LibreTextsw

3.5: Regression — A mini intro

We’re going to spend the next little bit adding one more thing to our understanding of correlation. It’s called linear regression. It
sounds scary, and it really is. You’ll find out much later in your Statistics education that everything we will be soon be talking
about can be thought of as a special case of regression. But, we don’t want to scare you off, so right now we just introduce the basic
concepts.

First, let’s look at a linear regression. This way we can see what we’re trying to learn about. Here’s some scatter plots, same one’s
you’ve already seen. But, we’ve added something new! Lines.

library(ggplot2)
subject x<-1:100
chocolate x<-round(1:100*runif(100,.5,1))
happiness x<-round(1:100*runif(100,.5,1))
df positive<-data.frame(subject x,chocolate x,happiness x)
subject x<-1:100
chocolate x<-round(1:100*runif(100,.5,1))
happiness x<-round(100:1*runif(100,.5,1))
df negative<-data.frame(subject x,chocolate x,happiness x)
subject x<-1:100
chocolate x<-round(runif(100,0,100))
happiness x<-round(runif(100,0,100))
df random<-data.frame(subject x,chocolate x,happiness x)
all data<-rbind(df positive,df negative,df random)
all data<-cbind(all data,correlation=rep(c("positive","negative","random"),each=100))
ggplot(all data,aes(x=chocolate x,y=happiness x))+
geom_point()+
theme classic()+
geom_smooth(method="1m",se=F, formula=y ~ x)+
facet wrap(~correlation)+
xlab("chocolate supply")+
ylab("happiness")

‘ mnl mﬁanl restart & run all

g 1] pose I o

happiness

o 25 50 75 1000 25 50 75 1000 25 50 75 100
chocolate supply

Figure \(\PageIndex{1}\): Three scatterplots showing negative, positive, and a random correlation (where the r-value is expected to
be 0), along with the best fit regression line

https://stats.libretexts.org/@go/page/7902

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7902?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/03%3A_Correlation/3.05%3A_Regression__A_mini_intro

LibreTextsw

The best fit line

Notice anything about these blue lines? Hopefully you can see, at least for the first two panels, that they go straight through the
data, just like a kebab skewer. We call these lines best fit lines, because according to our definition (soon we promise) there are no
other lines that you could draw that would do a better job of going straight throw the data.

One big idea here is that we are using the line as a kind of mean to describe the relationship between the two variables. When we
only have one variable, that variable exists on a single dimension, it’s 1D. So, it is appropriate that we only have one number, like
the mean, to describe it’s central tendency. When we have two variables, and plot them together, we now have a two-dimensional
space. So, for two dimensions we could use a bigger thing that is 2d, like a line, to summarize the central tendency of the
relationship between the two variables.

What do we want out of our line? Well, if you had a pencil, and a printout of the data, you could draw all sorts of straight lines any
way you wanted. Your lines wouldn’t even have to go through the data, or they could slant through the data with all sorts of angles.
Would all of those lines be very good a describing the general pattern of the dots? Most of them would not. The best lines would go
through the data following the general shape of the dots. Of the best lines, however, which one is the best? How can we find out,
and what do we mean by that? In short, the best fit line is the one that has the least error.

| R code for plotting residuals thanks to Simon Jackson’s blog post: https://drsimonj.svbtle.com/visualising-residuals

Check out this next plot, it shows a line through some dots. But, it also shows some teeny tiny lines. These lines drop down from
each dot, and they land on the line. Each of these little lines is called a residual. They show you how far off the line is for different
dots. It’s measure of error, it shows us just how wrong the line is. After all, it’s pretty obvious that not all of the dots are on the line.
This means the line does not actually represent all of the dots. The line is wrong. But, the best fit line is the least wrong of all the
wrong lines.

https://stats.libretexts.org/@go/page/7902

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7902?pdf
https://drsimonj.svbtle.com/visualising-residuals

LibreTextsm

library(ggplot2)
d <- mtcars
fit <- Im(mpg ~ hp, data = d)
d$predicted <- predict(fit) # Save the predicted values
d$residuals <- residuals(fit) # Save the residual values
ggplot(d, aes(x = hp, y = mpg)) +
geom_smooth(method = "lm", se = FALSE,
color = "lightblue", formula=y ~ x) + # Plot regression slope
geom_segment(aes(xend = hp, yend = predicted,
color="red"), alpha = .5) + # alpha to fade lines
geom_point() +
geom_point(aes(y = predicted), shape = 1) +
theme classic()+
theme (legend.position="none")+
xlab("X")+ylab("Y")
Quick look at the actual, predicted, and residual values
#library(dplyr)
#d %>% select(mpg, predicted, residuals) %>% head()

‘ run Ireﬁan |reman&runa"

35

. =
s

Figure \(\PageIndex{2}\): Black dots represent data points. The blue line is the best fit regression line. The white dots are repesent
the predicted location of each black dot. The red lines show the error between each black dot and the regression line. The blue line
is the best fit line because it minimizes the error shown by the red lines.

There’s a lot going on in this graph. First, we are looking at a scatter plot of two variables, an X and Y variable. Each of the black
dots are the actual values from these variables. You can see there is a negative correlation here, as X increases, Y tends to decrease.
We drew a regression line through the data, that’s the blue line. There’s these little white dots too. This is where the line thinks the

https://stats.libretexts.org/@go/page/7902

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7902?pdf

LibreTextsw

black dots should be. The red lines are the important residuals we’ve been talking about. Each black dot has a red line that drops
straight down, or straight up from the location of the black dot, and lands directly on the line. We can already see that many of the
dots are not on the line, so we already know the line is “off” by some amount for each dot. The red line just makes it easier to see
exactly how off the line is.

The important thing that is happening here, is that the the blue line is drawn is such a way, that it minimizes the total length of the
red lines. For example, if we wanted to know how wrong this line was, we could simply gather up all the red lines, measure how
long they are, and then add all the wrongness together. This would give us the total amount of wrongness. We usually call this the
error. In fact, we’ve already talked about this idea before when we discussed standard deviation. What we will actually be doing
with the red lines, is computing the sum of the squared deviations from the line. That sum is the total amount of error. Now, this
blue line here minimizes the sum of the squared deviations. Any other line would produce a larger total error.

Here’s an animation to see this in action. The animations compares the best fit line in blue, to some other possible lines in black.
The black line moves up and down. The red lines show the error between the black line and the data points. As the black line
moves toward the best fit line, the total error, depicted visually by the grey area shrinks to it’s minimum value. The total error
expands as the black line moves away from the best fit line.

Figure \(\PageIndex{3}\): The blue line is the best fit regression line explaining the co-variation among the black dots. The black
line moves up and down showing alternative lines that could be drawn. The red lines show the amount of error between each data
point and the black line. The total amount of error is depicted by the shaded grey area. The size of the grey area expands as the
black line moves away from the best fit line, and shrinks to a minimum as the black line moves toward the best fit line.

Whenever the black line does not overlap with the blue line, it is worse than the best fit line. The blue regression line is like
Goldilocks, it’s just right, and it’s in the middle.

This next graph shows a little simulation of how the sum of squared deviations (the sum of the squared lengths of the red lines)
behaves as we move the line up and down. What’s going on here is that we are computing a measure of the total error as the black
line moves through the best fit line. This represents the sum of the squared deviations. In other words, we square the length of each
red line from the above animation, then we add up all of the squared red lines, and get the total error (the total sum of the squared
deviations). The graph below shows what the total error looks like as the black line approaches then moves away from the best fit
line. Notice, the dots in this graph start high on the left side, then they swoop down to a minimum at the bottom middle of the
graph. When they reach their minimum point, we have found a line that minimizes the total error. This is the best fit regression line.

https://stats.libretexts.org/@go/page/7902

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7902?pdf

LibreTextsm

library(ggplot2)
d <- mtcars
fit <- lm(mpg ~ hp, data = d)
d$predicted <- predict(fit) # Save the predicted values
d$residuals <- residuals(fit) # Save the residual values
coefs<-coef(lm(mpg ~ hp, data = mtcars))
#coefs[1]
#coefs[2]
x<-d$hp
move line<-seq(-5,5,.5)
total error<-c(length(move line))
cnt<-0
for(i in move line){
cnt<-cnt+l
predicted y <- coefs[2]*x + coefs[1l]+i
error y <- (predicted y-d$mpg)~2
total error[cnt]<-sum(error_y)
}
df<-data.frame(move line,total error)
ggplot(df,aes(x=move line,y=total error))+
geom_point()+
theme classic()+
ylab("sum of squared deviations")+
xlab("change to y-intercept")

‘ mnl mmmtl restart & run all

1200

1000

800

sum of squared deviations

-5.0 -25 0.0 25 5.0
change to y-intercept

Figure \(\PageIndex{4}\): A plot of the sum of the squared deviations for different lines moving up and down, through the best fit
line. The best fit line occurs at the position that minimizes the sum of the sqaured deviations.

OK, so we haven’t talked about the y-intercept yet. But, what this graph shows us is how the total error behaves as we move the
line up and down. The y-intercept here is the thing we change that makes our line move up and down. As you can see the dots go
up when we move the line down from 0 to -5, and the dots go up when we move the line up from 0 to +5. The best line, that
minimizes the error occurs right in the middle, when we don’t move the blue regression line at all.

https://stats.libretexts.org/@go/page/7902

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7902?pdf

LibreTextsw

Lines

OK, fine you say. So, there is one magic line that will go through the middle of the scatter plot and minimize the sum of the
squared deviations. How do I find this magic line? We’ll show you. But, to be completely honest, you’ll almost never do it the way
we’ll show you here. Instead, it’s much easier to use software and make your computer do it for. You’ll learn how to that in the
labs.

Before we show you how to find the regression line, it’s worth refreshing your memory about how lines work, especially in 2
dimensions. Remember this?

\(y = ax + b\), or also \(y = mx + b\) (sometimes a or m is used for the slope)

This is the formula for a line. Another way of writing it is:

\[y = slope * x + \text{y-intercept} \nonumber \]

The slope is the slant of the line, and the y-intercept is where the line crosses the y-axis. Let’s look at some lines:

library(ggplot2)

ggplot()+
geom_abline(slope=1,intercept=5,color="blue")+
geom_abline(slope=-1, intercept=15, color="red")+
lims(x = ¢c(1,20), y = c(0,20))+
theme classic()

‘ mnl mmanl restart & run all

20

Figure \(\Pagelndex{5}\): Two different lines with different y-intercepts (where the line crosses the y-axis), and different slopes. A
positive slope makes the line go up from left to right. A negative slope makes the line go down from left to right.

So there is two lines. The formula for the blue line is \(y = 1*x + 5\). Let’s talk about that. When x = 0, where is the blue line on the
y-axis? It’s at five. That happens because 1 times 0 is 0, and then we just have the five left over. How about when x = 5? In that
case y =10. You just need the plug in the numbers to the formula, like this:

\[y = 1*x + 5 \nonumber \]

\[y = 1*5 + 5 = 5+5 =10 \nonumber \]

The point of the formula is to tell you where y will be, for any number of x. The slope of the line tells you whether the line is going
to go up or down, as you move from the left to the right. The blue line has a positive slope of one, so it goes up as x goes up. How
much does it go up? It goes up by one for everyone one of x! If we made the slope a 2, it would be much steeper, and go up faster.
The red line has a negative slope, so it slants down. This means \(y\) goes down, as \(x\) goes up. When there is no slant, and we

want to make a perfectly flat line, we set the slope to 0. This means that y doesn’t go anywhere as x gets bigger and smaller.
That’s lines.

https://stats.libretexts.org/@go/page/7902

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7902?pdf

LibreTextsw

Computing the best fit line

If you have a scatter plot showing the locations of scores from two variables, the real question is how can you find the slope and the
y-intercept for the best fit line? What are you going to do? Draw millions of lines, add up the residuals, and then see which one was
best? That would take forever. Fortunately, there are computers, and when you don’t have one around, there’s also some handy
formulas.

It’s worth pointing out just how much computers have changed everything. Before computers everyone had to do these
calculations by hand, such a chore! Aside from the deeper mathematical ideas in the formulas, many of them were made for
convenience, to speed up hand calculations, because there were no computers. Now that we have computers, the hand
calculations are often just an exercise in algebra. Perhaps they build character. You decide.

We’ll show you the formulas. And, work through one example by hand. It’s the worst, we know. By the way, you should feel sorry
for me as I do this entire thing by hand for you.

Here are two formulas we can use to calculate the slope and the intercept, straight from the data. We won’t go into why these
formulas do what they do. These ones are for “easy” calculation.

\[intercept = b = \frac{\sum{y}\sum{x/2}-\sum{x J\sum{xy} } {n\sum{xA2}-(\sum{x})A2} \nonumber \]

\[slope = m = \frac{n\sum{xy}-\sum{x}\sum{y} } {n\sum{xA2}-(\sum{x})A2} \nonumber \]

In these formulas, the \(x\) and the \(y\) refer to the individual scores. Here’s a table showing you how everything fits together.

suppressPackageStartupMessages(library(dplyr))
scores<-c(1,2,3,4,5,6,7)
x<-c(1,4,3,6,5,7,8)
y<-c(2,5,1,8,6,8,9)
X_squared<-x"2
y squared<-y~2
Xy<-x*y
all df<-data.frame(scores,x,y,x squared,y squared,xy)
all df <- all df %>%

rbind(c("Sums",colSums(all df[1:7,2:61)))
slope=((sum(y)*sum(x_ squared))- (sum(x)*sum(xy)))/((7*sum(x_squared))-sum(x)"2)
intercept=(7*sum(xy)-sum(x)*sum(y))/(7*sum(x_squared)-sum(x)"2)
knitr::kable(all df)

‘ mnl mﬂmtv restart & run all

scores X y x_squared y_squared Xy
1 1 2 1 4 2

2 4 5 16 25 20
3 3 1 9 1 3

4 6 8 36 64 48
5 5 6 25 36 30
6 7 8 49 64 56
7 8 9 64 81 72
Sums 34 39 200 275 231

We see 7 sets of scores for the x and y variable. We calculated \(xA2\) by squaring each value of x, and putting it in a column. We
calculated \(y"2\) by squaring each value of y, and putting it in a column. Then we calculated \(xy\), by multiplying each \(x\) score

https://stats.libretexts.org/@go/page/7902

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7902?pdf

LibreTextsm

with each \(y\) score, and put that in a column. Then we added all the columns up, and put the sums at the bottom. These are all the
number we need for the formulas to find the best fit line. Here’s what the formulas look like when we put numbers in them:
\[intercept = b = \frac{\sum{y}\sum{x"2}-\sum{x}\sum{xy} } {n\sum{xA2}-(\sum{x})*2} = \frac{39 * 200 - 34*231}{7*200-
34A2} = -.221 \nonumber \]

\[slope = m = \frac{n\sum{xy}-\sum{xH\sum{y}}H{n\sum{xA2}-(\sum{x})A2} = \frac{7*231-34*39}{7*275-34/2} = 1.19
\nonumber \]

Great, now we can check our work, let’s plot the scores in a scatter plot and draw a line through it with slope = 1.19, and a y-
intercept of -.221. It should go through the middle of the dots.

library(ggplot2)

x<-c(1,4,3,6,5,7,8)

y<-c(2,5,1,8,6,8,9)

plot df<-data.frame(x,y)

ggplot(plot df,aes(x=x,y=y))+
geom_point()+
geom_smooth(method="1m", se=FALSE, formula=y ~ x)+
theme classic()

‘ mnl mﬁanl restart & run all

Figure \(\Pagelndex{6}\): An example regression line with confidence bands going through a few data points in a scatterplot.

x<-c¢(1,4,3,6,5,7,8)
y<-c(2,5,1,8,6,8,9)

plot df<-data.frame(x,y)
coef(lm(y~x,plot df))

‘ mnl mﬂwt” restart & run all

(Intercept): -0.221311475409834 x: 1.19262295081967

This page titled 3.5: Regression — A mini intro is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew J.
C. Crump via source content that was edited to the style and standards of the LibreTexts platform.

https://stats.libretexts.org/@go/page/7902

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://stats.libretexts.org/@go/page/7902?pdf
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Answering_Questions_with_Data_-__Introductory_Statistics_for_Psychology_Students_(Crump)/03%3A_Correlation/3.05%3A_Regression__A_mini_intro
https://creativecommons.org/licenses/by-sa/4.0
https://crumplab.github.io/
https://www.crumplab.com/statistics/

