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4.2: The Spectral Density and the Periodogram
The fundamental technical result which is at the core of spectral analysis states that any (weakly) stationary time series can be
viewed (approximately) as a random superposition of sine and cosine functions varying at various frequencies. In other words, the
regression in (4.1.1) is approximately true for all weakly stationary time series. In Chapters 1-3, it is shown how the characteristics
of a stationary stochastic process can be described in terms of its ACVF . The first goal in this section is to introduce the
quantity corresponding to  in the frequency domain.

Definition 4.2.1 (Spectral Density)

If the ACVF  of a stationary time series (X )  satisfies the condition

then there exists a function f defined on (-1/2,1/2] such that

and

The function f is called the spectral density of the process .

Definition 4.2.1 (which contains a theorem part as well) establishes that each weakly stationary process can be equivalently
described in terms of its ACVF or its spectral density. It also provides the formulas to compute one from the other. Time series
analysis can consequently be performed either in the time domain (using ) or in the frequency domain (using f . Which
approach is the more suitable one cannot be decided in a general fashion but has to be reevaluated for every application of interest.

In the following, several basic properties of the spectral density are collected and evaluated f for several important examples. That
the spectral density is analogous to a probability density function is established in the next proposition.

Proposition 4.2.1

If f( ) is the spectral density of a weakly stationary process , then the following statements hold:

a. f( )  0 for all . This follows from the positive definiteness of 
b. f( )=f(- ) and f( )=f( )
c. The variance of (  is given by

Part (c) of the proposition states that the variance of a weakly stationary process is equal to the integrated spectral density over all
frequencies. This property is revisited below, when a spectral analysis of variance (spectral ANOVA) will be discussed. In the
following three examples are presented.

Example 4.2.1 (White Noise)

If , then its ACVF is nonzero only for h=0, in which case . Plugging this result into the
defining equation in Definition4.2.1 yields that

The spectral density of a white noise sequence is therefore constant for all , which means that every frequency 
contributes equally to the overall spectrum. This explains the term ``white'' noise (in analogy to ``white'' light).

Example 4.2.2 (Moving Average)

Let  and define the time series  by
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It can be shown that

Figure 4.3: Time series plot of white noise  (left), two-point moving average  (middle) and spectral density
of  (right).

and that _X=0 otherwise. Therefore,

using that ,  and . It can be seen from the two time series plots
in Figure 4.3 that the application of the two-point moving average to the white noise sequence smoothes the sample path. This is
due to an attenuation of the higher frequencies which is visible in the form of the spectral density in the right panel of Figure 4.3.
All plots have been obtained using Gaussian white noise with .

Example 4.2.3 (AR(2) Process).

Let  be an AR(2) process which can be written in the form

In this representation, it can be seen that the ACVF  of the white noise sequence can be obtained as

= ( + ) , t ∈ Z.Xt
1
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Now it is known from Definition 4.2.1 that

and

Figure 4.4: Time series plot and spectral density of the AR(2) process in Example 4.2.3.

where  and  denote the respective spectral densities. Consequently,

The foregoing implies together with  that

Hence, the spectral density of an AR(2) process has the form

Figure 4.4 displays the time series plot of an AR(2) process with parameters ,  and . These values
are very similar to the ones obtained for the recruitment series in Section 3.5. The same figure also shows the corresponding
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spectral density using the formula just derived.

With the contents of this Section, it has so far been established that the spectral density $f(\omega)$ is a population quantity
describing the impact of the various periodic components. Next, it is verified that the periodogram $I(\omega_j)$ introduced in
Section  is the sample counterpart of the spectral density.

Proposition 4.2.2.

Let  denote the Fourier frequencies. If  is the periodogram based on observations  of a
weakly stationary process , then

If , then .

Proof. Let first . Using that , it follows that

which proves the first claim of the proposition. If , the relations  and  imply that . This
completes the proof.

More can be said about the periodogram. In fact, one can interpret spectral analysis as a spectral analysis of variance (ANOVA). To
see this, let first

Then, . Let us now go back to the introductory example and study the process

where  and  odd. Suppose  have been observed. Then, using regression techniques as before, it can be
seen that  and

Therefore,
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and the following ANOVA table is obtained. If the underlying stochastic process exhibits a strong periodic pattern at a certain
frequency, then the periodogram will most likely pick these up.

Example 4.2.4

Consider the  data points , , ,  and , which display a cyclical but nonsinusoidal
pattern. This suggests that  is significant and  is not. In R, the spectral ANOVA can be produced as follows.

>x = c(2,4,6,4,2), t=1:5

>cos1 = cos(2*pi*t*1/5)

>sin1 = sin(2*pi*t*1/5)

>cos2 = cos(2*pi*t*2/5)

>sin2 = sin(2*pi*t*2/5)

This generates the data and the independent cosine and sine variables. Now run a regression and check the ANOVA output.

>reg = lm(x\~{}cos1+sin1+cos2+sin2)

>anova(reg)

This leads to the following output.

Response: x

Df Sum Sq Mean Sq F value Pr(>F)

cos1 1 7.1777 7.1777

cos2 1 0.0223 0.0223

sin1 1 3.7889 3.7889

sin2 1 0.2111 0.2111

Residuals 0 0.0000

According to previous reasoning (check the last table!), the periodogram at frequency  is given as the sum of the 
and  coefficients, that is, . Similarly, 

Note, however, that the mean squared error is computed differently in R. We can compare these values with the periodogram:

> abs(fft(x))  2/5

[1] 64.8000000 5.4832816 0.1167184 0.1167184 5.4832816

The first value here is . The second and third value are  and , respectively, while 
 and  complete the list.

In the next section, some large sample properties of the periodogram are discussed to get a better understanding of spectral
analysis. \
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n= 5 = 2X1 = 4X2 = 6X3 = 4X4 = 2X5

ω= 1/5 ω= 2/5

= 1/5ω1 cos1
sin1 I(1/5) = ( (1/5)+ (1/5))/2 = (7.1777+3.7889)/2 = 5.4833dc ds

I(2/5) = ( (2/5)+ (2/5))/2 = (0.0223+0.2111)/2 = 0.1167.dc ds

ˆ

I(0) = n = 5 ∗ (18/5 = 64.8X̄
2
n )2 I(1/5) I(2/5)

I(3/5) = I(2/5) I(4/5) = I(1/5)
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