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3.3: The PACF of a Causal ARMA Process

In this section, the partial autocorrelation function (PACF) is introduced to further assess the dependence structure of stationary
processes in general and causal ARMA processes in particular. To start with, let us compute the ACVF of a moving average
process of order g

Example 3.3.1: The ACVF of an MA(q) process

Let (X;: t € Z) be an MA(q) process specified by the polynomial §(z) =1+6;z+... 46,27 . Then, letting 6y =1, it holds
that

E[X)] = zq: 0,E(Z:_;] =0.
=0

Solution

To compute the ACVF, suppose that & > 0 and write
Y(h) = Cov(Xiin, Xt) = E[Xen X1

q q
Z 9th+h—j) (Z 9th—k>
k=0

E l
=0
q q
= Z Z 0,6k E[Zy1h—j Zy+)
=0 k=0
q—h
o’ Z9k+h9k, 0<h<gq
= k=0
Oa h > q.

The result here is a generalization of the MA(1) case, which was treated in Example 3.2.3. It is also a special case of the linear
process in Example 3.1.4. The structure of the ACVF for MA processes indicates a possible strategy to determine in practice
the unknown order g: plot the the sample ACF and select as order ¢ the largest lag such that p(h) is significantly different from
zero.

While the sample ACF can potentially reveal the true order of an MA process, the same is not true anymore in the case of AR
processes. Even for the AR(1) time series it has been shown in Example 3.2.1 that its ACF p(h) = @M is nonzero for all lags. As
further motivation, however, we discuss the following example.

Example 3.3.2
Let (X;:t € Z) be a causal AR(1) process with parameter |¢| < 1. It holds that
7(2) = Cov(Xz, Xo) = Cov(¢* X + ¢ Z1 + Z, Xo) = ¢*7(0) #0.
To break the linear dependence between X and X5, subtract ¢ X from both variables. Calculating the resulting covariance yields
Cov(X;y — ¢ X1, Xo — ¢X1) = Cov(Zy, Xo — $X1) =0,

since, due to the causality of this AR(1) process, Xy —¢X; is a function of Z1, Zy, Z_1,... and therefore uncorrelated with
Xo—0X1 =25 .

The previous example motivates the following general definition.

Definition 3.3.1 Partial autocorrelation function

Let (X;:t € Z) be a weakly stationary stochastic process with zero mean. Then, the sequence (¢p;: h € N) given by
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¢11 = p(1) = Corr(X1, Xo),
¢nn = Corr(Xp — X, Xo— X07Y), h>2,
is called the partial autocorrelation function (PACF) of (X;:t € Z).
Therein,
X;L‘_l =regression of X on (Xp_1,...,X1)
=pXn1+B2Xn2+...+ 681 X1
Xg_l = regression of X on (X1,...,Xp1)
=/Xi+pXo+. . .+ Br1Xp1.

Notice that there is no intercept coefficient 8y in the regression parameters, since it is assumed that E[X;] = 0. The following
example demonstrates how to calculate the regression parameters in the case of an AR(1) process.
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Figure 3.5 The ACFs and PACFs of an AR(2) process (upper panel), and MA(3) process (middle panel) and and ARMA(1,1)
process (lower panel).

Example 3.3.3 PACF of an AR(1) process]
If (X;:t € Z) is a causal AR(1) process, then ¢11 =p(1) =¢. To calculate ¢, calculate first X5 = BX;, that is 8. This
coefficient is determined by minimizing the mean-squared error between Xs and 8X7:

E[Xy — pX1]* =7(0) —287(1) + £*4(0)

which is minimized by 8 = p(1) = ¢. (This follows easily by taking the derivative and setting it to zero.) Therefore X21 =¢X;.
Similarly, one computes X[} = ¢X; and it follows from Example 3.3.2 that ¢22 = 0. Indeed all lags h > 2 of the PACF are zero.

More generally, consider briefly a causal AR(p) process given by ¢(B)X; = Z; with ¢(2) =1 —12—... —¢p2? .
Then, for h > p,
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p
Xpt =3 ¢iXn
j=1

and consequently
¢ = Corr(Xp — X1, Xo — X{1) = Corr(Zy, Xo— X[ 1) =0

if h > p by causality (the same argument used in Example 3.3.2 applies here as well). Observe, however, that ¢, is not
necessarily zero if h < p. The forgoing suggests that the sample version of the PACF can be utilized to identify the order of an
autoregressive process from data: use as p the largest lag h such that ¢y, is significantly different from zero.

On the other hand, for an invertible MA(q) process, one can write Z; = 7(B)X; or, equivalently,

o0
Xt = 7271'th,]' +Zt
j=1
which shows that the PACF of an MA(q) process will be nonzero for all lags, since for a ““perfect" regression one would have to
use all past variables (X,: s <t) instead of only the quantity Xf‘l given in Definition 3.3.1.

In summary, the PACF reverses the behavior of the ACVF for autoregressive and moving average processes. While the latter have
an ACVF that vanishes after lag ¢ and a PACF that is nonzero (though decaying) for all lags, AR processes have an ACVF that is
nonzero (though decaying) for all lags but a PACF that vanishes after lag p.

ACVF (ACF) and PACF hence provide useful tools in assessing the dependence of given ARMA processes. If the estimated ACVF
(the estimated PACF) is essentially zero after some time lag, then the underlying time series can be conveniently modeled with an
MA (AR) process---and no general ARMA sequence has to be fitted. These conclusions are summarized in Table 3.3.1

AR(p) MA(q) ARMA(p, @)
ACF || tails off cuts off tails off

after lag g
PACF || cuts off tails off tails off
after lag p

Table 3.1: The behavior of ACF and PACF for AR, MA, and ARMA processes.
Example 3.3.4

Figure 3.5 collects the ACFs and PACFs of three ARMA processes. The upper panel is taken from the AR(2) process with
parameters ¢; = 1.5 and ¢y = —.75. It can be seen that the ACF tails off and displays cyclical behavior (note that the
corresponding autoregressive polynomial has complex roots). The PACF, however, cuts off after lag 2. Thus, inspecting ACF and
PACF, we would correctly specify the order of the AR process.

The middle panel shows the ACF and PACF of the MA(3) process given by the parameters 8; = 1.5, 0, = —.75 and 63 = 3. The
plots confirm that ¢ = 3 because the ACF cuts off after lag 3 and the PACF tails off.

Finally, the lower panel displays the ACF and PACF of the ARMA(1,1) process of Example 3.2.4. Here, the assessment is much
harder. While the ACF tails off as predicted (see Table 3.1), the PACF basically cuts off after lag 4 or 5. This could lead to the
wrong conclusion that the underlying process is actually an AR process of order 4 or 5. (The reason for this behavior lies in the fact
that the dependence in this particular ARMA(1,1) process can be well approximated by that of an AR(4) or AR(5) time series.)

To reproduce the graphs in R, you can use the commands
>ar2.acf=ARMAacf(ar=c(1.5,-.75), ma=0, 25)
>ar2.pacf=ARMAacf(ar=c(1.5,-.75), ma=0, 25, pacf=T)

for the AR(2) process. The other two cases follow from straightforward adaptations of this code.

https://stats.libretexts.org/@go/page/873


https://libretexts.org/
https://stats.libretexts.org/@go/page/873?pdf

LibreTextsw

6 80 100
L
T T R
L

g_

00 02 04 06 08

i ,W‘\
v it \h

s
8

-02 00 02 04 06 08 1.0

04
L

L

o 4

T T T T T T T T T T T
1950 1960 1970 1980 0 1 2 3 4 0 1 2 3 4

Figure 3.6: The recruitment series of Example 3.3.5 (left), its sample ACF (middle) and sample PACF (right).
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Figure 3.7: Scatterplot matrix relating current recruitment to past recruitment for the lags h =1,...,12.

Example 3.3.5 Recruitment Series

The data considered in this example consists of 453 months of observed recruitment (number of new fish) in a certain part of the
Pacific Ocean collected over the years 1950--1987. The corresponding time series plot is given in the left panel of Figure 3.6. The
corresponding ACF and PACF displayed in the middle and right panel of the same figure recommend fitting an AR process of
order p = 2 to the recruitment data. Assuming that the data is in rec, the R code to reproduce Figure 3.6 is

> rec = ts(rec, start=1950, frequency=12)
> plot(rec, xlab="", ylab="")

> acf(rec, lag=48)

> pacf(rec, lag=48)

This assertion is also consistent with the scatterplots that relate current recruitment to past recruitment at several time lags, namely
h=1,...,12 For lag 1 and 2, there seems to be a strong linear relationship, while this is not the case anymore for A > 3. The
corresponding R commands are

> lag.plot(rec, lags=12, layout=c(3,4), diag=F)

Denote by X; the recruitment at time ¢. To estimate the AR(2) parameters, run a regression on the observed data triplets included
in the set (@, z; — 1,2: —2): j=3,...,453 to fit a model of the form

=¢o+ o1 Xy — 14+ ¢ Xy —2+ 7, t=3,...,453,
where (Z;) ~ WN(0, ). This task can be performed in R as follows.
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> fit.rec = ar.ols(rec, aic=F, order.max=2, demean=F, intercept=T)
These estimates can be assessed with the command {\tt fit.rec} and the corresponding standard errors with fit. rec$asy. se .

Here the parameter estimates dA’o =6.737(1.111), g{Sl =1.3541(.042), q§2 = —.4632(.0412) and 6® = 89.72 are obtained. The
standard errors are given in parentheses.

This page titled 3.3: The PACF of a Causal ARMA Process is shared under a not declared license and was authored, remixed, and/or curated by

Alexander Aue.
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