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4.3: Large Sample Properties
Let  be a weakly stationary time series with mean , absolutely summable ACVF  and spectral density .
Proceeding as in the proof of Proposition4.2.2., one obtains

provided . Using this representation, the limiting behavior of the periodogram can be established.

Proposition 4.3.1

Let  be the periodogram based on observations  of a weakly stationary process , then, for any ,

where  with  chosen such that  as . If , then

Proof. There are two limits involved in the computations of the periodogram mean. First, take the limit as . This, however,
requires secondly that for each  we have to work with a different set of Fourier frequencies. To adjust for this, we have introduced
the notation . If  is a Fourier frequency (  fixed!), then

Therefore ( !),

thus proving the first claim. The second follows from  (see Proposition 4.2.2.), so that 
 as  as in Chapter 2. The proof is complete.

Proposition 4.3.1. shows that the periodogram  is asymptotically unbiased for . It is, however, inconsistent. This is
implied by the following proposition which is given without proof. It is not surprising considering that each value  is the sum
of squares of only two random variables irrespective of the sample size.

Proposition 4.3.2.

If  is a (causal or noncausal) weakly stationary time series such that

with , then
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where  are  distinct frequencies with  and . The variables  are independent, identical
chi-squared distributed with two degrees of freedom.

The result of this proposition can be used to construct confidence intervals for the value of the spectral density at frequency . To
this end, denote by  the lower tail probability of the chi-squared variable , that is,

Then, Proposition 4.3.2. implies that an approximate confidence interval with level  is given by

Proposition 4.3.2. also suggests that confidence intervals can be derived simultaneously for several frequency components. Before
confidence intervals are computed for the dominant frequency of the recruitment data return for a moment to the computation of
the FFT which is the basis for the periodogram usage. To ensure a quick computation time, highly composite integers  have to be
used. To achieve this in general, the length of time series is adjusted by padding the original but detrended data by adding zeroes. In
R, spectral analysis is performed with the function spec.pgram. To find out which $n^\prime$ is used for your particular data,
type nextn(length(x)), assuming that your series is in x.

Figure 4.6: Averaged periodogram of the recruitment data discussed in Example 4.3.1.

Example 4.3.1.

Figure 4.5 displays the periodogram of the recruitment data which has been discussed in Example 3.3.5. It shows a strong annual
frequency component at  as well as several spikes in the neighborhood of the El Ni o frequency . Higher
frequency components with  are virtually absent. Even though an AR(2) model was fitted to this data in Chapter 3 to
produce future values based on this fit, it is seen that the periodogram here does not validate this fit as the spectral density of an
AR(2) process (as computed in Example 4.2.3.) is qualitatively different. In R, the following commands can be used
(nextn(length(rec)) gives  here if the recruitment data is stored in rec as before).

>rec.pgram=spec.pgram(rec, taper=0, log="no")

>abline(v=1/12, lty=2)

>abline(v=1/48, lty=2)

The function spec.pgram allows you to fine-tune the spectral analysis. For our purposes, we always use the specifications
given above for the raw periodogram (taper allows you, for example, to exclusively look at a particular frequency band, log
allows you to plot the log-periodogram and is the R standard).

To compute the confidence intervals for the two dominating frequencies  and , you can use the following R code, noting
that  and .

>rec.pgram{\$}spec[40]

[1] 21332.94

>rec.pgram{\$}spec[10]
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[1] 14368.42

>u=qchisq(.025, 2); l=qchisq(.975, 2)

>2*rec.pgram{\$}spec[40]/l

>2*rec.pgram{\$}spec[40]/u

>2*rec.pgram{\$}spec[10]/l

~2*rec.pgram{\$}spec[10]/u

Using the numerical values of this analysis, the following confidence intervals are obtained at the level :

These are much too wide and alternatives to the raw periodogram are needed. These are provided, for example, by a smoothing
approach which uses an averaging procedure over a band of neighboring frequencies. This can be done as follows.

>k=kernel("daniell",4)

>rec.ave=spec.pgram(rec, k, taper=0, log="no")

> abline(v=1/12, lty=2)

> abline(v=1/48, lty=2)

> rec.ave$bandwidth

[1] 0.005412659\medskip

The resulting smoothed periodogram is shown in Figure 4.6. It is less noisy, as is expected from taking averages. More precisely, a
two-sided Daniell filter with  was used here with  neighboring frequencies

to compute the periodogram at . The resulting plot in Figure 4.6 shows, on the other hand, that the sharp annual peak has
been flattened considerably. The bandwidth reported in R can be computed as . To compute confidence intervals
one has to adjust the previously derived formula. This is done by taking changing the degrees of freedom from 2 to 
(if the zeroes where appended) and leads to

for . For the recruitment data the following R code can be used:

>df=ceiling(rec.ave{\$}df)

>u=qchisq(.025,df), l~=~qchisq(.975,df)

>df*rec.ave{\$}spec[40]/l

>df*rec.ave{\$}spec[40]/u

>df*rec.ave{\$}spec[10]/l

>df*rec.ave{\$}spec[10]/u

α = .1

f(1/12) ∈ (5783.041, 842606.2) and f(1/48) ∈ (3895.065, 567522.5).
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Figure 4.7: The modified Daniell periodogram of the recruitment data discussed in Example 4.3.1.

to get the confidence intervals

The compromise between the noisy raw periodogram and further smoothing as described here (with ) reverses the magnitude
of the  annual frequency and the  El Ni o component. This is due to the fact that the annual peak is a very sharp one,
with neighboring frequencies being basically zero. For the  component, there are is a whole band of neighboring frequency
which also contribute the El Ni o phenomenon is irregular and does only on average appear every four years). Moreover, the
annual cycle is now distributed over a whole range. One way around this issue is provided by the use of other kernels such as the
modified Daniell kernel given in R as kernel("modified.daniell", c(3,3)). This leads to the spectral density in
Figure 4.7.
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