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3.2: Causality and Invertibility

While a moving average process of order g will always be stationary without conditions on the coefficients 6;,. . .,0;, some deeper
thoughts are required in the case of AR(p) and ARMA(p, q) processes. For simplicity, we start by investigating the autoregressive
process of order one, which is given by the equations X; = ¢X; 1 + Z; (writing ¢ = ¢ ). Repeated iterations yield that

N-1
X, =Xy 1+ Zi =Xy 2+ 2+ 9021 =... =V Xy N+ Z 2.
=0

Letting N — 00, it could now be shown that, with probability one,
0 .
X, =) ¢Z; (3.2.2)
§=0

is the weakly stationary solution to the AR(1) equations, provided that |¢| < 1. These calculations would indicate moreover, that an
autoregressive process of order one can be represented as linear process with coefficients ; = ¢’ .

Example 3.2.1: Mean and ACVF of an AR(1) process

Since an autoregressive process of order one has been identified as an example of a linear process, one can easily determine its
expected value as

E[X,] = i ¢'E(Z; ;] =0, tcZ.
=0

For the ACVF, it is obtained that
v(h) = Cov(Xisin, Xt)

o0 o0
=K z; & Zpinj kE . " Z,
= -

h
1—¢2’

where h > 0. This determines the ACVF for all h using that y(—h) =~(h). It is also immediate that the ACF satisfies
p(h) = ¢". See also Example 3.1.1 for comparison.

Example 3.2.2: Nonstationary AR(1) processes

In Example 1.2.3 we have introduced the random walk as a nonstationary time series. It can also be viewed as a nonstationary
AR(1) process with parameter ¢ = 1. In general, autoregressive processes of order one with coefficients |¢| > 1 are called {\it
explosive}V for they do not admit a weakly stationary solution that could be expressed as a linear process. However, one may
proceed as follows. Rewrite the defining equations of an AR(1) process as

— o2 i¢k+h¢k :Uz¢h§:¢2k _ 02¢
k=0 k=0

Xi=—¢""Zyn+¢ ' Xpp, teZ.

Apply now the same iterations as before to arrive at
N
-N —q
Xi=¢ Xt+N—Z¢ ' Ziti, teZ.
j=1
Note that in the weakly stationary case, the present observation has been described in terms of past innovations. The

representation in the last equation however contains only future observations with time lags larger than the present time ¢.
From a statistical point of view this does not make much sense, even though by identical arguments as above we may obtain
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oo
Xt:_z¢7]Zt+ja tEZ,
j=1
as the weakly stationary solution in the explosive case.
The result of the previous example leads to the notion of causality which means that the process (X; : ¢ € Z) has a representation

in terms of the white noise (Z, : s <t) and that is hence uncorrelated with the future as given by (Z,:s>t). We give the
definition for the general ARMA case.

Definition: Causality

An ARMA(p, g) process given by (3.1.1) is causal if there is a sequence (1 : j € No) such that > 32° |4;] < oo and

o0
Xe=)> %iZ;, tel
j=0

Causality means that an ARMA time series can be represented as a linear process. It was seen earlier in this section how an AR(1)
process whose coefficient satisfies the condition |¢| < 1 can be converted into a linear process. It was also shown that this is
impossible if |¢| > 1. The conditions on the autoregressive parameter ¢ can be restated in terms of the corresponding
autoregressive polynomial ¢(z) =1 — ¢z as follows. It holds that

|| < 1if and only if ¢(z) #0 forall |2z] <1,

|¢| > 1 if and only if #(z) # 0 forall |z| > 1.

It turns out that the characterization in terms of the zeroes of the autoregressive polynomials carries over from the AR(1) case to the
general ARMA(p, q) case. Moreover, the 1-weights of the resulting linear process have an easy representation in terms of the
polynomials ¢(z) and 6(z) . The result is summarized in the next theorem.

Theorem 3.2.1

Let (X;:t€Z) be an ARMA(p, q) process such that the polynomials ¢(z) and 6(z) have no common zeroes. Then
(X¢:t € Z) is causal if and only if ¢(2) # 0 for all z € C with |z| < 1. The coefficients (1; : j € Ng) are determined by the
power series expansion

0(2)
$(2)’

2| <1.

P(2) =Y i =
=0

A concept closely related to causality is invertibility. This notion is motivated with the following example that studies properties of
a moving average time series of order 1.

Example 3.2.3

Let (X;:t € N) be an MA(1) process with parameter = 6 . It is an easy exercise to compute the ACVF and the ACF as

(1+6*0% h=0, 1 h=0.
v(h) = q 60?, h=1 p(h)=1 6(1+6*)7', h=1.
0 h>1, 0 h>1.

These results lead to the conclusion that p(h) does not change if the parameter 6 is replaced with 6. Moreover, there exist
pairs (6, o?) that lead to the same ACVF, for example (5, 1) and (1/5, 25). Consequently, we arrive at the fact that the two
MA(1) models

1
XtZZt+th_1, tGZ, (ZttGZ)NlldN(0,25),

and
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X,=Z,+5Z,1, tez, (Z:t e Z) ~ild N(0,1),

are indistinguishable because we only observe X; but not the noise variables Z; and Zt.

For convenience, the statistician will pick the model which satisfies the invertibility criterion which is to be defined next. It
specifies that the noise sequence can be represented as a linear process in the observations.

Definition: Invertibility

An ARMA(p, g) process given by (3.1.1) is invertible if there is a sequence (;: j € Ng) such that Z;io |7j| < oo and

Z =) mX,;, tel
j=0

Theorem 3.2.2

Let (X;:t€Z) be an ARMA(p,q) process such that the polynomials ¢(z) and 6(z) have no common zeroes. Then
(Xi:t € Z) is invertible if and only if 0(z) #0 for all z € C with |z| < 1. The coefficients (;);cn, are determined by the
power series expansion

m(2) = w2’ _oe) 2] <1.

From now on it is assumed that all ARMA sequences specified in the sequel are causal and invertible unless explicitly stated
otherwise. The final example of this section highlights the usefulness of the established theory. It deals with parameter redundancy
and the calculation of the causality and invertibility sequences (1;: j € Ny) and (m;: j € Ny).

Example 3.2.4: Parameter redundancy

Consider the ARMA equations
Xt = -4Xt—1 + '21Xt—2 + Zt + .6Zt_1 + .09Zt_2,

which seem to generate an ARMA(2,2) sequence. However, the autoregressive and moving average polynomials have a
common zero:

d(z) =1—.42—.2122 =(1—.72)(1+.32),
0(2) =1+.62+.092% = (1+.32)%
Therefore, one can reset the ARMA equations to a sequence of order (1,1) and obtain
Xi=7Xs 1+ 2+ .32 ;.

Now, the corresponding polynomials have no common roots. Note that the roots of ¢(z) =1—.7z and 0(z) =1+ .3z are
10/7 > 1 and —10/3 < —1, respectively. Thus Theorems 3.2.1 and 3.2.2 imply that causal and invertible solutions exist. In
the following, the corresponding coefficients in the expansions

o0 o0
X, =Y $iZ; and Z=Y mXe;, teZ,
=0 =0

are calculated. Starting with the causality sequence (1; : j € No) . Writing, for |2| <1,

it can be obtained from a comparison of coefficients that

Po=1 and ;= (T+3)(TY " = (1), jeN.
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Similarly one computes the invertibility coefficients (7; : j € Ng) from the equation

iﬂjzj =m(z) = % = % =(1-.72) i(—.?,z)j

(lz2] <1)as
m=1 and m=(-1)/(:3+.7)(:3)]" =(-1)i(.3)"".

Together, the previous calculations yield to the explicit representations

Xt=Zt+Z(.7)j_1Zt_j and thXt—i—Z(—l)j(.S)j_lXt_j.
j=1 j=1

In the remainder of this section, a general way is provided to determine the weights (¢;: 5 > 1) for a causal ARMA(p, g) process
given by ¢(B)X; = 0(B)Z; , where ¢(z) # 0 for all z € C such that |z| < 1. Since 1(z) = 6(2)/¢(z) for these z, the weight 1);
can be computed by matching the corresponding coefficients in the equation 1 (z)¢(z) = 0(z) , that is,

(Yo +h1z+1az” +... )1 —prz—... —pp2P) =1+012+... 4+ 042"
Recursively solving for ¥y, 11, %2, . . . gives
¢0 =1,

1 —¢13py =04,
P — P13h1 — pathy = Os,

and so on as long as j < max{p, g+ 1} . The general solution can be stated as

J
b= ik =0;, 0<j<max{p,q+1}, (3.2.1)
k=1

p
¢j*2¢kf/}j—k =0, j > max{p,q+1}, (3.2.2)
]

if we define ¢; =0 if j > p and 8; =0 if j > q. To obtain the coefficients 1; one therefore has to solve the homogeneous linear
difference equation (3.2.2) subject to the initial conditions specified by (3.2.1). For more on this subject, see Section 3.6 of
Brockwell and Davis (1991) and Section 3.3 of Shumway and Stoffer (2006).

In R, these computations can be performed using the command ARMAt OMA. For example, one can use the commands
>ARMAtoMA(ar=.7,ma=.3,25)
>plot (ARMAtoMA(ar=.7,ma=.3,25))

which will produce the output displayed in Figure 3.4. The plot shows nicely the exponential decay of the ¥-weights which is
typical for ARMA processes. The table shows row-wise the weights %y, . . ., %¥24. This is enabled by the choice of 25 in the
argument of the function ARMAt oMA.

1.0000000000 0.7000000000 0.4900000000 0.3430000000 0.2401000000
0.1680700000 0.1176490000 0.0823543000 0.0576480100 0.0403536070
0.0282475249 0.0197732674 0.0138412872 0.0096889010 0.0067822307
0.0047475615 0.0033232931 0.0023263051 0.0016284136 0.0011398895
0.0007979227 0.0005585459 0.0003909821 0.0002736875 0.0001915812
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Figure 3.4: The R output for the ARMA(1,1) process of Example 3.2.4
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