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2.1: Estimation of the Mean

Assume that an appropriate guess for the unknown mean p of some weakly stationary stochastic process (X;:¢ € Z) has to be
found. The sample mean z, easily computed as the average of n observations z1, ..., z, of the process, has been identified as
suitable in Section 1.2. To investigate its theoretical properties, one needs to analyze the random variable associated with it, that is,

X, = (X1+ +X)

Two facts can be quickly established.

e X, is an unbiased estimator for w, since

E[X, =E
t=1

1] LS < b

This means that "on average", the true but unknown  is correctly estimated. Notice that there is no difference in the computations
between the standard case of independent and identically distributed random variables and the more general weakly stationary
process considered here.

o Ify(n) — 0 asn — oo, then X, is a consistent estimator for y, since

Var(X, Cov( ZXS, th> = Cov(X,, X;)
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Now, the quantity on the right-hand side converges to zero as n — oo because y(n) — 0 as n — oo by assumption. The first
equality sign in the latter equation array follows from the fact that Var(X) = Cov(X, X) for any random variable X, the second
equality sign uses that the covariance function is linear in both arguments. For the third equality, one can use that
Cov(X;, X;) =7(s—t) and that each y(s—t) appears exactly n —|s—¢| times in the double summation. Finally, the right-
hand side is obtained by replacing s —t with A and pulling one n! inside the summation.

In the standard case of independent and identically distributed random variables nVar(X) = o2. The condition y(n) — 0 is
automatically satisfied. However, in the general case of weakly stationary processes, it cannot be omitted.

More can be proved using an appropriate set of assumptions. The results are formulated as a theorem without giving the proofs.

Theorem 2.1.1

Let (X;:t € Z) be a weakly stationary stochastic process with mean & and ACVF +. Then, the following statements hold true
asn — o0o.

alfY 2 |y(h)| < oo, then

b. If the process is "close to Gaussianity", then

\/E(Xn —p) ~ AN(0,72), o Zn: (1 - M) v(h).

h=—n n

Here, ~ AN (0, 7;7) stands for approximately normally distributed with mean zero and variance 7;2.

Theorem 2.1.1 can be utilized to construct confidence intervals for the unknown mean parameter w. To do so, one must, however,
estimate the unknown variance parameter 7,,. For a large class of stochastic processes, it holds that 72 converges to 72 as n — 0.
Therefore, we can use 72 as an approximation for 7,2. Moreover, 72 can be estimated by
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where 4(h) denotes the ACVF estimator defined in (1.2.1). An approximate 95% confidence interval for ¢ can now be constructed
as

(Xn—1.96T—",Xn+1.96i>.
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Example 2.1.1: Autoregressive Processes

Let (X;:t € Z) be given by the equations
Xi—p=0¢(Xe1 — )+ Z, teZ, (2.1.1)

where (Z;:t € Z) ~ WN(0,0?) and |¢| < 1. It will be shown in Chapter 3 that (X;:t € Z) defines a weakly stationary
process. Utilizing the stochastic difference Equations 7?7, both mean and autocovariances can be determined. It holds that
E[X;] = ¢E[X;—1] + u(1 — &) . Since, by stationarity, E[X;1] can be substituted with E[X], it follows that

E[X)|=p, tez.

In the following we shall work with the process (Xf:¢ € Z) given by letting X{ = X; — 1 . Clearly, E[Xf] =0. From the
definition, it follows also that the covariances of (X;:¢ € Z) and (Xf:¢ € Z) coincide. First computing the second moment of
X7, gives

B{X;Y] =E[(¢X{, +2.)°] = *B[{ X, }*] +0
and consequently, since E[{X? , }?] = E[{X{}?] by weak stationarity of (X{:t € Z),
o2
1—¢2’

It becomes apparent from the latter equation, why the condition |¢| < 1 was needed in display (2.1.1). In the next step, the
autocovariance function is computed. For A > 0, it holds that

v(h) = E[X{,, X;] = E[($X{,p 1 + Zern) X[]) = 9EIX],, X[ =dy(h—1) = ¢"(0)
after h iterations. But since y(0) = E[{ X{}?], by symmetry of the ACVF, it follows that

o2plM
—= mp

E{X}) = teZ.

~v(h) heZ.

After these theoretical considerations, a 95% (asymptotic) confidence interval for the mean parameter x can be constructed. To
check if Theorem 2.1.1 is applicable here, one needs to check if the autocovariances are absolutely summable:

00 0_2 00 0_2
7 = Z v(h) = s <1+2;¢"> 1T <1+ 11;5 —2)

h=—00
o? 1 o?
= (14+¢)=— < 0.
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Therefore, a 95% confidence interval for ¢ which is based on the observed values z1, . .., z, is given by

(5—1.96m,5+1.96m>.

Therein, the parameters o and ¢ have to be replaced with appropriate estimators. These will be introduced in Chapter 3.
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