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3.4: Forecasting
Suppose that the variables  of a weakly stationary time series  have been observed with the goal to predict
or forecast the future values of . The focus is here on so-called one-step best linear predictors (BLP). These are, by
definition, linear combinations

of the observed variables  that minimize the mean-squared error

for functions g of . Straightforward generalizations yield definitions for the m-step best linear predictors  of 
 for arbitrary  in the same fashion. Using Hilbert space theory, one can prove the following theorem which will be the

starting point for our considerations.

Let  be a weakly stationary stochastic process of which  are observed. Then, the one-step BLP 
of  is determined by the equations

for all , where .

The equations specified in Theorem  can be used to calculate the coefficients  in Equation . It suffices to
focus on mean zero processes  and thus to set  as the following calculations show. Assume that  for
all . Then, Theorem  gives that  (using the equation with . Consequently, it holds
that

Using now that , Equation  can be rewritten as

where  has mean zero.

With the ACVF  of , the equations in Theorem  can be expressed as

Note that due to the convention , the last equation in Theorem  (for which ) is omitted. More conveniently,
this is restated in matrix notation. To this end, let ,  and ,
where  denotes the transpose. With these notations, (3.4.2.) becomes

provided that  is nonsingular.

The determination of the coefficients  has thus been reduced to solving a linear equation system and depends only on second-
order properties of  which are given by the ACVF .

Let . Then, . To assess the quality of the prediction, one computes the mean-squared
error with the help of Equation  as follows:
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As an initial example, we explain the prediction procedure for an autoregressive process of order 2.

Let  be the causal AR(2) process . Suppose that only an observation of  is
available to forecast the value of . In this simplified case, the single prediction Equation  is

so that  and .

In the next step, assume that observed values of  and  are at hand to forecast the value of . Then, one similarly obtains
from (3.4.2.) that the predictor can be computed from

However, applying the arguments leading to the definition of the PAC in Section 3.3.3., one finds that

Hence,  and even  for all , exploiting the particular autoregressive
structure. 
Since similar results can be proved for general causal AR(p) processes, the one-step predictors have the form

whenever the number of observed variables n is at least p.

The major drawback of this approach is immediately apparent from the previous example: For larger sample sizes n, the prediction
procedure requires the calculation of the inverse matrix  which is computationally expensive. In the remainder of this section,
two recursive prediction methods are introduced that bypass the inversion altogether. They are known as Durbin-Levinson
algorithm and innovations algorithm. Finally, predictors based on the infinite past are introduced which are often easily applicable
for the class of causal and invertible ARMA processes.

If  is a zero mean weakly stationary process with ACVF  such that  and  as , then the
coefficients  in (3.4.2.) and the mean squared errors  in (3.4.4.) satisfy the recursions
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and

It can be shown that under the assumptions made on the process , it holds indeed that  is equal to the value of the
PACF of  at lag n. The result is formulated as Corollary 5.2.1 in Brockwell and Davis (1991). This fact is highlighted in
an example.

Let  be a causal AR(2) process. Then,  and all other values can be computed recursively from

Note that the ACVF  satisfies a difference equation with the same coefficients, which is seen by multiplying the latter
equation with . Applying the Durbin-Levinson algorithm gives first that

Ignoring the recursion for the error terms  in the following, the next  values are obtained a

 
 
Now, referring to the remarks after Example 3.3.7., no further computations are necessary to determine the PACF because 

 for all .

In contrast to the Durbin-Levinson algorithm, this method can also be applied to nonstationary processes. It should thus, in
general, be preferred over Method 1. The innovations algorithm gets its name from the fact that one directly uses the form of
the prediction equations in Theorem 3.4.1. which are stated in terms of the innovations . Observe that the
sequence consists of uncorrelated random variables.

The one-step predictors  can be calculated from the recursions
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where the coefficients are obtained from the equations

As example we show how the innovations algorithm is applied to a moving average time series of order 1.

Let  be the MA(1) process . Note that

Using the innovations algorithm, one can compute the one-step predictor from the values

and

as

Suppose that a causal and invertible ARMA(p,q) process is analyzed. Assume further that (unrealistically) the complete history
of the process can be stored and that thus all past variables  can be accessed. Define then

as the m-step ahead predictor based on the infinite past. It can be shown that, for large sample sizes n, the difference between
the values of  and  vanishes at an exponential rate. Exploiting causality and invertibility of the ARMA process,
one can transform the predictor  so that it is in a computationally more feasible form. To do so, note that by causality

because  equals zero if t>n and equals Z_t if  (due to invertibility!). The representation in (3.4.5.)
can be used to compute the mean squared prediction error . It follows from causality that

On the other hand, Equation  does not allow to directly calculate the forecasts because  is given in terms of the
noise variables . Instead invertibility will be utilized. Observe first that
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Method 3: Prediction based on the infinite past
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By invertibility (the ``0='' part follows again from causality),

Combining the previous two statements, yields

The equations can now be solved recursively for  Note, however, that for any  the sequence 
 does not consist of uncorrelated random variables. In fact, if , it holds that

Finally, for practical purposes the given forecast needs to be truncated. This is accomplished by setting

The resulting equations (see Equation  for comparison) yield recursively the truncated m-step predictors :
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