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3.3: The PACF of a Causal ARMA Process
In this section, the partial autocorrelation function (PACF) is introduced to further assess the dependence structure of stationary
processes in general and causal ARMA processes in particular. To start with, let us compute the ACVF of a moving average
process of order 

Let  be an MA( ) process specified by the polynomial . Then, letting , it holds
that

Solution

To compute the ACVF, suppose that  and write

The result here is a generalization of the MA(1) case, which was treated in Example 3.2.3. It is also a special case of the linear
process in Example 3.1.4. The structure of the ACVF for MA processes indicates a possible strategy to determine in practice
the unknown order : plot the the sample ACF and select as order  the largest lag such that  is significantly different from
zero.

While the sample ACF can potentially reveal the true order of an MA process, the same is not true anymore in the case of AR
processes. Even for the AR(1) time series it has been shown in Example 3.2.1 that its ACF  is nonzero for all lags. As
further motivation, however, we discuss the following example.

Example 3.3.2

Let  be a causal AR(1) process with parameter . It holds that

To break the linear dependence between  and , subtract  from both variables. Calculating the resulting covariance yields

since, due to the causality of this AR(1) process,  is a function of  and therefore uncorrelated with 
.

The previous example motivates the following general definition.

Definition 3.3.1 Partial autocorrelation function

Let  be a weakly stationary stochastic process with zero mean. Then, the sequence  given by
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is called the partial autocorrelation function (PACF) of .

Therein,

Notice that there is no intercept coefficient  in the regression parameters, since it is assumed that . The following
example demonstrates how to calculate the regression parameters in the case of an AR(1) process.

Figure 3.5 The ACFs and PACFs of an AR(2) process (upper panel), and MA(3) process (middle panel) and and ARMA(1,1)
process (lower panel).

Example 3.3.3 PACF of an AR(1) process]

If  is a causal AR(1) process, then . To calculate , calculate first , that is . This
coefficient is determined by minimizing the mean-squared error between  and :

which is minimized by . (This follows easily by taking the derivative and setting it to zero.) Therefore .
Similarly, one computes  and it follows from Example 3.3.2 that . Indeed all lags  of the PACF are zero.

More generally, consider briefly a causal AR( ) process given by  with .

Then, for ,

ϕ11

ϕhh

= ρ(1) = Corr( , ),X1 X0

= Corr( − , − ), h ≥ 2,Xh Xh−1
h X0 Xh−1

0

( : t ∈ Z)Xt

Xh−1
h

Xh−1
0

= regression of   on ( , … , )Xh Xh−1 X1

= + +… +β1Xh−1 β2Xh−2 βh−1 X1

= regression of   on ( , … , )X0 X1 Xh−1

= + +… + .β1X1 β2X2 βh−1 Xh−1

β0 E[ ] = 0Xt

( : t ∈ Z)Xt = ρ(1) = ϕϕ11 ϕ22 = βX1
2 X1 β

X2 βX1

E[ −β = γ(0) −2βγ(1) + γ(0)X2 X1]2 β2

β = ρ(1) = ϕ = ϕX1
2

X1

= ϕX1
0

X1 = 0ϕ22 h ≥ 2

p ϕ(B) =Xt Zt ϕ(z) = 1 − z −… −ϕ1 ϕpzp

h > p

https://libretexts.org/
https://stats.libretexts.org/@go/page/873?pdf


3.3.3 https://stats.libretexts.org/@go/page/873

and consequently

if  by causality (the same argument used in Example 3.3.2 applies here as well). Observe, however, that  is not
necessarily zero if . The forgoing suggests that the sample version of the PACF can be utilized to identify the order of an
autoregressive process from data: use as  the largest lag  such that  is significantly different from zero.

On the other hand, for an invertible MA( ) process, one can write  or, equivalently,

which shows that the PACF of an MA( ) process will be nonzero for all lags, since for a ``perfect'' regression one would have to
use all past variables  instead of only the quantity  given in Definition 3.3.1.

In summary, the PACF reverses the behavior of the ACVF for autoregressive and moving average processes. While the latter have
an ACVF that vanishes after lag  and a PACF that is nonzero (though decaying) for all lags, AR processes have an ACVF that is
nonzero (though decaying) for all lags but a PACF that vanishes after lag .

ACVF (ACF) and PACF hence provide useful tools in assessing the dependence of given ARMA processes. If the estimated ACVF
(the estimated PACF) is essentially zero after some time lag, then the underlying time series can be conveniently modeled with an
MA (AR) process---and no general ARMA sequence has to be fitted. These conclusions are summarized in Table 3.3.1

Table 3.1: The behavior of ACF and PACF for AR, MA, and ARMA processes.

Example 3.3.4

Figure 3.5 collects the ACFs and PACFs of three ARMA processes. The upper panel is taken from the AR(2) process with
parameters  and . It can be seen that the ACF tails off and displays cyclical behavior (note that the
corresponding autoregressive polynomial has complex roots). The PACF, however, cuts off after lag 2. Thus, inspecting ACF and
PACF, we would correctly specify the order of the AR process.

The middle panel shows the ACF and PACF of the MA(3) process given by the parameters ,  and . The
plots confirm that  because the ACF cuts off after lag 3 and the PACF tails off.

Finally, the lower panel displays the ACF and PACF of the ARMA(1,1) process of Example 3.2.4. Here, the assessment is much
harder. While the ACF tails off as predicted (see Table 3.1), the PACF basically cuts off after lag 4 or 5. This could lead to the
wrong conclusion that the underlying process is actually an AR process of order 4 or 5. (The reason for this behavior lies in the fact
that the dependence in this particular ARMA(1,1) process can be well approximated by that of an AR(4) or AR(5) time series.)

To reproduce the graphs in R, you can use the commands

>ar2.acf=ARMAacf(ar=c(1.5,-.75), ma=0, 25)

>ar2.pacf=ARMAacf(ar=c(1.5,-.75), ma=0, 25, pacf=T)

for the AR(2) process. The other two cases follow from straightforward adaptations of this code.
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Figure 3.6: The recruitment series of Example 3.3.5 (left), its sample ACF (middle) and sample PACF (right).

Figure 3.7: Scatterplot matrix relating current recruitment to past recruitment for the lags .

Example 3.3.5 Recruitment Series

The data considered in this example consists of 453 months of observed recruitment (number of new fish) in a certain part of the
Pacific Ocean collected over the years 1950--1987. The corresponding time series plot is given in the left panel of Figure 3.6. The
corresponding ACF and PACF displayed in the middle and right panel of the same figure recommend fitting an AR process of
order  to the recruitment data. Assuming that the data is in rec, the R code to reproduce Figure 3.6 is

> rec = ts(rec, start=1950, frequency=12)

> plot(rec, xlab="", ylab="")

> acf(rec, lag=48)

> pacf(rec, lag=48)

This assertion is also consistent with the scatterplots that relate current recruitment to past recruitment at several time lags, namely 
. For lag 1 and 2, there seems to be a strong linear relationship, while this is not the case anymore for . The

corresponding R commands are

> lag.plot(rec, lags=12, layout=c(3,4), diag=F)

Denote by  the recruitment at time . To estimate the AR(2) parameters, run a regression on the observed data triplets included
in the set  to fit a model of the form

where . This task can be performed in R as follows.

h = 1, … , 12

p = 2

h = 1, … , 12 h ≥ 3

Xt t

( , −1, −2): j = 3, … , 453xt xt xt

= + −1 + −2 + , t = 3, … , 453,Xt ϕ0 ϕ1Xt ϕ2Xt Zt

( ) ∼ WN(0, )Zt σ2

https://libretexts.org/
https://stats.libretexts.org/@go/page/873?pdf


3.3.5 https://stats.libretexts.org/@go/page/873

> fit.rec = ar.ols(rec, aic=F, order.max=2, demean=F, intercept=T)

These estimates can be assessed with the command {\tt fit.rec} and the corresponding standard errors with .
Here the parameter estimates , ,  and  are obtained. The
standard errors are given in parentheses.

This page titled 3.3: The PACF of a Causal ARMA Process is shared under a not declared license and was authored, remixed, and/or curated by
Alexander Aue.

fit. rec$asy. se

= 6.737(1.111)ϕ̂0 = 1.3541(.042)ϕ̂1 = −.4632(.0412)ϕ̂2 = 89.72σ̂2
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