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7.3: Air Resistance Proportional to the Square of the Speed
Notation:  is the velocity,  is the speed. The horizontal and vertical components of the velocity are, respectively, 

 and . Here  is the angle that the instantaneous velocity  makes with the horizontal. The
resistive force per unit mass is . The horizontal and vertical components of the resistive force per unit mass are  and 

 respectively. The launch speed is  and the launch angle (i.e. the initial value of ) is . Distance traveled from the
launch point, measured along the trajectory, is  and speed . The Equations of motion are:

Horizontal:

Vertical:

These cannot be integrated as conveniently as in the previous cases, but we can get a simple relation between the horizontal
component  of the speed and the intrinsic coordinate . Thus, when we make use of ,  and , Equation 

 takes the form

Integration, with initial condition , yields

We can also obtain an exact explicit intrinsic Equation to the trajectory by consideration of the normal Equation of motion.

The intrinsic Equation to any curve is a relation between the intrinsic coordinates ( , ). The rate at which the slope angle 
changes as you move along the curve, i.e. , is called the curvature at a point along the curve. If the slope is increasing with , the
curvature is positive. The reciprocal of the curvature at a point, , is the radius of curvature at the point, denoted here by .

The normal Equation of motion is the Equation  applied in a direction normal to the curve. The acceleration appropriate
here is the centripetal acceleration  or .

In a direction normal to the motion, the air resistance has no component, and gravity has a component . (It is minus
because the curvature is clearly negative.) The normal Equation of motion is therefore

But

Therefore

Separate the variables, and integrate, with appropriate initial conditions:

From here it is good integration practice to show that the intrinsic Equation is

This Equation is of the form
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While it would be straightforward now to compute  as a function of  and hence to plot a graph of  versus , we really want to
show  as a function of , and  and  as a function of time. I am indebted to Dario Bruni of Italy for the following analysis.

Let ( ) be a point on the trajectory. When the projectile moves a short distance , the new coordinates will be (  ),
where

and

provided that  is taken to be sufficiently small that the path between the two points is approximately a straight line. The
calculation starts with  =  = 0 and  = . At each stage of the calculation, the new value of  can be calculated from Equation 

. This can be done easily, for example, by Newton-Raphson iteration, since the derivative of the left hand side of this
equation with respect to  is just . Thus, with a sufficiently small interval , the shape of the trajectory can be built up
point by point.

While this gives us the shape of the trajectory, it tells us nothing about the time. To do this, we can write the Equations of motion,
Equations  and  in the forms

and

Let ( ) be a point on the trajectory. After a short time , the new coordinates will be ( ), where

and

provided that  is taken to be sufficiently small that the acceleration between the two instants of time is approximately constant.
Also, the new velocity components are given by

and

The calculation starts with

and after each increment  the new coordinates and velocity and acceleration components are calculated. The results of Sr Bruni’s
calculations are shown in Figure VII.3 for

 = 0.0177m ,  = 90.5ms ,  = 60 ,  = 9.8ms
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Plotted with step by step method from intrinsic Equation with = 0.025 m. Horizontal range 79.0 m; maximum height 62.4 m.
Total flight duration 7.1 seconds. The time taken to reach the maximum height is 2.8 seconds, so the descent time is longer than the
ascent time.

An alternative approach has been given by Ambrose Okune, of Uganda. In Okune’s analysis, he obtains explicit expressions for , 
 and in terms of the angle . (In Equation  we already have a relation between  and .)

We start with Equation , the horizontal Equation of motion

Now , , and  so that

Similarly, Equation , the vertical Equation of motion, is

and, with , , and ,this becomes

Now

Also  =  so that

On comparison of Equations  and , we see that

Upon substitution of  =  this becomes
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and hence

Upon integration, we obtain

From this, we obtain

and hence

Thus we now have the velocity components explicitly in terms of the angle y. For simplicity, let us write

Then the Equations for the velocity components are

and

In the limit, as , , , the motion approaches a vertical asymptote. As ,  and

hence . Thus the limiting value of the vertical component of the velocity is . This agrees precisely

with what one would expect for a body falling vertically at terminal speed, with resistance proportional to the square of the speed
(see Equation 6.4.5).

We now aim to find an expression relating  to , which we do by noting that

The derivative  can be found from the horizontal Equation of motion , which can be written (because 
and ) as . Then, making use of Equation , we obtain

The derivative  can be found from Equation  and is

The derivative  can be found from Equation  and is

Thus the relation we seek is
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If the initial motion of the projectile at time zero makes an angle  with the horizontal, then integration of Equation  gives
the following expression for the subsequent time  when the motion makes an angle  with the horizontal.

Also  =  = . With  and  given respectively by Equations  and , we obtain

from which we can calculate  as a function of :

Further,  =  = . With  and  given respectively by Equations  and , we obtain

from which we can calculate  as a function of :

Equations ,  and  enable us to calculate ,  and  as a function of , and hence to calculate any one of them in
terms of any of the others. In each case a numerical integration is required, such as by Simpson’s rule or by Gaussian quadrature, or
other integration algorithm, and, as is always the case, sufficient points must be sampled to obtain adequate precision. Numerical
integration of these Equations, using the data of Dario Bruno’s example above, produced the same  :  trajectory as calculated for
Figure VII.3 by Bruno, and the  :  and  :  relations shown in Figure VII.4.

I am greatly indebted to Dario Bruni and to Ambrose Okune for their interesting and instructive contributions to this section – an
inspirational example of international scientific cooperation between, Italy, Uganda and Canada!
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