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4.1: Introduction to Spectral Analysis

Many of the time series discussed in the previous chapters displayed strong periodic components: The sunspot numbers of Example
1.1.1, the number of trapped lynx of Example 1.1.2 and the Australian wine sales data of Example 1.4.1. Often, there is an obvious
choice for the period d of this cyclical part such as an annual pattern in the wine sales. Given d, one could then proceed by
removing the seasonal effects as in Section 1.4. In the first two examples it is, however, somewhat harder to determine the precise
value of d. In this chapter, a general method is therefore discussed to deal with the periodic components of a time series. To
complicate matters, it is usually the case that several cyclical patterns are simultaneously present in a time series. As an example
recall the southern oscillation index (SOI) data which exhibits both an annual pattern and a so-called El Nino pattern.

The sine and cosine functions are the prototypes of periodic functions. They are going to be utilized here to describe cyclical
behavior in time series. Before doing so, a cycle is defined to be one complete period of a sine or cosine function over a time
interval of length 27. Define also the frequency

1
d
as the number of cycles per observation, where d denotes the period of a time series (that is, the number of observations in a cycle).

For monthly observations with an annual period, d = 12 and hence w =1/12 = 0.083 cycles per observation. Now reconsider the
process

w =

X; = Rsin(2rwt + )

as introduced in Example 1.2.2, using the convention A = 27w. To include randomness in this process, choose the amplitude R and
the phase ¢ to be random variables. An equivalent representation of this process is given by

X: = Acos(2mwt) + Bsin(2wwt),

with A = Rsin(p) and B = Rcos(y) usually being independent standard normal variates. Then, R? = A2 + B? is a x-squared
random variable with 2 degrees of freedom and ¢ =tan~'(B/A) is uniformly distributed on (—, 7. Moreover, R and ¢ are
independent. Choosing now the value of w one particular periodicity can be described. To accommodate more than one, it seems
natural to consider mixtures of these periodic series with multiple frequencies and amplitudes:

m
X = Z [A; cos(2mw;t) + B;sin(27w;t)], tez,
=1

where Ay,..., Ay and By, ..., By, are independent random variables with zero mean and variances 62, ...,0%, and wi, ..., wn
are distinct frequencies. It can be shown that (X;: ¢ € Z) is a weakly stationary process with lag-h ACVF

~v(h) = Z 012. cos(2mw;h), heZ.
=1

The latter result yields in particular that y(0) = of +...+02 . The variance of X; is consequently the sum of the component
variances.

Example 4.1.1. Let m =2 and choose A1 =B; =1, Ay = By =4 to be constant as well as w; =1/12 and wy = 1/6. This
means that
X; = X+ X1V = [ cos(2mt/12) +sin(27t/12)] + [4 cos(27t/6) + 4 sin(27t/6)]

is the sum of two periodic components of which one exhibits an annual cycle and the other a cycle of six months. For all processes
involved, realizations of n = 48 observations (4 years of data) are displayed in Figure 4.1. Also shown is a fourth time series plot
which contains the X distorted by standard normal independent noise, X,. The corresponding R code is:

>t=1:48
>x1=cos(2*pi*t/12)+sin(2*pi*t/12)
>X2=4*cos(2*pi*t/6)+4*sin(2*pi*t/6)
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>X=X1+x2
>tildex=x+rnorm(48)

Note that the squared amplitude of Xt(l) is 12412 =2 . The maximum and minimum values of Xt(l) are therefore 44/2.
Similarly, we obtain ++/32 for the second component.

For a statistician it is now important to develop tools to recover the periodicities from the data. The branch of statistics concerned
with this problem is called spectral analyis. The standard method in this area is based on the periodogram which is introduced now.
Suppose for the moment that the frequency parameter w; = 1/12 in Example 4.1.1 is known. To obtain estimates of A; and By,
one could try to run a regression using the explanatory variables Y; 1 = cos(27t/12) or Y; 5 = sin(27t/12) to compute the least
squares estimators

A v XY 2 &
Ay =Zt’;—t;’1 =— ZX,; cos(27t/12),
1Y L=y

. 1 XY, 2 &
B, pYEROL ==Y X;sin(2nt/12).
=1
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Figure 4.1: Time series plots of (X)), (X,®), (X, and X
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Since, in general, the frequencies involved will not be known to the statistician prior to the data analysis, the foregoing suggests to

pick a number of potential \(\omega's, say j/n for j=1,...,7n/2 and to run a long regression of the form
n/2
X = [A;cos(2mjt/n) + B;sin(2mjt/n)] . (4.1.1)
3=0

This leads to least squares estimates A; and B; of which the "significant" ones should be selected. Note that the regression in 4.1.1
is a perfect one because there are as many unknowns as variables! Note also that

, 2 p2
P(j/n) = A; + B,
is essentially (up to a normalization) an estimator for the correlation between the time series X; and the corresponding sum of the
periodic cosine and sine functions at frequency j/n. The collection of all P(j/n), j=1,...,n/2, is called the scaled
periodogram. Tt can be computed quickly via an algorithm known as the fast Fourier transform (FFT) which in turn is based on the
discrete Fourier transform (DFT)

d(j/n) = L zn:Xt exp(—2mijt/n).

=
The frequencies j/m are called the Fourier or fundamental frequencies. Since exp(—iz)=cos(z)—isin(z) and
|2|> = 22 = (a+ib)(a —ib) =a® +b*> for any complex number z = a + b , it follows that

2

2
I(G/n) =d(G/n)* = % (Z X, cos(27rjt/n)> + % (Z X, sin(27rjt/n)> .
t=1 t=1

The quantity I(j/n) is referred to as the periodogram. It follows immediately that the periodogram and the scaled periodogram are
related via the identity 41(j/n) =nP(j/n).

Example 4.1.2. Using the expressions and notations of Example 4.1.1, the periodogram and the scaled periodogram are computed
in R as follows:

>t=1:48
>l=abs(fft(x)/sqrt(48))n 2
>P=4*1/48

>f=0:24/48

>plot(f, P[1:25], type="1")
>abline(v=1/12)
>abline(v=1/6)

The corresponding (scaled) periodogram for (X't) can be obtained in a similar fashion. The scaled periodograms are shown in the

left and middle panel of Figure 4.2. The right panel displays the scaled periodogram of another version of (X't) in which the
standard normal noise has been replaced with normal noise with variance 9. From these plots it can be seen that the six months
periodicity is clearly visible in the graphs (see the dashed vertical lines at x=1/6. The less pronounced annual cycle (vertical line at
x=1/12 is still visible in the first two scaled periodograms but is lost if the noise variance is increased as in the right plot. Note,
however, that the y-scale is different for all three plots.
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Figure 4.2: The scaled periodograms of (X;), (X,E ) ( ~£2))

In the ideal situation that we observe the periodic component without additional contamination by noise, we can furthermore see
why the periodogram may be useful in uncovering the variance decomposition from above. We have shown in the lines preceding
Example 4.1.1 that the squared amplitudes of Xt(l) and Xt(2) are 2 and 32, respectively. These values are readily read from the
scaled periodogram in the left panel of Figure 4.2. The contamination with noise alters these values.

In the next section, it is established that the time domain approach (based on properties of the ACVF, that is, regression on past
values of the time series) and the frequency domain approach (using a periodic function approach via fundamental frequencies, that
is, regression on sine and cosine functions) are equivalent. Some details are given on the spectral density (the population
counterpart of the periodogram) and on properties of the periodogram itself.
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