
11.3.1 https://eng.libretexts.org/@go/page/7392

11.3: Hash Functions vs. MACs: Length-Extension A ttacks
When we discuss hash functions, we generally consider the salt to be public. A natural question is, what happens when we
make the salt private? Of all the cryptographic primitives we have discussed so far, a hash function with secret salt most closely
resembles a MAC. So, do we get a secure MAC by using a hash function with private salt?

Unfortunately, the answer is no in general (although it can be yes in some cases, depending on the hash function). In particular, the
method is insecure when is constructed using the Merkle-Damgård approach. The key observation is that:

knowing allows you to predict the hash of any string that begins with

This concept is best illustrated by example.

Let’s return to our previous example, with a compression function . Suppose we construct a Merkle-
Damgård hash out of this compression function, and use the construction as a .

Suppose the MACkey is chosen as , and an attacker sees the MAC tag of the message
. Then corresponds exactly to the example from before:

Figure : Copy and Paste Caption here. (Copyright; author via source)

The only difference from before is that the first block contains the , so its value is not known to the attacker. We
have shaded it in gray here. The attacker knows all other inputs as well as the output tag .

I claim that the attacker can now exactly predict the tag of:

Figure : Copy and Paste Caption here. (Copyright; author via source)

The correct MAC tag of this value would be computed by someone with the key as:

Figure : Copy and Paste Caption here. (Copyright; author via source)

The attacker can compute the output in a different way, without knowing the key. In particular, the attacker knows all inputs
to the last instance of . Since the h function itself is public, the attacker can compute this value herself as

. Since she can predict the tag of , having seen only the tag of , she has broken the MAC
scheme.

s

H

H(x)

MDPAD(x)

 Example

h : {0, 1 → {0, 1}48 }32

MAC(k, m) = H(k∥m) MAC

k = 0110001111001101 t

m = 010000111001011101010000 t = H(k∥m)

11.3.1

MACkey

t

11.3.1

t′

11.3.1

t′

h

= h(t∥0000000001000000)t′ m′ m

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/7392?pdf
https://eng.libretexts.org//Under_Construction/Book:_The_Joy_of_Cryptography_(Rosulek)/Chapter_12:_Hash_Functions/12.3:_Merkle-Damg%C3%A5rd_Construction

11.3.2 https://eng.libretexts.org/@go/page/7392

Discussion
In our example, the attacker sees the MAC tag for (computed as) and then forges the tag for , where
is the padding you must add when hashing . Note that the padding depends only on the length of , which we assume is
public.
The same attack works to forge the tag of any that begins with . The attacker would simply have to compute the last
several rounds (not just one round) of MerkleDamgård herself.
This is not an attack on collision resistance! Length-extension does not result in collisions! We are not saying that and

 have the same hash under , only that knowing the hash of allows you to also compute the hash of .

Knowing how fails to be a MAC helps us understand better ways to build a secure MAC from a hash function:

The Merkle-Damgård approach suffers from length-extension attacks because it outputs its entire internal state. In the
example picture above, the value is both the output of as well as the only information about needed to compute
the last call to in the computation .

One way to avoid this problem is to only output part of the internal state. In MerkleDamgård, we compute
until reaching the final output . Suppose instead that we only output half of (the values may need to be made
longer in order for this to make sense). Then just knowing half of is not enough to predict what the hash output will be in a
length-extension scenario.

The hash function SHA-3 was designed in this way (often called a "wide pipe" construction). One of the explicit design criteria
of SHA-3 was that would be a secure MAC.

Length extension with Merkle-Damgård is possible because the computation of exactly appears during the
computation of . Similar problems appear in plain CBC-MAC when used with messages of mixed lengths. To avoid
this, we can "do something different" to mark the end of the input. In a "wide pipe" construction, we throw away half of the
internal state at the end. In ECBC-MAC, we use a different key for the last block of CBC chaining.

We can do something similar to the construction, by doing , with independent keys. This change is
enough to mark the end of the input. This construction is known as NMAC, and it can be proven secure for MerkleDamgård
hash functions, under certain assumptions about their underlying compression function. A closely related (and popular)
construction called HMAC allows and to even be related in some way.

This page titled 11.3: Hash Functions vs. MACs: Length-Extension Attacks is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Mike Rosulek (Open Oregon State) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

m H(k∥m) = m∥pm′ p

k∥m k

m′ m∥p

k∥m

k∥m∥p H k∥m k∥m∥p

H(k∥m)

t H(k∥m) k∥m

h H(k∥m∥p)

:= h (∥)yi yi−1 xi

yk+1 yk+1 yi

yk+1

H(k∥m)

H(k∥m)
H(k∥m∥p)

H(k∥m) H (∥H (∥m))k2 k1

k1 k2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/7392?pdf
https://eng.libretexts.org/https%3A%2F%2Feng.libretexts.org/Under_Construction/Book%3A_The_Joy_of_Cryptography_(Rosulek)/12%3A_Hash_Functions/12.03%3A_Hash_Functions_vs._MACs%3A_Length-Extension_A%1Dttacks
https://creativecommons.org/licenses/by-nc-sa/4.0
http://web.engr.oregonstate.edu/~rosulekm/
http://library.open.oregonstate.edu/
https://joyofcryptography.com/

