = 2.493^2 = 6.215 = F\).
There you have it. The results from a 2x2 repeated measures ANOVA are the same as you would get if you used paired-samples \
(t\)-tests for the main effects and interactions.
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A <- c(10,8,11,9,10)  #nD_nR

B  <- c(5,4,3,4,2)  #D_nR

C <- c(12,13,14,11,13)  #nD_R

D  <- c(9,8,10,11,12)  #D_R

Number_spotted <- c(A, B, C, D)

Distraction    <- rep(rep(c("No Distraction", "Distraction"), each=5),2)

Reward         <- rep(c("No Reward","Reward"),each=10)

Subjects       <- rep(1:5,4)

Distraction <- as.factor(Distraction)

Reward      <- as.factor(Reward)

Subjects    <- as.factor(Subjects)

rm_df <- data.frame(Subjects, Distraction, Reward, Number_spotted)

aov_summary <- summary(aov(Number_spotted~Distraction*Reward +

                             Error(Subjects/(Distraction*Reward)), 

                           rm_df))

knitr::kable(xtable(aov_summary))
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