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3.4: Forecasting

Suppose that the variables X1, ..., X, of a weakly stationary time series (X;: ¢ € Z) have been observed with the goal to predict
or forecast the future values of X, 11, X,,12, .. .. The focus is here on so-called one-step best linear predictors (BLP). These are, by
definition, linear combinations

Xn+1 :¢n0+¢n1Xn+--'+¢nnX1 (341)
of the observed variables X7, . .., X, that minimize the mean-squared error
E [{Xn+1 _g(Xl’ vee ,Xn)}Z]

for functions g of X, ..., X,. Straightforward generalizations yield definitions for the m-step best linear predictors X’nm of
X +m for arbitrary m € N in the same fashion. Using Hilbert space theory, one can prove the following theorem which will be the
starting point for our considerations.

Theorem 3.4.1: Best linear prediction (BLP)

Let (X;:t € Z) be a weakly stationary stochastic process of which Xj, ..., X,, are observed. Then, the one-step BLP X’nﬂ
of X,,;1 is determined by the equations

E [(Xn+1 —Xnﬂ)Xanj] =0

forallj=1,...,n+1, where Xy =1.

The equations specified in Theorem 3.4.1 can be used to calculate the coefficients ¢y, . .., ¢n, in Equation 3.4.1. It suffices to
focus on mean zero processes (X;:t € Z) and thus to set ¢,0 = 0 as the following calculations show. Assume that E[X;] = p for

all t € Z. Then, Theorem 3.4.1 gives that E[X,,+1| = E[X,+1] = p (using the equation with j =n+1 . Consequently, it holds

that
H= E[XTH-I] =F ¢n0 + Z ¢ann+1—l] = ¢n0 + Z ¢nliu"
=1 =1
Using now that ¢,0 = p(1 — ¢p1 — . .. — ) , Equation 3.4.1 can be rewritten as

Yn+1 = ¢n1Yn +... +¢nn1/1a

where Y, 11 = X,,+1 — ¢ has mean zero.

With the ACVF « of (X;:t € Z), the equations in Theorem 3.4.1 can be expressed as
n
> br(G-0=90G), i=1,...,n. (3.4.2)
=1

Note that due to the convention ¢,,g = 0, the last equation in Theorem 3.4.1 (for which j =n+1 ) is omitted. More conveniently,
this is restated in matrix notation. To this end, let ', = (Y(5—£))j.e=1,...n » ¥n = (Pn1, - -, Pnn)T and vy, = (v(1),...,v(n))7,
where T denotes the transpose. With these notations, (3.4.2.) becomes

Togn=" <=  ¢o=Dulm, (3.4.3)
provided that I';, is nonsingular.

The determination of the coefficients ¢, has thus been reduced to solving a linear equation system and depends only on second-
order properties of (X;: ¢ € Z) which are given by the ACVF ~.

Let X, = (X, Xpn-1,.-- ,Xl)T. Then, Xn+1 = qﬁXn. To assess the quality of the prediction, one computes the mean-squared
error with the help of Equation 3.4.3 as follows:

https://stats.libretexts.org/@go/page/880



https://libretexts.org/
https://stats.libretexts.org/@go/page/880?pdf
https://stats.libretexts.org/Bookshelves/Advanced_Statistics/Time_Series_Analysis_(Aue)/3%3A_ARMA_Processes/3.4%3A_Forecasting

LibreTextsm

P, =E [(Xnﬂ _Xn+1)2]
[(Xns1 — 0% X0)?]
[(Xni1 =T X))
(X2, — 297 X X +9E T X XE T3 ]

=7(0) =29 T3 oy + AT Tl oy

=7(0) =7 T - (3.4.4)

As an initial example, we explain the prediction procedure for an autoregressive process of order 2.

Example 3.4.1: Prediction of an AR(2) Process

Let (X;:t € Z) be the causal AR(2) process X; = ¢1X; 1 +@2X; o + Z; . Suppose that only an observation of X; is
available to forecast the value of X5. In this simplified case, the single prediction Equation 3.4.2is

¢117(0) =~(1),
so that ¢11 = p(l) and X1+1 = p(l)Xl .

In the next step, assume that observed values of X; and X are at hand to forecast the value of X3. Then, one similarly obtains
from (3.4.2.) that the predictor can be computed from

Xoi1 = ¢ Xo+ Xy = $3 X = (T3 y2) T X,
-1

7(0) (1) X>

~ () -
7(1) ~(0) X

However, applying the arguments leading to the definition of the PAC in Section 3.3.3., one finds that
E[{X5—(1X2 +¢2X1)} X1] = E[Z3X1] =0,
E[{Xg—((lez +¢2X1)}X2] :E[Z3X2] 0.

Hence, X2+1 =¢$1 X2 +¢2 X1 and even Xn+1 =1 X, +¢2X,—1 for all n> 2, exploiting the particular autoregressive
structure.
Since similar results can be proved for general causal AR(p) processes, the one-step predictors have the form

Xn+1 = ¢1Xn +... —|—¢an,1,+1

whenever the number of observed variables n is at least p.

The major drawback of this approach is immediately apparent from the previous example: For larger sample sizes n, the prediction
procedure requires the calculation of the inverse matrix I';* which is computationally expensive. In the remainder of this section,
two recursive prediction methods are introduced that bypass the inversion altogether. They are known as Durbin-Levinson
algorithm and innovations algorithm. Finally, predictors based on the infinite past are introduced which are often easily applicable
for the class of causal and invertible ARMA processes.

Method 1: The Durbin-Levinson algorithm

If (X;:t € Z) is a zero mean weakly stationary process with ACVF -~ such that v(0) > 0 and y(h) — 0 as h — oo, then the
coefficients ¢,y in (3.4.2.) and the mean squared errors P, in (3.4.4.) satisfy the recursions

and, forn >1,
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n—1
bon =5 (v(n) IS —fz)) ,
Dn1 Pn-1,1 On—1,n-1
: ) =1 : ~Pun |
bn,n—1 Bn-1,n-1 Pn-1,1
and
P, =P, 1(1—¢2)-

It can be shown that under the assumptions made on the process (X;:t € Z), it holds indeed that ¢,,, is equal to the value of the
PACF of (X;:t € Z) at lag n. The result is formulated as Corollary 5.2.1 in Brockwell and Davis (1991). This fact is highlighted in
an example.

The PACF of an AR(2) process
Let (X;:t € Z) be a causal AR(2) process. Then, p(1) = ¢1/(1 — ¢2) and all other values can be computed recursively from
p(h) —¢1p(h —1) —ap(h —2) =0,  h>2.

Note that the ACVF ~ satisfies a difference equation with the same coefficients, which is seen by multiplying the latter
equation with (0). Applying the Durbin-Levinson algorithm gives first that

11 = % =p(1) and Py =Py(1—¢3)) =~(0)(1—p(1)%).

Ignoring the recursion for the error terms P, in the following, the next ¢, values are obtained a

12 = 5 1) (V)] = T [p(2)— (1))

(A=) e —[1(1 ) ']
B 1—[g1(1—¢2)1]2

$a1 = P11 — Pa2011 = p(1)(1 — $2) = ¢,

= ¢2,
¢33 = %2 [¥(3) — ¢217(2) — d22y(1)] = %2[7(3) —¢17(2) — ¢27(2)] =0.

Now, referring to the remarks after Example 3.3.7., no further computations are necessary to determine the PACF because
¢nn =0 foralln >p=2.

Method 2: The innovations algorithm

In contrast to the Durbin-Levinson algorithm, this method can also be applied to nonstationary processes. It should thus, in
general, be preferred over Method 1. The innovations algorithm gets its name from the fact that one directly uses the form of

the prediction equations in Theorem 3.4.1. which are stated in terms of the innovations (X¢1 — Xt11 )tez - Observe that the
sequence consists of uncorrelated random variables.

The one-step predictors Xn+1 can be calculated from the recursions
Xo1=0, Pr=9(0)

and, forn > 1,
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n—1
Poa =7(0)=)_ 6%, Pen,
=0
where the coefficients are obtained from the equations
-1
Op = —4) = 0p4-i0pniP; £=0,1,...,n—1.
n—t P ¥(n—£) ; 0,0 , +1 | s RERRK

As example we show how the innovations algorithm is applied to a moving average time series of order 1.

Example 3.4.3: Prediction of an MA(1) Process

Let (X;:t € Z) be the MA(1) process X; = Z; +6Z;_; . Note that
7(0)=(1+6)s?, ~ y(1)=60> and y(h)=0 (h>2).

Using the innovations algorithm, one can compute the one-step predictor from the values

enlz%, 0e=0 (£=2,...,n—1),
and
P =(1+6%)0?,
Py =(1+6%—00,1)0?
das
R =2 0, - 22)

Method 3: Prediction based on the infinite past

Suppose that a causal and invertible ARMA(p,q) process is analyzed. Assume further that (unrealistically) the complete history
of the process can be stored and that thus all past variables (X;:t < n) can be accessed. Define then

Xn+m = E[Xn+m|Xn7 Xn—la .. ']7

as the m-step ahead predictor based on the infinite past. It can be shown that, for large sample sizes n, the difference between
the values of X, ., and X}Hm vanishes at an exponential rate. Exploiting causality and invertibility of the ARMA process,
one can transform the predictor X, ., so that it is in a computationally more feasible form. To do so, note that by causality

Xn+m = E[Xn+m|Xna Xn-1,-- ]

=E li i P G o ]

7=0
[o¢]
= iZnim (3.4.5)
j=m

because E[Z;| Xy, Xn-1, - - -] equals zero if t>n and equals Z_t if ¢ <n (due to invertibility!). The representation in (3.4.5.)
can be used to compute the mean squared prediction error P,, . It follows from causality that

m—1 2 m—1
Py :E[(Xn+m _Xn+m)2] =F (Z I/JjZn-&-m—]') =0’ Z"/)? (3'4‘6)
=0 =0

On the other hand, Equation 3.4.5 does not allow to directly calculate the forecasts because Xnﬂn is given in terms of the
noise variables Z,, ,,_;. Instead invertibility will be utilized. Observe first that
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Xn+m7j, ] <m.
E[Xn+m—j |Xna Xn-1,-- ] = .
Xntm—js J=m.
By invertibility (the “~0="part follows again from causality),
0=FE[Zim|Xn, Xn-1,--] (3.4.7)
o0
—E [Z 73 X4 X Xt - (3.4.8)
=0
o0
=Y mE[Xnim—j| Xn, Xn1, .- ). (3.4.9)
=0

Combining the previous two statements, yields

m—1 oo
Xn+m = — Z 7ran+m—j - Zﬂan-‘!-m—j' (3410)
J=1 j=m
The equations can now be solved recursively for m =1,2,... Note, however, that for any m >1 the sequence

(Xn+m+t — Xntmt:t € Z) does not consist of uncorrelated random variables. In fact, if b € Ny, it holds that

E[(Xn+m _Xn+m)(Xn+m+h _Xn-&-m-&-h)] (3'4'11)
m—1 m+h—1
=B iZnim—i Y, $iZnimin-i (3.4.12)
j=0 i=0
m—1
=02 bitih- (3.4.13)
§=0
Finally, for practical purposes the given forecast needs to be truncated. This is accomplished by setting
Z 7Tan+m,j =0.
j=n+m

The resulting equations (see Equation 3.4.10 for comparison) yield recursively the truncated m-step predictors X, .

m—1 n+m—1
X;er = Z WjX;erfj - Z T Xntm—j- (3.4.14)
Jj=1 j=m
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