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3.2: Causality and Invertibility
While a moving average process of order  will always be stationary without conditions on the coefficients , , , some deeper
thoughts are required in the case of AR( ) and ARMA( ) processes. For simplicity, we start by investigating the autoregressive
process of order one, which is given by the equations  (writing ). Repeated iterations yield that

Letting , it could now be shown that, with probability one,

is the weakly stationary solution to the AR(1) equations, provided that . These calculations would indicate moreover, that an
autoregressive process of order one can be represented as linear process with coefficients .

Since an autoregressive process of order one has been identified as an example of a linear process, one can easily determine its
expected value as

For the ACVF, it is obtained that

where . This determines the ACVF for all  using that . It is also immediate that the ACF satisfies 
. See also Example 3.1.1 for comparison.

In Example 1.2.3 we have introduced the random walk as a nonstationary time series. It can also be viewed as a nonstationary
AR(1) process with parameter . In general, autoregressive processes of order one with coefficients  are called {\it
explosive}\/ for they do not admit a weakly stationary solution that could be expressed as a linear process. However, one may
proceed as follows. Rewrite the defining equations of an AR(1) process as

Apply now the same iterations as before to arrive at

Note that in the weakly stationary case, the present observation has been described in terms of past innovations. The
representation in the last equation however contains only future observations with time lags larger than the present time .
From a statistical point of view this does not make much sense, even though by identical arguments as above we may obtain
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as the weakly stationary solution in the explosive case.

The result of the previous example leads to the notion of causality which means that the process  has a representation
in terms of the white noise  and that is hence uncorrelated with the future as given by . We give the
definition for the general ARMA case.

An ARMA( ) process given by (3.1.1) is causal if there is a sequence  such that  and

Causality means that an ARMA time series can be represented as a linear process. It was seen earlier in this section how an AR(1)
process whose coefficient satisfies the condition  can be converted into a linear process. It was also shown that this is
impossible if . The conditions on the autoregressive parameter  can be restated in terms of the corresponding
autoregressive polynomial  as follows. It holds that

 if and only if  for all 

 if and only if  for all .

It turns out that the characterization in terms of the zeroes of the autoregressive polynomials carries over from the AR(1) case to the
general ARMA( ) case. Moreover, the -weights of the resulting linear process have an easy representation in terms of the
polynomials  and . The result is summarized in the next theorem.

Let  be an ARMA( ) process such that the polynomials  and  have no common zeroes. Then 
 is causal if and only if  for all  with . The coefficients  are determined by the

power series expansion

A concept closely related to causality is invertibility. This notion is motivated with the following example that studies properties of
a moving average time series of order 1.

Let  be an MA(1) process with parameter . It is an easy exercise to compute the ACVF and the ACF as

These results lead to the conclusion that  does not change if the parameter  is replaced with . Moreover, there exist
pairs  that lead to the same ACVF, for example  and . Consequently, we arrive at the fact that the two
MA(1) models
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are indistinguishable because we only observe  but not the noise variables  and .

For convenience, the statistician will pick the model which satisfies the invertibility criterion which is to be defined next. It
specifies that the noise sequence can be represented as a linear process in the observations.

An ARMA( ) process given by (3.1.1) is invertible if there is a sequence  such that  and

Let  be an ARMA( ) process such that the polynomials  and  have no common zeroes. Then 
 is invertible if and only if  for all  with . The coefficients  are determined by the

power series expansion

From now on it is assumed that all ARMA sequences specified in the sequel are causal and invertible unless explicitly stated
otherwise. The final example of this section highlights the usefulness of the established theory. It deals with parameter redundancy
and the calculation of the causality and invertibility sequences  and .

Consider the ARMA equations

which seem to generate an ARMA(2,2) sequence. However, the autoregressive and moving average polynomials have a
common zero:

Therefore, one can reset the ARMA equations to a sequence of order (1,1) and obtain

Now, the corresponding polynomials have no common roots. Note that the roots of  and  are 
 and , respectively. Thus Theorems 3.2.1 and 3.2.2 imply that causal and invertible solutions exist. In

the following, the corresponding coefficients in the expansions

are calculated. Starting with the causality sequence . Writing, for ,

it can be obtained from a comparison of coefficients that
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Similarly one computes the invertibility coefficients  from the equation

( ) as

Together, the previous calculations yield to the explicit representations

In the remainder of this section, a general way is provided to determine the weights  for a causal ARMA( ) process
given by , where  for all  such that . Since  for these , the weight 
can be computed by matching the corresponding coefficients in the equation , that is,

Recursively solving for  gives

and so on as long as . The general solution can be stated as

if we define  if  and  if . To obtain the coefficients  one therefore has to solve the homogeneous linear
difference equation (3.2.2) subject to the initial conditions specified by (3.2.1). For more on this subject, see Section 3.6 of
Brockwell and Davis (1991) and Section 3.3 of Shumway and Stoffer (2006).

In R, these computations can be performed using the command ARMAtoMA. For example, one can use the commands

>ARMAtoMA(ar=.7,ma=.3,25)

>plot(ARMAtoMA(ar=.7,ma=.3,25))

which will produce the output displayed in Figure 3.4. The plot shows nicely the exponential decay of the -weights which is
typical for ARMA processes. The table shows row-wise the weights . This is enabled by the choice of 25 in the
argument of the function ARMAtoMA.
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Figure 3.4: The R output for the ARMA(1,1) process of Example 3.2.4
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